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21.5 The Sakai–Sugimoto model 342
21.6 Mass spectra in gravity duals from field eigenmodes; examples 343
21.7 Mass spectra in gravity duals from mode expansion on probe branes;

Sakai–Sugimoto example 347
21.8 Finite N? 349
Exercises 350

22 Holographic renormalization 352
22.1 Statement of the problem and expected results: renormalization of

infinities 352
22.2 Asymptotically AdS spaces and asymptotic expansion of the

fields 354
22.3 Method 355
22.4 Example: massive scalar 357
Exercises 361

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:52:41 BST 2016.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781316090954
Cambridge Books Online © Cambridge University Press, 2016



xii Contents

23 RG flow between fixed points 363
23.1 N = 1 supersymmetric mass deformation of N = 4 SYM and an IR

fixed point 363
23.2 c-theorem 365
23.3 Holographic RG flow and c-theorem; kink ansatz 366
23.4 Supersymmetric flow 367
Exercises 369

24 Phenomenological gauge–gravity duality I: AdS/QCD 370
24.1 Extended “hard-wall” model for QCD 370
24.2 “Soft-wall” model for QCD 373
24.3 Improved holographic QCD 376
Exercises 380

25 Phenomenological gauge–gravity duality II: AdS/CMT 381
25.1 Lifshitz, Galilean, and Schrödinger symmetries and their

gravity duals 381
25.2 Spectral functions 385
25.3 Transport properties 388
25.4 Viscosity over entropy density from dual black holes 392
25.5 Gauge fields, complex scalars, and fermions in AdS space vs. CFTs 393
25.6 The holographic superconductor 394
25.7 The ABJM model, quantum critical systems, and compressible quantum

matter 399
25.8 Reducing the ABJM model to the Landau–Ginzburg model 403
Exercises 406

26 Gluon scattering: the Alday–Maldacena prescription 407
26.1 T-duality of closed strings and supergravity fields 407
26.2 T-duality of open strings and D-branes 409
26.3 T-duality on AdS space for scattering amplitudes 411
26.4 Scattering amplitude prescription 413
26.5 4-point amplitude 414
26.6 IR divergences 416
26.7 Fermionic T-duality 417
Exercises 419

27 Holographic entanglement entropy: the Ryu–Takayanagi prescription 420
27.1 Entanglement entropy 420
27.2 Application for black holes 421
27.3 Entanglement entropy in quantum field theory 422
27.4 Ryu–Takayanagi holographic prescription 424
27.5 Holographic entanglement entropy in two dimensions 425

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:52:41 BST 2016.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781316090954
Cambridge Books Online © Cambridge University Press, 2016



xiii Contents

27.6 Holographic entanglement as order parameter and
confinement/deconfinement transition 426

Exercises 428

References 430
Index 434

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:52:41 BST 2016.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781316090954
Cambridge Books Online © Cambridge University Press, 2016



Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:52:41 BST 2016.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781316090954
Cambridge Books Online © Cambridge University Press, 2016



Cambridge Books Online

http://ebooks.cambridge.org/

Introduction to the AdS/CFT Correspondence

Horaiu Nstase

Book DOI: http://dx.doi.org/10.1017/CBO9781316090954

Online ISBN: 9781316090954

Hardback ISBN: 9781107085855

Chapter

Preface pp. xv-xv

Chapter DOI: http://dx.doi.org/10.1017/CBO9781316090954.001

Cambridge University Press



Preface

This book is intended as a pedagogical introduction to the rapidly developing field of the
AdS/CFT correspondence. This subject has grown to the point where graduate students, as
well as researchers, from fields outside string theory or even particle theory, in particular
nuclear physics and condensed matter physics, want to learn about it. With this in mind,
the book endeavours to introduce AdS/CFT without assuming anything beyond an intro-
ductory course in quantum field theory. Some familiarity with the principles of general
relativity, supersymmetry or string theory would help the reader follow more easily, but is
not necessary, as I introduce all the necessary concepts. I do not overload the book with
unnecessary details about these fields, only what I need to give a simple, yet completely
rigorous, account of all the basic methods, tools, and applications of AdS/CFT. For more
details on these subjects, one can consult a number of good textbooks available for each,
which I suggest at the end of the corresponding chapters. When explaining AdS/CFT, I
try to give a simple introduction to each method, tool, or application, without aiming for
an in-depth or exhaustive treatment. The goal is to introduce most of the AdS/CFT meth-
ods, but for an in-depth treatment one should refer to research articles instead. Part I of
the book deals with the necessary background material, so someone familiar with this can
skip it. Part II describes the basics of AdS/CFT in the context of its best understood exam-
ple, N = 4 SYM vs. string theory in AdS5 × S5. Part III deals with more specialized
applications and other dualities, generalizing to the gauge–gravity dualities.
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Introduction

This book gives an introduction to the Anti-de Sitter/Conformal Field Theory correspon-
dence, or AdS/CFT, so it would be useful to first understand what it is about.

From the name, we see that it is a relation between a quantum field theory with con-
formal invariance (which is a generalization of scaling invariance), living in our flat
4-dimensional space, and string theory, which is a quantum theory of gravity and other
fields, living in the background solution of AdS5 × S5 (5-dimensional Anti-de Sitter space
times a 5-sphere), a curved space with the property that a light signal sent to infinity comes
back in a finite time.

The flat 4-dimensional space containing the field theory lives at the boundary (situated
at infinity) of the AdS5 × S5, thus the correspondence, or equivalence, is said to be an
example of holography, since it is similar to the way a 2-dimensional hologram encodes
the information about a 3-dimensional object. The background AdS5 × S5 solution is itself
a solution of string theory, as the relevant theory of quantum gravity.

From this description, it is obvious that before we describe AdS/CFT, we must first
introduce a number of topics, which is done in Part I of the book. First, we review some
relevant notions of quantum field theory, though I assume that the reader has a working
knowledge of quantum field theory. Then I describe some basic concepts of general rel-
ativity, supersymmetry, and supergravity, since string theory is a supersymmetric theory,
whose low energy limit is supergravity. After that, I introduce black holes and p-branes,
since the AdS5 × S5 string theory background appears as a limit of them. Finally, I intro-
duce string theory, elements of conformal field theory (4-dimensional flat space theories
with conformal invariance), and D-branes, which are objects in string theory on which the
relevant quantum field theories can be defined.

The AdS/CFT correspondence was put forward by Juan Maldacena in 1997, as a conjec-
tured duality based on a heuristic derivation which will be explained, and until now there
is no exact proof for it. However, there is an enormous amount of evidence in its favor in
the form of calculations matching on the two sides of the correspondence, turning it into
a virtual certainty, so while technically we should append the name “conjecture” to it, this
would be a pedantic point, and I shall refrain from doing so.

However, while this is true for all dualities which can be derived in the manner of
Maldacena, there are now applications to real-world physics, which I call “phenomenolog-
ical AdS/CFT,” where one uses some general lessons learned from AdS/CFT to engineer a
description in terms of quantum field theory that has the right properties to be relevant for
systems of interest, but without a microscopic derivation. In this category fall some appli-
cations to QCD, quark–gluon plasma, and condensed matter, which are described in detail
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xviii Introduction

in Part III of the book. In these cases it is therefore important to realize the conjectural
nature of the correspondence.

Another question that we should ask is why is the AdS/CFT correspondence interesting?
The reason is that it relates perturbative (weak coupling) string theory calculations in a
gravitational theory to nonperturbative (strong coupling) gauge theory calculations, which
would otherwise be very difficult to obtain. Of course, the reverse is also true, namely
nonperturbative (strong coupling) string theory in a gravitational background is related to
perturbative (weak coupling) gauge theory, allowing in principle an (otherwise unknown)
definition of the former through the latter, but the rules in this case are much less clear. The
strong–weak coupling relation means that AdS/CFT is an example of duality, in the sense
of the electric–magnetic duality of Maxwell theory.

The applications to QCD and condensed matter are, however, hampered by the fact that
the AdS/CFT duality becomes calculable in the limit of large rank of the gauge group, or
“number of colours” on the field theory side, Nc →∞. Also, the best understood example
of N = 4 SYM is very far from the real world, having both supersymmetry and confor-
mal invariance. When we move away from supersymmetry and conformal invariance, the
rules are less clear and we can calculate less, as we will see. Nevertheless, AdS/CFT is
a developing field, and we have already obtained many useful results and insights, so we
can hope that these methods will lead to solving interesting problems that cannot be solved
otherwise.
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PART I

BACKGROUND
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1
Elements of quantum field theory

and gauge theory

In this chapter, I review some useful issues about quantum field theory, assuming
nevertheless that the reader has seen them before. It will also help to set up the notation
and conventions.

1.1 Note on conventions

Throughout this book, I use theorist’s conventions, with � = c = 1. If we need to
reintroduce them, we can use dimensional analysis. In these conventions, there is only
one dimensionful unit, mass = 1/length = energy = 1/time = . . . and when I speak of
dimension of a quantity I refer to mass dimension, e.g. the mass dimension of d4x, [d4x],
is −4.

For the Minkowski metric ημν I use the signature convention mostly plus, thus
for instance in 3+1 dimensions the signature will be (− + + +), giving ημν =
diag(−1,+1,+1,+1). This convention is natural in order to make heavy use of the
Euclidean formulation of quantum field theory and to relate to Minkowski space via Wick
rotation.

Also, in this book we use Einstein’s summation convention, i.e. indices that are repeated
are summed over. Moreover, the indices summed over will be one up and one down, unless
we are in Euclidean space, where up and down indices are the same.

1.2 The Feynman path integral and Feynman diagrams

To exemplify the basic concepts of quantum field theory, and the Feynman diagrammatic
expansion, I use the simplest possible example, of a scalar field. A scalar field is a field that
under a Lorentz transformation

x′μ = �μ
νxν , (1.1)

transforms as

φ′(x′μ) = φ(xμ). (1.2)
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4 Elements of quantum field theory and gauge theory

We will deal with relativistic field theories, which are also local, which means that the
action is an integral over functions defined at one point, of the type

S =
∫

Ldt =
∫

d4xL(φ, ∂μφ). (1.3)

Here L is the Lagrangean, whereas L(φ(�x, t), ∂μφ(�x, t)) is the Lagrangean density, that
often times by an abuse of notation is also called Lagrangean.

Classically, one varies this action with respect to φ(x) to give the classical equations of
motion for φ(x),

∂L
∂φ

= ∂μ

[
∂L

∂(∂μφ)

]
. (1.4)

Quantum mechanically, the field φ(x) is not observable anymore, and instead one must use
the vacuum expectation value (VEV) of the scalar field quantum operator instead, which is
given as a “path integral” in Minkowski space,

〈0|φ̂(x1)|0〉 =
∫

DφeiS[φ]φ(x1). (1.5)

Here the symbol
∫ Dφ represents a discretization of a spacetime path φ(xμ1 ) → φ(xμ2 ),

followed by integration over the field value at each discrete point:

∫
Dφ(x) = lim

N→∞

N∏
i=1

∫
dφ(xi). (1.6)

The action in Minkowski space for a scalar field with only nonderivative self-interactions
and a canonical quadratic kinetic term is

S =
∫

d 4xL =
∫

d 4x

[
−1

2
∂μφ∂

μφ − 1

2
m2φ2 − V(φ)

]

=
∫

d 4x

[
1

2
φ̇2 − 1

2
| �∇φ|2 − 1

2
m2φ2 − V(φ)

]
. (1.7)

A generalization of the scalar field VEV is the correlation function or Green’s function or
n-point function,

Gn(x1, . . . , xn) = 〈0|T{φ̂(x1) . . . φ̂(xn)}|0〉 =
∫

DφeiS[φ]φ(x1) . . . φ(xn). (1.8)

We note, however, that the weight inside the integral, eiS, is highly oscillatory, so the
n-point functions are hard to define precisely in Minkowski space.

It is much better to Wick rotate to Euclidean space, with signature ++ . . .+, define all
objects there, and at the end Wick rotate back to Minkowski space. Both definitions and
calculations are then easier. This is also what will happen in the case of AdS/CFT, which
will have a natural definition in Euclidean signature, but will be harder to continue back to
Minkowski space.

The Wick rotation happens through the relation t = −itE. To rigorously define path
integrals, we consider only paths which are periodic in Euclidean time tE. In the case that
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5 1.2 The Feynman path integral and Feynman diagrams

the Euclidean time is periodic, a quantum mechanical path integral gives the statistical
mechanics partition function at β = 1/kT through the Feynman–Kac formula,

Z(β) = Tr{e−βĤ}
(
=

∫
dq

∑
n

|ψn(q)|2e−βEn =
∫

dq〈q,β|q, 0〉
)

=
∫

Dqe−SE[q]|q(tE+β)=q(tE). (1.9)

To obtain the vacuum functional in quantum field theory, we consider the generalization
to field theory, for periodic paths with infinite period, i.e. limβ→∞ φ(�x, tE + β) = φ(�x, tE).
The Euclidean action is defined through Wick rotation, by the definition

iSM ≡ −SE. (1.10)

This gives for (1.7)

SE[φ] =
∫

d4x
[1

2
∂μφ∂μφ + 1

2
m2φ2 + V(φ)

]
, (1.11)

where, since we are in Euclidean space, aμbμ = aμbμ = aμbνδμν , and time is defined as
tM ≡ x0 = −x0 = −itE, tE = x4 = x4, and so x4 = ix0. In this way, the oscillatory factor
eiS has been replaced by the highly damped factor e−S, sharply peaked on the minimum of
the Euclidean action.

The Euclidean space correlation functions are then defined as

G(E)
n (x1, . . . , xn) =

∫
Dφe−SE[φ]φ(x1) . . . φ(xn). (1.12)

We can define a generating functional for the correlation functions, the partition
function,

Z(E)[J] =
∫

Dφe−SE[φ]+J·φ ≡ J〈0|0〉J , (1.13)

where in d dimensions

J · φ ≡
∫

ddxJ(x)φ(x). (1.14)

It is so called because at finite periodicity β we have the same relation to statistical
mechanics as in the quantum mechanical case,

Z(E)[β, J] = Tr{e−βĤJ } =
∫

Dφe−SE[φ]+J·φ |φ(�x,tE+β)=φ(�x,tE). (1.15)

The Euclidean correlation functions are obtained from derivatives of the partition function,

G(E)
n (x1, . . . , xn) = δ

δJ(x1)
. . .

δ

δJ(xn)

∫
Dφe−SE+J·φ

∣∣∣∣
J=0

= δ

δJ(x1)
. . .

δ

δJ(xn)
Z(E)[J]

∣∣∣∣
J=0

. (1.16)
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6 Elements of quantum field theory and gauge theory

Going back to Minkowski space, we can also define a partition function as a generating
functional of the Green’s functions,

Z[J] =
∫

DφeiS[φ]+i
∫

ddxJ(x)φ(x), (1.17)

that again gives the correlation functions through its derivatives by

Gn(x1, . . . , xn) = δ

iδJ(x1)
. . .

δ

iδJ(xn)

∫
DφeiS+i

∫
ddxJ(x)φ(x)

∣∣∣∣
J=0

= δ

iδJ(x1)
. . .

δ

iδJ(xn)
Z[J]

∣∣∣∣
J=0

. (1.18)

The correlation functions can be calculated in perturbation theory in the interaction Sint,
through the use of Feynman diagrams.

The Feynman theorem relates the correlation functions in the full theory, in the vacuum
of the full theory |�〉, with normalized ratios of correlation functions in the interaction
picture, in the vacuum of the free theory |0〉,

〈�|T{φH(x1) . . . φH(xn)}|�〉

= lim
T→∞(1−iε)

〈0|T
{
φI(x1) . . . φI(xn) exp

[
− i

∫ T
−T dtHI(t)

]}
|0〉

〈0|T
{

exp
[
− i

∫ T
−T dtHI(t)

]}
|0〉

, (1.19)

where HI is the interaction Hamiltonian Hi in the interaction picture (H = H0 + Hi), φI is
an interaction picture field, and φH is a Heisenberg picture field. The denominator cancels
vacuum bubbles, which factorize in the calculation, leaving only connected diagrams.

In the path integral formalism and in Euclidean space, we can find correlation functions
of the full theory as normalized correlation functions in the interaction picture (divided by
the vacuum bubbles), giving again connected diagrams only. For the one-point function
and at nonzero source J(x), we obtain the relation

1

Z[J]

δZ[J]

δJ(x)
= δ(−W[J])

δJ(x)
, (1.20)

where −W[J] is defined as the generating functional of connected diagrams, relation
solved by

Z[J] = N e−W[J]. (1.21)

Here W[J] is called the free energy, again because of the relation with statistical mechanics.
To exemplify the Feynman rules, we use a scalar field action in Euclidean space,

SE[φ] =
∫

d4x

[
1

2
(∂μφ)2 + m2φ2 + V(φ)

]
. (1.22)

Here I have used the notation

(∂μφ)2 = ∂μφ∂
μφ = ∂μφ∂νφη

μν = −φ̇2 + ( �∇φ)2. (1.23)

Moreover, for concreteness, I use V = λφ4.
Then, the Feynman diagram in x space is obtained as follows. One draws a diagram,

in the example in Fig. 1.1a it is the so-called “setting Sun” diagram.
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7 1.2 The Feynman path integral and Feynman diagrams

)b)a

�Figure 1.1 a) “Setting Sun” diagram in x-space; b) “Setting Sun” diagram in momentum space.

The Feynman rules are:
0. Draw all the Feynman diagrams for the given correlation function at the given loop

order (or given number of vertices).
1. A line between point x and point y represents the Euclidean propagator

�(x, y) = [−∂μ∂μ + m2]−1 =
∫

d4p

(2π )4

eip(x−y)

p2 + m2
, (1.24)

which is a Green’s function for the kinetic operator, i.e.

[−∂μ∂μ + m2]x�(x, y) = δ(x − y). (1.25)

The analytical continuation (Wick rotation) of the Euclidean propagator to Minkowski
space gives the Feynman propagator,

DF(x − y) =
∫

d4p

(2π )4

−i

p2 + m2 − iε
eip·(x−y). (1.26)

2. A 4-vertex at point x represents the vertex factor∫
d4x(−λ). (1.27)

3. Then the value of the Feynman diagram, F(N)
D (x1, . . . , xn) is obtained by multiplying

all the above elements, and the value of the n-point function is obtained by summing over
diagrams, and over the number of 4-vertices N with a weight factor 1/N!:

Gn(x1, . . . , xn) =
∑
N≥0

1

N!

∑
diag D

F(N)
D (x1, . . . , xn). (1.28)

Equivalently, one can use a rescaled potential λφ4/4! and construct only topologi-
cally inequivalent diagrams. Then the vertices are still

∫
d4x(−λ), but we divide each

inequivalent diagram by a statistical weight factor,

S = N! (4! )N

# of equivalent diagrams
, (1.29)

which equals the number of symmetries of the diagram.
In momentum space, we can use simplified Feynman rules, where we consider as inde-

pendent momenta the external momenta flowing into the diagram, and integration variables
l1, . . . , lL for each independent loop in the diagram. Using momentum conservation at each
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8 Elements of quantum field theory and gauge theory

vertex, we can calculate the momentum on each internal line, pi, as a function of the loop
momenta lk and the external momenta qj. The propagator is now

�(p) = 1

p2 + m2
, (1.30)

and for each internal line (between two internal points) we write 1/(p2
i + m2), for each

external line (between two points, one of them external) q/(q2
j + m2). The vertex factor is

now simply −λ.

1.3 Smatrices vs. correlation functions

We mentioned in the previous section that the VEV of a scalar field is an observable in
quantum theory. More precisely, the normalized VEV in the presence of a source J(x),

φ(x; J) = J〈0|φ̂(x)|0〉J
J〈0|0〉J = 1

Z[J]

∫
Dφe−SE[φ]+J·φφ(x) = δ

δJ(x)
ln Z[J]

= − δ

δJ(x)
W[J], (1.31)

is called the classical field φcl and satisfies a quantum version of the classical field equation.
One defines the quantum effective action as the Legendre transform of the free energy,

�[φcl] = W[J] +
∫

d4xJ(x)φcl(x), (1.32)

and finds that it contains the classical action, plus quantum corrections. Then we have the
quantum analog of the classical equation of motion with a source δS[φ]/δφ(x) = J(x),

δ�[φcl]

δφcl(x)
= J(x). (1.33)

The effective action is a generator of the one particle irreducible (1PI) diagrams (except
for the 2-point function, where we add an extra term).

To relate to real scatterings, one constructs incoming and outgoing wavefunctions, repre-
senting actual states, in terms of the idealized states of fixed (external) momenta �k. These
are Schrödinger picture states 〈{�pi}| and |{�kj}〉. We also define Heisenberg picture states
whose wavepackets are well isolated at t = −∞, and can be considered noninteracting
there (but overlap at other t),

|{�pi} >in, (1.34)

and Heisenberg picture states whose wavepackets are well isolated at t = +∞, and can be
considered noninteracting there (but overlap at other t),

|{�pi} >out . (1.35)

Then the S-matrix is defined by

〈{�pi}|S|{�kj}〉 = out〈{�pi}|{�kj}〉in. (1.36)
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9 1.3 S matrices vs. correlation functions

Reduction formula (Lehmann, Symanzik, Zimmermann)

The LSZ formula relates S-matrices to correlation functions in momentum space, in
Minkowski space, near the physical pole for incoming and outgoing particles.

Define the momentum space Green’s functions as

G̃n+m(pμi , kμj ) =
∫ n∏

i=1

∫
d4xie

−ipi·xi

×
m∏

j=1

∫
d4yje

ikj·yj〈�|T{φ(x1) · · ·φ(xn)φ(y1) · · ·φ(ym)}|�〉. (1.37)

Then we have

in〈{pi}n|{kj}m〉out

= lim
p2

i →−m2
i ,k2

j →−m2
j

n∏
i=1

(p2
i + m2 − iε)

−i
√

Z

m∏
j=1

(k2
j + m2 − iε)

−i
√

Z
G̃n+m(pμi , kμj ). (1.38)

Here Z is the field renormalization factor, and can be defined from the behavior near the
physical pole of the full 2-point function,

G2(p) =
∫

d4xe−ip·x〈�|T{φ(x)φ(0)}|�〉 � −iZ

p2 + m2 − iε
. (1.39)

In other words, to find the S-matrix, we put the external lines on a shell, and divide by the
full propagators corresponding to all the external lines (but note that Z belongs to two exter-
nal lines, hence the

√
Z). This implies a diagrammatic procedure called amputation: we do

not use propagators on the external lines. We also need to consider connected diagrams
only, since the S-matrices are normalized objects, and we need to exclude processes where
nothing happens and external particles go through without interactions, corresponding to
the identity matrix. Therefore we have

〈{�pi}|S − 1|{�kj}〉 =
(∑

connected, amputated Feynman diag.
)
× (

√
Z)n+m. (1.40)

To understand the amputation procedure, consider the setting Sun diagram with external
momenta k1 and p1 and internal momenta p2, p3 and k1 − p2 − p3 in Fig. 1.1b. The result
for the amputated diagram is in Euclidean space (note that for the S-matrix we must go to
Minkowski space instead):

(2π )4δ4(k1 − p1)
∫

d4p2

(2π )4

d4p3

(2π )4
λ2 1

p2
2 + m2

1

p2
3 + m2

1

(k1 − p2 − p3)2 + m2
4

. (1.41)

Feynman path integral with composite operators

Up to now we have considered only correlators of fundamental fields, which are related
to external states for the quanta of these fields. But there is no reason to restrict ourselves
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10 Elements of quantum field theory and gauge theory

to this, we can also consider external states corresponding to a composite field O(x), for
instance

Oμν(x) = (∂μφ∂νφ)(x)(+ · · · ). (1.42)

We can then define Euclidean space correlation functions for these operators

< O(x1) · · ·O(xn) >Eucl =
∫

Dφe−SEO(x1) · · ·O(xn)

= δn

δJ(x1) · · · δJ(xn)

∫
Dφe−SE+

∫
d4xO(x)J(x)|J=0, (1.43)

which can be obtained from the generating functional

ZO[J] =
∫

Dφe−SE+
∫

d4xO(x)J(x). (1.44)

1.4 Electromagnetism, Yang–Mills fields and gauge groups

Electromagnetism

Up to now we have discussed only scalar fields. Gauge bosons describing forces between
particles correspond to vector fields. The simplest example of such a field is the Maxwell
field describing the electromagnetic force (the photon),

Aμ(x) = (−φ(�x, t), �A(�x, t)), (1.45)

where φ is the Coulomb potential and �A is the vector potential.
The field strength is

Fμν = ∂μAν − ∂νAμ ≡ 2∂[μAν], (1.46)

and it contains the electric �E and magnetic �B fields as

− F0i = F0i = Ei; Fij = εijkBk. (1.47)

The observables like �E and �B are defined in terms of Fμν (and not Aμ) and as such the
theory has a gauge symmetry under a U(1) group, that leaves Fμν invariant,

δAμ = ∂μλ; δFμν = 2∂[μ∂ν]λ = 0. (1.48)

The Minkowski space action for electromagnetism is

SMink = −1

4

∫
d4xF2

μν , (1.49)

which becomes in Euclidean space (since A0 and ∂/∂x0 = ∂t rotate in the same way)

SE = 1

4

∫
d4x(Fμν)2 = 1

4

∫
d4xFμνFρσ η

μρηνσ . (1.50)
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11 1.4 Electromagnetism, Yang–Mills fields and gauge groups

Yang–Mills fields

Yang–Mills fields Aa
μ are self-interacting gauge fields, where a is an index belonging to

a nonabelian gauge group. There is thus a 3-point self-interaction of the gauge fields
Aa
μ, Ab

ν , Ac
ρ , that is defined by the structure constants of the gauge group f a

bc, as well as a
4-point self-interaction.

The gauge group G has generators (Ta)ij in the representation R. Ta satisfy the Lie
algebra of the group,

[Ta, Tb] = fab
cTc, (1.51)

with structure constants f a
bc. Indices are raised and lowered with the metric gab on the

group space, defined up to a normalization by Tr R[Ta
RTb

R] = tRgab. The group G is most
commonly one of the classical groups SU(N), SO(N), USp(2N).

The adjoint representation is defined by the representation for the generators (Ta)bc =
f a

bc. The gauge fields live in the adjoint representation and the field strength is

Fa
μν = ∂μAa

ν − ∂νAa
μ + gf a

bcAb
μAc

ν . (1.52)

One can define Aμ = Aa
μTa and Fμν = Fa

μνTa in terms of which we have

Fμν = ∂μAν − ∂νAμ + g[Aμ, Aν]. (1.53)

If one further defines the forms

F = 1

2
Fμνdxμ ∧ dxν ; A = Aμdxμ, (1.54)

where wedge ∧ denotes antisymmetrization, one has

F = dA + gA ∧ A. (1.55)

The generators Ta are taken to be antihermitian. Throughout this book, unless otherwise
specified, we choose the normalization as defined by (having in mind the application for
the trace in the fundamental representation of SU(N))

Tr TaTb = −1

2
δab, (1.56)

and here group indices are raised and lowered with δab.
The local symmetry under the group G or gauge symmetry has now the infinitesimal

form

δAa
μ = (Dμε)a, (1.57)

where

(Dμε)a = ∂με
a + gf a

bcAb
με

c. (1.58)

The finite form of the transformation is

AU
μ (x) = U−1(x)Aμ(x)U(x) + 1

g
U−1∂μU(x); U(x) = egλa(x)Ta = egλ(x), (1.59)

and if λa = εa is small, we get back δAa
μ = (Dμε)a.
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12 Elements of quantum field theory and gauge theory

This transformation leaves invariant the Euclidean action

SE = −1

2

∫
d4xTr (FμνFμν) = 1

4

∫
d4xFa

μνFb μνδab, (1.60)

whereas the field strength transforms covariantly, i.e.

F′
μν = U−1(x)FμνU(x). (1.61)

1.5 Coupling to fermions and other fields and gauging a symmetry;
the Noether theorem

We have analyzed scalars and vectors, but usually matter is fermionic, hence we now show
how to deal with matter. Dirac fermions can be thought of as representations of the Clifford
algebra,

{γ μ, γ ν} = 2ημν1, (1.62)

and in four Minkowski dimensions they are 4-dimensional complex objects ψα on which
(γ μ)αβ acts. In a general dimension D, Dirac fermions have 2[D/2] complex components.
In four dimensions, we introduce the matrix γ5 as

γ5 = −iγ 0γ 1γ 2γ 3 = +iγ0γ1γ2γ3, (1.63)

which squares to one, (γ5)2 = 1, and in the Weyl representation becomes just

γ5 =
(
1 0
0 −1

)
. (1.64)

We also define the Dirac conjugate,

ψ̄ = ψ†β; β = iγ 0. (1.65)

With these conventions, the Dirac action in Minkowski space is written as1

Sψ = −
∫

d4xψ̄(γ μ∂μ + m)ψ . (1.66)

In this action, ψ̄ is treated as independent of ψ for the purposes of varying, so there are no
1/2 factors in front. One can consider the minimal coupling of the Dirac fermion with the
gauge field in Minkowski space,

Lψ = −ψ̄(D/ + m)ψ ,
D/ ≡ Dμγ

μ; Dμ ≡ ∂μ − ieAμ. (1.67)

Going to Euclidean space and considering also a minimal coupling to a complex scalar,
obtained by the same substitution ∂μ → Dμ, we have the total action

Stotal
E = SE,A +

∫
d4x[ψ̄(D/ + m)ψ + (Dμφ)∗Dμφ], (1.68)

1 A note on conventions: If instead one uses the metric η̃μν with signature (+ − − −), then since {γ̃ μ, γ̃ ν } =
2η̃μν , we have γ̃ μ = iγμ, so in Minkowski space one has ψ̄(i∂/− m)ψ , with ψ̄ = ψ†γ̃0.
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13 1.5 Coupling to fermions and other fields and gauging a symmetry; the Noether theorem

where again there are no 1/2 factors in the scalar action because φ and φ∗ are considered
independent for the purposes of varying.

The minimal coupling means that there is a local U(1) symmetry that extends the
electromagnetic gauge symmetry (1.48). Now we also have the transformation laws:

ψ ′ = eieλ(x)ψ ; φ′ = eieλ(x)φ, (1.69)

under which Dμψ transforms covariantly as

(Dμψ)′ = eieλDμψ , (1.70)

as does Dμφ.
Conversely, we can consider the action of a free Dirac fermion and complex scalar,

Sfree
E =

∫
d4x[ψ̄(∂/+ m)ψ + (∂μφ)∗∂μφ], (1.71)

which has a global U(1) symmetry

ψ ′ = eieλψ ; φ′ = eieλφ. (1.72)

Requiring that the global symmetry is promoted to a local one, λ → λ(x), requires intro-
ducing the minimal coupling to the gauge field transforming as (1.48). This is called
gauging a symmetry.

The coupling to nonabelian gauge fields is straightforward, one needing to define
only the covariant derivative in a representation R, when acting on objects in this
representation, as

(Dμ)ij = δij∂μ + g(Ta
R)ijA

a
μ(x). (1.73)

Then, as usual, one replaces ∂μ → Dμ everywhere, in particular for a fermion ψ̄∂/ψ →
ψ̄D/ ψ .

Irreducible spinor representations

In four Minkowski dimensions, the Dirac representation is reducible as a representation of
the Lorentz algebra (or of the Clifford algebra). The irreducible representation (irrep) is
found by imposing a constraint on it. The first kind of spinors obtained this way are called
Weyl (or chiral) spinors. In the Weyl representation for the gamma matrices, the Dirac
spinors split simply as

ψD =
(
ψL

ψR

)
, (1.74)

which is why the Weyl representation for gamma matrices was chosen. In general, we have

ψL = 1+ γ5

2
ψD ⇒ 1− γ5

2
ψL = 0,

ψR = 1− γ5

2
ψD ⇒ 1+ γ5

2
ψR = 0, (1.75)
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14 Elements of quantum field theory and gauge theory

and we note that we chose the Weyl representation for gamma matrices such that

1+ γ5

2
=

(
1 0
0 0

)
;

1− γ5

2
=

(
0 0
0 1

)
. (1.76)

Another possible choice for irreducible representation, completely equivalent (in four
Minkowski dimensions) to the Weyl representation, is the Majorana representation.
Majorana spinors satisfy the reality condition

ψ̄ = ψC ≡ ψTC, (1.77)

where ψC is called a Majorana conjugate, thus the reality condition is “Dirac conjugate
equals Majorana conjugate,” and C is a matrix called a charge conjugation matrix. Note
that since ψT is just another ordering of ψ , whereas ψ̄ contains ψ† = (ψ∗)T , this is indeed
a reality condition ψ∗ = (. . .)ψ .

The charge conjugation matrix in four Minkowski dimensions satisfies

CT = −C; Cγ μC−1 = −(γ μ)T . (1.78)

In other dimensions and/or signatures, the definition is more complicated, and it can
involve other signs on the right-hand side of the two equations above, as we discuss later
in Section 3.3.

For Majorana spinors, we can use the C matrix to raise and lower indices, i.e.

ε̄α = εβCβα; εβ = ε̄γ (C−1)γβ ; (C−1)αγ Cγβ = δαβ . (1.79)

Note that sometimes we ignore the −1 index on C, and write just C with the indices up,
understanding that in the case the indices are up, we mean C−1. Therefore C acts as an
antisymmetric metric for spinors, and so the order of contraction is important and is the
one defined above. This matters, since for instance ε̄χ = ε̄αχ

α = −εαχ̄a. The matrix C
will be used to raise and lower indices on all objects for Majorana spinors, including the
gamma matrices themselves, which naturally have the structure (γ μ)αβ .

In the Weyl representation, we can choose

C =
(−εαβ 0

0 εαβ

)
, (1.80)

where we have εαβ = iσ 2, and so2

C =
(−iσ 2 0

0 iσ 2

)
= −iγ 0γ 2; C−1 =

(
iσ 2 0
0 −iσ 2

)
= −C. (1.81)

We can now check explicitly that this C is indeed a representation for the C-matrix, i.e.
that it satisfies (1.78).

The action for Majorana fields, with ψ̄ related to ψ , is 1/2 of the action for the Dirac
fermion, since we cannot now independently vary ψ and ψ̄ ,

Sψ = −1

2

∫
d4xψ̄(∂/+ m)ψ . (1.82)

2 In the Weyl representation, γμ = −i

(
0 σμ

σ̄μ 0

)
, where σμ = (1, σ i) and σ̄ μ = (1,−σ i).
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15 1.5 Coupling to fermions and other fields and gauging a symmetry; the Noether theorem

The Noether theorem

We have described local symmetries, and how to gauge (make local) a global symmetry.
But for every global symmetry of the Lagrangean L, we have a conserved current and its
associated conserved charge, which is the statement of the Noether theorem.

The best known examples are the time translation t → t + a invariance, corresponding
to conserved energy E, and space translation �x → �x + �a, corresponding to conserved
momentum �p. Putting them together we have spacetime translation xμ → xμ + aμ, cor-
responding to conserved 4-momentum Pμ. The currents corresponding to these charges
form the energy-momentum tensor Tμν .

Consider the global symmetry φ(x) → φ′(x) = φ(x)+ε�φ that changes the Lagrangean
density as

L → L+ ε∂μJμ, (1.83)

such that the Lagrangean L is invariant, if the fields vanish on the boundary (usually
considered at t = ±∞), since the boundary term∫

d4x∂μJμ =
∮

bd
dSμJμ =

∫
d3�xJ0|t=+∞t=−∞ (1.84)

is then zero. In this case, there exists a conserved current jμ, i.e.

∂μjμ(x) = 0, (1.85)

where

jμ(x) = ∂L
∂(∂μφ)

�φ − Jμ. (1.86)

For linear symmetries (linear in φ), we can define

δφ = (ε�φ)i ≡ εa(Ta)i
jφ

j, (1.87)

such that, if Jμ = 0, we have the Noether current

ja μ = ∂L
∂(∂μφ)

(Ta)i
jφ

j. (1.88)

Applying to translations, xμ → xμ + aμ, we have for an infinitesimal parameter aμ

φ(x) → φ(x + a) = φ(x) + aμ∂μφ, (1.89)

where we have kept only the first terms in the Taylor expansion. The corresponding
conserved current is then

Tμ
ν ≡ ∂L

∂(∂μφ)
∂νφ − Lδμν , (1.90)

where we have added a term Jμ(ν) = Lδμν , obtaining the conventional definition of the
energy-momentum tensor or stress-energy tensor. The conserved charges are the integrals
of the energy-momentum tensor, i.e. Pμ. Note that the above translation gives also the
term Jμ(ν) from the general formalism, since we can check that for εν = aν , the Lagrangean

density changes by aν∂μJμ(ν).
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16 Elements of quantum field theory and gauge theory

1.6 Symmetry currents and the current anomaly

We have seen in the last subsection that classically, the current associated with a symmetry
of the Lagrangean is conserved, due to the Noether theorem. Quantum mechanically, how-
ever, in general we do not need to have conservation, so we can have 〈∂μjμ〉 �= 0, in which
case we say we have an anomaly.

If we have quantum conservation of the current, from it we obtain a Ward identity. The
argument goes as follows. We consider the local version of the symmetry transformation,

φ′i − φi = δφi(x) =
∑
a,j

εa(x)(Ta)ijφ
j(x). (1.91)

Changing integration variables from φ to φ′ (renaming the variable, really) does nothing, so∫
Dφ′e−S[φ′] =

∫
Dφe−S[φ]. (1.92)

But now comes a crucial assumption: if the Jacobian from Dφ to Dφ′ is 1, then Dφ′ = Dφ,
so

0 =
∫

Dφ
[
e−S[φ′] − e−S[φ]

]
= −

∫
DφδS[φ]e−S[φ]. (1.93)

This assumption, however, is not true in general, and exactly when it is broken, we obtain
a quantum anomaly.

Under the local version of the global symmetry transformation, the off-shell action
transforms as

δS =
∑

a

∫
d4x(∂μεa(x))jaμ(x) = −

∑
a

∫
d4xεa(x)(∂μjaμ(x)). (1.94)

Using this variation, (1.93) becomes

0 =
∫

d4xεa(x)
∫

Dφe−S[φ]∂μjaμ(x). (1.95)

But since the parameters εa(x) are arbitrary, we can derive also that∫
Dφe−S[φ]∂μjaμ(x) = 0. (1.96)

As advertised, this is the quantum mechanical version of the classical conservation of the
current, namely the averaged version 〈∂μjaμ〉 = 0. This is one version of the Ward identity,
but we can write a relation acting on the partition function and on the correlation functions,
which is the usual form of the Ward identities.

Chiral (axial) anomaly

Consider a massless Dirac fermion in 4-dimensional Euclidean space, coupled to an
external gauge field Aexternal

μ ,

L = ψ̄D/ ψ . (1.97)
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17 1.6 Symmetry currents and the current anomaly

c)b)

d=6

d=4

a)

d=2

�Figure 1.2 a) Anomalous diagram in two dimensions; b) Anomalous diagram (triangle) in four dimensions; c) Anomalous
diagram (box) in six dimensions.

The action has the usual U(1) gauge invariance ψ(x) → eiαψ(x), ψ̄(x) → ψ̄(x)e−iα , but
now it also has a chiral symmetry,

ψ(x) → eiαγ5ψ(x) � (1 + iαγ5)ψ(x); ψ̄(x) → ψ̄(x)eiαγ5 � ψ̄(x)(1 + iαγ5). (1.98)

The action is invariant because eiαγ5γ μ = γ μe−iαγ5 , but we also easily see that a fermion
mass term mψ̄ψ would break the symmetry. Using the Noether formula (1.88), we find the
conserved current

j5μ = ψ̄γμγ5ψ . (1.99)

One can calculate 〈∂μj5μ〉 in perturbation theory, and find that there is only a one-loop graph
that contributes to it.

In d = 2 spacetime dimensions, the only diagram that contributes, with a chiral current
inserted on one vertex and an external gauge field at the other, is the one in Fig. 1.2a. More
precisely, the diagram is for the quantity hμν(p), giving

〈pμj5μ〉 = epμAexternal
ν (−p)hμν(p), (1.100)

and the result of the calculation is hμν(p) = 1/(4π )Tr [γ μγ νγ5], giving in Minkowski
x-space

〈∂μj5μ〉 =
e

4π

1

2
εμνFexternal

μν . (1.101)

A similar calculation in d = 4 spacetime dimensions finds that the only diagram that
contributes is a triangle, as in Fig. 1.2b, with one vertex coupling to the chiral current and
two vertices coupling to the external gauge field, giving the result

〈∂μj5μ〉 =
e2

16π2

1

2
εμνρσFexternal

μν Fexternal
ρσ . (1.102)

One can also prove that the anomaly is one-loop exact, meaning that there are no
contributions to it from higher loop diagrams.

One can also see that in higher dimensions, the anomaly will be given by higher polyg-
onal one-loop graphs. The anomaly appears only in even dimensions, so the next one will
be in d = 6, where the diagram is the one-loop box in Fig. 1.2c.
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18 Elements of quantum field theory and gauge theory

The anomaly can also be obtained from the path integral. Using a regularization
method devised by Fujikawa, one finds that under a local chiral transformation ψ(x) →
eiα(x)γ5ψ(x), as needed to obtain (1.93), the path integral measure now changes according to

DψDψ̄ → DψDψ̄e
ie
4π

∫
d2xα(x)1/2εμνFexternal

μν (x) (1.103)

in d = 2, and similarly

DψDψ̄ → DψDψ̄e
ie2
16π

∫
d4xα(x)1/2εμνρσFexternal

μν (x)Fexternal
ρσ (x) (1.104)

in d = 4. This corresponds in (1.93) to the same anomaly obtained from Feynman
diagrams.

The chiral anomaly can be considered to give an extra contribution to the chiral charge.
Indeed, in four dimensions, because 1/2εμνρσFμνFρσ = 4∂μ(εμνρσAν∂ρAσ ), we can
define a conserved current

j̃5μ = j5μ −
e2

4π2
εμνρσAν∂ρAσ , (1.105)

and a conserved charge

Q̃5 =
∫

d3xj̃50 = Q5 − 1

2π
SCS[A], (1.106)

where the 3-dimensional Chern–Simons action is

SCS[Ai] = e2

2π

∫
d3xεijkAi∂jAk, (1.107)

and i = 1, 2, 3 are spatial coordinates. Under a gauge transformation δAi = ∂iλ, the Chern–
Simons action transforms as

δSCS = e2

π

∫
d3xεijk∂iλ∂jAk = e2

π

∫
dSiBiλ, (1.108)

where Bi is the magnetic field, hence the variation is proportional to the magnetic charge,
which is zero in the absence of magnetic monopoles.

Moreover, the anomaly can be obtained from the gauge variation (δAM = ∂Mλ,
M = 0, 1, . . . , 4) of a Chern-Simons term in five dimensions,

δg

[∫
d5xεMNPQRAMFNPFQR

]
=

∫
M

d5x∂M

[
λεMNPQRFNPFQR

]

=
∫
∂M

d4xλεμνρσFμνFρσ . (1.109)

We will see that this fact is useful in the case of AdS/CFT.
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19 1.6 Symmetry currents and the current anomaly

The abelian chiral symmetry can be embedded in a nonabelian theory of massless
fermions trivially, by considering the fermions transforming in a representation R of the
symmetry group, and using the covariant derivative (1.58). Then the action still has an
abelian chiral symmetry, and the chiral current anomaly is just the trace of the previous
result (with a (−2) because of our normalization of the trace),

〈∂μj5μ〉 =
(−2)g2

16π2
Tr

[
1

2
εμνρσFexternal

μν Fexternal
ρσ

]
, (1.110)

so we can define a new current

j̃5μ = j5μ −
(−2)g2

4π2
εμνρσTr

[
Aν∂ρAσ + 2

3
gAνAρAσ

]
, (1.111)

and a new charge

Q̃5 = Q5 − 1

2π
SCS[A]. (1.112)

The nonabelian Chern–Simons action is

SCS[Ai] = (−2)g2

4π

∫
d3xεijkTr

[
Ai∂jAk + 2

3
gAiAjAk

]
, (1.113)

and is invariant only under “small” gauge transformations, but can change under “large”
gauge transformations that cannot be smoothly connected to the identity,

1

2π
SCS[A] → 1

2π
SCS[A] + 1

4π2

∫
d3xεijkTr [∂ iUU−1∂ jUU−1∂kUU−1], (1.114)

where the extra term is an integer n called a winding number.

Gauge anomalies

In the case of the chiral anomaly, we have Dirac fermions coupled via a vector current,
Tr [ψ̄γ μAμψ] = Tr [jμAμ], and we have a chiral current anomaly, but the vector current
is not anomalous.

On the other hand, we can consider a coupling of chiral fermions, ψR,L to gauge fields,
or equivalently a coupling via an axial vector (chiral) current j5μ = ψ̄γμγ5ψ , in which case
there is a potential anomaly in the vector current conservation. But that is a problem, since
the vector current corresponds to the local gauge invariance, which should not be broken
at the quantum level in order for the quantum theory to be well defined. Indeed, a local
symmetry like gauge symmetry changes the number of degrees of freedom (reduces them
by one, in this case), so an anomaly in gauge invariance would mean that the number of
degrees of freedom at the classical level is different than the number of degrees of freedom
at the quantum level (perturbative!), which is clearly impossible.

Consider then the Euclidean action

S =
∫

d4x
1

2
ψ̄(1 + γ5)D/ ψ . (1.115)
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20 Elements of quantum field theory and gauge theory

The Noether current associated with gauge invariance is

jaμ = ψ̄
1

2
(1 + γ5)γμTaψ (1.116)

and is classically covariantly conserved,

Dμjμ = 0, (1.117)

and quantum mechanically one again finds an anomaly from the one-loop triangle diagram
with a vector current and two external gauge fields,

〈Dμjaμ〉 = ∂μ

(
(−2)

24π2
εμνρσTr

[
Ta(Aν∂ρAσ + 2

3
AνAρAσ )

])
. (1.118)

By symmetry, we see that the anomaly is proportional to dabc = Tr [Ta(TbTc + TcTb)].
This vanishes for SU(2), but not for SU(N), N > 2, so in general we need to add sev-
eral species of chiral fermions such that the total anomaly cancels. These give ’t Hooft’s
consistency conditions for anomaly cancellation.

Other global anomalies

One can similarly analyze other kinds of anomalies, for the conservation of other global
currents. Whenever we have a global symmetry, and there are chiral fermions involved, we
can analyze its potential anomaly. In fact, this will be the case in theories of interest for
AdS/CFT.

For instance, we can consider the massless fermionic Lagrangean in Euclidean space

LE,ψ = ψ̄ iγ μDμψi, (1.119)

which is invariant under the global symmetry

δψ i = εa(Ta)i
jψ

j, (1.120)

giving the Noether current

ja μ = ψ̄ iγ μ(Ta)ijψ
j. (1.121)

It is also invariant under a global symmetry

δψ i = εa(Ta)i
j
1 + γ5

2
ψ j, (1.122)

giving the Noether current

ja μ = ψ̄ iγ μ(Ta)ij
1 + γ5

2
ψ j, (1.123)

which is anomalous, since only chiral fermions run in the loop of the triangle diagram.
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21 1.6 Symmetry currents and the current anomaly

Current correlators

The above Noether current for global symmetry is a composite operator, and if the fermion
is coupled to gauge fields, the current is also gauge invariant, hence it can represent (create
from the vacuum) a physical state.

Therefore one can use the formalism for correlators of composite operators and define
the correlators

〈ja1 μ1 (x1) . . . jan μn (xn)〉 = δn

δAa1
μ1 (x1) . . . δAan

μn (xn)

∫
D[fields]e−SE+

∫
d4xjμ,a(x)Aa

μ(x).

(1.124)
Then this will be the correlator of some external physical states (i.e. observables). The

fact of having an anomaly for jaμ means that this correlator will in general be nonzero when
contracted with the momentum,

∂xμ1 〈ja1 μ1 (x1)ja2 μ2 (x2) . . . jan μn (xn)〉 �= 0 ⇒ p1,μ1〈ja1 μ1 (p1) . . . jan μn(pn)〉 �= 0.
(1.125)

Important concepts to remember

• Correlation functions and partition functions are easier to define in Euclidean space and
then analytically continue.

• The quantum field theory partition function on periodic Euclidean time paths equals a
statistical mechanics partition function at finite temperature.

• Correlation functions are given by a Feynman diagram expansion and appear as
derivatives of the partition function.

• S matrices defining physical scatterings are obtained via the LSZ formalism from the
poles of the correlation functions.

• In the Feynman diagrams for the S-matrices we only have connected and amputated
Feynman diagrams.

• Correlation functions of composite operators are obtained from a partition function with
sources coupling to the operators.

• Coupling of fields to electromagnetism is done via minimal coupling, replacing the
derivatives d with the covariant derivatives D = d − ieA.

• Gauging a symmetry, i.e. making local a global one, implies adding a gauge field and
making derivatives covariant.

• Yang–Mills fields are self-coupled. Both the covariant derivative and the field strength
transform covariantly.

• Classically, the Noether theorem associates every symmetry with a conserved current.
• Quantum mechanically, global symmetries can have an anomaly, i.e the current is not

conserved, when inserted inside a quantum average.
• The anomaly comes only from 1-loop polygonal Feynman diagrams. In d = 4, it comes

from a triangle, thus it only affects the 3-point function.
• In a gauge theory, the current of a global symmetry is gauge invariant, and thus

corresponds to some physical state.
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22 Elements of quantum field theory and gauge theory

a)

x2

x1

x3

p1

p3p2

yx

z1 z2

b) c)

�Figure 1.3 a) Setting Sun diagram in x space; b) Triangle diagram in x space; c) Star diagram in p space.

References and further reading

A good introductory course in quantum field theory is Peskin and Schroeder [1], and an
advanced level course that has more information, but is more complex, is Weinberg [2]. In
this section I have introduced only selected bits of QFT needed in the following.

Exercises

1. If we have the partition function

ZE[J] = exp

{
−

∫
d4x

[(∫
d4x0K(x, x0)J(x0)

)(
−�x

2

)(∫
d4y0K(x, y0)J(y0)

)

+ λ

(∫
d4x0K(x, x0)(J(x0))

)3
]}

, (1.126)

write an expression for G2(x, y) and G3(x, y).
2. If we have the Euclidean action

SE =
∫

d4x

[
1

2
(∂μφ)2 + m2φ2

2
+ λφ3

]
, (1.127)

write down the integral for the Feynman diagram in Fig. 1.3a.
3. Show that the Fourier transform of the triangle diagram in x space in Fig. 1.3b is the

star diagram in p space in Fig. 1.3c.
4. Derive the Hamiltonian H(�E, �B) for the electromagnetic field by putting A0 = 0, from

the Minkowski space action SM = − ∫
d4xF2

μν/4.
5. Show that Fμν = [Dμ, Dν]/g. What is the infinitesimal transformation of Fμν? For

SO(d) groups, the adjoint representation is antisymmetric, (ab). Calculate f (ab)
(cd)(ef )

and write down Fab
μν .

6. Consider the Euclidean action

S = 1

4

∫
d4xF2

μν +
∫

d4xψ̄(D/ + m)ψ +
∫

d4x(Dμφ)∗Dμφ (1.128)

and the U(1) electromagnetic transformation. Calculate the Noether current.
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2 Basics of general relativity; Anti-de Sitter space

2.1 Curved spacetime and geometry; the equivalence principle

As the name suggests, general relativity is a generalization of special relativity.
In special relativity, one (experimentally) finds that the speed of light is constant in

all inertial reference frames, and hence one can fix a system of units where c = 1. This
becomes one of the postulates of special relativity. As a result, the line element

ds2 = −dt2 + d�x2 = ημνdxμdxν (2.1)

is invariant under transformations of coordinates between any inertial reference frames,
and is called the invariant distance. Here ημν = diag(−1, 1, . . . , 1). Therefore the
symmetry group of special relativity is the group that leaves the above line element
invariant, namely SO(1, 3), or in general SO(1, d − 1). This physically corresponds to
transformations between inertial reference frames, and includes as a particular case spatial
rotations.

As such, this Lorentz group is a generalized rotation group: the rotation group SO(3) is
the group of transformations �, with x′i = �i

jxj that leaves the 3-dimensional length d�x2

invariant. The Lorentz transformation is then a generalized rotation

x′μ = �μ
νxν ; �μ

ν ∈ SO(1, 3). (2.2)

Therefore the statement of special relativity is that physics is Lorentz invariant (invariant
under the Lorentz group SO(1, 3) of generalized rotations), just as the statement of Galilean
physics is that physics is rotationally invariant. In both cases we start with the statement
that the length element is invariant, and generalize to the case of the whole physics being
invariant, i.e., physics can be written in the same way in terms of transformed coordinates
as in terms of the original coordinates.

In general relativity, one considers a more general spacetime, specifically a curved
spacetime, defined by the distance between two points, or line element,

ds2 = gμν(x)dxμdxν , (2.3)

where gμν(x) are arbitrary functions collectively called the metric (sometimes one refers to
ds2 as the metric), and xμ are arbitrary parameterizations of the spacetime, i.e., coordinates
on the manifold. This situation is depicted in Fig. 2.1a.
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24 Basics of general relativity; Anti-de Sitter space

b)a)

d)c)

�Figure 2.1 a) Curved space: the functional form of the distance between two points depends on local coordinates; b) A triangle
on a sphere, made from two meridian lines and a segment of the equator has two angles of 90◦ (π/2); c) The same
triangle, drawn for a general curved space of positive curvature, emphasizing that the sum of the angles of the triangle
exceeds 180◦ (π ); d) In a space of negative curvature, the sum of the angles of the triangle is below 180◦ (π ).

For example for a 2-sphere in angular coordinates θ and φ,

ds2 = dθ2 + sin2 θdφ2, (2.4)

so gθθ = 1, gφφ = sin2 θ , gθφ = 0.
As we can see from the definition, the metric gμν(x) is a symmetric matrix, since it

multiplies a symmetric object dxμdxν .
To better understand the notion of metric, let us take the example of the sphere, specific-

ally the familiar example of a 2-sphere embedded in 3-dimensional space. Then the metric
in the embedding space is the usual Euclidean distance

ds2 = dx2
1 + dx2

2 + dx3
3, (2.5)

but if we are on a 2-sphere we have the constraint

x2
1 + x2

2 + x2
3 = R2 ⇒ 2(x1dx1 + x2dx2 + x3dx3) = 0

⇒ dx3 = −x1dx1 + x2dx2

x3
= − x1√

R2 − x2
1 − x2

2

dx1 − x2√
R2 − x2

1 − x2
2

dx2, (2.6)
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25 2.1 Curved spacetime and geometry; the equivalence principle

which therefore gives the induced metric (line element) on the sphere

ds2 = dx2
1

(
1 + x2

1

R2 − x2
1 − x2

2

)
+ dx2

2

(
1 + x2

2

R2 − x2
1 − x2

2

)
+ 2dx1dx2

x1x2

R2 − x2
1 − x2

2

= gijdxidxj. (2.7)

So this is an example of a curved d-dimensional space which is obtained by embed-
ding it into a flat (Euclidean or Minkowski) d + 1 dimensional space. But if the metric
gμν(x) corresponds to arbitrary functions, then one cannot in general embed such a space
in flat d + 1 dimensional space. Indeed, there are d(d + 1)/2 components of gμν , and
we can fix d of them to anything (e.g. to 0) by a general coordinate transformation
x′μ = x′μ(xν), where x′μ(xν) are d arbitrary functions, so it means that we need to add
d(d − 1)/2 functions to be able to embed a general metric in a flat space, i.e. we need
d(d − 1)/2 extra dimensions, with the associated embedding functions xa = xa(xμ), a =
1, . . . , d(d − 1)/2. In the 3-dimensional example above, d(d − 1)/2 = 1, and we need just
one embedding function, x3(x1, x2), i.e. we can embed the 2-dimensional surface in three
dimensions.

However, even that is not enough, and we need also to make a discrete choice of
the signature of the embedding space, independent of the signature of the embedded
space. For flat spaces, the metric is constant, with +1 or −1 on the diagonal, and
the signature is given by the ± values. So 3-dimensional Euclidean means signature
(+1,+1,+1), whereas 3-dimensional Minkowski means signature (−1,+1,+1). In three
dimensions, these are the only two possible signatures, since we can always redefine
the line element by a minus sign, so (−1,−1,−1) is the same as (+1,+1,+1) and
(−1,−1,+1) is the same as (−1,+1,+1). Thus, even though a 2-dimensional metric
has three components, equal to the three functions available for a 3-dimensional embed-
ding, to embed a metric of Euclidean signature in three dimensions one needs to consider
both 3-dimensional Euclidean and 3-dimensional Minkowski space, which means that
3-dimensional Euclidean space does not contain all possible Euclidean 2-dimensional
surfaces.

That means that a general space must be thought of as intrinsically curved, defined not
by embedding in a given flat space, but by the arbitrary functions gμν(x) (the metric). In

a general space, we define the geodesic as the line of shortest distance
∫ b

a ds between two
points a and b.

In a curved space, the triangle made by three geodesics has an unusual property: the
sum of the angles of the triangle, α + β + γ , is not equal to π . For example, if we make
a triangle from geodesics on the sphere as in Fig. 2.1b, we can easily convince ourselves
that α + β + γ > π . In fact, by taking a vertex on the North Pole and two vertices on
the Equator, we get β = γ = π/2 and α > 0. This is the situation for a space with
positive curvature, R > 0: two parallel geodesics converge to a point as in Fig. 2.1c (by
definition, two parallel lines are perpendicular to the same geodesic). In the example given,
the two parallel geodesics are the lines between the North Pole and the Equator: both lines
are perpendicular to the equator, therefore are parallel by definition, yet they converge at
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26 Basics of general relativity; Anti-de Sitter space

Deflection

Object moving
on a geodesic

A massive object
curves space

�Figure 2.2 Matter curves space (a massive object creates a curvature of spacetime) and then matter (light objects) move on a
geodesic, being deflected and creating the effect of gravity.

the North Pole. Because we live in 3-dimensional Euclidean space, and we understand
2-dimensional spaces that can be embedded in it, this case of spaces of positive curvature
is the one we can understand easily.

But one can also have a space with negative curvature, R < 0, for which α +
β + γ < π and two parallel geodesics diverge, as in Fig. 2.1d. Such a space is for
instance the so-called Lobachevski space, which is a 2-dimensional space of Euclidean
signature (like the 2-dimensional sphere), i.e. the diagonalized metric has positive num-
bers on the diagonal. However, this metric cannot be obtained as an embedding in a
Euclidean 3-dimensional space, but rather as an embedding in a Minkowski 3-dimensional
space, by

ds2 = dx2 + dy2 − dz2; x2 + y2 − z2 = −R2. (2.8)

Einstein’s theory of general relativity

But what has curved spacetime to do with gravity and relativity?
Einstein formulated his theory of general relativity as a way to modify Newton’s the-

ory of gravity at strong gravitational field and high velocities to make it consistent with
relativity. It was understood that by having only special relativity we cannot do that, and
moreover the experimentally observed deflection of light by the Sun would be off by a
factor of 2. Hence we are forced to take general relativity instead.

Einstein then proceeded to construct the gravitational theory by making two physical
assumptions:

• 1. Gravity is geometry: i.e., matter follows geodesics in a curved space, and the resulting
motion (like for instance the deflection of a small object when passing through a local-
ized “dip” of spacetime curvature localized near a point �r0) appears to us as the effect of
gravity, as in Fig. 2.2.

• 2. Matter sources gravity: matter curves space, i.e., the source of spacetime curvature
(and thus of gravity) is a matter distribution (in the above, the “dip” is created by the
presence of a mass source at �r0).
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27 2.2 Kinematics: Christoffel symbols and tensors

We can translate these assumptions into two mathematically well-defined physical prin-
ciples and an equation for the dynamics of gravity, called the Einstein’s equation. The
physical principles are:

• a. Physics is invariant under general coordinate transformations (diffeomorphisms)

x′μ = x′μ(xν) ⇒ ds2 = gμν(x)dxμdxν = ds′2 = g′μν(x′)dx′μdx′ν . (2.9)

So, further generalizing rotational invariance and Lorentz invariance (special relativity),
now not only the line element, but all of physics is invariant under general coordinate
transformation, i.e., all the equations of physics take the same form in terms of xμ as in
terms of x′μ.

• b. The equivalence principle, which can be stated as “there is no difference between
acceleration and gravity” OR “if you are in a free falling elevator you cannot distinguish
it from being weightless (without gravity).” Einstein imagined a gedanken experiment
where a person is in a freely falling elevator that falls from a great height towards
the surface of the Earth. He cannot determine by any local experiment whether he is
freely falling in a gravitational field or is in a weightless situation (until of course he
reaches the hard surface of the Earth. . . ). Conversely, imagine the same elevator being
now accelerated with a constant acceleration. The person inside it cannot determine by
any local experiment whether he is being accelerated or the elevator is fixed and under
the influence of a gravitational field.

Note, however, that the equivalence principle is only a local statement: for example,
if you are falling towards a black hole, tidal forces will pull you apart before you reach
it, since gravity acts slightly differently at different points. The quantitative way to write
the equivalence principle is

mi = mg, where �F = mi�a (Newton′s law) and

�Fg = mg�g (gravitational force), (2.10)

i.e., as the equality of the inertial mass (appearing in Newton’s force law) with the grav-
itational mass (appearing in Newton’s gravitational law), which are a priori different
quantities (there is no a-priori reason for them to be the same, unless there is a principle
involved).

In other words, physics is general coordinate (diffeomorphism) invariant, and both
gravity and acceleration are manifestations of the curvature of space.

2.2 Kinematics: Christoffel symbols and tensors

Before describing the dynamics of gravity given by the Einstein equations, we must define
the kinematics, i.e. the objects used to describe gravity.

As we saw, the metric gμν changes when we make a coordinate transformation, thus
different metrics can describe the same space. More precisely, from (2.9) we obtain the
transformation law for the metric
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28 Basics of general relativity; Anti-de Sitter space

g′μν(x′) = ∂xρ

∂x′μ
∂xσ

∂x′ν
gρσ (x). (2.11)

The infinitesimal form of these general coordinate transformations, for δxμ ≡ x′μ − xμ =
ξμ small, can be checked to be (see Exercise 4 at the end of the chapter)

δξgμν(x) = (ξρ∂ρ)gμν + (∂μξ
ρ)gρν + (∂νξ

ρ)gρμ. (2.12)

We observe that the first term in this transformation is a translation by ξρ (generalizing
the notion of infinitesimal translation in one dimension, or Taylor expansion, δf = (x −
x0)f ′(x0)), and the other two terms are a kind of tensor generalization of gauge invariance.
Indeed, if just μ on gμν were a gauge field index, we would write δgμν = ∂μλν . Since
the parameter is ξρ , we need to write δgμν = (∂μξρ)gρν instead, plus another term for the
index ν. Because of this, we see that we can think of general coordinate invariance as a
kind of local version of translation invariance, or gauge theory of translations. This is not
a perfect analogy, but we will see shortly that we can gain much information from it.

Since the metric is symmetric, it has d(d + 1)/2 components. But there are d coordinate
transformations x′μ(xν) one can make that leave the physics invariant, thus we have only
d(d − 1)/2 degrees of freedom that describe the curvature of space (different physics), but
the other d are redundant. Also, by coordinate transformations we can always arrange that
gμν = ημν around an arbitrary point, so gμν is not a good measure for telling whether
there is curvature around a point.

To understand the objects that need to be introduced, we first define the notion of gen-
eral relativistic tensors. The notion is the obvious generalization of the notion of special
relativity tensors, but some new features appear. The tensors are objects that transform
“covariantly” under the general coordinate transformations. We have seen above that gen-
eral coordinate invariance is a sort of gauge invariance of translations, so transforming
covariantly is understood in the same sense as in usual gauge theory, i.e. transformation as
the finite transformation of the basic objects of the theory.

A contravariant tensor Aμ is defined as an object that transforms as dxμ,

A′μ = ∂x′μ

∂xν
Aν , (2.13)

whereas a covariant tensor Bμ is defined as an object that transforms as the derivative
∂/∂xμ acting on a scalar, i.e., as

B′
μ = ∂xν

∂x′μ
Bν . (2.14)

A general tensor is defined to transform as the product of the transformations of the indices,
for instance a tensor Tν

μ transforms as

T ′μ
ν = ∂x′μ

∂xρ
∂xσ

∂x′ν
Tρ
σ . (2.15)

Then we see immediately that gμν is a tensor with two covariant indices, since it transforms
as (2.11). But we seem to have a problem, since we can easily check that ∂ρgμν is not a
tensor. To remedy this, we look to gauge theory. We see that the solution is to introduce
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29 2.2 Kinematics: Christoffel symbols and tensors

some object that can play the role of gauge field of gravity (or gauge field of local trans-
lations, in our analogy above), and to construct a covariant derivative by adding the gauge
field to the regular derivative.

The metric itself cannot act as this gauge field of gravity, among other things because
it cannot be set to zero by a gauge transformation (i.e., by a general coordinate transform-
ation). Instead, it can be set locally to the flat form, since in a small neighborhood of any
given point, a curved space looks flat. Mathematically, that means that we can set the metric
fluctuation and its first derivative to zero at that point, i.e. we can write gμν = ημν+O(δx2).
Locally then, the space looks as if it has an SO(d − 1, 1) invariance.

For a covariant derivative involving a gauge field in the adjoint representation [ab] (anti-
symmetric) of an SO(d − 1, 1) group, acting on a fundamental field with index a, we
expect something like Dμφ

a = ∂μφ
a + (Aa

b)μφb. The difference is that now “gauge”
and “coordinate” indices are the same, so we define the covariant derivative acting on a
tensor Tμ as

DμTν = ∂μTν + (�ν
σ )μTσ . (2.16)

We have separated the indices as in the case of the SO(d − 1, 1) gauge field, but now it
does not make sense to do so. So we introduce the Christoffel symbol �μ

νρ to act as this
“gauge field of gravity”. We also define the action on a general tensor with both covariant
and contravariant indices, for instance Tν

μ, as the natural one given the index positions:

DμTρ
ν ≡ ∂μTρ

ν + �ρ
σμTσ

ν − �σ
μνTρ

σ . (2.17)

We then impose the requirement that the covariant derivative of the metric tensor vanishes,
which is a natural thing to require, since as we saw we can locally put the metric into
the Minkowski form (where ∂μηνρ = 0) by a coordinate (gauge) transformation, and if
the Christoffel symbol is truly a gauge field of gravity, it should become zero (“no local
gravity”) by this gauge transformation. Dμgνρ = 0 becomes

∂μgνρ − �σ
νμgσρ − �σ

ρμgσν = 0, (2.18)

which we can verify (left as Exercise 3 to the reader) that is solved by

�μ
νρ = 1

2
gμσ (∂ρgνσ + ∂νgσρ − ∂σgνρ). (2.19)

Here we have defined the inverse metric gμν as the matrix inverse of the metric, (g−1)μν ,
thus

gμρgρσ = δσμ. (2.20)

We can now verify that indeed, as assumed, the Christoffel symbol becomes zero by the
coordinate transformation that puts the metric into the locally flat form, since it is linear
in first derivatives of the metric, and those are zero. This is as it should be, since a gauge
field contains redundancies, and can be set to zero locally (around a point) by a gauge
transformation.

We now can finally define an object that characterizes the curvature of space in a covari-
ant manner, called the Riemann tensor. The Riemann tensor is like the “field strength of
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30 Basics of general relativity; Anti-de Sitter space

the gravity gauge field,” i.e. of the Christoffel symbol, in that its definition can again be
written so as to mimic the definition of the field strength of an SO(d − 1, 1) gauge group,

Fab
μν = ∂μAab

ν − ∂νAab
μ + Aac

μ Acb
ν − Aac

ν Acb
μ , (2.21)

where a, b, c are fundamental SO(d−1, 1) indices, meaning that [ab] (antisymmetric) is an
adjoint index. Note that in general, the Yang–Mills field strength is

FA
μν = ∂μAA

ν − ∂νAA
μ + f A

BC(AB
μAC

ν − AB
νAC

μ), (2.22)

and is a covariant object under gauge transformations, i.e. it is not yet invariant, but we can
construct invariants by simply contracting the indices, for instance by squaring it:

∫
(Fab

μν)2

is a gauge invariant action. Similarly now, the Riemann tensor transforms covariantly
under general coordinate transformations, i.e. we can construct invariants by contracting
its indices.

As for the construction of the covariant derivative involving �μ
νρ above, we put brackets

in the definition of the Riemann tensor Rμ
νρσ only to emphasize the similarity with the

SO(d − 1, 1) gauge field strength:

(Rμ
ν)ρσ (�) = ∂ρ(�μ

ν)σ − ∂σ (�μ
ν)ρ + (�μ

λ)ρ(�λ
ν)σ − (�μ

λ)σ (�λ
ν)ρ , (2.23)

the only difference with respect to the Yang–Mills case being that here “gauge” and
“spacetime” indices are the same.

From the Riemann tensor we construct by contraction the Ricci tensor

Rμν = Rλ
μλν , (2.24)

and the Ricci scalar R = Rμνgμν . The Ricci scalar is coordinate invariant, so it is truly an
invariant measure of the curvature of space at a point.

Since the Riemann tensor was constructed like a field strength of a gauge field, it is clear
that it should equal the commutator of two covariant derivatives when acting on a tensor, as
is the case for Yang–Mills, where [Dμ, Dν] = Fμν/g (see Exercise 5 in Chapter 1). More
precisely, we have

(DμDν − DνDμ)Aρ = −Rσ
ρμνAσ . (2.25)

The Riemann tensor also satisfies various symmetry properties, which can be easily
checked by direct substitution:

Rμνρσ = −Rμνσρ = −Rνμρσ = Rρσμν . (2.26)

The first equality is obvious when we remember that the first two indices (μ and ν) cor-
respond to gauge indices in the adjoint, antisymmetric representation of SO(d − 1, 1) in
our analogy, and the second is obvious when we remember that ρ and σ correspond to the
antisymmetric spatial indices of the field strength Fab

μν . Only the last equality is new, due
to the identification of gauge and coordinate indices, but can be explicitly checked.

The analogy with the SO(d − 1, 1) gauge group tells us that the Riemann tensor and
its contractions, the Ricci tensor and the Ricci scalar, transform covariantly under general
coordinate transformations (“gauge transformations”), i.e. are tensors. We can check this
explicitly. We should note that not every object with indices is a tensor. A tensor cannot
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31 2.3 Dynamics: Einstein’s equations

be set zero by a coordinate transformation (as we can see by its definition above), but the
Christoffel symbol can, hence it is not a tensor. The Christoffel symbol involves only first
derivatives of the metric, which is why it can be set to zero locally, but the Riemann tensor
and its contractions involve two derivatives, and hence cannot be set to zero locally.

To describe physics in curved space, given physics in flat space, we replace the Lorentz
metric ημν by the general metric gμν , and Lorentz tensors with general relativity tensors.
We should remember that the normal derivative is not a tensor, so it should also be replaced
with the covariant derivative.

2.3 Dynamics: Einstein’s equations

We now have the tools to turn to the dynamics of gravity, described by Einstein’s equations.
We proceed to write an action for gravity, and then derive its equations of motion.

However, we first note that the invariant volume of integration over space is not ddx any
more, as in Minkowski or Euclidean space. Indeed, under xμ → x′μ, we have

ddx = det

(
∂xμ

∂x′ν

)
ddx′. (2.27)

On the other hand, from (2.11), denoting det gμν by g, we get

g′ =
[

det

(
∂xμ

∂x′ν

)]2

g, (2.28)

which means that the invariant integration volume is ddx
√−g, since

√−gddx = √−g′ddx′, (2.29)

and the minus sign comes from the Minkowski signature of the metric, which means that
det gμν < 0.

Next we must write a Lagrangean for gravity. The Lagrangean has to be invariant under
general coordinate transformations, thus it must be a scalar (a tensor with no indices). There
would be several possible choices for such a scalar, but the simplest possible one, the Ricci
scalar, turns out to be correct, i.e. compatible with experiment. Thus, one postulates the
Einstein–Hilbert action for gravity:1

Sgravity = 1

16πGN

∫
ddx

√−gR. (2.30)

In theorists’s units (� = c = 1), one defines the coefficient of the Einstein action also as

Md−2
Pl,d /2, where the d-dimensional Planck mass is then MPl,d = (8πGN)

1
d−2 .

We now want to vary this action with respect to gμν to obtain the equations of motion of
gravity, or equivalently with respect to gμν , since it is simpler.

1 Note on conventions: if we use the +−− − metric, we get a − in front of the action, since R = gμνRμν and
Rμν is invariant under constant rescalings of gμν .
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32 Basics of general relativity; Anti-de Sitter space

The variation of
√−g is found as follows. For a general matrix M, we have (using that

0 = δ(MM−1) = δM(M−1) + M(δM−1))

det M = eTr ln M ⇒ δ det M = eTr ln MTr (δMM−1) = − det MTr ((δM−1)M). (2.31)

Applying this for the matrix gμν , we obtain

δg = −ggμνδgμν . (2.32)

Next, we have the variation of the Ricci scalar

δR = Rμνδgμν + gμνδRμν . (2.33)

But we now show that the variation of the Ricci tensor is a total derivative, which inte-
grates to zero. To do so, we will use a trick that is common in gravity calculations, so it is
worth showing here.

We work in a coordinate system where �μ
νρ is zero in the neighborhood of the point

where we calculate. But the derivatives of the Christoffel symbol (containing second
derivatives of the metric) can still be nonzero. Then, from the definition of the Riemann
tensor (2.23) and the contraction giving the Ricci tensor (2.24), we obtain that

δRμν = δ(∂ρ�
ρ
μν) − δ(∂ν�

ρ
μρ). (2.34)

On the other hand, we can calculate the variation of the Christoffel symbol. We work in
the local system of coordinates where the first derivatives of the metric and the Christoffel
symbol are zero. However, the variation of the Christoffel symbol is not zero, and in fact
must be a tensor. We can write a covariant expression for it, as

δ�μ
νρ = 1

2
gμλ(Dρδgλν + Dνδgλρ − Dλδgνρ). (2.35)

Here we have turned the ∂s into Ds adding for free a �, which is zero in our coordinate
system, and cancelled the term proportional to δgμλ, since it contains only first derivatives
of the metric, which are zero. Finally, at the end, noticing that we have a covariant equation
(written only in terms of tensors), it must be valid in every system of coordinates, not just
in our special one. Of course, we can also verify that (2.35) is correct by direct substitution,
but it is considerably longer.

Finally, given that δ�μ
νρ is a tensor, we can turn the normal derivatives in (2.34) into

covariant derivatives for free in our system where �s are zero, but then again the right-
hand side is written in terms of tensors only, so is valid not only in our particular system
of coordinates, but in an arbitrary one. Then, multiplying the relation by gμν and using the
fact that the covariant derivative of the metric is zero, Dρgμν = 0, we obtain

gμνδRμν = Dμ(gνρδ�μ
νρ) − Dρ(gνρδ�μ

νμ) ≡ DμUμ, (2.36)

i.e. that this variation is written as a total covariant derivative, which integrates to a
boundary term (zero in the bulk),

∫
ddx

√−gDμUμ.
Putting all the pieces together, we have that the variation of the Einstein–Hilbert action

for gravity (2.30) is

δSgravity = 1

16πGN

∫
ddx

√−g δgμν
[

Rμν − 1

2
gμνR

]
. (2.37)

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:53:14 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.004

Cambridge Books Online © Cambridge University Press, 2016



33 2.3 Dynamics: Einstein’s equations

Then finally we obtain the equations of motion of pure gravity, or Einstein’s equations
without matter,

Rμν − 1

2
gμνR = 0. (2.38)

As we mentioned, the action and the equations of motion above are not fixed by theory,
they just happen to agree well with experiments. In fact, in quantum gravity/string theory,
the gravitational action Sg could have quantum corrections of different functional form
(e.g.,

∫
ddx

√−gR2,
∫

ddx
√−gRμνρσRμνρσ , etc.).

The next step is to put matter in curved space, since one of the physical principles that
defined general relativity was that matter sources gravity. The way to do this follows from
the rules described at the end of the last subsection. For instance, the kinetic term for a
scalar field in Minkowski space was

SM,φ = −1

2

∫
d4x(∂μφ)(∂νφ)ημν , (2.39)

and it becomes now

− 1

2

∫
d4x

√−g(Dμφ)(Dνφ)gμν = −1

2

∫
d4x

√−g(∂μφ)(∂νφ)gμν , (2.40)

where the last equality, of the partial derivative with the covariant derivative, is only valid
for a scalar field. In general, we have covariant derivatives in the action.

The variation of the matter action gives the energy-momentum tensor, known from elec-
tromagnetism, though perhaps not by this general definition. By definition, we have (if we
were to use the +−− − metric, it would be natural to define it with a +)

Tμν = − 2√−g

δSmatter

δgμν
. (2.41)

Then the sum of the gravity and matter action

Stotal = 1

16πGN

∫
ddx

√−gR + Smatter, (2.42)

with the variation

δStotal = 1

16πGN

∫
ddx

√−gδgμν
[

Rμν − 1

2
gμνR

]
−

∫
ddx

√−g
δgμν

2
Tμν , (2.43)

gives the equations of motion

Rμν − 1

2
gμνR = 8πGNTμν , (2.44)

known as Einstein’s equations. As an example, for a scalar field with the action (2.40), we
have the energy-momentum tensor

Tφ
μν = ∂μφ∂νφ − 1

2
gμν(∂ρφ)2. (2.45)
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34 Basics of general relativity; Anti-de Sitter space

2.4 Global structure: Penrose diagrams

Spaces of interest are infinite in extent, but have complicated topological and causal struc-
tures, that are difficult to visualize and understand. To make sense of them, we use the
so-called Penrose diagrams. These are diagrams that preserve the causal and topological
structure of space, but have infinity at a finite distance on the diagram.

To construct a Penrose diagram, we note that light propagation, defining the causal struc-
ture, is along ds2 = 0, thus an overall factor (known as a “conformal factor”) in ds2 is
irrelevant for this. So we make coordinate transformations that bring infinity to a finite
distance, and drop the conformal factors. For convenience, we usually get some type of
flat space at the end of the calculation. Then, in the diagram, light rays are at 45 degrees
(δx = δt for light, in the final coordinates).

Example 1 As a simple first example, we calculate and then draw the Penrose diagram
of 2-dimensional Minkowski space,

ds2 = −dt2 + dx2, (2.46)

where −∞ < t, x < +∞.
We first make a transformation to “lightcone coordinates”

u± = t ± x ⇒ ds2 = −du+du−, (2.47)

followed by a transformation of the lightcone coordinates that makes them finite,

u± = tan ũ±; ũ± = τ ± θ

2
, (2.48)

where the last transformation goes back to space-like and time-like coordinates θ and τ .
Now the metric is

ds2 = 1

4 cos2 ũ+ cos2 ũ−
(−dτ 2 + dθ2). (2.49)

By dropping the overall (conformal) factor we get back a flat 2-dimensional space, but now
of finite extent. Indeed, we have that |ũ±| ≤ π/2, thus |τ ±θ | ≤ π , so the Penrose diagram
is a diamond (a rotated square), as in Fig. 2.3a.

Example 2 For 3-dimensional Minkowski space, the metric is again

ds2 = −dt2 + dr2(+r2dθ2). (2.50)

By dropping the angular dependence (the r2dθ2 term) in order to again draw a
2-dimensional diagram, we get the same metric as before, just that now r > 0. There-
fore everything follows in the same way, just that θ > 0 in the final form. Thus
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35 2.5 Anti-de Sitter space: definition, metrics, Penrose diagram

b)a)

c) d) e)

�Figure 2.3 Penrose diagrams: a) Penrose diagram of 2-dimensional Minkowski space; b) Penrose diagram of 3-dimensional
Minkowski space; c) Penrose diagram of the Poincaré patch of Anti-de Sitter space; d) Penrose diagram of global AdS2
(2-dimensional Anti-de Sitter), with the Poincaré patch emphasized; x0 = 0 is part of the boundary, but x0 = ∞ is
a fake boundary (horizon); e) Penrose diagram of global AdSd for d ≥ 2, it is half the Penrose diagram of AdS2 rotated
around the θ = 0 axis.

for 3-dimensional, and higher dimensional, Minkowski space, the Penrose diagram is a
triangle (the τ > 0 half of the 2-dimensional Penrose diagram), as in Fig. 2.3b.

More precisely, the full metric after the same transformations and rescalings as in the
2-dimensional case gives in general

ds2 = −dτ 2 + dθ2 + sin2 θd�2
d−2. (2.51)

It turns out that these simple examples contain all the information needed in order to
understand the Penrose diagrams relevant for AdS space, to be described next, and for pp
waves, described in Part II of the book.

2.5 Anti-de Sitter space: definition, metrics, Penrose diagram

Anti-de Sitter space is a space of Lorentzian signature (−++ . . .+), but of constant nega-
tive curvature. Thus it is a Lorentzian signature analog of the Lobachevski space, discussed
in the first section of this chapter, which was a space of Euclidean signature and of constant
negative curvature.

The anti- in Anti-de Sitter is because de Sitter space is defined as a space of Lorentzian
signature and of constant positive curvature, thus a Lorentzian signature analog of the
sphere. Indeed, we know that the sphere is the unique space of Euclidean signature and
constant positive curvature.
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36 Basics of general relativity; Anti-de Sitter space

In d dimensions, de Sitter space is defined by a sphere-like embedding in d + 1
dimensions,

ds2 = −dX2
0 +

d−1∑
i=1

dX2
i + dX2

d+1

− X2
0 +

d−1∑
i=1

X2
i + X2

d+1 = R2. (2.52)

Therefore as mentioned, this is the Lorentzian version of the sphere, since from the
definition of the sphere by embedding,

ds2 = + dX2
0 +

d−1∑
i=1

dX2
i + dX2

d+1

+ X2
0 +

d−1∑
i=1

X2
i + X2

d+1 = R2, (2.53)

we have changed the minus signs in front of X2
0 and dX2

0.
From the definition (2.52), de Sitter space in d dimensions is explicitly invariant under

the group SO(1, d), which in fact is defined as the group of transformations X′μ = �μ
νXν

(μ = 0, 1, . . . , d − 1, d + 1) that leaves invariant the d + 1 dimensional Minkowski
metric. The definition involves the d + 1-dimensional Minkowski metric and an SO(d, 1)-
invariant constraint. Note also that the d-dimensional sphere (2.53) is explicitly invariant
under SO(d + 1) rotations of the d + 1 embedding coordinates, X′μ = �μ

νXν , for
the same reason: both the embedding constraint and the embedding metric are explicitly
SO(d + 1)-invariant.

Similarly, in d dimensions, Anti-de Sitter space (or AdS space) is defined by a
Lobachevski-like embedding in d + 1 dimensions,

ds2 = − dX2
0 +

d−1∑
i=1

dX2
i − dX2

d+1

− X2
0 +

d−1∑
i=1

X2
i − X2

d+1 = −R2, (2.54)

with the only difference being the same sign change in front of X2
0 and dX2

0 , and is therefore
the Lorentzian version of Lobachevski space.

It is explicitly invariant under the group SO(2, d − 1) that rotates the coordinates Xμ =
(X0, Xd+1, X1, . . . , Xd−1) by X′μ = �μ

νXν , as both the embedding metric and embedding
equations are invariant under this transformation.

The metric of this space can be written in different forms, corresponding to different
coordinate systems. To write them, as in the case of the sphere described in the first
subsection of this chapter, we must find solutions of the embedding Equation (2.54).
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37 2.5 Anti-de Sitter space: definition, metrics, Penrose diagram

Consider the following solution,

X0 = 1

2u

(
1 + u2(R2 + �x2 − t2)

)
,

Xd+1 = Rut,
Xi = Ruxi, i = 1, . . . , d − 2

Xd−1 = 1

2u

(
1 − u2(R2 − �x2 + t2)

)
. (2.55)

Substituting in (2.54), we obtain

ds2 = R2

(
u2(−dt2 +

d−2∑
i=1

dx2
i ) + du2

u2

)
, (2.56)

where we see that 0 < u < +∞. This is AdS space in Poincaré coordinates. This form is
explicitly invariant under ISO(1, d−2), the Poincaré group of rotations and translations on
(t, �x) and SO(1, 1), a scaling symmetry acting by (t, �x, u) → (λt, λ�x, λ−1u).

We can also change variables to u = 1/x0, obtaining another form of the Poincaré
coordinates,

ds2 = R2

x2
0

(
−dt2 +

d−2∑
i=1

dx2
i + dx2

0

)
, (2.57)

where −∞ < t, xi < +∞, but 0 < x0 < +∞.
Therefore, up to a conformal factor, this is just flat d-dimensional Minkowski space, thus

its Penrose diagram is the same, the one of 3-dimensional Minkowski space, a triangle, as
in Fig. 2.3c. But this sounds like an odd situation: could it be that two really different spaces
have the same Penrose diagram?

The answer is no, because it turns out that the Poincaré coordinates do not cover the
whole of AdS space, defined by the embedding (2.54), so it is rather that the triangle is the
Penrose diagram for a patch of AdS space, the Poincaré patch.

To see this, first change coordinates as x0/R = e−y, obtaining

ds2 = e+2y

(
−dt2 +

d−2∑
i=1

dx2
i

)
+ R2dy2. (2.58)

However, one now discovers that despite the coordinates being infinite in extent, one does
not cover all of space in these coordinates! If we send a light ray to infinity in y coordinates
(x0 = 0), which is a boundary of the space, we have ds2 = 0, and we consider it also at
constant xi, obtaining

t =
∫

dt = R
∫ ∞

e−ydy <∞, (2.59)

so it takes a finite amount of time t for light to reach the boundary, but since t is not finite,
light can in principle go further: it can “reflect” from the boundary and travel back to
another region of AdS space. In fact, as mentioned, we find that the Poincaré coordinates
only cover a patch, the “Poincaré patch” of the AdS space, and we can extend to the full
AdS space, finding coordinates that cover it all.
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38 Basics of general relativity; Anti-de Sitter space

In the Poincaré coordinates, we can understand Anti-de Sitter space as a d − 1 dimen-
sional Minkowski space in (t, x1, . . . , xd−2) coordinates, with a “warp factor” (gravitational
potential) that depends only on the additional coordinate x0.

A coordinate system that does cover the whole of space is called the (system of) global
coordinates, and is found by the following solution of (2.54):

X0 = R cosh ρ cos τ ,
Xi = R sinh ρ�i, i = 1, . . . , d − 1

Xd+1 = R cosh ρ sin τ , (2.60)

where �i are Euclidean coordinates for the unit sphere (�i�i = 1). Substituting into
(2.54), we find the metric

ds2
d = R2(− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ d ��2

d−2), (2.61)

where d ��2
d−2 is the metric on the unit d – 2-dimensional sphere.

This metric is written in a suggestive form, since the metric on the d-dimensional sphere
can be written in a similar way in terms of the metric on the d − 2-dimensional sphere,

ds2
d = R2(cos2 ρ dw2 + dρ2 + sin2 ρ d ��2

d−2), (2.62)

therefore, the AdS global coordinates metric is given by the analytical continuation in θ ,
cosh(iθ ) = cos θ , sinh(iθ ) = i sin θ from the sphere.

As we see from (2.60), the coordinate τ appears naturally to belong to [0, 2π ], and in fact
we can check that this, together with ρ ≥ 0, covers the embedding hyberboloid (2.54) once.
Near ρ = 0 (the “center” of AdS space), the metric is ds2 � R2(−dτ 2 + dρ2 + ρ2d ��2

d−2),
which means the space has the topology of S1 × R

d−1, with S1 being the periodic time,
giving acausal closed timelike curves. The solution to this problem is simple though: we
just need to “unwrap” the circle S1, i.e. consider −∞ < τ < +∞ with no identifications,
thus obtaining a causal spacetime, known as the universal cover of AdS space. In this book,
we always consider the universal cover of AdS space whenever we talk about global AdS
space, and we shall cease saying “universal cover.”

Finally, the change of coordinates tan θ = sinh ρ gives a form of the global coordinate
AdS metric that can be used to write the Penrose diagram of the full space,

ds2
d =

R2

cos2 θ
(−dτ 2 + dθ2 + sin2 θ d ��2

d−2), (2.63)

where 0 ≤ θ ≤ π/2 in all dimensions except two, where −π/2 ≤ θ ≤ π/2, and τ is
arbitrary.

Penrose diagram and boundary of space

From this metric we infer the Penrose diagram of global AdSd space (Anti-de Sitter space
in d dimensions) by just dropping the conformal factor R2/ cos2 θ . In general dimension d,
we obtain the metric

ds2 = −dτ 2 + dθ2 + sin2 θ d ��2
d−2, (2.64)
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39 2.5 Anti-de Sitter space: definition, metrics, Penrose diagram

known as the “Einstein static Universe,” which is formally of the same form as (2.51),
except with an infinite range for τ .

Therefore, the Penrose diagram of AdS2 is an infinite strip between θ = −π/2 and
θ = +π/2. The “Poincaré patch” covered by the Poincaré coordinates, is a triangle region
of the diagram, with its vertical boundary being a segment of the infinite vertical boundary
of the global Penrose diagram, as in Fig. 2.3d.

The boundary of AdS2 space is given in Poincaré coordinates by the place where the
conformal factor in (2.57) becomes singular, x0 = 0 and x0 = ∞. But x0 = ∞ corresponds
in global coordinates to the “center” of AdS2, θ = 0, and so is a fake boundary through
which we can analytically continue the space. Whereas x0 = 0 corresponds to the real
boundary of AdS2, though it can be reached in finite time, as we saw above. In global
coordinates, the full boundary of AdS2 is obtained, namely the θ = ±π/2, τ arbitrary
lines, for which the conformal factor is again infinite.

The Penrose diagram of AdSd is similar, but it is a cylinder obtained by the revolution
of the infinite strip between θ = 0 and θ = π/2 around the θ = 0 axis, as in Fig. 2.3e.
The “circle” of the revolution represents in fact a d − 2 dimensional sphere. Therefore, the
boundary of AdSd (d-dimensional Anti-de Sitter space) is Rτ × Sd−2, the infinite vertical
line of time τ times a d – 2-dimensional sphere. This is important in defining AdS/CFT
correctly.

The metric on the correct boundary of the Poincaré patch is the metric on the x0 = 0
slice (or x0 = ε) without the conformal factor,

ds2 = −dt2 +
d−2∑
i=1

dx2
i , (2.65)

whereas the metric on the boundary of the global AdS space is the metric on the θ = π/2
slice (or θ = π/2 − ε) without the conformal factor,

ds2 = −dτ 2 + d ��2
d−2. (2.66)

Analytical continuation to Euclidean signature

It will turn out that, as for the case of a general quantum field theory reviewed in
Chapter 1, it is easier to define AdS/CFT for a Euclidean version of AdS space. We
have already mentioned the fact that the embedding equation for AdS space is the
analytically continued version of Euclidean-signature Lobachevski space, just as the
embedding equation for dS space is the Euclidean version of the sphere. Therefore we
refer to the d-dimensional sphere as “Euclidean de Sitter in d dimensions, EdSd”, and
to the d-dimensional version of Lobachevski space as “Euclidean Anti-de Sitter space in
d dimensions, EAdSd.”

But we now want to understand better EAdSd from the analytical continuation. The Wick
rotation X(E)

d+1 = −iXd+1 turns the embedding relation of AdSd, (2.54), into the embedding
relation for d-dimensional Lobachevski space EAdSd,
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40 Basics of general relativity; Anti-de Sitter space

ds2
E = − dX2

0 +
d−1∑
i=1

dX2
i + (dX(E)

d+1)2

− X2
0 +

d−1∑
i=1

X2
i + (X(E)

d+1)2 = −R2. (2.67)

But we also see that the corresponding Wick rotation for global coordinates is τE = −iτ .
Since cos τ = cosh τE and sin τ = i sinh τE, the solution to the embedding Equation (2.60)
turns into

X0 = R cosh ρ cosh τE,
Xi = R sinh ρ�i, i = 1, . . . , d − 1

X(E)
d+1 = R cosh ρ sinh τE, (2.68)

leading to the global Euclidean AdS metric

ds2
E,d = R2(cosh2 ρ dτ 2

E + dρ2 + sinh2 ρ d ��2
d−2)

= R2

cos2 θ
(dτ 2

E + dθ2 + sin2 θ d ��2
d−2). (2.69)

On the other hand, the same analytical continuation gives the analytical continuation of the
Poincaré patch. The Wick rotation tE = −it turns the solution of the embedding equation
(2.55) to

X0 = 1

2u

(
1 + u2(R2 + �x2 + t2E)

)
,

X(E)
d+1 = RutE,

Xi = Ruxi, i = 1, . . . , d − 2

Xd−1 = 1

2u

(
1 − u2(R2 − �x2 − t2E)

)
, (2.70)

leading to the Euclidean Poincaré metric

ds2
E = R2

(
u2(dt2E +

d−2∑
i=1

dx2
i ) + du2

u2

)

= R2

x2
0

(
dt2E +

d−2∑
i=1

dx2
i + dx2

0

)
. (2.71)

Now the metric on the boundary of the global Euclidean AdS metric,

ds2
E = dτ 2

E + d ��2
d−2, (2.72)

can be related by dropping a conformal factor to the metric on the boundary of the
Euclidean Poincaré metric,

ds2
E = dt2E +

d−2∑
i=1

dx2
i = dρ̃2 + ρ̃2d ��2

d−2 = e2τE (dτ 2
E + d ��2

d−2), (2.73)

where we have first written flat space in spherical coordinates with radius ρ̃, and then
redefined ρ̃ = eτE .
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41 2.5 Anti-de Sitter space: definition, metrics, Penrose diagram

We see that the boundary of AdSd space is a flat d−1-dimensional space, up to a possible
conformal factor (in the case of the global coordinates metric). However, we also note an
important subtlety. The Wick rotation on the boundary in global coordinates, dτE = −dτ 2,
is different than the Wick rotation on the boundary in Poincaré metric, dt2E = −dt2, as we
can easily check! While the latter is the usual Wick rotation on the plane, the former is a
Wick rotation for radial quantization (for “radial time”). This is the reason why Wick rota-
tion of AdS/CFT from Euclidean signature is difficult to do, and there are still unknowns
about it.

Cosmological constant

Finally, let me mention another important property of Anti-de Sitter space: it is a solution of
the Einstein equation with a constant energy-momentum tensor, known as a cosmological
constant, thus Tμν = −�gμν , coming from a constant term in the action, − ∫

d4x
√−g�,

so the Einstein equation is

Rμν − 1

2
gμνR = 8πGN(−�)gμν , (2.74)

where � < 0 for AdS and we have written the Ricci tensor and scalar with R in order not
to confuse it with the AdS radius R. Multiplying by gμν , we obtain

R = 2d

d − 2
8πGN�, (2.75)

which shows that indeed, we obtain a space of constant negative curvature. For the case of
positive curvature space with Euclidean signature we obtain the sphere Sd, corresponding
to � > 0,R > 0, g > 0; for the case of positive curvature space with Minkowski signature
we obtain de Sitter space dSd, with � > 0,R > 0, g < 0; for the case of negative curvature
space with Minkowski signature we obtain Anti-de Sitter space AdSd, with � < 0,R <

0, g < 0.
On the AdS solution in Poincaré coordinates (2.57), we can calculate the components of

the Ricci scalar, using the definition of the Christoffel symbols and the Riemann tensor in
terms of the metric:2

R00 = −d − 1

x2
0

; Rab = −d − 1

x2
0

ηab; R0a = 0; a = (t, i)

⇒ Rμν = −d − 1

R2
gμν , (2.76)

so that the Ricci scalar is

RAdS = −d(d − 1)

R2
(2.77)

2 The only nonzero components of the Christoffel symbol are found to be �0
ab = 1

x0
ηab;�0

00 = − 1
x0

;�a
0b =

�a
b0 = − 1

x0
δa

b and the only nonzero components of the Riemann tensor are found to be R0
a0b = −R0

ab0 =
− 1

x2
0
ηab, Ra

bcd = 1
x2

0
(δa

dηbc − δa
cηbd) and Ra

0b0 = −Ra
00b = − 1

x2
0
δa

b , which together can be written as

Rμνρσ = 1
R2 (δμσ gνρ − δ

μ
ρ gνσ ).
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42 Basics of general relativity; Anti-de Sitter space

and the cosmological constant is, from (2.75),

�AdS = − (d − 1)(d − 2)

16πGNR2
= − (d − 1)(d − 2)Md−2

Pl,d

2R2
. (2.78)

Consider the transformation

sinh ρ = r

R
; t = t̄

R
, (2.79)

on the global coordinate metric (2.61). We obtain the new metric

ds2 = −
(

1 + r2

R2

)
dt̄2 + dr2

1 + r2

R2

+ r2d ��2
d−2. (2.80)

This form of the metric is useful because if we write it in terms of the cosmological constant
� as

ds2 = −
(

1 − 2�

(d − 1)(d − 2)Md−2
Pl,d

r2

)
dt̄2 + dr2

1 − 2�
(d−1)(d−2)Md−2

Pl,d
r2

+ r2d ��2
d−2, (2.81)

it is valid both in the AdS case � < 0 and in the dS case � > 0.
We can now write a transformation that takes us between the Euclidean version (with

+d t̄ 2 signature) of this new form of the global coordinates metric and the Poincaré form,

r

R
�� = �x

x0
; e

t̄
R =

√
x2

0 + �x2 = x0

√
1 + r2

R2
. (2.82)

Important concepts to remember

• In general relativity, space is intrinsically curved.
• In general relativity, physics is invariant under general coordinate transformations.
• Gravity is the same as curvature of space, or gravity = local acceleration.
• The Christoffel symbol acts like a gauge field of gravity, giving the covariant derivative.
• Its field strength is the Riemann tensor, whose scalar contraction, the Ricci scalar, is an

invariant measure of curvature.
• One postulates the action for gravity as (1/(16πGN))

∫ √−gR, giving Einstein’s
equations.

• To understand the causal and topological structure of curved spaces, we draw Penrose
diagrams, which bring infinity to a finite distance in a controlled way.

• de Sitter space is the Lorentzian signature version of the sphere; Anti-de Sitter space is
the Lorentzian version of Lobachevski space, a space of constant negative curvature.

• Anti-de Sitter space in d dimensions has SO(2, d − 1) invariance.
• The Poincaré coordinates only cover part of Anti-de Sitter space, despite having max-

imum possible range (over the whole real line), related to the fact that one can send a
light ray to infinity in a finite time.

• Global coordinates cover the whole (universal cover of) AdS space.
• The Penrose diagram of (the global) AdS space is a cylinder.
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43 2.5 Anti-de Sitter space: definition, metrics, Penrose diagram

• Its boundary is Rt × Sd−2, conformal to R
d−1.

• Anti-de Sitter space has a cosmological constant.

References and further reading

For a very basic (but not too detailed) introduction to general relativity you can try the
general relativity chapter in Peebles [3]. A good and comprehensive treatment is given
in [4], which has a very good index, and detailed information, but you need to be selective
in reading only the parts you are interested in. An advanced treatment, with an elegance and
concision that a theoretical physicist should appreciate, is found in the general relativity
section of Landau and Lifshitz [5], though it might not be the best introductory book.
A more advanced and thorough book for the theoretical physicist is Wald [6].

Exercises

1. Parallel the derivation in the text to find the metric on the 2-sphere in its usual form,

ds2 = R2(dθ2 + sin2 θdφ2), (2.83)

from the 3-dimensional Euclidean metric.
2. Show that on-shell, the graviton has degrees of freedom corresponding to a transverse

(d − 2 indices) symmetric traceless tensor.
3. Show that the metric gμν is covariantly constant (Dμgνρ = 0) by substituting the

Christoffel symbols.
4. Prove that the general coordinate transformation on gμν ,

g′μν(x′) = gρσ (x)
∂xρ

∂x′μ
∂xσ

∂x′ν
, (2.84)

reduces for infinitesimal tranformations to

∂ξgμν(x) = (ξρ∂ρ)gμν + (∂μξ
ρ)gρν + (∂νξ

ρ)gρμ. (2.85)

5. Prove that the commutator of two covariant derivatives when acting on a covariant
vector gives the action of the Riemann tensor on it, Equation (2.25).

6. Parallel the calculation in 2-dimensions to show that the Penrose diagram of
3-dimensional Minkwoski space, with an angle (0 ≤ φ ≤ 2π ) supressed, is a triangle.

7. Substitute the coordinate transformation

X0 = R cosh ρ cos τ ; Xi = R sinh ρ�i; Xd+1 = R cosh ρ sin τ , (2.86)

to find the global metric of AdS space from the embedding (2, d − 1) signature flat
space.
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3 Basics of supersymmetry

3.1 Lie algebras; the Coleman–Mandula theorem

In the 1960s people were asking: “what kind of symmetries are possible in particle
physics?”

We know the Poincaré symmetry ISO(3, 1) defined by the Lorentz generators Jμν of the
SO(3, 1) Lorentz group and the generators of 3+1-dimensional translation symmetries, Pa,

[Jμν , Jρσ ] = −(ημρJνσ + ηνσ Jμρ − ημσ Jνρ − ηνρJμσ ),
[Pμ, Jνρ] = (ημνPρ − ημρPν),
[Pμ, Pν] = 0 . (3.1)

We also know that there are possible internal symmetries Tr of particle physics, such as
the local U(1) of electromagnetism, the local SU(3)c (color) of QCD or the (approximate)
global SU(2) symmetry of isospin. These generators form a Lie algebra

[Tr, Ts] = frs
tTt . (3.2)

So the question arose: can they be combined, i.e. [Ts, Pμ] �= 0, [Ts, Jμν] �= 0, such that
maybe we could embed, say the SU(2) of isospin together with the SU(2) of spin into a
larger group?

The answer turned out to be NO, in the form of the Coleman–Mandula theorem, which
says that if the Poincaré and internal symmetries were to combine, the S matrices for all
processes would be zero.

Note that we can have ISO(3, 1) as part of a larger group, but this group will not involve
an internal symmetry, but rather other transformations of spacetime. The group in question
is called a conformal group, which in four dimensions is SO(4, 2), and the study of confor-
mal field theories (theories invariant under this group) is the main subject of AdS/CFT. We
explain conformal field theories in a later chapter.

3.2 Supersymmetry: a symmetry between bosons and fermions

Like all theorems, the Coleman–Mandula theorem is only as strong as its assumptions, and
one of them is that the final algebra is a Lie algebra.
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45 3.2 Supersymmetry: a symmetry between bosons and fermions

But people realized that one can generalize the notion of Lie algebra to a graded Lie
algebra and thus evade the theorem. A graded Lie algebra is an algebra that has some
generators Qi

α that satisfy not a commuting law: but an anticommuting law:

{Qi
α , Qj

β} = other generators. (3.3)

Then the generators Pμ, Jμν , and Tr are called “even generators” and the Qi
α are called

“odd” generators. The graded Lie algebra is then of the type

[even, even] = even; {odd, odd} = even; [even, odd] = odd, (3.4)

and the commutation and anticommutation relations correspond to what we expect if “even
= boson”, “odd = fermion”. The graded Lie algebra satisfies generalized Jacobi identities
which follow from it (consider that bosons commute, fermions anticommute and boson
and fermion commute),

[[B1, B2], B3] + [[B3, B1], B2] + [[B2, B3], B1] = 0,
[[B1, B2], F3] + [[F3, B1], B2] + [[B2, F3], B1] = 0,
{[B1, F2], F3} + {[B1, F3], F2} + [{F2, F3}, B1] = 0,
[{F1, F2}, F3] + [{F1, F3}, F2] + [{F2, F3}, F1] = 0. (3.5)

So such a graded Lie algebra generalization of the Poincaré + internal symmetries is
possible. But what kind of symmetry would a Qi

α generator describe? The equation

[Qi
α , Jμν] = (. . .)Qi

β (3.6)

means that Qi
α must be in a representation of Jμν (the Lorentz group), since [(�), Jμν] =

(. . .)� means by definition � is in a representation of Jμν . Because of the anticommuting
nature of Qi

α ({Qα , Qβ} = others), we choose the spinor representation, which in particular
means that

[Qi
α , Jμν] = 1

2
(γμν)α

βQi
β . (3.7)

The spinors we will work with are Majorana spinors, which as we saw satisfy the reality
condition

Q̄i
β = QiαCαβ , (3.8)

so strictly speaking we should write instead of Qi
α , Q̄i

α , but since Majorana spinor indices
are raised and lowered with C, it is never ambiguous, so we can be sloppy about including
the bar. Raising and lowering of anticommuting Majorana spinor indices is done as

ψβ = ψαCαβ ; ψβ = ψαC−1 αβ , (3.9)

where Cαβ is antisymmetric and C−1 αβ ≡ Cαβ .
The reason we use Majorana spinors is convenience, since it is easier to prove various

supersymmetry identities, and then in the Lagrangean we can always go from a Majorana
to a Weyl spinor and vice versa.

But a spinor field times a boson field gives a spinor field. Therefore, when acting with
Qi
α (spinor) on a boson field, we get a spinor field. More precisely Qi

α is a spinor, with α a
spinor index and i a label, thus the parameter of the transformation law, εi

α is a spinor also.
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46 Basics of supersymmetry

Therefore a Qi
α gives a symmetry between bosons and fermions, called supersymmetry!

Thus,

δ boson = fermion; δ fermion = boson. (3.10)

If i = 1, . . . ,N we say we have N supersymmetries.
{Qα , Qβ} is called the supersymmetry algebra, and the above graded Lie algebra is called

the superalgebra.
Since {Qi

α , Qj
β} are symmetric in the exchange of (iα) with (jβ), we can have structures

symmetric in (αβ) and in (ij) and also structures antisymmetric in both (αβ) and (ij). Since
using (1.78) we can easily verify that1

(Cγ μ)αβ = (Cγ μ)βα; (Cγ μν)αβ = (Cγ μν)βα; (Cγ5)αβ = −(Cγ5)βα , (3.11)

it follows that the supersymmetry algebra can be in principle of the type

{Qi
α , Qj

β} = m(Cγ μ)αβPμδ
ij + n(Cγ μν)αβJμνδ

ij + CαβUij + (Cγ5)αβVij, (3.12)

where Uij = −Uji and Vij = −Vji are antisymmetric matrices called central charges since
they commute with the rest of the algebra. However, from the Jacobi indentities of the
superalgebra (3.5) one can prove that n = 0, and we can normalize the generators such that
m = 2.

Then the most general form of the N-extended superalgebra in four dimensions with
central charges is

{Qi
α , Qj

β} = 2(Cγ μ)αβPμδ
ij + CαβUij + (Cγ5)αβVij . (3.13)

Note that in higher dimensions we could have more central charges, but in four dimensions
this is the most general possibility. Using the Jacobi indentities (3.5) one finds also that

[Qi
α , Pμ] = 0 . (3.14)

Finally, there is an internal (global) symmetry that can act on the index i of Qi
α and

rotates them according to

[Qi
α , Tr] = (Vr)i

jQ
j
α , (3.15)

i.e., (Vr)i
j is the representative of Tr in the representation of Qi

α for the Lie algebra. In
general (and in the absence of central charges) we can have complex representations acting
on the N objects i = 1, . . . , N, which means that in general for N-extended supersymmetry
we can have U(N) internal symmetry.

1 As a matter of notation, observe that for us

(Cγμ)αβ ≡ Cαγ (γμ)γ β = −(γμ)αβ ,

where in the last expression we have simply lowered the index α with our rules for raising and lowering spinor
indices.
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47 3.3 Spinors in various dimensions

3.3 Spinors in various dimensions

In this book we deal with various spacetime dimensions, not just d = 4, so it is important
to realize how to define a spinor in general.

For the Lorentz group SO(1, d − 1) there is always a representation called the spinor
representation χα defined by the fact that there exist gamma matrices (γμ)αβ satisfying the
Clifford algebra

{γμ, γν} = 2gμν , (3.16)

where gμν is the SO(1, d − 1) invariant metric, i.e. d-dimensional Minkowski, that takes
spinors into spinors (γμ)αβχ

β = χ̃α . In d spacetime dimensions, these Dirac spinors have

2[d/2] complex components, but this representation is not irreducible.
For an irreducible representation, we must impose either the Weyl (chirality) condition,

or the Majorana (reality) condition, or in the case of d = 2 and 10 Minkowski dimensions
both, obtaining Weyl, Majorana, or Majorana–Weyl spinors.

The Weyl spinor condition exists only in d = 2n (even) dimensions, but the Majo-
rana condition (or sometimes the modified Majorana condition, involving another matrix
besides C)2 can always be defined.

The proof of the fact that Dirac spinors have 2[d/2] components is constructive. In d = 2
Euclidean dimensions, the Pauli matrices σ i, satisfying

σ iσ j = δij + iεijkσ k, (3.17)

form a representation of the Clifford algebra, since we get {σ i, σ j} = 2δij. We can choose
for instance σ1 = γ1 and σ2 = γ2. Then we can define the analog of γ5,

γd+1(= “γ3”) = σ3 = −iσ1σ2 (3.18)

that satisfies {γi, γ3} = 0, (γ3)2 = 1. In d = 3 Euclidean dimensions then, we can choose
γ1, γ2, γ3 as the objects satisfying the Clifford algebra. In general, we will have that in
d = 2n + 1, γ2n+1 (the analog of γ5), becomes the last gamma matrix, but otherwise does
not change the dimension of the spinor representation. That is, both d = 2n and d = 2n+1
have the same dimension of the spinor representation.

Then in d = 4 = 2n we can choose various representations, but for instance one that is
possible is constructed by tensor products as follows

�a = γ a ⊗ σ3, a = 1, . . . , 2n,
�2n+i = 1⊗ σ i, i = 1, 2 , (3.19)

which we have written in a way immediately generalizable to constructing d = 2n + 2-
dimensional gamma matrices from d = 2n-dimensional gamma matrices. This is a
representation of the Clifford algebra, since

{�a,�b} = {γ a, γ b} ⊗ (σ3)2 = 2δab1⊗ 12,
{�i,�j} = 1⊗ {σ i, σ j} = 2δij1⊗ 12,
{�a,�i} = γ a ⊗ {σ 3, σ i} = 0 . (3.20)

2 The resulting spinors are sometimes also called symplectic Majorana spinors.
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48 Basics of supersymmetry

We can then also define �d+1 in d = 2n + 2 dimensions as (γ2n+1 = iγ1 · · · · γ2n),

�2n+3 = �1�2 · · ·�2n+2 = −iγ2n+1 ⊗ σ1σ2 = γ2n+1 ⊗ σ3, (3.21)

and satisfies (�2n+3)2 = 1 and {�2n+3,�M} = 0, M = (a, i).
In a general even dimension d = 2n, we then define the chiral projectors as

PL = 1+ �2n+1

2
; PR = 1− �2n+1

2
, (3.22)

and then the Weyl condition is

PLψR = 0 or PRψL = 0, (3.23)

defining ψR,ψL.
To define Majorana spinors, we need to define the general charge conjugation matrix.

For more details, see [13].
The Majorana reality condition is defined as usual by

χ̄D ≡ χ†γ̃t = χ̄C ≡ χTC, (3.24)

where γ̃t is the gamma matrix in the time direction for Minkowski signature and 1 for
Euclidean. The condition that χ̄D and χ̄C both satisfy the same Dirac equation gives a
condition on C. Indeed, the Dirac equation 0 = (γ μ∂μ + M)χ gives, when taking the
dagger,

0 = [(γ μ∂μ + M)χ ]† = χ†(γ μ† ←
∂ μ +M) ⇒

0 = χ†(γ μ† ←
∂ μ +M)γ̃t = χ†γt(±γ μ

←
∂ μ +M), (3.25)

where we have used that (γ μ)† = +γ μ for spacelike μ and (γ μ)† = −γ μ for timelike
μ, implying (γ μ)†γ̃t∂μ = ±γ̃tγ

μ∂μ. On the other hand, we can take the transpose of the
Dirac equation and get

0 = [(γ μ∂μ + M)χ ]TC = χTCC−1(γ μT ←
∂ μ +M)C. (3.26)

Since χ̄D = χ†γ̃t and χ̄C = χTC must obey the same equation, by comparing the two
results we obtain

Cγ μC−1 = σγ μT , (3.27)

where σ 2 = 1, i.e., σ = ±1. We call C+ the matrix satisfying the relation with σ = +1
and C− the matrix satisfying the relation with σ = −1. In even dimensions, both C+ and
C− exist, but in odd dimensions only one of them can exist, not both.

The matrix C must be symmetric or antisymmetric, as can be seen by applying twice the
above relation for (γ μ)T , and using that (γ μT )T = γ μ, which gives

(C−1CT )−1γ μ(C−1CT ) = γ μ ⇒
C−1CT = a 1, a2 = 1 ⇒ a = ±1. (3.28)
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49 3.3 Spinors in various dimensions

From (3.27) and (3.28), Cγμ is symmetric or antisymmetric ((Cγμ)T = σaCγμ). But
for the existence of an action for anticommuting spinors, we must have Cγμ symmetric,
since ∫

χ̄∂/χ =
∫

χTCγ μ∂μχ =
∫

(χTCγ μ∂μχ )T = −
∫

(∂μχ
T )(Cγ μ)Tχ

= +
∫

χT (Cγ μ)T∂μχ . (3.29)

In the second equality we use the fact that the transpose of a number is the same number,
in the third we use the fact that the spinors are anticommuting, and in the last we use
partial integration. By comparing the first and last form, we see that we need Cγ μ to be
symmetric. If one uses commuting spinors instead, the same argument finds that we need
Cγ μ to be antisymmetric. In Minkowski space we generally want to use anticommuting
(usual) spinors, whereas in Euclidean space, having in mind the application to Kaluza–
Klein compactifications (to be studied later), we generally want to use commuting spinors.

The condition of symmetry of Cγ μ in Minkowski space means that we need σa = +1,
as we can easily check; therefore, in its absence we cannot define spinors.

A summary of the possibilities in various Minkowski dimensions is as follows. A more
complete list (including Euclidean spinors) is found in [13].

• d = 2: We have both C+, C−, satisfying CT+ = C+, CT− = −C−, and we can construct
Majorana spinors with both. We can also construct Majorana–Weyl spinors using both.

• d = 3: We have a C−, satisfying CT− = −C−, and we can construct Majorana spinors
with it.

• d = 4: We have both C+ and C−, satisfying CT− = −C− and CT+ = −C+, but we can
use only C− to construct Majorana spinors (C+ has σa = −1).

• d = 5: We have only a C+, with CT+ = −C+, but we cannot use it to construct Majorana
spinors, since σa = −1.

• d = 6: We have both a C+ and a C−, satisfying CT+ = −C+ and CT− = C−, but neither
can be used to define Majorana spinors, since σa = −1.

• d = 7: We have only a C−, with CT− = C−, but we cannot use it to construct Majorana
spinors, since σa = −1.

• d = 8. We have both a C+ and a C−, satisfying CT+ = C+, CT− = C−, but only C+ can
be used to construct Majorana spinors, since C− has σa = −1.

• d = 9. We have only a C+, with CT+ = C+, and we can use it to construct Majorana
spinors.

• d = 10. We have both a C+ and a C−, satisfying CT+ = C+, CT− = −C−, and we can
use both to construct Majorana spinors, as well as Majorana–Weyl spinors.

• d = 11. We have only a C−, with CT− = −C−, which can be used to construct Majorana
spinors.

We see that in d = 5, 6, 7 Minkowski dimensions it seems that we cannot define Majo-
rana spinors. However, if we have more than one spinor, in particular an even number of
spinors, we can define a modified Majorana condition, with Majorana conjugate

χ̄ i
C ≡ χT

j �
jiC, i = 1, 2, (3.30)
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50 Basics of supersymmetry

if � is antisymmetric, �T = −�, and unitary, which implies ��∗ = −1 (since �† =
�T∗ = −�∗). The simplest choice is if � is the symplectic matrix,

� =
(

0 1

−1 0

)
, (3.31)

which means that the spinors χ i are in the fundamental representation of USp(2N).

3.4 The 2-dimensional Wess–Zuminomodel: on-shell
supersymmetry

We will start by explaining supersymmetry for the simplest possible models, which occur
in two dimensions.

As we saw, a general (Dirac) fermion in d dimensions has 2[d/2] complex compo-
nents, therefore in two dimensions it has two complex dimensions, and thus a Majorana
fermion will have two real components. An on-shell Majorana fermion (that satis-
fies the Dirac equation, its equation of motion) will then have a single component
(since the Dirac equation is a matrix equation that relates half of the components to the
other half).

Since we have a symmetry between bosons and fermions, the number of degrees of
freedom of the bosons must match the number of degrees of freedom of the fermions (the
symmetry will map a degree of freedom to another degree of freedom). This matching
can be:

• on-shell, in which case we have on-shell supersymmetry; OR
• off-shell, in which case we have off-shell supersymmetry.

Thus, in two dimensions, the simplest possible model has one Majorana fermion ψ

(which has one degree of freedom on-shell), and one real scalar φ (also one on-shell degree
of freedom). We can then obtain on-shell supersymmetry and get the Wess–Zumino model
in two dimensions.

Free Wess–Zuminomodel

The action of a free boson and a free fermion in two Minkowski dimensions is3

S = −1

2

∫
d2x[(∂μφ)2 + ψ̄∂/ψ], (3.32)

and this is actually the action of the free Wess–Zumino model. From the action, the mass
dimension of the scalar is [φ] = 0, and of the fermion is [ψ] = 1/2 (the mass dimension
of

∫
d2x is −2 and of ∂μ is +1, and the action is dimensionless).

3 Note that the Majorana reality condition implies that ψ̄ = ψT C is not independent from ψ , thus we have a 1/2
factor in the fermionic action.
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51 3.4 The 2-dimensional Wess–Zumino model: on-shell supersymmetry

To write down the supersymmetry transformation between the boson and the fermion,
we start by varying the boson into fermion times ε, i.e.

δφ = ε̄ψ ≡ ε̄αψ
α ≡ εβCβαψ

α . (3.33)

This is a definition, but it is also the simplest thing we can have (we need both ε and ψ

on the right-hand side). From this we infer that the mass dimension of ε is [ε] = −1/2.
This also defines the order of indices in contractions χ̄ψ (χ̄ψ = χ̄αψ

α and χ̄α = χβCβα).
By dimensional reasoning, for the reverse transformation we must add an object of mass
dimension one with no free vector indices, and the only one such object available to
us is ∂/, thus

δψ = ∂/φε. (3.34)

We can check that the above free action is indeed invariant on-shell under this symmetry.

Majorana spinor identities for fermion bilinears

For this, we must use the Majorana spinor identities for fermion bilinears. We start with two
identities valid in both two and four dimensions. In both dimensions we use the C-matrix
C−, which obeys the same relations (1.78) in both dimensions. The identities are

1) ε̄χ = +χ̄ε; 2) ε̄γμχ = −χ̄γμε. (3.35)

To prove the first identity, we write ε̄χ = εαCαβχ
β , but Cαβ is antisymmetric and ε and χ

anticommute, being spinors, thus we get −χβCαβε
α = +χβCβαε

α . To prove the second,
we use the fact that, from (1.78), Cγμ = −γ T

μ C = γ T
μ CT = (Cγμ)T , thus now (Cγμ) is

symmetric (as we also mentioned in the previous subsection) and the rest is the same.
We can write two more relations, which now, however, depend on dimension. In two

Minkowski dimensions we define

γ3 = iγ0γ1, (3.36)

and in four Minkowski dimensions we defined (see (1.63)) γ5 = iγ0γ1γ2γ3. We then get

3) ε̄γ3χ = −χ̄γ3ε; ε̄γ5χ = +χ̄γ5ε,
4) ε̄γμγ3χ = −χ̄γμγ3ε; ε̄γμγ5χ = +χ̄γμγ5ε. (3.37)

To prove these, we need also that Cγ3 = +iγ T
0 γ

T
1 C = −i(Cγ1γ0)T = +(Cγ3)T (also

as claimed in the last section), whereas Cγ5 = +iγ T
0 γ

T
1 γ

T
2 γ

T
3 C = −i(Cγ3γ2γ1γ0)T =

−(Cγ5)T , as well as {γμ, γ3} = {γμγ5} = 0 and {γ T
μ , γ T

3 } = −{γ T
μ , γ T

5 } = 0.
Then the variation of the action gives

δS = −
∫

d2x

[
−φ�δφ + 1

2
δψ̄∂/ψ + 1

2
ψ̄∂/δψ

]
= −

∫
d2x[−φ�δφ + ψ̄∂/δψ], (3.38)

where in the second equality we have used partial integration together with identity 2)
above. Then substituting the transformation law we get

δS = −
∫

d2x[−φ�ε̄ψ + ψ̄∂/∂/φε]. (3.39)
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52 Basics of supersymmetry

But we have

∂/∂/ = ∂μ∂νγ
μγ ν = ∂μ∂ν

1

2
{γμ, γν} = ∂μ∂νgμν = �, (3.40)

and by using this identity, together with two partial integrations, we obtain that δS = 0.
Therefore the action is invariant without the need for the equations of motion, so it would

seem that this is an off-shell supersymmetry. However, the invariance of the action is not
enough, since we have not proven that the above transformation law closes on the fields,
i.e. that by acting twice on every field and forming the Lie algebra of the symmetry, we get
back to the same field, or that we have a representation of the Lie algebra on the fields.

As we saw, the graded Lie algebra of supersymmetry is generically of the type

{Qi
α , Qj

β} = 2(Cγ μ)αβPμδ
ij + . . . , (3.41)

and in the case of a single supersymmetry, as for the 2-dimensional Wess–Zumino model,
we do not have any + . . . and the above algebra is complete. In order to represent it on the
fields, we note that in general, for a symmetry, δε = εaTa, i.e. the symmetry variation is
understood as the variation parameter times the generator. In the case of susy (supersym-
metry), we then have δε = εαQα , so multiplying the algebra with εα1 from the left and ε

β

2
from the right, we get on the left-hand side

εα1 QαQβε
β

2 + εα1 QβQαε
β

2 = εα1 QαQβε
β

2 − ε
β

2 QβQαε
α
1 = −[δε1 , δε2 ] , (3.42)

and on the right-hand side we get, using that Pμ is a translation, so is represented on the
fields by ∂μ,

2ε̄1γ
με2∂μ = −(2ε̄2γ

με1)∂μ. (3.43)

All in all, the algebra we need to represent is

[δε1 , δε2 ] = 2ε̄2γ
με1∂μ. (3.44)

In other words, we need to find

[δε1α , δε2β ]

(
φ

ψ

)
= 2ε̄2γ

με1∂μ

(
φ

ψ

)
. (3.45)

We get

[δε1 , δε2 ]φ = δε1 (ε̄2ψ) − (1 ↔ 2) = ε̄2(∂/φ)ε1 − (1 ↔ 2) = 2ε̄2γ
ρε1∂ρφ, (3.46)

where in the last equality we have used the Majorana spinor relation 2) above. Thus the
algebra is indeed realized on the scalar, without the use of the equations of motion. On the
spinor, we have

[δε1 , δε2 ]ψ = δε1 (∂/φ)ε2 − (1 ↔ 2) = (ε̄1∂μψ)γ με2 − (1 ↔ 2). (3.47)

Fierz identities

To proceed further, we need to use the so-called “Fierz identities” (or “Fierz recoupling”).
In two Minkowski dimensions, these read
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53 3.5 The 2-dimensional Wess–Zumino model: off-shell supersymmetry

Mχ (ψ̄Nφ) = −
∑

j

1

2
MOjNφ(ψ̄Ojχ ), (3.48)

(the minus is a consequence of changing the order of two fermions) where M and N are
arbitrary matrices, χ ,ψ ,φ are arbitrary spinors and the set of matrices {Oj} is = {1, γμ, γ5}
and is a complete set on the space of 2 × 2 matrices (we have four independent matri-
ces for four components). The identity follows from the completeness relation for the
matrices {Oi},

δβα δ
δ
γ = 1

2
(Oi)

δ
α(Oi)

β
γ . (3.49)

This is a completeness relation since by multiplying with an Mγ
β , we obtain the decompo-

sition of an arbitrary matrix M into Oi,

Mδ
α = 1

2
Tr (MOi)(Oi)

δ
α . (3.50)

We note that the factor 1/2 is related to the normalization Tr (OiOj) = 2δij.
In four Minkowski dimensions, we have

Mχ (ψ̄Nφ) = −
∑

j

1

4
MOjNφ(ψ̄Ojχ ) (3.51)

instead, since now Tr (OiOj) = 4δij, and the {Oi} is now a complete set of 4 × 4 matrices,
given by Oi = {1, γμ, γ5, iγμγ5, iγμν}. Here as usual γμν = 1/2[γμ, γν] (six matrices), so
in total we have 16 independent matrices for 16 components.

Using the Fierz relation (3.48) for M = γμ, N = ∂μ, we have for (3.47),

γ με2(ε̄1∂μψ) − 1 ↔ 2

= −1

2
[γ μ1∂μψ(ε̄11ε2) + γ μγν∂μψ(ε̄1γ

νε2) + γ μγ3∂μψ(ε̄1γ3ε2)] − 1 ↔ 2

= +γ μγν∂μψ(ε̄2γνε1) + γ μγ3∂μψ(ε̄2γ3ε2)
= 2(ε̄2γ

με1)∂μψ − γ ν(∂/ψ)(ε̄2γνε1) − γ3(∂/ψ)(ε̄2γ3ε1), (3.52)

where in the second line we used Majorana relations 1), 2), and 3) above.
Thus now we do not obtain a representation of the susy algebra on ψ in general, since

we have the last two extra terms. But these extra terms vanish on-shell, when ∂/ψ = 0,
hence now we have a realization of on-shell supersymmetry.

3.5 The 2-dimensional Wess–Zuminomodel: off-shell
supersymmetry

In two dimensions, an off-shell Majorana fermion has two degrees of freedom, but a scalar
has only one. Thus to close the algebra of the Wess–Zumino model off-shell, we need
one extra scalar field F. But on-shell, we must get back the previous model, thus the extra
scalar F needs to be auxiliary (non-dynamical, with no propagating degree of freedom).
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54 Basics of supersymmetry

That means that its action is
∫

F2/2, thus the action of the off-shell free Wess–Zumino
model is

S = −1

2

∫
d2x[(∂μφ)2 + ψ̄∂/ψ − F2]. (3.53)

From the action we see that F has mass dimension [F] = 1, and the equation of motion
of F is F = 0. The off-shell Wess–Zumino model algebra does not close onψ , thus we need
to add to δψ a term proportional to the equation of motion of F. By dimensional analysis,
Fε has the right dimension. Since F(= 0) itself is an equation (bosonic) of motion, its
variation δF should be the fermionic equation of motion, and by dimensional analysis ε̄∂/ψ
is OK. Thus the transformations laws are

δφ = ε̄ψ ; δψ = ∂/φε + Fε; δF = ε̄∂/ψ . (3.54)

Then we have

δε1δε2φ = δε1 (ε̄2ψ) = ε̄2∂/φε1 + ε̄2ε1F, (3.55)

and using Majorana spinor relations 1) and 2) (3.35), we get

[δε1 , δε2 ]φ = 2(ε̄2γ
με1)∂μφ. (3.56)

Here we have no modification with respect to the on-shell case, and the algebra is still
represented on φ. On the other hand,

δε1δε2ψ = δε1 (∂/φε2 + Fε2) = γ με2(ε̄1∂μψ) + (ε̄1∂/ψ)ε2, (3.57)

so in the commutator on ψ we get the extra term

(ε̄1∂/ψ)ε2 = −1

2
[1 · ∂/ψ(ε̄11ε2) + γ μ∂/ψ(ε̄1γμε2) + γ3∂/ψ(ε̄1γ3ε2)] − 1 ↔ 2

= −(ε̄1γμε2)γ μ∂/ψ − (ε̄1γ3ε2)γ3∂/ψ

= (ε̄2γμε1)γ μ∂/ψ + (ε̄2γ3ε1)γ3∂/ψ , (3.58)

where we have used the Fierz identity with M = 1, N = ∂/, and we have again used
Majorana spinor relations 1), 2), 3) (3.35, 3.37). These extra terms exactly cancel the extra
terms in (3.52), and we get a representation of the algebra on ψ as well,

[δε1 , δε2 ]ψ = 2(ε̄2γ
με1)∂μψ . (3.59)

It is left as an exercise (Exercise 4) to check that the algebra also closes on F.

3.6 The 4-dimensional Wess–Zuminomodel

Free on-shell Wess–Zuminomodel in four dimensions

Similarly to the 2-dimensional case, in four dimensions the on-shell Wess–Zumino model
has one Majorana fermion, which, however, now has two real on-shell degrees of freedom,
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55 3.7 Two-component notation, extended supersymmetry algebra, and multiplets; R-symmetry

thus we need two real scalars, A and B, to form an on-shell supersymmetry invariant Wess–
Zumino model. Therefore the action for the free on-shell Wess–Zumino model is

S0 = −1

2

∫
d4x

[
(∂μA)2 + (∂μB)2 + ψ̄∂/ψ

]
, (3.60)

and the transformation laws are almost the same as in two dimensions, except that now B
acquires an iγ5 to distinguish it from A, thus

δA = ε̄ψ ; δB = ε̄iγ5ψ ; δψ = ∂/(A + iγ5B)ε. (3.61)

The proof of invariance of the action under these rules exactly follows the 2-dimensional
case, so will not be repeated here, but is left as an exercise (Exercise 2). We can also show
that the algebra (3.44) is represented on the fields on-shell only.

Free off-shell Wess–Zuminomodel in four dimensions

Also as in two dimensions, off-shell the Majorana fermion has four degrees of freedom,
so one needs to introduce one auxiliary scalar for each propagating scalar. Therefore the
action of the off-shell Wess–Zumino model is

S = S0 +
∫

d4x

[
F2

2
+ G2

2

]
, (3.62)

and the transformation rules are

δA = ε̄ψ ; δB = ε̄iγ5ψ ; δψ = ∂/(A + iγ5B)ε + (F + iγ5G)ε;
δF = ε̄∂/ψ ; δG = ε̄iγ5∂/ψ . (3.63)

The invariance of the action and the representation of the algebra (3.44) on the fields is
slightly more involved than in the 2-dimensional case, but follows in a similar manner.

One can form a complex field φ = A+ iB and one complex auxiliary field M = F + iG,
thus the Wess–Zumino multiplet in four dimensions is (φ,ψ , M).

We have written the free Wess–Zumino model in two dimensions and four dimensions,
but one can write down interactions for them as well, that preserve the supersymmetry. We
will not write them now, though we will do so when we introduce the notion of superspace,
with which it is easier to organize them.

3.7 Two-component notation, extended supersymmetry algebra,
andmultiplets; R-symmetry

In four Minkowski dimensions, it is useful to use the 2-component notation, using dot-
ted and undotted indices. In this section we use A, B = 1, . . . , 4 for 4-component spinor
indices, in order to reserve α, α̇ for the 2-component indices, as is conventional. A general
Dirac spinor is written as

ψA =
(
ψα

χ̄ α̇

)
, (3.64)
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56 Basics of supersymmetry

where α, α̇ = 1, 2 and the relation between dotted and undotted indices for the same
2-component spinor is given by χ̄ α̇ = εα̇α(χα)∗. We use the representation for the C-matrix

CAB =
(
εαβ 0
0 εα̇β̇

)
, (3.65)

where ε12 = ε1̇2̇ = +1, εα̇β̇ = −εα̇β̇ = (εα̇β̇ )−1, and for the gamma matrices

γ μ =
(

0 σμ

σ̄μ 0

)
, (3.66)

where (σμ)αα̇ = (1, �σ )αα̇ and (σ̄ μ)αα̇ = εαβεα̇β̇ (σμ)ββ̇ = (1,−�σ )αα̇ .
A Majorana spinor has ψα = χα (a single independent 2-component spinor), i.e. it is(

ψα

ψ̄α̇

)
. (3.67)

Finally, we use the notation ψχ ≡ ψαχα and ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇ , which is derived from the

4-dimensional one,

ψ̄χ = ψACABχ
B = ψβχβ + ψ̄β̇ χ̄

β̇ = ψχ + ψ̄χ̄ , (3.68)

together with the obvious definitions (coming from our definitions of raising and lowering
indices with CAB and CAB) ψβ = ψαε

αβ , ψ̄β̇ = ψ̄ α̇εα̇β̇ .
Then in 2-component spinor notation, the N = 1 supersymmetry algebra

{QA, QB} = 2(Cγ μ)ABPμ, (3.69)

becomes (note that QA = CABQB, where QB is of the form (3.64))

{Qα , Q̄α̇} = −2(σμ)αα̇Pμ,
{Qα , Qβ} = 0; {Q̄α̇ , Q̄β̇} = 0. (3.70)

More generally, the N -extended supersymmetry algebra without central charges,

{Qi
A, Qj

B} = +2(Cγ μ)ABδ
ijPμ, (3.71)

where i, j = 1, . . . ,N , in 2-component Majorana spinor notation, with Q̄iα̇ = (Qi
α)∗,

becomes

{Qi
α , Q̄jα̇} = −2(σμ)αα̇δ

i
jPμ,

{Qi
α , Qj

β} = 0; {Q̄iα̇ , Q̄jβ̇} = 0. (3.72)

Massless irreducible representations

For massless states we can find a frame where Pμ = p(1, 0, 0, 1), so Pμ = p(−1, 0, 0, 1),
and σμPμ = p(−1+ σ3). Therefore the algebra reduces to

{Qi
α , Q̄jα̇} = 2p(1− σ3)δi

j = 4p

(
0 0
0 1

)
δi

j . (3.73)
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57 3.7 Two-component notation, extended supersymmetry algebra, and multiplets; R-symmetry

Therefore {Qi
1, Qj

1̇
} = 0, and since they are conjugate to each other, we must impose

Qi
1|ψ〉 = Qj

1̇
|ψ〉 = 0 for |ψ〉 a physical state. On the other hand, since {Qi

2, Qj
2̇
} = 4pδij,

we can define fermionic creation and annihilation operators,

ai = 1

2
√

p
Qi

2; a†i = 1

2
√

p
Q̄i2̇, (3.74)

satisfying the usual algebra

{ai, a†j} = δij; {ai, aj} = {a†i, a†j} = 0. (3.75)

We can thus use Wigner’s method to find the irreducible representations (irreps), by acting
on a “vacuum” state of given helicity λ, |�λ〉, with the N creation operators a†i, that will
lower the helicity. Helicity is defined by the Lorentz generator J3 = J12, so J3|�λ〉 =
λ|�λ〉. But the commutation relation (3.7), written now as

[Q̄i
2̇
, J3] = +1

2
Q̄i

2̇
, (3.76)

means that a†i lowers helicity, since

a†iJ3|j〉 − J3a†i|j〉 = 1

2
a†i|j〉 ⇒ J3(a†i|j〉) =

(
j − 1

2

)
(a†i|j〉). (3.77)

The algebra of fermionic creation and annihilation operators has irreducible representa-
tions (depending on a given vacuum) of dimension 2N , obtained by acting or not with
each of the N a†i. Relevant examples are then

N = 1 : |λ〉, |λ− 1/2〉 = a†|λ〉,
N = 2 : |λ〉, 2|λ− 1/2〉 = (a†1|λ〉, a†2|λ〉), |λ− 1 >= a†1a†2|λ >,
N = 4 : |λ〉, 4|λ− 1/2〉 = a†i|λ〉, 6|λ− 1〉 = (a†ia†j)|λ〉, i �= j;

4|λ− 3/2〉 = (a†ia†ja†k)|λ〉, i �= j �= k; |λ− 2〉 = a†1a†2a†3a†4|λ〉. (3.78)

But the irreducible representations are not necessarily CPT invariant. CPT invariance in
particular reverses the sign of the helicity, and if the representation is not invariant under
CPT, we must add the CPT-conjugate representation to it. The relevant cases we obtain are

N = 1, λ = 1/2 : |1/2〉, |0〉; | − 1/2〉, |0〉,
λ = 1 : |1〉, |1/2〉; | − 1〉, | − 1/2〉,

N = 2, λ = 1/2 : |1/2〉, 2|0〉, | − 1/2〉; | − 1/2〉, 2|0〉, |1/2〉,
λ = 1 : |1〉, 2|1/2〉, |0〉; | − 1〉, 2| − 1/2〉, |0〉,

N = 4, λ = 1 : |1〉, 4|1/2〉, 6|0〉, 4| − 1/2〉, | − 1〉. (3.79)

Note that only the N = 4 representation is self-conjugate under CPT, the rest are two CPT
conjugate representations added up.

Also note that if we start with helicity if we want to have a theory with at most vectors,
but no spins greater than 1, the initial helicity λ of the vacuum cannot be greater than 1,
and after acting with all the N creation operators we should get back to at most −1 helicity
(the other helicity of a vector), but not smaller. That requires N ≤ 2 × (1 − (−1)) = 4, so
N = 4 is the maximum allowed supersymmetry such that we have spins ≤ 1 only.

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:53:18 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.005

Cambridge Books Online © Cambridge University Press, 2016



58 Basics of supersymmetry

Multiplets

The representations above correspond to the following field content:

• N = 1 multiplets.

-The N = 1, λ = 1/2 representation corresponds to a Majorana spinor and two real
scalars, i.e. the Wess–Zumino, chiral or scalar multiplet studied before, since a spinor
has two on-shell states with helicities ±1/2.

-The N = 1, λ = 1 representation corresponds to a Majorana spinor and a vector, since a
vector has two on-shell states with helicities ±1, forming a vector multiplet. The vector
multiplet is (λa, Aa

μ), where a is an adjoint index. The vector Aμ in four dimensions
has two on-shell degrees of freedom, since it has four components, minus one gauge
invariance symmetry parameterized by an arbitrary εa, δAa

μ = ∂με
a giving three off-

shell components. In the covariant gauge ∂μAμ = 0, the equation of motion k2 = 0 is
supplemented with the constraint kμεa

μ(k) = 0 (εa
μ(k) =polarization), which has only

two independent solutions. The two degrees of freedom of the gauge field match the two
degrees of freedom of the on-shell fermion.

• N = 2 multiplets.

-The N = 2, λ = 1/2 representation has a field content of two N = 1 WZ multiplets
(ψ1,φ1) and (ψ2,φ2), together forming the hypermultiplet.

-The N = 2, λ = 1 representation has the field content of an N = 1 WZ multiplet
(ψ ,φ), plus an N = 1 vector multiplet (Aμ, λ), forming together the N = 2 vector
multiplet.

• N = 4 multiplets.

Finally, the N = 4, λ = 1 representation has the field content of an N = 2 vector and an
N = 2 hypermultiplet, or three N = 1 WZ multiplets (ψi,φi), i = 1, 2, 3, and one N =
1 vector multiplet (Aμ,ψ4), forming together the N = 4 vector multiplet. They can be
rearranged into (Aa

μ,ψai,φ[ij]), where i = 1, .., 4 is an SU(4) = SO(6) index, [ij] is the six
dimensional antisymmetric representation of SU(4) or the fundamental representation of
SO(6), and i is the fundamental representation of SU(4) or the spinor representation of
SO(6). The field φ[ij] has complex entries but satisfies a reality condition,

φ
†
ij = φij ≡ 1

2
εijklφkl. (3.80)

There are possible generalizations where the vacuum itself has a spin j, giving an extra
multiplicity of 2j + 1 to the representations, but we do not consider them here.

Massive representations of the algebra without central charges

In this case we can write in the rest frame Pμ = M(1, 0, 0, 0), so σμPμ = −M, and the
algebra reduces to

{Qi
α , Q̄jα̇} = 2M1δi

j = 2M

(
1 0
0 1

)
. (3.81)
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59 3.7 Two-component notation, extended supersymmetry algebra, and multiplets; R-symmetry

Now we have twice as many creation and annihilation operators,

ai
α =

1√
2M

Qi
α; a†i

α = 1√
2M

Q̄iȧ, α = 1, 2 , (3.82)

satisfying the usual algebra

{ai
α , a†j

β } = δijδαβ ; {ai
α , aj

β} = {a†i
α , a†j

β } = 0. (3.83)

The number of states in the irreducible representation is now 22N .

Massive representations of the algebra with central charges

The algebra with central charges (3.13) reduces in component notation to

{Qi
α , Q̄jβ̇} = −2(σμ)αβ̇δ

i
jPμ,

{Qi
α , Qj

β} = 2εαβZij,

{Q̄iα̇ , Q̄jβ̇} = 2εα̇β̇Z∗
ij. (3.84)

For simplicity we will focus on the N = 2 case. We can go in the rest frame, where
−2σμPμ = 2M. We can also diagonalize the antisymmetric matrix Zij by a global SU(2)
transformation (part of the internal symmetry group) acting on the Qis, obtaining Zij =
Zεij. Moreover, by a U(1) rotation (also part of the internal symmetry group) acting on the
Qis, we can make Z real, i.e. Zij = Zεij. Then the algebra becomes

{Qi
α , Q̄jβ̇} = 2Mδαβ̇δ

i
j ,

{Qi
α , Qj

β} = 2Zεαβε
ij,

{Q̄iα̇ , Q̄jβ̇} = 2Zεα̇β̇εij, (3.85)

where Q̄α̇
i = (Qi

α)† and Q̄iα̇ = Q̄β̇
i εβ̇α̇ . Then by defining

aα = 1√
2

[Q1
α + εαβ̇Q̄2β̇ ] a†

α =
1√
2

[Q̄1α̇ + εαβQ2
β ],

bα = 1√
2

[Q1
α − εαβ̇Q̄2β̇ ] a†

α =
1√
2

[Q̄1α̇ − εαβQ2
β ], (3.86)

we obtain the algebra

{aα , a†
β} = 2(M − Z)δαβ ; {bα , b†

β} = 2(M + Z)δαβ , (3.87)

and the rest zero. This in turn means that we have the inequality

M ≥ |Z|, (3.88)

which is called the Bogomolnyi–Prasad–Sommerfield, or BPS bound, as it is related to the
similar bound on the mass of solitons which is examined in a later chapter.

We see then that in the case of saturation of the bound, M = |Z|, we are back to having
only N creation operators, and so to having a representation which is 2N dimensional, as
in the massless case. Thus we obtain short multiplets.
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R-symmetry

We have already described the fact that there is an internal symmetry that rotates
the supercharges Qiα . When representing the algebra on fields, it turns into a global
symmetry of the action, rotating the fields, called R-symmetry. For N -extended super-
symmetry, the maximum allowed is U(N), as mentioned, but in specific cases it is
smaller.

We are mostly interested in four dimensions, where the spinors can be chosen to be
Weyl (complex). In particular, N = 4 supersymmetry has only the N = 4 vector mul-
tiplet, which as we saw, has an SU(4) R-symmetry. For N = 2 supersymmetry, we have
generically SU(2) R-symmetry. For hypermultiplets, it rotates the 2 N = 1 multiplets, and
for the vectors it rotates the two fermions in the multiplet.

We will also be interested in three dimensions, where the spinors are necessarily Majo-
rana (real) and the natural action on N spinors is SO(N). The maximal supersymmetry with
spins ≤ 1 is N = 8, which has SO(8) R-symmetry. The case of N = 6 is of interest, when
the generic R-symmetry is SO(6) = SU(4).

3.8 N = 1 superspace in four dimensions

We have seen how we can have on-shell supersymmetry, when the susy algebra closes only
on-shell, or off-shell supersymmetry, when the susy algebra closes off-shell, but we need
to introduce auxiliary fields (which have no propagating degrees of freedom) to realize it.
In these cases, the actions and susy rules were guessed, though we had a semi-systematic
way of doing it.

However, it would be more useful if we had a formalism with manifest supersymmetry,
i.e. the supersymmetry is built into the formalism, and we do not need to guess or check
anything. Such a formalism is known as the superspace formalism. Instead of fields which
are functions of the (bosonic) position φ(x) only, we consider a more general space called
superspace, involving a fermionic coordinate θA as well, besides the usual xμ, i.e. we con-
sider fields that are functions on superspace, φ(x, θ ), in such a way that supersymmetry is
manifest.

But for a fermionic variable θ , {θ , θ} = θ2 = 0, so a general function of a single
fermionic variable can be Taylor expanded as f (θ ) = a+bθ only. Since in four dimensions,
θA has four components, we can have functions which have at most one of each of the θs,
i.e. up to θ4.

The N = 1 supersymmetry algebra in 2-component spinor notation (3.70) can be
represented on superfields φ(zM) = φ(x, θ ) = φ(xμ, θα , θ̄ α̇) in terms of derivative
operators by

Qα = ∂α − i(σμ)αα̇θ̄
α̇∂μ,

Q̄α̇ = −∂α̇ + i(σμ)αα̇θ
α∂μ,

Pμ = −i∂μ. (3.89)
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61 3.8 N = 1 superspace in four dimensions

When checking the algebra, we should note that ∂α ≡ ∂/∂θα and ∂ᾱ ≡ ∂/∂θ̄ ᾱ are also
fermions, so anticommute (instead of commuting) among themselves and with different θs.

Then by definition, the variation under supersymmetry (with parameters ξα , ξ̄ α̇) of the
superspace coordinates zM is δzM = (ξQ + Q̄ξ̄ )zM , giving explicitly

xμ → x′μ = xμ + iθσμξ̄ − iξσμθ̄ ,
θ → θ ′ = θ + ξ ,
θ̄ → θ̄ ′ = θ̄ + ξ̄ . (3.90)

Now we can also define another representation of the supersymmetry algebra, just with
the opposite sign in the nontrivial anticommutator,

Dα = ∂α + i(σμ)αα̇θ̄
α̇∂μ,

D̄α̇ = −∂α̇ − i(σμ)αα̇θ
α∂μ , (3.91)

i.e. giving

{Dα , D̄α̇} = −2i(σμ)αα̇∂μ, (3.92)

which then anticommute with the Qs, as we can easily check.
If we write general superfields of some Lorentz spin, we in general obtain reducible

representations of supersymmetry. In order to obtain irreducible representations of super-
symmetry, we must further constrain the superfields, without breaking the supersymmetry.
In order for that to happen, the constraints must anticommute with the supersymmetry gen-
erators. Since we already know that the Ds anticommute with the Qs, the constraints that
we write will be made up of Ds.

We now consider the simplest superfield, namely a scalar superfield �(x, θ ). To obtain
an irreducible representation, we try the simplest possible constraint, namely

D̄α̇� = 0, (3.93)

which is called a chiral constraint, thus obtaining a chiral superfield, which is in fact
an irreducible representation of supersymmetry. Then the complex conjugate constraint,
Dα� = 0 results in an antichiral superfield.

In order to solve the constraint, we find objects which solve it, made up of the xμ, θα , θ̄ α̇ .
We first construct

yμ = xμ + iθσμθ̄ , (3.94)

and then we can check that

D̄α̇yμ = 0; D̄α̇θ
β = 0, (3.95)

which means that an arbitrary function of y and θ is a chiral superfield. Since θ̄ does not
solve the constraint, we can also reversely say that we can write a chiral superfield as a
function of y and θ . We can now write the expansion in θ of the chiral superfield as

� = �(y, θ ) = φ(y) +√
2θψ(y) + θθF(y), (3.96)

where by definition we write θ2 = θθ = θαθα , θ̄2 = θ̄ θ̄ = θ̄α̇ θ̄
α̇ . Note then that

εαβ
∂

∂θα

∂

∂θβ
θθ = −4. (3.97)
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Here φ is a complex scalar, ψα can be extended to a Majorana spinor, and F is a complex
auxiliary scalar field. All in all, we see that we obtain the same multiplet as the off-shell
WZ multiplet, (φ,ψ , F).

The fields of the multiplet are found in terms of covariant derivatives of the superfield
as (note that Dαθ

β = δ
β
α , Dαyμ = 2i(σμ)αα̇θ̄ α̇)

φ(x) = �|θ=θ̄=0,

ψα(x) = 1√
2

Dα�|θ=θ̄=0,

F(x) = −D2�|θ=θ̄=0

4
. (3.98)

Note that D2 = εαβDαDβ so, as observed above, D2θ2|θ=θ̄=0 = −4.
We can also expand the ys in � in terms of the θs, and obtain

� = φ(x) +√
2θψ(x) + θ2F(x)

+ iθσμθ̄∂μφ(x) − i√
2
θ2(∂μψσ

μθ̄) + θ2θ̄2∂2φ(x). (3.99)

We next turn to writing actions in terms of superfields. Note that fermionic integration
is the same as the derivative, being defined by∫

dθ1 = 0;
∫

dθθ = 1, (3.100)

so we can write
∫

dθ = d/dθ . In terms of the 4-dimensional θ and θ̄ , we define

d2θ = −1

4
dθαdθβεαβ , (3.101)

such that
∫

d2θθθ = 1.

Then we can also derive the following identities (defining also d2θ̄ = −1/4dθ̄ α̇dθ̄ β̇ εα̇β̇
and D̄2 = D̄αD̄α):∫

d4x
∫

d2θ = −1

4

∫
d4xD2|θ θ̄=0 = −1

4

∫
d4xDαDα|θ=θ̄=0,∫

d4x
∫

d2θ̄ = −1

4

∫
d4xD̄2|θ θ̄=0 = −1

4

∫
d4xD̄αD̄α|θ=θ̄=0. (3.102)

We could in principle apply the same procedure for
∫

d4θ ≡ ∫
d2θd2θ̄ , but now we have

to be careful, since D and D̄ do not anticommute, so their order matters.
We can now write the most general action for a chiral superfield. We can write an arbi-

trary function K of � and �†, which then we must integrate over the whole superspace,
i.e. over

∫
d4θ , and a function W of � only, which will be a function only of y and θ , but

not θ̄ . Since we can shift the y integration to x integration only, thus leaving no need for
integration over θ̄ , W must be integrated only over d2θ . We can then write the most general
action for a chiral superfield as

L =
∫

d4θK(�,�†) +
∫

d2θW(�) +
∫

d2θ̄W̄(�†). (3.103)
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63 3.8 N = 1 superspace in four dimensions

Here K is called the Kähler potential, giving kinetic terms, and W is called the superpo-
tential, giving interactions.

If the supersymmetric theory we have is not fundamental, but is an effective theory
embedded into a more fundamental one, i.e. is valid only below a certain UV scale, as for
instance in the case of the effective N = 1 supersymmetric low energy theory coming
from a string compactification, then K and W can be anything. But if the supersymmetric
theory is supposed to be fundamental, being valid until very large energies, then we need
to have a renormalizable theory.

For a renormalizable theory, we have

K = �†�,
W = λ�+ m

2
�2 + g

3
�3. (3.104)

Indeed, a renormalizable theory needs to have couplings of mass dimension ≥ 0, since if
we have a coupling λ of negative mass dimension, we can form an effective dimensionless
coupling λE# that grows to infinity with the energy, which is related to its power counting
nonrenormalizability. We can check that � has dimension 1, since its first component is the
scalar φ, of dimension 1, whereas

∫
dθ is like ∂/∂θ , which has mass dimension +1/2 (ψ

has dimension 3/2, and � has dimension 1, thus θ has dimension−1/2). Therefore K has
dimension 2, and W has dimension 3. That singles out only the terms we wrote as being
renormalizable.

Also, in components, the only renormalizable terms are mass terms, Yukawa termsψψφ
(of dimension 4, thus with massless coupling), and scalar self-interactions of at most
φ4, since λnφ

n needs to have dimension 4, giving [λn] = 4− n ≥ 0. We now calcu-
late the action in components, and we obtain only the above terms. We first write for the
superpotential terms∫

d4x
∫

d2θ
(
λ�+ m

2
�2 + g

3
�3

)
= −1

4

∫
d4xD2

(
λ�+ m

2
�2 + g

3
�3

)
|θ=θ̄=0,

(3.105)
and from

D2(�2)|θ=θ̄=0 = 2(D2�)|θ=θ̄=0�|θ=θ̄=0 + 2(Dα�)|θ=θ̄=0(Dα�)|θ=θ̄=0,
D2(�3)|θ=θ̄=0 = 3(D2�)|θ=θ̄=0�|θ=θ̄=0�|θ=θ̄=0

+ 6(Dα�)|θ=θ̄=0(Dα�)|θ=θ̄=0�|θ=θ̄=0, (3.106)

and the definitions (3.98), we obtain∫
d4x

∫
d2θW(�) = −1

4

∫
d4x[2mψ̄ψ + 4gφψ̄ψ − 4F(λ+ mφ + gφ2)]. (3.107)

For the Kähler potential term, we have to use the fact (left as Exercise 6) that for a chiral
superfield,

D̄2D2� = 16��⇒ D2D̄2�† = 16��†, (3.108)

and to remember the commutation relation (3.92), which implies

D2D̄2 = D̄2D2 − 8i(σμ)αα̇∂μD̄α̇Dα + 16�. (3.109)
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64 Basics of supersymmetry

Then, for the Kähler potential term we obtain

1

16

∫
d4xD2D̄2(�†�)|θ=θ̄=0 =

1

16

∫
d4x[(D2D̄2�†)|θ=θ̄=0�|θ=θ̄=0

+ (D̄2�†)|θ=θ̄=0(D2�)|θ=θ̄=0

− 8i(σμ)αα̇(∂μD̄α̇�
†)|θ=θ̄=0(Dα�)|θ=θ̄=0], (3.110)

giving finally the kinetic terms∫
d4x[φ∗�φ + F∗F − i(∂μψ̄

α̇)(σμ)αα̇ψ
α]. (3.111)

We can eliminate the F auxiliary field, obtaining

F∗ = −(λ+ mφ + gφ2), (3.112)

and replacing it in the action we get the potential term

−
∫

d4x|λ+ mφ + gφ2|2. (3.113)

All in all, the action (3.103) for the renormalizable on-shell WZ model in components is

S =
∫

d4x
[
φ∗�φ − i(∂μψ̄)(σμ)Tψ − mψ̄ψ − 2Re[gφψ̄ψ] − |λ+ mφ + gφ2|2

]
.

(3.114)
More generally, an important quantity in supersymmetric theories is the scalar potential.

For the case of several WZ multiplets, the potential will be the sum of the F-terms, in the
same way as above for a single F,

V =
∑

i

|Fi|2, (3.115)

i.e., we replace the auxiliary scalar fields Fi by their equations of motion,

Fi = ∂W

∂�i

∣∣∣∣
�j=φj(θ=0)

. (3.116)

3.9 The N = 1 Super Yang–Mills (SYM) action

We have seen that, besides the chiral or WZ multiplet, for N = 1 supersymmetry with
spins ≤ 1 we can also construct a vector multiplet, composed on-shell of a vector Aa

μ and
a spinor λa, which must live in the same adjoint representation as the vector, i.e. a (1, 1/2)
multiplet. The action for a spinor interacting with a vector is easy to write down:

S = (−2)
∫

d4xTr

[
−1

4
F2
μν −

1

2
λ̄D/ λ

]
, (3.117)

where the −2 comes from the trace normalization, Tr (TaTb) = −1/2δab. Here λ = λaTa,
the same as for the gauge field. Off-shell, a vector has three degrees of freedom, and a
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65 3.9 The N = 1 Super Yang–Mills (SYM) action

Majorana spinor has four (they reduce off-shell to half, i.e. two), which means that we
need to introduce an auxiliary field, also in the adjoint representation of the gauge group,
Da, with D = DaTa. The off-shell action is then

SN=1 SYM = (−2)
∫

d4xTr

[
−1

4
F2
μν −

1

2
λ̄D/ λ+ D2

2

]
. (3.118)

We can easily write the supersymmetry rules. The transformation of the boson Aa
μ should

be something like ∼ ε̄λ, but one needs to get the indices to match, which can be done
by introducing the constant matrix γμ. The transformation of λ should be of the type
∼ ∂Aε + Dε, where D = 0 on-shell. However, λ transforms covariantly under a gauge
transformation, which means we should get ∂A to transform covariantly also, uniquely fix-
ing it to be Fμν . But because of Lorentz invariance, we should actually multiply it with
the constant matrix γ μν . We find that Lorentz invariance and gauge invariance uniquely fix
the structure of the possible terms, though not the coefficients (which have to be found by
checking the invariance of the action). For Da, the transformation law should be ε̄ times a
possible constant, times the spinor equation of motion, since Da = 0 is also an equation of
motion. This again fixes the structure of δDa. All in all, we obtain

δAa
μ = ε̄γμλ

a,

δλa =
[
−1

2
γ μνFa

μν + iγ5Da
]
ε,

δDa = iε̄γ5D/ λa. (3.119)

We will not check the invariance of the action under these susy rules, it is left as an
exercise (Exercise 10). Instead, we explain the construction of the Yang–Mills multiplet
from superspace, where supersymmetry is manifest from the start.

We consider a general (arbitrary function of superspace) real scalar superfield V , i.e. one
that satisfies V = V†. Therefore we have a V(x, θ , θ̄ ) that can be expanded in the fermionic
coordinates, the Taylor expansion terminating when we write all the spinors, i.e. at order
θ2θ̄2. The coefficient of the θ θ̄ term contains a vector, as θσμθ̄Aμ, therefore if we want to
describe the gauge multiplet, we need to impose the existence of a gauge invariance on V .
This is done in the abelian case as follows:

V → V + i�− i�†, (3.120)

where � is a chiral superfield (so �† is antichiral). This allows us to set to zero a Majorana
spinor, corresponding to the coefficient of θ and θ̄ in the fermionic Taylor expansion, a
complex scalar, corresponding to the coefficient of θ2 and θ̄2, and an auxiliary scalar field,
corresponding to the 0th order term. All in all, in this Wess–Zumino gauge, we are left with
the vector multiplet V ,

V = −θσμθ̄Aμ + iθ2(θ̄ λ̄) − iθ̄2(θλ) + 1

2
θ2θ̄2D. (3.121)

By imposing the Wess–Zumino gauge, we lose manifest (superspace) supersymmetry act-
ing on superfields, though we still have the usual component field supersymmetry defined
above. We are also left with a remnant of the super-gauge invariance, the usual gauge
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66 Basics of supersymmetry

invariance Aμ → Aμ + ∂μ�(x). We can define a super-field strength for the gauge
superfield,

Wα = −1

4
D̄2DαV , (3.122)

which is gauge invariant since D̄α̇� = 0 = Dα�
†. It is a chiral superfield, D̄α̇Wα = 0,

Majorana (Wα)† = Wα̇ , and satisfies the reality constraint

DαWα = Dα̇Wα̇ ↔ Im(DαWα) = 0. (3.123)

In the nonabelian case, the gauge transformation is

e−2V → ei�†
e−2Ve−i�, (3.124)

where � = �aTa, V = VaTa and the super-field strength is

Wα = 1

8
D̄2(e2VDαe−2V ) = Wa

αTa. (3.125)

It transforms covariantly, i.e. as

Wα → ei�Wαe−i�. (3.126)

In terms of Wα , the N = 1 SYM action can be written as

SN=1 SYM = − (−2)

4

∫
d4xd2θTr WαWα + h.c. (3.127)

When N = 1 SYM is coupled to chiral multiplets (and not only in that case), an impor-
tant quantity is the scalar potential. We saw in the previous subsection that for just the
chiral multiplets it was given by the F-terms, and we saw above that for N = 1 SYM a
priori there was a potential g2D2, where D is the auxiliary field in the multiplet, just that
for the pure SYM, D = 0 on-shell. When we couple the SYM to chiral multiplets �i, we
obtain a nontrivial D-term Da given by

Da = �†Ta�

∣∣∣
�i=φi(θ=0)

= φ†i(Ta)ijφ
j, (3.128)

where (Ta)ij is the generator in the fundamental representation. The scalar potential is then
the sum of F-terms and D-terms,

V =
∑

i

|Fi|2 + g2DaDa, (3.129)

where we replace Fi and Da with their on-shell values.
In an abelian theory, we can add to the action a supersymmetric term called the Fayet–

Iliopoulos term (FI term),

LFI =
∫

d2θd2θ̄ ξaVa, (3.130)

which just shifts the D-term,

Da = ξa + φ†i(Ta)ijφ
j. (3.131)
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3.10 The N = 4 Super Yang–Mills (SYM) action

We are finally ready to write down the N = 4 SYM action, which will be the main field
theory to be discussed via the AdS/CFT correspondence. To do so, it is useful to write
down the action via “dimensional reduction” from ten dimensions. We discuss in a later
chapter all the details of dimensional reduction, but we can give at this point an abbreviated
version. In its simplest form, we consider a theory in a higher dimension, and then restrict
the dependence of the fields to be only on four dimensions. We must also decompose the
ten dimensional fields according to 4-dimensional spin.

In ten dimensions, the minimal spinor is Majorana–Weyl, as we explained. That means
that from the 2[10/2] = 32 complex components of a Dirac spinor, only 16 real components
remain. On-shell we lose half the components, for eight real fermionic degrees of freedom.
This matches with the 10 − 2 = 8 bosonic degrees of freedom of an on-shell vector.
Therefore the fields of N = 1 Super Yang–Mills in ten dimensions are the vector AM ,
M = 0, . . . , 9 and the spinor ��, � = 1, . . . , 16, satisfying

�11� = �, �̄ = �TC10. (3.132)

The action is the same one as in four dimensions, namely

S10d,N=1SYM = (−2)
∫

d10xTr

[
−1

4
FMNFMN − 1

2
λ̄�MDMλ

]
. (3.133)

As we mentioned, the first step in dimensional reduction is to restrict the dependence of
fields to only four dimensions, in particular replacing d10x with d4x. The second step is
the decomposition of the fields according to their 4-dimensional Lorentz spin. We first
decompose the gamma matrices and the C-matrix as

�M = (γμ ⊗ 1, γ5 ⊗ γm), i.e. �μ = γμ ⊗ 1; �m = γ5 ⊗ γm; �11 = γ5 ⊗ γ7,
C10 = C4 ⊗ C6. (3.134)

We can check that this decomposition is consistent with the properties of the gamma
matrices and C-matrices. Since in ten Minkowski dimensions and in four Minkowski
dimensions C� is symmetric, as we saw in Section 3.3, and from the above we have
C10�

μ = C4γ
μ ⊗ C6, C6 must be symmetric, which restricts it to be C6−. Then, as

CT
10 = CT

4− ⊗ CT
6− = −C10, C10 must be C10−. The 10-dimensional Majorana conjugate

in 4-dimensional notation is now

ψ̄M ≡ ψTC4 ⊗ C6, (3.135)

and should equal the 10-dimensional Dirac conjugate, and then the 10-dimensional Weyl
condition restricts the 10-dimensional spinors to decompose into four 4-dimensional
spinors, �� = ψαi, i = 1, .., 4. The 10-dimensional vector AM decomposes into a
4-dimensional vector Aμ and six scalars φm, m = 1, . . . , 6. Moreover, the scalars can be
reorganised:
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68 Basics of supersymmetry

AM = (Aμ,φm), φ[ij] ≡ φmγ̃
m
[ij], (3.136)

where the Clebsh-Gordan coefficients for the transition from SO(6) indices m to SU(4)
indices i, i = 1, . . . , 4 (where the Weyl spinor representation of SO(6), with +1 eigen-
value for γ7, γ7ψ = +ψ , is identified with the fundamental representation of SU(4)) with
antisymmetric six representation [ij] are normalized,4

γ̃m
[ij] ≡

1

2
(C6γmγ7)[ij]; γ̃m

[ij]γ̃
[ij]
n = δm

n . (3.137)

The fields φ[ij] have complex entries but satisfy a reality condition,

φ
†
ij = φij ≡ 1

2
εijklφkl. (3.138)

Substituting the reduction ansatz in the 10-dimensional action, we obtain

S4d,N=4 SYM = (−2)
∫

d4x Tr

[
−1

4
F2
μν −

1

2
ψ̄iD/ ψ

i − 1

2
DμφijD

μφij

− gψ̄ i[φij,ψ
j] − g2

4
[φij,φkl][φ

ij,φkl]

]

= (−2)
∫

d4x Tr

[
−1

4
F2
μν −

1

2
ψ̄iD/ ψ

i − 1

2
DμφmDμφm

− gψ̄ i[φn,ψ j]γ̃ n
[ij] −

g2

4
[φm,φn][φm,φn]

]
, (3.139)

where Dμ = ∂μ + g[Aμ, ].
The action can be rewritten in N = 1 superfield form. The multiplet is composed of

three chiral superfields �l, l = 1, 2, 3, and a vector multiplet Wα . The action has the unique
renormalizable Kähler potential K = �

†
l �l, and superpotential

W = Tr (�1[�2,�3]) = 1

3
εlmnTr [�l�m�n]; (3.140)

Both in the original 10-dimensional action and in the final 4-dimensional version,
only this on-shell version is known, there is no fully off-shell formulation with Lorentz
invariance.

Some details on the reduction are as follows. The field strength FMN splits as
(Fμν , Dμφm, g[φm,φn]) for (Fμν , Fμm, Fmn), which immediately gives the bosonic terms
in the 4-dimensional action from the FMNFMN term. The covariant derivative of the
spinor, DMλ, splits into Dμψi and g[φm,ψi], which gives rise to the terms involving
fermions.

The 10-dimensional supersymmetry transformations are, as in four dimensions,

δAa
M = ε̄�Mλ

a,

δλa = −1

2
�MNFa

MNε. (3.141)

4 Note that γ̃ [ij]
n = (C−1

6 γ̃nC−1
6 )[ij] and C6 is symmetric.
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69 3.10 The N = 4 Super Yang–Mills (SYM) action

Plugging in the reduction ansatz, we obtain the 4-dimensional transformation laws,

δAa
μ = ε̄iγμψ

ai

δφ[ij]
a = 2ε̄[iψ j]a

δλai = −γ μν

2
Fa
μνε

i − 2γ μDμφ
a,[ij]εj + 2gf a

bc(φbφc)[ij]εj;

(φaφb)i
j ≡ φa,i

kφ
b,k

j. (3.142)

The N = 4 Super Yang–Mills action has, as we can see, an SO(6) = SU(4) global sym-
metry, which is an R-symmetry. In the above construction, it appears as a remnant of the
six reduced dimensions, with the scalars organized as φm in the fundamental representation
of SO(6), or as we wrote them, as φ[ij], in the antisymmetric representation of SU(4). The
spinors ψ i are in the spinor representation of SO(6), or the fundamental representation of
SU(4). The N = 4 supersymmetry multiplet (Aa

μ,ψai,φ[ij]) splits into an N = 2 vector
multiplet and an N = 2 hypermultiplet, or one N = 1 vector multiplet (Aμ,ψ4) and three
N = 1 chiral multiplets (ψq,φq), q = 1, 2, 3.

Important concepts to remember

• A graded Lie algebra can contain the Poincaré algebra, internal algebra and supersym-
metry.

• The supersymmetry Qα relates bosons and fermions.

• If the on-shell numbers of degrees of freedom of bosons and fermions match we
have on-shell supersymmetry, if the off-shell numbers match we have off-shell
supersymmetry.

• N-extended supersymmetry can have central charges, and an ⊆ U(N) global symmetry.

• For off-shell supersymmetry, the supersymmetry algebra must be realized on the fields.

• The prototype for all (linear) supersymmetry is the 2-dimensional Wess–Zumino model,
with δφ = ε̄ψ , δψ = ∂/φε. Off-shell, there is a real auxiliary scalar as well.

• The Wess–Zumino model in four dimensions has a fermion and a complex scalar
on-shell. Off-shell there is also an auxiliary complex scalar.

• The susy algebra can be written in terms of a, a† operators and represented in terms of
a†s acting on a vacuum |�〉.

• We have a BPS bound, M ≥ |Z|.
• BPS-saturated representations are short, the same as massless ones.

• Superspace is made up of the usual space xμ and a spinorial coordinate θα .

• Superfields are fields in superspace and can be expanded up to linear order in θ

components, f (θ ) = a + bθ , since θ2 = 0.

• Irreducible representations of susy are obtained by imposing constraints in terms of the
covariant derivatives D on superfields, since the Ds commute with the susy generators’
Qs, and thus preserve susy.

• A chiral superfield is an arbitrary function �(y, θ ) of yμ = xμ + iθσμθ̄ and θ .

• Fermionic integrals and derivatives are the same.
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• The action for a chiral superfield has a function K(�, �̄) called the Kähler potential,
giving kinetic terms, and a function W(�), called the superpotential, giving potentials
and Yukawas.

• To derive the component Lagrangean from the superfield one, we can either do the full
θ expansion, or (simpler) use the fact that

∫
d4x

∫
d2θ = −1/4

∫
d4xD2|θ=0 (and its

c.c.) and the definitions φ(x) = �|θ=0,ψ(x) = 1/
√

2Dα�|θ=0, etc., but we need to be
careful with the Kähler potential.

• The on-shell vector multiplet has a gauge field and a fermion.
• The N = 2 vector multiplet is made up of an N = 1 vector multiplet and an N = 1

chiral multiplet; an N = 2 hypermultiplet is made up of two N = 1 chiral multiplets.
• The N = 2 vector and hypermultiplets together make up the unique N = 4

supermultiplet of spin ≤ 1, the vector.
• The N = 4 supersymmetric vector multiplet (N = 4 SYM) has one gauge field, four

fermions and six scalars, all in the adjoint of the gauge field.

References and further reading

For a very basic introduction to supersymmetry, see the introductory parts of [7] and [8].
Good introductory books are West [9] and Wess and Bagger [10]. An advanced book that
is more complex but contains a lot of useful information is [11]. An advanced student
might want to try also volume 3 of Weinberg [2], which is more recent than the above,
but it is more demanding to read and mostly uses approaches seldom adopted in string
theory. A book with a modern approach but emphasizing phenomenology is [12]. For a
good treatment of spinors in various dimensions, and spinor identities (symmetries and
Fierz rearrangements) see [13]. For an earlier but less detailed acount, see [14].

Exercises

1. Prove that the matrix

CAB =
(
εαβ 0
0 εα̇β̇

)
; εαβ = εα̇β̇ =

(
0 1

−1 0

)
(3.143)

is a representation of the 4-dimensional C matrix, i.e. CT = −C, Cγ μC−1 = −(γ μ)T ,
if γ μ is represented by

γ μ =
(

0 σμ

σ̄μ 0

)
; (σμ)αα̇ = (1, �σ )αα̇; (σ̄ μ)αα̇ = (1,−�σ )αα̇ . (3.144)

2. Show that the susy variation of the 4-dimensional on-shell Wess–Zumino model is
zero, paralleling the 2-dimensional WZ model.

3. Using the general form of the Fierz identities, check that in four dimensions we have

(λ̄aγ μλc)(ε̄γμλ
b)fabc = 0, (3.145)

using the fact that fabc is totally antisymmetric, and the identities γμγργ μ = −2γρ ,
γμγρσ γ

μ = 0 (prove these as well).
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4. Prove that if ε,χ are 4-dimensional Majorana spinors, we have

ε̄γμγ5χ = +χ̄γμγ5ε. (3.146)

5. Prove that, for

S = −1

2

∫
d4x[(∂μφ)2 + ψ̄∂/ψ], (3.147)

we have

[δε1 , δε2 ]φ = 2ε̄2∂/ε1φ,
[δε1 , δε2 ]ψ = 2(ε̄2γ

ρε1)∂ρψ − (ε̄2γ
ρε1)γρ∂/ψ . (3.148)

6. For the off-shell WZ model in two dimensions,

S = −1

2

∫
d2x[(∂μφ)2 + ψ̄∂/ψ − F2] . (3.149)

Check that

[δε1 , δε2 ]F = 2(ε̄2γ
με1)∂μF. (3.150)

7. Check explicitly (without the use of yμ) that D̄α̇� = 0, where

� = φ(x) +√
2ψ(x) + θ2F(x) + iθσμθ̄∂μφ(x) − i√

2
θ2(∂μψσ

μθ̄ ) + θ2θ̄2∂2φ(x).

(3.151)
8. Prove that for a chiral super-field

D2D̄2� = 16��. (3.152)

9. Consider the Lagrangean

L =
∫

d2θd2θ̄�
†
i �i +

(∫
d2θW(�i) + h.c.

)
. (3.153)

Do the θ integrals to obtain in components

L = (∂μφi)
†∂μφi − iψ̄iσ̄

μ∂μψi + F†
i Fi

+∂W

∂φi
Fi + ∂W̄

∂φ
†
i

F†
i −

1

2

∂2W

∂φi∂φj
ψiψj − 1

2

∂2W̄

∂φ
†
i ∂φ

†
j

ψ̄iψ̄j. (3.154)

10. Check the invariance of the N = 1 off-shell SYM action

S =
∫

d4x

[
−1

4
(Fa

μν)2 − 1

2
ψ̄aD/ψa + 1

2
D2

a ] (3.155)

under the supersymmetry transformations

δAa
μ = ε̄γμψ

a; δψa =
(
−1

2
γ μνFa

μν + iγ5Da
)
ε; δDa = iε̄γ5D/ψa. (3.156)

11. Calculate the number of off-shell degrees of freedom of the on-shell N = 4 SYM
action. Propose a set of bosonic + fermionic auxiliary fields that could make the num-
ber of degrees of freedom match. Are they likely to give an off-shell formulation, and
why?
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4 Basics of supergravity

In this chapter we examine supergravity, which is a supersymmetric theory of gravity.
However, since the construction involves fermions, we have to learn how to couple
fermions to gravity. Also, the theory is constructed as a gauge theory of (local) super-
symmetry. Therefore we need first to describe another formalism for general relativity.

4.1 The vielbein and spin connection formulation of general
relativity

In Chapter 2, we saw that gravity is defined by the metric gμν , which in turn defines the
Christoffel symbol �μ

νρ(g), which is like a gauge field of gravity, with the Riemann tensor
Rμ

νρσ (�) playing the role of its field strength.
But there is a formulation that makes the gauge theory analogy more manifest, namely

in terms of the “vielbein” ea
μ and the “spin connection” ωab

μ . The word “vielbein” comes
from the german “viel” which means many and “bein” which means leg. It was intro-
duced in four dimensions, where it is known as “vierbein”, since “vier” means four. In
various dimensions one uses “einbein, zweibein, dreibein, . . . ” (1, 2, 3 = ein, zwei, drei),
or generically “vielbein”, as we do here.

Any curved space is locally flat, if we look at a scale much smaller than the scale of the
curvature. That means that locally, we have the Lorentz invariance of special relativity. The
vielbein is an object that makes that local Lorentz invariance manifest. It is a sort of square
root of the metric, i.e.

gμν(x) = ea
μ(x)eb

ν(x)ηab , (4.1)

so in ea
μ(x), μ is a “curved” index, acted upon by a general coordinate transformation (so

that ea
μ is a covariant vector of general coordinate transformations, like a gauge field), and

a is a newly introduced “flat” index, acted upon by a local Lorentz gauge invariance. That
is, around each point we define a small flat neighborhood called “tangent space,” and a is a
tensor index living in that local Minkowski space, acted upon by Lorentz transformations.
The Lorentz transformation is local, since the tangent space on which it acts changes at
each point on the curved manifold, i.e. it is local.

Note that the description in terms of gμν or ea
μ is equivalent, since both contain the same

number of degrees of freedom. At first sight, we might think that while gμν has d(d+ 1)/2
components (a symmetric matrix), ea

μ has d2; but on ea
μ we act with another local symmetry

not present in the metric, local Lorentz invariance,

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:53:23 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.006

Cambridge Books Online © Cambridge University Press, 2016



73 4.1 The vielbein and spin connection formulation of general relativity

ea
μ → �a

beb
μ , (4.2)

so we can set d(d − 1)/2 components to zero using this (the number of components of the
antisymmetric matrix �a

b), so it has in fact also d2−d(d−1)/2 = d(d+1)/2 components.
On both the metric and the vielbein we also have general coordinate transformations.

As we saw in Section 2.2, an infinitesimal general coordinate transformation (“Einstein”
transformation) δxμ = ξμ acting on the metric gives

δξgμν(x) = (ξρ∂ρ)gμν + (∂μξ
ρ)gρν + (∂νξ

ρ)gρν , (4.3)

and the first term corresponds to a translation, thus the general coordinate transformations
are the general relativity version, i.e. the local version, of the (global) Pμ translations in
special relativity (in special relativity we have a global parameter ξμ, but now we have a
local ξμ(x)).

On the vielbein ea
μ, the infinitesimal coordinate transformation gives

δξ ea
μ(x) = (ξρ∂ρ)ea

μ + (∂μξ
ρ)ea

ρ , (4.4)

thus it acts only on the curved index μ. On the other hand, the local Lorentz transformation

δl.L.e
a
μ(x) = λa

b(x)eb
μ(x) (4.5)

acts in the usual manner, except now the parameter is local.
Thus the vielbein is like a sort of gauge field, with one covariant vector index and a

gauge group index, though not quite, since the group index a is in the fundamental instead
of the adjoint of the Lorentz group.

But there is one more “gauge field,” ωab
μ , the “spin connection,” which is defined as the

“connection” (mathematical name for a gauge field) for the action of the Lorentz group
on spinors. Now [ab] is an index in the adjoint of the Lorentz group SO(1, d − 1) (the
antisymmetric representation), and at least the covariant derivative on the spinors will have
the standard form in a gauge theory.

That is, while we have already defined the action of the covariant derivative on ten-
sors (bosons), we have yet to define it on spinors (fermions). The curved space covariant
derivative acting on spinors acts as the gauge field covariant derivative on a spinor, by (here
1/4�ab ≡ 1/2[�a,�b] is the generator of the Lorentz group in the spinor representation,
so we have the usual formula Dμφ = ∂μφ + Aa

μTaφ)

Dμψ = ∂μψ + 1

4
ωab
μ �abψ . (4.6)

This definition means that Dμψ is the object that transforms as a tensor under general
coordinate transformations and it implies that ωab

μ acts as a gauge field on any local Lorentz
index a.

But now we seem to have too many degrees of freedom for gravity. We have seen that
the vielbein alone has the same degrees of freedom as the metric, so for a formulation of
gravity completely equivalent to Einstein’s we need to fix ω in terms of e. If there are no
dynamical fermions (i.e. fermions that have a kinetic term in the action) then this constraint
is given by ωab

μ = ωab
μ (e), a fixed function defined through the “vielbein postulate” or “no

torsion constraint” (the antisymmetrization below is with “strength one,” which means that
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74 Basics of supergravity

when multiplying with an antisymmetric tensor, we can drop the antisymmetrization, as
we always do unless noted):

Ta
[μν] ≡ 2D[μea

ν] = 2∂[μea
ν] + 2ωab

[μeb
ν] = 0. (4.7)

Note that we can also start by imposing the alternative condition

Dμea
ν ≡ ∂μea

ν + ωab
μ eb

ν − �ρ
μνea

ρ = 0, (4.8)

and antisymmetrize it to obtain the same as the one above, since �ρ
μν is symmetric. This

latter condition is also sometimes called the vielbein postulate, though it fixes not only
ω(e) but also the Christoffel symbol in terms of e, �(e). We will also explain shortly that
in the presence of fermions, the vielbein postulate is modified, and ω = ω(e,ψ).

The solution to the vielbein postulate is

ωab
μ (e) = 1

2
eaν(∂μeb

ν − ∂νeb
μ)− 1

2
ebν(∂μea

ν − ∂νea
μ)− 1

2
eaρebσ (∂ρecσ − ∂σ ecρ)ec

μ , (4.9)

which is left for the reader to verify as Exercise 1.
Here Ta is called the “torsion”, and as we can see it is a sort of field strength of ea

μ, and
the vielbein postulate says that the torsion (field strength of vielbein) is zero.

But we can also construct an object that is a field strength of ωab
μ ,

Rab
μν(ω) = ∂μω

ab
ν − ∂νω

ab
μ + ωab

μ ωbc
ν − ωab

ν ωbc
μ , (4.10)

and this time the definition is exactly the definition of the field strength of a gauge field of
the local Lorentz group SO(1, d − 1) (though there are still subtleties in trying to make the
identification of ωab

μ with a gauge field of the Lorentz group). So, unlike the case of the
formula for the Riemann tensor as a function of �, where gauge and spatial indices were
of the same type, we now have a clear definition.

From the fact that the two objects (R(ω) and R(�)) have formally the same formula, we
can guess the relation between them, and we can check that this guess is actually correct.
We have

Rab
ρσ (ω(e)) = ea

μe−1,νbRμ
νρσ (�(e)). (4.11)

That means that the Rab
μν is actually just the Riemann tensor with two indices flattened

(turned from curved to flat using the vielbein). That in turn implies that we can define the
Ricci scalar in terms of Rab

μν as

R = Rab
μνe−1 μ

a e−1 ν
b , (4.12)

and since as matrices, g = eηe, we have − det g = (det e)2, so the Einstein–Hilbert action
in d dimensions is

SEH = 1

16πGN

∫
ddx(det e)Rab

μν(ω(e))e−1,μ
a e−1,ν

b . (4.13)

The formulation just described of gravity in terms of e and ω is the second order
formulation, so called because ω is not independent, but is a function of e. In gen-
eral, we call first order a formulation involving an auxiliary field, which usually means
that the action becomes first order in derivatives, or in propagating fields (a standard
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75 4.2 Counting degrees of freedom of on-shell and off-shell fields

example would be going from the usual Maxwell action − ∫
(∂[μAν])2 to a new form for it∫

[−2Fμν(∂[μAν]) + F2
μν] where Fμν is an independent auxiliary field). The second order

formulation is obtained by eliminating the auxiliary field, and is usually second order in
derivatives and/or propagating fields.

But notice that if we make ω an independent variable in the above Einstein–Hilbert
action, the ω equation of motion gives exactly Ta

μν = 0, i.e. the “vielbein postulate” that
we needed to postulate before. Thus we might as well make ω independent without chang-
ing the classical theory (only possibly the quantum version). This is then the first order
formulation of gravity, also known as Palatini formalism, in terms of independent fields
(ea
μ,ωab

μ ).
To prove that the equation of motion for ωab

μ is Ta = 0, we first use the relation (valid in
four dimensions only, though with an obvious generalization to higher dimensions)

(det e)e−1 [μ
a e−1 ν]

b = 1

4
εμνρσ εabcdec

ρed
σ , (4.14)

(which follows from the definition of the determinant, det ea
μ = 1

4!εabcdε
μνρσ ea

μeb
νec

ρed
σ ),

to write the Einstein–Hilbert action in four dimensions as

SEH = 1

16πGN

1

4

∫
d4xεμνρσ εabcdRab

μν(ω)ec
ρed

σ

(
= 1

16πGN

∫
εabcdRab(ω) ∧ ec ∧ ed

)
.

(4.15)

This action’s variation with respect to ω gives

εabcdε
μνρσ (Dνec

ρ)ed
σ = 0 , (4.16)

which implies

Ta
[μν] ≡ 2D[μea

ν] = 0. (4.17)

We now also note that if there are fundamental fermions, i.e. fermions present in the
action of the theory, their kinetic term will contain the covariant derivative, via ψ̄D/ ψ ,
hence in the equation of motion of ω we will get new terms, involving fermions. Therefore
we will have ω = ω(e)+ψψ terms, and we get a nonzero fermionic torsion. The function
will still be a fixed function, but we see that in that case it is more useful to start with
the first order formulation, with ω coupled to fermions through the covariant derivative,
and then find the equation of motion for ω in order to find ω(e,ψ). After that we can
move to the second order formulation by defining ω = ω(e,ψ). It would be mistaken to
start with a “second order formulation” with ω = ω(e) in that case, since it would lead to
contradictions, as we can easily understand from the first order formulation.

4.2 Counting degrees of freedom of on-shell and off-shell fields

We saw that for supersymmetric theories, we need to match the bosonic and fermionic
degrees of freedom. Therefore, before continuing, we study systematically how to count
degrees of freedom on-shell and off-shell.
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76 Basics of supergravity

Off-shell degrees of freedom

• Scalar, either propagating (with a kinetic action with derivatives), or auxiliary (with
algebraic equation of motion), it is always one degree of freedom.

• Gauge field Aμ, with transformation law δAμ = Dμλ. Aμ has d components, but we can
use the gauge transformation, with one parameter λ(x), to fix one component of Aμ to
whatever we like, therefore we have d − 1 independent degrees of freedom (“dofs”).

• Graviton. In the gμν formulation, we have a symmetric matrix, with d(d + 1)/2
components, but we have a “gauge invariance” = general coordinate tranformations,
with parameter ξμ(x), which can be used to fix d components, therefore we have
d(d + 1)/2− d = d(d − 1)/2 independent degrees of freedom. Equivalently, in the viel-
bein formulation, ea

μ has d2 components. We subtract the “gauge invariance” of general
coordinate transformations with ξμ(x), but now we also have local Lorentz invariance
with parameter λab(x), giving d2 − d − d(d − 1)/2 = d(d − 1)/2 independent degrees
of freedom again.

• For a spinor of spin 1/2, ψα , we saw that in the Majorana spinor case we have n ≡ 2[d/2]

real components.
• For a gravitino ψα

μ , which is a vector-spinor field describing the propagation of a mode
of spin 3/2, we have nd components. But now again we have a “gauge invariance” as
we will explain, namely local supersymmetry, also called supergravity, acting by δψ =
Dμε, so again we can use it to fix n components corresponding to the arbitrary spinor ε.
That means that we have n(d − 1) independent degrees of freedom.

• Antisymmetric tensor Aμ1...μr , with field strength Fμ1...μr+1 = (r+1)! ∂[μ1 Aμ2...μr+1] and
gauge invariance δAμ1...μr = ∂[μ1�μ2...μr], �μ1...μr−1 �= ∂[μ1λμ2...μr−1]. By subtracting
the gauge invariances, we obtain(

d
r

)
−

(
d − 1
r − 1

)
= (d − 1) . . . (d − r)

1 · 2 · . . . r =
(

d − 1
r

)
, (4.18)

i.e., an Aμ1...μr where the indices run over d − 1 values instead of d values.

On-shell degrees of freedom

• Scalar: the Klein–Gordon equation of motion for the scalar does not constrain away the
scalar, just the functional form of the degree of freedom (restricted to k2 = 0 in momen-
tum space), so the propagating scalar still has one degree of freedom. The auxiliary
degree of freedom of course has nothing on-shell.

• Gauge field Aμ. The equation of motion is ∂μ(∂μAν − ∂νAμ) = 0 and in principle
we should analyze the restrictions it makes on components. But it is easier to use a
trick: Consider the equation of motion in covariant (Lorentz) gauge, ∂μAμ = 0. Then
the equation becomes just the Klein–Gordon equation �Aν = 0, which as we said,
does not constrain anything. But now the covariant gauge condition we used imposes
one constraint on the degrees of freedom, specifically on the polarization vectors. If
Aμ ∝ εμ(k), then we get kμεμ(k) = 0. Since off-shell we had d − 1 degrees of freedom,
now we have d − 1 − 1 = d − 2. These degrees of freedom correspond to transverse
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77 4.2 Counting degrees of freedom of on-shell and off-shell fields

components for the gauge field. As is well known, the longitudinal components, A0

(time direction) and Az (in the direction of propagation) are not propagating, and only
the transverse ones are. The condition kμεμ(k) is a transversality condition, since it says
that the polarization vector εμ(k) is perpendicular to the momentum kμ (direction of
propagation).

• Graviton gμν . The equation of motion for the linearized graviton (κNhμν ≡ gμν − ημν)
follows from the Fierz–Pauli action

L = 1

2
h2
μν,ρ + h2

μ − hμh,μ + 1

2
h2

,μ; hμ ≡ ∂νhνμ; h ≡ hμμ , (4.19)

which is the linearized part of the Einstein–Hilbert action, and where comma denotes
derivative (e.g. h,ρ ≡ ∂ρh). We leave the checking of this fact as an exercise (Exercise
7). Again in principle we should analyze the restrictions this complicated equation of
motion makes on components, but we have the same trick: If we impose the de Donder
gauge condition

∂ν h̄μν = 0; h̄μν ≡ hμν − ημν
h

2
, (4.20)

the equation of motion again becomes just the Klein–Gordon equation �h̄μν = 0, which
just restricts the functional form through k2 = 0, but not the degrees of freedom. But
again the gauge condition now imposes d constraints on the polarization tensors h̄μν ∝
εμν(k), namely kμεμν(k) = 0, so on-shell we lose d degrees of freedom, and are left with

d(d − 1)

2
− d = (d − 1)(d − 2)

2
− 1. (4.21)

These correspond to the graviton fluctuations δhμν being transverse (μ, ν run only over
the d − 2 transverse direction) and traceless. Indeed, now again kμεμν(k) = 0 is a
transversality condition, since it states that the polarization tensor of the graviton is
perpendicular to the direction of propagation.

• Spinor of spin 1/2. The Dirac equation in momentum space,

(p/− m)u(p) = 0, (4.22)

relates 1/2 of the components in u(p) to the other half, thus we are left with only n/2
degrees of freedom on-shell.

• Gravitino ψα
μ . Naively, we would say that it is a spinor × a gauge field, so n/2(d − 2)

degrees of freedom. But there is a subtlety. The component that is an irreducible rep-
resentation is not the full ψα

μ , but only the gamma-traceless part. Indeed, we have the
decomposition in terms of Lorentz spin, 1 ⊗ 1/2 = 3/2 ⊕ 1/2, where the 1/2 compo-
nent is γ μψμ, since we can see that it transforms to itself, thus is a sub-representation.
So we need to first impose the condition γ μψμ = 0 (eliminating the 1/2 representa-
tion), and then we can use the vector times spinor (1 ⊗ 1/2) counting. All in all we get
n/2(d − 2) − n/2 = n/2(d − 3) degrees of freedom.

• Antisymmetric tensor Aμ1...μr . Again this object is a generalization of the gauge field,
and so imposing the covariant gauge condition

∂μ1Aμ1...μr = 0 , (4.23)
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78 Basics of supergravity

we get the Klein–Gordon equation �Aμ1...μr = 0, so we have transversality constraints
on the polarization tensors:

kμ1εμ1...μr (k) = 0. (4.24)

We again obtain only transverse components for the antisymmetric tensor, i.e.(
d − 2

r

)
= (d − 2) . . . (d − 1 − r)

1 · 2 · . . . r (4.25)

independent degrees of freedom.

4.3 Local supersymmetry: supergravity

Supergravity can be defined in two independent ways that give the same result. It is a
supersymmetric theory of gravity; and it is also a theory of local supersymmetry. Thus
we could either take Einstein gravity and supersymmetrize it, or we can take a super-
symmetric model and make the supersymmetry local. In practice we use a combination
of the two.

We want a theory of local supersymmetry, which means that we need to make the rigid
εα transformation local. We know from gauge theory that if we want to make a global
symmetry local we need to introduce a gauge field for the symmetry. For example, for
the globally U(1)-invariant complex scalar with action − ∫ |∂μφ|2, φ → eiαφ invariant,
if we make α = α(x) (local), we need to add the U(1) gauge field Aμ that transforms by
δAμ = ∂μα and write covariant derivatives Dμ = ∂μ − iAμ everywhere.

Now, the gauge field would be “Aα
μ” (since the supersymmetry acts on the index α),

which we denote in fact by ψμα and call the gravitino.
Here μ is a curved space index (“curved”) and α is a local Lorentz spinor index (“flat”).

In flat space, an object ψμα would have the same kind of indices (curved= flat) and
we can then show that μα forms a spin 3/2 field – though on-shell we need to remove
the gamma-trace, as we saw in the previous subsection – therefore the same is true in
curved space.

The fact that we have a supersymmetric theory of gravity means that the gravitino must
be transformed by supersymmetry into some gravity variable, thusψμα = Qα(gravity). But
the index structure tells us that the gravity variable cannot be the metric, but something with
only one curved index, namely the vielbein. Thus the gravitino is the superpartner of the
vielbein. In conclusion, the gravitino is at the same time the superpartner of the vielbein,
and the “gauge field of local supersymmetry.” We also see that supergravity needs the
vielbein–spin connection formulation of gravity, introduced earlier in this chapter.

We can now count the degrees of freedom for the N = 1 multiplets in three dimensions
and four dimensions and check that we have an equal number. As we saw, the supermul-
tiplets need to have at least ea

μ and ψα
μ , and to match bosonic with fermionic degrees of

freedom.
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79 4.4 N = 1 on-shell supergravity in four dimensions

Three dimensions

We try starting with three dimensions, in the hope of finding a simpler system. On-shell,
ea
μ has 1 ·2/2−1 = 0 degrees of freedom, and ψα

μ has 2/2(3−3) = 0 degrees of freedom,
thus {ea

μ,ψα
μ} do form a trivial multiplet by themselves, the on-shell N = 1 supergravity

multiplet, with no propagating degrees of freedom. Off-shell, ea
μ has 2 ·3/2 = 3 degrees of

freedom, and ψα
μ has 2(3 − 1) = 4 degrees of freedom, so we need one bosonic auxiliary

degree of freedom. This is a scalar, that we will call S, giving the off-shell N = 1 super-
gravity multiplet {ea

μ, S,ψα
μ}. We see that to obtain a nontrivial on-shell theory, we need to

look at four dimensions.

Four dimensions

On-shell, ea
μ has 3 ·2/2−1 = 2 degrees of freedom, and ψα

μ has 4/2(4−3) = 2 degrees of
freedom, so again {ea

μ,ψα
μ} form the N = 1 supergravity multiplet by themselves, but now

it is a nontrivial one. Off-shell, ea
μ has 4·3/2 = 6 degrees of freedom, whereasψα

μ has 4(4−
1) = 12 degrees of freedom. We see that now the minimal choice would involve six bosonic
auxiliary degrees of freedom. But other choices are possible. We could for instance use ten
bosonic auxiliary degrees of freedom and four fermionic ones (one auxiliary Majorana spin
1/2 spinor), etc. There are thus several possible choices for auxiliary fields that have been
used in the literature. A useful set is the minimal set (Aμ, S, P) (two real scalars and one
vector). We can also write M = S + iP.

4.4 N = 1 on-shell supergravity in four dimensions

We now turn to the construction of the N = 1 on-shell supergravity model in four dimen-
sions. To write down the supersymmetry transformations, we start with the vielbein. In
analogy with the Wess–Zumino model, where δφ = ε̄φ, or the vector multiplet, where the
gauge field variation is δAa

μ = ε̄γμψ
a, it is easy to see that the vielbein variation has to be

δea
μ = kN

2
ε̄γ aψμ , (4.26)

where kN is the Newton constant and appears for dimensional reasons.
Sinceψ is like a gauge field of local supersymmetry, for its transformation law we expect

something like δAμ = Dμε. Therefore we must have

δψμ = 1

kN
Dμε; Dμε = ∂με + 1

4
ωab
μ γabε , (4.27)

plus maybe more terms. For the N = 1 supergravity there are in fact no other terms, but
for N > 1 there are.
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80 Basics of supergravity

We now turn to writing the action. For gravity, we need to write the Einstein–Hilbert
action. But in which formulation? In principle we could write the form

S = 1

2k2
N

∫
d4x

√−gR(�) , (4.28)

where � = �(g) (the second order formulation, the usual one used by Einstein). Or we
could consider the original formulation of Palatini, the first order formulation with an inde-
pendent � and the metric gμν . But as we have already mentioned, due to the fact that we
have spinors in the theory, the spin connection appears in the covariant derivative, and so
we need the vielbein–spin connection formulation of gravity.

Thus we write the Einstein–Hilbert action in the form

SEH = 1

2k2
N

∫
d4x(det e)Rab

μν(ω)(e−1)μa (e−1)νb

= 1

4

1

2k2
N

∫
d4xεabcdε

μνρσ ea
μeb

νRcd
ρσ

≡ 1

2k2
N

∫
εabcdea ∧ eb ∧ Rcd(ω) , (4.29)

where the first line is valid in any dimension, in the second line we use (4.14) to write
(4.15) valid only in four dimensions, and in the last line we use form language. Also, from
now on we will drop the −1 power on the inverse vielbein, understanding whether we
have the vielbein or the inverse vielbein by the position of the curved index (index down is
vielbein, index up is inverse vielbein). Again in form language,

Rab = dωab + ωac ∧ ωcb. (4.30)

Next we consider the action for a gravitino. The action for a free spin 3/2 field in flat
space is the Rarita–Schwinger action, which is

SRS = −1

2

∫
ddxψ̄μγ

μνρ∂νψρ

= + i

2

∫
d4xεμνρσ ψ̄μγ5γν∂ρψσ , (4.31)

where the first form is valid in all dimensions and the second form is only valid in four
dimensions (iεμνρσ γ5γν = −γ μρσ in four dimensions, γ5 = iγ0γ1γ2γ3). In curved space,
this becomes

SRS = −1

2

∫
ddx(det e)ψ̄μγ

μνρDνψρ

= + i

2

∫
d4xεμνρσ ψ̄μγ5γνDρψσ . (4.32)

We can now write the action of N = 1 on-shell supergravity in four dimensions as just
the sum of the Einstein–Hilbert action and the Rarita–Schwinger action:

SN=1 = SEH(ω, e) + SRS(ψμ), (4.33)

and the supersymmetry transformations rules are just the ones defined previously,
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81 4.4 N = 1 on-shell supergravity in four dimensions

δea
μ = kN

2
ε̄γ aψμ; δψμ = 1

kN
Dμε. (4.34)

However, this is not yet enough to specify the theory. We must specify the formalism
and various quantities:

• Second order formalism: The independent fields are ea
μ and ψμ, and ω is not an inde-

pendent field. But now there is a dynamical fermion (ψμ), so the torsion Ta
μν is not zero

anymore, thus ω �= ω(e)! In fact,

ωab
μ = ωab

μ (e,ψ) = ωab
μ (e) + ψψ terms (4.35)

is found by varying the action with respect to ω, as in the ψ = 0 case:

δSN=1

δωab
μ

= 0 ⇒ ωab
μ (e,ψ). (4.36)

It is left to the reader (as Exercise 2) to find the explicit form of the ψψ terms.
• First order formalism: All fields, ψ , e,ω, are independent. But now we must supplement

the action with a transformation law for ω. It is

δωab
μ (first order) = −1

4
ε̄γ5γμψ̃

ab + 1

8
ε̄γ5(γ λψ̃b

λea
μ − γ λψ̃a

λeb
μ),

ψ̃ab ≡ εabcdψcd; ψab ≡ ea
μeb

ν(Dμψν − Dνψμ). (4.37)

In this first order formalism, on-shell the variation of ω should reduce to the one of
the second order formalism, where we use the chain rule for ω(e,ψ) and we substitute
δe and δψ . We can indeed find that this is so, using the fact (easily checked) that the
equation of motion for ψμ is

∼ γ λψ̃λμ = 0. (4.38)

• 1.5 order formalism: The 1.5 order formalism is a simple but powerful observation which
simplifies calculations, so is the most useful. We use second order formalism, but in the
action S(e,ψ ,ω(e,ψ)) whenever we vary it, we do not vary ω(e,ψ) by the chain rule,
since it is multiplied by δS/δω, which is equal to zero in the second order formalism:

δS = δS

δe
δe + δS

δψ
δψ + δS

δω

(
δω

δe
δe + δω

δψ
δψ

)
. (4.39)

Of course, that means that when we write the action, we have to write ω(e,ψ) without
substituting the explicit form in terms of e and ψ .

One can check the invariance of the action (4.33) under the local susy (4.34), but we will
not do it here, since it is somewhat involved.

For completeness, we can write also the other transformation laws for the supergravity
fields. For the Einstein transformations, we have

δEea
μ = ξν∂νea

μ + (∂μξ
ν)ea

ν ,

δEω
ab
μ = ξν∂νω

ab
μ + (∂μξ

ν)ωab
ν ,

δEψμ = ξν∂νψμ + (∂μξ
ν)ψν , (4.40)
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82 Basics of supergravity

whereas for the local Lorentz transformations, we have

δlLea
μ = λabeb

μ,

δlLω
ab
μ = Dμλ

ab = ∂μλ
ab + ωac

μ λ
cb − ωbc

μ λ
ca,

δlLψμ = −λab 1

4
γabψμ. (4.41)

4.5 Generic features of supergravity theories

The N = 1 supergravity multiplet in four dimensions is (ea
μ,ψμα), as we saw, and has

spins (2, 3/2).
It can also couple with other N = 1 supersymmetric multiplets of lower spin: the chiral

multiplet of spins (1/2, 0) and the gauge multiplet of spins (1, 1/2) that have already been
described, as well as the so-called gravitino multiplet, composed of a gravitino and a vector,
thus spins (3/2, 1).

By adding appropriate numbers of such multiplets we obtain the N = 2, 3, 4, 5, 6, 8
supergravity multiplets. Here N is the number of supersymmetries, and since it acts on the
graviton, there should be exactly N gravitini in the multiplet, so that each supersymmetry
maps the graviton to a different gravitino.

The limit for supergravity is N = 8 supersymmetries, for the same reason that the limit
for vector fields is N = 4, as seen in Chapter 3.7. Namely, if we want to have only spins
≤ 2, we can at most start with a vacuum with helicity λ = 2. By the successive action of all
the N supersymmetry operators, which lower the helicity by 1/2 each, we can at most reach
helicity −2. That means that the maximum number of supersymmetries for supergravity is
2 × (2 − (−2)) = 8. The only thing left to understand is why we would only allow spins
≤ 2? The reason is that there seems to be no good way to write an interacting theory of a
finite number of fields with spins > 2.

Coupling to supergravity of a supersymmetric multiplet is a generalization of coupling
to gravity, which means putting fields in curved space. Now we put fields in curved space
and also introduce a few more couplings.

We will denote the N = 1 supersymmetry multiplets by brackets, e.g. (1, 1/2), (1/2, 0),
etc. Then N = 2 supergravity is obtained by coupling the N = 1 supergravity multiplet
(2, 3/2) (graviton plus gravitino) to the N = 1 gravitino multiplet (3/2, 1), i.e. gravitino
plus (abelian) vector, for a total of graviton, two gravitini, and an abelian scalar.

If we minimally couple the gravitinos in the 4-dimensional N = 2 multiplet to an
abelian gauge field, we obtain gauged supergravity. In fact, the gauged supergravity is only
a deformation by the coupling constant g of the ungauged model, so the abelian gauge
field is in fact the one already in the N = 2 supergravity multiplet. The new gravitino
transformation law is

δψ i
μ = Dμ(ω(e,ψ))εi + gγμε

i + gAμε
i. (4.42)

Thus we have a constant term (gγμεi) in this transformation law, so it is natural to find
that we must add a constant term in the action as well, namely a cosmological constant
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83 4.5 Generic features of supergravity theories

term,
∫

e�. This cosmological constant is negative, leading to the fact that the simplest
background of gauged supergravity is Anti-de Sitter, AdS. Unlike the ungauged supergrav-
ity, it does not admit a Minkowski background. Thus, in fact, gauged supergravity is AdS
supergravity.

In the usual, “ungauged models,” the photons are not coupled to the fermions, i.e. the
gauge coupling g = 0. But these models have global symmetries. One can couple the gauge
fields to the fermions, thus “gauging” (making local) some subset of the global symmetry.
In general (except the N = 2 case above) abelian fields become nonabelian (Yang–Mills),
i.e. self-coupled. Another way to obtain the gauged models is by adding a cosmologi-
cal constant and requiring invariance, since we saw that gauged supergravity needs
AdS space.

Next we consider the N = 3 supergravity multiplet, which is composed of the super-
gravity multiplet (2, 3/2), two gravitino multiplets (3/2, 1), and a vector multiplet (1, 1/2).
Together, they correspond to the fields {ea

μ,ψ i
μ, Ai

μ, λ}, for i = 1, 2, 3.
We can also minimally couple the N = 3 multiplet with gauge fields, and as before, the

gauge fields have to be the same three gauge fields in the ungauged multiplet. We also find
that we must add a negative cosmological constant, and find again that gauged supergravity
is AdS supergravity. The difference is that now, under the gauge coupling deformation, the
gauge fields become nonabelian (the ungauged model had abelian vector fields).

The next possibility is the N = 4 supergravity multiplet, which is the first to also contain
scalars. It is composed of the N = 1 multiplets (2, 3/2), 3 × (3/2, 1), 3 × (1, 1/2), (1, 0),
together making {ea

μ,ψ i
μ, Ak

μ, Bk
μ, λi,φ, B}, where i = 1, . . . , 4, k = 1, 2, 3, Ak

μ are vectors,
Bk
μ are axial vectors, φ is scalar, and B is pseudoscalar. The same comments as above apply

for the gauging of this model. But in general, we can gauge a subset of the vectors, so there
are various gaugings possible.

The N = 5 supergravity multiplet is composed of the N = 1 multiplets (2, 3/2), 4 ×
(3/2, 1), 6× (1, 1/2), 5× (1/2, 0), together making the graviton, five gravitini, ten vectors,
11 spin 1/2 fermions, and ten real scalars. The N = 6 supergravity multiplet is composed
of the N = 1 multiplets (2, 3/2), 5× (3/2, 1), 11× (1, 1/2), 15× (1/2, 0), together making
the graviton, six gravitini, 16 vectors, 26 spin 1/2 fermions, and 30 real scalars.

We could imagine that we could have N = 7 supergravity, but if we impose this susy,
we obtain N = 8 as well, so the next model is in fact N = 8 supergravity. As mentioned,
it is the maximal possible model in four dimensions. It is composed of the supergravity
multiplet (2, 3/2) + 7 gravitino multiplets (3/2, 1) + 21 vector multiplets (1, 1/2) + 35
chiral multiplets (1/2, 0). The fields are {ea

μ,ψ i
μ, AIJ

μ ,χijk, ν} which are: one graviton, eight
gravitinos ψ i

μ, 28 photons AIJ
μ , 56 spin 1/2 fermions χijk, and 70 scalars in the matrix ν.

Higher dimensions

The N = 8 supergravity multiplet can be obtained by dimensional reduction of N = 1
supergravity in 11 dimensions. In fact, 11 dimensions is the maximal dimension from
which we can reduce to obtain N = 8 in four dimensions, since the eight 4-dimensional
gravitini make up a single gravitino in 11 dimensions, but would make less than one
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84 Basics of supergravity

gravitino in higher dimensions. The field content of N = 8 supergravity is a graviton
ea
μ, a gravitino ψμα , and a three index antisymmetric tensor Aμνρ .

We can have other supergravity theories in all dimensions and with various super-
symmetries, such that when reducing to four dimensions, we would get at most eight
supersymmetries.

One new feature in higher dimensions is that it is possible also to have antisymmetric
tensor fields Aμ1,...,μn , which are just an extension of abelian vector fields. We have seen
in Section 4.2 how to treat them in flat space. In curved space the generalization is trivial.
The field strength is still

Fμ1,...,μn+1 = (n + 1)∂[μ1 Aμ2,...,μn+1] , (4.43)

with the gauge invariance

δAμ1,...,μn = ∂[μ1�μ2,..,μn]. (4.44)

Putting the action in curved space is obvious, having the curved space volume element and
contracting with the metric,

− 1

2(n + 1)!

∫
ddx(det e)F2

μ1,...,μn+1
. (4.45)

The antisymmetric tensor fields appear in the supersymmetry transformation law for the
gravitini δψ i

μ generically through � · F terms, like

�μ1...μn Fμμ1...μnε
i. (4.46)

Important concepts to remember

• Vielbeins are defined by gμν(x) = ea
μ(x)eb

ν(x)ηab, by introducing a Minkowski space in
the neighborhood of a point x, giving local Lorentz invariance.

• The spin connection is the gauge field needed to define covariant derivatives acting on
spinors. In the absence of dynamical fermions, it is determined as ω = ω(e) by the
vielbein postulate: the torsion is zero.

• The field strength of this gauge field is related to the Riemann tensor.
• In the first order formulation (Palatini), the spin connection is independent, and is

determined from its equation of motion.
• Supergravity is a supersymmetric theory of gravity and a theory of local supersymmetry.
• The gauge field of local supersymmetry and superpartner of the vielbein (graviton) is

the gravitino ψμ.
• In three dimensions on-shell, there are no degrees of freedom (dof) for the N = 1 super-

gravity, whereas in four dimensions there are two bosonic and two fermionic degrees of
freedom.

• In four dimensions off-shell, we need six bosonic auxiliary dofs more than the fermionic
auxiliary dofs. Choosing just the bosonic auxiliary fields (Aμ, S, P) is the minimal set.

• 4-dimensional on-shell supergravity is the first nontrivial case (with propagating degrees
of freedom) and is composed of ea

μ and ψμ.
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85 4.5 Generic features of supergravity theories

• Supergravity (local supersymmetry) is of the type δea
μ = (kN/2)ε̄γ aψμ + . . ., δψμ =

(Dμε)/kN + . . .

• The action for gravity in supergravity is the Einstein–Hilbert action in the vielbein–spin
connection formulation.

• The action for the gravitino is the Rarita–Schwinger action.
• The most useful formulation is the 1.5 order formalism: second order formalism, but do

not vary ω(e,ψ) by the chain rule.
• For each supersymmetry we have a gravitino. The maximal supersymmetry in d = 4 is
N = 8.

• Gauged supergravity is AdS supergravity, and is an extension by a gauge coupling
parameter of the ungauged models.

• Supergravity theories in higher dimensions can contain antisymmetric tensor fields.
• The maximal dimension for a supergravity theory is d = 11, with a unique model

composed of ea
μ,ψμ, Aμνρ .

References and further reading

The vielbein and spin connection formalism for general relativity is hard to find in standard
general relativity books, but one can find some information, for instance, in the supergrav-
ity review [14]. An introduction to supergravity, but one which might be hard to follow for
the beginning student, is found in West [9] and Wess and Bagger [10]. A good supergravity
course, that starts at an introductory level and reaches quite far, is [14]. In this chapter, I
followed mostly [14] (you can find more details in Sections 1.2–1.6 of the reference). A
good and complete recent book is [15].

Exercises

1. Check that

ωab
μ (e) = 1

2
eaν(∂μeb

ν−∂νeb
μ)−1

2
ebν(∂μea

ν−∂νea
μ)−1

2
eaρebσ (∂ρecσ−∂σ ecρ)ec

μ (4.47)

satisfies the no-torsion (vielbein) constraint, Ta
μν = 2D[μea

ν] = 0.

2. Find ωab
μ (e,ψ) − ωab

μ (e) in the second order formalism for N = 1 supergravity.
3. Write down the free gravitino equation of motion in curved space.
4. Calculate the number of off-shell bosonic and fermionic degrees of freedom of N = 8

on-shell supergravity in four dimensions, with field content {(2, 3/2) + 7 × (3/2, 1) +
21 × (1, 1/2) + 35 × (1/2, 0)}, specifically {ea

μ,ψ i
μ, A[IJ]

μ ,χ[IJK], ν}, where i, j, k =
1, . . . , 8; I, J = 1, . . . , 8; and ν = matrix of 70 real scalars (the scalar in the WZ
multiplet (1/2, 0) is complex).

5. Consider the spinors ηI satisfying the “Killing spinor equation”

Dμη
I = ± i

2
γμη

I . (4.48)
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86 Basics of supergravity

Prove that they live on a space of constant positive curvature (a sphere), by computing
the curvature of the space.

6. Write down explicitly the variation of the N = 1 4-dimensional supergravity action
in 1.5 order formalism, as a function of δe and δψ .

7. Prove that the linearized action for the graviton perturbation (κNhμν ≡ gμν − ημν) is
the Fierz–Pauli action

L = 1

2
h2
μν,ρ + h2

μ − hμh,μ + 1

2
h2

,μ; hμ ≡ ∂νhνμ; h ≡ hμμ , (4.49)

by expanding the Einstein–Hilbert action (κ2
N ≡ 8πG).
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5 Kaluza–Klein dimensional reduction

We have already briefly encountered dimensional reduction, when we wrote the N = 4
SYM model as a dimensional reduction of the 10-dimensional N = 1 SYM model. How-
ever, in that case it seemed like just a useful trick to obtain the right action. In this chapter,
however, we study the possibility that spacetime really has more dimensions than 3 + 1,
and we want to describe physics from the point of view of 3 + 1 dimensions.

The idea of extra dimensions is an old one, going back to Theodor Kaluza
(1921) and Oskar Klein (1926). One considers that space is a direct product space,
MD = M4 × Kn, where Kn is a compact space, like for instance a sphere Sn or torus
Tn = S1 × . . . × S1, as considered by Klein. The reason why we feel only four
dimensions is that the size of Kn is very small, comparable with the Planck scale, so
we cannot probe it. Kaluza used this construction to unify forces (in particular, grav-
itation and electromagnetism), or more precisely the fields associated with them. This
is also the way in which we use it nowadays, as several fields have a common higher
dimensional origin. The resulting theory is generally known as the Kaluza–Klein (KK)
theory.

One considers in every point in spacetime xμ a space Kn that can depend on xμ, Kn(xμ)
with coordinates ym. The total spacetime is (xμ, ym), and functions of the total spacetime
are now φ(xμ, ym) instead of φ(xμ).

For example, in the simplest case of a circle S1, one can write functions φ(xμ, y) and
Fourier expand them

φ(xμ, y) =
∑
n≥0

e
iny
R φn(xμ) , (5.1)

which means that we have a sum of fields φn(xμ) from the point of view of 3+ 1
dimensions. The KK theory is a generalization of this analysis.

Note that there is also another way to have extra dimensions, the “braneworld” scenario,
where our 3 + 1 dimensional world lives on a wall, or “brane”. This possibility is related
to D-branes, relevant for AdS/CFT, which are studied in a later chapter.

5.1 The KK background, KK expansion, and KK reduction

There are three metrics that sometimes go by the name of KK metric, so we should
distinguish between them:
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88 Kaluza–Klein dimensional reduction

• The KK background metric. The fact that space is M4×Kn means that the background
is a solution of the equations of motion which is of direct product type,

gMN(�x, �y) =
(

g(0)
μν(�x) 0

0 g(0)
mn(�y)

)
, M = (μ, m). (5.2)

Note that the metric is itself one of the fields of the theory, so it is a variable, so when
we write M4 × Kn we only mean the background, not the full fluctuating metric. Also
note that in general, the background has to be a solution of the supergravity equations
of motion; however, sometimes one considers the case when it is not. Here g(0)

μν is a
background metric in four dimensions, usually Minkowski, de Sitter or Anti-de Sitter,
and g(0)

mn is the metric on the compact space Kn.

• The KK expansion. This is an exact decomposition, the generalization of the Fourier
expansion on a circle, or the spherical harmonic expansion on the 2-sphere. In the case
of the Fourier expansion, as mentioned, the Fourier theorem says we can always expand

φ(�x, y) =
∑

n

φn(�x)e
iny
R , (5.3)

if y is on a circle of radius R. On a 2-sphere, we can similarly always write

φ(�x, θ ,φ) =
∑
lm

φlm(�x)Ylm(θ ,φ). (5.4)

Here the functions in which we expand are eigenfunctions of the Laplacean, since

∂2
y e

iny
R = −

( n

R

)2
e

iny
R ,

�2Ylm(θ ,φ) = − l(l + 1)

R2
Ylm(θ ,φ) , (5.5)

where in the second line we include an R2 for a 2-sphere of radius R, though of course
the Ylms correspond to R = 1.

Similarly, in a general case, we can always write

φ(�x, �y) =
∑
q,Iq

φ
Iq
q (�x)Y

Iq
q (�y) , (5.6)

where Y
Iq
q (�y) is also called spherical harmonic, as in the 2-sphere case. Here q is an

index that measures the eigenvalue of the Laplacean, like l for S2, and Iq is an index in
some representation of the symmetry group (like m for S2 which takes values in a repre-
sentation of the SO(3) = SU(2) invariance group of S2, namely a spin l representation).

The Y
Iq
q are also eigenfunctions of the Laplacean on Kn, i.e.

�nY
Iq
q (�y) = −m2

qY
Iq
q (�y). (5.7)

From the 4-dimensional point of view, we get for φ(�x, �y) = φ
Iq
q (�x)Y

Iq
q (�y),

�Dφ(�x, �y) = (�4 +�n)φ(�x, �y) = (�4 − m2
q)φ(�x, �y) , (5.8)
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89 5.2 The KK dimensional reduction

and so if φ(�x, �y) is a D-dimensional massless field, �Dφ(�x, �y) = 0, it looks like a
4-dimensional massive field with mass mq,[

(�− m2
q)φ

Iq
q (�x)

]
Y

Iq
q (�y) = 0. (5.9)

This is the statement that in order to see structure on Kn, we must use some energy, at

least equal to mq, if we want to see information at the level of the Y
Iq
q spherical harmonic.

Thus the KK expansion is a mathematical equality, and contains no information other
than the metric of the background we expand around.

• The KK reduction ansatz. This is an ansatz, which means it is a guess, it is not guar-
anteed to work. Since we want to say that the compact space has a very small size, and
we cannot probe it, we must find an effective 4-dimensional description which does not
see the Kn. This is the dimensional reduction ansatz, which is: we keep only fields in
the n = 0 representation, i.e. “independent of y”, though in general there is a given
y-dependence, namely of Y0(�y), but this dependence is the simplest we can have.

Also, in general it is not necessarily the first representation that is kept for all fields,
but rather it could be n = 1 or n = 2 for some fields. In the case of supergravity, the
relevant factor is that we need to keep a 4-dimensional supermultiplet. Also note that
for M4 being AdS for example, mq is not necessarily zero, we could have fields that are
a bit tachyonic, namely m2

q < 0, but still above a bound (the so-called Breitenlohner–
Freedman bound, that is explained later on in the book), or massive. The relevant fact is
still that we keep the lowest supermultiplet.

Thus in the KK dimensional reduction ansatz we keep generically speaking

φ(�x, �y) = φ0(�x)Y0(�y). (5.10)

In summary, the KK background metric is a solution, the KK expansion is a parameter-
ization, and the KK reduction ansatz is an ansatz.

5.2 The KK dimensional reduction

We saw that KK dimensional reduction corresponds to keeping only one of the fields in the
KK expansion in spherical harmonics, usually the n = 0 one.

Fields with spin

One of the most important properties of KK reduction, which is why it was originally
introduced by Kaluza, and why it is useful nowadays, is the property of unifying various
fields with spin into a single higher dimensional field.

The point is that various components of a field with spin (with indices) act as different
fields in the lower dimension (e.g., in four dimensions).
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90 Kaluza–Klein dimensional reduction

For instance, consider electromagnetism in a higher dimension, with a Maxwell field
AM(�x, �y); μ = 0, 1, 2, 3; m = 4, . . . , 4 + m; M = (μ, m). It splits as

AM(�x, �y) = (Aμ(�x, �y), Am(�x, �y)). (5.11)

Then Aμ behaves as a 4-dimensional gauge field: if �μ
ν ∈ SO(1, 3) is a Lorentz trans-

formation in 3 + 1 dimensions, it acts on it as a vector, A′
μ(�x′, �y) = �μ

νAν(�x, �y). On the
other hand, Am behaves as a scalar: �μ

ν acts on it trivially, A′
m(�x′) = Am(�x).

We assume that the theory in D = 4+ n dimensions is Lorentz invariant, i.e. SO(1, 3+ n)
invariant. This is broken to SO(1, 3) × SO(n) by the background. Then SO(n) acts only on
Am, and on �y instead of �x, meaning it becomes an internal symmetry.

The KK expansions for Aμ and Am are

Aμ(�x, �y) =
∑
q,Iq

A
q,Iq
μ (�x)Y

Iq
q (�y),

Am(�x, �y) =
∑
q,Iq

Aq,Iq (�x)Y
q,Iq
m (�y). (5.12)

The SO(n) acts on the spherical harmonics Y
q,Iq
m only, and thus Aq,Iq (�x) are 4-dimensional

scalars.
The KK reduction ansatz would be keeping only one mode, usually q = 0.
For gravity, similarly, we decompose the metric into the lower dimensional tensors as

gMN(�x, �y) =
(

gμν(�x, �y) gμm(�x, �y)
gmμ(�x, �y) gmn(�x, �y)

)
, (5.13)

and then gμν(�x, �y) is an SO(1, 3) symmetric tensor, i.e. a metric, gμm = gmμ is an SO(1, 3)
vector, i.e. g′μm(�x′, �y) = �μ

νgνm(�x, �y), and gmn(�x, �y) are SO(1, 3) scalars. Under the split
SO(1, 3 + n) → SO(1, 3) × SO(n), as before SO(n) acts on the index m, which belongs to
spherical harmonics. And as before, the KK reduction ansatz corresponds to keeping only
one mode, the q = 0 mode, with Y0(�y) = 1, since the lower dimensional graviton gμν
cannot have indices in a nontrivial representation Iq.

5.3 The expansion of various fields on tori

The torus Tn = (S1)n is obtained by periodic identifications in R
n, and as such the metric

on it is flat, g(0)
mn = δmn. Therefore the KK background metric is

gMN =
(

g(0)
μν 0
0 δmn

)
. (5.14)

The KK expansion for the metric fluctuation is just a product of the Fourier expansions on
the circles in Tn, i.e.
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91 5.4 Consistent truncation and nonlinear ansatz

gMN =
⎛
⎝gμν(�x, �y) = g(0)

μν(�x) +∑
{ni} h{ni}

μν (�x)e
iniyi
Ri ; gμm(�x, �y) = ∑

{ni} Bm,{ni}
μ (�x)e

iniyi
Ri

gmμ(�x, �y) = gμm(�x, �y); gmn = δmn +∑
{ni} h{ni}

mn (�x)e
iniyi
Ri

⎞
⎠ .

(5.15)

Thus here the spherical harmonics are just products of Fourier modes,

Y{ni}(�y) =
∏

i

e
iniyi
Ri . (5.16)

The KK reduction ansatz for the metric is

gMN =
(

g(0)
μν(�x) + h{0}μν (�x); gμm(�x) = Bm{0}

μ (�x)

gmμ(�x) = gμm(�x); gmn(�x) = δmn + h{0}mn(�x)

)
. (5.17)

Here obviously gμν(�x) = g(0)
μν(�x)+h{0}μν (�x) is the 4-dimensional metric, gμm(�x) are vectors

from the point of view of four dimensions, since they have a single 4-dimensional vector
index μ, more precisely we have n vectors Bm{0}

μ (�x), and gmn(�x) are 4-dimensional scalars.
As we saw, a gauge field AM(�x, �y) splits into Aμ(�x, �y) which is a vector from the

4-dimensional point of view, and Am(�x, �y) which are scalars in four dimensions. Under KK
dimensional reduction, we obtain the 4-dimensional vector Aμ(�x) and the 4-dimensional
scalars Am(�x).

We can also have antisymmetric tensors, p+1-forms AM1...Mp+1 . Under KK dimensional
reduction, AM1...Mp+1 splits into Aμ1...μp+1 , which is again an antisymmetric tensor (p + 1-
form) and Aμ1...μkmk+1...mp+1 , which are k-forms, up to Aμ1...μp−n+1mp−n+2...mp+1 , which are
p − n + 1-forms.

Considering next fermions, a D-dimensional spinor (D = 4+n) on M4×Kn splits under
the KK reduction ansatz into many spinors in the lower dimension,

λA(�x, �y) = λi
τ (�x), (5.18)

i.e., we obtain many spinors on M4, with spinor index τ and labelled by the i index for the
torus.

5.4 Consistent truncation and nonlinear ansatz

As we mentioned, the KK expansion is always valid, since it is just a generalized Fourier
theorem. But the KK reduction ansatz is not, except in the case of the torus Tn, when it is
always valid, as we will shortly see. In general the KK reduction ansatz is not consistent
(i.e. valid), except at the linearized level, i.e. for terms quadratic in the action.

Indeed, making a truncation to just the lowest mode φ0, and setting the rest to zero
(φq = 0) is in general not a solution of the higher dimensional (D-dimensional) equations
of motion. If it is a solution to the higher dimensional equations of motion, we say we have
a consistent truncation.
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92 Kaluza–Klein dimensional reduction

What can go wrong? To see that, consider a φ3 coupling in the higher dimension, and
focus on a single term in the action resulting from its KK expansion, namely on

(. . .)
∫

dd�x
√

det g(0)
μνφ

Iq
q (�x)φI0

0 (�x)φJ0
0 (�x) ×

∫
dn�y

√
det g(0)

mnY
Iq
q (�y)YI0

0 (�y)YJ0
0 (�y). (5.19)

This term acts as a source for the equations of motion of φn, in general of the type

(� − m2
q)φ

Iq
q (�x) = (. . .)φI0

0 (�x)φJ0
0 (�x). (5.20)

It is therefore inconsistent (not a solution of the equations of motion for φq) to set φq to
zero, while keeping φ0. But there is a way to avoid this problem: the above equation of
motion is the equation of motion of φq, which only appears after integrating over �y and
writing the reduced action in d dimensions for φq(�x) and φ0(�x). But in integrating, it can
happen that ∫

dn�y
√

det g(0)
mnY

Iq
q (�y)YI0

0 (�y)YJ0
0 (�y) (5.21)

could be zero, and in that case the truncation is consistent, and we have a consistent
dimensional reduction ansatz.

This is indeed what happens for the torus, since there YI0
0 (�y) = 1, and we obtain∫

dyYIn =
∫

dye
iny
R = 0 (5.22)

for n �= 0. Therefore for the torus we always have a consistent truncation, as we claimed.
We can also have a generalization of this case, namely if we have some global symmetry

G for the fields in the KK expansion, and under the dimensional reduction ansatz we keep
ALL the singlets of G (fields that do not transform under G), then we obtain the same

result. Indeed, if YI0
0 and YJ0

0 are singlets, then YI0
0 YJ0

0 is also a singlet, whereas Y
Iq
q is not,

since we assumed that we kept all the singlets. Then by spherical harmonic orthogonality,
or rather by the need for G-group invariance, we have∫

Y
Iq
q (YI0

0 YJ0
0 ) = 0. (5.23)

If we have an inconsistent truncation, we can sometimes make it consistent by making a
nonlinear redefinition of the fields, i.e. something of the type

φ′q = φq + aφ2
0 + . . . ,

φ′0 = φ0 +
∑

pq(including 0)

cpqφpφq. (5.24)

Equivalently, we can make a nonlinear KK ansatz from the beginning. This would then
only come from the KK expansion after the nonlinear redefinition, but otherwise needs to
be considered on its own.

The simplest example of a nonlinear KK ansatz is the one needed to get the correct
d-dimensional Einstein action (in an Einstein frame) from the D-dimensional Einstein
action. Namely, we need to write
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93 5.5 Example: original Kaluza–Klein reduction

gμν(�x, �y) = gμν(�x)

[
det gmn(�x, �y)

det g(0)
mn(�y)

]− 1
d−2

. (5.25)

To check this formula completely would take some calculation, but we can make a simple
check. As we know, � ∼ g−1∂g and Rμν ∼ ∂� + ��, which means that under a constant
scale transformation gμν → λgμν , Rμν will be invariant. In the D-dimensional Einstein

action we have
∫ √

g(D)R(D), and from R(D) = R(D)
MNgMN we only look at the sum over

d-dimensional indices μν, R̃ = R(D)
μν gμν , that contain the d-dimensional Einstein action

(the other terms contain gauge fields and scalars). Then under gμν → gμνλ (with gmn

untouched), √
g(D)R̃ =

√
g(d)

√
det gmnλ

d
2−1R̃ , (5.26)

which means that indeed we need to take λ = [det gmn/ det g(0)
mn]−1/(d−2).

5.5 Example: original Kaluza–Klein reduction

The idea of Kaluza and Klein was to unify gravity (gμν) and electromagnetism (Bμ) into
a 5-dimensional metric gMN . The linearized KK reduction ansatz for the 5-dimensional
metric gMN would then be, according to our general analysis,

gMN =
(

gμν(�x) gμ5 = Bμ(�x)
g5μ = Bμ(�x) g55 = φ(�x)

)
. (5.27)

This ansatz is always consistent, since we are on a circle, and we have kept all the zero
modes. But since experimentally we do not observe a massless scalar φ, Kaluza and Klein
wanted to choose the background value φ = 1 (as we said, for tori g(0)

mn = δmn), i.e. to
put the fluctuation in φ to zero. But this further truncation is inconsistent, i.e. it does not
satisfy the equations of motion! So we cannot unify gravity and electromagnetism in this
simple way. Therefore we need to keep φ, in which case we do have a consistent ansatz, i.e.
theoretically valid, just that it does not agree with experiments, since we do not see φ. But
in this case, even though the reduction ansatz is consistent, we still need to write nonlinear
modifications in order to get both the action for gravity in the standard Einstein form, and
the action for electromagnetism in the standard Maxwell form. Finally, the nonlinear KK
reduction ansatz is

gMN =
(

gμν(�x)φ−1/2(�x) Bμ(�x)φ(�x)
Bμ(�x)φ(�x) φ(�x)

)
, (5.28)

which we can rewrite as

gMN = �−1/3(�x)

(
gμν(�x) Bμ(�x)�(�x)

Bμ(�x)�(�x) �(�x)

)
, (5.29)

redefining the scalar field by φ = �2/3.

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:53:29 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.007

Cambridge Books Online © Cambridge University Press, 2016



94 Kaluza–Klein dimensional reduction

5.6 General properties; symmetries

On a general compact space, the linearized KK ansatz for the off-diagonal components of
the metric is

gμm(�x, �y) = BAB
μ (�x)VAB

m (�y) , (5.30)

where VAB
m (�y) is called a Killing vector, and it has an index in an adjoint of the gauge group

of symmetries of the compact space; A, B are fundamental indices, and BAB
μ is a gauge field.

That means that in general, for each independent Killing vector we get one corresponding
gauge field.

However, since in supergravity we deal with vielbeins instead of metrics, it means we
need to explain what happens to them as well. For vielbeins we also have the local Lorentz
transformations, which we can use to fix part of the vielbein, which has otherwise more
components than the metric. We denote the flat indices with α for noncompact and a for
compact space. We can use the off-diagonal part of the local Lorentz transformations to fix
the gauge Eα

m = 0, thus breaking down the total local Lorentz invariance SO(1, D − 1) to
just SO(1, d − 1) × SO(D − d). Then we have an ansatz for Eα

μ compatible with the ansatz
for gμν , namely

Eα
μ(�x, �y) = eαμ(�x)

[
det Ea

m(�x, �y)

det e(0)a
m (�y)

]− 1
d−2

, (5.31)

whereas for the remaining off-diagonal vielbein we write an ansatz in terms of gauge fields,

Ea
μ(�x, �y) = Bm

μ(�x, �y)Ea
m(�x, �y), (5.32)

Bm
μ(�x, �y) = BAB

μ (�x)VAB
m (�y). (5.33)

Note that the multiplication by Ea
m was needed in order to curve the index on VAB, as it

should be. Finally, for the scalars in Ea
m, there is no general recipe, and we must write an

ansatz on a case by case basis.
On a general product space M4 × Kn, a spinor splits into a spinor on M4 times a spinor

on Kn,

λA(�x, �y) = λI
τ (�x)ηI

i (�y) , (5.34)

where the index I is an index in a spinor representation of the symmetry group G of the
compact space, A = {τ , i} is an SO(1, D − 1) spinor index that splits into τ , a spinor index
on M4 and i, a spinor index on Kn.

Since both in D dimensions and in d dimensions we have the spin-statistics theorem, it
means that both the spinors λA and the spinors λI

τ must be anticommuting. But that in turn
means that necessarily ηI

i (�y) must be commuting spinors.
On spaces with symmetries, the ηI

i (�y) are so-called “Killing spinors”, which are a sort of
square root of the Killing vectors.

The Killing vectors (so named after Wilhelm Killing) satisfy the equation

D(μVAB
ν) = 0 , (5.35)

where the covariant derivative uses the background metric on the compact space Kn.
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95 5.6 General properties; symmetries

The Killing spinors on a sphere satisfy

Dμη
I
i = c(γμη

I)i ≡ ceαμ(γαη
I)i , (5.36)

where c is a constant.
Moreover, on a sphere, the Killing vectors and the Killing spinors are related by

VAB
μ = η̄Iγμη

J(γ AB)IJ , (5.37)

since the gamma matrices (γ A)IJ relate vector (A) and spinor (I) indices.
But how do we define Killing spinors more generally? To do so, we note that for

4-dimensional N = 1 supergravity, we had δsusyψμ = Dμε, and moreover, the γμ term is
also present in the supersymmetry transformation law of the gravitino in certain cases of
reduction of higher dimensional supergravities.

It then follows that the more general definition of the Killing spinor is of a spinor that
preserves some supersymmetry,

δsusyλA(�x, �y) = 0. (5.38)

This condition in general will imply a condition of the type

Dμη
I = (fields× γ matrices)μ|bgrη

I , (5.39)

and in turn that means that we will use a KK reduction ansatz of the type (5.34). That is, we
keep only as many spinors as there are Killing spinors. The reason is that, since they will
preserve supersymmetry, by the susy algebra they will be massless because {Q, Q} ∼ H,
thus Q|0〉 = 0 ⇒ H|0〉 = 0, whereas other states will be massive. Since in the KK
reduction we are supposed to keep all the massless modes, the above ansatz follows.

We will see that in general we can construct all the “massless spherical harmonics”
from Killing spinors, therefore the Killing spinors are good basis objects for describing the
compact space.

Symmetries

On a torus, all the fields of the same spin (scalars, vectors, antisymmetric tensors) group
into multiplets of some global symmetry group G (which symmetry group is, however, not
obvious a priori, without knowing the theory we are KK reducing).

If we now compactify the same theory on a nontrivial space Kn of the same dimension-
ality as the torus above, for instance the sphere Sn, the abelian Killing spinors (i.e. trivial,
Vm = 1) of the torus will change into nonabelian Killing spinors of some gauge group
H ⊂ G, therefore the abelian vector fields in a representation of the global group G from
the torus case now re-group as nonabelian fields of part or all of G, that is, we are gauging
the global symmetry (making it local).

Important concepts to remember

• In KK reduction, we consider a product space MD = Md × Kn.
• There are three KK metrics: the background metric, the KK expansion, and the KK

reduction ansatz.

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:53:29 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.007

Cambridge Books Online © Cambridge University Press, 2016



96 Kaluza–Klein dimensional reduction

• The background metric is a solution of the product space type, the KK expansion is a
generalization of the Fourier expansion, which is always valid, and the KK reduction
ansatz means truncation to only one mode, and is a priori valid only at the linearized
level.

• The KK expansion is in terms of spherical harmonics, which are eigenfunctions of the
Laplacean on the compact space.

• On the torus, the spherical harmonics are just products of Fourier mode exponentials,
and the fields split into fields of different d-dimensional spin, according to the split
M = (μ, m).

• The truncation to the zero modes (KK reduction) is a priori inconsistent at the nonlinear
level, i.e. it could happen not to satisfy the D-dimensional equations of motion.

• On a torus, or if we have some global symmetry group G, and keep ALL the singlets
under the symmetry, the linear KK reduction is consistent.

• Sometimes, a nonlinear redefinition of fields, or equivalently a nonlinear KK reduction
ansatz from the beginning, will turn a reduction ansatz consistent.

• In the original KK ansatz, the truncation φ = 1 is inconsistent.

• To get the EH action in d dimensions, we redefine gμν by [det gmn/ det g(0)
mn]−1/(d−2), and

for the vielbein Eα
μ by [det ea

m/ det e(0)a
m ]−1/(d−2).

• The off-diagonal metric gives a gauge field for each Killing vector, gμm = BAB
μ VAB

m , or
Ea
μ = BAB

μ VAB
m Ea

m.

• Spinors are expanded into d-dimensional spinors times Killing spinors λA = λI
τ η

I
i .

• Killing spinors preserve some supersymmetry.

References and further reading

For the Kaluza–Klein approach to supergravity, see [16]. For more details, see for instance
[36] and references therein.

Exercises

1. For a 4-sphere, the Euclidean embedding coordinates YA are scalar spherical harmon-
ics, satisfying YAYA = 1 (and so YAD(0)

μ YA = 0, D(0)
μ YAD(0)

ν YA = g(0)
μν .) Prove then

that

εA1...A5 dYA1 ∧ dYA2 = 3
√

g(0)εμνρσdxμ ∧ dxν∂ρY [A3∂σYA4 YA5]. (5.40)

2. For the original KK metric

gMN = φ−1/3
(

gμν Bμφ

Bμφ φ

)
, (5.41)

prove that gμν is the metric in an Einstein frame.

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:53:29 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.007

Cambridge Books Online © Cambridge University Press, 2016



97 5.6 General properties; symmetries

3. Prove that if gμm(x, y) = BAB
μ (x)VAB

m (y) and we choose the general coordinate
transformation with parameter

ξm(x, y) = λAB(x)VAB
m (y) , (5.42)

then the transformation with parameter λAB(x) is the nonabelian gauge transformation
of BAB

μ . Note: Use the fact that VAB = VmAB∂m satisfies the nonabelian algebra.
4. Let YA be six Cartesian coordinates for the 5-sphere S5. Then YA are vector spherical

harmonics and YA1...An = Y (A1 . . . YAn) − traces is a totally symmetric traceless spher-
ical harmonic (i.e. YA1...AnδAmAp = 0, ∀ 1 ≤ m, p ≤ n). Check that, as polynomials
in 6d, YA1...An satisfy �6dYA1...An = 0. Expressing �6d in terms of �S5 and ∂r (where
YAYA ≡ r2), check that YA1...An are eigenfunctions with eigenvalues −k(k+5−1)/r2.

5. Dimensionally reduce an 11-dimensional Maxwell-type 3-form gauge field AMNP on
a 7-torus T7, down to four dimensions.

6. Show that starting with a Euclidean Lagrangean

L = 1

2
(∂μφ)2 + 1

2
m2φ2 + λφ3 , (5.43)

for which the bulk 3-point function is equal to λ, and doing a transformation φ =
φ̃ + aφ̃2, we obtain the same bulk 3-point function, but also get a boundary 3-point
function contribution.
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6 Black holes and p-branes

6.1 The Schwarzschild solution: metric, horizon, black holes

The Schwarzschild solution (1916)

The Schwarzschild solution is a solution to the Einstein equation without matter (Tμν = 0),
namely

Rμν − 1

2
gμνR = 0. (6.1)

It is in fact the most general solution of Einstein’s equation with Tμν = 0 and spher-
ical symmetry, which is a theorem of Birkhoff from 1923. It means that by general
coordinate transformations we can always bring the metric, in the case of spherical sym-
metry and no matter, to this form. In this subsection, we deal only with four spacetime
dimensions.

To find a solution, without using the full power of general relativity, we will take a
detour to understand its Newtonian limit. For Newtonian gravity, the local form of Gauss’
law is

�∇2UNewton = 4πGNρm, (6.2)

where ρm is the density of matter. In Exercise 7 of Chapter 4 we saw that the quadratic
action for perturbations coming from the Einstein–Hilbert action is the Fierz–Pauli action.
In the de Donder gauge, the equation of motion is ∂2

ρ h̄μν = 0, which means that the
gauge-fixed form of the action is (remember that gμν = ημν + κNhμν)

LFP,g.f. = 1

2
(∂ρ h̄μν)2. (6.3)

The nonrelativistic energy-momentum tensor (dust matter) is Tμν =diag(ρ, p, p, p) with
p � 0. For a static, spherically symmetric solution, we expect only h00 and h11 = h22 =
h33 ≡ hii to be nonzero. On the other hand, h̄μν = hμν − hημν/2 (h = ημνhμν), so
h̄00 = (h00 + 3hii)/2 and h̄ii = 3/2(h00 − hii). Then the Einstein equation with matter,
component ii, gives �h00 = �hii, and then the Einstein equation component 00, becomes
in the static case

�∇2(κNh00) = −8πGNρ, (6.4)
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99 6.1 The Schwarzschild solution: metric, horizon, black holes

which means that in the Newtonian limit we can identify

κNh00 = −2UNewton = κNhii. (6.5)

Therefore for weak fields κNhμν ! 1 and nonrelativistic, v ! 1, we can always put the
metric in the form

ds2 � −(1+2UN)dt2+ (1−2UN)d�x2 = −(1+2UN)dt2+ (1−2UN)(dr2+r2d�2
2). (6.6)

Consider now the case of a pointlike source, ρ = Mδ3(x), so

�UNewton = 4πGNMδ3(x) ⇒ �κNh00 = −8πGNMδ3(x). (6.7)

The solution is

κNh00 = κNhii = −2UN = +2MGN

r
, (6.8)

which means that g00 = −(1 − 2MGN/r), which becomes 0 at r = 2MGN , meaning it is
an apparent singularity. But then we should see this behavior also in the spatial part of the
metric. As it stands, gii = 1 + 2MGN/r does not have it, but 1/(1 − 2MGN/r) does, and
both have the same weak field limit.

In fact, the correct Schwarzschild metric is

ds2 = −
(

1 − 2MGN

r

)
dt2 + dr2

1 − 2MGN
r

+ R2d�2
2. (6.9)

Of course, this metric has a source at r = 0, which is how we find the solution from
the Newtonian approximation. But the point is that if the space is empty at r ≥ r0, with r0

some arbitrary value, and is spherically symmetric, Birkhoff’s theorem says that we should
obtain the Schwarzschild metric for r ≥ r0 (and maybe a modified solution at r ≤ r0).

But the solution apparently becomes singular at rH = 2MG > 0, so it would seem that
it cannot reach its source at r = 0? This would be a paradoxical situation, since then what
would be the role of the source? It would seem as if we do not really need a point mass to
create this metric.

If the Schwarzschild solution is valid all the way down to r = rH (not just to some
r0 > rH which is the case for, let us say, the gravitational field of the Earth, in which case
r0 is the Earth’s radius), then we call that solution a Schwarzschild black hole. We call
r = rH the event horizon of the black hole. In general a black hole is a solution that has an
event horizon, whose properties we now study.

First, let us investigate the propagation of light, which is the fastest possible signal. If
light propagates radially (along dθ = dφ = 0), its propagation on ds2 = 0 implies

dt = dr

1 − 2MGN
r

. (6.10)

This means that near rH we have

dt � 2MGN
dr

r − 2MGN
⇒ t � 2MGN ln(r − 2MGN) →∞. (6.11)

In other words, from the point of view of an asymptotic observer, who measures coordi-
nates r, t (since at large r, ds2 � −dt2 + dr2 + r2d�2

2), it takes an infinite time for light to
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100 Black holes and p-branes

reach rH . And conversely, it takes an infinite time for a light signal from r = rH to reach
the observer at large r. That means that r = rH is cut-off from causal communication with
r = rH . For this reason, r = rH is called an “event horizon.” Nothing can reach, or escape
from the event horizon in finite time.

Observation: However, quantum mechanically, Hawking proved that black holes radiate
thermally, thus thermal radiation does escape the event horizon of the black hole. We will
understand this better in a later chapter.

But is the event horizon of the black hole singular or not?
The answer is actually NO. In gravity, the metric is not gauge invariant, it changes under

coordinate transformations. The appropriate gauge invariant (general coordinate trans-
formations invariant) quantity that measures the curvature of space is the Ricci scalar R,
as we saw. One can calculate it for the Schwarzschild solution (we will not do it here) and
one obtains that at the event horizon

R ∼ 1

r2
H

= 1

(2MGN)2
= finite! (6.12)

Since the curvature of space at the horizon is finite, an observer falling into a black hole
does not feel anything special at r = rH , other than a finite curvature of space creating
some tidal force pulling him apart with finite strength.

So for an observer at large r, the event horizon looks singular, but for an observer falling
into the black hole it does not seem remarkable at all. This shows that in general relativ-
ity, more than in special relativity, different observers see apparently different events. For
instance, in special relativity, synchronicity of two events is relative, which is still true in
general relativity, but now there are more examples of relativity.

An observer at fixed r close to the horizon sees an apparently singular behavior: if dr =
0, d� = 0, then

ds2 = − dt2

1 − 2MGN
r

= −dτ 2 ⇒ dτ = √−g00dt = dt√
1 − 2MGN

r

, (6.13)

thus the time measured by that observer becomes infinite as r → rH , and we get an infi-
nite time dilation: an observer fixed at the horizon is “frozen in time” from the point
of view of the observer at infinity. Of course, a freely falling observer sees that he
falls through the event horizon in a finite time (nothing special happens for him as he
falls through the event horizon), but from the point of view of the observer at infin-
ity, it takes an infinite time for the freely falling observer to pass through the event
horizon.

6.2 Continuation inside the horizon; global structure

Since there is no singularity at the event horizon, it means that there must exist coordinates
that continue inside the horizon, and there are indeed. The first such coordinates were
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101 6.2 Continuation inside the horizon; global structure

found by Eddington (in 1924) and Finkelstein (in 1958). So Finkelstein rediscovered them
34 years later, without being aware of Eddington’s work, which shows that the subject
of black holes was not so popular back then. In fact, it was only in the 1960s it started
becoming popular. The Eddington–Finkelstein coordinates, however, do not cover all the
geometry.

The first set of coordinates that cover all the geometry was found by Kruskal and
Szekeres in 1960, and they give maximum insight into the physics, so we will describe
them here.

One first introduces the “tortoise” coordinates r∗ by imposing

dr

1 − 2MGN
r

= dr∗ ⇒ r∗ = r + 2MGN ln

(
r

2MGN
− 1

)
, (6.14)

which gives the metric

ds2 =
(

1 − 2MGN

r

)
(−dt2 + dr2∗) + r2(r∗)d�2

2. (6.15)

Next one introduces the null (lightcone) coordinates considered by Eddington and Finkel-
stein,

u = t − r∗; v = t + r∗, (6.16)

such that light (ds2 = 0) travels at u= constant or v= constant. Finally, one introduces
Kruskal coordinates,

ū = −4MGNe
− u

4MGN ; v̄ = +4MGNe
v

4MGN . (6.17)

Then the region r ≥ 2MGN becomes −∞ < r∗ < +∞, thus −∞ < ū ≤ 0, 0 ≤ v̄ < +∞.
But the metric in Kruskal coordinates is

ds2 = −2MGN

r
e
− r

2MGN dūdv̄ + r2d�2
2, (6.18)

where r stands for the implicit r(ū, v̄). This metric is nonsingular at the horizon r = 2MGN ,
and thus can be analytically continued for general values of ū, v̄, covering all the real line
ū, v̄ ∈ R, having four quadrants (I–IV) instead of one (I)! The only obstruction to the (ū, v̄)
covering all R

2 is the r = 0 singularity.
We can find the relation between ū, v̄, and r that is valid generally, since from the

definitions of ū, v̄, we have

− ūv̄

(4MGN)2
= e

v−u
4MGN = e

r∗
2MGN = e

r
2MGN

(
r

2MGN
− 1

)
. (6.19)

This means that the r = 0 singularity (restricting the (ū, v̄) space) corresponds to ūv̄ =
(4MGN)2.

The resulting Kruskal diagram, or diagram in Kruskal coordinates t̄, r̄, where ū = t̄ − r̄,
v̄ = t̄ + r̄, is given in Fig. 6.1. The diagonal lines ū = 0 and v̄ = 0 separate the four
quadrants, with the original quadrant (I) being ū ≤ 0, v̄ ≥ 0. The r = 0 singularity
corresponds to ūv̄ = (4MGN)2, i.e. t̄2 − r̄2 = (4MGN)2.
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102 Black holes and p-branes

�Figure 6.1 Kruskal diagram of the Schwarzschild black hole.

The Penrose diagram can be obtained from (6.18). Since modulo the conformal factor,
we just have the flat space ds2 = dūdv̄, the Penrose diagram is a subset of the diagram of
2-dimensional flat space, which as we saw in Chapter 2 is a diamond, restricted by the two
t̄2− r̄2 = (4MGN)2 lines. We make the transformations (2.48), modified by a 4MGN factor,
i.e.

ū = 4MGN tan ũ+; v̄ = 4MGN tan ũ−; ũ± = τ ± θ

2
. (6.20)

Then the lines corresponding to the r = 0 singularity are

1 = tan
τ + θ

2
tan

τ − θ

2
= sin2(τ/2) − sin2(θ/2)

1 − sin2(τ/2) − sin2(θ/2)
, (6.21)

i.e. sin2(τ/2) = 1/2, thus τ = ±π/2, whereas the maximum value for τ (obtained for
θ = 0) is |τ | = π . The resulting Penrose diagram is given in Fig. 6.2a. It has two causally
disconnected (by two event horizons) asymptotic regions (left and right), and an r = 0
singularity shielded by an event horizon in the future (up) and past (down). The Penrose
diagram of a physical black hole, obtained from a collapsing star, is given in Fig. 6.2b. It
has no singularity in the past, and otherwise has only one asymptotic region (right) and one
horizon.

6.3 Solutions with charge; solutions inside AdS space

One can add also a point electric charge to the Schwarzschild black hole at the same point
as the mass, thus obtaining the Reissner–Nordstrom black hole. We thus require the electric
field

Frt = Q

4πε0r2
⇒ At = − Q

4πε0r
. (6.22)
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103 6.3 Solutions with charge; solutions inside AdS space

a) b)

�Figure 6.2 a) Penrose diagram of the eternal Schwarzschild black hole (time independent solution). The dotted line gives the
completion of the Penrose diagram of flat 2-dimensional (Minkowski) space; b) Penrose diagram of a physical black
hole, obtained from a collapsing star (the curved line). The dotted line gives the completion of the Penrose diagram of
flat d > 2-dimensional (Minkowski) space.

Then the energy-momentum tensor is

Tμν = FμρFν
ρ − 1

4
gμνFρσFρσ ⇒

Ttt = (Frt)
2grr − 1

2
(Frt)

2grr � 1

2

Q2

(4πε0)2r4
, (6.23)

where in the last equality for Ttt we use the background gμν � ημν , valid for the first
order solution. Then the equation of motion in the Newtonian approximation, (6.7), gets
modified to

�UN = 4πGN

(
Mδ3(x) + Q2

(4πε0)22r4

)
. (6.24)

But since

�∇2 1

r2
=

(
d2

dr2
+ 2

r

d

dr

)
1

r2
= 2

r4
,

�∇2 1

r
= −4πδ3(x), (6.25)

we have the solution

UN = −MGN

r
+ Q2GN

4πε2
04r2

. (6.26)

But we saw that 2UNewton = −κNhtt in the Newtonian approximation, and in the full
solution the same appears in the denominator in grr. Therefore the full Reissner–Nordstrom
solution is
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104 Black holes and p-branes

ds2 = −
(

1 − 2MGN

r
+ Q2GN

8πε2
0r2

)
dt2 + dr2

1 − 2MGN
r + Q2GN

8πε2
0 r2

+ r2d�2
2,

Frt = Q

4πε0r2
. (6.27)

This solution also has an event horizon, where again gtt = 0 and grr = ∞, so
1 − 2MGN/r + Q2GN/8πε2

0r2 = 0. In the following we put GN = 1 for simplicity,
and GN can be reintroduced by dimensional analysis, and we write Q̃2 = Q2/8πε2

0 . The
event horizon is then at

r = r± = M ±
√

M2 − Q̃2, (6.28)

thus now we have two horizons instead of one, and the metric can be rewritten as

ds2 = −�dt2 + dr2

�
+ r2d�2

2; � =
(

1 − r+
r

) (
1 − r−

r

)
,

Q̃ = √
r+r−; M = r+ + r−

2
. (6.29)

However, if M < Q̃, there is no horizon at all, as we can see from (6.28), just a “naked
singularity” at r = 0, i.e. the singularity is not covered by a horizon. This is believed
to be excluded on physics grounds: there are a number of theorems saying that naked
singularities should not occur under certain very reasonable assumptions. Therefore we
must have M ≥ Q̃, which is called the Bogomolnyi–Prasad–Sommerfield bound, or BPS
bound. In supersymmetric theories (with the Reissner–Nordstrom solution embedded in
them), this is the same bound that is obtained from the susy algebra, for the mass to be
greater than the central charge of the algebra.

The case of saturation of the bound, M = Q̃, is special as we saw in the case of the susy
algebra. In this “extremal black hole” case, we obtain the solution

ds2 = −
(

1 − M

r

)2

dt2 +
(

dr

1 − M
r

)2

+ r2d�2
2, (6.30)

and by a change of coordinates r = M + r̄ we get

ds2 = − 1(
1 + M

r̄

)2
dt2 +

(
1 + M

r̄

)2

(dr̄2 + r̄2d�2
2). (6.31)

Here

H = 1 + M

r̄
(6.32)

is a harmonic function, i.e. it satisfies

�(3)H = −4πMδ3(r). (6.33)

We see that the extremal solutions are defined by a harmonic function in three dimensions.
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105 6.4 Black holes in higher dimensions

There is a simple generalization to solutions with both electric and magnetic charge,

Frt = Q̃e√
2πr2

; Fθφ = Qm sin θ , (6.34)

where in the metric we replace Q̃2
e by

Q2 = Q̃2
e + Q2

m. (6.35)

One can put the Reissner–Nordstrom black hole inside an Anti-de Sitter space as
well as follows. The Anti-de Sitter space metric can be written as (2.81) in a form
parameterized in the same way as the black hole metric, in terms of a function �. There-
fore the AdS-Reissner–Nordstrom solution is obtained by combining the � of the two,
giving

ds2 = −�dt2 + dr2

�
+ r2d�2

2; � ≡ 1 − 2MGN

r
+ Q̃2GN

r2
− 8πGN�r2

3
. (6.36)

The only other parameter one can add to a black hole is the angular momentum J, in which
case, however, the metric is quite complicated. There are so-called “no hair theorems” stat-
ing that black holes are characterized only by Q, M, and J (any other charge or parameter
would be called “hair” of the black hole).

6.4 Black holes in higher dimensions

Electromagnetism in D dimensions

In three spatial dimensions, the local form of Gauss’ law is

�∇ · �E = ρ

ε0
. (6.37)

The electric field of a point charge is obtained by integrating it over a ball B3 with a sphere
S2 at its boundary and using the Stokes theorem,∫

B3
dV �∇ · �E =

∫
B3

dV
ρ

ε0
= Q

ε0

=
∫

S2(R)
d�S · �E = vol(S2)R2E(R), (6.38)

where vol(S2) is the area of the 2-sphere, 4π . Therefore the electric field is

E(R) = Q

vol(S2)ε0R2
= Q

4πε0R2
. (6.39)
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106 Black holes and p-branes

We can easily generalize this to d spatial dimensions (D = d+1 spacetime dimensions).
The local Gauss’ law is the same (6.37). Integrating it, we obtain∫

Bd
dV �∇ · �E =

∫
Bd

dV
ρ

ε0
= Q

ε0

=
∫
∂Bd=Sd−1(R)

d�S · �E = vol(Sd−1)Rd−1E(R), (6.40)

which gives the electric field

E(R) = Q

Rd−1vol(Sd−1)ε0
. (6.41)

But since the volume of the sphere is

vol(Sd−1) ≡ �d−1 = 2πd/2

�(d/2)
, (6.42)

we obtain

E(R) = Q

Rd−1

�(d/2)

2πd/2ε0
. (6.43)

Newtonian gravity in D dimensions

For Newtonian gravity, the local Gauss’ law in D spacetime dimensions is

�∇2UN = 4πG(D)
N ρm. (6.44)

The integrated version in 3+1 dimensions is∫
B3

dV �∇2UN = 4πG(4)
N

∫
B3

dVρm = 4πG(4)
N M

=
∫

S2(R)
d�S · �∇UN = vol(S2)R2|�g(R)|. (6.45)

We have for the gravitational force �F = −m �∇UN , which gives for the gravitational
acceleration (the equivalent of the electric field)

|�g(R)| = G(4)
N M

r2
. (6.46)

Before generalizing, we relate G(D)
N with G(4)

N under KK compactification. For KK com-

pactification, with the product metric on M4 × Kn (D = 4 + n), we have
√

g(D) =√
g(4)

√
g(n). Substituting in the D-dimensional Einstein–Hilbert action,

S = 1

16πG(D)
N

∫
dDx

√
−g(D)R(D), (6.47)

and integrating over Kn, we obtain

1

G(4)
N

=
∫

dnx

√−g(n)

G(D)
N

= V (n)

G(D)
N

, (6.48)
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107 6.4 Black holes in higher dimensions

which gives

G(D)
N = G(4)

N V (n). (6.49)

Then G(D)
N has dimensions of [G(D)

N ] = LD−2 and we have 1/(8πG(D)
N ) = [M(D)

Pl ]D−2 and

κN =
√

8πG(D)
N .

The integrated version of Gauss’ law for gravity in d space dimensions (D = d + 1) is
now ∫

Bd
dV �∇2UN = 4πG(D)

N

∫
Bd

dVρm = 4πG(D)
N M

=
∫
∂Bd=Sd−1(R)

d�S · �∇UN = vol(Sd−1)Rd−1|�g(R)|. (6.50)

Then the gravitational acceleration is

|�g(R)| = 4πG(D)
N �((D − 1)/2)M

2π
D−1

2 RD−2
= �((D − 1)/2)

2[M(D)
Pl ]D−22π

D−1
2

M

RD−2
, (6.51)

and the gravitational potential is

UN(R) = − 4πG(D)
N

(D − 3)vol(SD−2)

M

RD−3
= −2π

3−D
2 �((D − 1)/2)

D − 3

MG(D)
N

RD−3

= − �((D − 1)/2)

4π
D−1

2 (D − 3)[M(D)
Pl ]D−2

M

RD−3
≡ −C(D)G(D)

N M

RD−3
. (6.52)

Black hole solutions

The Schwarzschild solution is then

ds2 = −(1 + 2UN)dt2 + dr2

1 + 2UN
+ r2d�2

D−2

= −
(

1 − 2C(D)G(D)
N M

rD−3

)
dt2 + dr2

1 − 2C(D)G(D)
N M

rD−3

+ r2d�2
D−2. (6.53)

To obtain the Reissner–Nordstrom solution, we use Ftr(r) = E(r) in (6.43) in the energy
momentum tensor:

Tμν = − 2√−g

δ

δgμν

∫
dDx

√−g

(
−1

4
FμνFμν

)
= FμρFν

ρ − 1

4
gμνFρσFρσ . (6.54)

The tt component is

Ttt = (Frt)
2grr − 1

2
(Frt)

2grr � 1

2
(Ftr)2 = Q2

2(�D−2ε0)2r2(D−2)
, (6.55)

giving the equation

�UN = 4πG(D)
N

[
MδD−1(x) + Q2

2(�D−2ε0)2r2(D−2)

]
. (6.56)
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108 Black holes and p-branes

From

�∇2 1

r2(D−3)
=

(
d2

dr2
+ D − 2

r

d

dr

)
1

r2(D−3)
= 2(D − 3)2

r2(D−2)
,

�∇2 1

rD−3
= −(D − 3)�D−2δ

D−1(x), (6.57)

we get the potential

UN = − 4π

(D − 3)�D−2

MG(D)
N

rD−3
+ 4π

4(D − 3)2�2
D−2ε

2
0

Q2G(D)
N

r2(D−2)

≡ −C(D)MG(D)
N

rD−3
+ C′(D)Q2G(D)

N

r2(D−3)
. (6.58)

Then we write the metric from −gtt ≡ F(r) = 1 + 2UN(r), as

ds2 = −F(r)dt2 + dr2

F(r)
+ r2d�2

D−2. (6.59)

The solution has two horizons at F(r) = 0, i.e.

1 − 2
C(D)MG(D)

N

rD−3
+ 2

C′(D)Q2G(D)
N

r2(D−3)
= 0, (6.60)

with solutions

(r±)D−3 = C(D)MG(D)
N ±

√
(C(D)MG(D)

N )2 − 2C′(D)Q2G(D)
N . (6.61)

The BPS bound is now

M2 ≥ 2C′(D)

C(D)2G(D)
N

Q2. (6.62)

When the bound is saturated, we have an extremal solution, with

r+ = r− = rH =
[
C(D)MG(D)

N

] 1
D−3 =

[
Q
√

2C′(D)G(D)
N

] 1
D−3

, (6.63)

and F(r) becomes

F(r) =
[

1 −
( rH

r

)D−3
]2

. (6.64)

Then we can define new coordinates r̄ by

rD−3 = r̄D−3 + rD−3
H , (6.65)

which gives

1 −
( rH

r

)D−3 = 1

1 + ( rH
r̄

)D−3
≡ 1

f (r̄)
. (6.66)

We obtain the extremal black hole metric

ds2 = −f (r̄)−2dt2 + f (r̄)
2

D−3 (dr̄2 + r̄2d�2
D−2). (6.67)

The details are left as an exercise (Exercise 6).
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109 6.5 Black holes extended in p spatial dimensions: “p-brane solutions”

We see that for this extremal black hole, there is a horizon only at r̄ = 0, which coincides
with the singularity, and is written in terms of the harmonic function

f (r̄) = 1 +
( rH

r̄

)D−3
, (6.68)

satisfying

�f (r̄) = −4πG(D)
N MδD−1(x). (6.69)

6.5 Black holes extended in p spatial dimensions: “p-brane
solutions”

We can have other generalizations of black holes as well, called “black p-branes.” These
are black holes that extend in p spatial dimensions. The terminology comes from the word
mem-brane which is now called a 2-brane, that is, it extends in two spatial dimensions.

In the absence of charges, the generalization is trivial, and we obtain black
Schwarzschild p-branes. By KK reduction on a p-dimensional torus Tp (flat space with
identifications), the solution should be the Schwarzschild solution. Therefore we have

ds2 = −
(

1 − 2C(D−p)G(D−p)
N M

rD−3−p

)
dt2 + d�x2

p +
dr2

1 − 2C(D−p)G(D−p)
N M

rD−3−p

+ r2d�2
D−2−p. (6.70)

But we have a more interesting generalization, charged extremal p-branes, but not
charged under electromagnetic fields, but rather under antisymmetric tensor fields
Aμ1...μp+1 .

Note that in four dimensions, the only localized extremal p-branes are the black holes.
An extended object can be either a cosmic string (one spatial extension) or a domain wall
(two spatial extensions). However, we will shortly see that, like the extremal Reissner–
Nordstrom black holes, the extremal p-branes are defined by harmonic functions in D −
p − 1 dimensions (the black hole, with p = 0, in D = 4 is defined by a harmonic function
in three dimensions). Thus for a cosmic string, the harmonic function would be in two
dimensions, which is H = ln |z| (z = x1 + ix2), whereas for a domain wall, the harmonic
function would be in one dimension, which is H = 1 + a|x|. In both cases, the harmonic
function increases away from its source, so both the cosmic string and the domain wall
extremal p-brane solutions would affect the whole space. They are therefore quite unlike
black holes, and not quite physical.

But in dimensions higher than four, we can have black hole-like objects extended in
p spatial dimensions that are localized in space (i.e., don’t grow at infinity). These are
the “black p-branes,” charged under a p + 1-form antisymmetric tensor field, and have
complicated metrics described by two harmonic functions. The extremal case is easier to
explain, so we will start with it, and it is described by a single harmonic function.
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110 Black holes and p-branes

In electromagnetism, a static electric charge, i.e. an electron, has only A0 nonzero (the 0
component was called t previously), therefore it is a solution to the action

S =
∫

d4x

[
−F2

μν

4
+ jμAμ

]
, (6.71)

with jμ a delta function source, j0 = Qδ3(x), and the rest zero. Therefore the source term
is

∫
d4xjμAμ = ∫

d4xj0A0, and the Aμ equation of motion gives the electric field of the
electron.

Similarly, we find that an electric p-brane in D dimensions carries electric charge Qp

with respect to the p + 1-form field Aμ1...μp+1 . By analogy with the above, there should be
a source coupling ∫

dDxjμ1...μp+1 Aμ1...μp+1 →
∫

dDxj01...pA01...p. (6.72)

It therefore follows that a source for the A01...p field will be of the type j01...p =
Qpδ

(D−p−1)(x), which is an object extended in p spatial dimensions plus time. The solution
of the source coupling is an object with nonzero A01...p, and indeed the p-brane has such a
nonzero field.

The electric p-brane in the absence of gravity would be a solution to

S =
∫

dDx

[
− 1

2(p + 2)!
F2
μ1...μp+2

+ jμ1...μp+1 Aμ1...μp+1

]
, (6.73)

given by

A01...p = − CpQp

rD−p−3
, (6.74)

where Cp is a constant. Using (6.57), this will satisfy

�(D−p−1)A01...p = [(D − p − 3)�D−p−2Cp]Qpδ
(D−p−1)(x), (6.75)

which allows, for instance, normalizing of the coefficient of Qp to 1, giving

Cp = 1

(D − p − 3)�D−p−2
. (6.76)

When coupling to gravity, this will be a solution to

S = SD(p + 1) + Sp+1

SD(p + 1) = 1

2κ2
N

∫
dDx

√−g

[
R − 1

2(p + 2)!
e−a(p)φF2

(p+2) −
1

2
(∂μφ)2

]
, (6.77)

where, defining p̃ = D − p − 4,

a(p) =
√

4 − 2(p + 1)(p̃ + 1)

p + p̃ + 2
. (6.78)
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111 6.5 Black holes extended in p spatial dimensions: “p-brane solutions”

Note that in this action we also have a scalar φ, called the dilaton. The source term in D
dimensions must include the coupling to gravity of the source term above, i.e.

Ssource =
∫

dDx
√−gjμ1...μp+1 Aμ1...μp+1 , (6.79)

with jμ1...μp+1 a certain delta function localizing it onto p + 1 dimensions, but in fact it
contains a source for the dilaton, as well as for the metric. It is

Sp+1 = Tp+1

∫
dp+1ξ

[
−1

2

√−γ γ ij∂iX
M∂jX

NGMNea(p)φ/(p+1) + p − 1

2

√−γ

− 1

(p + 1)!
εi1...ip+1∂i1 XM1 . . . ∂ip+1 XMp+1AM1...Mp+1

]
. (6.80)

We come back to describing this source term in the next chapter, after describing the
fundamental string action.

There is a BPS bound for the tension Tp = M/Vp (mass per unit p-dimensional volume),
Tp ≥ cpQp, where cp is a numerical constant. At saturation of the bound, we have the
extremal p-brane solution.

The easiest to describe are these extremal solutions, which as we will see are relevant for
string theory. Here, we simply write them down, since deriving them is quite complicated.
Then we want also to describe solutions of D = 10 supergravity theory (a part of which can
be written as (6.80)), that approximates string theory at moderate energies. Their extremal
p-brane solutions are

ds2
string = H−1/2

p (−dt2 + d�x2
p) + H1/2

p (dr̄2 + r̄2d�2
8−p)

= H−1/2
p (−dt2 + d�x2

p) + H1/2
p d�x2

9−p,

e−2φ = H
p−3

2
p ,

A01...p = −1

2
(H−1

p − 1), (6.81)

where Hp is a harmonic function of �x9−p, i.e.

�(9−p)Hp = −[(7 − p)�8−p2Cp]Qpδ
(9−p)(xi); ⇒ Hp = 1 + 2CpQp

r̄7−p
, (6.82)

and the coordinate r̄ is related to r in (6.74) by

r7−p = r̄7−p + 2CpQp, (6.83)

similarly to relation (6.65) for the Reissner–Nordstrom case.
Here ds2

string is known as the “string metric” and is related to the usual “Einstein metric”
defined until now by a conformal factor

ds2
Einstein = e−φ/2ds2

string, (6.84)

and A01...p is some antisymmetric tensor (“gauge”) field present in the 10-dimensional
supergravity theory (there are several), and φ is the “dilaton” field, which is a scalar field
that is related to the string theory coupling constant by gs = e−φ .
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112 Black holes and p-branes

The 10-dimensional gravitational action in the string metric is∫
d10x

√−gstringe−2φR(gstring), (6.85)

and the rescaling by e−φ/2 of the metric is such that it removes the e−2φ factor in front of
R (

√−gstring → e5φ/2√−gEinstein, gμνstringRμν,string → e−φ/2gμνEinsteinRμν,Einstein + . . .).
The black p-brane solutions away from extremality are parameterized by μp = Tp −

cpQp > 0. With respect to the extremal solution, only the metric is modified to

ds2 = H−1/2
p (−f (r)dt2 + d�x2

p) + H1/2
p

(
dr2

f (r)
+ r2d�2

8−p

)
, (6.86)

where

f (r) = 1 − c̃pμp

r7−p
. (6.87)

Important concepts to remember

• The Newtonian limit of general relativity gives ds2 � −(1+2UN)dt2+ (1−2UN)(dr2+
r2d�2).

• The Schwarzschild solution is the most general solution with spherical symmetry and
no sources. Its source is located behind the event horizon.

• The exact solution is ds2 = −(1 + 2UN)dt2 + dr2/(1 + 2UN) + r2d�2.
• If the solution is valid down to the horizon, it is called a black hole.
• Light takes an infinite time to reach the horizon, from the point of view of the far away

observer, and one has an infinite time dilation at the horizon (“frozen in time”).
• Classically, nothing escapes the horizon (quantum mechanically, we have Hawking

radiation).
• The horizon is not singular, and one can analytically continue inside it via the Kruskal

coordinates.
• Black hole solutions with charge (Reissner–Nordstrom) have M ≥ Q̃ and can also be

written in terms of UN only.
• The M = Q̃ solutions (extremal) are defined by a harmonic function and have a collapsed

horizon coinciding with the singularity.
• p-brane solutions without charge are just Schwarzschild black holes extended on a flat

torus.
• p-brane solutions with electric charge are (extremal or not) black hole solutions that

extend in p spatial dimensions. They also carry charge under an antisymmetric tensor
field Aμ1...μp+1 , and are determined by a harmonic function.

• They are obtained from supergravity with a source term for the spacetime fields.

References and further reading

For an introduction to black holes, the relevant chapters in [4] are probably a good starting
point. A very advanced treatment of the topological properties of black holes can be found
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113 6.5 Black holes extended in p spatial dimensions: “p-brane solutions”

in Hawking and Ellis [17]. They also have a good treament of Penrose diagrams, so one
can read that selectively. For an introduction to p-brane solutions of supergravity, see the
review [18]. To understand the usefulness of p-branes, one can look at Tseytlin’s “harmonic
function rule” developed in [19]. To understand the meaning of extremal p-branes, one can
look at the rule for making an extremal solution non-extremal, found in [20].

Exercises

1. Check the transformation from Schwarzschild coordinates to Kruskal coordinates.
2. Verify that the Penrose diagram for an astrophysical black hole (from a collapsing star)

is the one in Fig. 6.2b.
3. Consider the ingoing Eddington–Finkelstein coordinates v and r, with u defined in

(6.16). Show that the metric becomes

ds2 = −
(

1 − 2MG

r

)
dv2 + 2dvdr + r2d�2

2. (6.88)

Similarly, consider the outgoing Eddington–Finkelstein coordinates u and r, with v
defined in (6.16). Show that now the metric becomes

ds2 = −
(

1 − 2MG

r

)
du2 − 2dudr + r2d�2

2. (6.89)

4. Check that H = 1+a/r7−p is a good harmonic function for a p-brane. Check that r = 0
is an event horizon (it traps light).

5. The electric current of a point charge is jμ = Q dxμ
dτ δ

d−1(xμ(τ )). Write an expression for
the p + 1-form current of a p-brane, jμ1...μp+1 .

6. Prove that the change of coordinates

rD−3 = r̄D−3 + rD−3
H (6.90)

takes the extremal black hole metric to

ds2 = −f (r̄)−2dt2 + f (r̄)
2

D−3 (dr̄2 + r̄2d�2
D−2). (6.91)
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7 String theory actions and spectra

String theory is the theory of relativistic strings. That is, not strings like violin strings, but
strings that move at the speed of light. They do not have a compression mode: the energy
density along a string is not a Lorentz invariant, so cannot appear as a physical variable in
a relativistic theory. They only have a vibration mode, unlike, e.g. a massive cosmic string
or a violin string.

However, they can have tension, i.e. energy per unit length, which resists forces pulling
the string apart. The point is that if one stretches the string the energy density stays the
same, just the length increases, thus energy = tension × length.

Because they have tension, the only possible action for a string is the one that minimizes
the area traversed by the string, i.e. the “worldsheet”. We will see that this expectation is
correct. However, before we write the action, we will review what happens for particles,
which is a simpler version of the case of strings.

7.1 Worldline particle action and worldline construction of
Feynman diagrams

The action for a nonrelativistic particle is

S =
∫

dtL =
∫

dt
m�̇x2

2
. (7.1)

The action for a relativistic particle is an action that reduces to the above at small speeds,
namely (here τ is proper time, ds2 = −dτ 2)

S = −m(c2)
∫

dτ ; dτ 2 = −ημνdxμdxν , (7.2)

that is, the mass times the invariant element on the worldline of the particle, i.e. the proper
time along the path of the particle. The action can be rewritten in terms of the position of
the particle, Xμ(τ ), more precisely in terms of Ẋμ ≡ dXμ/dτ , as

S = −m
∫

dτ
√
−ẊμẊνημν . (7.3)

Note that in the nonrelativistic limit we have dτ 2 = dt2 − d�x2/c2 = dt2(1 − v2/c2), so the
action becomes
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115 7.1 Worldline particle action and worldline construction of Feynman diagrams

S = −mc2
∫

dt

√
1 − v2

c2
�

∫
dt

[
−mc2 + mv2

2

]
, (7.4)

as it should.
This action has reparameterization invariance. That is, we can use any parameter τ , not

just the proper time. Under τ ′ = τ ′(τ ), dxμ/dτ = (dxμ/dτ ′)dτ ′/dτ , so the action becomes

S = −mc2
∫

dτ
dτ ′

dτ

√
−ημν dXμ

dτ ′
dXν

dτ ′
. (7.5)

That means the action is indeed reparameterization invariant. Note that the paths are the
same, X′μ(τ ′(τ )) = Xμ(τ ).

The equations of motion of the action in (7.3) are obtained by varying the action,

δS = −m
∫

dτδ

(√
−ẊμẊμ

)
= +m

∫
dτ

d

dτ

⎡
⎣− ημν Ẋμ√

−Ẋρ Ẋρ

⎤
⎦ δXν + δXμm

dXμ

dτ

∣∣∣∣
τf

τi

.

(7.6)
Here we have used −(Ẋμ)2 = −ds2/dτ 2 ≡ 1. The 4-momentum is

pμ = muμ = m
dXμ

dτ
, (7.7)

and in terms of this momentum the equation of motion is the equation of the free particle,

dpμ

dτ
= 0. (7.8)

This of course looks rather trivial, we obtain just the free motion in a straight line.
However, if we write the same action in curved space instead, replacing ημν → gμν ,
we will get the free motion along a geodesic in spacetime. The geodesic equation is then
nontrivial, and can be understood as the interaction of the particle with the gravitational
field. In more general terms, we can say that background fields (like the metric) appearing
in the particle or string actions will give interaction effects.

Coupling the particle to a background charge is done by adding the Aμjμ to the action,
i.e. ∫

dτAμ(Xρ(τ ))

(
q

dXμ

dτ

)
=

∫
d4xAμ(Xρ(τ ))q

dXμ

dτ
δ3(Xρ(τ ))

≡
∫

d4xAμ(Xρ(τ ))jμ(Xρ(τ )). (7.9)

But what is the usefulness of the particle action for quantum field theory?
Let us suppose that we do not know how to do quantum field theory and/or the precise

theory we have. We can then still construct Feynman diagrams, considered as describing
particles propagating in spacetime, for instance as in Fig. 7.1.

To construct such a Feynman diagram, we need:

• The propagator from x to y.
• The vertex factor at x and y: this contains the coupling g, thus it defines a particular

theory.
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116 String theory actions and spectra

�Figure 7.1 Feynman diagram in x space: from x to y we have the particle propagator.

• Rules about how to integrate (in this case,
∫

d4x
∫

d4y). For particles, this is obvious, but
for strings, we need to carefully define a path integral construction. There are subtleties
due to the possibility of overcounting if we use naive integration.

The propagator from x to y for a massless particle can be written as (here � is the kinetic
operator)

〈x|�−1|y〉 =
∫ ∞

0
dτ 〈y|e−τ�|x〉. (7.10)

But now we can use a trick: a massive nonrelativistic particle has the Hamiltonian H =
�p 2/(2m) = �/(2m) (if �p and � live in a Euclidean x space). Using m = 1/2 we get H = �

and therefore we can use quantum mechanics to write a path integral representation of the
transition amplitude:

〈y|e−τH|x〉 =
∫ y

x
Dx(t)e−

1
4

∫ τ
0 dtẋ2

. (7.11)

Since H = �, we use this representation to express the propagator of a massless relativistic
particle in (7.10) as

〈x|�−1|y〉 =
∫ ∞

0
dτ 〈y|e−τ�|x〉 =

∫ ∞

0
dτ

∫ y

x
Dx(t)e−

1
4 Sp , (7.12)

where Sp = ∫ τ

0 dtẋ2 is the massless particle action. We have not met that yet, but we will
see it in the next section.

So the particle action defines the propagator, and to complete the perturbative definition
of the quantum field theory by Feynman diagrams we need to add the vertex rules spec-
ifying the interactions of the theory (for instance, in the V = λφ4 example in Chapter 1
we had a vertex −λ), as well as the integration rules, which in the case of the particle are
trivial.

We do the same for string theory: we define perturbative string theory by defining
Feynman diagrams. We write a worldsheet action that will give the propagator, and then
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117 7.2 First order particle action

interaction rules and integration rules, which unlike the particle case, follow directly from
the consistency of the theory.

7.2 First order particle action

As we saw above, in order to define perturbative quantum field theory we need to define
a worldline action for the particle, but it is not the usual particle action, which is non-
linear in Xs, but rather a quadratic action. To define the propagator, we need an

∫
ẋ2

action. This action is obtained in a first order formalism for the worldine. As usual with
first order formalisms, we need to introduce an extra (auxiliary) field. In this case, it is
the (intrinsic) worldine metric field γττ (τ ), obtained by considering the worldline as an
intrinsic “surface,” not defined by its embedding in spacetime. More precisely, we use the
“vielbein” formalism, and introduce the “einbein” field (since we are in one dimension)
e(τ ) = √−γττ (τ ).

To write down the action in terms of the field Xμ, which from the point of view of the
worldline is a scalar, we use the fact that in one dimension,

√− det γ × γ ττ = e−1(τ ) and√− det γ = e(τ ) are the quantities used to integrate a 2-index tensor and a scalar. Then
the action for the massive particle of mass m can only be

Sp = 1

2

∫
dτ

(
e−1(τ )

dXμ

dτ

dXν

dτ
ημν − em2

)
, (7.13)

up to a relative number, since the first term is the quadratic action for a scalar in curved
spacetime, and the second is a “cosmological constant” term. The action is spacetime
Poincaré invariant and also worldine reparameterization invariant. The reparameterization
transformation (“general coordinate invariance”) is defined by e′(τ ′)dτ ′ = e(τ )dτ , which
immediately leads to invariance of the second term in the action, and to e′−1(τ ′)/dτ ′ =
e−1(τ )/dτ , which leads to invariance of the first term.

To check that the action is indeed the first order form of the action from the previous
section, we write down the equation of motion for e(τ ),

− 1

e2
Ẋ2 − m2 = 0 ⇒ e2(τ ) = − ẊμẊμ

m2
. (7.14)

Substituting in Sp we get

Sp = 1

2

∫
dτ

[
m√
−Ẋ2

Ẋ2 −
√
−Ẋ2

m
m2

]
= −m

∫
dτ

√
−ẊμẊμ ≡ S1, (7.15)

therefore the action Sp in (7.13) is indeed a first order form of the action S1 in the previous
section. It follows that the actions Sp and S1 are classically equivalent, though quantum
mechanically they probably are not.

The action Sp is now much simpler, being only quadratic in the scalar fields Xμ. Also,
now we can take the m → 0 limit of Sp and obtain a nontrivial result,
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Sp,m=0 = 1

2

∫
dτ

(
e−1(τ )

dXμ

dτ

dXν

dτ
ημν

)
, (7.16)

unlike the action S1, when we get zero. The action Sp is also reparameterization invariant,
which as we saw changes e(τ ) to another function e′(τ ′), therefore we can fix a gauge for
this symmetry and set e(τ ) to anything, for instance e(τ ) = 1. In this gauge, the massless
particle action becomes

Sm=0,e=1 = 1

2

∫
dτ

dXμ

dτ

dXν

dτ
ημν , (7.17)

which is the result we used in the previous section, in the calculation of the massless
particle propagator.

For this gauge-fixed action, the equation of motion for Xμ(τ ) is

d

dτ

(
dXμ

dτ

)
= 0, (7.18)

as above. However, we now have to supplement it with a constraint, which is the equation
of motion of e(τ ) (δSp/δe(τ ) = 0), since e(τ ) was set to 1 in this gauge,

− ds2

dτ 2
= dXμ

dτ

dXν

dτ
ημν ≡ T = 0. (7.19)

This is just the statement that the particle is massless, and the constraint is the equivalent
of the Gauss law constraint for electrodynamics in the gauge A0 = 0.

7.3 A relativistic tensionful string: the Nambu–Goto action

We now go back to strings and mimic what we did for particles. A string is an object with
a 1-dimensional spatial extension, so the moving string spans a 1+1-dimensional “world-
sheet” as in Fig. 7.2, parameterized by intrinsic coordinates (σ , τ ), with σ =worldsheet
length and τ = worldsheet time. The spacetime coordinates are now again scalars from the
point of view of the worldsheet, called Xμ(σ , τ ).

Since in the particle case, the second order action was the length of the worldline, with
the mass in front, now the second order action, due to Nambu and Goto, is the area of the
worldsheet, with the tension (mass per unit length) in front, T = 1/2πα′,

S = −T
∫

dA = − 1

2πα′

∫
dA. (7.20)

Here α′ has mass dimension −2, and the area of the string worldsheet is, as we saw in the
general relativity chapter, d2ξ

√− det(γab), where a, b = 1, 2 and {ξa} = (σ , τ ). Therefore
we expect the action to be

S = − 1

2πα′

∫
dσdτ

√− det(γab) = − 1

2πα′

∫ τf

τi

dτ
∫ l

0
dσ

√
−γ11γ22 + (γ12)2. (7.21)
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119 7.3 A relativistic tensionful string: the Nambu–Goto action

�Figure 7.2 String moving in spacetime parameterized by Xμ spans a worldsheetM parameterized byσ (coordinate along the
string) and τ (worldsheet time).

But we need to define the string through an embedding of the worldsheet surface into
spacetime. We start by understanding the familiar case of a spatial 2-dimensional surface
parameterized by ξ i, i = 1, 2, embedded into Euclidean 3-dimensional space with met-
ric ds2 = d�X · d�X. Consider �X(ξ i) as defining the embedding that describes the surface.
Then

d�X = ∂ �X
∂ξ i

dξ i ⇒

ds2 =
(
∂ �X
∂ξ i

· ∂ �X
∂ξ j

)
dξ idξ j ≡ gij(ξ )dξ idξ j, (7.22)

therefore the induced metric (metric induced on the surface by the embedding in flat
space) is

gij(ξ ) = ∂ �X
∂ξ i

· ∂ �X
∂ξ j

. (7.23)

Now let us generalize to the case of embedding a 1+1-dimensional (Minkowskian) sur-
face parameterized by ξa, into a curved spacetime of arbitrary dimension. The embedding
Xμ(ξa) gives

ds2 = gμνdXμdXν = ημν
∂Xμ

∂ξa

∂Xν

∂ξb
dξadξb, (7.24)

leading to the induced metric on the worldsheet, or the “pull-back” of the spacetime metric,

hab(ξa) = ∂aXμ∂bXνgμν(X(ξa)). (7.25)

Finally, the Nambu–Goto action is the area action written not in terms of the intrinsic
metric γab(ξa), but the induced metric hab(ξa),

SNG = − 1

2πα′

∫
dσdτ

√− det(hab(ξ )). (7.26)
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120 String theory actions and spectra

The area written in terms of γab was explicitly reparameterization (general coordinate)
invariant, so we can check that the one written in terms of hab(ξ ) is also reparameterization
invariant, since

hab(ξ ) = gμν
∂Xμ

∂ξ ′c
∂Xν

∂ξ ′d
∂ξ ′c

∂ξa

∂ξ ′d

∂ξb
= hcd(ξ ′)∂ξ

′c

∂ξa

∂ξ ′d

∂ξb
⇒

√
det(hab) =

√
det(h′ab)

∣∣∣∣∂ξ ′∂ξ

∣∣∣∣ . (7.27)

This Nambu–Goto action then has Xμ(ξ ) as the only variable, so it derives the form of
the string worldsheet embedding into spacetime.

7.4 The Polyakov action

We can, however, also write a first order action, just as in the particle case. The action is
called the Polyakov action (since it was discovered by Brink, DiVecchia, Howe, Deser, and
Zumino), and in flat spacetime (gμν = ημν), it is

SP[X, γ ] = − 1

4πα′

∫
dσdτ

√−γ γ ab∂aXμ∂bXνημν . (7.28)

It depends on the intrinsic worldsheet metric γab and the coordinates Xμ(ξa), in which it is
quadratic, unlike the Nambu–Goto action.

The variation of the action with respect to γ ab gives, using δ det(γab)/ det(γab) =
−γabδγ

ab,

δSP = − 1

4πα′

∫
dσdτ

√−γ δγ ab
[
∂aXμ∂bXνημν − 1

2
γab(γ cd∂cXμ∂dXνημν)

]
. (7.29)

Substituting hab = ∂aXμ∂bXνημν into the above, the equation of motion of γ ab is obtained
to be

γab = hab. (7.30)

Then substituting into the Polyakov action, we obtain

hab√−h
= γab√−γ ⇒ SP = − 1

2πα′

∫
dτdσ

√− det(hab) = SNG, (7.31)

thus indeed, the Polyakov action is the first order form of the Nambu–Goto action.
The Polyakov action has the following invariances:

• Spacetime Poincaré invariance.
• Worldsheet diffeomorphism (general coordinate) invariance, defined by two transform-

ations (σ ′(σ , τ ), τ ′(σ , τ )), that give X′μ(σ ′, τ ′) = Xμ(σ , τ ).
• Worldsheet Weyl invariance: for an arbitrary ω(σ , τ ), we have the transformation

X′μ(σ , τ ) = Xμ(σ , τ ); γ ′ab(σ , τ ) = e2ω(σ ,τ )γab(σ , τ ). (7.32)

This gives
√− det γab → e2ω√− det γab, hab → hab.
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121 7.5 Equations of motion, constraints, and quantization in covariant gauge

The Weyl invariance is very important in the following, and is not present in the Nambu–
Goto action. Therefore the Polyakov form is more fundamental. Classically, the two actions
are equivalent, as we saw. But quantum mechanically, they are not.

7.5 Equations of motion, constraints, and quantization in
covariant gauge

Strings have spatial extension, but that means we also need boundary conditions for them.
They can be open, in which case the endpoints of the string are at different points in
spacetime, or closed. The correct boundary conditions can be found by varying the action,
together with the equations of motion.

We first define the worldsheet energy-momentum tensor as usual in a general relativistic
theory, with a conventional factor of 4π in front,

Tab(σ , τ ) ≡ −4π
1√−γ

δSP

δγab
= + 1

α′

(
∂aXμ∂bXμ − 1

2
γ ab∂cXμ∂cXμ

)
. (7.33)

It is conserved as usual, ∇aTab = 0. Then we see that the equation of motion for γ ab is
Tab = 0. But moreover, the Weyl invariance of the action implies that γ abδS/δγ ab = 0
off-shell, thus the energy-momentum tensor is traceless off-shell, Ta

a = 0.
The other equation of motion for SP comes from varying with respect to Xμ, giving by

a partial integration

δXSP = 1

2πα′

∫
dτ

∫ l

0
dσ

√−γ δXμ∇2Xμ − 1

2πα′

∫
dτ
√−γ δXμ∂σXμ

∣∣∣∣
σ=l

σ=0
. (7.34)

The possible boundary conditions come from setting the boundary term to zero. For closed
strings, the boundary condition is

Xμ(τ , l) = Xμ(τ , 0); γab(τ , l) = γab(τ , 0), (7.35)

but also more generally, Xμ(τ , σ + l) = Xμ(τ , σ ), γab(τ , σ + l) = γab(τ , σ ) (periodicity).
For open strings, the boundary condition is either Neumann,

∂σXμ(τ , 0) = ∂σXμ(τ , l), (7.36)

which as we see shortly means that the endpoints of the open string are free and move at
the speed of light, or Dirichlet,

δXμ(τ , 0) = δXμ(τ , l) = 0, (7.37)

which implies that the endpoints of the open string are constrained to be at a fixed point.
We will show that the existence of the Dirichlet boundary condition is related to objects
called D-branes, to be studied in Chapter 9.

The equation of motion for Xμ is found by setting the bulk variation of the action to
zero, giving the wave equation in two dimensions,

∇2Xμ = 0. (7.38)
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122 String theory actions and spectra

We saw that the Polyakov action has three local worldsheet invariances (defined by
arbitrary functions of (σ , τ )): two diffeomorphisms (σ ′(σ , τ ) and τ ′(σ , τ )) and one Weyl
invariance (ω(σ , τ )). That means that we can choose the three independent elements of the
symmetric matrix hab(σ , τ ) (the worldsheet metric) to be anything we want. We should
actually check that we can in fact reach a particular gauge we want, but we will not do it
here. We choose the gauge

hab = ηab =
(−1 0

0 1

)
, (7.39)

usually called the conformal gauge. Then the Polyakov action in flat spacetime
becomes

S = −T

2

∫
d2σηab∂aXμ∂bXνημν . (7.40)

The Xμ equation of motion becomes the 2-dimensional flat space wave equation,

�Xμ =
(

∂2

∂σ 2
− ∂2

∂τ 2

)
Xμ = −4∂+∂−Xμ = 0. (7.41)

Here we define

σ± = τ ± σ ; ∂± = 1

2
(∂τ ± ∂σ ). (7.42)

Then the general solution of the 2-dimensional wave equation is

Xμ(σ , τ ) = Xμ
R (σ−) + Xμ

L (σ+), (7.43)

where we call XR(σ−) the “right-moving mode” and XL(σ+) the “left-moving mode.”
The gauge-fixed Polyakov action in conformal gauge has a residual gauge invariance, a

combination of reparameterization invariance and Weyl invariance called conformal invari-
ance, studied in detail in the next chapter. This is a common feature of gauge theories: just
because we have fixed a number of components using an equal number of arbitrary func-
tions, does not mean that we cannot have an invariance with a restricted dependence on
the (worldsheet, in this case) coordinates. A common such example is the gauge A0 = 0
in electromagnetism, which still allows one to also fix �∇ · �A = 0, obtaining the radiation
gauge. We can immediately check that both the equations of motion (7.41) and the gauge
fixed action are invariant under the “conformal transformations”

σ+ → σ̃+ = f (σ+); σ− → σ̃− = g(σ−), (7.44)

where the functions f and g are arbitrary. Under this transformation, the flat metric on the
worldsheet changes as

ds2 = dσ+dσ− = dσ̃+

f ′
dσ̃−

g′
= (f ′(σ+)g′(σ−))−1dσ̃+dσ̃−, (7.45)

so we see that by combining this diffeomorphism (reparameterization) with a Weyl trans-
formation ds2 → (f ′g′)ds2, we obtain an invariance of the flat metric in conformal
gauge.
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123 7.5 Equations of motion, constraints, and quantization in covariant gauge

Open string endpoints

The Neumann open string endpoints, as we said, move at the speed of light. To see that,
consider the constraints in the conformal gauge. The energy-momentum tensor is

Tab = 1

α′

(
∂aXμ∂bXμ − 1

2
ηab∂cXμ∂cXμ

)
. (7.46)

In components, we have

α′T01 = α′T10 = Ẋ · X′,
α′T00 = α′T11 = 1

2
(Ẋ2 + X′2), (7.47)

where dot means derivative with respect to τ and prime derivative with respect to σ . The
constraints T00 = T11 = 0 become Ẋ2+X′2 = 0. But at endpoints, we have X′μ(σ , τ ) = 0,
so we obtain Ẋ2 = 0. We can write it as dXμdXμ = 0, i.e. motion of the endpoints at the
speed of light.

Closed string modes

For closed strings with periodicity 2π , Xμ(τ , 2π ) = Xμ(τ , 0), so the general solution of
the wave equation for Xμ (on a spatial circle) is a linear function in τ , plus Fourier modes
on the circle. In terms of XL and XR, we have

Xμ
R (τ − σ ) = 1

2
xμ + α′

2
pμ(τ − σ ) + i

√
2α′
2

∑
n �=0

1

n
αμn e−in(τ−σ ),

Xμ
L (τ + σ ) = 1

2
xμ + α′

2
pμ(τ + σ ) + i

√
2α′
2

∑
n �=0

1

n
α̃μn e−in(τ+σ ), (7.48)

such that in total we have

Xμ(σ , τ ) = xμ + α′pμτ + i

√
2α′
2

∑
n �=0

1

n

[
αμn e−in(τ−σ ) + α̃μn e−in(τ+σ )

]
. (7.49)

From the condition that XL and XR must be real, we obtain that xμ, pμ are real, and

α
μ
−n = (αμn )†; α̃

μ
−n = (α̃μn )†. (7.50)

We can also define (in the closed string case)

α
μ
0 =

√
α′
2

pμ = α̃
μ
0 , (7.51)

for later use. In the open string case we have αμ0 = √
2α′pμ.
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124 String theory actions and spectra

Free (Neumann) open string modes

For Neumann open strings, since X′μ|σ=0,π = 0, the most general solution for Xμ is

Xμ(σ , τ ) = xμ + 2α′pμτ + i
√

2α′
∑
n �=0

1

n
αμn e−inτ cos(nσ ), (7.52)

or more succinctly put, we see that we identify αμn = α̃
μ
n in the closed string expansion.

Constraints and Hamiltonian

We saw that the constraints in the conformal gauge are α′T10 = α′T01 = Ẋ · X′ = 0 and
α′T00 = α′T11 = 1/2(Ẋ2 + X′2) = 0. In terms of σ+ and σ−, they are

α′T++ = α′

2
(T00 + T01) = ∂+X · ∂+X = 1

4
(Ẋ + X′)2 = Ẋ2

L,

α′T−− = α′

2
(T00 − T01) = ∂−X · ∂−X = 1

4
(Ẋ − X′)2 = Ẋ2

R, (7.53)

where the last equality in both cases is valid only on-shell. These are called the Virasoro
constraints.

To write down the worldsheet Hamiltonian, we first write the Polyakov action in
conformal gauge as

SP = 1

4πα′

∫
dτ

∫
dσ (Ẋ2 − X′2) =

∫
dτL. (7.54)

Then the worldsheet Hamiltonian is obtained in the usual way, defining first the worldsheet
momentum1

Pμ
τ = δS

δẊμ

= 1

2πα′
Ẋμ, (7.55)

and then

H =
∫ l

0
dσ (ẊμPμ

τ − L) = 1

4πα′

∫ l

0
dσ (Ẋ2 + X′2) = 1

2π

∫ l

0
dσT00. (7.56)

For example, for an on-shell open string, l = π and using the orthonormality of cosines,∫ π

0 dσ cos nσ cos mσ = (π/2)δn+m, we get

H = 1

2

+∞∑
n=−∞

α
μ
−nα

μ
n . (7.57)

For an on-shell closed string, l = 2π and similarly, we get the sum of terms with α
μ
n

and α̃μn ,

H = 1

2

+∞∑
n=−∞

(αμ−nα
μ
n + α̃

μ
−nα̃

μ
n ). (7.58)

In the sum we have included the n = 0 modes defined in (7.51).
We can now expand the constraints in Fourier modes.

1 Note that indeed
∫ π

0 dσPμτ = pμ for the open string, and
∫ 2π

0 Pμτ = pμ for the closed string.
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125 7.5 Equations of motion, constraints, and quantization in covariant gauge

For the closed string,

Lm = 1

2π

∫ 2π

0
dσe−imσT−− = 1

2πα′

∫ 2π

0
dσe−imσ Ẋ2

R = 1

2

+∞∑
n=−∞

α
μ
m−nα

μ
n ,

L̃m = 1

2π

∫ 2π

0
dσe−imσT++ = 1

2πα′

∫ 2π

0
dσe−imσ Ẋ2

L = 1

2

+∞∑
n=−∞

α̃
μ
m−nα̃

μ
n . (7.59)

For the open string, we have

Lm = 1

2π

∫ π

0
dσ

(
eimσT++ + e−imσT−−

) = 1

2π

∫ π

−π
dσeimσT++

= 1

8πα′

∫ +π

−π
dσeimσ (Ẋ + X′)2

= 1

2

+∞∑
n=−∞

α
μ
m−nα

μ
n . (7.60)

We then have

H = L0 open
= L0 + L̃0 closed. (7.61)

The H = L0 = 0 constraint for the open string translates into

M2 ≡ −pμpμ = − α2
0

2α′
= 1

α′
∑
n≥1

α
μ
−nα

μ
n . (7.62)

For the closed string, H = L0 + L̃0 = 0 translates into

M2 ≡ −pμpμ = −α2
0 + α̃2

0

α′
= 2

α′
∑
n≥1

(αμ−nα
μ
n + α̃

μ
−nα̃

μ
n ). (7.63)

On the other hand, the constraint 0 = L0 − L̃0 ≡ Pσ (worldsheet momentum associated
with translational invariance on the closed string, ∂/∂σ : it should be trivial) translates into∑

n≥1

α
μ
−nα

μ
n =

∑
n≥1

α̃
μ
−nα̃

μ
n . (7.64)

Quantization

For the Polyakov action in conformal gauge, the momentum is (7.55).
We then have the equal-time (classical) Poisson brackets for the Polyakov action,

[Xμ(σ , τ ), Xν(σ ′, τ )]P.B. = [Pμ(σ , τ ), Pν(σ ′, τ )]P.B. = 0,
[Pμ(σ , τ ), Xν(σ ′, τ )]P.B. = −δ(σ − σ ′)ημν . (7.65)

From these brackets, substituting the expansion (7.48) for the closed string, we obtain the
Poisson brackets for the coefficients,
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126 String theory actions and spectra

[αμm,ανn ]P.B. = [α̃μm, α̃νn ]P.B. = −imδm+n,0η
μν ,

[ανm, α̃νn ]P.B. = 0,
[pμ, xν]P.B. = ημν . (7.66)

To this, we must add the Virasoro constraints (Ẋ ± X′)2 = 0, with Fourier components
Lm = 0 = L̃m.

To quantize, as usual, we replace the Poisson brackets [, ]P.B. by the commutator −i[, ].
Therefore the basic commutators are

[Xμ(σ , τ ), Xν(σ ′, τ )] = [Pμ(σ , τ ), Pν(σ ′, τ )] = 0,
[Pμ(σ , τ ), Xν(σ ′, τ )] = −iδ(σ − σ ′)ημν . (7.67)

From these we get the commutators for the Fourier coefficients

[αμm,ανn ] = [α̃μm, α̃νn ] = mδm+n,0η
μν ,

[ανm, α̃νn ] = 0,
[pμ, xν] = −iημν . (7.68)

We note that we can redefine the coefficients so they satisfy the creation/annihilation
algebra,

αμm = √
maμm; α

μ
−m = √

ma†μ
m ; m > 0. (7.69)

We must then impose the Fourier modes of the Virasoro constraints Lm = L̃m = 0 on the
physical states. But at the quantum level, we find ordering ambiguities for the constraints
that affect L0, L̃0 (the only ones among (7.59) that contain products of non-commuting
objects) by constants. Specifically, we get (L0 − a)|ψ〉 = (L̃0 − a)|ψ〉 = 0. The analy-
sis of the spectrum will be done when we study quantization in light-cone gauge, in the
next section.

7.6 Quantization in light-cone gauge; the bosonic string spectrum

We have seen that the Polyakov action in conformal gauge is invariant under conformal
transformations (7.44). Then τ̃ = 1/2(σ̃+(σ+) + σ̃−(σ−)) satisfies(

∂2

∂σ 2
− ∂2

∂τ 2

)
τ̃ =

(
∂

∂σ
− ∂

∂τ

)(
∂

∂σ
+ ∂

∂τ

)
τ̃ = −4

∂

∂σ+
∂

∂σ−
τ̃ (σ+, σ−) = 0,

(7.70)
i.e. τ̃ satisfies the same wave equation as Xμ. Therefore, we can make τ̃ equal or
proportional to any of the Xμs on-shell. Defining the light-cone coordinates for spacetime,

X± = X0 ± XD−1

√
2

, (7.71)

and μ = (+−i), we can choose τ̃ = X+/p++ constant, or in other words fix the light-cone
gauge by

X+(σ , τ ) = x+ + p+τ . (7.72)
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127 7.6 Quantization in light-cone gauge; the bosonic string spectrum

This means that classically, the oscillator coefficients for X+, α+n = 0 for n �= 0. We also
obtain that Ẋ+ ± X′+ = p+ and then the Virasoro constraints (Ẋ ± X′)2 = 0 give

Ẋ− ± X′− = (Ẋi ± X′i)2

2(Ẋ+ ± X′+)
= (Ẋi ± X′i)2

2p+
. (7.73)

In terms of Fourier modes, for the open string we have

α−n =
√

2α′
2p+

∑
m∈Z

αi
n−mα

i
m, (7.74)

and for the closed string we also have a similar relation with tildes. For n = 0, we obtain
for the open string

M2 ≡ 2p+p− − pipi = 1

α′
∑
n≥1

αi−nα
i
n. (7.75)

We see that α+n = 0 and α−n is given in terms of αi
n, therefore the only independent

oscillators are αi
n.

Quantization

We first analyze the open string case.
At quantum level, as we mentioned in the previous section, we must care about normal

ordering, since we have ans and a†
ns. As we saw, X+ is gauge fixed, and X− is fixed in

terms of X+ and Xi. Otherwise the quantization follows as in the covariant case for the Xis
(thus for αi

ns). The constraint (7.74) becomes

α−n =
√

2α′
p+

[
1

2

D−2∑
i=1

∑
m∈Z

: αi
n−mα

i
m : −aδn,0

]
, (7.76)

where a is a constant. Now X+ and X− are eliminated from the theory (fixed) and there are
no more constraints left, and we therefore quantize in a physical gauge, in terms of only
independent physical oscillators αi

n.
For n = 0, we obtain the open string light-cone Hamiltonian

H = p− = pipi

2p+
+ 1

2α′p+
(N − a), (7.77)

which in turn gives the mass squared

M2 ≡ 2p+p− − pipi = 1

α′
(N − a). (7.78)

Here N is a kind of number operator,

N =
∑
n≥1

αi−nα
i
n =

∑
n≥1

na†i
n ai

n, (7.79)

n is called the level, and as we can see it counts the contribution of a state with a†i
n to M2.

Therefore the string contains an infinite number of different types of particles made up of
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128 String theory actions and spectra

combinations of the basic particles created by the creation operators a†i
n , and having mass

squared equal to n/α′. As an analogy, we can think of phonons with different frequencies
in a material, except that now the particles are really different, independent of the material
or background they propagate in.

We can readily see that we need the normal ordering constant to be a = 1 in order
to have a vector, with D − 2 physical degrees of freedom, be massless. But the number
operator N appears as usual from the combination (a†i

n ai
n + ai

na†i
n )/2, therefore the normal

ordering constant should actually be

D−2∑
i=1

∑
n≥1

n

2
= D − 2

2

∑
n≥1

n. (7.80)

The infinite sum can be regularized using zeta function regularization. Namely, the zeta
function ζ (s) = ∑

n≥1 1/ns admits an analytical continuation in the complex plane to
s →−1, with ζ (−1) = −1/12. Therefore the constant is actually

a = D − 2

24
, (7.81)

and a = 1 only if D = 26. Hence the consistency of the bosonic string requires that it
lives in 26 dimensions. D = 26 is known as the critical dimension of the bosonic string.
There are other ways to see this, which will not be explained here, for instance requiring
that there is no quantum anomaly for Weyl symmetry and spacetime Lorentz invariance,
but the result is the same.

Bosonic open string spectrum

The vacuum of the open string will be a state with momentum, since the momentum
operator is a zero mode of the string. Therefore the state is |0; �k〉, defined by

p+|0; �k〉 = k+|0; �k〉; pi|0; �k〉 = ki|0; �k〉; αi
m|0; �k〉 = 0, (7.82)

and is therefore tachyonic, since now N|0; �k〉 = 0, so M2 = −1/α′.
A general state is obtained by acting on the vacuum with the creation operators, that is

|N; �k〉 =
[
�D−2

i=1 �n≥1
(a†i

n )Nin√
Nin !

]
|0; �k〉 =

[
�D−2

i=1 �n≥1
(α†i

−n)Nin√
nNin Nin !

]
|0; �k〉. (7.83)

Consider the next state, with N = 1, i.e. only one creation operator, at level 1. The state is
then

a†i
1 |0; �k〉 = α

†i
−1|0; �k〉. (7.84)

It is obviously a vector, but since i runs over only D−2 values, it has the number of on-shell
degrees of freedom of a massless vector. As we indicated, this requires that a = 1.

All the other states are massive, so the only non-massive states of the bosonic open string
are a scalar tachyonic vacuum and a massless vector.
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129 7.7 Strings in background fields

Bosonic closed string spectrum

In the closed string case, the constraints are L0 − a = 0 and L̃0 − ã = 0, and we find the
mass squared operator

M2 = 4

α′
∑
n≥1

(αi−nα
i
n − 1) = 4

α′
∑
n≥1

(α̃i−nα̃
i
n − 1). (7.85)

The normal ordering constant is calculated in the same way as before, and in D = 26
dimensions we again obtain 1 inside the sum. We can now also define Ñ = ∑

n≥1 α̃
i−nα̃

i
n,

besides the same N, and the constraint Pσ = L0 − L̃0 = 0 becomes

N = Ñ ⇒
∑
n≥1

αi−nα
i
n =

∑
n≥1

α̃i−nα̃
i
n. (7.86)

Here Pσ is the translation generator along σ , and the condition that it acts trivially on states
is the condition of translational invariance along the string, σ → σ + a.

We can then write the mass squared operator also as

M2 = 2

α′
∑
n≥1

(αi−nα
i
n + α̃i−nα̃

i
n − 2) = 2

α′
(N + Ñ − 2). (7.87)

The vacuum of the closed string is now also a tachyon |0, 0; �k〉, defined by

p+|0, 0; �k〉 = k+|0, 0; �k〉; pi|0, 0; �k〉 = ki|0, 0; �k〉; αi
m|0, 0; �k〉 = α̃i

m|0, 0; �k〉 = 0, (7.88)

but now with mass M2 = −4/α′. The first excited state has N = Ñ = 1 (since we need
N = Ñ), therefore one level one excitation for both left and right movers. It is

a†i
1 ã†j

1 |0, 0; �k〉 = αi
−1α̃

j
−1|0, 0; �k〉 ≡ |ij〉, (7.89)

and can be decomposed as ((ij)), i.e. a symmetric traceless state, corresponding to the
graviton gij, [ij], i.e. an antisymmetric tensor, called the Bij field, and ii, i.e. the trace,
called the dilaton φ field.

7.7 Strings in background fields

We have written the Polyakov action in flat spacetime, gμν = ημν , and no other fields. The
introduction of a curved spacetime is done by replacing ημν by gμν in the Polyakov action.
But what is the more general interpretation of this procedure?

The theory of both open and closed bosonic strings has a tachyonic vacuum, of
M2 = −1/α′ for open strings and M2 = −4/α′ for closed strings. The associated tachy-
onic field is a scalar, and M2 < 0 means that we are perturbing a potential V(�), where
� is the tachyon field, around a maximum, V(�) � V0 + M2(δ�)2; M2 < 0 instead of
a minimum. It then means that this vacuum will decay to the true vacuum, if such a true
vacuum exists, or otherwise run to minus infinity if there is no vacuum. But this important
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130 String theory actions and spectra

fact is not known for sure, due to the non-perturbative nature of the calculations at large �.
The bosonic string is thus not very well undestood.

Instead, we consider supersymmetric strings in the next section, for which the tachyons
are absent, and the theory is defined in D = 10 spacetime dimensions instead of 26. But
the massless states of the bosonic strings, while they also include other bosonic states,
whose quantum theory is less understood, include the states of the massless closed bosonic
string, the graviton gμν , antisymmetric tensor Bμν , and dilaton φ. These states now form
the vacuum of the supersymmetric string, above which we have modes of increasing mass,
governed by the mass scale 1/

√
α′. Each string mode correponds to a spacetime field of

a given mass. In the low energy limit, which can be thought of as the α′ → 0 limit, these
modes do not contribute, and we are left with a theory for the massless states, which acquire
classical backgrounds with quantum corrections, i.e. VEVs. The way this happens is that
these possible external states of the string theory can be created by “vertex operators”
present in Feynman diagrams. But being massless, they can condense and form classical
backgrounds for gμν , Bμν ,φ.

One can show that the effect of this is to modify the Polyakov action to self-consistently
include interactions with the massless modes of the closed string in flat background,
gμν , Bμν ,φ, and one can derive the form of the modified action. But we can avoid the
derivation and basically guess the answer from the symmetries. We saw that the natural
guess for introducing gμν is via the replacement ημν → gμν , and it is indeed correct.
The field Bμν is antisymmetric, so instead of coupling with

√−γ γ ab∂aXμ∂bXν , it should
couple to the antisymmetric tensor density εab∂aXμ∂bXν , obtaining a term in the action
called a Wess–Zumino term. The scalar dilaton φ should couple to a worldsheet scalar that
vanishes in a trivial case, so the only possibility is with

√−γR(2)(γ ), the 2-dimensional
Einstein action. Finally, the action is

S = − 1

4πα′

∫
d2σ

[√−γ γ ab∂aXμ∂bXνgμν(Xρ) + α′εab∂aXμ∂bXνBμν(Xρ)

−α′√−γR(2)�(Xρ)
]

, (7.90)

where R(2) is the 2-dimensional Ricci scalar, and the quantity

1

4π

∫
d2σ

√−γR(2) = χ (7.91)

is a topological invariant, i.e. a negative integer that counts the number of holes the topol-
ogy of the 2-dimensional surface contains (times −2, specifically, χ = 2(1 − g)). But e−S

then contains e−χ� = (e�)2(g−1). Therefore, the addition of a hole to a worldsheet, which
is interpreted as an extra loop in the quantum interaction of a string, as in Fig. 7.3a, gives a
factor of e2�, prompting the identification of e� with the string coupling constant, gs.

This procedure, of putting the string in a background (“condensate”) of its own ground
state modes, needs a self-consistency condition: the procedure must preserve the original
invariances of the action, specifically Weyl invariance (or conformal invariance, see next
section) at the worldsheet quantum level. Imposing Weyl invariance of the action in fact
turns out to give the equations of motion for gμν , Bμν ,φ, the classical spacetime equations
of motion, plus α′ corrections from string worldsheet quantum loops.
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131 7.8 Supersymmetric strings

b)a)

c)

�Figure 7.3 a) String loop diagram: the vertices are not pointlike, but are spread out, and have a coupling gs; b) In comparison, a
particle loop diagram; c) Basic string interaction: “pair of pants”= vertex for a string to split into two strings.

7.8 Supersymmetric strings

As we saw, the bosonic string has a tachyonic vacuum, and thus is unstable, so we need a
new theory that will have a stable vacuum. Such a theory is found by introducing super-
symmetry. A priori there are two types of supersymmetry that one could introduce, in
spacetime and on the worldsheet of the string, but we will see that they are equivalent pos-
sibilities. The easiest to understand and argue for is the spacetime supersymmetry, since we
want to eliminate the spacetime tachyon field from the theory. This formalism is called the
Green–Schwarz formalism, or the superstring. An argument similar to the argument which
led to D = 26 for the bosonic string, but more complicated, now gives D = 10 (critical
dimension for the superstring) spacetime dimensions for the quantum consistency of the
theory.

The superparticle

To understand it, we first look once again at the particle, and we generalize the first
order action for the particle, (7.16). The generalization is done by introducing objects
θA, A = 1, 2, . . . , N which are N spacetime spinors and worldsheet scalars, i.e. θAα ,
with α a spacetime spinor index in ten dimensions. The bosonic action is written
in terms of the object dXμ/dτ , so we write a supersymmetric generalization for it,
namely

�μ
τ ≡ dXμ

dτ
+ θ̄A�μ dθA

dτ
, (7.92)

which is immediately seen to be invariant under the N spacetime supersymmetry trans-
formations
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132 String theory actions and spectra

δθA = εA,
δθ̄A = ε̄A,
δe = 0,

δXμ = −ε̄A�μθA. (7.93)

Here the �μ are gamma matrices in ten dimensions (for SO(9, 1)), satisfying the Clifford
algebra {�μ,�ν} = 2ημν . A representation for them in terms of gamma matrices of SO(8)
called γ i is

�0 = −iσ2 ⊗ 116; �i = σ1 ⊗ γ i, i = 1, . . . , 8; �9 = σ3 ⊗ 116. (7.94)

Then the generalization of (7.16) is the superparticle action

S = 1

2

∫
dτe−1�μ

τ �τμ. (7.95)

But now this action has an additional fermionic symmetry, called kappa symmetry, with
parameters κAα (N spacetime spinors), given by

δθA = −�μ�μ
τ κ

A,
δXμ = −θ̄A�μδθA,
δe = 4e ˙̄θAκA. (7.96)

The invariance of the action is proven by noting that

δ�μ
τ = −2 ˙̄θA�μδθA ⇒ δ�2

τ = −4 ˙̄θA�μ�
μ
τ δθ

A = 4�2
τ
˙̄θAκA ,

δe−1 = −4e−1 ˙̄θAκA. (7.97)

The superstring

To write the action for the superstring, we want to generalize the Polyakov action (7.28), in
terms of manifestly supersymmetric objects similar to �

μ
τ above, but generalizing ∂aXμ,

not dXμ/dτ . Thus we define

�μ
a ≡ ∂aXμ + θ̄A�μ∂aθ

A, (7.98)

which are manifesly supersymmetric under the same N global supersymmetry transform-
ations

δθA = εA; δθ̄A = ε̄A,
δXμ = −ε̄A�μθA. (7.99)

So the naive guess would be

Skin = − 1

4πα′

∫
d2σ

√−γ γ ab�μ
a �bμ, (7.100)

and is seen to be manifestly supersymmetric under the N global supersymmetries if
δγab = 0.

But now the action does not have kappa symmetry, and this is a very important property
as we shall soon see. So we need to add another term to the action, and when we do so we

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:53:41 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.009

Cambridge Books Online © Cambridge University Press, 2016



133 7.8 Supersymmetric strings

will be able to obtain both supersymmetry and kappa symmetry in ten dimenions only for
N ≤ 2 and for Majorana–Weyl fermions. The action can be written in the general form of
a super-Wess–Zumino term,

SWZ = − 1

4π

∫
d2σεab�M

a �
N
b BMN . (7.101)

As we saw, the bosonic Wess–Zumino form appears when putting the bosonic string in a
background Bμν . Here M = (μ,α) is a superspace index. In flat spacetime Bμν = 0, but
the fermionic components are nonzero. In components, the WZ term in flat spacetime is

SWZ = 1

2πα′

∫
d2σ

[
εab∂aXμ(θ̄1�μ∂bθ

1 − θ̄2�μ∂bθ
2) − εab(θ̄1�μ∂aθ

1)(θ̄2�μ∂bθ
2)
]

.

(7.102)
This WZ term is supersymmetry invariant only for N = 2, since we have only two θs, θ1

and θ2, but one can write an N = 1 invariant action as well.
Then the action Skin + SWZ, called the Green–Schwarz action for the superstring is

also invariant under kappa symmetry with parameter κAaα , i.e. two (A = 1, 2) worldsheet
vectors (a) and spacetime spinors (α), given by

δκθ
A = −2�μ�

μ
a κ

Aa,
δκXμ = −θ̄A�μδθA,

δκ (
√−γ γ ab) = −16

√−γ (Pac− κ̄1b∂cθ
1 + Pac+ κ̄2b∂cθ

2), (7.103)

where we have defined the self-dual and anti-self-dual projection tensors

Pab± = 1

2

(
γ ab ± εab

√−h

)
. (7.104)

We will not prove the supersymmetry and kappa symmetry under the above rules, it is left
as an exercise for the reader (Exercises 5 and 6).

We can impose a gauge condition that fixes kappa symmetry. In terms of the light-cone
gamma matrices

�± = �0 ± �9

√
2

, (7.105)

the condition is given by the condition on the fermions

�+θ1 = �+θ2 = 0, (7.106)

which halves the number of fermionic degrees of freedom.
One can show that by imposing the above light-cone gauge for the fermions, together

with the usual light-cone gauge condition for the bosons, we can write the action in the
equivalent form

Slc = − 1

4πα′

∫
d2σ

[
∂aXi∂aXi + 2α′S̄mγ a∂aSm]

, (7.107)

where now the gauge-fixed worldsheet scalars θAα with α a spacetime spinor index of
SO(9, 1) have been regrouped as a 2-component Majorana worldsheet spinor Sm with m
a spinor index of SO(8) (the little group of SO(9, 1)), and the bar on the spinor in the
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134 String theory actions and spectra

action refers to 2-dimensional conjugation. Therefore the kappa-fixed action has now both
spacetime and worldsheet supersymmetry, and the fermionic variable is a spinor of both
the two worldsheet dimensions and the ten spacetime dimensions.

We can quantize the gauge-fixed GS action, but we cannot quantize covariantly the GS
action for the superstring. For that, one needs to turn to a formalism called the Berkovits
formalism, or pure spinor formalism, that will not be described here.

The gauge fixed Green–Schwarz action coincides with a gauge fixed version of an action
with manifest worldsheet supersymmetry, to be studied next.

The spinning string

One can define another formalism, where the manifest supersymmetry is worldsheet one,
called the Neveu–Schwarz–Ramond (NSR) action, and is sometimes called the spinning
string, since it has internal (i.e. worldsheet) fermionic symmetry. It is written in terms of
fermionic variables, which are now worldsheet spinors, and spacetime vectors, ψμ, and is
given by

S = − 1

4πα′

∫
d2σ

[
∂aXμ∂aXμ + ψ̄μγ a∂aψμ

]
, (7.108)

where the Dirac matrices in 1+1 dimensions are

γ 0 =
(

0 −1
+1 0

)
= −iσ2; γ 1 =

(
0 1
1 0

)
= σ1. (7.109)

The action has worldsheet supersymmetry,

δXμ = ε̄ψμ,
δψμ = γ a∂aXμε. (7.110)

This is the same as the supersymmetry of the 2-dimensional Wess–Zumino model that we
studied, for each μ value (δφ = ε̄ψ , δψ = ∂/φε).

When varying the action, besides the bulk term giving the equations of motion, and the
usual bosonic boundary term, we also get a fermionic boundary term (in the open string
case):

ψ+δψ+ − ψ−δψ−|π0 . (7.111)

This means that we have to impose the boundary conditions ψ+ = ±ψ−. We can put
ψ
μ
+(0, τ ) = ψ

μ
−(0, τ ) by redefining the fermions with a possible minus sign, but then we

have two possibilities at the other endpoint:

ψ+(π , τ ) = ±ψμ
−(π , τ ). (7.112)

The condition with a + sign is called the Ramond (R) boundary condition, and leads to
spacetime fermionic states, and the condition with a − sign is called Neveu–Schwarz (NS)
boundary condition, and leads to spacetime bosonic states. In the case of the closed strings,
we can independently put these boundary conditions for the left and right moving states,
leading to NS–NS, R–R, NS–R and R–NS states, the first two being bosonic and the last
two fermionic.
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135 7.9 Supergravities in theα′ → 0 limit and the duality web

In a light-cone gauge, the equivalence of the NSR action with the GS action is due to
the equivalence of the vector representation 8V of SO(8), to which ψ i, the physical NSR
fermions belong, and the spinor representation 8S or 8′S of SO(8), to which Sm belongs. The
equivalence of the three basic representations of SO(8), 8S, 8′S, and 8V is called triality and
is characteristic to SO(8).

One thing we have not addressed until now is the chirality of the spacetime spinors θA

in the Green–Schwarz formulation. For closed string theories, we have N = 2 supersym-
metry, and we can choose the same chirality for both spinors θA, in which case we obtain
the type IIA theory, or opposite chirality, in which case we obtain the type IIB theory. In
the case where we also have open strings interacting with closed strings (we cannot have
only open strings, since open strings can close and form a closed string), the theory has
N = 1 supersymmetry, and open strings can have Yang–Mills indices associated with the
endpoints, as we see in Chapter 9. This theory is called type I theory, and has gauge group
SO(32). We can also have a theory, called heterotic, that comes in two types corresponding
to different gauge groups, SO(32) and E8 × E8.

Type IIA string theory at strong coupling, gs = e<φ> → ∞, is called M-theory, and in
this limit it becomes 11-dimensional, with the radius R of the 11th dimension being = gs

in string units, as we will see in the next subsection. About M-theory most of the known
facts refer to its low energy, but it does not have a good (perturbative or non-perturbative)
definition.

The NS–NS sector is common to all the string theories, and contains in the massless
sector the (gμν , Bμν ,φ) fields already discussed. The NS–R and R–NS sectors contain
fermions, and the RR massless sector contains antisymmetric p + 1-form fields Aμ1...μp+1 ,
different sets in different theories.

7.9 Supergravities in theα′ → 0 limit and the duality web

As we noted, in the α′ → 0 limit, we obtain a theory of the massless fields of string. In
the case of supersymmetric string theories, these live in ten dimensions, have supersym-
metry and include the metric gμν , so they are described by 10-dimensional supergravities,
specifically IIA and IIB supergravities. In the case of M-theory, the IIA string theory at
strong coupling, the low energy is described by the unique 11-dimensional supergravity.
The action for the NS–NS fields gμν , Bμν ,φ whose coupling to the string action is known,
is found as we said by requiring invariance of the quantum action under the classical sym-
metries, in particular under worldsheet Weyl symmetry. The rest of the action can be found
by requiring supersymmetry, and we find that the action matches the known supergravity
action.

In the case of type IIA theory, the RR sector contains a gauge field Aμ, with field strength
Fμν = ∂μAν − ∂νAμ, also called F2 in form language, and a 3-index antisymmetric tensor
field Aμνρ , with field strength Fμ1...μ4 = 4∂[μ1 Aμ2μ3μ4], also called F4 in form language.
The field strength of the NS–NS field Bμν is Hμνρ = 3∂[μBνρ], also called H3 in form
language. The bosonic part of the supergravity action in string frame, i.e. in terms of the
metric naturally appearing in the Polyakov action for the string, is

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:53:41 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.009

Cambridge Books Online © Cambridge University Press, 2016



136 String theory actions and spectra

SIIA = 1

2κ2
10

∫
d10x

{√−G

[
e−2φ

(
R + 4∂μφ∂

μφ − 1

2
|H3|2

)
− 1

2
|F2|2 − 1

2
|F̃4|2

]

−1

2
B2 ∧ F4 ∧ F4

}
, (7.113)

where |Fn|2 ≡ 1/n! Fμ1...μn Fμ1...μn and

F̃4 = dA3 − A1 ∧ F3. (7.114)

For type IIB supergravity, the RR sector contains a scalar a also called A0 (in “form”
language), with “field strength” Fμ = ∂μa also called F1 in form language, a 2-index
antisymmetric tensor field Aμν with field strength Fμνρ = 3∂[μAνρ], also called F3 in form
language, and a 4-index antisymmetric tensor field A+

μνρσ , with modified field strength

F̃+
μ1...μ5

, also called F̃+
5 in form language, which is self-dual,

F̃+
μ1...μ5

= 1

5!
εμ1...μ5

μ6...μ10 F̃+
μ6...μ10

. (7.115)

Because of the existence of the self-dual field strength, there is no known fully covariant
form for the type IIB action. But if one imposes the self-duality as a constraint after varying
the action, we have the bosonic supergravity action

SIIB = 1

2κ2
10

∫
d10x

{√−G

[
e−2φ

(
R + 4∂μφ∂

μφ − 1

2
|H3|2

)

−1

2
|F1|2 − 1

2
|F̃3|2 − 1

4
|F̃5|2

]
− 1

2
A4 ∧ H3 ∧ F3

}
, (7.116)

where we have defined

F̃3 = F3 − A0 ∧ H3,

F̃5 = F5 − 1

2
A2 ∧ H3 + 1

2
B2 ∧ F3. (7.117)

S-duality

Type IIB supergravity action is invariant under an Sl(2, R) group. We consider the complex
field τ = a + ie−φ and form the matrix

Mij ≡ 1

Im(τ )

( |τ |2 −Re(τ )
−Re(τ ) 1

)
. (7.118)

We also consider the NS–NS field strength H3 and the RR field strength F3 as forming a
column vector

Fi
3 =

(
H3

F3

)
, (7.119)
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137 7.9 Supergravities in theα′ → 0 limit and the duality web

and change to the Einstein metric G(E)
μν by the usual conformal rescaling. Then the type IIB

supergravity action becomes

SIIB = 1

2κ2
10

∫
d10x

√−GE

[
RE − ∂μτ̄∂

μτ

2(Imτ )2
− Mij

2
Fi

3 · Fj
3 −

1

4
|F̃5|2

]

− εij

8κ2
10

∫
d10xA4 ∧ Fi

3 ∧ Fj
4. (7.120)

It is invariant under the Sl(2, R) symmetry(
a b
c d

)
∈ Sl(2, R); ad − bc = 1, (7.121)

that acts on the fields by

τ ′ = aτ + b

cτ + d
, F′

3
i = �i

jF
j
3, �i

j =
(

d c
b a

)
; F̃′

5 = F̃5 G′
μν

(E) = G(E)
μν , (7.122)

and implies that the matrix M changes by M → M′ = (�−1)TM�−1.
This Sl(2, R) is an invariance of the classical type IIB supergravity, but an Sl(2, Z) sub-

group of it survives at the quantum level, as an invariance of full string theory. Included in
it is the transformation (

a b
c d

)
=

(
0 −1
1 0

)
, (7.123)

that implies

τ ′ = −1/τ . (7.124)

If a = 0, the transformation is

φ′ = −φ ⇒ g′s =
1

gs
, (7.125)

since gs = e<φ>. But then this transformation is a nonperturbative transformation, or
duality, called S-duality. This duality then also implies

H′
3 = F3; F′

3 = −H3; B′
2 = A2; A′

2 = −B2; A′
4 = A4. (7.126)

M-theory and 11-dimensional supergravity

As we mentioned, the type IIA string theory at strong coupling becomes an 11-dimensional
theory called M-theory, whose low energy is the unique 11-dimensional supergravity, with
the fields GMN , AMNP ≡ A(3) with field strength FM1...M4 = 4∂[M1 AM2M3M4] ≡ F(4). The
bosonic action for 11-dimensional supegravity is

S11 = 1

2κ2
11

∫
d11x

√−G

(
R − 1

2
|F4|2

)
− 1

6κ2
11

∫
d11xA3 ∧ F4 ∧ F4. (7.127)

To show the relation with type IIA supergravity in ten dimensions, we consider the KK
dimensional reduction ansatz
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ds2 ≡ G(11)
MN dXMdXN

= e−
2
3φGs,(10)

μν dxμdxν + e
4
3φ(dx10 + Aμdxμ)2,

AMNP : Aμν11 ≡ B(IIA)
μν

Aμνρ ≡ A(IIA)
μνρ . (7.128)

One can check that it reduces the 11-dimensional supergravity action to the 10-dimensional
type IIA supergravity action in string frame. We will not do it here, we will only check the

parameters of the theory. Look at the coefficient of (dx10)2 in the metric. It is e
4
3φ , but it

should equal (R/lP)2, the radius of the extra dimension squared in 11-dimensional Planck
units. Here lP is the 11-dimensional Planck length, defined by 2κ2

11 = (2π )8l9P. Then(
R

lP

)2

= e
4
3<φ> = g4/3

s ⇒ R = lPg2/3
s , (7.129)

or gs = (R/lP)3/2. Identifying the Einstein–Hilbert action term in 11 dimensions with
the Einstein–Hilbert action term in ten dimensions in string frame under KK-dimensional
reduction, we get

1

2κ2
11

∫
d11xR(11) = 2πR

2κ2
11

∫
d10x

√
−gs,(10)e−2φR(10) + . . .

= 2πR

(2π )8l9P

∫
d10x

√
−gs,(10)e−2φR(10) + . . .

= 1

g2
s (2π )7(

√
α′)8

∫
d10x

√
−gs,(10)e−2(φ−<φ>)R(10) + . . .

≡ 1

2κ2
10

∫
d10x

√
−gs,(10)e−2(φ−<φ>)R(10) + . . . (7.130)

Identifying the expressions gives l9P = Rg2
s (
√
α′)8, and using R = lPg2/3

s , we obtain

lP = g1/3
s

√
α′ ⇒ R = gs

√
α′, (7.131)

i.e. R is gs in string units, as indicated.

The string duality web

There are five string theories, type IIA and type IIB closed string theories, type I open
plus closed string theory, and heterotic SO(32) and heterotic E8 × E8, together with the
11-dimensional M-theory. But all of them are related by various dualities, so in reality
there is only one string theory. Here we simply enumerate the duality relations, without
much explanation.

We saw that M-theory on a circle gives type IIA supergravity, and that S-duality
gs → 1/gs takes type IIB theory to itself. Besides reduction and S-duality, we have another
duality, called T-duality, that is explained in more detail in Chapter 9. Here it suffices to say
that it is a symmetry of string theory that relates a string theory compactified on a radius R
with another theory compactified on the radius α′/R. It relates type IIA string theory with
type IIB string theory, and the SO(32) heterotic theory with the E8 × E8 heterotic string
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139 7.10 Constructing S-matrices

theory. In turn, S-duality of SO(32) heterotic string theory takes it to type I string theory.
Finally, M-theory compactified on the interval S1/Z2 (a circle identified under x ∼ −x),
with “M9-branes”, i.e. 9+1-dimensional walls, at its endpoints gives the heterotic E8 × E8

theory, completing the duality web relating the various theories.
The power of string theory is related to this fact, that there is really a unique string

theory, and we always observe its various facets that may seem different, but are not.

7.10 Constructing S-matrices

The construction of S-matrices is complicated, and will not be explained here, but the
physical ideas are simple, and follow the general pattern of the particle case, with some
modifications.

To construct string theory perturbatively, as for the particle case, we construct S-matrices
through Feynman diagrams, as in Fig. 7.3a. The basic interaction that gives the Feynman
diagrams is the “pants diagram” in Fig. 7.3c relating three asymptotic closed string states.
The Polyakov action defines the propagator as in the particle case. The external vertices
of the theory (creating external states) are defined via so-called “vertex operators”, and
unlike the particle case, where we are free to introduce them as we wish, which gives rise
to the various quantum field theories, in the string theory case the properties of the theory
uniquely fix them. The internal vertices, describing the interaction of strings, are uniquely
given by the topology of the diagram (the basic vertex looks like the pair of pants described
above). This is as it should be, since as we saw, there is a unique string theory. Moreover,
one can show that we reproduce supergravity vertices in the low energy limit α′ → 0.

As we noted, one also needs to define integration carefully at each loop order, since the
string interaction vertex is “smoothed out” by the extension of the string and cannot be
localized at one point. This is at the root of the reason why string theory is interesting,
since this smoothing out is responsible for the remarkable fact that, unlike quantum field
theory, in string theory there are no UV infinities in any string Feynman diagrams (though
they may be in the sum of the perturbative Feynman diagrams).

Important concepts to remember

• String theory is the theory of relativistic strings, with tension = energy/ length.

• For the Feynman diagram construction of quantum field theory, we need the particle
action to define the propagator, the vertex factors to define the theory, and integration
rules.

• The first order particle action 1/2
∫

dτ [e−1(τ )(Ẋμ)2−em2] is more fundamental: it con-
tains the massless case and is quadratic. We can fix a gauge e = 1 for reparameterization
invariance. It contains interactions with the spacetime gravitational field.

• The Nambu–Goto string action is the area spanned by the moving string, and its
minimization is due to its tension.
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140 String theory actions and spectra

• The Polyakov string action is again more fundamental: it has more symmetries,
specifically Weyl invariance, besides diffeomorphism and Poincaré invariance.

• By fixing a gauge, the closed string action reduces to free 2-dimensional bosons, which
contain left and right moving wave modes. The residual gauge invariance is called
conformal invariance.

• By quantizing these modes, we get the particle spectrum M2 = 1/α′(N − a). The
massless particles are the graviton, an antisymmetric tensor, and a scalar.

• The bosonic string must exist in 26 dimensions to have a = 1, corresponding to the
existence of a massless vector.

• The bosonic string is unstable. The superstring is stable and exists in ten dimensions
for the same reason the bosonic string exists in 26 dimensions, thus we need to use
Kaluza–Klein dimensional reduction to get down to four dimensions.

• The superparticle action is 1/2
∫

e−1(�μ
τ )2, where �μ

τ is supersymmetric in spacetime.
It is also kappa symmetric.

• The Green–Schwarz superstring has −1/4πα′
∫

(�μ
a )2, where �μ

a is supersymmetric in
spacetime. It also has a WZ term, needed for kappa symmetry.

• The NSR spinning string is worldsheet supersymmetric, and it matches the GS super-
string in light-cone gauge, which has both spacetime and worldsheet supersymmetry.

• Self-consistent backgrounds for the string are given by the theory of the massless modes
of the superstring, namely supergravity.

• The low energy limit (α′ → 0) of string theory is supergravity.

• IIB supergravity has two minimal 10-dimensional fermions of the same chirality
and has S-duality, and IIA has fermions of opposite chirality. IIA string theory at
strong gs becomes 11-dimensional M-theory, whose low energy limit is 11-dimensional
supergravity.

• All string theories are related by dualities into a duality web, forming a unique theory.

• One knows how to construct string theory S-matrices from Feynman diagrams by
defining the propagator, vertices, and integration rules.

References and further reading

Perhaps the best introduction to string theory (tailored to MIT undergraduates) is the book
by Zwiebach [21]. A good advanced book, though lacking coverage of recent work (it
doesn’t cover any of the developments relating to the “second superstring revolution” deal-
ing with D-branes and dualities) is the one by Green, Schwarz, and Witten [22]. It contains
the most in-depth explanations of many classic string theory problems. A modern book that
also contains both D-branes and dualities is the one by Polchinski [23], from one of the
people who started the second superstring revolution. The most up-to-date book, contain-
ing many of the research problems being developed now (but as a result with less in-depth
coverage of the basics of string theory), is [24]. Finally, a book focused more on D-branes
is [25].
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141 7.10 Constructing S-matrices

Exercises

1. Write down the worldline reparameterization invariance for the first order action for
the particle, both the finite and infinitesimal versions.

2. Calculate the equation of motion of the free particle in a gravitational field (the
geodesic equation), from the action (7.3), with ημν → gμν , and specialize to the
Newtonian limit to recover motion in Newtonian gravity.

3. Calculate Lm, L̃m, and L0 + L̃0 for the bosonic string.
4. Derive the worldsheet momentum Pσ .
5. Write down the states of the first massive closed string level.
6. Prove the supersymmetry of the Wess–Zumino term of the superstring.
7. Prove the kappa symmetry of the action Skin + SWZ for the superstring.
8. Show that the coupling to Bμν is of the type of p-brane sources, thus a string is a

1-brane source for the field Bμν .
9. Find a representation for the 11-dimensional � matrices in terms of the Pauli σ i matrix

tensor products.
10. Check that the reduction ansatz (7.128) takes (7.127) to (7.113).
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8 Elements of conformal field theory

We have already encountered conformal invariance in two dimensions, in the context of
the string, as the residual gauge invariance obtained when we fix the conformal gauge for
the Polyakov string, in order to fix general coordinate and Weyl invariance, (7.44). Then
the conformal invariance is invariance under a specific combination of a general coordinate
and a Weyl transformation that leaves the flat metric intact.

Conformal invariance is therefore invariance of a theory in flat space under a gen-
eral coordinate transformation that, when acting on a flat space, changes the metric by
a conformal factor, i.e. it is a (local) generalization of scale invariance,

x′μ = αxμ ⇒ ds2 = d�x′2 = α2d�x2. (8.1)

8.1 Conformal transformations and the conformal group

Scale invariance and the beta function

In quantum field theory, we can have theories that are classically scale invariant (under
(8.1) or not, but generically at the quantum level the scale invariance is broken due to the
dynamical appearance of the renormalization scale (dimensional transmutation).

The procedure of renormalization involves a cut-off ε and bare coupling λ0 and mass m0.
For example, dimensional regularization of scalar field theory for V(φ) = m2φ2/2 + λφ4

gives

λ0 = με

(
λ+

∞∑
k=1

ak(λ)

εk

)
; m2

0 = m2

(
1 +

∞∑
k=1

bk(λ)

εk

)
, (8.2)

where μ is the renormalization scale, out of which we extract the renormalized coupling
λ = λ(μ, ε; λ0, m0), which in general depends on scale.

This running of the coupling constant with the scale is characterized by the β function,

β(λ, ε) = μ
dλ

dμ

∣∣∣∣
m0,λ0,ε

. (8.3)

A quantum mechanically scale invariant theory (i.e. a theory independent of α in (8.1)
at the quantum level) must be μ-independent, and thus must have a zero β function. There
are two ways in which this can happen:
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143 8.1 Conformal transformations and the conformal group

�Figure 8.1 β(λ) for the case of an IR stable point.

• β = 0 everywhere, which means a cancellation of Feynman diagrams that implies there
are no infinities. OR

• A nontrivial interacting theory: the β function is nontrivial, but has a zero (fixed point)
away from λ = 0, at which a nontrivial (nonperturbative) theory emerges: a conformal
field theory. For the case in Fig. 8.1, λF is called an IR stable point. Indeed, if λ > λF,
β(λ) > 0, thus λ decreases if μ decreases (thus in the IR). And if λ < λF, β(λ) < 0,
thus λ increases if μ again decreases (in the IR). That means that if we go to the IR,
wherever we start, we are driven to λ = λF, that has β(λF) = 0.

In condensed matter physics, a quantum scale invariant theory would be obtained near a
phase transition (critical point).

Classical scale invariance is a global symmetry, and in global symmetries other than
Poincaré (which is needed for causality) we can have quantum anomalies, i.e. breaking
at the quantum level by certain Feynman diagrams (in four dimensions, one-loop triangle
diagrams). But conformal invariance and Weyl invariance are local symmetries (similar
to gauge symmetries), giving a local generalization of scale invariance, and as such can-
not be broken at the quantum level, as we argued in Chapter 1. So one must require the
absence of quantum anomalies with respect to Weyl and conformal invariance, which gives
consistency conditions that constrain the theory.

On the other hand, most theories that are quantum mechanically scale invariant, and
thus have β = 0, are also invariant under the larger invariance called conformal invariance.
In fact it is an ongoing problem, one that has generated a lot of research in the last few
years, whether there exist theories that are quantum mechanically scale invariant, but not
conformal invariant.

In flat d dimensions, i.e. on R1,d−1, conformal transformations are defined by
xμ → x′μ(x) such that

ds2 = dx′μdx′μ = [�(x)]−2dxμdxμ, (8.4)

thus indeed a local generalization of (8.1).
Note once again that conformal invariance is NOT the same as general coordinate invari-

ance (though conformal transformations obviously are a subclass of general coordinate
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144 Elements of conformal field theory

transformations), since it is an invariance of flat space field theories, but the metric is mod-
ified, from flat ds2 = dx′μdx′μ to “conformally flat” ds2 = [�(x)]−2 dxμdxμ. The point is
then that we can absorb this overall factor in the action, such that the transformed action
can be written in the same form, with the same flat metric.

To give an example, consider the case of conformal transformations in two dimensions
(to be explained more fully in the next section), which are holomorphic transformations,
z → f (z), z̄ → f̄ (z̄), and two terms in the action, the kinetic term for a real scalar,∫

d2z(∂μφ)2 = ∫
dzdz̄ ∂φ∂̄φ, and a mass term

∫
dzdz̄ m2φ2. Under the conformal trans-

formation, the integration measure transforms as
∫

dzdz̄ → ∫
dz′dz̄′(f ′ f̄ ′)−1 (which equals

in fact
∫

d2z
√

g, as it should), but the kinetic term transforms as ∂φ∂̄φ → (f ′ f̄ ′)∂ ′φ∂̄ ′φ,
whereas the mass term does not transform φ2 → φ2. Therefore the kinetic term is con-
formally invariant, but the mass term is not. Note that from the point of view of a general
relativistically invariant theory, the mass term is also written in a general relativistically
invariant way, but not with the flat metric, like the kinetic term. The difference is that when
writing a general relativistically invariant version of the flat space theory, the kinetic term is
also Weyl invariant, whereas the mass term is not. Thus indeed, conformal invariance arises
because of the existence of a generalization of the theory that is both general relativistically
invariant and Weyl invariant.

In conclusion, conformal transformations are generalizations of scale transformations
(8.1) of flat space that change the distance between points by a local factor.

The infinitesimal version of the conformal transformation is

x′μ = xμ + vμ(x); �(x) = 1 − σv(x)

⇒ ∂μvν + ∂νvμ = 2σvδμν ⇒ σv = 1

d
∂ · v. (8.5)

The solution d = 2 is special, and is analyzed separately. But except for d = 2, the most
general solution to this equation is

vμ(x) = aμ + ωμνxν + λxμ + bμx2 − 2xμb · x, (8.6)

with ωμν = −ωνμ (antisymmetric) and σv(x) = λ − 2b · x, a statement that is left as an
exercise to check (Exercise 1).

Thus the parameters of conformal transformations are λ, aμ, bμ,ωμν , corresponding
respectively to scale transformations, translations, a new type of transformations, and rota-
tions. The new type of transformations parameterized by bμ are called “special conformal
transformations.” Together there are 1+d+d+d(d−1)/2 = (d+1)(d+2)/2 components
for the parameters of conformal transformations.

These transformations together form a symmetry group. Its generators are: Pμ for aμ
and Jμν for ωμν , forming together the Poincaré group, as expected. For them, we have
the particular case of �(x) = 1, i.e. no local scale transformation. The new generators are
Kμ for the special conformal transformations, bμ, and dilatation generator D for λ. Count-
ing shows that we can assemble these generators in a group defined by an antisymmetric
(d + 2) × (d + 2) matrix,
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145 8.2 Conformal fields in two Euclidean dimensions

J̄MN =
⎛
⎝ Jμν J̄μ,d+1 J̄μ,d+2

−J̄ν,d+1 0 D
−J̄ν,d+2 −D 0

⎞
⎠ , (8.7)

where

J̄μ,d+1 = Kμ − Pμ

2
; J̄μ,d+2 = Kμ + Pμ

2
; J̄d+1,d+2 = D. (8.8)

By looking at the Lie algebra of J̄MN we find that the metric in the d + 2 direction is
negative, thus the symmetry group is SO(2, d). So conformal invariance in flat (1, d − 1)
dimensions (d > 2) corresponds to the symmetry group SO(2, d), the same as the symmetry
group of d + 1-dimensional Anti-de Sitter space, AdSd+1.

This is in fact the first hint of a relation between d-dimensional conformal field theory,
i.e. a field theory on d-dimensional Minkowski space that is invariant under the conformal
group, and a gravity theory in d+1-dimensional Anti-de Sitter space. The precise relation
between the two will be AdS/CFT, defined in Chapter 10.

A comment is in order here. Strictly speaking, SO(2, d) is a group that only contains ele-
ments continuously connected to the identity; however, the conformal group is an extension
that also contains the inversion, defined by

I : x′μ = xμ
x2

⇒ �(x) = x2. (8.9)

In fact, all conformal transformations can be generated by combining the inversion with
the rotations and translations. The finite version of the special conformal transformation is

xμ → xμ + bμx2

1 + 2xνbν + b2x2
, (8.10)

and the finite version of the scale transformation is xμ → λxμ.
Since we are defining AdS/CFT in Euclidean space, we should note that the conformal

group on R
d (Euclidean space) is SO(1, d + 1), as expected.

8.2 Conformal fields in two Euclidean dimensions

As we mentioned, d = 2 is special. In d = 2, the conformal group is much larger: in fact,
it has an infinite set of generators.

To describe conformal fields in Euclidean d = 2, we use complex coordinates (z, z̄),

ds2 = dzdz̄. (8.11)

It is easy then to see that the most general solution of the conformal transformation condi-
tion (8.5) is a general holomorphic transformation, i.e. z′ = f (z) (but not a function of z̄),
as we claimed in the previous section. Then the transformation on the metric is

ds′2 = dz′dz̄′ = ∂z′

∂z

∂ z̄′

∂ z̄
dzdz̄ = �−2(z, z̄)dzdz̄. (8.12)
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146 Elements of conformal field theory

The conformal transformation, as we see, is a general coordinate transformation of a
special type: holomorphic. Therefore it is useful if we first define general relativity tensors,
and then think of what this means for theories in flat space. A covariant tensor is an object
Ti1...in that transforms (in Euclidean Cartesian coordinates z1, z2, i1, . . . , in = 1, 2) as

Ti1...in(z1, z2) = T ′
j1...jn (z′1, z′2)

∂z′j′1
∂zi1

. . .
∂z′jn
∂zin

. (8.13)

Now we consider the complex coordinates z = z1 + iz2, z̄ = z1 − iz2, and the holomorphic
transformations z′ = z′(z) that are conformal. We generalize the notion of tensor to objects
called primary fields or tensor operators, where the “number of covariant indices” is not
necessarily an integer, i.e. a primary field of dimensions (h, h̃) is an object that transforms
as

Tz...zz̄...z̄ = T ′
z...zz̄...z̄

(
dz′

dz

)h (
dz̄′

dz̄

)h̃

, (8.14)

but not necessarily with integer (h, h̃). Indeed, under a complex global scale transformation
z′ = ζ z (i.e., a combination of scale transformation and rotation), there is a basis of local
operators that diagonalize the dilatation operator, so scale as

O(z, z̄) = ζ hζ̄ h̃O′(z′, z̄′), (8.15)

and for a general operator at the quantum level we have noninteger h, h̃, with h + h̃ ≡ �

being the dimension of O (giving the behavior under usual – real – scaling) and h− h̃ being
the spin of O (giving the behavior under rotations).

The primary fields are denoted by φ(h,h̃)(z, z̄). The infinitesimal transformation z′ = z +
ε(z) implies for the primary field

δεφ
(h,h̃)(z, z̄) = ε(z)∂φ(h,h̃)(z, z̄) + h∂ε(z)φ(h,h̃)(z, z̄) + h.c. (8.16)

In two dimensions, a conformally invariant tensor is traceless Ti
i = 0, as we have

already seen in the previous chapter, since in flat Euclidean space Tij = δS/δgij, and in
a conformally invariant theory gijδS/δgij = 0. In complex coordinates, that translates
into Tzz̄(= (T00 + T11)/4) = 0. Then the conservation equation ∂aTab = 0 becomes
∂̄Tzz = ∂Tz̄z̄ = 0, so that we have T(z) ≡ Tzz(z) and T̃(z̄) = Tz̄z̄(z̄).

In a general quantum field theory, and in particular in two dimensions, we can define the
operator product expansion (OPE). The product of two operators at different points can be
approximated to any desired accuracy by a sum of coefficients times all possible operators,
i.e. (calling arbitrary operators by Ok),

Oi(xi)Oj(xj) =
∑

k

ck
ij(xi − xj)Ok(xj). (8.17)

This is an operatorial statement, i.e. it holds on all the correlators of the theory. In particular,
normalizing the operators of the conformal field theories so that their 2-point function,
fixed by the behavior under scaling up to a constant, is

〈Oi(xi)Oi(xj)〉 = 1

|xi − xj|2�i
, (8.18)
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147 8.2 Conformal fields in two Euclidean dimensions

where �i is the scaling dimension, in higher correlators we have

〈Oi(xi)Oj(xj) . . .〉 =
∑

k

ck
ij

|xi − xj|�i+�j−�k

〈
Ok

(
xi + xj

2

)
. . .

〉
, (8.19)

so only numerical coefficients ck
ij are undetermined for the OPE. In particular, if Oj = Ok,

we have a spacetime dependent factor 1/|xi − xj|2�i .
That means that two terms in the OPE of the energy-momentum tensor T(z) with a

general operator are determined up to constants which can also be found, as

T(z)O(0, 0) = · · · + h

z2
O(0, 0) + 1

z
∂O(0, 0) + · · · , (8.20)

since the scaling dimension of T(z) in two dimensions is �T = 2.
For a primary field, we in fact have

T(z)φ(hi,h̃i)
i = hi

z2
φ(hi,h̃i) + 1

z
∂φ

(hi,h̃i)
i + nonsingular. (8.21)

Example: free massless scalar fields

The most relevant example of conformal field theory is the case of several free massless
scalar fields, with (Euclidean) action,

SE = 1

4πα′

∫
d2σ [∂1Xμ∂1Xμ + ∂2Xμ∂2Xμ]. (8.22)

As we can see, this is nothing but the Polyakov string action in conformal gauge. In fact,
we have seen that by choosing the conformal gauge we obtain a residual gauge invariance,
a combination of Weyl and diffeomorphism invariance which is the conformal invariance.

Using complex coordinates

z = σ 1 + iσ 2; z̄ = σ 1 − iσ 2; ∂ ≡ ∂z = ∂1 − i∂2

2
; ∂̄ ≡ ∂z̄ = ∂1 + i∂2

2
, (8.23)

we get the action

S = 1

2πα′

∫
d2z∂Xμ∂̄Xμ, (8.24)

which has the equation of motion

∂∂̄Xμ(z, z̄) = 0, (8.25)

with the general solution

Xμ(z, z̄) = Xμ(z) + Xμ(z̄), (8.26)

where we can expand in a Laurent series

Xμ(z) = xμ

2
− iα′ p

μ

2
ln z + i

√
α′
2

∑
m∈Z,m�=0

α
μ
m

mzm
. (8.27)

The continuation to Minkowski space is done by σ 2 = iσ 0 = iτ , and under it a holo-
morphic function (function of w only) becomes a function of −(τ − σ ), i.e. right-moving,
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148 Elements of conformal field theory

and an anti-holomorphic function (function of w̄ only) becomes a function of w̄ = τ + σ ,
i.e. left-moving. We thus recover the Minkowski space treatment of the string from the
previous chapter after the transformation z = e−iw.

Then T(z) corresponds to T−−, and T̃(z̄) to T++ from the previous chapter. Their
moments were defined by

Lm = 1

2π

∫ 2π

0
e−imσT−−dσ ,

L̃m = 1

2π

∫ 2π

0
eimσT++dσ , (8.28)

so now we can define them equivalently as Laurent coefficients of Tzz and T̃z̄z̄, namely

Tzz(z) =
∑
m∈Z

Lm

zm+2
; T̃z̄z̄(z̄) =

∑
m∈Z

L̃m

z̄m+2
. (8.29)

By commuting the operators Lm, one finds the Virasoro algebra,

[Lm, Ln] = (m − n)Lm+n + c

12
(m3 − m)δm,−n, (8.30)

and similarly for the L̃ms. Here as usual (Ln)† = L−n.
The algebra at c = 0 is the classical part, and the term with c is a quantum correction.

Here c is called a central charge and in general is a parameter of the theory. In string theory
it has a given value for each component, such that the total central charge of the theory is
zero.

The Virasoro algebra is the equivalent of the conformal group in two dimensions, which
means that the Lms are conserved charges, corresponding to symmetry operators. But it
is not really a usual Lie algebra, since it has an infinite number of generators and, more
importantly, the algebra contains a constant term (proportional to c), therefore the algebra
does not close in the usual sense. However, L0, L1, and L−1 form a closed algebra without
central charge:

[L1, L−1] = 2L0; [L0, L1] = −L1; [L0, L−1] = L−1, (8.31)

which is the algebra of the group Sl(2, C), whose finite transformations act on z as

z → az + b

cz + d
. (8.32)

This is a subalgebra of the Virasoro algebra that is sometimes called, by an abuse of
notation, the conformal algebra in two dimensions.

The representations of the Virasoro algebra are given in terms of a “highest weight state”
|h〉 that can be thought of as equal to limz→0 φ

h(z)|0〉, i.e. obtained by acting with the
primary field at z = 0 on a vacuum. Then as usual in the method of induced representations,
we have:

L0|h〉 = h|h〉; Ln|h〉 = 0, n > 0; (8.33)
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149 8.3 Conformal fields and correlators in d> 2

so h is the eigenvalue of L0 (“energy”), therefore the rest of the fields in the representa-
tion, called descendants, are obtained by acting with L−n, which increases the value of the
energy h by n, i.e.

L0(L−n|h〉) = (h + n)(L−n|h〉). (8.34)

We see then that the term “highest weight”, used because of historical reasons, is a mis-
nomer, and it should really be “lowest weight.” Then the representation is |h〉, L−1|h〉,
(L−1)2|h〉, L−2|h〉, . . . and is called a Verma module.

One observation we should make is that we have talked here about states, but before we
talked about operators. In a conformal field theory there is an important relation called the
operator-state correspondence, which can be roughly understood as above, namely a state
corresponds to an operator at 0 acting on a vacuum, |h〉 = limz→0 φ

h(z)|0〉. Therefore from
now on we use interchangeably the words operator and state when talking about conformal
field theories.

We can also calculate the two-point correlators of the free scalars. Defining the partition
function in the case of one scalar (putting 2πα′ = 1),

Z[J] =
∫

DXe−
∫

d2z∂X∂̄X+∫
d2zXJ , (8.35)

we can calculate the 2-point function

〈X(z)X(w)〉 = δ

δJ(z)

δ

δJ(w)
Z[J]

∣∣∣∣
J=0

= − 1

4π
log(|z − w|2). (8.36)

Then it follows that we also have

〈∂X(z)∂X(w)〉 = − 1

4π (z − w)2
. (8.37)

8.3 Conformal fields and correlators in d > 2

As we saw, there is a big difference between two dimensions and higher, since in two
dimensions we have an infinite dimensional algebra, that imposes very strong constraints
on the theory, whereas in higher dimensions we just have the SO(d, 2) Lie algebra.
However, many features are common.

We can define primary operators in d > 2 also, but in a slightly different manner.
Representations of the conformal group are defined in terms of eigenfunctions of the

scaling operator D with eigenvalue −i�, where � is the scaling dimension, i.e. under
x → λx, the field transforms as

φ(x) → φ′(x) = λ�φ(λx). (8.38)

Therefore D now plays the role of L0 in d = 2, giving the “energy” of the state. On the
other hand, instead of Ln and L−n we now have Kμ and Pμ.

Then � is increased by Pμ, since the SO(d, 2) conformal algebra described before acts as

[D, Pμ] = −iPμ ⇒ D(Pμφ) = Pμ(Dφ) − iPμφ = −i(�+ 1)(Pμφ), (8.39)
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150 Elements of conformal field theory

and is decreased by Kμ, since

[D, Kμ] = iKμ, (8.40)

thus we can think of Kμ as an annihilation operator a and Pμ as a creation operator a†.
Since Pμ and Kμ are symmetry operators, by their successive action we get other states

in the theory. The representation then is built as if using creation/annihilation operators
Pμ/Kμ, as in the d = 2 case.

There will be an operator of lowest dimension, �0, in the representation of the confor-
mal group. Then, it follows that Kμ�0 = 0, and �0 is called the primary operator. The
representation is obtained from �0 and operators obtained by acting successively with Pμ

(∼ a†) on �0 (∼ |0 >).
We have seen that the conformal transformations in d > 2 are the SO(d, 2) trans-

formations and the inversion. For a finite conformal transformation x′μ(xν), we can define
an orthogonal matrix (in O(d)):

Rμν(x) = �(x)
∂x′μ

∂xν
; ⇒ (RRT )μν = RμρRνρ = δμν . (8.41)

For an inversion, we have x′μ = xμ/x2 and �(x) = x2, giving the orthogonal matrix
representing inversion,

Rμν(x) ≡ Iμν(x) = δμν − 2
xμxν

x2
. (8.42)

Then Iμν(x−y) can be thought of as performing parallel transport, since it transforms under
a conformal transformation as

Iμν(x′ − y′) = RμρRνσ Iρσ (x − y); (x′ − y′)2 = (x − y)2

�(x)�(y)
. (8.43)

Two-point correlators

For scalar operators, we have already seen the general form allowed by conformal
invariance,

〈Oi(x)Oj(y)〉 = Cδij

|x − y|2�i
, (8.44)

and we can normalize the operators such that C = 1.
We are also interested in conserved currents Ja

μ, that transform under the inversion as
corresponding to � = d − 1, namely Ja

μ(x) → (x′2)d−1Jμν(x′)Ja
ν (x′). Their 2-point func-

tion needs to be covariant under the inversion and Poincaré transformations, for conformal
invariance of the theory. That restricts the function to be

〈Ja
μ(x)Jb

ν (y)〉 = C
δabIμν(x − y)

|x − y|2(d−1)
. (8.45)
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151 8.4 N = 4 Super Yang–Mills as a conformal field theory

Three-point correlators

For scalar operators, we have also already given part of the form allowed by conformal
invariance when describing the OPE, (8.19). The rest can be found by permutations, giving

〈Oi(x)Oj(y)Ok(z)〉 = Cijk

|x − y|�i+�j−�k |y − z|�j+�k−�i |z − x|�k+�i−�j
. (8.46)

We will leave a description of the 3-point functions of conserved currents for when we
compute them using AdS/CFT.

8.4 N = 4 Super Yang–Mills as a conformal field theory

In d = 4, N = 4 Super Yang–Mills theory is a representation of the conformal group.
N = 4 Super Yang–Mills theory with SU(N) gauge group has the fields {Aa

μ,ψai
α ,φa

[ij]},
as we saw in Chapter 3. Here we have used SU(4) notation (i ∈ SU(4)) and a ∈ SU(N).
Indeed, one can calculate the β function of the theory and find that it is zero, thus the theory
has quantum scale invariance. In fact, it is quantum mechanically invariant under the full
conformal group.

On one hand, N = 4 SYM is a gauge theory, with a well-defined perturbation theory,
so objects like amplitudes and S-matrices would be natural to define. Indeed, we see in
Part III of the book that we can calculate gluon amplitudes at strong coupling via AdS/CFT
using a prescription due to Alday and Maldacena, and in perturbation theory one can use
Feynman diagrams to define them, but in that case the amplitudes are calculated using an
(IR) regularization like dimensional regularization or mass regularization. But since we are
in a conformal field theory that a priori has no notion of scale, and therefore no notion of
asymptotic separation of particle wavefunctions, amplitudes and S-matrices are tricky to
define.

Natural objects to define and study in a conformal field theory are instead correlators and
conformal dimensions of operators. These are best understood using AdS/CFT, and have
been extensively studied. We can also break conformal invariance using finite temperature
(since the temperature is an energy scale), so we can calculate many finite temperature
quantities as well.

Note on dimensions

We should note that the quantum conformal dimension (scaling dimension) � need not be
the same as the free (at coupling g = 0) scaling dimension for an operator in N = 4 Super
Yang–Mills, since β = 0 just means that there are no infinities, but there still can be finite
renormalizations giving nontrivial quantum effects, so that � = �0 +O(g).

Classically, the fundamental fields have dimensions [Aa
μ] = 1, [ψai

α ] = 3/2, [φa
[ij]] = 1,

and we form operators out of them, for instance Tr F2
μν (which will have classical
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152 Elements of conformal field theory

dimension four). For some of these, the classical dimension will be exact, for others it
will have quantum corrections.

Important concepts to remember

• Conformal transformations are coordinate transformations that act on flat space and give
a space-dependent scale factor [�(x)]−2, thus conformal invariance is an invariance of
flat space.

• A quantum mechanical scale invariant theory (with zero beta function) is generally
conformal invariant. The absence of anomalies requires consistency conditions on the
theory.

• In d > 2 Minkowski dimensions, the conformal group is SO(d, 2), the same as the
invariance group of AdSd+1. The inversion is also part of the group, and together with
the Poincaré group generates all transformations.

• In two dimensions, conformal invariance is an infinite algebra, the Virasoro algebra, of
a more general type (with a constant term). A normal subgroup is Sl(2, C).

• Primary fields of dimensions (h, h̄) in two dimensions scale under z → λz, z̄ → λz̄
as φ → (λ)−(h+h̄)φ, and in four dimensions primary fields of dimension � scale as
φ → φ(λ)−�.

• The operator product expansion (OPE) defines the correlators up to numerical constants
Ck

ij.
• In d = 4, a representation of the conformal algebra is obtained by acting with Pμ on the

primary field.
• The representative Iμν(x − y) of inversion helps us define the 2-point function of

conserved currents.

References and further reading

For an introduction to renormalization, see any quantum field theory book, in particular [1]
and [2]. For an introduction to conformal field theory in the context of string theory, see
Polchinski [23]. For conformal field theory in four dimensions, in the context of AdS/CFT,
see the AdS/CFT review [26].

Exercises

1. Check that

vμ = aμ + ωμνxν + λxμ + bμx2 − 2xμb · x,

∂μvν + ∂νvμ = 2σvδμν ; σv = 1

d
∂ · v, (8.47)

and that if x′μ = xμ + vμ, then the conformal factor is �(x) = 1 − σv(x).
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153 8.4 N = 4 Super Yang–Mills as a conformal field theory

2. Derive the conformal algebra in terms of Pμ, Jμν , Kμ, D from the SO(d, 2) algebra,
given that Jμ,d+1 = (Kμ − Pμ)/2, Jμ,d+2 = (Kμ + Pμ)/2, Jd+1,d+2 = D.

3. Prove that the special conformal transformation

xμ → xμ + bμx2

1 + 2xνbν + b2x2
(8.48)

can be obtained by an inversion, followed by a translation, and another inversion.
4. Prove that a circle (xμ − cμ)2 = R2 remains a circle after a general finite conformal

transformation.
5. Using the definitions (8.29) or equivalently (8.28) of Lm and L̃m and the quantization

conditions (7.68), derive the classical part of the Virasoro algebra (8.30) (for c = 0).
6. Check the transformation law of Iμν(x − y), (8.43).
7. Check that

Zμ ≡ 1

2

∂

∂zμ
ln

(z − y)2

(z − x)2
= (x − z)μ

(x − z)2
− (y − z)μ

(y − z)2
(8.49)

satisfies, under a conformal transformation,

Z′
μ = �(x)Rμν(z)Zν . (8.50)

We can also define Xμ and Yμ by permutations.
8. Check the composition law of Iμν ,

Iμν(x − y)Iνρ(z − y) = Iμρ(x − y) + 2(x − y)2XμYρ . (8.51)
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9 D-branes

9.1 Dirichlet boundary conditions and D-branes

We saw in Chapter 7 that open strings can have two types of boundary conditions, Neu-
mann, ∂σXμ(τ , 0) = ∂σXμ(τ , l) = 0, and Dirichlet, δXμ(τ , 0) = δXμ(τ , l) = 0. The
Dirichlet boundary conditions mean that the endpoints of open strings are fixed, and the
Neumann boundary conditions mean they are free, and move at the speed of light. But
we can consider these conditions independently for each coordinate, in particular we
can choose p + 1 Neumann boundary conditions for p spatial dimensions and time, and
d − p − 1 Dirichlet boundary conditions. This means that the endpoints of the string
are constrained to exist on a p + 1-dimensional wall in spacetime, a “D-p-brane.” As we
saw, the word p-brane comes from a generalization of the word mem-brane. But differ-
ent string endpoints could be on different walls (D-p-branes), as in Fig. 9.1a. We will call
the directions on which both endpoints of the open strings are Neumann (NN directions)
X+, X−, Xa (sometimes all of them by Xa) and the directions on which they are Dirichlet
(DD directions) Xi.

Dai, Leigh and Polchinski [27] proved that in fact this wall where open strings end is
dynamical, i.e. it can fluctuate and respond to external interactions, and that it has degrees
of freedom existing on it. The wall was then called a D-brane, from Dirichlet-brane (as
in Dirichlet boundary conditions). For p = 2, we would have a Dirichlet mem-brane. By
extension, we have a Dirichlet p-brane, or D-p-brane.

A dynamical p-brane should have an action minimizing its “worldvolume,” the same
way as the particle has an action minimizing its worldline proper time, and a string has
an action minimizing the area of its worldsheet, and the coefficient should be a p-brane
tension, i.e. energy (mass) per unit volume, namely

Sp = −Tp

∫
dp+1ξ

√− det(hab), (9.1)

where hab is the induced metric on the worldvolume, or pull-back of the spacetime metric,
namely

hab = ∂Xμ

∂ξa

∂Xν

∂ξb
gμν(X). (9.2)

This is an obvious generalization of the case of the Nambu–Goto string action, which is
given in terms of the induced metric on the string worldsheet.
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155 9.2 D-brane fluctuations: fields, action, and tension

a) b)

�Figure 9.1 a) Open string between two D-p-branes (p+1-dimensional “walls”); b) The endpoints of the open string are labelled
by the D-brane they end on (out of N D-branes), here |i〉 and |j〉.

9.2 D-brane fluctuations: fields, action, and tension

We have seen the generic action for a p-brane coupled to a spacetime metric. But moreover,
the combination that appears in string theory is actually gμν(X) + α′Bμν , as we saw for
instance in the string action in background fields, (7.90). We can also understand this from
the decomposition of the physical massless states αi

−1α̃
j
−1|0, k〉 into the symmetric traceless

gμν and the antisymmetric Bμν (and the dilaton trace).
Then the action for coupling to gμν and Bμν should be

S = −Tp

∫
dp+1ξ

√
− det

(
∂Xμ

∂ξa

∂Xν

∂ξb
(gμν + α′Bμν)

)
. (9.3)

The action has reparameterization (general coordinate) invariance on the worldvolume,
which can be fixed by choosing a static gauge, where Xa = ξa for a = 0, 1, . . . , p. Then

Xi(ξa) ≡ φi(ξa)√
Tp

(9.4)

are fields on the worldvolume. Writing gμν(X) = ημν + 2κNhμν(X), we get the action for
φi at hμν = 0, Bμν = 0 (in flat spacetime) as

Sp = −Tp

∫
dp+1ξ

√
− det

(
ηab + ∂aφi∂bφi

Tp

)
. (9.5)

This is called the scalar Dirac–Born–Infeld (DBI) action. Expanding the determinant,
we get

Sp = −Tp

∫
dp+1ξ√

1

(p + 1)!
εa1...ap+1εb1...bp+1 (ηa1b1 + ∂a1φ

i∂b1φ
i) . . . (ηap+1bp+1 + ∂ap+1φ

i∂bp+1φ
i). (9.6)
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156 D-branes

The determinant is easily seen to be

det

(
ηab + ∂aφ

i∂bφ
i

Tp

)

= 1

(p + 1)!
εa1...ap+1εb1...bp+1

(
ηa1b1 +

∂a1φ
i∂b1φ

i

Tp

)
. . .

(
ηap+1bp+1 +

∂ap+1φ
i∂bp+1φ

i

Tp

)

= 1

(p + 1)!

[
εa1...ap+1ε

a1...ap+1 + (p + 1)εa1...apap+1εa1...ap
bp+1

1

Tp
∂ap+1φ

i∂bp+1φ
i + . . .

]
,

(9.7)

where there are no other terms if there is only one φ, but there are in the case of more
φis. Since εa1...ap+1εa1...ap+1 = (p+ 1)! and εa1...apap+1εa1...ap

bp+1 = p! ηap+1bp+1 , we get the
action

Sp = −Tp

∫
dp+1ξ

√
1 + ∂a �φ∂a �φ

Tp
+ . . . � −

∫
dp+1ξ

[
Tp + 1

2
∂a �φ∂a �φ + . . .

]
. (9.8)

Therefore, we see that to first order we get a canonical scalar kinetic term.
We can also find the first order coupling of the scalar to gravity by expanding the action

in hμν and φi,

Lp � −Tp

√√√√− det

(
ηab + 2κNhab + 4κNhai∂b

φi√
Tp

)

= −Tp

√√√√ 1

(p + 1)!

[
. . .+ 4(p + 1)κNhai

∂bφi√
Tp

p! δb
a + . . .

]

� −Tp

√√√√(
1 + . . .+ 4κNhai

∂aφ√
Tp

+ . . .

)
. (9.9)

The scalar–graviton action is then

Sp = −
∫

dp+1ξ

[
Tp + 1

2
∂a �φ∂a �φ + 2κN

√
Tphai∂

aφi + . . .

]
. (9.10)

Therefore, we find the coupling of the scalar φj with momentum kμ, with the graviton ha
i ,

is 2κN
√

Tp ikaδ
j
i .

This is a coupling of a closed string mode, gμν(X), that exists everywhere, i.e. in the bulk
of spacetime, with φi(ξ ), or Xi(ξ ), which is a mode that lives on the worldvolume of the
D-brane only. The Xi mode is an open string mode, since open strings can have both ends
on the D-brane, hence their modes belong to the worldvolume of the D-brane. Therefore,
the interpretation of this coupling is that a closed string collides with a D-brane, and excites
an open string mode Xi corresponding to the position of the D-brane, by breaking at a point,
and makes the D-brane vibrate, as in Fig. 9.2a.
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157 9.2 D-brane fluctuations: fields, action, and tension

b)a)

�Figure 9.2 a) Closed string colliding with a D-brane, exciting an open string mode and making it vibrate; b) String worldsheet
corresponding to a), with a closed string tube coming from infinity and ending on the D-brane as an open string
boundary.

There is a corresponding string theory calculation for this process, where a string world-
sheet connects an open string boundary fixed on a D-brane with a closed string tube coming
from infinity, as in Fig. 9.2b. This calculation (which will not be done here) is matched
with the above calculation of the scalar–graviton coupling on the D-brane, which fixes the
p-brane tension Tp in terms of string theory parameters as

Tp = 1

(2πα′)2g2
p+1

, (9.11)

where gp+1 is the coupling of the p + 1-dimensional theory,

g2
p+1 = (2π )p−2gsα

′ p−3
2 . (9.12)

The last closed string mode in the NS–NS sector is the dilaton φ, which as we saw
comes from the trace of the massless physical mode a†i

1 a†i
1 |0, k〉. The dependence of Sp on

φ is found as follows. The closed string action has 1/g2
s in front, where gs is the (closed)

string coupling, gs = e〈φ〉, but a (closed string) is an (open string)2. More precisely, as the
diagram in Fig. 9.3 shows, the closed string coupling gs is given in terms of the open string
coupling go as gs = (go)2. Therefore the D-brane action, which is an open string action,
should have in front 1/g2

o = 1/gs = e−〈φ〉. Then the action also including φ is

Sp = Tp

∫
dp+1ξe−φ

√
− det

(
∂Xμ

∂ξa

∂Xν

∂ξb
(gμν + α′Bμν)

)
. (9.13)

But there are other fields existing on the worldvolume of the D-brane. In particular, we
have seen that the open strings with Neumann boundary conditions have a massless vector
a†i|0, k〉. This means that the open string with p + 1 Neumann boundary conditions in the
Xa directions has a massless vector Aa corresponding to a†a|0, k〉. For the action, we know
that in the weak field limit we expect the usual massless vector action, the Maxwell action
−1/4FabFab. We also expect that it should fit somehow inside the square root of the scalar

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:53:58 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.011

Cambridge Books Online © Cambridge University Press, 2016



158 D-branes

�Figure 9.3 Two open string splitting interactions can be glued on the edges to give a closed string interaction (“pair of pants”),
therefore g2YM = gs.

DBI action (9.5). The simplest choice turns out to be true, namely the combination that
reduces to the usual DBI action for electromagnetism,

Sp,DBI = Tp

∫
dp+1ξe−φ

√− det (hab + α′Bab + 2πα′Fab). (9.14)

This is generically called the DBI action. The DBI action for electromagnetism (at Bμν =
hμν = 0, Xi = 0) is a remarkable action, with many unique properties. The reason it was
introduced by Born and Infeld in 1934 (it was much studied later by Dirac up to the 1950s –
when it was considered a crazy thing to do by most physicists, who perhaps thought Dirac
was past his glory days – hence his name is usually attached to it) is that it has a maximum
value for the electric field and the energy density, and thus avoids the usual infinities of
Maxwell theory. It was proven by Plebanski that it is the unique nonlinear completion of
Maxwell electrodynamics (without higher derivatives, i.e. only in terms of Fμν) that is both
causal and has only one characteristic surface (“wave front”), since generically (other than
Maxwell and DBI) there are two such surfaces.

We have not yet given the coupling of the D-p-brane to the RR antisymmetric n-form
fields. It is given by a “Wess–Zumino” term. Part of it can be guessed, since as we saw in
Chapter 6, the source term for a p-brane in D dimensions is∫

dDxjμ1...μp+1 Aμ1...μp+1 = μp

∫
dp+1ξA01...p ≡ μp

∫
p+1

A(p+1), (9.15)

where μp is a p-brane charge. Thus we use form integration to integrate the p + 1-form
A(p+1) on a p + 1-dimensional worldvolume. But given that on the worldvolume of a D-p-
brane we also have the fields Fab (intrinsic) and Bab (induced from spacetime), and the fact
that as we saw, the RR fields appear in ps jumping by two units (in IIA we have A(1) and
A(3) and in IIB we have A(0), A(2) and A+

(4)) we can in fact form other p+1-forms by wedge
product with the combination α′B(2) + 2πα′Fab any number of times. Formally then, the
full Wess–Zumino term is

Sp,WZ = μp

∫
p+1

[
exp(α′Bab + 2πα′Fab) ∧

∑
n

A(n)

]
, (9.16)

where for each given A(n) we keep only the term in the expansion of the exponential that
completes to a p + 1-form, and of course the exponential is understood formally in terms
of wedge product.

Finally, in a supersymmetric situation, e.g. for a flat D-brane in flat spacetime, we expect
no cosmological constant on the worldvolume of the D-brane, since it would gravitate, and
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159 9.3 Chan–Patton factors and quantization of open strings on D-branes

break supersymmetry. But since the action (9.10) has a constant term − ∫
Tp, to cancel

it with a constant WZ term we need to have μp = Tp. This is indeed the result in flat
spacetime, where φ = 〈φ〉, and in general we have μp = Tpeφ−〈φ〉.

The final bosonic D-p-brane action is Sp−DBI + Sp,WZ. Of course, the action involves
fermions also, and can be found by imposing supersymmetry. It has a quadratic first order
form analogous to the Polyakov action, which can be made both supersymmetric and kappa
symmetric, but its form is too complicated, and will not be given here.

9.3 Chan–Patton factors and quantization of open strings on
D-branes

On the endpoints of open strings we can add labels |i〉, with i going from 1 to N, called
Chan–Patton factors. Then the open strings, with one end in the N representation of
U(N) and the other in the N̄ representation of U(N), can be considered to be in the
adjoint representation. Considering the matrices λA

ij in the adjoint of U(N), the open string
wavefunctions

|k; A〉 =
N∑

i,j=1

|k, ij〉λA
ij , (9.17)

when describing massless vector states, give U(N) gauge fields AA
a . We have seen that

there are U(1) gauge fields on a single D-brane, but now the |i〉 index is easily identified as
labelling D-branes on which each string endpoint can end, as in Fig. 9.1b. Therefore, when
there are N D-branes we expect a U(N) gauge theory. Of course, for the gauge fields exist-
ing on the D-branes, that is a natural situation, but for the scalars Xi or φi corresponding to
the positions of the D-branes that seems strange, since we expect to have only N positions
for them, not N2. Naturally, the diagonal components of the U(N) matrices Xi are identified
with the D-brane positions, but the off-diagonal components are purely quantum variables,
that describe a sort of quantum geometry viewed by D-branes.

At quadratic level, we expect the nonabelian action for φi and AA
a to be

Sp =
∫

dp+1ξ (−2)Tr

[
−1

2
Da �φ · Da �φ − 1

4
FabFab + . . .

]
, (9.18)

based on the fact that the abelian version is correct.

Quantization of bosonic open strings on D-p-branes

Quantization of open strings stretched between two D-branes at Xi
1 and Xi

2 proceeds as
expected.

In the purely Neumann case, the Virasoro constraints for X− give us (7.73), which can
now be written as
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160 D-branes

Ẋ− ± X′− = 1

2p+
(ẊI ± X′I)2 = 1

2p+
[
(Ẋi ± X′i)2 + (Ẋa ± X′a)2

]
. (9.19)

On the other hand, for the NN (Neumann) coordinates Xa, we still have the relation (7.52),
which gives

Ẋa ± X′a = √
2α′

∑
n∈Z

αa
ne−in(τ±σ ). (9.20)

But as we saw, all Xμ satisfy the equation of motion

∂+∂−Xμ = 0, (9.21)

which is solved by Xμ(τ , σ ) = f (τ + σ )+ g(τ − σ ). But for the Dirichlet directions of the
open string, we have the boundary conditions

Xi(τ , σ )
∣∣
σ=0 = x1; Xi(τ , σ )

∣∣
σ=π = x2. (9.22)

The boundary condition at σ = 0 means that f = −g if we add the constant x1, so we can
write (rescaling the functions by 1/2)

Xi(τ , σ ) = xi + 1

2

(
f i(τ + σ ) − f i(τ − σ )

)
. (9.23)

Then the boundary condition at σ = π gives

f i(τ + π ) − f i(τ − π ) = 2(xi
2 − xi

1) ⇒ f i(x + 2π ) = f i(x) + 2(xi
2 − xi

1). (9.24)

We can thus expand the functions f i in Fourier modes as

f i(x) = x

π
(xi

2 − xi
1) +

∑
n≥1

(f i
n sin(nx) + f̃ i

n cos(nx)), (9.25)

leading to the expansion for Xi,

Xi(τ , σ ) = xi
1 +

(xi
2 − xi

1)

π
σ +

∑
n≥1

(f i
n cos(nτ ) − f̃ i

n sin(nτ )) sin(nσ ). (9.26)

We can rewrite this as a sum over positive and negative modes:

Xi(τ , σ ) = xi
1 +

(xi
2 − xi

1)

π
σ +√

2α′
∑
n �=0

1

n
αi

ne−inτ sin(nσ ). (9.27)

We can include the σ term as an n = 0 term (or rather, n → 0) by defining

αi
0 =

1

π
√

2α′
(xi

2 − xi
1). (9.28)

Then we obtain again, as in the Neumann case (except for an overall ± sign),

X′i ± Ẋi = √
2α′

∑
n∈Z

αi
ne−in(τ±σ ). (9.29)

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:53:58 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.011

Cambridge Books Online © Cambridge University Press, 2016



161 9.3 Chan–Patton factors and quantization of open strings on D-branes

Quantization is also done in the same way, leading to the same commutation relations for
the coefficients,

[αi
m,αj

n] = mδijδm+n,0, (9.30)

for m, n �= 0. The Virasoro constraints again lead to

2p+p− = 1

α′

⎡
⎣α′papa + 1

2
αi

0α
i
0 +

∑
n≥1

(αa−nα
a
n + αi−nα

i
n) − 1

⎤
⎦ , (9.31)

which is left as an exercise (Exercise 4) to prove, which in turn gives the spectrum of the
string, since

M2 ≡ 2p+p− − papa = 1

2α′
αi

0α
i
0 +

1

α′

⎡
⎣∑

n≥1

(αa−nα
a
n + αi−nα

i−n) − 1

⎤
⎦

=
(

xi
2 − xi

1

2πα′

)2

+ 1

α′
(N⊥ − 1), (9.32)

where we have defined the (transverse) number operator

N⊥ ≡
∑
n≥1

∑
i

naa†
n aa

n +
∑
m≥1

∑
a

mai†
mai

m. (9.33)

The ground state is

|p+, pa; [ij]〉, (9.34)

where i, j = 1, 2 corresponds to the two D-branes in between which stretches the string,
but we can generalize to the case where they take N values, i, j = 1, . . . , N if there are N
D-branes. The ground state has a mass squared

M2 = − 1

α′
+

(
xi

2 − xi
1

2πα′

)2

. (9.35)

This means that we can have a massless scalar ground state if |xi
2 − xi

1| = 2π
√
α′. Then a

general state is obtained by acting with a†i
n and a†a

n on the ground state, thus having

|ψ〉 =
[
�
i
�
n≥ 1

(a†i
n )Nin√
Nin !

][
�
a
�
m≥ 1

(a†a
n )Nan√
Nan !

]
|p+, pa; [ij]〉. (9.36)

Therefore the first excited state has

M2 =
(

xi
2 − xi

1

2πα′

)2

, (9.37)
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and is composed of

a†i
1 |p+, pa; [ij]〉; a†a

1 |p+, pa; [ij]〉 . (9.38)

The first set are scalars φi from the point of view of the D-brane worldvolume, and the
second set fills a vector state Aa. Together they form the bosonic states we have described
before as existing on the D-brane worldvolume.

In the supersymmetric case, as before, we just eliminate the tachyonic ground state, but
otherwise we keep the same states at the first excited level. For coincident branes, these
states are massless, so we get the gauge fields Aa and scalars φi.

9.4 The action of multiple D3-branes and theN = 4 SYM limit

We saw in the previous section that the massless fields for coincident D-branes are the
scalars φi and gauge fields Aa, and the quadratic action for them is (9.18).

Consider D3-branes in type IIB superstring theory (which are sourced by A+
μνρσ ), mean-

ing p = 3 and D = 10. Then there are 10 − 4 = 6 scalars φi and the gauge fields on the
worldvolume, together with the fermions that fill the supersymmetric multiplet.

We have six scalars that have six on-shell degrees of freedom, and one 4-dimensional
gauge field with two on-shell degrees of freedom, for a total of eight bosonic on-shell
degrees of freedom. On the other hand, a minimal 4-dimensional fermion (e.g. Majorana)
has two on-shell degrees of freedom. That means that for a supersymmetric theory we need
four fermions ψ I , I = 1, . . . , 4. All the fields are, as we saw, in the adjoint representation A
of the U(N) gauge group, so the total field content is AA

a ,φiA,ψ IA, which matches the one
of N = 4 SYM theory. We can also find explicitly that the D3-brane action is invariant
under four supersymmetries in four dimensions, i.e. 16 supercharges, which corresponds
to half of the total supercharges of type IIB superstring theory: For D-branes we have
the condition �0�1 . . . �pε = ε on the supersymmetry parameters ε, which halves their
number of components from the 32 of the type IIB theory in ten dimensions.

Then we must have that the quadratic action on N D3-branes is in fact N = 4 SYM.
The full action on multiple coincident D-branes is in fact not known exactly, so we will
not attempt to describe anything about it here. The full action on a single D3-brane is the
DBI + WZ action. On a flat background with a constant RR 4-form field, giving a WZ term∫

T3, we have the bosonic DBI action

Sbosonic = −T3

∫
d3+1x

(√− det(ηab + 2πα′Fab) − 1
)

. (9.39)

Putting 2πα′ = 1 temporarily, the matrix whose determinant we have above is, in terms of
�E and �B (F0i = −Ei and Fij = εijkBk),

Mab = ηab + Fab =

⎛
⎜⎜⎝
−1 −E1 −E2 −E3

E1 +1 B3 −B2

E2 −B3 +1 B1

E3 B2 −B1 +1

⎞
⎟⎟⎠ . (9.40)
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163 9.4 The action of multiple D3-branes and theN = 4 SYM limit

Its determinant is

− det Mab = 1 − (�E2 − �B2) − (�E · �B)2. (9.41)

But since

�E2 − �B2

2
= −1

4
FμνFμν ; �E · �B = −1

8
εμνρσFμνFρσ ≡ −1

4
F̃μνFμν , (9.42)

the bosonic action of a single D3-brane in flat space is written as (reintroducing 2πα′)

S = −T3

∫
d3+1x

⎡
⎣
√

1 + (2πα′)2 FμνFμν

2
− (2πα′)4

(
1

4
F̃μνFμν

)2

− 1

⎤
⎦ . (9.43)

For consistency with the quadratic action, we see that we need T3 = 1/[(2πα′)2g2
3+1],

which can also be found from the general formula (9.11). So the single D3-brane bosonic
action in flat space becomes

S = − 1

(2πα′)2g2
3+1

∫
d3+1x

[√
1 − (2πα′)2(�E2 − �B2) − (2πα′)4(�E · �B)2 − 1

]
. (9.44)

At �B = 0, from the condition that the factor inside the square root be positive (in order to
have a real action), we obtain the bound

|�E| ≤ 1

2πα′
≡ Ecrit., (9.45)

which means that as we stated, in Born–Infeld theory there is a maximal electric field,
which also leads to a maximal energy density, and no infinities.

Important concepts to remember

• D-branes are (p + 1)-dimensional endpoints of strings, that act as dynamical walls.
• The generic action of a p-brane would be −Tp

∫
dp+1x

√− det(hab), with hab the induced
metric on the brane worldvolume.

• The DBI term in the D-brane action is obtained by the replacement hab → hab+α′Bab+
2πα′Fab, and with an e−φ in front, since the D-brane action has to have a 1/gs = 1/(go)2

factor.
• The D-brane tension is found by matching the bulk gravity (closed string)–worldvolume

scalar (open string) vertex with the corresponding string theory calculation.
• The WZ term is μp

∫
p+1 A(p+1), plus other corrections, can be written succinctly as

μp
∫

p+1 exp[α′Bab + 2πα′Fab] ∧∑
n A(n).

• In the presence of Dirichlet boundary conditions, the M2 acquires a term (T�X)2, cor-
responding to a classical string stretching between the two D-branes, and the rest is as
usual.

• The bosonic massless modes on coincident D-branes are transverse scalars φi and gauge
fields Aa.

• N coincident D-branes give a U(N) gauge group, and the theory on the D3-branes (in
four dimensions) is N = 4 SYM.
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164 D-branes

• The full bosonic action on a single D3-brane is the DBI action, and at zero scalars it
reduces to the Born–Infeld action for electromagnetism, which has a critical electric
field at �B = 0, namely Ecrit = 1/(2πα′).

References and further reading

D-branes were found to be dynamical objects (not fixed walls in spacetime) in [27], but
their importance was not understood until the seminal paper of Polchinski [28]. For an
introductory treatment of D-branes, see [23]. The book by Clifford Johnson [25] contains
the most extensive information on D-branes.

Exercises

1. Prove that the action (9.3) is reparameterization invariant, and that the static gauge fixes
this reparameterization.

2. Prove that in the case of several transverse scalars φi, all depending on a single combi-
nation of worldvolume coordinates, for instance s = x2 − t2, the form of the scalar DBI
action on the field configurations reduces to

Sp = −Tp

∫
dp+1ξ

√
1 + ∂a �φ · ∂a �φ

Tp
, (9.46)

without any other terms (. . .) inside the square root.
3. Find the vertex coupling for two worldvolume φi fields and a metric perturbation hμν ,

i.e. φiφjhμν coming from the DBI action, following the procedure for one φ and a hμν
in (9.9).

4. Prove that we get the quantization relation for the coefficients αi
n in the expansion of the

Dirichlet directions Xi, (9.30), and the Virasoro constraints (9.31) in terms of the αns,
by following the procedure in Chapter 7 for the Neumann strings.

5. Consider the 4-dimensional Born–Infeld Lagrangean (9.44) at zero magnetic field
�B = 0 and define the “electric induction”

�D ≡ ∂L
∂ �E . (9.47)

Write down the “Maxwell equations” for �E and �D. Solve them to find the basic object,
the “electron” (point charge = source) profile for �D and �E. Define the “charge densities,”
“external” and “in the material”,

ρext ≡ 1

4π
�∇ · �D; ρmat ≡ 1

4π
�∇ · �E, (9.48)

and show that then

Qtot ≡
∫

dVρext =
∫

dVρmat. (9.49)
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165 9.4 The action of multiple D3-branes and theN = 4 SYM limit

6. Consider the equivalent ansatz to the one in the previous exercise, now for the
scalar DBI action (9.5) with only one scalar φ, and no other fields, and for static
configurations. Define the “electric field” �F ≡ �∇φ and the “electric induction”

�C ≡ ∂L
∂ �F . (9.50)

Write down the “Maxwell equations” for �F and �C and solve them for the basic object,
the “catenoid” solution, with source = point scalar charge. Find the profile for �C and �F.

We can join two of these solutions (with different asymptotic regions) on their
apparent singularities. Think of an interpretation for this patched solution.
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BAS ICS OF AdS/CFT FOR N = 4
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10
The AdS/CFT correspondence: motivation,

definition, and spectra

We have finally arrived at the point where we can define the AdS/CFT correspondence. We
have already seen several hints for its existence. For the particular case that is the subject of
the second part of the book, the duality between N = 4 SYM in four dimensions and string
theory in AdS5 × S5 background, the symmetries are an important argument: the isometry
(invariance) group of AdS5 is SO(4, 2), as seen in Chapter 2, which also matches the sym-
metry group of 4-dimensional conformal field theories, as seen in Chapter 8, whereas the
isometry group of S5 is SO(6) � SU(4), which is the same as the R-symmetry group of
N = 4 SYM, as seen in Chapter 3.

But more generally, we can say that the isometry group of AdSd+1 is SO(d, 2), the same
as the conformal group in (d − 1, 1) dimensions. Moreover, the boundary of Euclidean
AdSd+1 (Lobachevsky) space in Poincaré coordinates is R

d, and in global coordinates is
Rt × Sd−1, which is conformal to (therefore equivalent for conformal field theories) R

d.
The Wick rotation to Minkowski signature was a bit subtle, but in Euclidean signature
things are clear. It then seems natural to assume that gravitational theories in AdS space
are holographic, and equivalent to field theories on the boundary of AdS space.

The deeper reason for this was also explained in Chapter 2. A light signal start-
ing at a generic point in AdS space takes a finite time to reach the boundary (

∫
dt =∫∞ e−ydy < ∞), and then reflects back and returns in finite time. On the other hand, it

takes an infinite time to reach the center of AdS space in global coordinates, whose Pen-
rose diagram is an infinite (in the time direction) cylinder, or to reach the false part of
the boundary in Poincaré coordinates. So if we were to excise the middle of the cylin-
der (a thin cylinder in the middle of the Penrose diagram), we would get a space for
which light travels a finite time between boundaries, which is morally like a quantum
mechanical box.

The fact that light can reach the boundary in finite time means there is a good chance for
the theory to be holographic, since its boundary is in causal contact with the interior. More-
over, for nonholographic theories we define S-matrices by considering asymptotic states
separated at infinity, and scattering them to get S-matrices. Because of the fact that the
boundary is a finite time away, the notion of S-matrix is not well defined in AdS space, and
instead the well-defined observables are correlators of fields with sources on the boundary.
In fact we study these observables in the next chapter.

As for the notion that light travelling a finite time to the boundary makes space like a
quantum mechanical box, it can be made more precise as follows. Consider a metric of
generic type with Lorentz invariance in t, �x, the metric independent of t, �x and with a radial
coordinate ρ,
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170 The AdS/CFT correspondence: motivation, definition, and spectra

ds2 = gttdt2 + g�x�xd�x2
d−1 + gρρdρ2 + gabdxadxb

= |gtt(ρ)|(−dt2 + d�x2
d−1) + gρρ(ρ)dρ2 + gab(ρ, xa)dxadxb, (10.1)

and the equation of motion for a massless scalar, the Klein–Gordon equation in this space,
given by the Box operator:

� = 1√−g
∂μgμν

√−g∂ν = (−∂2
t + ∂2

�x )|gtt| + 1√−g

∂

∂ρ
gρρ

√−g
∂

∂ρ
+ 1√

g̃
∂agab

√
g̃∂b

= |gtt|
[
−∂2

t + ∂2
�x +

1√
g̃(
√|gtt|)d−1

√
|gtt|
gρρ

∂

∂ρ
(
√

g̃(
√|gtt|)d−1)

√
|gtt|
gρρ

∂

∂ρ

]

+ 1√
g̃
∂agab

√
g̃∂b

→ |gtt|
[
−k2 +

√
|gtt|
gρρ

∂

∂ρ

√
|gtt|
gρρ

∂

∂ρ

+
[

1√
g̃(
√|gtt|)d−1

√
|gtt|
gρρ

∂

∂ρ
(
√

g̃(
√|gtt|)d−1)

]√
|gtt|
gρρ

∂

∂ρ
+ · · ·

]
. (10.2)

Here
√−g = √

g̃
√

gρρ
√|gtt|(√g�x�x)d−1 and g̃ is the determinant of the metric gab, and we

have used the fact that the metric is t, �x independent, and gtt = 1/gtt, gρρ = 1/gρρ . In the
last line we went to momentum space in the t, �x directions. But as we see,

∫
dρ

√
gρρ
|gtt| ≡

∫
dx (10.3)

is the time of flight for a light ray (moving on ds2). In terms of this variable, the massless
KG equation �� = 0 becomes, after a redefinition of the wavefunction that removes the
term with a single derivative (see Eq. 21.38), of the type

[
− d2

dx2
+ (V(x) − E)

]
�̃(x) = 0, (10.4)

i.e. in the form of a 1-dimensional quantum mechanical problem in a potential. The time
of flight to infinity in AdS space being finite means that the support of V(x) is finite on the
corresponding side (though it is infinite on the side corresponding to the interior of AdS,
unless we cut off the divergence). A finite support for V(x) leads to a discrete spectrum for
E = m2 ≡ −k2. So a finite time of flight to infinity truly acts from the physics point of
view like putting the system in a box, as stated, and therefore the argument for holography
is stronger.

But these were general arguments, which we revisit in Part III of the book (in Chapter
21), when we look for more phenomenological versions of AdS/CFT. However, in the best
understood cases, we have a heuristic derivation, which we turn to next.
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171 10.1 D-branes = extremal p-branes

10.1 D-branes = extremal p-branes

A first step towards deriving the AdS/CFT correspondence is the observation that in string
theory D-branes are the same as (extremal) p-branes. We recall that D-branes were defined
abstractly as dynamical objects on which open strings can end, whereas p-branes were
solutions of supergravity (the low energy limit of string theory) that gravitate, thus curving
space. The low energy limit on D-branes was found to be N = 4 SYM. In fact, we saw
that the bosonic fields of N = 4 SYM exist on the D-branes, but we have not yet described
in detail why there are 16 supercharges. We can understand that the boundary condition
on open strings reduces the supersymmetry by half, from the 32 supercharges of type IIB
theory to 16, hence the same happens on D-branes.

On the other hand, if D-branes are the same as extremal p-branes, we can calculate how
many supersymmetries remain from the condition that the variation of the gravitini is zero,
δψ i

μ = 0. The fact that this is a condition for supersymmetry follows from the statement
that in a classical background all of the fermions are zero, hence all of their susy variations
must be zero also, which in turn imposes a condition on the bosons. We saw in Chapter
6 that for p-branes we have A01...p = H(r), where H(r) is a harmonic function depending
only on the radial coordinate away from the brane, and in Chapter 4 that generically in
supergravities we have δψ i

μ = Dμε
i + c�μ1...μp+1 Fμμ1...μp+1 + . . . Then in order to solve

δψ i
μ = 0 on the p-brane solution we need to impose ε = ε(r) = f (r)ε0, obtaining

Drε(r) + c�01...p∂rH(r)ε(r) = 0 ⇒ �01...pε0 = ±ε0, (10.5)

(together with an equation for f (r)). Here �01...p = �0 . . . �p and the condition �01...pε0 =
±ε0 relates half the components of ε0 to the other half, hence reduces the supersymmetry
from 32 supercharges to 16.

These extremal p-branes saturate the BPS bound, which, as we saw in Chapter 3, can
be derived from the supersymmetry algebra, and for the extremal solutions (saturating the
bound) we have Q|ψ〉 = 0 for half of the Qs, as was found above. But the BPS bound
for the extremal p-brane solutions was also derived from the condition to have no “naked
singularities,” namely for the singularity to be hidden behind a horizon (for M > Q we have
a horizon outside the singularity, and for M = Q the horizon coincides with the singularity).
The extremal p-branes are a kind of soliton, therefore nonperturbative objects, with the
mass proportional to 1/gs, unlike the usual solitons which have masses proportional to
1/g2, or fundamental objects with masses independent of the coupling. The 1/gs behavior
matches what is expected from D-branes, since we saw that the D-brane action has a 1/gs

in front.
In 1995, Polchinski showed that D-branes and p-branes are the same, by calculating the

tensions and charges of the D-branes from string theory and matching with the p-brane
(solutions of supergravity) results. This gave rise to the “second superstring revolution,”
since after that one could do nonperturbative calculations involving D-branes. We will not
reproduce the tension and charge calculation here.
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172 The AdS/CFT correspondence: motivation, definition, and spectra

Thus D-branes curve space and N D3-branes (with p = 3) correspond to the p-brane
supergravity solution (here F5 = Fμ1...μ5 dxμ1 ∧ . . . ∧ dxμ5 ):

ds2 = H−1/2(r)d�x2|| + H1/2(r)(dr2 + r2d�2
5),

F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ (dH−1),

H(r) = 1 + R4

r4
; R4 = 4πgsNα

′2; Q = gsN. (10.6)

But if we go a little away from the extremal limit Q = M by adding a small mass δM,
this solution develops an event horizon at a small r0 > 0, and like the Schwarzschild black
hole, it emits “Hawking radiation,” i.e. thermal radiation produced by the event horizon.

10.2 Motivation: near-horizon limit, Hawking radiation,
and the two points of view

If the extremal p-brane supergravity solution is also a D-brane, one can derive the Hawk-
ing radiation of the near-extremal p-brane in the D-brane picture from a unitary quantum
process: two open strings existing on a D-brane collide to form a closed string, which as a
result is not bound to the D-brane anymore and can peel off the D-brane and move away
as Hawking radiation, as in Fig. 10.1. The Hawking radiation then corresponds to all the
closed string fields that can move in the bulk of spacetime.

Therefore there should be a relation between the theory of open strings living on N
D-branes, i.e. N = 4 SYM with SU(N) gauge group, and the gravitational theory cor-
responding to fields of the Hawking radiation, existing in the background curved by the
D-branes (10.6).

�Figure 10.1 Two open strings existing on a D-brane collide and form a closed string, that can then peel off and go away from the
brane.
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173 10.2 Motivation: near-horizon limit, Hawking radiation, and the two points of view

The heuristic derivation motivating the AdS/CFT correspondence follows from describ-
ing string theory in the presence of the D-branes from the two points of view (endpoints of
open strings and gravitational solution), taking into account the Hawking radiation process
described above.

Point of view no.1
Consider the D-branes viewed as endpoints of open strings. Then string theory with

D3-branes has three ingredients:

• The open strings existing on the D3-branes, giving a theory that reduces to N = 4 Super
Yang–Mills in the low energy limit.

• The closed strings existing in the bulk (the whole) of spacetime, giving a theory that is
supergravity coupled to the massive modes of the string. In the low energy limit, only
supergravity remains.

• The interactions between the two, giving for instance Hawking radiation through the
process just described above.

Thus the action of these strings will be something like

S = Sbulk + Sbrane + Sinteractions. (10.7)

In the low energy limit α′ → 0, the massive string modes drop out, and Sbulk →
Ssupergravity, also Sbrane → SN=4SYM. Moreover,

Sint ∝ κN ∼ gsα
′2, (10.8)

(the gs dependence is because in front of the Einstein action we must have 1/κ2
N , but also

1/g2
s , and α′2 for dimensional reasons) where α′ → 0, whereas gs is the string coupling

and stays fixed. Then we see that Sint → 0 and moreover, since the Newton constant
8πGN = k2

N → 0, gravity – and hence supergravity also – becomes free. Thus in this limit
we get two decoupled (non-interacting) systems:

• Free gravity in the bulk of spacetime;

• 4-dimensional N = 4 gauge theory on the D3-branes.

Point of view no.2.
We now replace the D3 brane by the supergravity solution (p-brane).
Then the energy Ep measured at a point r → 0 and the energy E measured at infinity are

related by

Ep → i
d

dτ
= i√−g00

d

dt
→ 1√−g00

E

⇒ E = H−1/4Ep ∝ rEp. (10.9)

Therefore, for fixed Ep, as r → 0, the energy observed at infinity, E, goes to zero, i.e.
we are in the low energy regime at infinity.

Thus from this point of view, we also have two decoupled low energy systems of
excitations:
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• At large distances (δr →∞), or equivalently at low energies (since energy ∼ 1/length),
gravity becomes free: the gravitational coupling has dimensions, therefore the effective
dimensionless coupling is GNE2 and this → 0 as E → 0. Thus again we have free
gravity at large distances, i.e. away from the p-brane, in the bulk of spacetime.

• At small distances r → 0, we also have low energy excitations, as we saw.

The fact that these two systems are decoupled can be seen in a couple of ways. One can
calculate that waves of large r have a vanishing absorption cross-section on D-branes. One
can also show that conversely, the waves at r = 0 cannot climb out of the gravitational
potential and escape at infinity. We will not show this here.

Thus in the second point of view we again have two decoupled low energy systems, one
of which is again free gravity at large distances (in the bulk of spacetime).

Therefore, we can identify the other low energy system in the two points of view and
obtain that:

The 4-dimensional gauge theory on the D3-branes, i.e.
N = 4 Super Yang–Mills with gauge group SU(N), at large N is
= gravity theory at r → 0 in the D-brane background, if we take α′ → 0.
This is called the AdS/CFT correspondence, but at this moment it is just a vague

statement, that needs to be made more precise.

10.3 Definition: limit, validity, operator map

We now turn to defining better the correspondence hinted at in the previous section.
We first define the gravitational background. If we take r → 0, then the harmonic

function H � R4/r4, and we obtain the supergravity background solution

ds2 � r2

R2
(−dt2 + d�x2

3) + R2

r2
dr2 + R2d�2

5. (10.10)

By changing the coordinates r/R ≡ R/x0, we get

ds2 = R2−dt2 + d�x2
3 + dx2

0

x2
0

+ R2d�2
5, (10.11)

which is the metric of AdS5 × S5, i.e. 5-dimensional Anti-de Sitter space times a 5-sphere
of the same radius R, where AdS5 is in Poincaré coordinates.

From the point of view of the supergravity background solution, the gauge theory exists
in the original metric, before taking the r → 0 limit, which after taking the limit corres-
ponds to r → ∞. Therefore in the new AdS5 × S5 limit space we can say that the gauge
theory lives at r → ∞, or x0 → 0, which as we have proven when analyzing AdS space,
is part of the real boundary of global AdS space. In Poincaré coordinates, x0 → 0 is a
Minkowski space.

Then the gravity theory exists in AdS5×S5, whereas the Super Yang–Mills theory exists
on the 4-dimensional Minkowski boundary of AdS5 parameterized by t and �x3.
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175 10.3 Definition: limit, validity, operator map

We still need to understand the α′ → 0 limit. We want to keep arbitrary excited string
states at position r as we take r → 0 (to obtain the low energy limit). Therefore the energy
at point p in string units, Ep

√
α′, needs to be fixed. Since H � R4/r4 ∝ α′2/r4, the energy

measured at infinity is

E = EpH−1/4 ∝ Epr/
√
α′. (10.12)

But at infinity we have the gauge theory, therefore the energy measured at infinity (in the
gauge theory) must also stay fixed. Since Ep

√
α′ ∼ Eα′/r must be fixed, it follows that

U ≡ r

α′
(10.13)

is fixed as α′ → 0 and r → 0, and can be thought of as an energy scale in the gauge theory
(since we said that E/U was fixed). The metric is then (R4 = α′24πgsN),

ds2 = α′
[

U2

√
4πgsN

(−dt2 + d�x2
3) +√

4πgsN

(
dU2

U2
+ d�2

5

)]
, (10.14)

where α′ → 0, but everything inside the brackets is finite.
We should also explain what happens to the field strength F5. In the near horizon limit,

we obtain

F5 = (1+∗)4
r3

R4
dx0 ∧ . . .∧ dx3 ∧ dr = 4R4(1+∗)ε(5) = 16πgsα

′2N(1+∗)ε(5). (10.15)

Here R is the radius of AdS5 and S5 and

ε(5) =
√−g

R5
dx0 ∧ . . . ∧ dx3 ∧ dr (10.16)

is the volume form, that integrates to 1 on AdS5, and g is the determinant of the AdS5

metric. Therefore we see that the flux is quantized in units of N.
Here in the gravity theory N is the number of D3-branes and gs is the string coupling. In

the Super Yang–Mills gauge theory, N is the rank of the SU(N) gauge group, for the low
energy theory on the N D3-branes. And gs is related to the Yang–Mills coupling by

4πgs = g2
YM, (10.17)

since gYM is the coupling of the gauge field Aa
μ, which we argued is the massless mode of

the open string existing on the D3-branes, so gYM = go, and we have already argued that
gs ∼ (go)2. Indeed, out of two open strings we can make a closed string, therefore out of
two open string splitting interactions, governed by the gYM = go open string coupling, we
can make one closed string splitting interaction, governed by the gs coupling, as in Fig. 9.3.

The last observation that one needs to make is that in the limit α′ → 0, string theory
becomes its low energy limit, supergravity.

Therefore the AdS/CFT correspondence relates string theory, in its supergravity limit, in
the background (10.14), with N = 4 SYM with gauge group SU(N) existing in d = 4, at
the boundary of AdS5.

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:54:11 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.012

Cambridge Books Online © Cambridge University Press, 2016



176 The AdS/CFT correspondence: motivation, definition, and spectra

Limits of validity

To be able to use the supergravity approximation of string theory, we must have:

• The curvature of the background (10.14) must be large compared to the string length,
i.e. R = √

α′(4πgsN)1/4 # √
α′ = ls, to avoid α′, or string worldsheet quantum

corrections. That means that we are in the limit gsN # 1, or g2
YMN # 1.

• Quantum string corrections, governed by gs, are small, thus gs → 0.

Therefore, for supergravity to be valid, we need to have gs → 0, N → ∞, but
λ = gsN = g2

YMN must be fixed and large (# 1).
Another way to understand the requirement that quantum string corrections must be

small is by imposing that R # lP, where the 10-dimensional (reduced) Planck length
lP,10 = M−1

P,10 is given from the coefficient 1/(2lD−2
P,D ) of the Einstein–Hilbert action, as

l8P,10 = 1
2 (2π )7g2

sα
′4, leading to

R

lP,10
= 2−1/4π−5/8N1/4. (10.18)

The requirement of no quantum string corrections is then N → ∞, which, given that gsN
is kept fixed and large, implies gs → 0.

But in the large N limit, ’t Hooft showed that gauge theories with adjoint fields have as
expansion parameters the effective, or ’t Hooft coupling λ = g2

YMN and 1/N. The depen-
dence of the amplitudes on the expansion parameters in a gauge theory with only adjoint
fields is1

∼ (g2N)LN1−2h, (10.19)

where g is the YM coupling (the 3-gluon vertex has a factor of g, the 4-gluon vertex a
factor of g2), L is the number of loops of the Feynman diagram, and χ = 2 − 2h − l
(l = 1 is the number of external or “quark” index loops, 1 in the case of external adjoint
fields) is the Euler characteristic of the surface on which we can draw the diagram, with
h the number of handles of this surface. For planar diagrams, we can draw them on a

1 The proof in the case of diagrams with no external lines goes as follows. The factor is gV3+2V4 NI , where
V3 is the number of 3-vertices, V4 the number of 4-vertices, and I the number of (fundamental) index traces.
Define also V = ∑

n Vn = V3 +V4 and call F the number of faces of the Feynman diagram viewed as a figure
drawn on a surface with h handles, with P the number of propagators, and l the number of external or “quark”
index loops, which equals 1 for a diagram of only adjoint fields, as we can verify. Then each propagator ends
on two vertices, and each n-vertex connects n propagators, giving 2P = ∑

n nVn = 3V3 + 4V4. Then also
2P − 2V = V3 + 2V4. Moreover, we see that F = I + l, so the couplings factor becomes g2P−2V NF−l. But
a theorem by Euler for an object with F faces, P edges, and V vertices gives that F − P + V = 2 − 2h, so
the factor is (g2N)P−V N2−2h−l. For a diagram with no external lines, the number of loops (or independent
momentum integrations) is L = P − V , since there are P momentum integrations (one for each propagator)
constrained by V delta functions (one at each vertex). For a diagram with external lines, the formula would
be L = PI − V + 1, where PI is the number of internal lines, since the number of loops equals the number
of integrations PI , constrained by the V delta functions, minus the one for giving the conservation of external
momentum. Then P − V = V3/2 + V4 = L, and with l = 1, we get a factor of (g2N)LN1−2h. In the case
of E external lines, writing PI for the number of internal propagators, the relation 2P = ∑

n nVn becomes
E+2PI =

∑
n nVn, since external lines connect to only one vertex. Then the factor is gE+2PI−2V NF−l, which

can be rewritten as gE−2(g2N)PI−V+1N2−2h−l = gE−2(g2N)LN2−2h−l.
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)c)b)a

�Figure 10.2 a) Planar 1-loop diagram with two 3-point vertices; b) Planar 2-loop diagram with two 4-point vertices; c) Nonplanar
3-loop diagram.

sphere, with h = 0. In Fig. 10.2 are examples of Feynman diagrams, so we can understand
the above formula. Drawing the diagrams, we use ’t Hooft’s double line notation, where
adjoint fields are denoted with a double line, to acknowledge the fact that they have two
(fundamental) matrix indices, Aij

μ, which are contracted throughout the diagram, with the
external lines. A propagator from a state (ij) to a state (kl) will have δikδjl, etc. Then an
index loop (closed line in the double line notation) corresponds to δi

i = N, so for every
index loop we have a factor of N. We see for instance that a planar 1-loop diagram with two
3-point vertices as in Fig. 10.2a has a factor of g2N, whereas a 2-loop diagram with two
4-point vertices as in Fig.10.2b has a factor of (g2)2N2 = (g2N)2. The nonplanar 3-loop
diagram with two external 4-point vertices and two internal 3-point vertices in Fig. 10.2c
has only one index loop and thus a factor (g2)2g2N = (g2N)3N−2, as needed for a surface
with one handle, as we can check that the Feynman diagram shows.

Therefore in the N → ∞ limit with g2N held fixed, known as the ’t Hooft limit, planar
diagrams dominate (the nonplanar diagrams are subleading by factors of 1/N2), and then
the effective coupling is λ. ’t Hooft considered the perturbative expansion in λ, i.e. λ ! 1
and fixed, but in the case of AdS/CFT we see that we need λ# 1 and fixed instead.

Then we find that AdS/CFT is a duality, since the two descriptions, gauge theory per-
turbation theory and supergravity in AdS5 × S5 are valid in opposite regimes, λ ! 1 and
λ # 1, respectively. This means that such a duality will be hard to check, since in one
regime we can use a description to calculate, but not the other.

At this point, the definition of AdS/CFT is of a duality between supergravity on AdS5×S5

as in (10.14) and 4-dimensional N = 4 SYM with SU(N) gauge group, existing at the AdS5

boundary, with gs → 0, N →∞ and gsN fixed and large.
But in fact the issue of validity of AdS/CFT is more complicated. We can have several

possible versions for the duality:

• The weakest version is the one just described: AdS/CFT is valid only at large 4πgsN =
λ, when we have just the supergravity approximation of string theory in the back-
ground (10.14). If we go to the full string theory, i.e. away from large gsN, we may
find disagreements.

• A stronger version would be that the AdS/CFT duality is valid at any finite gsN, but
only if N → ∞ and gs → 0, which means that string worldsheet α′ corrections, given
by the ratio α′/R2 = 1/

√
4πgsN = 1/

√
λ agree, but 4πgs = g2

YM = λ/N2 corrections
may not.

• The strongest version would be that the duality is valid at any gs and N, even if we can
only make calculations within certain limits. This is what is believed to be true, since
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many examples have been found of α′ and gs corrections that agree between AdS and
CFT theories.

Operator map

We now consider the mapping between 4-dimensional N = 4 SYM and AdS5 supergravity,
and we start with the relation between gauge invariant operators in SYM and fields in
supergravity.

A gauge invariant operator O in the N = 4 SYM CFT will be characterized by certain
conformal dimensions � and a representation index In for the SO(6) = SU(4) R-symmetry.
Note that the operator must be gauge invariant, since there is no gauge group on the super-
gravity side. As already mentioned, the SO(6) R-symmetry corresponds to the symmetry
of the S5 sphere in AdS5 × S5, whereas the conformal symmetry SO(4, 2) becomes the
isometry group of AdS5.

In the string theory in AdS5×S5, O corresponds to a field, but we restrict this discussion
to the supergravity limit. Then we have supergravity on AdS5 × S5, where S5 is a compact
space, and thus we can apply the Kaluza–Klein procedure of compactification: we expand
the supergravity fields in spherical harmonics (Fourier-like modes) on the sphere.

We recall that a scalar field would be expanded as

φ(x, y) =
∑

n

∑
In

φ
In
(n)(x)YIn

(n)(y), (10.20)

where n is the level, the analog of the n in einx/R for a Fourier mode around a circle of
radius R. In is an index in a representation of the symmetry group, x is a coordinate on
AdS5 and y a coordinate on S5, and the spherical harmonic YIn

(n)(y) is the analog of einx/R

for a Fourier mode.
Then the field φ

In
(n) existing in AdS5, of mass m, corresponds to an operator OIn

(n) (of the
same symmetry) in 4-dimensional N = 4 SYM, of dimension �. The relation between m
and � in AdSd+1 is (we derive this at the beginning of the next chapter)

� = d

2
+

√
d2

4
+ m2R2. (10.21)

Thus a tower of KK modes of increasing mass labelled by n corresponds to a tower of
operators of increasing conformal dimension labelled by the same.

For completeness, we note that the general formula for a p-form field in AdSd+1 comes
from (�− p)(�+ p − d) = m2R2, giving

� = d

2
+

√
d2

4
+ m2R2 − p(p − d). (10.22)

The dimensional reduction on S5, i.e. keeping only the lowest mode in the Fourier-like
expansion, should give a supergravity theory in AdS5. But as we mentioned in Chap-
ter 4, supergravity theories that admit AdS backgrounds (with a cosmological constant)
are actually gauged supergravity theories, so the dimensional reduction gives maximal
5-dimensional gauged supergravity.
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179 10.4 Spectra and “experimental” evidence

We should note that m2 in an AdS space need not be ≥ 0 as in flat spacetime. The
condition comes basically from normalizability at an infinity of localized excitations, i.e.

from stability: in flat space, eik·x has an eimt factor that can behave like e+t
√

−m2
. In AdS

space, there is an analogous condition on m2 known as the Breitenlohner–Freedman bound,
for normalizability of perturbations. For scalars, it amounts to reality of � in (10.21), i.e.
positivity of the argument of the square root,

m2R2 ≥ −d2

4
. (10.23)

Scalars satisfying this condition are stable.

10.4 Spectra and “experimental” evidence

For our first test of the AdS/CFT correspondence, we test the tower of KK modes of the
supergravity fields against towers of operators in SYM. On the supergravity side, we have
fields φ(n) obtained by the spherical harmonic expansion of 10-dimensional supergrav-
ity around the background solution AdS5 × S5, and on the CFT side we have a set of
operators that belong to definite representations of the symmetry groups. We match the
representations and then the masses against dimensions.

However, this is not as simple as it sounds, since we mentioned that even though N = 4
SYM has zero beta function, there are still quantum corrections to the conformal dimen-
sions � of operators. Since we are working in the deeply nonperturbative gauge theory
regime, of effective coupling λ# 1, it would seem that we have no control over the result
for the quantum value of � of a given operator.

But we are saved by the large amount of symmetry available. Supersymmetry together
with the conformal group SO(2, 4) gives the superconformal group SU(2, 2|4).

Representations of the conformal group are given as we said by a primary operator O
and its “descendants,” obtained by acting on them with Pμ like a creation operator on the
vacuum, (Pμ1 . . .PμnO).

Representations of the superconformal group are correspondingly larger (there are
more symmetries, which must relate to more fields, or put another way, there are more
creation operators in the method of induced representations), so they will include many
primary operators of the conformal group (there was one primary field, or “vacuum” of
the creation operators per representation of the conformal group). In particular, there are
216 primary operators for a generic representation of N = 4 supersymmetry in d = 4,
since there are 16 supercharges, each giving a creation operator a†, and in a state it can be
present or not, as we saw in Chapter 3.

However, again as we saw in Chapter 3 when discussing representations of supersym-
metry, there are special, short representations of the superconformal group, that are
generated by so-called chiral primary operators. These are primary operators that are
annihilated by some combination of Qs (thus they preserve some supersymmetry by
themselves), i.e. [Q comb.]Och.pr = 0.
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The conformal dimension� of chiral primary operators is uniquely determined by the R-
symmetry charge. This fact comes out of the superconformal algebra, and is the equivalent
of the saturation of the BPS bound (“extremality”). The relation QO = 0 means that the
conformal dimension, equivalent to mass, is given in terms of R-symmetry charge, in the
same way as M = Z appeared for the usual BPS bound. We then cannot have quantum
corrections to � since it would imply there would need to be quantum corrections to the
R-charge as well, which is impossible, or otherwise we would break the BPS bound and
change the number of states of the representation, again impossible. Then the λ# 1 value
of � is the same as the λ = 0 value, and we can check it using AdS-CFT!

The representations In of the symmetry groups for supergravity fields are small.
Then Kaluza–Klein supergravity modes in AdS5 correspond to chiral primary fields
in SYM, with dimensions protected against quantum corrections. On the other hand,
non-supergravity string fields will in general belong to large representations.

KK scalar fields in AdS5 belong to six families, and correspondingly we find six fam-
ilies of chiral primary scalar representations (the N = 4 SYM fields are denoted as
{φI , λαA, λ̄A

α̇ , Aμ}):
• On ≡ Tr (φ(I1 . . . φIn)) (in the symmetric representation), which therefore have dimen-

sions � = n (there are n fields of dimension 1), and by the above relation we expect
them to correspond to KK fields of masses m2R2 = n(n − 4), n ≥ 2.

• Q2On+2(≡ εαβ{Qα , [Qβ ,On]}) = Tr (εαβλαAλβBφ
I1 . . . φIn ), of dimensions � = n+ 3

(λ has dimension 3/2), therefore corresponding to KK fields of masses m2R2 = (n +
3)(n − 1), n ≥ 0.

• Q4On+2 = Tr (FμνFμνφI1 . . . φIn ), of dimensions � = n + 4 (Aμ has dimension 1),
corresponding to m2R2 = n(n + 4), n ≥ 0.

• Q2Q̄2On+4 = Tr (εαβεα̇β̇λαA1λβA2 λ̄
B1
α̇ λ

B2

β̇
φI1 . . . φIn ) of dimensions � = n + 6,

corresponding to KK fields of masses m2R2 = (n + 6)(n + 2), n ≥ 0.
• Q4Q̄2On+4 = Tr (εαβλαAλβBF2

μνφ
I1 . . . φIn ), of dimensions � = n + 7, corresponding

to KK fields of masses m2R2 = (n + 3)(n + 7), n ≥ 0.
• Q4Q̄4On+4 = Tr (F4

μνφ
I1 . . . φIn ), of dimensions � = n+8, corresponding to KK fields

of masses m2R2 = (n + 4)(n + 8), n ≥ 0.

We find that indeed the KK families have such masses, therefore we have “experimental
evidence” for AdS/CFT.

10.5 Global AdS/CFT; dimensional reduction on S3

Up to now we have obtained AdS/CFT in the Poincaré patch of AdS space. But AdS space
is larger, and it is natural to assume that there is a relation to the full global AdS space. In
fact, we have already seen in Chapter 2 that the boundary of global AdS is related to the
boundary of Poincaré AdS by a conformal transformation. Let us review this a little. We
consider the Euclidean version, since we have seen that while the Wick rotation in the bulk
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181 10.5 Global AdS/CFT; dimensional reduction on S3

of global AdS is related simply to the Wick rotation in the bulk of Poincaré AdS, on the
boundary of global AdS we have a sort of radial time Wick rotation.

The metric of global AdS5 × S5 is

ds2 = R2

cos2 θ
(dτ 2 + dθ2 + sin2 θd�2

3) + R2d�2
5. (10.24)

If we are a distance ε from the boundary, at θ = π/2−ε, then cos2 θ � ε2, so the boundary
metric is approximately (since the S5 is infinitely small with respect to the AdS5 we can
drop it):

ds2 = R2

ε2
(dτ 2 + d�2

3). (10.25)

On the other hand, in Poincaré coordinates, we have

ds2 = R2 d�x2 + dx2
0 + x2

0d�2
5

x2
0

. (10.26)

At a distance ε from the boundary, at x0 = ε, we obtain

ds2 = R2

ε2
d�x2, (10.27)

i.e. flat space. But the Rt × S3 and the flat space R
4 are related by a conformal

transformation, irrelevant for a CFT, since

ds2 = d�x2 = dx2 + x2d�2
3 = x2((d ln x)2 + d�2

3) = x2(dτ 2 + d�2
3). (10.28)

This suggests that string theory in global AdS5 × S5 is dual to N = 4 SYM on the cylinder
Rt × S3 on its boundary, which is in fact true.

Operator-state correspondence in conformal field theory

However, the rules are a bit different in global coordinates, so it is worth describing them.
The reason is that when applying a conformal transformation on flat space to go to the
cylinder, we relate operators O to states |O〉. This operator–state correspondence is an
important concept in conformal field theory, though it is more familiar in two dimensions,
so we start there first. Then we apply it to four dimensions for the case of global AdS/CFT.

Consider the complex plane parameterized by z and the transformation z = e−iw. In w
consider the semi-infinite cylinder Im(w) ≤ 0, 0 ≤ Re(w) ≤ 2π , with the identification
w ∼ w + 2π . It is mapped to the unit disk in z, |z| ≤ 1. This can be thought of as a
representation of the string worldsheet, a semi-infinite closed string cylinder, mapped to a
unit disk. The center of the disk corresponds to the point w = −i∞, i.e. the asymptotic
past region. So operators at the origin of the disk will correspond to something acting in
the asymptotic past region of the cylinder, which can be thought of as initial states.

On the complex plane, as we saw in (8.27), the closed string scalar operator Xμ admits
a Laurent series expansion. The unit operator can be thought of as mapping to the vacuum
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182 The AdS/CFT correspondence: motivation, definition, and spectra

state in the asymptotic region of the cylinder. But the general string asymptotic states are
created by acting with αμ−m and α̃μ−m, and from (8.27) we have

α
μ
−m =

√
2

α′
i

(m − 1)!
∂mXμ(0). (10.29)

Therefore we can think of the asymptotic state α
μ
−m|0, 0〉 on the cylinder in w as

corresponding to the operator √
2

α′
i

(m − 1)!
∂mXμ(0) (10.30)

on the plane in z. On the other hand, on the cylinder in w, the expansion (7.48) corres-
ponding to (8.27) is a Fourier expansion, or in general terms, a KK expansion on S1, and
it corresponds to the Taylor expansion terms (10.30). Then the operators for the Taylor
expansion of Xμ correspond to states of the string.

On the string states of the type αμ−m|0, 0〉, we can act with the Hamiltonian calculated
in (7.58). In this way, we have effectively reduced the case of free (no string interac-
tions) propagating strings on the cylinder, via KK expansion on S1, to a 0+1-dimensional
(quantum mechanical) system of states, acted upon by a Hamiltonian.

Note that the Hamiltonian on Rτ is the same as the “dilatation operator” in the original
plane, the generator of the scaling symmetry �r → λ�r, because of the 2-dimensional version
of (10.28), since

HRτ
= i∂τ = ir∂r = DR2 , (10.31)

where d�r2 = dr2 + r2dθ2.

Operator–state correspondence in higher dimensions

The one important difference from the higher dimensional case is that the 2-dimensional
cylinder, obtained after the conformal transformation from the plane, is flat (has no curva-
ture), whereas in higher dimensions it is curved. But on a curved space, in order to preserve
conformal invariance of scalars, we need to add a conformal coupling Rφ2 to the action.
Thus whereas in two dimensions this does not change the action since R = 0, in higher
dimensions it does. In particular, on Rt × S3, this gives a unit mass term, − ∫

φ2/2 in the
action.

Otherwise the analysis proceeds as above. For scalars Z on the plane R
4, the Taylor

expansion terms

z(m)
α1...αm

∼ (∂α1 . . . ∂αm )Z (10.32)

correspond to states for the KK expansion on R × S3. Due to the mass term, the constant
term (0th order in the expansion) has an energy of 1, i.e. it is described by a harmonic
oscillator of unit frequency. For more general operators, we can again map them to some
kind of states.

On these states we can again define a Hamiltonian, integrating over the S3, thus writing
it in terms of the KK expansion. In general, it is quite complicated, but in a special limit
(the “pp wave limit”) described in Chapter 17, it becomes simple.
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183 10.5 Global AdS/CFT; dimensional reduction on S3

As in the 2-dimensional case, the Hamiltonian H on Rτ is the same as the dilatation
operator D on the original plane, generating the symmetry �r → λ�r, since

HRτ
= i∂τ = ir∂r = Dplane. (10.33)

We will see that this identification allows us to write a Hamiltonian acting on operators
through Feynman diagrams, by defining its action as the action of the dilatation operator
on the CFT on the plane.

Important concepts to remember

• D-branes are the same as (extremal) p-branes, and we have N = 4 Super Yang–Mills
with gauge group SU(N) on the worldvolume of N D3-branes.

• AdS/CFT states that the N = 4 SYM with gauge group SU(N) at large N equals string
theory in the α′ → limit, in the r → 0 of the D3-brane metric, which is AdS5 × S5.

• The most conservative statement of AdS/CFT relates supergravity in AdS5 × S5 with
N = 4 SYM with gauge group SU(N) and g2

YM = 4πgs at gs → 0, N → ∞ and
λ = g2

YMN fixed and large (# 1).
• The strongest version of AdS/CFT is believed to hold: string theory in AdS5 × S5 is

related to N = 4 SYM with gauge group SU(N) at any g2
YM = 4πgs and N, but away

from the above limit it is hard to calculate anything.
• AdS/CFT is a duality, since weak coupling calculations in string theory α′ → 0, gs → 0

are strong coupling (large λ = g2
YMN) in N = 4 SYM, and vice versa.

• Supergravity fields in AdS5×S5, Kaluza–Klein dimensionally reduced on S5, correspond
to operators in N = 4 SYM, and the conformal dimension of operators is related to the
mass of supergravity fields.

• Chiral primary operators are primary operators that preserve some supersymmetry,
and belong to special (short) representations of the superconformal group. The dimen-
sion of chiral primary operators matches with what is expected from the mass of the
corresponding AdS5 fields.

• AdS/CFT is actually defined in global AdS space, which has an S3 × Rt boundary. The
N = 4 SYM theory exists at this boundary, which is conformally related to R

4.

References and further reading

The most complete review of AdS/CFT is [26], though it appeared in 2000. It also assumes
a lot of information, much more than is assumed here, so it works mainly as a reference
tool. Another useful review is [29]. The AdS/CFT correspondence was started by Malda-
cena in [30], but the paper is a demanding read. The correspondence was then made more
concrete first in [31] and then in the paper by Witten [32]. In particular, the state map and
the “experimental evidence” are found in [32]. A comparison with the spectrum of 10d IIB
supergravity on AdS5 ×S5 is found in [33]. This dimensional reduction is only at the linear
level. The full nonlinear reduction on S5 is not yet done. For the other two cases of interest
(discussed only in Part III of this book) of AdS/CFT, AdS4 ×S7 and AdS7 ×S4, a nonlinear
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184 The AdS/CFT correspondence: motivation, definition, and spectra

reduction was done in [34] (though it is not totally complete) for AdS4×S7, and in [35, 36]
(completely) for the AdS7 × S4 case.

Exercises

1. The metric for an “M2 brane” solution of d = 11 supergravity is given by

ds2 = H−2/3(d�x3)2 + H+1/3(dr2 + r2d�2
7); H = 1 + 25π2l6P

r6
. (10.34)

Check that the same limit taken for D3 branes gives M theory on AdS4 × S7 if lP → 0,
U ≡ r2/l3P fixed.

2. Check that the r → 0 limit of the D-p-brane metric gives AdSp+2×S8−p only for p = 3.
3. String corrections to the gravity action come about as gs corrections to terms already

present and α′ corrections appear generally as (α′R)n, with R the Ricci scalar, or some
particular contraction of Riemann tensors. What then do α′ and gs string corrections
correspond to in SYM via AdS/CFT (in the N →∞, λ = g2

YMN fixed and large limit)?
4. Show that the time it takes a light ray to travel from a finite point in AdS to the real

boundary of space and back is finite, but the times it takes to reach the center of
AdS (x0 = ∞, or r = 0, or ρ = 0) is infinite. Try this in both Poincaré and global
coordinates.

5. Consider a metric that interpolates in the radial coordinate r between AdS4 with radius
R and AdS2 × S2 with radius R/2. Is a scalar that is marginally stable in AdS4 (saturates
the BF bound) also stable in AdS2 × S2? How about if the AdS2 × S2 radius is R/3?

6. Write down towers of chiral primary operators corresponding to massive vectors in
AdS5, based on On (by acting with Qs and Q̄s), and predict the vector masses m2

kR2.
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11
Witten prescription and 3-point correlator

calculations

In Chapter 10, we saw that there should be a correspondence between string theory, at least
in the supergravity limit, on AdS5 × S5, and 4-dimensional N = 4 SYM on its boundary,
but we only defined the relation between fields in AdS5 and operators in the CFT, and
we have not defined yet the relation between observables. We also saw that the natural
observables to define in AdS space are not S-matrices, but correlators with sources on the
boundary. In this chapter we present a prescription for the calculation of correlators using
AdS/CFT, and then use it to calculate 2-point and 3-point correlators. The calculations are
done in Euclidean signature, relating Euclidean AdS5 (5-dimensional Lobachevski space)
with the CFT on the Euclidean R

4 boundary. The Wick rotation to Minkowskian signature
is tricky, and it involves new features; some of its aspects are studied in the next chapter.

11.1 Witten prescription for correlation functions

The prescription to calculate correlation functions in x space in AdS/CFT that we explain
here was first described by Witten, following work in momentum space by Gubser,
Klebanov, and Polyakov [31].

We have seen that operators O of conformal dimension � in the CFT are related to fields
φ in AdS5 with mass m related to O through (10.21). For a massless field, m = 0 gives
� = d for the operator corresponding to it in the CFT.

In this chapter, we only treat the massless field case, since for massive scalars, the cor-
rect method involves the so-called holographic renormalization, discussed in Chapter 22,
and so we will postpone the treatment of the massive 2-point function until then. One can
treat the massive case correctly using the Witten method by taking great care about regu-
larization of infinities near the boundary of AdS space, as was done by Freedman, Mathur,
Matusis, et al. [38], but the systematic treatment of Chapter 22 makes it much clearer how
to deal correctly with infinities in general.

For a massless field φ, we can solve the Klein–Gordon (KG) equation near the boundary
of AdSd+1 space in Poincaré coordinates,

0 = 1√
g
∂μ
√

ggμν∂νφ = 1

R2

[
xd+1

0 ∂0x1−d
0 ∂0φ + x2

0∂
2
i φ

]
= 0, (11.1)

and find that there is a non-normalizable solution where φ → φ0, i.e. it goes to a
constant (x0-independent) value on the boundary. More precisely, the two solutions are
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186 Witten prescription and 3-point correlator calculations

φ → xd−�
0 φ0, with � = d and 0. If we also add a mass term, i.e. �φ − m2φ = 0, we

get φ → xd−�
0 φ0 and x�0 φ0, with � the conformal dimension of the dual operator, (10.21).

Bringing the two solutions together, we can write

φ ∼ x�±
0 φ0, �± = d

2
±

√
d2

4
+ m2R2, (11.2)

since the KG equation reduces to

�±(�± − d) − m2R2 = 0. (11.3)

The natural interpretation of φ0 is as a source for the operator O, that also exists on the
boundary and has the same representations for the symmetry groups. Also, since there is
no gauge group in gravity, the field φ has no gauge indices, i.e. is gauge invariant, which
means that the operator O must also be gauge invariant. In turn, this also means that it is
composite, since the basic fields are in the adjoint representation of the gauge group.

We are then led to consider the partition function with sources for the composite operator
O, ZO[φ0], which is a generating functional of correlation functions of O, as we discussed
in Chapter 1.

In Euclidean space, the partition function with sources for the composite operators O is
written as

ZO[φ0] =
∫

D[SYM fields] exp

(
−SN=4 SYM +

∫
d4xO(x)φ0(x)

)
, (11.4)

and is the generating functional of correlators for the operators O, since we obtain

〈O(x1) . . .O(xn)〉 = δn

δφ0(x1) . . . δφ0(xn)
ZO[φ0]

∣∣∣∣
φ0=0

. (11.5)

The natural prescription to calculate the partition function is to make it equal to the partition
function for φ in string theory, with boundary value φ0, i.e.

ZO[φ0]CFT = Zφ[φ0]string. (11.6)

We can understand Witten’s prescription as this natural assumption.
However, we can simplify things since we are in the limit gs → 0,α′ → 0, R4/α′2 =

4πgsN # 1, i.e. we have no string worldsheet corrections or quantum string corrections,
therefore the classical supergravity is a good approximation. Then the partition function
Z[φ0] of the field φ with source φ0 on the boundary, in the classical supergravity (sugra)
limit, i.e. for φ → φ0 on the boundary, becomes

Z[φ0] = exp[−Ssugra[φ[φ0]]], (11.7)

since quantum fluctuations are damped, and the path integral is dominated by the minimum
action, i.e. the classical on-shell supergravity action. To calculate it, one finds the classical
solution as a function of the boundary source, φ[φ0], and replaces it in Ssugra.

Then the AdS/CFT prescription for the generating functional of correlation functions of
operators corresponding to (massless) scalars in AdS5 is

ZO[φ0]CFT =
∫

D[fields]e−S+∫
d4xO(x)φ0(x) = Zclass[φ0]AdS = e−Ssugra[φ[φ0]]. (11.8)
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187 11.2 Set-up: the 2-point function of scalars in x space

11.2 Set-up: the 2-point function of scalars in x space

To calculate n-point functions in the CFT using AdS/CFT, we need to calculate
Ssugra[φ[φ0]]. For that, we can use a diagrammatic technique, using a specialization of
Feynman diagrams, called Witten diagrams. We explain the method here, but we will also
present an alternative, simpler, method for the two-point function.

The first step is to understand how to write the classical solution φ[φ0]. For that, one can
define a classical AdS5 Green’s function, here in the Euclidean Poincaré patch (in the next
chapter we consider other cases). Since we want to calculate the field with sources on the
boundary, we define the bulk to boundary propagator

“��x,x0”KB(�x, x0; �x′) = δ4(�x − �x′), (11.9)

where “��x,x0” is the kinetic operator and the delta function is a source on the flat 4-
dimensional boundary of AdS5. In the case of a scalar field, the kinetic operator is really
��x,x0 , but for other fields it is different.

Then the field φ is written as

φ(�x, x0) =
∫

d4�x′KB(�x, x0; �x′)φ0(�x′), (11.10)

and one replaces it in Ssugra[φ], after which the partition function is Z =
exp

[−Ssugra[φ[φ0]]
]
.

For a scalar field, the bulk to boundary propagator in AdSd+1, solution to (11.9) (as one
can check), is1

KB,�(�x, x0; �x′) = �(�)

π
d
2�

(
�− d

2

)
[

x0

x2
0 + (�x − �x′)2

]�
≡ Cd

[
x0

x2
0 + (�x − �x′)2

]�
. (11.11)

On the boundary, x0 → 0, this satisfies

KB,�(�x, x0; �x′) → xd−�
0 δ(�x − �x′), (11.12)

as it should because of (11.10). We can check this since at x0 → 0, KB = 0 for �x − �x′ �= 0
and for �x = �x′, KB →∞.

We now turn to calculating the simplest possible example, a 2-point function of an
operator corresponding to a massless scalar field. From Witten’s prescription, we obtain

〈O(x1)O(x2)〉 = δ2

δφ0[x1]δφ0[x2]
e−Ssugra[φ[φ0]]

∣∣∣∣
φ0=0

. (11.13)

1 The solution in the massless case is found as follows. We will shortly see that inversion invariance in AdS
plays the same role as inversion invariance in a conformal field theory. We then first look for a solution for
KB that depends only on x0. Then the KG equation (11.1) has solution KB = Cdxd

0. Applying the inversion

xμ → xμ/x2, we get KB = Cdxd
0/(x2

0 + �x2)d . In the presence of a mass term, the power d is replaced by �.
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188 Witten prescription and 3-point correlator calculations

But since

Ssugra[φ[φ0]] = 1

2

∫
(d5x

√
g)

∫
d4�x′

×
∫

d4�y′∂μKB(�x, x0; �x′)φ0(�x′)∂μKB(�x, x0; �y′)φ0(�y′) + O(φ3
0), (11.14)

where 1√
g∂μ

√
g∂μ = � is the kinetic operator, we obtain

Ssugra[φ[φ0]]|φ0=0 = 0;
δSsugra[φ[φ0]]

δφ0

∣∣∣∣
φ0=0

= 0, (11.15)

and only second derivatives and higher give a nonzero result. Then

〈O(x1)O(x2)〉 = δ

δφ0[x1]

(
− δSsugra

δφ0[x2]
e−Ssugra

)∣∣∣∣
φ0=0

= − δ2Ssugra[φ[φ0]]

δφ0(x1)δφ0(x2)

∣∣∣∣∣
φ0=0

= − δ2

δφ0[x1]δφ0[x2]

1

2

∫
d5x

√
g
∫

d4�x′
∫

d4�y′∂μ�x,x0
KB(�x, x0; �x′)φ0(�x′)

×∂μ�x,x0
KB(�x, x0; �y′)φ0(�y′) = −

∫
d5x

√
g∂μ�x,x0

KB(�x, x0; �x1)∂μ�x,x0
KB(�x, x0; �x2). (11.16)

This is the general approach one can use for any n-point function, but in the particular case
of the 2-point function the problem simplifies, and the integral that needs to be done is
simpler, so we will not continue to calculate it this way.

Instead, we rewrite the on-shell action. Note first that, as we just saw, we only need to
consider the quadratic part of the action, since we take two φ0 derivatives and put φ0 = 0
after that. Therefore we consider a free scalar field, satisfying �φ = 0, and its kinetic
(quadratic part of the) action is on-shell:

S = 1

2

∫
d5x

√
g(∂μφ)∂μφ = −1

2

∫
d5x

√
gφ�φ + 1

2

∫
d5x

√
g∂μ(φ∂μφ)

= 1

2

∫
boundary

d4x
√

h(φ�n · �∇φ), (11.17)

where h is the metric on the boundary. Here
√

h = x−d
0 ; �n · �∇ = x0∂/∂x0, and

x0
∂

∂x0
φ(�x, x0) = x0

∂

∂x0

∫
dd�x′KB(�x, x0; �x′)φ0(�x′) → Cddxd

0

∫
dd�x φ0(�x′)

|�x − �x′|2d
(11.18)

as x0 → 0. We then obtain for the on-shell kinetic action:

Skinetic,sugra[φ] = lim
x0→0

∫
dd�xx−d

0 φ(�x, x0)x0
∂

∂x0
φ(�x, x0)

= Cdd

2

∫
dd�x

∫
dd�x′φ0(�x)φ0(�x′)

|�x − �x′|2d
, (11.19)

which leads to the 2-point function

〈O(x1)O(x2)〉 = − Cdd

|�x − �x′|2d
, (11.20)
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189 11.3 Set-up: 2-point function of gauge fields in x space and momentum space

which is the correct behavior for a field of conformal dimension � = d. As we said,
the massless scalar field should indeed correspond to an operator of protected dimension
� = d, so we have our first check of AdS/CFT!

We also note that were it not for the trick we used to turn the kinetic integral into a
boundary term, the calculation would have been difficult. But one does not necessarily need
to continue the calculation until the end, since one can take advantage of the symmetries
of the problem.

We have seen in Chapter 8 that an arbitrary conformal transformation can be obtained
by composing the Poincaré group (Lorentz rotations and translations) with the inversion.
Since we are interested in Poincaré invariant theories, for 4-dimensional conformal invari-
ance of a result we only need to check invariance under the 4-dimensional inversion. But
the 5-dimensional inversion, x′μ = xμ/x2, where xμ = (x0, �x) ≡ (x0, xi), is an invariance
of the Euclidean AdS5 (Lobachevski) metric in Poincaré coordinates,

ds2 = R2

x2
0

(dx2
0 + d�x2), (11.21)

as we can directly check. It reduces to the 4-dimensional inversion on the boundary x0 →
0, so in a sense we already expect the AdS results to be 4-dimensional conformal invariant.
But it could be that when writing an on-shell result, we lose the invariance. So we need
to check the 4-dimensional inversion invariance of φ[φ0], and we also need to check the
dimension of the source φ0. In the 4-dimensional action, we add a term

∫
ddxOφ0, and

since we claimed that O has conformal dimension � in (10.21), φ0 should have dimension
d −�, so under the 4-dimensional inversion we should have φ′0(�x) = |�x′|2(d−�)φ0(�x′). We
also obtain under the full 5-dimensional inversion at x0 → 0,

ddx = ddx′

|�x|2d
,

[
x0

x2
0 + (�x − �y)2

]�
=

[
x′0

(x′0)2 + (�x′ − �y′)2

]�
|�x′|2�. (11.22)

Then the AdS field φ is AdS inversion invariant, φ(y′) = ∫
ddxKB(y0, �y; �x)φ′(�x).

In general then, we can use inversion invariance to bring AdS integrals to more manage-
able forms, so we can calculate the on-shell supergravity action, and from it the n-point
functions.

11.3 Set-up: 2-point function of gauge fields in x space and
momentum space

Gauge fields in AdSd+1 space correspond to conserved currents on the boundary, i.e. we
have a coupling

∫
ddxJi(�x)ai(�x), where the source ai(�x) is the boundary value of the bulk

gauge field Aμ(x0, �x).
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190 Witten prescription and 3-point correlator calculations

The action for YM fields in five dimensions is a kinetic term F∧∗F and a 5-dimensional
Chern–Simons term ∼ dA ∧ dA ∧ A+A4 terms +A5 terms. The quadratic and cubic terms
can be written as

S[A] = 1

2g2

∫
B5

[
δabdAa ∧ ∗dAb + fabcdAa ∧ ∗{Ab ∧ Ac}

]
+ ik

72π2

∫
B5

dabcAa∧dAb∧dAc,

(11.23)
where k is an integer. For our AdS5 × S5 background, one obtains k = N2. Here
the antihermitian generators Ta in the fundamental representation are normalized as
Tr [TaTb] = −1/2δab, and their product is

TaTb = 1

2
(fab

c − idab
c)Tc, (11.24)

where fabc are the antisymmetric structure constants and the dabc are symmetric. The lin-
earized equation of motion coming from the quadratic term in the action is the same as the
equation of motion for a Maxwell field in Euclidean AdS space,

1√
g
∂μ(

√
gFμν) = 0. (11.25)

For a solution that depends only on x0 (like the case of the scalar in the previous
subsection), A = f (x0)dxi, we get

d

dx0

[
(x0)3−d df

dx0

]
= 0, (11.26)

with the solution f = C(x0)d−2. After an AdS inversion xμ → xμ/x2, the solution is

A = C

(
x0

x2
0 + �x2

)d−2

d

(
xi

x2
0 + �x2

)
. (11.27)

More precisely, this A ≡ Aμdxμ, depending also on the index i, is the gauge field bulk to
boundary propagator Gμi. In general, we write

Aa
μ(z) =

∫
d4�xGμi(z, �x)aa

i (�x), (11.28)

by analogy with the scalar case. One important difference is that Aμ is now a gauge
field, subject to a gauge transformation δAa

μ = ∂μ�
a at the linear level (otherwise

we have a covariant derivative), meaning that the propagator is also subject to gauge
transformations, i.e.

Gμi(z, �x) → Gμi(z, �x) + ∂

∂zμ
�i(z, �x). (11.29)

The propagator above is in a gauge where it is conformally covariant on the bound-
ary, such that we can take advantage of the transformation properties under conformal
transformations. It can be written explicitly as

Gμi(z, �x) = Cd

(
z0

z2
0 + (�z − �x)2

)d−2

∂μ

(
(�z − �x)i

z2
0 + (�z − �x)2

)
= Cd zd−2

0

[z2
0 + (�z − �x)2]d−1

Iμi(z−�x),

(11.30)
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191 11.3 Set-up: 2-point function of gauge fields in x space and momentum space

where Cd is a constant, normalized such that Ai → ai on the boundary, giving

Cd = �(d)

2π
d
2�

(
d
2

) . (11.31)

From now on we will call the quantity z2
0 + (�z − �x)2 ≡ R to simplify notation. Chang-

ing momentarily the normalization by writing Cd ≡ C̃d(d − 1)/(d − 2), we have for the
propagator written in form language

G = C̃d d − 1

d − 2

( z0

R

)d−2
d

(
(�z − �x)i

R

)
. (11.32)

We can find the propagator in another gauge by adding the gauge transformation

d� = −C̃d 1

d − 2
d

(
(�z − �x)iz

d−2
0

Rd−1

)
, (11.33)

after which the propagator becomes

G′ = C̃d

[
zd−2

0

Rd−1
dzi − zd−3

0 (�z − �x)i

Rd−1
dz0

]
. (11.34)

Writing it in terms of a derivative (note that we have ∂zi = −∂xi on R), we have

G′
μi(z0, �z; �x)dzμ = C̃d

[
zd−2

0

Rd−1
dzi − 1

2(d − 2)
∂xi

(
zd−3

0

Rd−2

)
dz0

]
. (11.35)

The kinetic (quadratic part of the) action is written again, as in the scalar case, as a total
derivative, i.e. a boundary term (below F ≡ dA),

S[A] = 1

2

∫
AdSd+1

F ∧ ∗F = 1

2

∫
AdSd+1

d(A ∧ ∗F) = 1

2
lim
ε→0

∫
∂AdSd+1,x0=ε

A ∧ ∗F. (11.36)

This can be written as

S[A] = lim
ε→0

1

d − 1

∫
x0=ε

ddxx3−d
0 δijAi(x0, �x)F0j(x0, �x), (11.37)

and considering that Ai → ai as x0 → 0 (the propagator was constructed to satisfy this),
we obtain, calculating from (11.34)

F = dA = d ∧
∫

ddxG′ai(�x)

= (d − 1)zd−3
0 C̃d

[∫
ddx

dz0 ∧ dzi

Rd−1

(
δij − (�z − �x)i(�z − �x)j

R

)
aj(�x) +O(z2

0)

]
, (11.38)

which implies

S[A] =
∫

ddxddx′ai(�x)aj(�x′) C̃d

(�x − �x′)2d−2
Iij(�x − �x′). (11.39)
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192 Witten prescription and 3-point correlator calculations

Therefore the 2-point function is obtained by taking the double derivative with respect to
ai and aj at ak = 0, and is given by

〈Ji(�x)Jj(�x′)〉 = C̃d

(�x − �x′)2d−2
Iij(�x − �x′), (11.40)

which as we saw in Chapter 8 is the form required by conformal invariance.
But we can calculate this on-shell action also in momentum space, in a way which

generalizes to n-point functions, for which there is no way to write the n-point AdS terms
as boundary terms. However, the calculation in momentum space is more involved, its
advantage being only that we can readily relate this to easier and more familiar momentum
space calculations in SYM theory. We only show the procedure on the AdS side, since it is
the case of interest (it is a new calculation).

Indeed, using the propagator G′ in (11.35), we find for dA

dAa(z0, �z) = C̃ddzi ∧ dzj

∫
ddxaa

i (�x)∂xj
zd−2

0

Rd−1

−C̃ddz0 ∧ dzi

∫
ddxaa

j (�x)
1

2(d − 2)
[δjkδli − δlkδji]∂xk∂xl

zd−3
0

Rd−2
. (11.41)

Then the quadratic part of the action becomes

S[A] = 1

2g2

∫
ddx1

∫
ddx2aa

i (�x1)ab
j (�x2)δab

×
[

(∂ i
1∂

j
1 − δij∂2

1 )Id/2−1
d−2,d−2 −

1

8(d − 2)2
(∂ i

1∂
j
1 − δij∂2

1 )∂2
1 Id/2−2

d−3,d−3

]
. (11.42)

Here we have defined the integrals

If
mn(�x1, �x2) =

∫
dz0dd�z z2f+1

0

Rm+1
1 Rn+1

2

, (11.43)

which are convergent only for m + n > f + d/2 − 1, which is satisfied in the case of both
of the integrals appearing above in the kinetic action. Note that by translational invariance,
If
mn is a function of only �x1 − �x2, so when acting on it, ∂1 = −∂2.

Taking the double functional derivative with respect to ai and aj to find the current
2-point function, and then going to momentum space, we find after some algebra

〈Ji
a(�q1)Jj

b(�q2)〉 =
∫

d4�x1d4�x2ei�q1�x1+i�q2�x2〈Ji
a(�x1)Jj

b(�x2)〉

= δab

g2
(qi

1qj
1 − δij�q2

1)

[
Id/2−1
d−2,d−2 +

�q2
1

8(d − 2)2
Id/2−2
d−3,d−3

]
. (11.44)

The integrals If
mn are now in momentum space. By shifting the integrations over �x1, �x2 by

the original �z, we obtain

If
mn(�q1, �q2) =

∫
dz0

∫
ddx1ddx2ei�q1�x1+i�q2�x2

z2f+1
0 (2π )dδd(�q1 + �q2)

(z2
0 + �x2

1)m+1(z2
0 + �x2

2)n+1
. (11.45)
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193 11.4 3-point functions; example: R-current anomaly

We could evaluate these integrals completely, but we want to show the method that can
be extended to 3-point functions and higher, so instead we write them in an integral form
that matches with the SYM momentum space calculations. Specifically, we use multiple
Schwinger parameters for the denominators, using the basic identity

Im(z0, �q1) =
∫

ddx1
ei�q1�x1

(z2
0 + �x2

1)m+1
= 1

�(m + 1)

∫ ∞

0
dττm

∫
dd�x1ei�x1�q1−τ (z2

0+�x2
1)

= �(d)�(d/2)

2�(m + 1)

∫ ∞

0
dττm−d/2e−τ z2

0−�q2
1/4τ , (11.46)

where �(d) = 2πd/2/�(d/2) is the solid angle in d dimensions. Then the integral If
mn

becomes

If
mn =

πd

�(m + 1)�(n + 1)

∫
dx0dτ1dτ2x2f+1

0 τ
m−d/2
1 τ

n−d/2
2 e−x0 τ̄−∑

q2
r /4τr

= πd�(f + 1))

2�(m + 1)�(n + 1)

∫
dτ1dτ2

τ
m−d/2
1 τ

n−d/2
2

τ̄ f+1
e−

∑
q2

r /4τr , (11.47)

where we have defined τ̄ = ∑
r τr. Substituting in the 2-point function and rescaling τi →

τi/4 we get

〈Ji
a(�q1)Jj

b(�q2)〉 = 8π2d�(d/2)

g2�(d − 1)2
δabδ

d(q1 + q2)

×
∫

dτ1dτ2
(τ1τ2)d/2−2

τ̄ d/2
e−

∑
q2

r /4τr
[
qi

1qj
1 − δijq2

1

](
1 + q2

1
τ̄

(d − 2)τ1τ2

)
.

(11.48)

Writing q2
1 as a derivative on the exponent, integrating by parts and writing τ1 = ατ and

τ2 = (1 − α)τ , we can perform the α integration and obtain

〈Ji
a(�q1)Jj

b(�q2)〉 = 4π2d

g2

�(d/2)

�(d − 1)2
δab

[
qi

1qj
1 − δijq2

1

] ∫
dτ̄ τ̄ d/2−3e−q2/τ̄ . (11.49)

This integral result can be reproduced from the SYM side in a similar fashion: write the
denominators with Schwinger parameters, then do the momentum integrations, after which
redefine the Schwinger parameters and do all of the integrations except the last one. We
will not do it here, but it can be found in [39].

11.4 3-point functions; example: R-current anomaly

Having described how to calculate 2-point functions, we now turn to 3-point functions.
Whereas the 2-point functions are fixed by conformal invariance given their confor-
mal dimensions, and the numerical constant is simply a normalization, the 3-point
functions are the first ones that can provide a test of the dynamics. Their functional
form is still fixed by conformal invariance, but the overall coefficient is not. However,
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194 Witten prescription and 3-point correlator calculations

�Figure 11.1 Triangle diagram contributing to the 〈Jai (x)Jbj (y)Jck(z)〉 correlator. Chiral fermions run in the loop.

as for the conformal dimension, the numerical coefficient of the 3-point function can
in principle receive quantum corrections, so we need to find quantities that are not
renormalized.

One obvious candidate is the R-current anomaly. As we reviewed in Chapter 1, anoma-
lies in general are one-loop exact, so the first nonzero calculation, the one-loop triangle,
gives the complete result. The R-currents Ja

i are conserved currents in N = 4 SYM corres-
sponding to the SU(4) = SO(6) global symmetry; they are composite and gauge invariant
operators coupling with the gauge fields Aa

μ, with boundary values aa
i . The Aa

μ arise from
the KK reduction on S5 and the symmetry of the 5-sphere, SO(6), becomes the R-symmetry.
The R-currents for the symmetry,

δψa = εa(Tψ
a )

1 + γ5

2
ψ ; δφ = εa(Tφ

a )φ, (11.50)

are

Ji
a(x) = 1

2
φ(x)Tφ

a (
↔
∂

i
+ 2gAi(x))φ(x) − 1

2
ψ̄(x)Tψ

a γ
i 1 + γ5

2
ψ(x). (11.51)

Their anomaly in four dimensions is given by the triangle diagram in Fig. 11.1, where the
loop (triangle) is formed by chiral fermions. The anomaly means that we have

∂

∂xi
〈Ja

i (x)Jb
j (y)Jc

k(z) >�= 0. (11.52)

In order to calculate general n-point functions in AdS space, we must calculate the
on-shell (classical) supergravity action with boundary values and differentiate with respect
to these boundary values. The resulting AdS n-point functions are given by a sum of tree
level Feynman diagrams (since we use classical supergravity) in x space, with external
points on the boundary. These are known as Witten diagrams. To exemplify them, con-
sider the simplest case, of a 3-point function of scalars coming from an interaction term
in the Lagrangean Lint = λφ1φ2φ3. Using that in AdS space in Poincaré coordinates√−g = x−d−1

0 and that to leading order we have φi(z0, �z) = ∫
ddxKB,�i (z0, �z; �x)φ0,i(�x)

(in general we have an extra term −λ ∫
ddydy0G(z0, �z; y0, �y)φ2(y0, �y), where G is the

bulk to bulk propagator, which can be self-consistently solved in perturbation theory by
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195 11.4 3-point functions; example: R-current anomaly

a)

b)

�Figure 11.2 a) Tree level “Witten diagram” for the 3-point function in AdS space; b)Tree level Witten diagrams for the 4-point
function in AdS space.

replacing the leading order result for φ, etc. on the right-hand side), we find the 3-point
function

〈O(x1)O(x2)O(x3)〉 = δ3

δφ0,1(x1)δφ0,2(x2)δφ0,3(x3)
e−Ssugra[φ0,i]

∣∣∣∣
φ0i=0

= − δ3

δφ0,1(x1)δφ0,2(x2)δφ0,3(x3)
Sint[φ0i]

= −λ
∫

ddzdz0

zd+1
0

KB,�1 (z0, �z; �x1)KB,�2 (z0, �z; �x2)KB,�3 (z0, �z; �x3).

(11.53)

The corresponding “Witten diagram” (Feynman diagram in x space with points on the
boundary) is given in Fig. 11.2a: three bulk to boundary propagators connecting the points
on the boundary with a point in the bulk, are integrated over. For the 4-point function,
in the case of a theory with 4-point interaction terms in the Lagrangean as well as the
3-point interaction terms, we have the three Witten diagrams (tree diagrams), given in
Fig. 11.2b.

Note that since we are interested in connected supergravity tree diagrams only, we
actually have in general

〈O(x1) . . .O(xn)〉 = (−1)n δn

δφ0(x1) . . . δφ0(xn)
Ssugra,on-shell[φ0]. (11.54)

Coming back to the R-current anomaly mentioned above, it is in general proportional to
dabc = −2iTr (Ta{Tb, Tc}), which is totally symmetric under the interchange of a, b, c; it
is also antisymmetric in the indices i, j, k. To obtain the anomaly from AdS space we need
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196 Witten prescription and 3-point correlator calculations

a 3-point interaction term that is antisymmetric in the spacetime indices μ, ν, ρ and gives
a contribution proportional to dabc. This is the Chern–Simons term in the 5-dimensional
gauged (AdS) supergravity. It gives the last term in (11.23), and it is easiest to write as a
total derivative term in six dimensions, giving a 5-dimensional boundary term,

SCS(A) = N2

144π2
Tr

∫
M6

εμνρστεFμνFρσFτε

= N2

18π2
Tr

∫
M6

εεμνρστ ∂ε(Aμ(∂νAρ)∂σAτ + A4 terms + A5 terms)

= N2

18π2
Tr

∫
B5=∂M6

εμνρστ (Aμ(∂νAρ)∂σAτ + A4 terms + A5 terms). (11.55)

In the first form it is obvious it is symmetric in the a, b, c indices, since it is symmetric under
the interchange of the Fs. Indeed, by peforming the trace we obtain dabc, so we obtain a
contribution to the anomaly. This is the only dabc contribution in the 3-point interaction of
gauge fields, hence the anomaly of R-currents is given by

〈Jia(x1)Jjb(x2)Jkc(x3)〉CFT, dabc part = − δ3S3−pnt vertex
CS,sugra [Aa

μ[ad
l ]]

δaa
i (x1)δab

j (x2)δac
k(x3)

∣∣∣∣∣∣
a=0

. (11.56)

We could continue by substituting Aa
μ[ad

i ] and doing the integrals and differentiations, but
there is a simpler way in the case of the anomaly.

The gauge variation in AdS space,

δAa
μ = (Dμ�)a = ∂μλ

a + gf a
bcAb

μλ
c, (11.57)

of the Chern–Simons term gives

δ�SCS = N2

24π2
Tr

∫
B5

d5xεμνρστ (δAμFνρFστ )

= iN2

96π2
dabc

∫
B5

d5xεμνρστ (Dμ�)aFb
νρFc

στ

= − iN2

96π2
dabc

∫
B5

d5xεμνρστ ∂τ

[
�a∂μ

(
Ab
ν∂ρAc

σ +
1

4
f c

deAb
νAd

ρAe
σ

)]

= − iN2

96π2
dabc

∫
boundary

d4xεijkl�a∂i

(
Ab

j ∂kAc
l +

1

4
f c

deAb
j Ad

k Ae
l

)
, (11.58)

where in the third line we have used partial integration and D[μFνρ] = 0, and in the last
expression we can substitute Aa

i s with their boundary values aa
i .

But the AdS/CFT prescription implies that

δ�Sclass[a
a
i ] = δ�(− ln Z[aa

i ]) =
∫

d4xδaai(x)Ja
i (x) =

∫
d4x(Di�)aJa

i (x)

= −
∫

d4x�a[DiJi]
a. (11.59)
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197 11.5 Calculation of full 3-point function of R-currents

Substituting δ�SCS on the left-hand side we get (at leading order in N)

(DiJi)
a(x) ≡ ∂

∂xi
Ja

i + f a
bcaibJc

i

= iN2

96π2
dabcε

ijkl∂i

(
ab

j ∂kac
l +

1

4
f c

deab
j ad

k ae
l

)
, (11.60)

which is exactly the operator equation for the R-current anomaly in the CFT (coming from
the 1-loop CFT computation). On the other hand, at a = 0, the 1-loop result for the anomaly
of the 3-point function in the CFT is

∂

∂zk
〈Ja

i (x)Jb
j (y)Jc

k(z)〉CFT,dabc = − (N2 − 1)idabc

48π2
εijkl ∂

∂xk

∂

∂yl
δ(x − y)δ(y − z), (11.61)

which indeed matches with the above holographic calculation at leading order in N (and a
careful analysis matches also at subleading order).

11.5 Calculation of full 3-point function of R-currents

We want now to calculate the full 3-point function, not only the anomalous part. Since the
dabc part is anomalous, the other group invariant that appears in the 3-point vertex (11.23) is
fabc, which will thus give the non-anomalous part of the 3-point function. As we mentioned
in the case of the 2-point function, this calculation could in principle be done in x space
and in p space. The p space calculation is more familiar in field theory, but in gravity it is
somewhat more involved, so we will describe the x-space calculation.

In x-space we can use conformal invariance to simplify the calculations. It dictates that
the 3-point function of currents should have the general form

〈Ja
i (x)Jb

j (y)Jc
k(z)〉fabc = fabc(k1Dsym

ijk (x, y, z) + k2Csym
ijk (x, y, z)), (11.62)

where k1, k2 are arbitrary coefficients and Csym
ijk and Dsym

ijk stand for the symmetrized version
(adding cyclic permutations) of the objects

Dijk(x, y, z) = 1

(x − y)2(z − y)2(x − z)2

∂

∂xi

∂

∂yj
log(x − y)2 ∂

∂zk
log

(
(x − z)2

(y − z)2

)
,

Cijk(x, y, z) = 1

(x − y)4

∂

∂xi

∂

∂zl
log(x − z)2 ∂

∂yj

∂

∂zl
log(y − z)2 ∂

∂zk
log

(
(x − z)2

(y − z)2

)
.

(11.63)

By conformal invariance we can fix one point, e.g. to z = 0, and another, e.g. to y →∞.
Then the form of the two structures becomes

Dijk(x, y, 0)
y→∞→ −4

y6x4
Ijl(y)

{
δikxl − δilxk − δklxi − 2

xixkxl

x2

}
,

Cijk(x, y, 0)
y→∞→ 8

y6x4
Ijl(y)

{
δikxl − δilxk − δklxi + 4

xixkxl

x2

}
. (11.64)
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198 Witten prescription and 3-point correlator calculations

On the other hand, in AdS space the 3-point correlator comes from the 3-point vertex
proportional to fabc, which is

1

2g2

∫
ddwdw0

wd+1
0

ifabc∂[μAa
ν](w)w4

0Ab
μ(w)Ac

ν(w). (11.65)

Using the conformal bulk to boundary propagator (11.30) for consistency, since we used
conformal invariance on the boundary, we obtain

〈Ja
i (x)Jb

j (y)Jc
k(z)〉fabc = − ifabc

2g2
2Fsym

ijk (�x, �y, �z),

Fijk(�x, �y, �z) ≡
∫

ddwdw0

wd+1
0

∂[μGν]i(w, �x)w4
0Gμj(w, �y)Gνk(w, �z). (11.66)

After some algebra, one finds

Fijk(�x, �y, �z) = −K̃d Ijl(�y − �x)

|�y − �x|2(d−1)

Ikm(�z − �x)

|�z − �x|2(d−1)

1

|�t|d
×

(
δlmti + (d − 1)δiltm + (d − 1)δimtl − d

titmtl
|�t|2

)
, (11.67)

where K̃d is a given constant, and

�t ≡ (�y − �x)′ − (�z − �x)′ and (�w)′ ≡ �w
�w2

. (11.68)

We can now put �z = 0 and |�y| → ∞ in this result and compare with the CFT result
(11.62) and (11.64). We obtain

Fsym
ijk (�x, �y, �z) = 1

π4

(
Dsym

ijk (�x, �y, �z) − Csym
ijk (�x, �y, �z)

8

)
. (11.69)

One can in fact check that this matches the 1-loop result of CFT, even though we are
at strong coupling (λ ≡ g2N # 1). That implies that there should exist some non-
renormalization theorem at work, similar to the one for the quantum anomaly. In fact,
such a theorem was proved for 3-point functions, using superconformal symmetry. Thus in
fact, in N = 4 SYM the 3-point functions of currents are 1-loop exact and match with the
AdS space calculation!

Important concepts to remember

• The Witten prescription states that the exponential of (minus) the supergravity action for
fields φ with boundary values φ0 is the partition function for operators O corresponding
to φ, and with sources φ0.

• The bulk to boundary propagator, together with the AdS supergravity (gauged super-
gravity) vertices, define “Witten diagrams” from which we calculate the boundary (2-,
3-, 4-, . . . point) correlators.

• The 2-point functions match, but they are kinematic. Dynamics is encoded in 3-point
functions and higher.
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199 11.5 Calculation of full 3-point function of R-currents

• Gauge field propagators are subject to gauge transformations. For the bulk to boundary
propagator, Gμi → Gμi + ∂μ�i.

• Calculations in momentum space can be made to match between AdS and SYM by
writing the resulting integrals with Schwinger parameters.

• To compare both sides of the duality, we need correlators that do not get renormalized.
The R-current anomaly is such an object.

• The R-current anomaly in field theory is given by a one-loop triangle Feynman diagram
contribution to the 3-point function of R-currents, and comes from the AdS (gauged)
supergravity Chern–Simons term. The coefficient matches.

• Even the full 3-point function of R-currents matches with the AdS space calcula-
tion of gauge field 3-point function. It has later become understood to come from
non-renormalization theorems.

References and further reading

The prescription for calculating CFT correlators was developed by Witten in [32], as well
as the calculation of scalar 2-point functions and the anomaly in the R-current 3-point func-
tion. The 3-point functions were calculated in [37–39]. Three-point functions of scalars
were calculated in [37]; in [38] 3-point functions of scalars and R-currents were calculated
using x-space and conformal invariance (the method described in the text), and in [39]
a momentum space method for the calculation of R-current 3-point function was used,
matching the usual p-space quantum field theory calculation.

Exercises

1. Knowing that parts of the gauge terms Tr F2
μν and SCS used for the AdS/CFT calcula-

tion of the 3-point function of R-currents come from the 10-dimensional Einstein term
∼ 1

g2
s

∫
d10x

√
G(10) R (here R is the 10-dimensional Ricci scalar), prove that the overall

factor in Ssugra[Aμ(aρ)], and thus in the 3-point function of R-currents, is N2 (no gYM

factors). Use that RAdS5 = RS5 = √
α′(gsN)1/4.

2. Consider the equation (�−m2)φ = 0 in the Poincaré patch of AdSd+1. Check that near
the boundary x0 = 0, the two independent solutions go like x2h±

0 , with

2h± = d

2
±

√
d2

4
+ m2R2, (11.70)

(so that 2h+ = �, the conformal dimension of the operator dual to φ).

3. Check that near x0 = 0, the massless scalar field φ = ∫
KBφ0, with

KB(�x, x0; �x′) = c

(
x0

x2
0 + |�x − �x′|2

)d

, (11.71)
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200 Witten prescription and 3-point correlator calculations

goes to a constant, φ0. Then check that for the massive scalar case, replacing the power
d by 2h+ in KB, we have φ → x2h−

0 φ0 near the boundary.
4. Check that the (1-loop) anomaly of R-currents is proportional to N2 at leading order, by

doing the trace over indices in the diagram.
5. Write down the classical equations of motion for the 5-dimensional Chern–Simons

action for Aa
μ.

6. Consider a scalar field φ in AdS5 supergravity, with action

S =
∫

d5x
√−g

[
1

2
(∂μφ)2 + 1

2
m2φ2 + λ

φ3

3

]
. (11.72)

Is the 4-point function of operators O sourced by φ, 〈O(x1) . . .O(x4)〉, zero or nonzero,
and why?
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12
Holography in Lorentzian signature: Poincaré

and global coordinates

We have seen that the AdS/CFT correspondence for correlators is easy to define in
Euclidean AdS space (Lobachevsky space), and we have described calculations in Poincaré
coordinates. However, new concepts appear in Lorentzian signature, and in the case of
global coordinates calculations are also somewhat different, so we treat them separately in
this chapter. For that, we first take another look at the Euclidean AdS case.

We first solve for the bulk-to-bulk propagator. Indeed, we saw that in the Witten dia-
grams (tree level Feynman diagrams with external points on the boundary), we have in
general both bulk-to-boundary propagators and bulk-to-bulk propagators. The bulk-to-bulk
propagators appear the first time in the 4-point correlator, through the last two diagrams in
Fig.11.2, involving only 3-point vertices. The bulk-to-bulk propagator for a massive scalar
in Euclidean Poincaré AdSd+1 satisfies the equation

(�x − m2)G(x, y) = 1

R2
xd+1

0 ∂xμ
[
x−d+1

0 ∂xμG(x, y)
]
− m2G(x, y)

= − 1√
gy
δd+1(x − y) = −δd(�x − �y)δ(x0 − y0)

yd+1
0

Rd+1
. (12.1)

Defining G(x, y) = xd/2
0 G̃(x, y), the operator (�ν + ∂2

i ) that acts on G̃ (�ν = ∂2
0 +

1
x0
∂0 − ν2

x2
0

) has eigenfunctions Jν(wx0)ei�k·�x with eigenvalues −(w2 + �k2), where ν2 =
m2R2 + d2/4. Here Jν are Bessel functions. Using also the decomposition δ(x0 − y0) =
y0

∫∞
0 dw wJν(wx0)Jν(wy0), we find

G(x, y) = (x0y0)d/2
∫

ddk

(2π )d

∫ ∞

0
dw w

1

w2 + �k2
ei�k·(�x−�y)Jν(wx0)Jν(wy0)

= (x0y0)d/2
∫

ddk

(2π )d
ei�k·(�x−�y)Iν(kx<0 )Kν(kx>0 ), (12.2)

where x<0 (x>0 ) is the smallest (largest) among x0 and y0.
This formula is of a usual kind when solving for Green’s functions of operators, being

constructed out of the two possible solutions to the homogeneous equation (�−m2)� = 0.
The first solution is

� ∝ ei�k·�xxd/2
0 Kν(kx0)φ0(�k), (12.3)

which is regular everywhere, behaving near the boundary as the non-normalizable mode
x�−

0 , or more precisely a combination of the non-normalizable mode x�−
0 and the normal-

izable mode x�+
0 . The second solution is with the Bessel function Kν replaced by Iν , and it
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202 Holography in Lorentzian signature: Poincaré and global coordinates

behaves near the boundary as the normalizable mode x�+
0 , but it blows up exponentially in

the center of AdS (at x0 = ∞). The propagator is then
∫

ddk�1,�k(x>0 )�2,�k(x<0 ).
Since Iν(x) ∼ xν , Kν(x) ∼ x−ν when x → 0, the bulk to bulk propagator behaves when

one point goes near the boundary as

G(x, y) ∼ (x0)
d
2+ν = (x0)�+ . (12.4)

The bulk-to-boundary propagator can then be defined by taking out this x0 behavior as

KB(�x, x0; �y) = lim
y0→0

(y0)−�+G(x, y), (12.5)

and we can check that we obtain the same result as we found before in (11.11). As we saw
before, near the boundary, the on-shell field obtained using KB behaves as

φ(�x, x0) =
∫

ddyKB(�x, x0; �y)φ0(�y) ∼ xd−�
0 φ0(�x) = x�−

0 φ0(�x). (12.6)

Using the on-shell kinetic term for φ calculated in (11.19), we can calculate the one-
point function for a free massless AdS scalar in the presence of nonzero φ0 from

〈e
∫
∂M φ0O〉 = e−Ssugra[φ(φ0)] ⇒

〈O(�x)〉φ0 = −δSsugra[φ(φ0)]

δφ0(�x)

= −Cdd

2

∫
ddy

φ0(�y)

|�x − �y|2d
. (12.7)

In the case of a massive scalar, the exponent 2d is replaced by 2�+. This is an operator
VEV in the presence of a source φ0, so is not an independent quantity. Note that this result
matches what one obtains from an expansion in the CFT:

〈O(�x)〉φ0 = 〈O(�x)e
∫
φ0O〉 ≈

∫
ddx′φ0(�x′)〈O(�x)O(�x′)〉 = −Cdd

2

∫
dd�x′ φ0(�x′)

|�x − �x′|2�− ,

(12.8)
where in the last relation we have substituted the 2-point function, fixed from conformal
invariance.

12.1 Mode and propagator calculations in Lorentzian signature
for Poincaré coordinates

In Lorentzian signature, the situation is more complicated, since we have independent nor-
malizable modes appearing as well. In Lorentzian signature, for boundary momenta k2 > 0
(which can now be split into time and space components, by an abuse of notation calling the
spatial momentum again �k, k2 = −ω2 +�k2), the solutions are the same as in the Euclidean
case, (12.3) and the one with Iν instead of Kν , and no regular normalizable solutions.

However, in the case k2 = −ω2+�k2 < 0, which is the physical one for positive m2, since
we want k2 = −m2 on-shell, we see that we need to analytically continue the Euclidean
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203 12.2 Prescription for holography in Lorentzian signature for Poincaré coordinates

AdS solutions to imaginary |k|, so the Iν and Kν Bessel functions are replaced by J±ν ,
giving the solutions

�± ∝ eik·x(x0)d/2J±ν(|k|x0), (12.9)

when ν = √
d2 + 4m2R2/2 is not an integer. When ν is an integer, Jν and J−ν are equiva-

lent, and the two independent solutions are �+, with Jν , and �− with Yν instead of J−ν .
Since Jν(x) ∼ xν near x = 0, �− behaves like (x0)�− and is non-normalizable, the same

as in the Euclidean AdS solution. But now we also have �+, which behaves like (x0)�+

and is normalizable, and also well defined in the interior, unlike the Euclidean case.
In conclusion, the new feature in the case of Lorentzian signature is the appearance of

the normalizable and regular solutions.
As for the propagators (bulk-to-bulk and bulk-to-boundary), they are the obvious

analytical continuation for xd → it of the Euclidean Poincaré propagators.

12.2 Prescription for holography in Lorentzian signature
for Poincaré coordinates

In the Euclidean case we had only non-normalizable modes in AdS, which meant that their
meaning was clear, giving sources on the boundary for the operator dual to the bulk field.
Now we have also independent normalizable modes, which have the natural interpretation
as states in the boundary theory, but we need to understand the details of the mapping.

First of all, Wick rotating the partition function leads to the Lorentzian version of the
partition function map,

Zsugra[φ0] = eiSsugra[φ(φ0)] = ZCFT[φ0] = 〈s|ei
∫
∂M φ0O|s〉, (12.10)

where unlike the Euclidean case we have considered the possibility that we have a non-
trivial state |s〉, not just the vacuum, since as we saw we can obtain nontrivial states from
normalizable modes. Then by differentiation, we obtain

δ

δφ0(�x)
Ssugra[φ(φ0)] = 〈O(�x)〉φ0 . (12.11)

Therefore the one-point function is now in a nontrivial state, and is again obtained by
differentiation with respect to the boundary source of the supergravity action. For the
example of a free massless scalar, the on-shell solution is now a combination of the non-
normalizable mode obtained by integrating a source with the bulk to boundary propagator,
and an independent normalizable mode, i.e.

φ(x0, �x) = φn(x0, �x) +
∫

ddyKB(x0, �x; �y)φ0(�y)

= φn(x0, �x) + c
∫

ddy
xd

0

(x2
0 + (�x − �y)2)d

φ0(�y). (12.12)

For a massive scalar, we would change the power d → �+. Since for the normalizable
mode near the boundary φn(x0, �x) → (x0)dφ̃n(�x), we can repeat the calculation of the
on-shell action (11.19) in a slightly different way
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204 Holography in Lorentzian signature: Poincaré and global coordinates

δS(φ) =
∫
∂M

d�0 ∂φ

∂x0
δφ

⇒ ∂φ

∂x0

∣∣∣∣
∂M

= d(x0)d−1φ̃n(�x) + cd(x0)d−1
∫

dd�x′ φ0(�x′)
|�x − �x′|2d

⇒

〈φ̃n|O(�x)|φ̃n〉φ0 = dφ̃n(�x) + cd
∫

ddx′ φ0(�x′)
|�x − �x′|2d

. (12.13)

Therefore, now, unlike the Euclidean case, the operator gets a VEV from two independent
sources: the dependent VEV due to the explicit source φ0, as in the Euclidean case, but
now also from the excited state |φ̃n〉, which is a coherent state on the boundary in which
states have nontrivial expectation values.

We can explain (12.13) also as an operator statement. Think first of the normalizable
bulk mode as a quantum mode expansion in on-shell modes φn,k,

φ̂n =
∑

k

[akφn,k + a+φ∗n,k]. (12.14)

The relation (12.13) says that this is mapped to the operator expansion (acting as a field)

Ô =
∑

k

[bkφ̃n,k + b+k φ̃
∗
n,k], (12.15)

where φ̃n,k are arbitrary boundary terms for the normalizable modes, φn(x0, �x) →
(x0)dφ̃n(�x). Then we can identify the creation operators in the expansion ak = bk.

The short form of the above statement is that non-normalizable modes are mapped to
sources and normalizable modes to VEVs (or states), so that

φ ∼ αi(x0)d−� + βi(x0)�, (12.16)

where � = d for massless fields, and βi is the coefficient of the normalizable mode,
whereas αi is the coefficient of the non-normalizable mode. This implies

H = HCFT + αiOi, (12.17)

and

〈βi|O|βi〉 = βi + (αi piece). (12.18)

The very important consequence is that if we set the non-normalizable mode to zero
(meaning that we have no sources) and look at a bulk configuration or probe which
corresponds to a combination of normalizable modes (maybe with non-normalizable
components as well), it will get mapped to a VEV of the dual operator.

12.3 Mode and propagator calculations in global Lorentzian
coordinates

We now consider physics in the global Lorentzian coordinates,

ds2 = R2

cos2 ρ
(−dt2 + dρ2 + sin2 ρd�2

d−1). (12.19)
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205 12.3 Mode and propagator calculations in global Lorentzian coordinates

As we saw, the boundary is at ρ = π/2 and the center of AdS is at ρ = 0. We want first to
solve the KG equation, (�− m2)� = 0. We first parameterize the solutions by expanding

� = e−iωtYl,{m}(�)χ (ρ), (12.20)

where Yl,{m} are spherical harmonics on Sd−1, satisfying

∇2
Sd−1Yl,{m} = −l(l + d − 2)Yl,{m}. (12.21)

Then we find (after some algebra) that the equation satisfied by χ (ρ) is

1

(tan ρ)d−1
∂ρ

[
(tan ρ)d−1∂ρ

]
+

[
ω2 − l(l + d − 2) csc2 ρ − m2 sec2 ρ

]
χ = 0. (12.22)

The solutions relevant for AdS/CFT must be regular at the origin, such that the on-shell
boundary term

∫
d�dt

√−ggρρ�∂ρ� gives no contribution at ρ = 0. One finds that of the
two possible solutions, only one satisfies this condition,

�1 = e−iωtYl,{m}(�)(cos ρ)�+ (sin ρ)l
2F1

(
�+ + l + ω

2
,
�+ + l − ω

2
; l + d

2
; sin2 ρ

)
.

(12.23)

At the boundary, we find two possible solutions, written as a function of cos2 ρ instead of
sin2 ρ, namely

�+ = e−iωtYl,{m}(�)(cos ρ)�+ (sin ρ)l

× 2F1

(
�+ + l + ω

2
,
�+ + l − ω

2
;�+ + 1 − d

2
; cos2 ρ

)
,

�− = e−iωtYl,{m}(�)(cos ρ)�− (sin ρ)l

× 2F1

(
�− + l + ω

2
,
�− + l − ω

2
;�− + 1 − d

2
; cos2 ρ

)
. (12.24)

We see that �± ∼ (cos ρ)�± at the boundary, so �+ is a normalizable mode, whereas
�− is a non-normalizable mode. The solution that is well behaved at ρ = 0, �1, is a
combination of the two solutions defined at the boundary,

�1 = C+�+ + C−�−, (12.25)

where

C+ =
�

(
l + d

2

)
�(−ν)

�
(
�−+l+ω

2

)
�

(
�−+l−ω

2

) ,

C− =
�

(
l + d

2

)
�(ν)

�
(
�++l+ω

2

)
�

(
�++l−ω

2

) . (12.26)

We see that in general the regular solution is non-normalizable, since it has a �− compo-
nent. But in the particular case that C− = 0 we also have normalizable modes, since then
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206 Holography in Lorentzian signature: Poincaré and global coordinates

�1 has no non-normalizable component. The condition requires that one of the gamma
functions in the denominator has a negative integer argument, i.e.

ωnl = ±(�+ + l + 2n), (12.27)

where n is a natural number (positive integer or zero). At these particular frequencies, we
have normalizable modes, behaving at the boundary as (cos ρ)�+ . For these particular ωnls,
the solutions �± can be written in terms of Jacobi polynomials:

�±
nl{m} = e−iωtYl,{m}(�)(cos ρ)�± (sin ρ)lPl+d/2−1,ν

n (cos 2ρ). (12.28)

The normalizable mode is called φnl{m}.
Therefore, whereas in Poincaré coordinates the Lorentzian wave equation has continu-

ous normalizable as well as non-normalizable solutions, in global coordinates the general
solution is non-normalizable, but particular cases are normalizable.

The bulk-to-bulk propagator (Green’s functions) can be written as an infinite sum over
the normalizable modes using the general Green’s function formula

iG(x, y) =
∫

dω

2π

∑
nl �m

eiω(t−t′)φ
∗
nl �m(�x)φnl �m(�y)

ω2
nl − ω2 − iε

. (12.29)

The sum can be explicitly performed, with the result

iG(x, y) = CB(
cosh2 s

R

)�+
2

2F1

(
�+
2

,
�+ + 1

2
; ν + 1;

1

cosh2 s
R

− iε

)
. (12.30)

Here CB is a constant and s is the geodesic distance (minimal distance between two points
in curved space) in AdS, satisfying

cosh
( s

R

)
= cos(t − t′) − sin ρ sin ρ′� ·�′

cos ρ cos ρ′
. (12.31)

We can obtain the bulk-to-boundary propagator as a limit of the bulk-to-bulk propagator.
Indeed, we know that a bulk field is obtained as φ(x) = ∫

∂M dbKB(b, x)φ0(b) (where b is a
boundary point (t,�) and x is a bulk point) and that it should satisfy φ → (cos ρ)�−φ0(b)
for ρ → π/2, i.e. behave like the non-normalizable mode. On the other hand, we have
also φ(x) = ∫

M dy
√−g iG(x, y), and since at the boundary

√−g ∝ cos ρ−d, we must
have iG(x, y) cos ρ−d ∝ KB(b, x). Then we can define the bulk-to-boundary propagator by
taking out this scaling factor, as

KB(b, x) = 2νRd−1 lim
ρ→π/2

(cos ρ)−�− iG(x, y). (12.32)

The numerical prefactor is just due to the change in normalization. One obtains from
(12.30) after the limit

KB(b, x) = CB

[
cos ρ′

cos(t − t′) − sin ρ′� ·�′ + iε

]�+
. (12.33)

One can also take the limit on (12.29) and obtain

KB(b, x) = 2νRd−1
∫

dω

2π

∑
nl �m

eiω(t−t′) knlY∗
l �m(�)φnl �m(�x)

ω2
nl − ω2 − iε

. (12.34)
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207 12.4 Holography in global Lorentzian coordinates: interpretation

We can also take the second point on the boundary, and find the boundary-to-boundary
propagator,

G∂ (b, b′) ∝ lim
ρ′→π/2

cos ρ′−�+KB(b, x′). (12.35)

This gives for the sum formula

G∂ (b, b′) ∝
∫
∂M

dω

2π

∑
nl �m

eiω(t−t′) k2
nlY

∗
l �m(�)Yl �m(�′)

ω2
nl − ω2 − iε

, (12.36)

and for the final formula

G∂ (b, b′) ∝ 1[
(cos(t − t′) −� ·�′)2 + iε

]�+
2

. (12.37)

Note that the interval x2
12 = |x1−x2|2 in Poincaré coordinates becomes, when transforming

to global coordinates,

x2
12 =

2(cos(t1 − t2) −� ·�′)
(cos τ1 −�d

1)(cos τ2 −�d
2)

, (12.38)

so we can define a natural interval s2
12 ≡ cos(t1 − t2) −� ·�′. The boundary-to-boundary

propagator is written in terms of it, but note that it is not quite the Poincaré propagator!
The moral we must take from this calculation is that between coordinate systems, and

in particular between the Poincaré patch and the global coordinates, a simple change of
coordinates does not take us from one propagator to another, we must define all objects
from the start in every coordinate set.

12.4 Holography in global Lorentzian coordinates: interpretation

As in the global Euclidean case, the Lorentzian global AdS has as a boundary the cylinder
S3 ×Rt, and the conformal field theory in R

4 is mapped to the cylinder, and dimensionally
reduced on S3 to a quantum mechanical Hamiltonian (for just the time direction).

Non-normalizable AdS modes, obtained for general frequenciesω correspond, as before,
to sources for the conformal field theory operators, whereas at special AdS frequencies, we
have normalizable modes that correspond to the states of the conformal field theory on the
cylinder, with discrete energies

ωnl = �+ 2n + l. (12.39)

Important concepts to remember

• Solutions to the KG equation in Euclidean Poincaré AdS space, are: a non-normalizable
solution near the boundary, written in terms of the Bessel function Kν , and a solution
in terms of Iν which is normalizable at the boundary but blows up in the bulk, hence is
excluded.
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208 Holography in Lorentzian signature: Poincaré and global coordinates

• The bulk-to-bulk propagator is found by integrating a product of the two solutions, and
the bulk-to-boundary propagator is a limit of the bulk-to-bulk propagator.

• In Euclidean Poincaré AdS there is a one-point function, but it is a dependent one,
induced by a source φ0 for the operator O.

• In the Lorentzian Poincaré case, the solutions to the KG equation are written in terms of
J±ν , and one solution is non-normalizable, but now there is also a normalizable regular
solution.

• The Lorentzian propagators are analytical continuations of the Euclidean propagators.
• Besides the field in the bulk induced by a source on the boundary, now there is a

normalizable mode component, corresponding to a state on the boundary.
• Therefore, non-normalizable modes correspond to sources, and normalizable modes to

states or operator VEVs.
• In global Lorentzian coordinates, for general AdS frequencies, we only have a reg-

ular non-normalizable mode (more precisely, a combination of the normalizable and
non-normalizable modes). For special frequencies, ±(�+ + l + 2n), we have regular
normalizable modes.

• The bulk-to-bulk propagator can be written as a sum over normalizable modes.
• The propagators in global and Poincaré coordinates are not related simply by a change

of coordinates, but involve extra factors.

References and further reading

The Lorentzian version of AdS/CFT was proposed in [66] and developed in [65]. In [66]
we can also find mode calculations in Lorentzian AdS, whereas in [67] we can find more
details on the mode and propagator calculations in the same.

Exercises

1. Complete the missing steps in the derivation of the bulk-to-bulk propagator (12.2).
2. Write down explicit formulas for the bulk-to-bulk and bulk-to-boundary propagators

in Lorentzian Poincaré coordinates and write them in terms of the solutions to the
homogeneous KG equation.

3. Check that the equation for χ (ρ) for solutions to the KG equation in global coordinates
is (12.22).

4. Check that (12.23) satisfies (12.22) and the condition that the boundary term∫
d�dt

√−ggρρ�∂ρ� at ρ = 0 is zero.
5. Prove that (12.30) is a bulk-to-bulk propagator for AdS space, i.e. that it satisfies the

Poisson equation in Lorentzian AdS space in global coordinates.
6. Prove that the distance s between two points in AdS defined by (12.31) is indeed a

geodesic distance, i.e. a minimum distance between two points.
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13 Solitonic objects in AdS/CFT

Until now we have described the propagation and correlations of fundamental objects,
but one of the areas where AdS/CFT can be tested is in obtaining the mapping of soli-
tonic objects on the two sides of the correspondence. In gauge theories we have objects
like instantons and baryons which are solitonic in nature, so must correspond to some
other solitonic objects in the AdS space, and we will see that natural candidates for these
solitonic objects are branes.

In this chapter we analyze three types of solitonic objects: instantons, which are
Euclidean solutions of pure Yang–Mills, baryons, which can be thought of as solitons
in theories with quarks, and fuzzy spheres, which are ground state (soliton) solutions in
SU(N) gauge theories with N → ∞. They will all be described as branes in the gravity
dual AdS5 × S5 space.

13.1 Instantons vs. D-instantons

Instantons in gauge theories

The most common soliton in gauge theories is the instanton, defined in SU(2) theories. In
theories with bigger gauge groups (G ⊃ SU(2)), the instantons are still the SU(2) BPST
instantons (after Belavin, Polyakov, Schwartz, and Tyupkin; its quantum properties were
described by ’t Hooft) described here, embedded in the higher gauge group.

The integral of Tr [Fμν ∗ Fμν] = Tr [εμνρσFμνFρσ ] is a topological invariant. We
can see this since the integrand is a total derivative. In form language, Tr [Fμν ∗ Fμν] =
4Tr [F ∧ F] and then

Tr [F ∧ F] = dLCS = d

[
AdA + 2

3
A ∧ A ∧ A

]
, (13.1)

which means that it is a topological invariant. We mentioned in Chapter 1 that the above
Chern–Simons Lagrangean, when multiplied by g2/4π2, gives a topological number called
a winding number. Therefore the object

n = g2

16π2

∫
d4xTr

[
Fμν ∗ Fμν

]
(13.2)
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210 Solitonic objects in AdS/CFT

is a topologically invariant number, called the instanton number or the Pontryagin index.
Moreover, considering a 4-volume bounded by x4 = −∞ and x4 = +∞, the instanton
number is the difference between the winding numbers at −∞ and +∞.

On the other hand, we can always write (in both Euclidean and Minkowski signature)

1

4g2

∫
d4x(Fa

μν)2 =
∫

d4x

[
1

4g2
Fa
μν ∗ Faμν + 1

8g2
(Fa

μν − ∗Fa
μν)2

]
, (13.3)

but only in Euclidean space can we have solutions to the self-duality constraint, Fa
μν =

∗Fa
μν . In that case, the above rewriting means that we have a BPS bound, which is

minimized by the instanton solutions to the self-duality constraint.
The instanton solution is

Aa
μ = 2

g

ηa
μν(x − xi)ν

(x − xi)2 + ρ2
, (13.4)

where xi is the instanton position and ηa
μν is the ’t Hooft symbol,

ηa
ij = εaij; ηa

i4 = δa
i ; ηa

4i = −δa
i . (13.5)

Here ρ is the width of the instanton profile. A short calculation gives for the YM
Lagrangean on the solution (Tr (TaTb) = −δab/2):

− 1

2
Tr

[
FμνFμν

] = 48

g2

ρ4

[(x − xi)2 + ρ2]4
. (13.6)

Integrating this, we find that the action is independent of ρ2, giving the topological
invariant

Sinst = 8π2

g2
. (13.7)

Thus the instanton is a solution to the Euclidean action, and as such does not have the inter-
pretation of a real particle, rather it gives transition probabilities. Transition probabilities
between static configurations are given by Euclidean path integrals bounded by the static
configurations, which are given in the first approximation by the configuration of minimum
action in a given topological sector (for a given Pontryagin index), i.e. the instanton. Thus
the path integral giving the probability for tunneling transition between different winding
numbers at x4 = −∞ and x4 = +∞ is approximated by e−Sinst .

D-instantons in string theory

D-p-branes are objects with extension in p spatial dimensions and time, on which open
strings can end, thus with Neumann boundary conditions in p + 1 directions and Dirichlet
boundary conditions in the others. But one possibility that still exists is to consider Dirich-
let boundary conditions in all dimensions, including time, thus obtaining a D(−1)-brane,
or D-instanton.

As we saw, a D-p-brane is a source for a p + 1-form Ap+1, therefore a D-instanton is a

source for the type IIB axion scalar a. Since in general in flat background e−2φ = H(p−3)/2
p
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211 13.1 Instantons vs. D-instantons

and A01...p = (H−1
p − 1), for a D-instanton we have eφ = H−1 and a − a∞ = H−1

−1 − 1 ∝
e−φ − 1/gs.

Now consider D-instantons in AdS5 × S5, located at a point in AdS5. The solution near
the boundary of AdS5 (x0 = 0) was found to be

eφ = gs + 24π

N2

x4
0x̃4

0

[x̃2
0 + |�x − �xa|2]4

+ . . .

a = a∞ + e−φ − 1

gs
. (13.8)

We will not reproduce the calculation here. Here x̃0 is the position of the D-instanton in the
fifth coordinate.

D-instantons as instantons

We now show that we can derive the instanton profile from the D-brane profile using
the AdS/CFT prescription from the previous chapters. The 5-dimensional dilaton action
contains a canonical kinetic term

S = − 1

4κ2
5

∫
d5x

√
ggμν∂μφ∂νφ , (13.9)

where κ5 is the 5-dimensional Newton constant κN . Varying this on-shell action, we get

δS = − 1

2κ2
5

∫
d4x

R3

z3
δφ ∂zφ|z=0 . (13.10)

Using R3 = κ2
5 N2/(4π2) and the dilaton profile of the D-instanton (13.8), we obtain

δS

δφ0(�x)
= − 48

4πgs

z̃4

[z̃2 + |�x − �xa|2]4
. (13.11)

On the other hand, we saw in Chapter 10 that the dilaton φ couples through AdS/CFT to
the Lagrangean itself, i.e. the operator −Tr [F2

μν]/(2g2
YM). That means that

δS

δφ0(�x)
= 1

2g2
YM

〈Tr [F2
μν(�x)]〉. (13.12)

Since we have 4πgs = g2
YM, equating (13.11) with (13.12) gives

− 1

2g2
YM

〈Tr [F2
μν(�x)]〉 = 48

g2
YM

z̃4

[z̃2 + |�x − �xa|2]4
, (13.13)

which is exactly the instanton background, if we identify the instanton scale ρ with the
D-instanton position in the fifth dimension, z̃. That is an example of the equivalence of the
fifth dimension (radius) with the energy scale in the field theory.

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:54:27 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.015

Cambridge Books Online © Cambridge University Press, 2016



212 Solitonic objects in AdS/CFT

13.2 Baryons in gauge theories and via AdS/CFT

Baryons in gauge theories, QCD andN = 4 SYM

Baryons are gauge invariant objects made up of more than two quarks in gauge theo-
ries. In QCD and in general SU(Nc) gauge theories, we can always define the mesons
MIJ = q̄I

i q
Ji (here I, J are flavor indices), since the SU(N) groups admit the invariant ten-

sor δ j̄
i connecting the fundamental N representation and the antifundamental (conjugate) N̄

representation.
For real world QCD, the SU(3)c group admits also the invariant εijk, with i, j, k in the

fundamental representation, so one can define the baryons

BIJK = εijkqIiqJjqKk , (13.14)

where I, J, K are flavor indices (SU(Nf )) and i, j, k are SU(3)c indices.
For a general SU(Nc) theory, we can define baryons by contracting N quarks with the

invariant tensor εi1...iN ,

BI1...IN = εi1...iN qI1i1 . . . qIN iN . (13.15)

In a SU(Nc) theory without quarks, like N = 4 SYM, we can still define a baryon
vertex, connecting N external (very heavy, non-dynamical) quarks, introduced by hand in
the theory, formally εi1...iN from the above. The baryon vertex has an energy, understood as
a solitonic energy, even in the presence of external quarks only.

We mention in passing also the case of the SO(2k) gauge group, for instance N = 4
SYM theory with such a gauge group, where there is a true solitonic object, made
up of gluons only (no external quarks), the Pfaffian particle Pf(�) = 1/k! εa1...a2k

�a1a2 . . . �a2k−1a2k , since in this case it is clearer that this is a solitonic object. We will
not be describing its gravity dual, though it is also a wrapped brane in a certain geometry.

Baryons as solitons: Skyrmemodel

To understand the baryons as solitonic objects, we can look at the Skyrme model. The
Skyrme model is a low energy model for QCD, described in terms of the pions �π , the
lowest energy excitations. Together with the σ , one constructs a group element in SO(4) �
SU(2)L × SU(2)R, with generators (1, τi) (τi are the Pauli matrices),

U = exp

[
i

fπ
(σ + �π · �τ )

]
, (13.16)

transforming from the left in SU(2)L and from the right in SU(2)R. Defining also Lμ =
U−1∂μU, the low energy QCD action is written in terms of it, with kinetic term

Lkin = f 2
π

4
Tr [LμLμ]. (13.17)
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213 13.2 Baryons in gauge theories and via AdS/CFT

Then one can add various higher order interaction terms to it that lead to the same fact,
namely a topological soliton solution. The term originally considered by Skyrme was

Lint = ε2

4
Tr ([Lμ, Lν]2) , (13.18)

but a variety of other higher order completions work. There is a topological current

Bμ = 1

24π2
εμνρσTr [LνLρLσ ] , (13.19)

with the integer topological charge (one can prove that the object below only admits integer
values due to the topology of the embedding, though we will only suggest why it is so
below)

B = 1

24π2

∫
d3xεijkTr [LiLjLk]. (13.20)

The current Bμ is conserved, since from Lμ = U−1∂μU we can prove that ∂[μLν] =
−L[μLν] directly, which in turn means that ∂μBμ is a sum of terms of the type
εμνρσTr [LμLνLρLσ ], which are zero by cyclicity of the trace and antisymmetry of εμνρσ

under cyclical permutations. A “hedgehog” configuration

U = exp
[
iF(r)�n · �τ ] , n ≡ �r

r
, (13.21)

can be found in the case with suitable nonlinear terms like the example above, that has
a nonzero topological charge. This topological charge can be identified with the baryonic
charge, hence baryons can be thought of as solitons of the low energy QCD fields, the
pions. For small fields �π , we obtain for B (using Tr [σaσbσc] = 2iεabc)

B � 1

12π2f 3
π

εijkεabc∂iπ
a∂jπ

b∂kπ
c + . . . , (13.22)

and we see that it is cubic in the fields. Moreover, we see that it is a map between the
SU(2) = SO(3) of the gauge group with index a = 1, 2, 3 and the rotational SO(3) at
spatial infinity with index i = 1, 2, 3, which is characterized by an integer number for the
times the gauge SO(3) wraps the spatial SO(3). This topological number is B.

In conclusion, in the Skyrme model the baryons appear as solitons of the low energy
fields, the pions, and to first approximation are cubic in the pions.

Baryons as wrapped branes

To consider a baryonic vertex in N = 4 SYM, we need to have external quarks. We saw
that strings ending on D-branes have states with Chan–Patton indices, |ij̄〉, that correspond
to adjoint fields, since for U(N) the adjoint is an N × N matrix, obtained as the represen-
tation N ⊗ N̄. Then it can be inferred that a field in the fundamental representation of the
gauge group, i.e. a quark, would come from a string with only one end on a D-brane, and
the other free. But if we want external quarks, we need a very massive, thus very long,
string. In the context of AdS/CFT, a string stretching from the boundary at infinity to a
point in the interior would qualify.
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214 Solitonic objects in AdS/CFT

The baryon vertex must then be a place in the interior of AdS where N fundamental
strings can terminate, which suggests it has to be a D-brane. These strings have (electric)
charge and extend from points x1, . . . , xN at infinity to the interior, so the D-brane should
be located in the middle.

The natural candidate then is a D5-brane (present in type IIB string theory), whose
spatial dimensions wrap the S5 in AdS5×S5 and situated at a point in AdS5, more precisely
S5 × R, where R corresponds to a timelike curve in AdS5. But in order to show this is a
good baryonic vertex, we must show that this brane needs N strings to end on it, and only
N strings, which would make it the sought-after solitonic object.

To see this, consider the fact that the self-dual 5-form field strength of type IIB theory,
F+
μ1...μ5

, has N units of flux on S5, since the S5 was the sphere at infinity around the N
D3-branes that were used to obtain AdS5 × S5. That means that∫

S5

F+
5

2π
=

∫
S5

d5xεμ1...μ5
F+
μ1...μ5

2π
= N. (13.23)

But we saw in Chapter 9 that on D-branes we have couplings
∫

Mp
e∧F/2π ∧ ∑

n An, with
An all the n-forms. In particular, for the D5-brane and the 4-form field, we have a term∫

M6
F ∧ A+

4 = ∫
M6

A ∧ F+
5 , written as

1

2π

∫
S5×R

d6xεμ1...μ6 Aμ1 F+
μ2...μ6

. (13.24)

Then because of the N units of F+
5 flux, we have N units of electric (A) charge on S5, but

since the total electric charge must be zero on a closed space, there must be a source of
−N flux coming from somewhere. Therefore we see that we do need N strings (and only N
strings), corresponding to N quarks, to come from infinity and end on the D5-brane, which
completes the identification of the wrapped D5-brane as a baryonic vertex.

Finally, notice the scaling with N of the energy of the baryonic vertex. The tension of the
D5-brane, as for all D-branes, behaves like ∝ 1/gs. But as N →∞, gsN is fixed and large.
Then the tension goes as 1/gs ∼ N. On the other hand, the volume of the S5 on which the
D5-brane is wrapped is ∝ R5 ∝ (gsN)5/4, constant as N → ∞. All in all, the energy of
the baryonic vertex = wrapped D5-brane is tension × volume ∝ N, which is the correct
scaling expected for a baryonic vertex as N →∞.

13.3 The D3–D5 system and the fuzzy 2-sphere via AdS/CFT

Finally, the last kind of solitonic object we describe via AdS/CFT is one that appears only
in large N theories, the fuzzy 2-sphere.

The fuzzy S2

A fuzzy sphere is a kind of matrix approximation to a classical sphere. On a classical
sphere, we can expand any field in spherical harmonics Ylm(θ ,φ) of arbitrarily high l and
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215 13.3 The D3–D5 system and the fuzzy 2-sphere via AdS/CFT

m, i.e. an infinite set, and equivalently describe the field on the classical sphere as the
infinite set of coefficients of the Ylms. On a fuzzy sphere, imagine keeping only the lms up
to a maximum number, such that the total number of Ylms is in one to one correspondence
with an N × N matrix, i.e. N2. Then the fuzzy sphere comes from a theory of N × N
matrices, and in the N →∞ limit, is supposed to exactly describe the classical sphere.

The precise construction is as follows. We consider the SU(2) algebra, defined by

[Xi, Xj] = iεijkXk. (13.25)

As we know, the Xis can be thought of as spins Ji, so the irreducible representations of
SU(2) are spin j representations, with

XiXi ≡ JiJi = j(j + 1) ≡ R2

r2
= constant, (13.26)

and of dimension N = 2j+1. That means that we have representations in terms of N×N =
(2j + 1) × (2j + 1) matrices, satisfying XiXi = R2/r2 = constant, and naturally invariant
under SU(2) = SO(3), which is the rotational symmetry invariance of the S2, acting on Xi,
which are thought of as embedding Euclidean coordinates for the S2. Therefore we have
found a way to describe the fuzzy sphere using the Xis. To take the classical limit, consider
taking N →∞ as the physical radius r is kept constant. Then define xi ≡ 2Xi/N, such that
xixi = 1 in the limit. This implies also

[xi, xj] = 2

N
iεijkxk → 0 , (13.27)

so we recover classical commuting coordinates on the sphere in this limit.
Now consider spherical harmonics made up of the Euclidean coordinates Xi ≡ Ji exactly

in the same way as we would write them for the classical S2, namely

Ylm(Ji) = f ((i1...il))
lm (J(i1 . . . Jil) − traces). (13.28)

Here (()) means symmetric traceless. Since xi = 2Ji/N becomes the classical coordinate,
Ylm(Ji) → (2/N)lYclassical

lm (xi) in the limit. But now, since Ji are N×N = (2j+1)× (2j+1)
matrices, not all of the Ylm(Ji) are independent, only an N2 set of them, given by 0 ≤ l ≤
2j = N − 1. Indeed, since for each l there are 2l+ 1 values for m giving independent Ylms,
the total number of independent Ylms is

∑N−1
l=0 (2l + 1) = N2, as it should be.

A general matrix in the adjoint of U(N), like for instance fluctuations of some field
around the fuzzy sphere solution (13.25), can be expanded in these spherical harmonics as

A =
N−1∑
l=0

l∑
m=−l

almYlm(Ji). (13.29)

The last ingredient is to verify that the field theory of these N × N fluctuations reduces
to a field theory of fluctuations on the classical S2 in the limit, which is usually nontrivial,
but depends on each theory.
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216 Solitonic objects in AdS/CFT

The fuzzy S2 funnel as a solution inN = 4 SYM

In order to find the fuzzy S2 as a solution to some field theory, we only need to have an
SU(N) gauge theory with N → ∞, and a matrix field satisfying (13.25). This is obtained
in N = 4 SYM as follows. In the action for the scalars XI , i = 1, . . . , 6, have a potential
g2/2

∑
I<J[XI , XJ]2, and a kinetic term −1/2∂μXI∂μXI , thus if all the other fields are zero

we have an equation of motion

∂μ∂
μXI = g2 [

[XI , XJ], XJ
]

. (13.30)

This can be solved by keeping only Xi, i = 1, 2, 3 nonzero and satisfying

Xi = R(z)Ji , (13.31)

where Ji are N × N (where N = 2j + 1, and j is the spin, which can be half integer)
dimensional representations of the SU(2) algebra,

[Ji, Jj] = iεijkJk , (13.32)

and R(z) is a function of only one of the spatial coordinates of the N = 4 SYM gauge
theory. Substituting this ansatz in the equation of motion, we get

R′′(z)Ji = g2R(z)3Ji , (13.33)

solved by

R(z) =
√

2

g(z − z0)
⇒ Xi =

√
2

g(z − z0)
Ji. (13.34)

This is a fuzzy funnel solution, since at fixed z we have a fuzzy S2 defined by Ji, but whose
radius depends on the spatial coordinate z as R ∼ 1/(z− z0), being 0 at z = ∞ and infinite
at z = z0.

Fuzzy S2 funnel from brane in gravity dual

We want to understand this fuzzy funnel from the point of view of the gravity theory in
AdS space.

First of all, what is the interpretation in the asymptotically flat spacetime background on
which the D3-branes giving N = 4 live? At z = z0 (set to zero in the following) we have
two extra dimensions appearing, first as a sphere, that eventually gets an infinite radius.
Together with the original 3+1 dimensions on the N D3-branes, whose near-horizon limit
gives AdS/CFT, we have 5+1 dimensions, for the worldvolume of a D5-brane.

Therefore the interpretation is of D3-branes ending on D5-branes, with configuration
(the number refers to whether the worldvolume spans that particular coordinate):

D3 0 1 2 3
D5 0 1 2 4 5 6 (13.35)
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217 13.3 The D3–D5 system and the fuzzy 2-sphere via AdS/CFT

Here the coordinate “3” is z, since at a given z0 we have the new worldvolume appearing.
The coordinates 4, 5, 6 are written in spherical coordinates as r, θ ,φ. The unit 2-sphere Ji

is parameterized by θ ,φ, and r = R is the radius of the sphere.
Thus from the point of view of the D3-brane, we have r = R(z), together with θ ,φ

parameterizing the emerging D5-brane worldvolume. But now we can switch viewpoints
and consider physics from the point of view of the D5-brane. The D5-brane wraps an S2,
but since it must be stabilized by some flux on its worldvolume, we need to assume that
the U(1) gauge field A living on the worldvolume of the D5-brane has a (magnetic type of)
flux with n units, i.e.

F = (2πα′)n sin θdθ ∧ dφ. (13.36)

The only other variable in the action is the profile z = z(r).
The DBI action for the D5-brane in this background is then

S = T5

∫
dr dθ dφ d3x

√
− det

(
gμν∂aXμ∂bXν + Fab

)
. (13.37)

The determinant splits into three factors, one for the coordinates X0, X1, X2, with deter-
minant −1, one for the coordinate r, with determinant 1 + (z′(r))2, and one for the θ ,φ
directions, with determinant

det

(
r2 (2πα′n) sin θ

−(2πα′)n sin θ r2 sin θ

)
= sin2 θ (r4 + (2πα′n)2). (13.38)

Moreover, integrating T5 (the 5-brane tension) over the S2 volume gives us T3, the 3-brane
tension, so T5

∫
sin θdθdφ = T3. Then we obtain

S = T3

∫
dr d3x

√(
1 + (z′(r))2

) (
r4 + (2πα′n)2

)
. (13.39)

The action is independent of z (depends only on z′), so by the usual argument we get the
conservation of the “momentum” δS/δz′, i.e.

δS

δz′(r)
≡ T3(2πα′)c (13.40)

is constant in the “time” r (conserved), and we have parameterized the constant in a
convenient way. Then we can set the constant c = −n to find the particular solution

z′(r) = −2πα′ n

r2
⇒ z(r) = 2πα′n

r
. (13.41)

From the point of view of the D5-brane, at r = 0 we have a spike z → ∞, corresponding
to the D3-brane, as expected from the general picture of a D3-brane ending on a D5-brane.

This analysis was in a flat background, but the same analysis follows in the AdS back-
ground. In fact, one can find it even in the more general D3-brane background, before
taking the near-horizon limit,

ds2 = H−1/2(r)(−dt2 + d�x2
3) + H1/2(r)(dr2 + r2d�2

2 + d�y2
3),

A+
4 = (H−1 − 1)dt ∧ dx1 ∧ dx2 ∧ dz. (13.42)
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218 Solitonic objects in AdS/CFT

Here �x3 = (x1, x2, z), �2 = �2(θ ,φ), and �y3 = (x7, x8, x9). In this background, we want to
consider a D5-brane at �y = 0 and with the spike located at r = 0. The calculation proceeds
in the same way as before, just with the harmonic function H(r), whose explicit form we
do not need, as we shall see. Also, there is now a nonzero WZ term to be added to the
DBI action, coming from

∫
F ∧ A+

4 . The 4-form pulled back on the worldvolume gives
A+

4 = (H−1 − 1)dt ∧ dx1 ∧ dx2 ∧ z′(r)dr.
Then the action is

S = T3

∫
dr d3x

[√(
1 + H−1(r)(z′(r))2

) (
r4 + H−1(r)(2πα′n)2

)− 2πα′n(H−1 − 1)z′(r)

]
.

(13.43)

Again it is independent of z, leading to (13.40), with the same (13.41) solution. The har-
monic function H(r) did not appear in the solution, therefore we can take the near-horizon
limit and find the same solution is valid in AdS5 × S5.

In terms of the variable U = r/α′ natural for AdS/CFT, we have

z(U) = 2πn

U
⇒ U(z) = 2πn

z
, (13.44)

which up to a constant rescaling by numerical factors was the same solution obtained from
the point of view of the D3-brane in (13.34).

In conclusion, we see that the fuzzy funnel solution of N = 4 SYM is interpreted in the
gravity dual as a D5-brane solution of a spike type, wrapping a transverse S2.

Important concepts to remember

• An instanton is a topological soliton in four Euclidean dimensions, solution of the self-
duality constraint and carrying an instanton number (Pontryagin index).

• The instanton minimizes the action in a sector with a given Pontryagin index, giving a
BPS bound, and the instanton action via e−Sinst gives the transition probability between
spatial (static) configurations with different winding number.

• A D-instanton is a D(−1)-brane, i.e. a point in spacetime, when all the spacetime
dimensions have Dirichlet boundary conditions.

• A D-instanton in AdS5 implies on the boundary an instanton VEV for the Lagrangean.
• Whereas mesons are quark–antiquark bilinear M = q̄iqi, baryons in SU(Nc) theories are

antisymmetric products of N quarks, BI1...IN = εi1...iN qI1i1 . . . qIN iN .
• In SU(Nc) gauge theories with external quarks only, we can define a baryonic vertex as

the object connecting N external quarks, and it has an intrinsic energy, scaling as N in
the large N limit.

• The Skyrme model is a low energy model for QCD in terms of the pion field π i (and
a σ ), described by U = exp

[
i(σ + �π · �τ )/fπ

]
, a kinetic term f 2

πq/4Tr [LμLμ], with
Lμ = U−1∂μU, and various possible interaction terms.

• There is a topological charge U = exp
[
iF(r)(�r/r) · �τ ], carried by “hedgehog” configura-

tions and which counts wrappings of the SU(2) = SO(3) gauge group over the rotational
SO(3) at spatial infinity.
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219 13.3 The D3–D5 system and the fuzzy 2-sphere via AdS/CFT

• The topological charge is identified with the baryon charge, thus baryons appear as
solitons of the low energy fields of QCD, the pions.

• In AdS/CFT, the baryonic vertex is a D5-brane wrapped on S5, that needs N strings to
end on it and cancel its charge. It has energy scaling as N for N →∞.

• A fuzzy S2 is defined by the SU(2) algebra [Xi, Xj] = iεijkXk, whose spin j represen-
tations satisfy XiXi = constant and whose rescaled xi = 2Xi/N (xixi = 1) commute in
the N →∞ limit.

• Spherical harmonics Ylm(xi) are defined by analogy with their classical counterparts, but
now only N2 of them are independent, so we have a fuzzy approximation for the sphere.

• N = 4 SYM has a fuzzy funnel solution, with radius R(z) ∝ 1/z.
• In the gravity dual, the fuzzy S2 is described by a D5-brane spike wrapping a

transverse S2.

References and further reading

The matching of instantons with D-instantons was understood in [65], and the description
of baryons as coming from wrapped branes was understood in [68].

Exercises

1. Prove (13.6) and integrate it to obtain the instanton action.
2. Prove R3 = κ2

5 N2/(4π2) and then using (13.8), prove (13.11).
3. Expand the action (13.17) + (13.18) up to 4th order in π is and σ .
4. Substitute (13.21) into (13.20) to find the topological charge B in terms of F(r). What

are the needed conditions on F(r)?
5. Consider an AdS6×S4 background in type IIA theory, sourced by a 4-form field strength

F(4). Repeat the argument in the text to find a baryonic N-vertex in the corresponding
SU(N) field theory.

6. Consider the spin j = 1 representation of SU(2). Construct the nine independent
Ylm(Ji)s and check that one can decompose a general 3 × 3 matrix in terms of them.

7. Consider an SU(N) matrix theory with the potential

V = Tr

⎡
⎣1

2

∑
i=1,2,3

(
μXi

3

)2

+ μi

3

3∑
j,k,l=1

XjXkXl − 1

4

∑
j,k=1,2

[Xj, Xk]2

⎤
⎦ . (13.45)

Does it have a fuzzy sphere ground state?
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14 Quarks and theWilson loop

In this chapter we study how to introduce external quarks in N = 4 SYM, and how to
calculate the Wilson loop, an important quantity in gauge theories, whose VEV decides,
among other things, if a theory is confining or not, being a kind of order parameter for the
confinement phase transition.

14.1 External quarks in QCD: Wilson loops

External quarks

In real QCD we have dynamical quarks, which means they are light degrees of freedom
appearing in the action. But we can also consider external quarks, i.e. (infinitely) heavy
quarks, not in the action, that are introduced in the theory as external probes.

QCD is confining, which means light quarks are not free in the vacuum, they appear in
pairs, each together with an antiquark. Thus even if we consider external quarks (that are
not in the quantum theory), we do not expect to be able to put a single quark in the vacuum,
we need at least two: a quark and an antiquark.

Since the external quarks are very heavy, they will stay fixed, i.e. the distance between
q and q̄ will stay fixed in time, as in Fig. 14.1a. The question then is how do we measure
the interaction potential between two such quarks, Vqq̄(L)? We need to define physical
observables that can measure it. One such physical, gauge invariant object is called the
Wilson loop.

Wilson lines and loops

We first define the path ordered exponential from x to y in a general gauge theory

�(y, x; P) = P exp

{
i
∫ y

x
Aμ(ξ )dξμ

}
≡ lim

n→∞�
n

eiAμ(ξμn −ξμn−1), (14.1)

where Aμ ≡ Aa
μTa.

We start the analysis with a U(1) (abelian) gauge field Aμ. Under a gauge transform-
ation δAμ = ∂μχ ,

eiAμdξμ → eiAμdξμ+i∂μχdξμ = eiAμdξμeiχ (x+dx)−iχ (x), (14.2)
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221 14.1 External quarks in QCD: Wilson loops

b)a)

�Figure 14.1 a) Heavy quark and antiquark staying at a fixed distance L; b) Wilson loop contour C for the calculation of the
quark–antiquark potential.

the path ordered exponential transforms as

�(y, x; P) = �eiAμdξμ → �(eiAμdξμeiχ (x+dx)−iχ (x))

= eiχ (y)
(
�eiAμdξμ

)
e−iχ (x) = eiχ (y)�(y, x; P)e−iχ (x). (14.3)

If we have a complex field φ charged under this U(1), i.e. transforming as

φ(x) → eiχ (x)φ(x), (14.4)

then the multiplication by �(y, x; P) gives

�(y, x; P)φ(x) → eiχ (y)�(y, x; P)e−iχ (x)eiχ (x)φ(x) = eiχ (y) (�(y, x; P)φ(x)) , (14.5)

thus it defines parallel transport, i.e. the field φ(x) was parallel transported to the point y.
On the other hand, for a closed curve, i.e. for y = x, we have

�(x, x; P) → eiχ (x)�(x, x; P)e−iχ (x) = �(x, x; P), (14.6)

i.e. the path ordered exponential is a gauge invariant object.
We next consider a nonabelian gauge field, for which the gauge transformation is

Aμ → �(x)Aμ�
−1(x) − i(∂μ�)�−1. (14.7)

An infinitesimal transformation �(x) = eiχ (x) for small χ (x) = χaTa gives

δAμ = Dμχ = ∂μχ − i[Aμ,χ ], (14.8)

which implies

eiAμdξμ � (1 + iAμdξμ) → 1 +�(iAμdξμ)�−1 + dξμ(∂μ�)�−1

= [eiχ (x)(1 + iAμdξμ) + dξμ∂μeiχ (x)]e−iχ (x)

� eiχ (x+dx)(1 + iAμdξμ)e−iχ (x) � eiχ (x+dx)eiAμdξμe−iχ (x), (14.9)

where we have neglected terms of order O(dx2).
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222 Quarks and the Wilson loop

By taking products, we again get

�(y, x; P) → eiχ (y)�(y, x; P)e−iχ (x), (14.10)

but unlike the case of the U(1) gauge field, the order of the terms matters now. Therefore,
�(y, x; P) again defines parallel transport, for the same reason.

However, now for a closed path (y = x), � is not gauge invariant any more, but rather
gauge covariant:

�(y, x; P) → eiχ (x)�(x, x; P)e−iχ (x) �= �(x, x; P). (14.11)

But now the trace of this object is gauge invariant, since the trace is cyclic. Thus we
define the Wilson loop

W(C) = Tr �(x, x; C), (14.12)

which is gauge invariant and independent of the particular point x on the closed curve C,
since

Tr
[
eiχ (x)�e−iχ (x)

]
= Tr [�]. (14.13)

14.2 TheWilson loop and the interquark potential

In the abelian case, for x = y (closed path) we can use the Stokes theorem to put � in an
explicitly gauge invariant form,

�C = ei
∫

C=∂� Aμdξμ = ei
∫
� Fμνdσμν . (14.14)

In the nonabelian case, we can do something similar, but we have corrections. If we take
a small square of side a in the plane defined by directions μ and ν, we get

��μν = eia2Fμν + O(a4). (14.15)

Since Fμν transforms covariantly:

Fμν → �(x)Fμν�
−1(x), (14.16)

then the Wilson loop, defined for convenience with a 1/N since there are N terms in the
trace for a SU(N) gauge field, becomes

W�μν =
1

N
Tr {��μν } = 1 − a4

2N
Tr {FμνFμν} + O(a6), (14.17)

where we do not have a sum over the indices μ, ν. Here Tr {FμνFμν} is a gauge invariant
operator (even if it is not summed over μ, ν), thus to first nontrivial order this is explicitly
gauge invariant, and moreover the term we obtain is the kinetic term in the action for Aμ.
This is the first example of the fact that we can describe the dynamics of gauge theories
from the Wilson loops.
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223 14.2 The Wilson loop and the interquark potential

The object of interest is therefore

W[C] = Tr P exp

[∫
iAμdξμ

]
, (14.18)

and for the calculation of the static quark–antiquark potential we are interested in a loop as
in Fig. 14.1b, a rectangle with length T in the time direction and R in the spatial direction,
with T # R.

One can prove that the VEV of the Wilson loop in Fig. 14.2 behaves (as T →∞) as

〈W(C)〉0 ∝ e−Vqq̄(R)T , (14.19)

if T → ∞. A simple way to understand this is as follows. Adding infinitely heavy quarks
amounts to adding to the action a term

∫
jμAμ = ∫

dt[eA0(x(q))−eA0(x(q̄))], and eA0(x(q))
is like the potential at the position of q. This gives a term in eiS of eiT(Vq−Vq̄), where T =
time. When rotating to Euclidean space, we get e−TVqq̄ , where T is Euclidean time.

We mentioned that the Wilson loop provides a good criterion for confinement. The
reason is related to the above asymptotic behavior of the Wilson loop VEV. Indeed, the
statement of confinement is that there is a constant force that resists when pulling the
quark and the antiquark away, therefore that

Vqq̄(R) ∼ σR, (14.20)

i.e. a linear potential, with σ called the (QCD) string tension. The “QCD string” is really
a confined flux tube (approximated by a string) for the QCD color electric flux, as in
Fig. 14.2. It is not a fundamental object, but an effective description due to the confinement,
which forces the flux lines to stay (to be confined) in a tube.

On the other hand, for QED with infinitely massive (external) quarks, we have the
Coulomb static potential

Vqq̄(R) ∼ α

R
, (14.21)

and this model is scale invariant and in fact conformal. This is the result expected in a
conformal theory, since then the Wilson loop VEV for the rectangular contour can only
depend on the scale invariant quantity T/R. Since the VEV is proportional to exp[−Vqq̄T],
we can only have Vqq̄ ∝ 1/R. This is the kind of potential we therefore expect in N = 4
SYM, which is a conformal theory.

�Figure 14.2 Between a quark and an antiquark in QCD, flux lines are confined: they exist in a flux tube.
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224 Quarks and the Wilson loop

�Figure 14.3 Approximation of a curve C by infinitely thin rectangles.

Then in a confining theory like QCD we get

〈W(C)〉0 ∝ e−σT·R = e−σA, (14.22)

where A = area, thus this behavior is known as the area law. In fact, since

W(C1 ∪ C2) = W(C1)W(C2), (14.23)

we can extend the area law to any smooth curve C, not just to the infinitely thin rectangle
analyzed here, since we can approximate any area by such infinitely thin rectangles, as in
Fig. 14.3.

Therefore, confinement means that for any smooth curve C,

〈W(C)〉0 ∝ e−σA(C). (14.24)

On the other hand, in conformally invariant cases like QED with external quarks or our
N = 4 SYM with external quarks, we find, as we said, the scale invariant result for the
infinitely thin curve

〈W(C)〉0 ∝ e−α
T
R , (14.25)

and for more complicated curves we do not have an answer, but we just know that the
answer must be scale invariant (independent of the overall size of the curve).

We can then think of 〈W(C)〉0,T→∞ as an order parameter for the confine-
ment/deconfinement transition, since 〈W(C)〉0,T→∞ → 0 in the confined phase, whereas
〈W(C)〉0,T→∞ �= 0 in a deconfined (Coulomb) phase.

Finally, although here we have only shown how to extract the quark–antiquark potential
and the YM kinetic term from the Wilson loop and its VEVs, the Wilson loop is actually
a very important object. We can in principle extract all the dynamics of the theory if we
know the (complete operator) Wilson loop.

14.3 Defining theN = 4 SYM supersymmetric Wilson loop via
AdS/CFT

In the AdS/CFT correspondence, we obtain a U(N) gauge group from a large number
(N → ∞) of D-branes situated at the same point. In this case, strings with two ends on
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225 14.3 Defining theN = 4 SYM supersymmetric Wilson loop via AdS/CFT

different branes are massless, since there is no physical separation between the D-branes,
and correspond to gauge fields, Aa

μ = (λa)ij|i〉 ⊗ |j〉 ⊗ |μ〉.
If we consider N + 1 D-branes, giving a U(N + 1) gauge group, and take one of the

D-branes and separate it from the rest, as in Fig. 14.4, it means that we are breaking the
gauge group, via a Higgs-like mechanism, to U(N)×U(1) (where U(N) corresponds to the
N D-branes that are still at the same point).

The strings that have one end on one of the N D-branes and one end on the extra D-brane
will be massive, with mass = string tension × D-brane separation. These strings have a
state

|i0〉 ⊗ |i〉 = |N + 1〉 ⊗ |i〉, (14.26)

which is therefore in the fundamental representation of the unbroken U(N) gauge group,
since i is a fundamental index. The mass of the state is

M = 1

2πα′
r = U

2π
. (14.27)

This string behaves as a “W boson” from the point of view of the original U(N + 1)
gauge group. In the Standard Model, the W boson is a vector (gauge) field made massive
by the Higgs mechanism (breaking SU(2)L × U(1)Y → U(1)em) by “eating” a degree of
freedom of the scalar Higgs (a 4-dimensional massless vector has two degrees of freedom,
whereas a massive vector has three). In our case the Higgs mechanism breaks U(N+1) →
U(N) × U(1), and the string mode (vector) eats scalar modes to become massive. On the
other hand, the string state, or rather its endpoint with Chan–Patton factor |i〉, acts from
the point of view of the U(N) gauge theory as a source for the U(N) gauge fields, or as a
quark, therefore, in the fundamental representation of U(N).

From (14.27), to get an infinite mass we need to take U → ∞. Therefore, the introduc-
tion of an infinitely massive external quark is obtained by having a string stretched in AdS
space, in the metric (10.14), between infinity in U and a finite point.

Since infinity in (10.14) is also where the N = 4 SYM gauge theory exists, we put the
Wilson loop contour C at infinity, as a boundary condition for the string. So the string

�Figure 14.4 One D-brane separated from the rest of the (N) D-branes acts as a probe on which the Wilson loop is located.
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226 Quarks and the Wilson loop

a)

)c)b

AdS space

�Figure 14.5 a) The Wilson loop contour C is located at U = ∞ and the string worldsheet ends on it and stretches down to
U = U0; b) In flat space, the string worldsheet would form a flat surface ending on C, but in AdS space 5-dimensional
gravity pulls the string inside AdS; c) The free “W bosons” are strings that would stretch in all of the AdS space, from
U = ∞ to U = 0, straight down, forming an area proportional to the perimeter of the contour C.

worldsheet stretches between the contour C at infinity down to a finite point in AdS,
forming a smooth surface, as in Fig. 14.5a.

But there is a subtlety. Strings must also be situated on the S5, parameterized by coor-
dinates θ I , since the dual of N = 4 SYM is AdS5 × S5, not just AdS5. And θ I correspond
to the scalars XI of N = 4 SYM, which transform under the SO(6) symmetry group (R
symmetry of N = 4 SYM and invariance symmetry of S5). Because of that, we expect that
the string worldsheet described above is not a source for the usual Wilson loop, but for the
supersymmetric generalized Wilson loop:

W[C] = 1

N
Tr P exp

[∮ (
iAμẋμ + θ IXI(xμ)

√
ẋ2

)
dτ

]
, (14.28)

where xμ(τ ) parameterizes the loop and θ I is a unit vector that gives the position on S5

where the string is sitting. We will consider only the case of θ I = constant, since in this
case the Wilson loop with rectangular contour is supersymmetric.

The above Wilson loop is locally (on the loop) 1/2 supersymmetric, since the supersym-
metry variation of W[C] at a point (before the integration) is given by

∼ W[C]
(

iδAμẋμ + θ IδXI(xμ)
√

ẋ2
)

, (14.29)
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227 14.3 Defining theN = 4 SYM supersymmetric Wilson loop via AdS/CFT

and putting it to zero turns into a condition on ε independent of the fermions ψ , as we
can check from the SYM variations. The details are left as an exercise (Exercise 6). Then
the variations at each point must commute and/or give the same result for the loop to be
globally supersymmetric. This happens in the case of a straight line in xμ(τ ) (thus for the
infinitely thin rectangular Wilson loop it happens also) and constant θ I . There are other
contours that are supersymmetric, 1/2 or less so, for instance the circular Wilson loop, but
we will not study them here.

From the above discussion, it follows that the prescription for calculating 〈W[C]〉 is as a
partition function for the string with boundary on C. In the supergravity limit (gs → 0, gsN
fixed and large) we obtain

〈W[C]〉 = Zstring[C] = e−Sstring[C], (14.30)

where Sstring is the string worldsheet action, i.e. 1/(2πα′)× the area of the worldsheet
(area in AdS5 × S5, not area of the 4-dimensional projection!). That, however, does not
necessarily give the 4-dimensional area law for C, since the worldsheet has an area bigger
than the 4-dimensional area enclosed by C. In fact, we expect that in this conformal case
we do not obtain the area law, rather we obtain the conformal invariant law ∼ T/R.

The string has tension, and it wants to have a minimum area. In flat space, that would
mean that it would span just the flat surface enclosed by C, giving the area law (see
Fig. 14.5b). However, in AdS space, we have a gravitational field

ds2 = α′ U2

R2/a′
(−dt2 + d�x2) + . . . (14.31)

To understand the physics, we compare with the Newtonian approximation, though it is
not a good approximation now, but we do get the correct qualitative picture,

ds2 = (1 + 2V)(−dt2 + . . .), (14.32)

where V is the Newton potential. Newtonian gravity means that the string would go to the
minimum V . In our case, that would mean the minimum position U. Therefore, the string
worldsheet with boundary at U = ∞ “drops” down to U = U0 as in Fig. 14.5b and is
eventually stopped (held back) by its tension.

But the prescription is not complete yet, since the area of the worldsheet stretching from
U = ∞ to U = U0 is divergent, so naively we would get 〈W[C]〉 = 0. In fact, we must
remember that we said the string stretched between the |i〉 and |N + 1〉 D-branes, and
therefore also between U = ∞ and U = U0 in AdS5, represents an infinitely massive “W
boson,” whose mass φ we must now subtract. The “free W boson” would stretch along all
of AdS5, thus from U = ∞ to U = 0, in a straight line, parallel with C, as in Fig. 14.5c.
Thus the action that we must subtract is φl, where l is the length (perimeter) of the loop C
and φ is the free W boson (free string) mass, U/(2π ). Then we have the AdS/CFT Wilson
loop prescription

〈W[C]〉 = e−(Sφ−lφ). (14.33)
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228 Quarks and the Wilson loop

14.4 Calculating the interquark potential

We now calculate explicitly the Wilson loop VEV for the contour C given by the infinitely
thin rectangle, with T → ∞, and a quark q at x = −L/2 and an antiquark q̄ at x = +L/2.
The metric of Euclidean AdS is

ds2 = α′
[

U2

R2/a′
(dt2 + d�x2) + R2

α′
dU2

U2
+ R2

α′
d�2

5

]
; R2 = α′

√
4πgsN. (14.34)

To calculate the Wilson loop VEV from AdS/CFT, we need to calculate the string action
in this background. As we saw in Chapter 7, the Euclidean space Nambu–Goto action for
the string is

Sstring = 1

2πα′

∫
dτdσ

√
det(GMN∂aXM∂bXN). (14.35)

We choose a gauge where the worldsheet coordinates equal two spacetime coordinates,
specifically τ = t and σ = x. This choice is known as a static gauge, and it is consistent
to take it since we are looking for a static solution. Then we approximate the worldsheet
to be translationally invariant in the time direction, which is only a good approximation
if T/L → ∞ (otherwise the curvature of the worldsheet near the corners becomes impor-
tant). Since we are also looking at a static configuration, we have a single variable for the
worldsheet, U = U(σ ), which becomes U = U(x).

We calculate hab = GMN∂aXM∂bXN and obtain (R̃2 ≡ R2/α′; 1 ≡ τ , 2 ≡ σ ):

h11 = α′ U
2

R̃2

(
dt

dτ

)2

= α′ U
2

R̃2
; h12 = 0,

h22 = α′ U
2

R̃2

(
dx

dσ

)2

+ α′ R̃2

U2

(
dU

dσ

)2

= α′
(

U2

R̃2
+ R̃2

U2
U′2

)
, (14.36)

therefore

Sstring = 1

2π
T
∫

dx

√
(∂xU)2 + U4

R̃4
, (14.37)

and we have reduced the problem to a 1-dimensional mechanics problem.
We define U0 as the minimum of U(x) and y = U/U0. Then we can check that the

solution is defined by

x = R̃2

U0

∫ U/U0

1

dy

y2
√

y4 − 1
, (14.38)

which gives x(U, U0) and inverted gives U(x, U0). To find U0 we note that at U = ∞ we
have x = L/2, therefore

L

2
= R̃2

U0

∫ ∞

1

dy

y2
√

y4 − 1
= R̃2

U0

√
2π3/2

�(1/4)2
. (14.39)
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229 14.5 Nonsupersymmetric Wilson loop

Then from the Wilson loop prescription (14.33) and the general way to extract the
interquark potential from the Wilson loop (14.19), we have

Sφ − lφ = TVqq̄(L), (14.40)

and we regularize this formula (which subtracts two infinities) by integrating only up to
Umax. We have l � 2T and the mass of the free string (i.e., string stretching from U = 0 to
Umax) is written as

φ = Umax − U0

2π
+ U0

2π
= U0

2π

∫ ymax

1
dy + U0

2π
. (14.41)

Then the object in the exponential in (14.33) is (there is a factor of 2 since we integrate
from Umax to U0 and then from U0 to Umax)

TVqq̄(L) = T
2U0

2π

[∫ ∞

1
dy

(
y2√

y4 − 1
− 1

)
− 1

]
. (14.42)

Finally, by substituting U0 and R2, we get

Vqq̄(L) = − 4π2

�(1/4)4

√
2g2

YMN

L
. (14.43)

So we do get Vqq̄(L) ∝ 1/L as expected for a conformally invariant theory. However,

we also find that Vqq̄(L) ∝
√

g2
YMN which is a nonpolynomial, therefore nonperturbative

result. That means that this cannot be obtained by a finite loop order calculation. For exam-
ple, the 1-loop result would be proportional to g2

YMN. The result at all couplings, leading
to this at strong coupling, was obtained, however, by matrix model calculations, but we
will not describe them here.

So we have obtained the conformal invariant result for the interquark potential, the
Coulomb potential. But under what conditions can we obtain the area law? The basic rea-
son for obtaining the Coulomb potential was that the area of the string worldsheet is not
proportional to the area bounded by the contour C on which it ends. But that could happen
asymptotically in the following situation. Consider cutting off AdS space at a small Um,
such that for sufficiently large separation L between the quarks at infinity, the string would
fall down to Um. Then there is a portion of the string worldsheet (in the middle) that will
lay straight on the cut-off at U = Um = constant. That in turn means that a percentage of
ln〈W[C]〉, that gets greater with L until it dominates, obeys the area law. This suggests that
confinement is associated with having a cut-off at a minimum U in AdS space. We discuss
this further in Part III of the book.

14.5 Nonsupersymmetric Wilson loop

We have presented up to now how to calculate the 1/2 supersymmetric Wilson loop using
AdS/CFT, but there are other kinds of Wilson loops that can be calculated. In particular,
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230 Quarks and the Wilson loop

we can also calculate the gravity dual of the regular (bosonic) Wilson loop in (14.18). The
formula was proposed by Alday and Maldacena in 2007, and it passed several tests. The
gravity dual of the regular Wilson loop is still given by (14.33), but the string worldsheet is
different. In fact, the string worldsheet now also ends on the contour C at the boundary of
AdS space, but unlike the 1/2 supersymmetric one, it has Neumann boundary conditions
on the S5 (as opposed to Dirichlet, i.e. fixed θ I).

Important concepts to remember

• Introducing external quarks in the theory, we can measure the quark–antiquark potential
between heavy sources.

• The Wilson loop, W[C] = Tr P exp
[∫

iAμdxμ
]

is gauge invariant.

• By choosing the contour C as a rectangle with two sides in the time direction, of length
T , and two sides in a space direction, of length R ! T , we have a contour from which
we can extract Vqq̄(R) by 〈W(C)〉0 = exp[−Vqq̄(R)].

• In a confining theory like QCD, Vqq̄(R) ∼ σR, thus we have the area law:
〈W(C)〉0 ∝ exp(−σA(C)) for any smooth curve C, and conversely, if we find the
area law the theory is confining. 〈W(C)〉0,T→∞ acts as an order parameter for the
confinement/deconfinement transition.

• In a conformally invariant theory like QED with external quarks, Vqq̄(R) = α/R and the
Wilson loop is conformally invariant. For the above C, 〈W(C)〉0 ∝ exp(−αT/R).

• In AdS/CFT, the 1/2 supersymmetric Wilson loop one finds also has coupling to scalars
(and fermions), and is defined by 〈W(C)〉0 = exp(−Sstring(C)), where the string world-
sheet ends at U = ∞ on the curve C, is at a fixed point on the S5, and drops inside AdS
space. One needs to subtract the mass of the free strings extending straight down over
the whole space.

• The result or the calculation is nonperturbative (proportional to
√
λ), but has the

expected conformal (Coulomb) behavior.

• If we have a cut-off at small U in AdS space, the theory will be confining, since
asymptotically at large interquark separation L we have the area law for the Wilson
loop.

• The gravity dual of the regular Wilson loop is the same as for the 1/2 supersym-
metric Wilson loop, except with Neumann boundary conditions on S5 for the string
worldsheet.

References and further reading

For more on Wilson loops, see any QCD textbook, e.g. [40]. The Wilson loop in AdS/CFT
was defined and calculated in [41, 42]. I have followed Maldacena’s [41] derivation
here.
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231 14.5 Nonsupersymmetric Wilson loop

Exercises

1. Check that in the nonabelian case, for a closed square contour of side a, in a plane
defined by μν, we have

��μν = eia2Fμν +O(a4). (14.44)

2. Check that if a free relativistic string in four flat dimensions is stretched between q and
q̄ and we use the AdS/CFT prescription for the Wilson loop, W[C] = e−Sstring[C], we get
the area law.

3. Consider a circular Wilson loop C, of radius R. Give an argument to show that W[C] in
N = 4 SYM, obtained from AdS/CFT as in the rectangular case, is also conformally
invariant, i.e. independent of R.

4. Check that if AdS5 terminates at a fixed U = Um and strings are allowed to reach Um

and get stuck there, then we get the area law for 〈W[C]〉 at large interquark separation
L (this is similar to what happens in the case of finite temperature AdS/CFT), by using
the argument at the end of Section 14.4 and calculating the scaling of the string areas at
U = Um and at U > UM for L →∞.

5. Finish the steps left out in the calculation of the quark–antiquark potential to get the
final result for Vqq̄(L).

6. Verify that the Wilson loop (14.29) is 1/2 supersymmetric, substituting the N = 4 SYM
susy variations.
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15 Finite temperature andN = 4 SYM plasmas

In this chapter we describe how to introduce finite temperature into AdS/CFT, with the
goal of getting close to real world applications. Indeed, we will see that there is a sort of
universality for finite temperature phenomena, which allows us to use some calculations in
N = 4 SYM at finite temperature to describe real world QCD at finite temperature, and to
compare with heavy ion collisions, where such a system is relevant.

15.1 Finite temperature in field theory: periodic time

First we want to understand how to put a field theory at finite temperature. This discussion
appears in most textbooks on quantum field theory, but we will nevertheless review it.
Finite temperature field theory is best understood starting from the Feynman–Kac formula
for quantum mechanical transition amplitudes.

In quantum mechanics, we write down a transition amplitude between points q, t and
q′, t′ (between Heisenberg states) as

〈q′, t′|q, t〉 = 〈q′|e−iĤ(t′−t)|q〉
=

∑
nm

〈q′|n〉〈n|e−iĤ(t′−t)|m〉〈m|q〉

=
∑

n

ψn(q′)ψ∗
n (q)e−iEn(t′−t). (15.1)

On the other hand, it can also be written as a path integral,

〈q′, t′|q, t〉 =
∫

Dq(t)eiS[q(t)]. (15.2)

If we perform a Wick rotation to Euclidean space by t →−itE, t′−t →−iβ, iS →−SE,
such that

iS[q] = i
∫ tE=β

0
(−idtE)

[
1

2

(
dq

d(−itE)

)2

− V(q)

]
≡ −SE[q], (15.3)

we obtain

〈q′,β|q, 0〉 =
∑

n

ψn(q′)ψ∗
n (q)e−βEn . (15.4)
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233 15.2 Quick derivation of Hawking radiation

Then we note that if we specialize to the case q′ = q and integrate over this value of q,
we obtain the statistical mechanics partition function of a system at a temperature T , with
kT ≡ 1/β, ∫

dq〈q,β|q, 0〉 =
∫

dq
∑

n

|ψn(q)|2e−βEn = Tr{e−βĤ} = Z[β]. (15.5)

This corresponds in the path integral to taking closed paths of Euclidean time length β =
1/(kT), since q′ ≡ q(tE = β) = q(tE = 0) ≡ q. Then we obtain the Feynman–Kac formula,

Z(β) = Tr{e−βĤ} =
∫

Dqe−SE[q]|q(tE+β)=q(tE), (15.6)

where the path integral is then taken over all closed paths of Euclidean time length β.
Similarly, in field theory we obtain for the Euclidean partition function

ZE[β] =
∫
φ(�x,tE+β)=φ(�x,tE)

Dφe−SE[φ] = Tr (e−βĤ). (15.7)

Therefore the partition function at finite temperature T is expressed again as a Euclidean
path integral over paths of periodic Euclidean time. One can then extend this formula by
adding sources and calculating propagators and correlators, exactly as for zero temperature
field theory.

Thus the finite temperature field theory, for static quantities only (time-independent!), is
obtained by considering periodic imaginary time, with period β = 1/T .

15.2 Quick derivation of Hawking radiation

We can use the formulation developed in the last subsection for field theory at finite tem-
perature to deduce that black holes radiate thermally at a given temperature T , a process
known as Hawking radiation.

We want to describe quantum field theory in the black hole background. As always,
it is best described by performing a Wick rotation to Euclidean time. The Wick-rotated
Schwarzschild black hole in four spacetime dimensions is

ds2 = +
(

1 − 2MGN

r

)
dτ 2 + dr2

1 − 2MGN
r

+ r2d�2
2. (15.8)

Having now a Euclidean signature, it does not make sense to go inside the horizon, at
r < 2MGN , since then the signature will not be Euclidean anymore (unlike a Lorentz
signature, when the only thing that happens is that the time t and radial space r change
roles), but will be (−−++) instead.

Therefore, if the Wick-rotated Schwarzschild solution represents a Schwarzschild black
hole, the horizon must not be singular, yet there must not be a continuation inside it, i.e.
it must be smoothed out somehow. This is possible since in Euclidean signature one can
have a conical singularity if

ds2 = dρ2 + ρ2dθ2, (15.9)
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234 Finite temperature andN = 4 SYM plasmas

�Figure 15.1 A flat cone is obtained by cutting out an angle from flat space, so that θ ∈ [0, 2π −�] and identifying the cut.

but θ ∈ [0, 2π − �]. If � �= 0, then ρ = 0 is a singular point, and the metric describes a
cone, as in Fig.15.1, therefore ρ = 0 is known as a conical singularity. However, if � = 0
we do not have a cone, thus no singularity, and we have a (smooth) Euclidean space.

A similar situation applies to the Wick-rotated Schwarzschild black hole. Near r =
2MGN , we have

ds2 � r̃

2MGN
dτ 2 + 2MGN

dr̃2

r̃
+ (2MGN)2d�2

2, (15.10)

where r − 2MGN ≡ r̃. By defining ρ ≡ √
r̃ we get

ds2 � 8MGN

(
dρ2 + ρ2dτ 2

(4MGN)2

)
+ (2MGN)2d�2

2, (15.11)

so near the horizon the metric looks like a cone. If τ has no restrictions, the metric does
not make much sense. It must be periodic for it to make sense, but for a general period we
get a cone, with ρ = 0(r = 2MGN) a singularity. Only if τ/(4MGN) has period 2π we
avoid the conical singularity and we have a smooth space, that cannot be continued inside
r = 2MGN .

Therefore we have periodic Euclidean time, with period βτ = 8πMGN . By the analy-
sis of the previous section, this corresponds to finite temperature quantum field theory at
temperature,

TBH = 1

βτ
= 1

8πMGN
. (15.12)

We can then say that quantum field theory in the presence of a black hole has a
temperature TBH or that black holes radiate thermally at temperature TBH.

Does that mean that we can put a quantum field theory at finite temperature by adding a
black hole? Not quite, since the specific heat of the black hole is

C = ∂M

∂T
= − 1

8πT2GN
< 0, (15.13)

therefore the black hole is thermodynamically unstable, and it does not represent an
equilibrium situation.

But we will see that in Anti-de Sitter space we have a different situation. Adding a black
hole does provide a thermodynamically stable system, which therefore does represent an
equilibrium situation.
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235 15.3 Black holes and supersymmetry breaking

15.3 Black holes and supersymmetry breaking

Spin structure in black hole background

We now want to understand what happens to fermions in the presence of a black hole
background.

At r →∞, the solution is ds2 � dτ 2 + d�x2, i.e. R
3 × S1, since τ is periodic, which is a

Kaluza–Klein vacuum. That is, it is a background solution around which we can expand the
fields in Fourier modes (in general, we have spherical harmonics, but for compactification
on a circle we have actual Fourier modes) and perform a dimensional reduction by keeping
only the lowest modes.

But fermions do not necessarily need to be periodic, they can acquire a phase eiα when
going around the S1

τ circle at infinity:

ψ → eiαψ . (15.14)

These are known as “spin structures,” and α = 0 and α = π are always OK, since the
Lagrangean always has terms with an even number of fermions, thus such a phase would
still leave it invariant. If L has additional symmetries, there could be other values of α
allowed.

At the horizon r = 2MGN , the metric is (15.11), which is R
2 × S2, where �2 is the S2

metric and the R
2 is from the would-be cone, with θ ≡ ρ/(4MGN). But R

2 × S2 is simply
connected, which means that there are no nontrivial cycles, or that any loop on R

2 × S2

can be smoothly shrunk to zero. That means that there cannot be nontrivial fermion phases
as you go in around any loop on R

2 × S2, or that there is a unique spin structure.
We must therefore find to what does this unique spin structure correspond at infinity?

The relevant loop at infinity is τ→τ+βτ , which near the horizon is θ→θ+2π , i.e. a rota-
tion in the 2-dimensional plane R

2. Under such a rotation a fermion picks up a minus sign.
Indeed, a fermion can be defined as an object that gives a minus sign under a complete

spatial rotation, i.e. an object that is periodic under 4π rotations instead of 2π . In four
dimensions, the way to see that is that the spatial rotation ψ → Sψ around the axis defined
by �ν is given by

S(�ν, 0) = cos
θ

2
I + i�ν · �� sin

θ

2
; �� =

(�σ 0
0 �σ

)
, (15.15)

where �σ are Pauli matrices. We can see that under a 2π rotation, S = −1.
Therefore the unique spin structure in the Euclidean Schwarzschild black hole back-

ground is one that makes the fermions antiperiodic at infinity, around the Euclidean time
direction.

KKmasses and supersymmetry breaking

That can only happen if they have some Euclidean time dependence, ψ = ψ(θ ). That
in turns means that the fermions at infinity get a nontrivial mass under dimensional
reductions, since the 4-dimensional free flat space equation (valid at r →∞) gives
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236 Finite temperature andN = 4 SYM plasmas

∂/ψ = 0 ⇒ ∂/2ψ = �4dψ = 0. (15.16)

Under dimensional reduction, �4d = �3d + ∂2/∂θ2, so we obtain

0 = �4dψ =
(

�3d + ∂2

∂θ2

)
ψ = (�3d − m2)ψ , (15.17)

where m2 �= 0 is a 3-dimensional spinor mass squared. Therefore, in the presence of the
black hole, fermions become massive, from the point of view of the reduced 3-dimensional
theory.

Bosons on the other hand have no such restrictions on them, and we can have bosons
that are periodic at infinity under θ → θ + 2π , thus also the simplest case of bosons that
are independent of θ . Then at infinity for a boson, e.g. a scalar φ,

0 = �4dφ =
(

�3d + ∂2

∂θ2

)
φ = �3dφ, (15.18)

and therefore scalars can be massless in three dimensions.
But supersymmetry in flat 3-dimensional Euclidean space requires that mscalar =

mfermion. That is not the case in the presence of the black hole, since we can have mfermion �=
0, but mboson = 0, therefore the presence of the black hole breaks supersymmetry.

In fact, one can prove that finite temperature always breaks supersymmetry, in any field
theory.

It follows that one of the ways to break the unwelcome N = 4 supersymmetry in
AdS/CFT and get to more realistic field theories is by having finite temperature, specif-
ically by putting a black hole in AdS space. We discuss this prescription in the following.
Of course, in the way shown above we obtain a non-supersymmetric 3-dimensional field
theory, but there are ways to obtain a 4-dimensional nonsupersymmetric theory in a similar
manner.

15.4 The AdS black hole andWitten’s finite temperature
prescription

Now we finally have the tools to understand the way to put AdS/CFT at finite temperature.
The prescription was proposed by Witten, and corresponds to introducing a black hole in
AdS5.

As we have seen, the metric of global Anti-de Sitter space can be written as

ds2 = −
(

r2

R2
+ 1

)
dt2 + dr2

r2

R2 + 1
+ r2d�2. (15.19)

Then the black hole in (n + 1)-dimensional Anti-de Sitter space is

ds2 = −
(

r2

R2
+ 1 − wnM

rn−2

)
dt2 + dr2

r2

R2 + 1 − wnM
rn−2

+ r2d�2
n−1, (15.20)

where from (6.52), we get
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237 15.4 The AdS black hole and Witten’s finite temperature prescription

wn = 8πG(n+1)
N

(n − 2)�n−1
, (15.21)

and �n−1 is the volume of the unit sphere in n−1 dimensions. For n = 3 (AdS4), �2 = 4π
and w3 = 2GN . For AdS5, n = 4, �3 = 2π2 and w4 = 2G(5)

N /π .
We now repeat the usual Hawking temperature analysis, for the Euclidean version of the

AdS5 black hole. We define the (outer) horizon r+ as the largest solution of the equation

r2

R2
+ 1 − wnM

rn−2
= 0. (15.22)

The Euclidean metric near this outer horizon is (here δr = r − r+)

ds2 �
(

2r+
R2

+ (n − 2)wnM

rn−1+

)
δr dt2 + (dδr)2

δr

(
2r+
R2 + (n−2)wnM

rn−1+

) + r2+d�2
2. (15.23)

Then as in the flat 4-dimensional case, we obtain that the metric is singularity free only if
the time t is periodic, with period

β = 4π
2r+
R2 + (n−2)wnM

rn−1+

= 4π
nr+
R2 + (n−2)

r+
, (15.24)

where in the last equality we have used the definition of r+ in (15.22). Then finally the
temperature of the AdS black hole is

T = nr2+ + (n − 2)R2

4πR2r+
. (15.25)

Then T(M) (considering T = T(r+) and r+ = r+(M)) looks like in Fig.15.2. To
find the position of the minimum, we must put to zero dT/dM = (dT/dr+)(dr+/dM).
Differentiating (15.22) with respect to M, we get

dr+
dM

[
nrn−1+

R2
+ (n − 2)rn−3+

]
= wn, (15.26)

which implies dr+/dM > 0. Then the minimum of T is found from dT/dr+ = 0, which
gives the horizon size r+ at the minimum

r+ = R

√
n − 2

n
. (15.27)

In turn, this implies the temperature at the minimum is

Tmin = nr+
2πR

=
√

n(n − 2)

2πR
. (15.28)

The low M branch has C = ∂M∂T < 0, therefore is thermodynamically unstable, like
the Schwarzschild black hole in flat space. Then this solution is in fact a small perturbation
of that solution, since the black hole is small compared to the radius of curvature of AdS
space.
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238 Finite temperature andN = 4 SYM plasmas

�Figure 15.2 T(M) for the AdS black hole. The lowerM branch is unstable, having ∂M/∂T < 0. The higherM branch has
∂M/∂T > 0, and above T1 it is stable.

The high M branch, however, has C = ∂M/∂T > 0, thus is thermodynamically stable.
We also need to check that the free energy of the black hole solution, FBH, is smaller than
the free energy of pure AdS space, FAdS.

The free energy F is defined by

Z = e−βF , (15.29)

where β = 1/T (if k = 1). But in a gravitational theory, the free energy is given by the
gravitational action,

Zgrav = e−S, (15.30)

where S is the Euclidean action for gravity. We have seen this for example when defining
correlators in AdS/CFT. Then we have that

S(Euclidean action) = F

T
, (15.31)

and therefore we need to compare zero against

FBH − FAdS = T(SBH − SAdS), (15.32)

and an explicit calculation (that will not be done here) shows that it is < 0 only if

T > T1 ≡ n − 1

2πR
> Tmin. (15.33)

There is one more problem. At r →∞, the metric is

ds2 �
( r

R
dt
)2 +

(
R

r
dr

)2

+ r2d�2
n−1, (15.34)

therefore the Euclidean time direction is a circle of radius (r/R)× (1/T), and the transverse
n−1-dimensional sphere has radius r. Thus both are proportional to r →∞; however, the
N = 4 SYM gauge theory that exists at r → ∞ has conformal invariance, therefore, only
relative scales are relevant for it, meaning that we can drop the overall r. It follows that the
topology at infinity, where N = 4 SYM exists, is Sn−1 × S1, but we want to have a theory
defined on Rn−1 × S1 instead, namely n-dimensional flat space at finite temperature (with
periodic Euclidean time).
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239 15.4 The AdS black hole and Witten’s finite temperature prescription

That means that we need to scale the ratio of sizes to infinity

r
r
R

1
T

= R · T →∞, (15.35)

which implies that we must take T → ∞, only possible if M → ∞, and we must rescale
the coordinates to get finite quantities. We find that M ∝ rn and r2dt2 must be finite.
Including also finite factors of wn and R, the needed rescaling is

r =
(

wnM

Rn−2

)1/n

ρ; t =
(

wnM

Rn−2

)−1/n

τ , (15.36)

and M →∞. Under this rescaling, the metric becomes (dxi = (wnM/Rn−2)2d�i),

ds2 =
(
ρ2

R2
− Rn−2

ρn−2

)
dτ 2 + dρ2

ρ2

R2 − Rn−2

ρn−2

+ ρ2
n−1∑
i=1

dx2
i , (15.37)

and the period of τ is

β1 = 4πR

n
. (15.38)

Since for ρ →∞ we get

ds2
ρ→∞ � ρ2

(
dτ 2

R2
+ d�x2

)
, (15.39)

considering string theory in the metric (15.37) puts N = 4 SYM at the constant finite
temperature

T = R

β1
= n

4π
. (15.40)

In four gauge theory dimensions, we obtain T = 1/π .
The metric (15.37) for the relevant case of n = 4 dimensions can be rewritten as

ds2 = ρ2

R2

[(
1 − R4

ρ4

)
dτ 2 + R2d�x2

]
+ R2 dρ2

ρ2
(

1 − R4

ρ4

) . (15.41)

Making the redefinitions

ρ

R
= U

U0
; τ = t

U0

R
; �x = �yU0

R2
, (15.42)

adding the dropped factor R2d�2
5 to the gravity dual, and Wick rotating to Lorentzian

signature, we get

ds2 = U2

R2

[
−f (U)dt2 + d�y2

]
+ R2 dU2

U2f (U)
+ R2d�2

5,

f (U) ≡ 1 − U4
0

U4
. (15.43)

We note that this metric is the nonextremal version of the AdS5 × S5 metric (10.14). But
(10.14) was obtained as the near-horizon limit of the D3-brane metric, and one can make
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240 Finite temperature andN = 4 SYM plasmas

a D-brane metric nonextremal by adding an f (r) in front of dt2 and 1/f (r) in front of dr2,
as we saw at the end of Chapter 6. It follows immediately that the same (15.43) above can
also be obtained directly from the near-horizon limit of the near-extremal D3-brane metric,
as we can easily check.

Finally, also redefining as usual U/R = R/z and U0/R = R/z0, the metric becomes

ds2 = R2

z2

[
−f (z)dt2 + d�y2 + dz2

f (z)

]
+ R2d�2

5,

f (z) = 1 − z4

z4
0

. (15.44)

Note that even though we started with AdS in global coordinates to obtain the Witten
metric, we have now reached a finite temperature version of AdS in Poincaré coordinates!
In this metric, we can follow the same steps as in the case of the Schwarzschild and AdS
black holes and find that the temperature of the above metric is given by

T = 1

πz0
. (15.45)

This is consistent with (15.38), since the periodicity βτ = 4πR/n = πR implies a
periodicity βt = πR2/U0 = πz0.

We have already explained that in this AdS black hole metric, supersymmetry is broken.
At r = infinity, the fermions are antiperiodic around the Euclidean time direction, thus if
we dimensionally reduce the N = 4 SYM theory to three dimensions (i.e., compactify on
the Euclidean time) the fermions become massive. The gauge fields are protected by gauge
invariance and remain massless under this dimensional reduction. The scalars as we saw
remain massless in three dimensions, at least at the classical level. At the quantum level,
they also get a mass at one loop, through a fermion loop due to a Yukawa scalar-fermion
coupling.

Therefore the 3-dimensional theory obtained by dimensionally reducing N = 4 SYM
on the compact Euclidean time is pure QCD glue, only gauge fields Aa

μ and nothing else!

15.5 Application of finite temperature: mass gap

We want to understand the mass gap in pure glue theory from AdS/CFT. Consider the
dimensionally reduced AdS/CFT at finite temperature, i.e. the AdS5 black hole metric
reduced to three boundary dimensions. The mass gap means spontaneous appearance of
a mass for physical states, in this case for N = 4 SYM, reduced to three boundary dimen-
sions with supersymmetry breaking conditions. This translates into having a classical mass
for physical states existing in the gravitational dual (15.37).

Thus we consider massless fields in the bulk of (15.37) and we calculate their
3-dimensional mass. For a scalar field, the equation of motion is �φ = 0 on this space,
and dimensionally reduced solutions (independent of τ ) can be put in a factorized form

φ(ρ, �x, τ ) = f (ρ)ei�k·�x. (15.46)
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241 15.6 N = 4 SYM plasmas from AdS/CFT

At the horizon ρ = b we need to impose that the solution is smooth, i.e. df /dρ = 0,
since the horizon acts like the origin of a plane in spherical coordinates, as we saw. On the
other hand, at ρ → ∞ we need to impose that the solution is normalizable, since we are
interested in physical states in AdS, which means

f ∼ 1

ρ4
. (15.47)

Choosing the normalizable solution at infinity (among the two solutions, one normaliz-
able and one non-normalizable) and continuing it until the horizon in general results in a
solution that does not satisfy the boundary condition. Imposing the boundary condition at
the horizon results in a quantization condition on the parameters of the solution, �k2, which
equals m2, the 3-dimensional mass squared. Then the mass squared has a positive discrete
spectrum, which is the statement of mass gap. In conclusion, the finite temperature AdS
space (15.37) behaves like a quantum mechanical box, with a nonzero ground state energy.
This is as expected from the general analysis, since the finite temperature effectively cuts
off the interior of AdS space at z = z0, and we argued that AdS space with the middle
cut off should function as a quantum mechanical box, since then a light ray goes from the
horizon to the boundary in finite time.

15.6 N = 4 SYM plasmas from AdS/CFT

We have seen that we can put AdS/CFT at finite temperature by introducing a black hole in
AdS5, and that breaks supersymmetry, leaving only massless 3-dimensional pure glue and
massive states after dimensional reduction on the periodic Euclidean time.

But considered from the 4-dimensional perspective (no dimensional reduction), we still
have N = 4 SYM at finite temperature. This is a priori very different from QCD at
finite temperature, which would be relevant for the real world. Nevertheless, we will see
that various quantities calculated at finite temperature within N = 4 SYM give results
similar to QCD, hence it is believed that there is a certain universality for gauge the-
ories at finite temperature, which encouraged the use of the original AdS/CFT at finite
temperature.

In particular, in heavy ion collisions like Brookhaven’s RHIC experiment and LHC’s
ALICE experiment one obtains a strongly coupled quark–gluon plasma (sQGP), i.e. a sys-
tem of quarks and gluons at high temperature (above the QCD phase transition), and even
though it is a dynamical (time dependent) situation, and spatially bounded, as opposed to
the space-filling time independent case in the previous sections, one can still apply the
AdS/CFT methods used for N = 4 SYM at finite temperature. Besides the finite tempera-
ture, the sQGP has finite density and chemical potential, and also it was recently found that
magnetic fields are very important. Therefore, in the next sections we also study how to
add finite density, chemical potential, and magnetic fields. By analogy with the real world
QCD state at high temperature, we call the N = 4 SYM state plasma as well.
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242 Finite temperature andN = 4 SYM plasmas

Bulk properties: entropy, energy, pressure

We begin by calculating the bulk thermodynamic properties of the N = 4 SYM plasma.
The entropy of a 5-dimensional black hole is given by the usual Bekenstein–Hawking

formula,

S = A

4GN,5
, (15.48)

where A is the area of the horizon. For the metric (15.44), the horizon area (at z = z0) is

A = R3

z3
0

∫
dy1dy2dy3. (15.49)

The entropy S of the horizon of the AdS black hole is identified with the entropy of the dual
field theory. It is infinite, but there is a finite 4-dimensional entropy density, given using
AdS/CFT by

s = S∫
dy1dy2dy3

= R3

4GN,5z3
0

. (15.50)

To calculate this, we note that in 10-dimensional string theory we have (this normalization
of the Einstein action can be derived in string theory)

2κ2
N = 16πGN,10 = (2π )7g2

sα
′4, (15.51)

and in AdS5 × S5 we have R4 = α′2g2
YMN = α′2(4πgs)N, which gives

GN,10 = π4

2N2
R8. (15.52)

Doing the dimensional reduction on the S5 of radius R, with the volume of the S5 of unit
radius �5 = π3, we obtain

GN,5 = GN,10

�5R5
= π

2N2
R3. (15.53)

Together with (15.45), this gives for the entropy density

sλ=∞ = π2

2
N2T3. (15.54)

This is the entropy density at infinite coupling λ → ∞ for N = 4 SYM. From the ther-
modynamic relations s = ∂P/∂T and ε = −P+Ts, where ε is the energy density E/V , we
find for the pressure and energy density

Pλ=∞ = π2

8
N2T4,

ελ=∞ = 3π2

8
N2T4, (15.55)

at infinite coupling.
On the other hand, at weak coupling we can calculate the entropy density as follows.

For a free bosonic degree of freedom, the entropy density is s = 2π2T3/45, and for a free
fermionic degree of freedom, it is 7/8 of the bosonic result. But in N = 4 we have a gauge

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:54:44 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.017

Cambridge Books Online © Cambridge University Press, 2016



243 15.6 N = 4 SYM plasmas from AdS/CFT

field, with two degrees of freedom, and six scalars, for a total of eight bosonic degrees of
freedom, and matching them eight fermionic degrees of freedom. All of them are in the
adjoint of SU(N), thus each having N2 − 1 components. In total, the entropy density is

sλ=0 =
(

8 + 8
7

8

)
(N2 − 1)

2π2T3

45
� 2π2

3
N2T3, (15.56)

where in the last equality we have dropped the 1 in (N2 − 1) at large N.
Then, in between the strong and weak coupling we have

sλ=∞
sλ=0

= 3

4
. (15.57)

By using the thermodynamic relations we find the same ratio for the pressure and energy
density

Pλ=∞
Pλ=0

= ελ=∞
ελ=0

= 3

4
. (15.58)

But in lattice QCD, the numerical value for the ratio of the pressure at infinite coupling
to the pressure at zero coupling, and the ratio of energy density at infinite coupling to the
energy density at zero coupling is found to be about 80%, very close to the result of 75%
in N = 4 SYM. This is the first example of a finite temperature calculation for which the
N = 4 SYM result is close to the QCD result, and it led to the suggestion of universality
among gauge theories at finite temperature as a justification for using N = 4 SYM via
AdS/CFT to apply to the real world.

Energy loss: drag on heavy quarks

When a fast heavy quark (a would-be “jet”) passes through the sQGP plasma, it loses
energy at a high rate, due to the interaction with the medium, a phenomenon known as “jet
quenching.” This is observed experimentally in the RHIC and ALICE experiments. Due
to the fact that the sQGP is strongly coupled, it is an ideal quantity to be calculated using
AdS/CFT, and various calculations were done using N = 4 SYM at finite temperature, and
were shown to give reasonable results when compared to the experimental results (which
are for QCD).

As we saw, a heavy quark corresponds to a long string stretching between the boundary
at infinity and a point in the interior of AdS. A moving heavy quark on a straight path
then corresponds to a string moving at infinity on this straight path, i.e. to the holographic
prescription for a Wilson line. But now the string does not return to infinity, but instead
stretches all the way (asymptotically) to the horizon. The string as it moves loses momen-
tum, so one needs a constant force to keep it at constant velocity. One can calculate this
momentum loss, or force by calculating the string stationary configuration.

We consider the ansatz for a string with endpoint moving on the boundary, z = 0 in
(15.44), in the y1 direction. Therefore we consider y1(t, z → 0) = vt as a boundary con-
dition, and the stationary ansatz y1(t, z) = vt + h(z). We moreover choose the static gauge
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244 Finite temperature andN = 4 SYM plasmas

τ = t, σ = z for the worldsheet coordinates (τ , σ ) of the string. Substituting the ansatz in
the Nambu–Goto action, we obtain

S = − R2

2πα′

(∫
dt

)∫
dz

z2

√
f (z) − v2 + f (z)2h′2(z)

f (z)
. (15.59)

The action is independent of h(z), it only depends on h′(z), which means that the
canonical momentum P1

z is conserved,

P1
z =

δS

δh′(z)
= δS

δy1′(z)

= − R2

2πα′
1

z2

f 3/2(z)h′(z)√
f (z) − v2 + f (z)2h′2(z)

. (15.60)

Then we can solve h′(z) as a function of P1
z , to obtain

h′2(z) =
(

2πα′P1
z

R2

)2
z4

f (z)2

f (z) − v2

f (z) −
(

2πα′P1
z

R2

)2
z4

. (15.61)

Both the numerator and denominator are positive at the boundary z = 0 (1 − v2 and
1, respectively, for the last ratio), and negative at the horizon z = z0 where f (z) = 0,
and since h′2(z) ≥ 0, it means that both must equal zero at the same time. This gives
(2πα′P1

z/R2)2z4
1 = v2 = 1 − z4

1/z4
0, and eliminating z1 we obtain

P1
z = ± R2

2πα′z2
0

γ v, (15.62)

where γ = 1/
√

1 − v2 is the Lorentz factor. That means that only for this momentum
flux in the z direction, P1

z , can we have a stationary solution. We choose the positive sign,
corresponding to momentum flowing from the z = 0 boundary to the z = z0 horizon due to
the pulling of an external force, which pumps momentum that dissipates into the medium.

Plugging this P1
z back into (15.61), we can integrate it for h(z), obtaining

h(z) = −vz0

2

[
arctanh

(
z

z0

)
− arctan

(
z

z0

)]
. (15.63)

This corresponds to a string trailing behind the quark, hanging down from the boundary
(h(0) = 0), and becoming almost parallel to the horizon near z = z0 (h(z0) = −∞), as in
Fig.15.3.

Then P1
z is momentum flow into the plasma, thus the momentum loss in the plasma is

dp

dt
= −P1

z = − R2

2πα′z2
0

γ v. (15.64)

Translating into gauge theory variables using R2/α′ = √
λ and T = 1/πz0 (λ = g2

YMN is
the ’t Hooft coupling), we obtain

dp

dt
= −π

2

√
λT2γ v = − π

2M

√
λT2p

≡ −ηDp, (15.65)

where p = Mγ v is the momentum of the heavy quark and ηD is the drag coefficient.
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245 15.6 N = 4 SYM plasmas from AdS/CFT

�Figure 15.3 A quark being pulled by an external force at the boundary, and a string trailing behind it, hanging down from the
boundary.

�Figure 15.4 Wilson loop contour relevant for jet quenching.

Jet quenching from (semi-) light-like Wilson loop

There is a quantity that defines the amount of energy lost by an ultrarelativistic heavy
quark or gluon passing through the plasma; and is called the jet quenching parameter q̂. It
is formally defined as the mean transverse momentum squared gained by the heavy object
per distance travelled, q̂ ≡ 〈k2⊥〉/L, but is related to jet quenching (energy loss). It can
be calculated from a particular kind of Wilson loop. The fact that the relevant objects are
ultrarelativistic heavy quarks uniquely defines this loop: it has to have two long light-like
sides of length L−, and it has to be separated by a spatial distance L, so two sides are
short, space-like and of distance L. In the previous case, we considered only one heavy
quark moving, but for using Wilson loops, we need a closed contour, so the one above is
uniquely defined, as in Fig.15.4.

One can prove that for this Wilson loop, the jet quenching parameter q̂ is found from the
asymptotic scaling formula

〈W[C]〉 � exp

[
− 1

4
√

2
q̂L−L2

]
, (15.66)

though we will not do it here.
We then calculate the Wilson loop defined by the above contour, in the Poincaré

AdS black hole background (15.43), with U called r. We choose a static gauge τ =
y−, σ = y2 (y± = (t ± y1)/

√
2), and consider the static ansatz that is transla-

tionally invariant in x− (ignoring the worldsheet deformation near the short L side of
the Wilson loop) yμ = yμ(σ ), with y3(σ ) = constant, y+(σ ) = constant, and the
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246 Finite temperature andN = 4 SYM plasmas

boundary condition r(±L/2) = ∞ (for y2 = ±L/2, r = ∞, i.e. we reach the bound-
ary). Substituting the ansatz in the Nambu–Goto action, we obtain for the Euclidean
action

S =
√

2r2
0L−

2πα′R2

∫ L/2

0
dσ

√
1 + r′2R4

f (r)r4
. (15.67)

We can solve the equation of motion for this action in the following way. The Lagrangean
is independent (explicitly) of σ , which means that, thinking of it as “time,” the “Hamil-
tonian” H = r′∂L/∂r′ − L is conserved, i.e. constant. Defining the constant a by

H =
√

2r2
0L−

2πα′R2 (1+a2)−1/2, the square root inside the Lagrangean is
√

1 + a2 and the equation
of motion is written as

r′2 = a2 r4f (r)

R4
. (15.68)

For a solution with a > 0, the string descends all the way down to the horizon r = r0,
where f (r) = 0, so it is an inflexion point r′ = 0, and then goes back up to the boundary.
Notice that the solution touches the horizon independent of how small L, or T are. Because
of symmetry σ = 0 at r = r0, so we can integrate the above equation of motion to obtain

L

2
= R2

a

∫ ∞

r0

dr√
r4 − r4

0

= cR2

ar0
, (15.69)

where c = √
π�(5/4)/�(3/4) � 1.311. Then the integration constant is a = 2cR2/r0L,

and with r0 = πR2T it becomes a = 2c/(πLT). Finally we can write the on-shell action
as a function of only L−, L, T as

S = π
√
λL−LT2

2
√

2

√
1 + 4c2

π2T2L2
. (15.70)

From this action we must subtract the action of the “W bosons,” the perimeter, � 2L−
times the tension 1/2πα′ times the length from the boundary to the horizon (now the space
finishes at the horizon),

∫∞
r0

dr
√

g−−grr, giving

S0 = c
√
λL−T√

2
. (15.71)

Then we have for the regularized action at small LT

S − S0 � π2

8
√

2c

√
λT3L−L2 + O(T5L−L4). (15.72)

The Wilson loop prescription gives 〈W[C]〉 = exp[S − S0], but the trace in W[C] is in the
adjoint representation, Tr a, which equals twice the trace in the fundamental representa-
tion Tr, for which the formula (15.66) was written. Then we obtain for the jet quenching
parameter

q̂SYM = π2

c

√
λT3 = π3/2�(3/4)

�(5/4)

√
g2

YMNT3. (15.73)
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247 15.7 Adding a finite chemical potentialμ �= 0

This again gives a reasonable comparison with QCD, once we replace the constant g2
YM

with the corresponding QCD running coupling, again lending credence to the idea of
universality of gauge theories at finite temperature.

15.7 Adding a finite chemical potentialμ �= 0

We now want to learn how to add a finite charge (particle) density or finite chemical poten-
tial into AdS/CFT, since in real experiments like heavy ion collisons one needs to consider
these cases. First off, charge in the case of N = 4 SYM can only mean R-charge, i.e.,
a subgroup of the SU(4) = SO(6) global symmetry of the CFT. On the gravity side, this
charge is sourced by the gauge field in AdS space.

As we saw, in AdS/CFT, the source coupling for a boundary gauge field aμ is
∫

ddxJμaμ.
In particular, J0 is a charge density in the gauge theory, and it couples to a0, the boundary
value of A0 inside AdS space. It follows that the boundary condition corresponding to
nonzero charge inside AdS space is

A = A0(z)dt + . . . , (15.74)

as we go to the boundary z → 0. That in turn means that we need to have an electri-
cally charged solution inside AdS space. Then electrical charge in AdS space corresponds
to having a charge density on the boundary. Moreover, the source coupling in the action
should be qμ, hence A0(z = 0) = a0 = μ is the chemical potential for the R-charge. That
means that the boundary condition is A → μdt as z → 0.

To find the corresponding solution, we need to consider the Einstein–Maxwell system in
AdS space (with a negative cosmological constant). One can find the Reissner–Nordstrom
solution in AdS in Poincaré coordinates in a way similar to the Reissner–Nordstrom solu-
tion in flat space. The solution is found as usual by simply replacing the f (z) in (15.44)
with a charged expression,

ds2 = R2

z2

(
−f (z)dt2 + d�x2 + dz2

f (z)

)
,

f (z) = 1 −
(

1 + Kz2+μ2
)(

z

z+

)d

+ Kz2+μ2
(

z

z+

)2(d−1)

,

K ≡ (d − 2)κ2
N,d+1

(d − 1)g2R2
, (15.75)

where we have written the solution in d + 1 dimensions for completeness. The gauge field
corresponding to this solution is

A0 = μ

[
1 −

(
z

z+

)d−2
]

. (15.76)

Note that we might think that we could drop the constant part of A0, but we need to have
A = 0 at the horizon z = z+. This boundary condition is necessary for A to be well defined,
since otherwise A is singular at the horizon.
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248 Finite temperature andN = 4 SYM plasmas

The temperature of this metric is found in the same way as in the other cases from the
periodicity of the Euclidean version of the black hole, as

T = 1

4πz+

(
d − K(d − 2)z2+μ2

)
. (15.77)

Note that we can have T = 0 and μ �= 0 for this black hole.
To find all the relevant thermodynamic quantities in this case, we need to calculate the

thermodynamic potential. But for that, we need to decide whether to consider the case
of constant chemical potential μ or constant charge density ρ. From the above analysis,
constant μ corresponds to constant aμ source for the gauge field on the boundary. The
thermodynamic potential in this case is the grand canonical potential � = �(μ, V , T) =
U−TS−μN, with d� = −SdT −PdV −Ndμ. It is found by the usual AdS/CFT relation,

ZCFT = e−β� = Zsugra = e−Ssugra ⇒ � = TSsugra . (15.78)

The necessary condition to find this potential is that the on-shell AdS supergravity action
Ssugra does not have any boundary terms (they vanish) if we take a0 = constant (constant
chemical potential). It is satisfied for the Einstein–Maxwell action, so we have� = TSsugra.

We can calculate the on-shell supergravity action and find

� = − Rd−1

2κ2
Nzd+

(
1 + Kz2+μ2

)
Vd−1. (15.79)

In this case, the charge density VEV is a one-point function, so it is found by differentiating
the supergravity action with respect to the source,

ρ = 〈J0〉 = δSsugra

δa0

∣∣∣∣
a0=0

. (15.80)

Another possibility is to consider constant charge density ρ, in which case the thermo-
dynamic potential is the free energy (canonical ensemble) F = � + μQ. We see that it
corresponds to adding a term linear in μ = a0 to the on-shell gravitational action. Indeed,
one can add a boundary term to the gravitational action of the form (in the supergravity
action we have −1/4g2

∫
dd+1x

√−gF2
μν)

+ 1

g2

∫
z→0

ddx
√−hnaFabAb, (15.81)

where hab is the metric on the boundary. The addition of this term means that we keep
fixed naFab instead of Aa on the boundary, and since a0 is a chemical potential, now we fix
instead its conjugate, the charge density.

15.8 Adding amagnetic field B �= 0

To add a magnetic field in the gauge theory we need to add a magnetic field in the bulk
gravitational theory as well. The reason is as follows. The N = 4 SYM theory has a global
SU(4) = SO(6) R-symmetry, a U(1) subgroup of which we are considering. But in order
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249 15.8 Adding a magnetic field B �= 0

to talk about magnetic fields we must gauge this symmetry by coupling its current to a
gauge field, i.e. add a term

∫
ddxJμaμ to the action. We do not want to alter the dynamics

of the theory, so we will not add a kinetic term for aμ, but instead consider aμ like an
external (background) gauge field. But in this case the coupling

∫
ddxJμaμ in the action

takes exactly the form of the current-source coupling needed for AdS/CFT, hence we can
identify the external aμ, giving the magnetic field, with the boundary source for the bulk
gauge field.

The case of a magnetic field in AdS5 is a bit more complicated, so we discuss the AdS4

case here, which is easier to understand. We also consider the case with both electric and
magnetic charges in AdS, so we look to generalize (15.75) and (15.76) for d = 3 by intro-
ducing magnetic charge, with ansatz A = A0(z)dt+B(z)xdy. The generalization is obtained
by once again replacing f (z) with the appropriate electric–magnetic duality invariant
result,

f (z) = 1 −
[
1 + K

(
z2+μ2 + z4+B2

)](
z

z+

)3

+ K
(

z2+μ2 + z4+B2
)(

z

z+

)4

, (15.82)

and the gauge field gets an extra term

A = μ

[
1 − z

z+

]
dt + Bxdy. (15.83)

We can rewrite f (z) in a form making more obvious the electric–magnetic duality as

f (z) = 1 − [1 + h2 + q2]

(
z

z+

)3

+ (h2 + q2)

(
z

z+

)4

, (15.84)

and the field strength coming from A as

F = 1

z2+
√

K
[h dx ∧ dy + q dt ∧ dz]. (15.85)

We see that both �E and �B are finite at the boundary z = 0, but �B is interpreted as external
magnetic field, and �E as source for the charge density, with VEV (15.80).

Since only the coefficients of the z3 and z4 terms in f (z) change, but not the functional
form of the metric, it is clear that the temperature is found by replacing the corresponding
coefficients, as

T = 1

4π

[
3 − K(z2+μ2 + z4+B2)

]
. (15.86)

The thermodynamic potential at constant chemical potential can also be found, generaliz-
ing (15.79) for d = 3, as

� = − R2

2κ2
Nz3+

[
1 + K(z2+μ2 − 3z4+B2)

]
V2. (15.87)

In the case of AdSd+1, in particular for AdS5, one can do a similar analysis, again with
the ansatz
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250 Finite temperature andN = 4 SYM plasmas

F = Bdx1 ∧ dx2, (15.88)

but unless we are in AdS4 this ansatz breaks the isotropy of the solution, and one needs to
consider a more complicated metric ansatz, and the solutions are numerical and not very
illuminating, so we will not describe them here.

Important concepts to remember

• Finite temperature field theory is obtained by having a periodic Euclidean time, with
period β = 1/T . The partition function for such periodic paths gives the thermal
partition function, from which we can extract correlators by adding sources, etc.

• The Wick-rotated Schwarzschild black hole has a smooth (non-singular) “horizon” only
if the Euclidean time is periodic with period β = 1/TBH = 8πM. Thus black holes
Hawking radiate.

• Quantum field theory in the presence of a black hole does not have finite tempera-
ture though, since the Schwarzschild black hole is thermodynamically unstable (C =
∂M/∂T < 0).

• Fermions in the Wick-rotated black hole are antiperiodic around the Euclidean time
at infinity, thus they are massive if we dimensionally reduce the theory on the peri-
odic time. Since bosons are massless, the black hole (and finite temperature) breaks
supersymmetry.

• By putting a black hole in AdS space, the thermodynamics is stable if we are at high
enough black hole mass M.

• The Witten prescription for finite temperature AdS/CFT is to put a black hole of mass
M → ∞ inside global AdS5 and to take a certain scaling of coordinates, giving the
metric (15.37). It can also be obtained from the near-horizon limit of a non-extremal
D3-brane metric, giving a Poincaré metric.

• By dimensionally reducing d = 4 N = 4 SYM on the periodic Euclidean time, we get
pure Yang–Mills in three dimensions, which has a mass gap (spontaneous appearance of
a lowest nonzero mass state in a massless theory).

• The mass gap is obtained in AdS space from solutions of the wave equations in AdS that
have a 3-dimensional mass spectrum like the one of a quantum mechanical box with the
ground state removed. Thus the Witten metric is similar in terms of eigenmodes to a
quantum mechanical finite box.

• The ratio of entropy densities, pressures, and energy densities (and thus of effective
degrees of freedom) at infinite coupling to zero coupling is 3/4, close to the 80% of
lattice QCD simulations.

• Jet quenching, the energy loss of a heavy quark (“jet”) passing through the sQGP
medium, can be modelled by the energy loss of a string moving with constant v at the
boundary, and trailing behind all the way to the horizon. One finds a drag coefficient
ηD ∝ √

λT2.
• One can calculate the jet quenching parameter q̂ from a Wilson loop with two long light-

like sides of length L− and two short space-like sides of length L, and AdS/CFT gives
q̂SYM ∝ √

λT3.
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251 15.8 Adding a magnetic field B �= 0

• A chemical potential for the R-charge of N = 4 SYM corresponds to a constant source
for A0 on the boundary of AdS5, i.e. A → μdt as z → 0, and gives an electrically charged
solution in AdS, namely the Reissner–Nordstrom AdS black hole.

• The grand-canonical ensemble of constant μ is found from the usual AdS action for
supergravity, whereas the canonical ensemble for constant charge density is found by
adding an extra boundary term to the AdS action for the gauge field.

• Adding an external magnetic field in N = 4 SYM with respect to the R symmetry group
is done by adding a magnetic field in AdS. In AdS4, one simply adds magnetic charge to
the AdS black hole.

References and further reading

The prescription for AdS/CFT at finite temperature was done by Witten in [43]. The
calculation of the jet quenching parameter from a (partially) light-like Wilson loop was
originally done in [73]. More details about the drag on heavy quarks, jet quenching, and
N = 4 SYM plasmas in general and how they apply to heavy ion collisions can be found in
[72]. The way to add magnetic field in AdS4 and more details on adding chemical potential
can be found in [69, 71]. In [70] how to add magnetic field in AdS5 is described.

Exercises

1. Parallel the calculation of the Schwarzschild black hole to show that the extremal
(Q = M) black hole has zero temperature.

2. Check that the rescaling plus the limit given in (15.36) gives the Witten background for
finite temperature AdS/CFT.

3. Take a near-horizon nonextremal D3-brane metric,

ds2 = α′
{

U2

R2
[−f (U)dt2 + d�y2] + R2 dU2

U2f (U)
+ R2d�2

5

}
,

f (U) = 1 − U4
0

U4
, (15.89)

where U0 is fixed, U0 = πTR2 (T = temperature). Note that for f (U) = 1 we get the
near-horizon extremal D3 brane, i.e. AdS5×S4. Check that a light ray traveling between
the boundary at U = ∞ and the horizon at U = U0 takes a finite time (for U0 = 0, it
takes an infinite time to reach U = 0).

4. Check that the rescaling

U = ρ · U0

R
; t = τR

U0
; �y = �x R2

U0
, (15.90)

where R = AdS radius, takes the above near-horizon nonextremal D3-brane metric to
the Witten finite T AdS/CFT metric.
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252 Finite temperature andN = 4 SYM plasmas

5. Check that the temperature of the AdS–Reissner–Nordstrom solution (15.75) is given
by (15.77).

6. Calculate the grand-canonical thermodynamic potential (15.79) by calculating the
regularized on-shell action, subtracting the contribution of pure AdS space.

7. Check that for the magnetic solution with (15.82), the temperature is given by (15.86),
and the grand-canonical potential by (15.87).
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16
Scattering processes and gravitational

shockwave limit

In previous chapters we have seen how to describe correlators, states, and Wilson loops. But
in QCD we are interested in S matrices that describe the scattering of physical asymptotic
states. The LSZ formalism relates the S matrices to correlators, but it assumes the existence
of separated asymptotic states.

In a conformal field theory, however, there is no notion of scale, therefore there is no
notion of infinity, and no asymptotic states, so we cannot construct S matrices from cor-
relators. We can define via regularization a notion of scattering amplitudes, and we study
that in Chapter 26, but S-matrices cannot be consistently defined.

Therefore in order to construct S matrices so that we can study scattering of states as in
QCD, we need to break the conformal invariance. In this chapter we describe the simplest
possible modification of AdS5 × S5 that does the job, leaving more general cases to Part III
of the book.

16.1 The “hard-wall” model for QCD

At high energy (in the UV), QCD is approximately conformal since the small mass param-
eters are irrelevant, therefore the gravity dual background corresponding to QCD (of
course, assuming that there is such a thing, which is not obvious) should be approximately
like AdS5 × X5 at large fifth dimension ρ, since the conformal group SO(4, 2) matches the
isometry group of AdS5. Here X5 is some compact space. This AdS5 × X5 is then modified
in some way at small ρ, corresponding to the low energy (IR) behavior of QCD.

The metric for this model is

ds2 = r2

R2
d�x2 + R2 dr2

r2
+ R2ds2

X

= e−2y/Rd�x2 + dy2 + R2ds2
X . (16.1)

The simplest possible model that captures some of the properties of QCD is then
obtained by just cutting off AdS5 × X5 at a certain value of r called rmin. To relate it to
parameters in QCD, we note that momenta pi = −i∂i in QCD are related to momenta in
ten dimensions p̃i by the metric factor, i.e.

p̃μ = R

r
pμ. (16.2)
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254 Scattering processes and gravitational shockwave limit

When we have a characteristic momentum in ten dimensions, i.e. of the scale of the metric,
p̃μ ∼ 1/R, we obtain a QCD momentum

p ∼ r

R2
. (16.3)

But in this case, if the cut-off AdS theory has the characteristic momentum of the curvature,
we expect the QCD momentum to be of the order of the QCD scale �, the scale of the
lowest fundamental excitations. Therefore we have

rmin = R2�. (16.4)

This is called the “hard-wall” model for holographic QCD, and was introduced by
Polchinski and Strassler.

16.2 Scattering in QCD and the Polchinski–Strassler scenario

Polchinski and Strassler went on to describe scattering in this hard-wall model for QCD.
As in the case of AdS5 × S5, fields in the hard-wall metric correspond to 4-dimensional
composite operators, which correspond to gauge invariant, composite particles. Examples
are nucleons and mesons or glueballs. We saw an example of a glueball operator described
by AdS/CFT, Tr [FμνFμν], but one can write many.

The wavefunction for a glueball state, for instance eik·x, corresponds via AdS/CFT to a
wavefunction � for the AdS5×S5 field corresponding to the glueball, times a wavefunction
in the extra coordinates, e.g.

� = eik·x ×�(ρ, ��X5 ). (16.5)

Assuming that the states on the gravitational side scatter locally according to the flat
space string amplitude, Polchinski and Strassler proposed an ansatz for the scattering
amplitude of gauge invariant states in QCD. It is given by a convolution of the string ampli-
tude with the wave functions for the extra dimensions, rescaling the momenta between the
local string amplitude and the QCD amplitude according to (16.2),

AQCD(pi) =
∫

drd5�X5

√−gAstring(p̃i)�
i
�i

(
r, ��X5

)
. (16.6)

We can define a QCD scale corresponding to the α′ scale, the “QCD string scale” α̂′,
defined by

α̂′ = (g2
YMN)−1/2�−2. (16.7)

This definition is made such that the string momenta in string units are bounded from above
by QCD momenta in QCD string units, since using R2/α′ = (g2

YMN)1/2 we obtain
√
α′p̃ = √

α̂′p
( rmin

r

)
≤ √

α̂′p. (16.8)

But then we can also define a “QCD Planck scale” M̂Pl. In ten dimensions, the coefficient
of the Einstein action is M8

Pl, but in string theory it is, up to numbers, ∼ 1/(g2
sα

′4), the 1/g2
s
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255 16.3 Regge behavior

since it comes from a closed string interaction, with coupling gs and the 1/α′4 for dimen-
sional reasons, since we need to form a dimension eight object. Then MPl ∼ g−1/4

s α′−1/2,
which leads to the QCD Planck scale

M̂Pl = g−1/4
s α̂′−1/2 = g−1/2

YM �(g2
YMN)1/4 = N1/4�. (16.9)

We discuss the relevance of these QCD scales later on in the chapter. Here we just note
that in the ’t Hooft limit, N →∞, g2

YMN finite, M̂Pl # 1/
√
α̂′.

16.3 Regge behavior

In gauge theories it is expected that when s # −t > 0 (here s and t are the Mandelstam
variables for 2 to 2 scattering), or s → ∞ with |t| fixed, we have Regge behavior for the
amplitude,

A(s, t) � β(t)sα(t),

α(t) = α0 + α̂′

2
t. (16.10)

In string theory, amplitudes also show Regge behavior. In particular, the amplitude for 2 to
2 scalars scattering has the Virasoro–Shapiro form (which we will not derive here),

Astring = g2
sα

′3
[
�

x=s,t,u

�(−α′x̃/4)

�(1 + α′x̃4)

]
K(
√
α′p̃), (16.11)

where the K is a kinematic factor of order p̃8. Note that for massless external states we
always have s + t + u = ∑

i m2
i = 0. Then in the Regge limit s # −t > 0, or rather

α′s # 1, α′|t| fixed, we obtain

Astring(s, t) � g2
sα

′3[polariz.tensors](α′s)α
′t/2+2 �(−α′t/4)

�(1 + α′t/4)
. (16.12)

The proof of this statement is left as an exercise.
Doing the Polchinski–Strassler integral (16.6), one finds that for small enough t̃ (specif-

ically for α̂′|t| < (�−4)/ ln(s/|t|)), the integral is dominated by the lowest r, i.e. r = rmin,
because the integrand is larger there. Thus in first approximation, instead of the integral
we can use the integrand at rmin. That in turn means that the QCD amplitude has Regge
behavior,

AQCD(p) ∼ β(t)(α̂′s)2+α̂′t/2, (16.13)

since (16.8) means that at r = rmin we have α′ t̃ = α̂′t, so the string theory power law turns
into a QCD power law.

The fact that the Polchinski–Strassler integral is concentrated near the cut-off could be
guessed on physical grounds. Indeed, it is known that the Regge limit s → ∞, t fixed is
governed by the low energy modes of the theory. This is the regime of “soft scattering”
which is characterized by the emission of a large number of the smallest mass particles, so
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256 Scattering processes and gravitational shockwave limit

even though the total energy is very large, the per particle (per “parton”) energy is very
small, and the physics is governed by the low energy (IR) part of the theory. We discuss
this further in the next sections. But low energy corresponds in the gravity dual to r close
to the cut-off rmin (the fifth dimension r acts roughly as an energy scale, as we saw).

16.4 Gravitational shockwave scattering as amodel of QCD high
energy scattering

One can now ask, how can we describe high energy scattering from the point of view of
the gravitational theory? We have seen that the regimes of interest in QCD correspond to
α′s # 1 and s/M2

Pl # 1 in string theory. The answer to how to describe this scattering was
formulated by ’t Hooft.

At sufficiently high energies, in a gravitational theory only the momentum of the particle
matters, and it produces a gravitational shockwave. The solution was described by Aichel-
burg and Sexl. Then ’t Hooft argues that the scattering of two nearly massless particles
(with masses much smaller than the Planck scale) with GNs ∼ 1, yet still GNs < 1, is
described by one particle creating an A–S shockwave, and the other particle moving on
a geodesic on this shockwave, which allows one to calculate a scattering amplitude. But
at trans-Planckian energies, GNs > 1 (

√
s > MPl), both particles create an Aichelburg–

Sexl shockwave, and the collision of the two shockwaves creates a black hole. This is as
expected since at energies higher than the Planck mass we expect quantum gravity to be
important, which leads to the quantum creation of a gravitational object, the black hole. Of
course, when

√
s ∼ MPl the term black hole for the quantum gravitational object created is

not too appropriate, it becomes appropriate in the classical limit, when
√

s # MPl.
The A–S gravitational shockwave solution is of the general type of a “parallel plane,” or

“pp,” gravitational wave type,

ds2 = 2dx+dx− + H(x+, xi)(dx+)2 +
∑

i

dx2
i , (16.14)

which is a solution of Einstein’s equations that corresponds to perturbations moving at the
speed of light, having a plane wave front.

The only nonzero component of the Ricci tensor for this metric is

R++ = −1

2
∂2

i H(x+, xi). (16.15)

This is left as an exercise to check. That means that Einstein’s equations are consistent
only if T++ is the only nonzero component of the energy-momentum tensor, in which case
Einstein’s equations read

R++ = −1

2
∂2

i H(x+, xi) = 8πGT++. (16.16)

This means that the function H is harmonic in xi if T++ is independent of xi or with a delta
function support.
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257 16.4 Gravitational shockwave scattering as a model of QCD high energy scattering

These pp wave solutions are special, since, as we see, the Einstein equation, written in
terms of the Ricci tensor Rij, linearizes, so the usual highly nonlinear behavior of gravity is
avoided. In particular, this leads to an important result proved by Horowitz and Steif, that
in a pp wave background there are no α′ corrections to the equations of motion, since all
possible R2 corrections vanish on-shell (by the use of the zero order equations of motion),
hence pp waves give exact string solutions.

The A–S shockwave is a pp wave created by a massless particle of momentum p (as we
said, at sufficiently high energy, all particles look nearly massless and source a gravitational
wave), with energy-momentum tensor

T++ = pδd−2(xi)δ(x+). (16.17)

Then the harmonic function H factorizes as

H(x+, xi) = δ(x+)�(xi), (16.18)

and Einstein’s equation reduces to the Poisson equation for �,

∂2
i �(xi) = −16πGN,dpδd−2(xi). (16.19)

This solution was originally found by infinitely boosting a black hole, whose energy-
momentum tensor is a point particle with T00 = Mδd−2(xi)δ(y), boosted to

T00 = m√
1 − v2

δd−2(xi)δ(y − vt), (16.20)

and corresponding values for T11 and T01. Taking v → 1 while keeping the momentum
p = mvγ constant leads to the A–S T++, and taking the limit on the black hole solution
leads to the A–S shockwave solution.

In d = 4 flat spacetime dimensions, we find

� = −4GN,4 ln ρ2, (16.21)

where ρ2 = xixi is the transverse radius squared, and in d > 4 flat spacetime dimension
we find

� = 16πGN,d

�d−3(d − 4)

p

ρd−4
. (16.22)

Then in flat spacetime, in the trans-Planckian regime GNs > 1, collisions of high energy
particles are described by the collision of two gravitational A–S shockwaves, one propa-
gating in the x+ direction, say, and the other in the x− direction, with an impact parameter
b (spatial separation) in the transverse directions xi. Since the background metric is flat,
and we only have a term proportional to (dx±)2 nontrivial, the metric before the collision
is simply the sum of the two metrics,

ds2 = 2dx+dx− + dx2
i + (dx+)2�1(xi) + (dx−)2�2(xi). (16.23)

On the other hand, after the collision, we expect to form a black hole.
Indeed, it was shown in flat four dimensions first by Penrose at zero impact param-

eter b = 0, and then by Eardley and Giddings at nonzero b, smaller than a bmax,
that a “marginally trapped surface” forms at the collision point x+ = x− = 0. For a
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258 Scattering processes and gravitational shockwave limit

Schwarzschild black hole, the horizon surface r = rH ≡ 2MGN is a marginally trapped
surface, but in general the marginally trapped surface is different from the event horizon.
There is a general relativity theorem saying that if there is at some point a marginally
trapped surface, there is an event horizon outside it, and thus a black hole, in its future.
Since one can prove the existence of these surfaces for b ≤ bmax, it follows that we can put
a bound on the cross-section for black hole formation, σBH ≥ πb2

max.
We can apply the same mechanism for high energy scattering inside the hard-wall model,

the cut-off AdS5 × S5, and use the Polchinski–Strassler formula (16.6) to relate to QCD
scattering. The only caveat is that the Polchinski–Strassler formula requires the use of an
amplitude, and in the case of black hole formation, in the classical picture above one can
only calculate a bmax. But given a bmax and the intuition that the scattering is almost clas-
sical in nature, we can calculate an amplitude using the black disk eikonal approximation,
that reproduces the classical cross-section.

One considers an S-matrix given by an S = eiδ , where δ satisfies

Re[δ(b, s)] = 0,
Im[δ(b, s)] = 0, b > bmax,
Im[δ(b, s)] = ∞, b ≤ bmax. (16.24)

Then the amplitude corresponding to it is the Fourier transform of T = −i(S − 1), i.e.

1

s
A(s, t) = −i

∫
d2bei�q·�b(eiδ − 1) = i

∫ bmax(s)

0
b db

∫ 2π

0
dθeiqb cos θ

= 2π i
bmax(s)√

t
J1

(√
tbmax(s)

)
. (16.25)

The optical theorem says that the total cross-section is given by the imaginary part of the
forward elastic amplitude (at t = 0), Im[1/sA(s, 0)], which is seen to equal πb2

max.

16.5 Black holes in the IR of the gravity dual and the Froissart bound

As an application of this formalism, we describe the maximal asymptotic behavior that
can happen in the hard-wall model. First, we need to understand the possible QCD energy
scales relevant for

√
s. We saw the QCD string scale (α̂′)−1/2 = �(g2

YMN)1/2 and the
QCD Planck scale M̂P = N1/4�. For

√
s > M̂P, in the gravity dual we start to create

small black holes, smaller than the curvature scale of the background. But eventually, when√
s increases enough, the black holes will have a scale comparable with the scale of the

curvature. This will happen when the horizon size rH equals R. Since the metric factor
vanishing on the horizon is 1 − #M/Md−2

Pl rd−3, the energy (or mass M) for a given rH is
E ∼ M8

Plr
7
H in d = 10 dimensions. Then for rH = R we have the energy scale

ER = M8
PlR

7. (16.26)

The scale R−1 corresponds to � in QCD. A simple way to see this is to note that α′ =
R2(g2

YMN)−1/2, whereas as we saw in QCD α̂′ = �−2(g2
YMN)−1/2. Then substituting MPl

by M̂Pl and R by �−1 in ER, we obtain
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259 16.5 Black holes in the IR of the gravity dual and the Froissart bound

ÊR = N2�8�−7 = N2�. (16.27)

Then at energies higher than ÊR in QCD, we obtain black holes of a size larger than the
scale of AdS R in the gravity dual.

It would seem as if there is no higher energy scale, but in fact there is. One can calculate
the behavior of the total cross-section with energy corresponding to E > ÊR, from scatter-
ing in AdS space for rH > R, and obtain a power law. But we know that there is a unitarity
bound in field theories and QCD in particular, the Froissart bound. The total cross-section
is bounded by

σtot ≤ C ln2 s

s0
; C ≤ π

m2
π

. (16.28)

In theories other than QCD, mπ refers to the lowest energy state of the theory. So if we
obtain a power law in the case of E > ÊR, it means that we have not reached the asymptotic
Froissart regime above, which has a slower dependence on energy.

The Polchinski–Strassler integral (16.6) is dominated, as we saw, by a scattering region
rscatt close to rmin, but in reality not exactly at rmin, but separated slightly from it. Then the
black holes that are created, are created with a center close to rscatt. When the size of the
black hole is larger than the AdS size, the fluctuations in the position of the created black
hole are smaller than the black hole size, meaning that the black hole becomes more and
more classical, as in Fig.16.1a and b. Eventually, at large enough s, the black hole becomes
so large that it reaches the cut-off rmin, and it starts to look as if it is situated on the IR cut-
off itself, as in Fig.16.1b. This happens at some higher energy ÊF , which would correspond
to the onset of the maximal behavior, which we guess (and will soon confirm) should be
associated with the asymptotic Froissart behavior. Whereas the other scales did not depend
on the details of the cut-off (if it was a hard cut-off as in the hard-wall model, or a smooth
deformation as in a more physical model), it is clear that ÊF does, since it is the energy at
which value the black hole in the dual reaches the IR brane.

It is more appropriate to consider a symmetrical situation for AdS space with respect to
the IR cut-off, i.e. consider the metric

ds2 = e
2|y|
R d�x2 + dy2 + R2ds2

X . (16.29)

Then the IR cut-off acts as a brane, with a nonzero tension. Then effectively, asymptotically
the black hole is created on this IR brane.

We can write down an A–S gravitational shockwave solution situated on the IR brane,
such that the collision of two such waves will create a black hole on the IR brane. The
equation it satisfies is a curved space generalization of (16.19),

− 1

2

[
e

2|y|
R

(
∂2

y +
d

R
sgn(y)∂y

)
+∇2

x

]
� = 8πGN,d+1pδd−2(xi)δ(y). (16.30)

In Fourier space for �x, i.e. defining h(�q, y) = ∫
dd−2�xei�q·�x�(�x, y), we get

h(�q, y)′′ + d

R
sgn(y)h(�q, y)′ − �q2e−

2|y|
R h(�q, y) = −16πGN,d+1pδ(y). (16.31)
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260 Scattering processes and gravitational shockwave limit

a)

c)b)

5th dimension 5th dimension

5th dimension

�Figure 16.1 a) At small enough energies, the created black hole is small, and fluctuates (is created at a random point) inside a
small region of effective scattering; b) At large enough energies, the created black hole is so large, that it is effectively
fixed (has small fluctuations) and it looks as if it sits on the IR brane; c) At these large energies, the process is effectively
classical: two shockwaves going in opposite directions scatter creating a black hole larger than the scattering
region.

Its solution translates into the solution for �,

�(r, y) = 4GN,d+1p

(2π )
d−4

2

e−
d|y|
2R

r
d−4

2

∫ ∞

0
dq q

d−4
2 J d−4

2
(qr)

Id/2

(
e−

|y|
R Rq

)
Id/2−1(Rq)

. (16.32)

The proof of this is left as an exercise. One needs to impose normalizability at y = ±∞
of the solutions of the two sides of y = 0, and the jump conditions (for �′) obtained by
integrating the equation of motion across y = 0. At r → ∞ and y = 0, we have (the proof
is again left as an exercise)

�(r, y = 0) � Rs

√
2πR

r
C1e−M1r,

C1 =
j−1/2
1,1 J2(j1,1)

a1,1
, (16.33)

where M1 = j1,1/R is the first KK mode for the effective theory when we reduce the
5-dimensional theory onto the IR brane, j1,1 � 3.83 is the first zero of the first Bessel
function, i.e.

J1(z) � a1,1(z − j1,1), z → j1,1, (16.34)
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261 16.6 QCD plasmas and shockwave models for heavy ion collisions

Rs = GN,4
√

s is the Schwarzschild radius corresponding to the energy of one of the
colliding particles,

√
s/2. The prefactor in (16.33) could not be guessed, except the pro-

portionality with the input energy
√

s, but the ∼ e−M1r behavior is to be expected, since if
we KK reduce the 5-dimensional theory down to the four dimensions of the IR brane, we
expect at large distance the exponential decay of the first KK mode (the lightest mode) to
dominate.

One can do an exact analysis of the black hole creation, but a simple argument shows
that we will saturate the Froissart bound. The shockwave profile is � ∼ √

se−M1r, so if
we have two separated shockwaves at a distance (impact parameter) b, the emitted energy
should be proportional to this

√
se−M1r. When the emitted energy equals the minimum,

M̂Pl, to create a black hole in the gravity dual, we reach the maximum distance. Then

bmax ∼ 1

M1
ln

s

M̂Pl
. (16.35)

Therefore the total cross-section is

σtot = πb2
max ∼

π

M2
1

ln2 s

M̂Pl
, (16.36)

indeed saturating the Froissart bound.
Note that in this asymptotic regime, the gravitational wave scatterings in the gravity

dual happen on the IR cut-off of the geometry, thus there are no quantum fluctuations in
the fifth dimensional position of the black hole (the changes due to the Polchinski–Strassler
integration are very small compared to the size of the created black hole), and the scattering
is approximately classical, see Fig. 16.1c.

16.6 QCD plasmas and shockwavemodels for heavy ion collisions

In heavy ion collisions in experiments like RHIC and ALICE one obtains a hot strongly
coupled plasma of quarks and gluons, as we discussed in the previous chapter. The colli-
sions are at very high energies, E # ÊR = N2�QCD, so it is natural to expect that we are
already in the asymptotic regime, which corresponds to saturation of the Froissart unitarity
bound in QCD and to classical scattering of gravitational shockwaves on the IR cut-off of
the geometry in the gravity dual.

Also from the point of view of the standard description of the heavy ion collision process,
we expect that classical scattering of the gravitational shockwaves in the gravity dual would
give a good model. Indeed, highly boosted nuclei would look like pancakes because there
is a longitudinal Lorentz contraction, but no transverse Lorentz contraction, or shockwaves
in the ultrarelativistic limit. Moreover, the effective low energy pion field surrounding the
nuclei would also get contracted, so in the limit we would get two colliding pion field
shockwaves, see Fig. 16.2. This is in fact part of the 1952 Heisenberg model for saturation
of the Froissart bound (note that the model was written before Froissart, and even before
QCD, so Heisenberg’s foresight is remarkable).
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262 Scattering processes and gravitational shockwave limit

�Figure 16.2 Scattering of nuclei or heavy ions at high energy in QCD described by the Heisenberg model. 1/MN is the size of the
nucleon, 1/Mπ is the size of the pion field.

The Heisenberg model assumes that the probability to emit energy is proportional to the
overlap of the pion wavefunctions of the colliding nuclei. The overlap decays with distance
(impact parameter b) as e−mπb. Since the total energy of the collision is

√
s, the emitted

energy is ∼ √
se−mπb. The maximum impact parameter bmax corresponds to the case when

this energy equals the average per pion emitted energy, 〈E0〉, thus

√
se−mπbmax = 〈E0〉 ⇒ bmax = 1

mπ

ln

√
s

〈E0〉 ⇒

σtot = πb2
max =

π

m2
π

ln2
√

s

〈E0〉 . (16.37)

For a polynomial action for the scalar pions Heisenberg finds that 〈E0〉 ∝ √
s, so is no

good, but for the DBI action for the scalar (as needed in the case of AdS/CFT, where the
scalar pion corresponds roughly to the fluctuation of the IR brane in the hard-wall model),
Heisenberg finds that 〈E0〉 � constant, leading to the saturation of the Froissart unitarity
bound.

A good model for the heavy ion collisions via AdS/CFT is then the collision of two
gravitational shockwaves on the IR brane of the hard-wall model, creating a black hole
on the IR brane, that is in one-to-one correspondence with the sQGP fireball created in
the heavy ion collisions, as proposed by myself in 2005. Moreover, as seen from the
above, the picture matches with the Heisenberg model for the saturation of the Froissart
bound.

We can obtain a lower bound on the entropy formed in these collisions if we can cal-
culate the area of the marginally trapped surface formed at the point of collision of the
shockwaves in the gravity dual, since the event horizon of the black hole being formed
in the future of the collision is larger than, or equal to, the area of the marginally trapped
surface, so

Aev.hor. ≥ Amarg.trap. ⇒
Semitted = SBH = Aev.hor.

4GN,5
≥ Amarg.trap.

4GN,5
. (16.38)

The picture of a colliding gravitational shockwave in a gravity dual for heavy ion col-
lisions has been employed recently also in the context of N = 4 SYM, having in mind
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263 16.6 QCD plasmas and shockwave models for heavy ion collisions

the same universality of gauge theories at finite temperature. For instance, one can cal-
culate entropy production in the context of these gravitational shockwave collisions. The
shockwave ansatz considered by Gubser et al. [75] is (for AdS in Poincaré coordinates)

ds2 = R2

z2

(
2dx+dx− + (dx1)2 + (dx2)2 + dz2

)
+ R

z
�(x1, x2, z)δ(x+)(dx+)2, (16.39)

and the energy-momentum tensor for the source is

T++ = Eδ(x+)δ(z − R)δd−2(xi). (16.40)

From Einstein’s equations, one finds

�(x1, x2, z) = 2GN,5E

R

1 + 8q(1 + q) − 4
√

q(1 + q)(1 + 2q)√
q(1 + q)

,

q ≡ (x1)2 + (x2)2 + (z − R)2

4zR
. (16.41)

Considering the extra term as a small perturbation of the AdS metric, it can be related
to a VEV of the energy-momentum tensor 〈Tij〉 on the boundary. Indeed, the metric is a
“gauge field for the local diffeomorphism invariance,” and it must then correspond to a
global current on the boundary, specifically the energy-momentum tensor. This mapping is
discussed in greater detail in Chapter 22, but here we will just quote the result,

〈Tij(�x)〉 = R3

4πGN,5
lim
z→0

1

z4
δgij. (16.42)

Substituting δgij = R/z�(x1, x2, z)δ(x+), we get

〈Tij(�x)〉 = 2R4E

π
[
R2 + (x1)2 + (x2)2

]3
δ(x+), (16.43)

which should be compared with the shockwaves coming from colliding heavy nuclei. The
entropy produced in the collision has a lower bound from (16.38), and Gubser et al. find
S ≥ Strap ∝ E2/3, which, however, does not fit the observed data well, so one needs more
precise calculations.

Important concepts to remember

• Since N = 4 SYM is conformal, it does not have asymptotic states, so no S matrices. To
define scattering, one must modify the duality and introduce a fundamental scale (break
scale invariance).

• The simplest model for QCD is then the “hard-wall model,” where we just cut off AdS5

at an rmin = R2�QCD, since a gravity dual of QCD would look like AdS5 at large r
(corresponding to the UV, where QCD is almost conformal), and would get cut off in
some way at small r (corresponding to the IR, where QCD is confining).

• Gauge invariant scattered states (nucleons, mesons, glueballs) correspond to fields in
AdS5 × S5.
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264 Scattering processes and gravitational shockwave limit

• The Polchinski–Strassler ansatz for scattering in QCD (or QCD-like models) is to con-
sider the scattering amplitude in AdS space, at rescaled momenta, and convolute it with
the wavefunctions in the extra dimensions for the gauge invariant states scattered.

• Corresponding to energy scales in AdS5, we have energy scales in QCD. Corresponding
to 1/R we have �QCD, to the string scale 1/

√
α′ we have the QCD string scale 1/

√
α̂′ =

�(g2
YMN)1/4, to the Planck scale MPl we have the QCD Planck scale M̂Pl = �N1/4.

• Regge behavior A(s, t) ∼ β(t)sα(t) for s → ∞, t fixed in string theory leads to Regge
behavior for QCD via AdS/CFT.

• High energy scattering on the gravity side, for
√

s > MPl (corresponding to
√

s > M̂Pl

in QCD), is described by collision of gravitational shockwaves of Aichelburg–Sexl type,
sourced by T++ = pδd−2(xi)δ(x+), and leading to black hole formation.

• Gravitational shockwaves are solutions for which gravity linearizes, which allows us
to write exact solutions, and write a solution for the colliding shockwaves before the
collision.

• If we find a marginally trapped surface at the collision point, we know there should be
an event horizon, and thus a black hole, in the future of the collision, which allows us to
calculate a maximum impact parameter bmax, and from it a cross section σtot = πb2

max.
• At an energy ER = M8

PlR
7 on the gravity side, black holes created in the collision have

size of order the AdS scale R, corresponding in QCD to an energy ÊR = �N2.
• At a higher energy scale EF , we start producing black holes on the IR brane (IR cut-off in

a symmetric configuration around it) on the gravity side, and correspondingly at a scale
ÊF in QCD we start saturating the Froissart unitarity bound σtot ≤ π/m2

π ln2(s/s0).
• In the gravity dual, the saturation of the unitarity bound arises from the exponential

decay of the A–S type gravitational shockwave, � ∼ √
se−M1r.

• The Heisenberg model saturates the Froissart bound, and has Lorentz-boosted nuclei
giving pion field shockwaves, with profile � ∼ e−mπ r.

• Heavy ion collisions can be modelled in the gravity dual by collisions of gravitational
shockwaves with black hole formation, and the black hole corresponds to the sQGP
fireball.

• The emitted entropy is bounded from below by the area of the marginally trapped surface
formed during the gravitational shockwave collision.

References and further reading

The hard-wall model and the prescription for scattering of gauge invariant states in it was
described by Polchinski and Strassler in [44]. The prescription for using gravitational
shockwaves collisions in AdS/CFT to describe high energy QCD scattering, and in par-
ticular to obtain the Froissart bound, was given in [58, 59]. In [57] it was shown how to
calculate bmax for gravitational shockwave collisions with black hole formation in flat four
dimensions. The identification of the black holes on the IR brane in the gravity dual with
the sQGP plasma fireball in heavy ion collisions was done in [74], and in [75] it was shown
how to calculate entropy production in heavy ion collisions using gravitational shockwave
collisions.
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265 16.6 QCD plasmas and shockwave models for heavy ion collisions

Exercises

1. Show that the Virasoro–Shapiro amplitude (16.11) reduces to (16.12) in the Regge limit.
2. Show that the only nonzero component of the Ricci tensor for the metric (16.14) is

given by (16.15).
3. Show that the solution to (16.31) is given by (16.32).
4. Show that at large distances, (16.32) turns into (16.33).
5. Calculate the components of the Ricci tensor for (16.39). Show that Einstein’s equations

for the energy momentum-tensor given by (16.40), together with the AdS cosmological
constant, are satisfied if � is given by (16.41).

6. Near the boundary at r = ∞, the normalizable solutions (wavefunctions) of the massive
AdS Laplacean go as (x�0 ∼)r−� (where � = 2h+ = d/2+√

d2/4 + m2R2). Substitute
in the Polchinski–Strassler formula to obtain the r dependence of the integral at large r,
and using that r ∼ 1/p, estimate the hard scattering (all momenta of the same order, p)
behavior of QCD amplitudes.
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17 The pp wave correspondence

Until now, in AdS/CFT we have seen how to deal with the supergravity limit of string
theory in AdS5 × S5, but we have not seen any real string theory. Now we show how to
obtain string theory in a particular limit, the Penrose limit, in which gravitational spaces
turn to pp waves, leading to what has been called the pp wave correspondence.

17.1 The Penrose limit in gravity and ppwaves

pp waves

We have already seen in the previous chapter what pp waves are. They are plane fronted
gravitational waves (“parallel plane,” or “pp”), which are solutions to Einstein’s equations,
corresponding to perturbations moving at the speed of light. In flat background, they have
the form (16.14).

We also saw that the only nontrivial component of the Ricci tensor is R++, satisfying
(16.15), which can be guessed as follows. It must be proportional to g++, the only non-
trivial component. On dimensional grounds (since Rμν contains two derivatives), we must
have R++ ∝ ∂2

i g++. Because of general coordinate invariance, it cannot have ∂+∂i or ∂2+,
for instance, so ∂2

i is the only possibility. Then we obtain (16.15), which actually equals
the linearized result. Thus for pp waves, the linearized solution is exact.

pp waves can be defined in pure Einstein gravity, supergravity, or any theory that
includes gravity, the only difference being that the Einstein equation contains the energy
momentum tensor of the extra matter.

11-dimensional pp waves

In particular, in the maximal 11-dimensional supergravity, we find a solution that has the
same metric (16.14), together with

F4 = dx+ ∧ φ : F(4)+μ1μ2μ3 = φ(3)μ1μ2μ3 , (17.1)

where φ is a 3-form that satisfies (from the equations of motion of the action (7.127))
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267 17.1 The Penrose limit in gravity and pp waves

dφ = 0 : ∂[μ1φμ2μ3μ4] = 0,
d ∗ φ = 0 : ∂[μεμ1...μ8]

μ9μ10μ11φμ9μ10μ11 = 0 ⇔ ∂μ1φμ1μ2μ3 = 0,

−∂2
i H = |φ|2 : −1

2
∂2

i H = 2

4!
φμνρφ

μνρ . (17.2)

As an observation, for φ = 0 we have a solution with

H = Q

|x − x0|7 (17.3)

that corresponds to a D0-brane that is localized in space and time.
On the other hand, if

H =
∑

ij

Aijx
ixj; −2Tr A = |φ|2 , (17.4)

we have a solution that is not localized in space and time, since the spacetime is not flat at
infinity. For φ = 0 we have purely gravitational solutions that obey Tr A = 0. A solution
for generic (A,φ) preserves 1/2 of the supersymmetry, namely the supersymmetry that
satisfies �−ε = 0, where ε is a generic supersymmetry parameter.

There is, however, a very particular case, that was found by Kowalski-Glikman in 1984,
that preserves ALL the supersymmetry. It is

Aijx
ixj = −

∑
i=1,2,3

μ2

9
x2

i −
9∑

i=4

μ2

36
x2

i ,

φ = μdx1 ∧ dx2 ∧ dx3. (17.5)

He also showed that the only background solutions that preserve all the supersymmetry
of 11-dimensional supergravity are 11-dimensional Minkowski space, AdS7×S4, AdS4×S7

and the maximally supersymmetric wave (17.5).
We also noted in the last chapter that Horowitz and Steif showed in 1990 that pp waves

are exact string solutions, since all possible α′ corrections vanish on-shell.

10-dimensional pp waves

The case relevant for AdS/CFT, 10-dimensional type IIB string theory, which has AdS5×S5

as a background solution, also contains solutions of the pp wave type, with metric (16.14),
together with

F5 = dx+ ∧ (ω + ∗ω) : F+μ1...μ4 = ωμ1...μ4 ; F+μ5...μ8 = ωμ5...μ8 ,

H =
∑

ij

Aijx
ixj; φ = φ0 , (17.6)

satisfying (from the equations of motion of the action (7.116)

dω = 0 : ∂[μ1ωμ2...μ5] = 0,
d ∗ ω = 0 : ∂μ1ωμ1...μ5 = 0,

∂2
i H = −|ω|2 : −1

2
∂2

i H = 1

48
ωμ1...μnω

μ1...μn . (17.7)
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268 The pp wave correspondence

As in 11 dimensions, here the general metric preserves 1/2 of the supersymmetry defined
by �−ε = 0. There is also a maximally supersymmetric solution, that has

H = −μ2

64

∑
i

x2
i ; ω = μ

2
dx1 ∧ dx2 ∧ dx3 ∧ dx4. (17.8)

Penrose limit

Formally, this says that in the neighborhood of a null geodesic, we can always put the
metric in the form

ds2 = dV

(
dU + αdV +

∑
i

βidYi

)
+

∑
ij

CijdYidYj , (17.9)

and then we can take the limit

U = u; V = v

R2
; Yi = yi

R
; R →∞, (17.10)

and obtain a pp wave metric in u, v, yi coordinates.
The interpretation of this procedure is: we boost along a direction, e.g. x, while taking

the overall scale of the metric to infinity. The boost

t′ = coshβ t + sinhβ x; x′ = sinhβ t + coshβ x, (17.11)

implies

x′ − t′ = e−β (x − t); x′ + t′ = eβ (x + t) , (17.12)

so if we scale all coordinates (t, x and the rest, yi) by 1/R and identify eβ = R → ∞ we
obtain (17.10).

We can show that the maximally supersymmetric pp waves are Penrose limits of maxi-
mally supersymmetric AdSn × Sm spaces. In particular, the maximally supersymmetric IIB
solution (17.8) is a Penrose limit of AdS5 × S5. This can be seen as follows. We boost
along an equator of S5 and stay in the center of AdS5, therefore expanding around the null
geodesic defined by θ = 0 (equator of S5) and ρ = 0 (center of AdS5), as in Fig. 17.1.

We obtain

ds2 = R2
(
− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ d�2

3

)
+ R2

(
cos2 θ dψ2 + dθ2 + sin2 θ d�′

3
2
)

� R2
[
−

(
1 + ρ2

)
dτ 2 + dρ2 + ρ2d�2

3

]
+ R2

[(
1 − θ2

)
dψ2 + dθ2 + θ2d�′

3
2
]

.

(17.13)

We then define the null coordinates x̃± = (τ±ψ)/
√

2, sinceψ parameterizes the equator
at θ = 0. And we make the rescaling (17.10), i.e.

x̃+ = x+; x̃− = x−

R2
; ρ = r

R
; θ = y

R
, (17.14)
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269 17.2 The Penrose limit of AdS/CFT: large R-charge

�Figure 17.1 Null geodesic in AdS5 × S5 for the Penrose limit giving the maximally supersymmetric wave. It is in the center of
AdS5, atρ = 0, and on an equator of S5, at θ = 0.

and we get

ds2 = −2dx+dx− − μ2(�r2 + �y2)(dx+)2 + d�y2 + d�r2. (17.15)

Here we have also introduced a parameter μ by rescaling x+ → √
2μx+, x− → x−/μ

√
2,

for future use. This metric is the maximally supersymmetric wave (17.8), with μ rescaled
by a factor of 8. The F5 field also matches.

One can also similarly show that the maximally supersymmetric 11-dimensional pp
wave is the Penrose limit of both the AdS4 × S7 and the AdS7 × S4 spaces.

17.2 The Penrose limit of AdS/CFT: large R-charge

AdS/CFT relates 4-dimensional N = 4 SYM in flat Minkowski space to string theory in
AdS5 × S5, but we also saw that the Penrose limit of AdS5 × S5 is the maximally super-
symmetric pp wave. We want to understand then to what limit of N = 4 SYM does the
Penrose limit correspond. This was done by Berenstein, Maldacena, and myself (BMN) in
2002.

The energy is the Noether generator of time translations, τ in the global AdS5 metric,
hence the energy in AdS space is given by E = i∂τ , and the Noether generator of rotations,
the angular momentum for rotations in the plane of two coordinates X5, X6, is J = −i∂ψ ,
where ψ is the angle between X5 and X6.

But by the AdS/CFT dictionary the energy E corresponds to the conformal dimension �
in N = 4 SYM, whereas the angular momentum J corresponds to an R-charge, specifically
a U(1) subgroup of SU(4) = SO(6) that rotates the scalar fields X5 and X6 corresponding
in spacetime to the coordinates X5 and X6.

After taking the Penrose limit, in the pp wave background we have momenta p±
defined as
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270 The pp wave correspondence

p− = −p+ = i∂x+ = i∂x̃+ = i√
2

(∂τ + ∂ψ ) = 1√
2

(�− J),

p+ = −p− = i∂x− = i
∂x̃−

R2
= i√

2R2
(∂τ − ∂ψ ) = �+ J√

2R2
. (17.16)

For later use, we rescale p− by μ
√

2 and p+ by 1/μ
√

2, obtaining

p−

μ
= �− J; 2μpμ = �+ J

R2
. (17.17)

We would like to describe string theory on the pp wave, which is the Penrose limit of
AdS5 × S5. That means that we need to keep the pp wave momenta p+, p− (momenta of
physical states on the pp wave) finite as we take the Penrose limit. That means that we
must take to infinity the radius of AdS space, R → ∞, but keep �− J and (�+ J)/R2 of
N = 4 SYM operators fixed in the limit. Therefore we must consider only SYM operators
that have � � J ∼ R2 →∞, thus only operators with large R-charge!

We then conclude that the Penrose limit corresponds to a large R-charge limit in N = 4
SYM.

We have already explained in Chapter 10 that from the supersymmetry algebra we can
obtain the bound � ≥ |J|, in a similar manner to the condition M ≥ |Q|, the BPS condition,
which means that p± > 0. Operators that saturate the bound belong in short multiplets.

Since R2/α′ = √
4πgsN =

√
g2

YMN, if we keep gs fixed, J ∼ R2 means that J/
√

N is

fixed, or in other words that we consider only operators with R-charge J ∼ √
N.

Thus the Penrose limit corresponds in N = 4 SYM to considering the sector of operators
with R-charges J ∼ √

N.
Note, however, that there is a better way to think about the Penrose limit of AdS5 × S5

and of AdS/CFT.
The point is that if we choose x̃± = (ψ ± τ )/

√
2, since ψ is periodic with period 2π ,

the “light-cone time” x+ = x̃+ is periodically identified with period 2π/
√

2, which is not
good for a time variable.

A better prescription (though maybe where the physical interpretation of the Penrose
limit is not so clear) is to take instead

x+ = τ , x− = R2(ψ − τ ), r = ρR, y = θR , (17.18)

and then take R →∞. Then we again get (17.15), and now we have only x− periodic, with
period 2πR2 →∞, but the lightcone time x+ is not periodic.

When mapping to the CFT through AdS/CFT, the energy is still

p− = i∂x+ = i(∂τ + ∂ψ ) = �− J , (17.19)

but the momentum is now

p+ = i∂x− = − i

R2
∂ψ = J

R2
, (17.20)

and then J is naturally quantized, because x− is periodic with period 2πR2.
We will nevertheless still use (17.14) and (17.16) when no confusion arises.
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271 17.3 String quantization and Hamiltonian on the pp wave

17.3 String quantization and Hamiltonian on the pp wave

Considering the bosonic Polyakov action for the string in the pp wave background, we
obtain

S = − 1

2πα′

∫ l

0
dσ

∫
dτ

1

2

√−γ γ ab
[
−2∂ax+∂bx− − μ2x2

i ∂ax+∂bx+ + ∂axi∂bxi
]

.

(17.21)
Here xi = (�r, �y). Consider the conformal gauge

√−γ γ ab = ηab, and the light-cone gauge
x+(σ , τ ) = p+τ . But we want to slightly change the light-cone gauge convention, by
choosing x+(σ , τ ) = τ . Then ηab∂ax+∂bx− = 0 and ηab∂ax+∂bx+ = −1, and we obtain

S = − 1

2πα′

∫
dτ

∫ l

0
dσ

[
1

2
ηab∂axi∂bxi + μ2

2
x2

i

]
. (17.22)

The free wave equation in flat space, ∂2xi/∂τ 2 = ∂2xi/∂σ 2 before, becomes under τ →
τ/p+,

∂2

∂τ 2
xi = 1

(p+)2

∂2

∂σ 2
xi. (17.23)

That means that we must also rescale the length of the string, and instead of l = 2π have
arbitrary l. Also introducing α′ to match dimensions, we get

∂2

∂τ 2
xi = c2 ∂2

∂σ 2
xi , (17.24)

where

c = l

2πα′p+
. (17.25)

Therefore, in order to have c = 1 for convenience, we choose l = 2πα′p+, and we then
get for the gauge-fixed action in the pp wave background

S = − 1

2πα′

∫
dτ

∫ 2πα′p+

0
dσ

[
1

2
(−(ẋi)2 + (x′i)2) + μ2

2
x2

i

]
. (17.26)

The equation of motion in the pp wave background is then

(−∂2
τ + ∂2

σ )xi − μ2xi = 0. (17.27)

We expand a solution of the equations of motion in plane waves xi ∝ e−iωnτ+iknσ , which
implies

ω2
n = k2

n + μ2. (17.28)

But in flat space, at μ = 0, we had ωn = kn = n, since the length of σ was 2π . After our
rescalings, we have kn = n/α′p+, both in flat space and in the pp wave, since kn is defined
simply by Fourier expansion on the circle of length 2πα′p+. Therefore, we obtain

ωn =
√
μ2 + n2

(α′p+)2
. (17.29)
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272 The pp wave correspondence

As we saw in Chapter 7 (Eq. (7.77) for the bosonic string), the light-cone Hamiltonian for
the open string in flat space is

Hl.c. = p− = −p+ = pipi − 1/α′

2p+
+ 1

2

∑
n≥1

ωnNn. (17.30)

Here Nn is the total occupation number,

Nn =
∑

i

ai
n

†
ai

n +
∑
α

bαn
†bαn , (17.31)

where n > 0 are left-movers and n < 0 are right-movers.
But now there are no usual zero modes pi, since the xis are massive, rather they become

simply modes of n = 0.
Then for the closed string on the pp wave we get the light-cone Hamiltonian

H =
∑
n∈Z

Nnωn. (17.32)

Here we have considered n < 0 for left-movers and n > 0 for right-movers, we have
included the zero modes n = 0, and there are eight transverse oscillators, as before.

We also have the condition that the total momentum along the closed string should be
zero, by translational invariance, the same as for the flat space string, giving

P =
∑
n∈Z

nNn = 0. (17.33)

A physical state is defined by the ni and p+, i.e. it is |{ni}, p+〉.
Finally, we can verify that the flat space limit μ→ 0 gives

2p+p− = 1

α′
∑

n

nNn , (17.34)

which is indeed the flat space spectrum in light-cone quantization.
We also can consider a limit of highly curved background, μα′p+ # 1, in which case

we can expand the square root,

ωn � μ

(
1 + 1

2

n2

(α′μp+)2

)
, (17.35)

that from the point of view of N = 4 SYM is a perturbative expansion.
For comparison with the field theory, we translate the result into N = 4 SYM variables.

We use that E/μ = (�− J), 2μp+ = (�+ J)/R2 � 2J/R2 = 2J/(α′
√

g2
YMN, and obtain

(�− J)n = wn =
√

1 + g2
YMNn2

J2
, (17.36)

where we are in the limit that

g2
YMN

J2
= fixed. (17.37)
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17.4 String states fromN = 4 SYM; BMN operators

We have seen that corresponding to string states of given energy on the pp wave we have
operators of given �− J, which at zero coupling should have �− J = 1. The vacuum of
course has zero energy, therefore � − J = 0. Thus we organize fields according to their
�− J, and construct operators from them.

The charge J was defined as rotating X5, X6 in spacetime, and correspondingly in N = 4
SYM rotating the scalars �5,�6. Then we write

Z = �5 + i�6 , (17.38)

defined to have charge +1 under the rotation, thus Z̄ has charge −1. The rest of the scalars,
�m, m = 1, . . . , 4 are neutral. The gauge fields Aμ are also neutral, which means that

DμZ = ∂μZ + [Aμ, Z] (17.39)

also has charge +1. However, the fermions are charged under the R symmetry as well,
and if we consider χ I , they are in the spinor representation of SO(6), which means that
under a U(1) = SO(2) subgroup they have charge ±1/2. We write the eight components
of positive charge as χa

J=+1/2 and the eight components of negative charge as χa
J+−1/2. In

terms of dimensions, as usual Z, �m, and Aμ have � = 1, and χ have � = 3/2.
Then the fields are organized by their gYM = 0 values for �− J as follows. The unique

combination with � − J = 0 is Z, the combinations with � − J = 1 are (DμZ,�m) for
bosons and χa

J=+1/2 for fermions, the combinations with �− J = 2 are Z̄ and χa
J=−1/2.

The vacuum state must be composed only of Zs, in order to have � − J = 0, and must
have momentum p+ corresponding to charge J, hence we can identify the vacuum with the
operator

|0, p+〉 = 1√
JNJ/2

Tr [ZJ]. (17.40)

Note that this vacuum has momentum 2μp+ = 2J/R2, i.e. J units of momentum.
The string oscillators (creation operators) on the pp wave at the n = 0 level are eight

bosons and eight fermions of light-cone energy p− = μ, therefore should correspond
to fields of � − J = 1 to be inserted inside the operator corresponding to the vacuum,
(17.40). They must be gauge covariant, in order to obtain a gauge invariant operator by
taking a trace. It is easy to see then that the unique possibility is the eight χa

J=+1/2 for the

fermions and the four φis, together with four covariant derivatives DμZ = ∂μZ + [Aμ, Z]
for the bosons. We have replaced the four Aμs with the covariant derivatives DμZ in order
to obtain a covariant object.

These fields are to be inserted inside the trace of the vacuum operator (17.40), for
example a state with 2 n = 0 excitations will be (a†

0,r corresponds to �r and b†
0,b to ψb

J=1/2)

a†
0,rb†

0,b|0, p+〉 = 1

NJ/2+1
√

J

J∑
l=1

Tr [�rZlψb
J=1/2ZJ−l] , (17.41)

where we have put the �r field on the first position in the trace by cyclicity of the trace.
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274 The pp wave correspondence

The string oscillators at excited levels n ≥ 1 are obtained in a similar manner. But
now they correspond to excitations that have a momentum wavefunction e2π inx/L around
the closed string of length L. Since the closed string is modelled by the vacuum state
∼ Tr [ZJ], the appropriate operator corresponding to an a†

n,4 insertion is

a†
n,4|0, p+〉 = 1√

J

J∑
l=1

1√
JNJ/2+1/2

Tr [Zl�4ZJ−l]e
2π inl

J . (17.42)

Actually, this operator vanishes by cyclicity of the trace, and the corresponding string state
does not satisfy the equivalent zero momentum constraint (cyclicity). In order to obtain a
nonzero state, we must introduce at least two such insertions, such that the total momentum
vanishes.

An example of a physical state, that corresponds to an operator that does not van-
ish, is obtained by acting with a bosonic oscillator with momentum n and another with
momentum −n,

a†
n,4a†

−n,3|0, p+〉 = 1√
J

J∑
l=1

1

NJ/2+1
Tr [�3Zl�4ZJ−l]e

2π inl
J . (17.43)

We consider here the “dilute gas approximation,” where there are very few “impurities”
among the J Zs. These operators have been called BMN operators in the literature.

17.5 The discretized string action fromN = 4 SYM

We can also define a Hamiltonian that acts on the BMN operators, corresponding to
string states. In the previous subsection, we have simplified things, and we had mapped
an operator like

O = 1√
JNJ/2+1/2

Tr [Zl�ZJ−l] (17.44)

to a string state with a single creation operator acting on a vacuum.
At the end of Chapter 10, we saw the operator–state correspondence in four dimensions,

and how it relates terms in the Taylor expansion of fields z(m)
a1...am ∼ ∂a1 . . . ∂amZ on R

4

with states for the KK expansion on Rt × S3. In global AdS/CFT, the Rt × S3 exists at the
boundary of global AdS, whereas R

4 exists at the boundary of the Poincaré patch of AdS.
Then the constant term for the scalar Z corresponds to a state of energy 1, i.e. a harmonic

oscillator of unit frequency, with creation operator b†. We also find a harmonic oscillator,
with creation operator a† for the state corresponding to a � scalar. But the SU(N) index
structure is also important, which means that the order of creation operators inside a trace
is important, and we have a state denoted by

|a†
l 〉 ≡ Tr

[
(b†)la†(b†)J−l

]
|0〉. (17.45)
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275 17.5 The discretized string action fromN = 4 SYM

In order to consider the order of oscillators in a “word,” without the need to use the
SU(N) index structure, we need to consider instead of usual harmonic oscillators, “Cuntz
oscillators” ai, i = 1, . . . , n, satisfying

ai|0〉 = 0, aia
†
j = δij,

n∑
i=1

a†
i aj = 1 − |0〉〈0| , (17.46)

and no other relations (in particular, no relations between a†
i a†

j and a†
j a†

i , so the order is
important).

For a single Cuntz oscillator, we have

a|0〉 = 0, aa† = 1, a†a = 1 − |0〉〈0|. (17.47)

One can consider a further simplification by instead of using J b†s and a† impurities, using
J different independent Cuntz oscillators a†

i at each site (here j = 1, . . . , J corresponds to
sites), therefore satisfying

[ai, aj] = [a†
i , aj] = [a†

i , a†
j ] = 0, i �= j

aia
†
i = 1, a†

i ai = 1 − (|0〉〈0|)i; ai|0〉i = 0. (17.48)

Then the action of the interacting piece of the N = 4 SYM Hamiltonian,

Hint = −g2
YMTr

∑
I>J

{
[�I ,�J][�I ,�J]

}
, (17.49)

which in terms of Z and �m is given by

Hint = −g2
YMTr

{
[Z,�m][Z̄,�m]

} → 2g2
YMN[b†,φ][b,φ]; φ = a + a†

√
2

, (17.50)

on states corresponding to operators O can be defined through the action of Feynman
diagrams for the 2-point functions 〈OO〉. A relevant Feynman diagram for the 2-point
function is given in Fig. 17.2.

The interacting Hamiltonian (17.50) becomes, when acting on states corresponding to
operators,

Hint = 2g2
YMN

∑
j

(φj − φj+1)2 , (17.51)

�Figure 17.2 Feynman diagram for the 2-point function ofO(x) at one-loop.
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276 The pp wave correspondence

where as before φj = (aj + a†
j )/

√
2 and λ = g2N. For instance, the term with two a†s,∑

j(a
†
j a†

j+1 + a†
j+1a†

j − (a†
j )2 − (a†

j+1))2 comes from the contraction of the Z̄ in Hint ∼
Z̄�Z�+ Z�Z̄�− Z̄�2Z − Z̄Z�2.

As we see, the Feynman diagram coming from this corresponds to a nearest-neighbor
interaction, hopping from site l to site l + 1 or l − 1.

As we said, the harmonic oscillators a† have frequency one, meaning we also have a
kinetic term

∑
j a†

j aj, though because the oscillators are Cuntz, we need to write
∑

j(a
†
j aj+

aja
†
j )/2, for a total Hamiltonian

H =
J∑

j=1

a†
j aj + aja

†
j

2
+ 2λ

(2π )2

J∑
j=1

(φj − φj+1)2. (17.52)

The kinetic term is a discrete version of the continuum of the harmonic oscillator chain,∫
dx[φ̇2(x) + φ2(x)], where φj is a discretized version of the relativistic field φ(x, t), and

(φj+1 − φj)2 is the discretized version of φ′2(x, t).
Then the continuum version of the Hamiltonian is

H =
∫ L

0
dσ

1

2
[φ̇2 + φ′2 + φ2]. (17.53)

The length of the chain is (from the fact that φ′2/2 comes from the last term in (17.52))

L = 2πJ

μ
√
λ
= 2πα′p+ , (17.54)

as expected. This is indeed the Hamiltonian of the light-cone string on a pp wave, and it
was derived from the N = 4 SYM theory.

One subtle point is the use of Cuntz oscillators, but a correct treatment in the “dilute
gas approximation” of the Hamiltonian (17.52) leads indeed to the frequency (17.36), as
obtained from the string Hamiltonian.

One first defines “Fourier modes” (momentum space) for the Cuntz oscillators aj, by

aj = 1√
J

J∑
n=1

e
2π ijn

J an. (17.55)

When acting on states in the dilute gas approximation, of the form

|ψ{ni}〉 = |0〉1 . . . |ni1〉 . . . |nik〉 . . . |0〉J , (17.56)

we get

[an, a†
m]|ψ{ni}〉 =

(
δnm − 1

J

∑
k

e2π iik
m−n

J

)
|ψ{ni}〉. (17.57)

That means that we have only 1/J corrections to the usual commutation relations for the
momentum modes an in the dilute gas approximation. We have [an, a†

m] � δnm + O(1/J).
Further defining
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277 17.6 Spin chain interpretation

an = cn,1 + cn,2√
2

,

aJ−n = cn,1 − cn,2√
2

, (17.58)

and performing a Bogoliubov transformation rotating the creation and annihilation opera-
tors as

c̃n,1 = ancn1 + bnc†
n,1,

c̃n,2 = ancn1 − bnc†
n,1,

an = (1 + αn)1/4 + (1 + αn)−1/4

2
,

bn = (1 + αn)1/4 − (1 + αn)−1/4

2
, (17.59)

where

αn = λ

8π2
(cos(2πn/J) − 1) = − λ

(2π )2
sin2 πn

J
, (17.60)

the Hamiltonian becomes diagonal, with frequency ωn given by

ωn =
√

1 + 4|αn| =
√

1 + 4λ

(2π )2
sin2 πn

J
. (17.61)

The corresponding Fock states are

c†
n,1/2|0〉 =

a†
n ± a†

J−n√
2

|0〉 = 1√
J

J∑
j=1

e
2π ijn

J ± e−
2π ijn

J√
2

a†
j |0〉. (17.62)

These are mapped to the BMN operators with cos(2πnj/J) and i sin(2πnj/J).
Note that for n ! J, the result for the frequency reduces to the Hamiltonian of the string

on the pp wave.

17.6 Spin chain interpretation

The above result for the Cuntz oscillator eigenfrequencies is exact both in λ and in n/J,
as long as J → ∞ and we are in the dilute gas approximation, with a small number
M of impurities (excitations) ! J. The calculation in a sense resums the one-loop SYM
calculations through the Bogoliubov transformation to obtain the square root form. But one
can generalize the case of M ! J to a spin chain, with the number of excitations M ∼ J.

Indeed, the description of the insertion of �s and their corresponding a†
l operators

among a loop of Zs and their corresponding b† operators reminds one of spin chains. A
spin chain is a 1-dimensional system of length L of spins with only up | ↑〉 or down | ↓〉
degrees of freedom, as in Fig. 17.3. This equivalence can in fact be made exact, as we
discuss in the next chapter.
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278 The pp wave correspondence

�Figure 17.3 A periodic spin chain of the type that appears in the pp wave string theory. All spins are up, except that one excitation
has one spin down.

Then the string on the pp wave is obtained in the dilute gas approximation of the spin
chain.

The first order contribution to the energy of the string can be obtained from the one-loop
correction to the anomalous dimension of the BMN operator. We are in the ’t Hooft planar
limit when we consider AdS/CFT, hence the one-loop correction, involving only a single
4-point SYM interaction, can only connect nearest neighboring fields in the operator.

To obtain the one-loop correction to �, we consider the one-loop correction to the
two point function of operators in x-space, 〈O(x)O(0)〉. Then the interaction term in the
Lagrangean,

Lint = 2g2
YMTr [Z,�m][Z̄,�m]

= 2g2
YM

(
2Tr [�mZ�mZ̄] − Tr [(ZZ̄ + Z̄Z)�m�m]

)
, (17.63)

leads in the planar limit only to interactions that change the site l of the impurity �m in the
BMN operator O to l±1, as we can see from Fig. 17.4b and c. Diagrams that connect fields
further away are nonplanar (cannot be drawn on a plane without crossing lines), as we can
easily check. The relevant diagrams are the tree diagram and the two one-loop “hopping”
diagrams in Fig. 17.4 a, b and c. The result is easily seen to be

〈O(x)O∗(0)〉 = N
|x|2J+2

[
1 + g2

YMNI(x)
(

e
2π in

J + e−
2π in

J

)]
. (17.64)

Here the N factor comes from doing the index loop contractions due to ’t Hooft’s double-
line notation (there is an extra index loop for the one-loop correction with respect to the

tree result), and the exponential factors come from the difference between the e
2π inl

J factor

in the operator on the top and the e
2π in(l±1)

J factor in the operator on the bottom, and the
integral I(x) is

I(x) = |x|4
(4π2)2

∫
d4y

1

y4(x − y)4
∼ 1

4π2
log(|x|�) + finite, (17.65)

where we have dimensionally regularized the integral and extracted the log-divergent piece.
The regularization of this integral (cut-off or dimensional regularization) is left as an
exercise.

We also need to consider that there are other diagrams, like d and e in Fig. 17.4. As we
can see, they do not change the site number l, so do not depend on the momentum factor
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279 17.6 Spin chain interpretation

a)

c)b)

e)d)

�Figure 17.4 Planar Feynman diagrams for the 2-point function ofO: a) The planar tree level diagram; b) Planar one-loop
Feynman diagram with hopping from l + 1 to l; c) Planar one-loop diagram with hopping from l to l + 1; d)
One-loop planar diagram with gluon exchange; e) One-loop planar diagram with scalar self-energy.

e
2π inl

J , meaning that they can be calculated for n = 0. But at n = 0, we have protected
operators, which do not get quantum corrections, so the sum of all contributions at n = 0
must be 0, which means that in (17.64) we replace the sum of the exponentials with the
same, minus 2. Finally, we obtain

〈O(x)O∗(0)〉 = N
|x|2J+2

[
1 − 2g2

YMN

(
cos

(
2πn

J

)
− 1

)
1

4π2
log(|x|�)

]
. (17.66)

But this is to be compared with the expansion of the 2-point function in g2
YMN for �:

〈O(x)O∗(0)〉 = N
|x|2(J+1+(�−J)[g2N])

� N
|x|2(J+1)

[
1 + 2(�− J)[g2N] ln(|x|) + . . .

]
,

(17.67)
from which we deduce

(�− J)n =
[

1 + g2
YMN

2π2
sin2

(πn

J

)]
. (17.68)

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:54:56 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.019

Cambridge Books Online © Cambridge University Press, 2016



280 The pp wave correspondence

This matches the expected result from the pp wave in the limit n ! J, but moreover
matches the O(g2

YM) result from the Cuntz Hamiltonian even away from this limit. We see
in the next chapter that this result for � − J is also expected from the spin chain picture,
away from the dilute gas approximation.

Important concepts to remember

• pp waves are gravitational waves (gravitational solutions for perturbations moving at the
speed of light), having a plane wave front.

• Both the maximal 11-dimensional supergravity and the 10-dimensional supergravity that
is the low energy limit of string theory have a pp wave solution that preserves maximal
supersymmetry.

• A theorem due to Penrose says that in the neighborhood of any null geodesic in a curved
space, the metric looks like a pp wave. This is the Penrose limit.

• The maximally supersymmetric pp wave solution of 10-dimensional supergravity is the
Penrose limit of AdS5 × S5: look near a null geodesic at ρ = θ = 0 (and the maximally
susy pp wave of 11-dimensional supergravity is the Penrose limit of both AdS4 × S7 and
AdS7 × S4).

• The Penrose limit of AdS/CFT corresponds in SYM to considering the sector of opera-

tors of large R charge J, J � � ∼ R2 ∼
√

g2
YMN. The mapping gives

√
2p− = � − J

and
√

2p+ = (�+ J)/R2, which must be fixed.

• String states on the pp wave are recovered from AdS/CFT if g2
YMN/J2 = fixed. String

oscillators correspond to insertion of φi, DμZ and χa
J=1/2 inside Tr [ZJ] (which corre-

sponds to the vacuum |0, p+〉 with J units of p+), with some momentum e2π in/J . The
modes with n = 0 have �− J = 1 at all couplings.

• The discretized string action is obtained from the action of N = 4 SYM Feynman
diagrams on operators O in their two-point function 〈O(0)O(x)〉. Thus the long operator
acts as a discretized closed string.

• The oscillators appearing from SYM are Cuntz oscillators, but when acting on states in
the dilute gas approximation, the creation oscillators for the eigenmodes obey the usual
relations.

References and further reading

The pp wave correspondence was defined by Berenstein, Maldacena, and myself in [45]
(BMN). For a review of the correspondence, see for instance [46]. The maximally super-
symmetric 11-dimensional supergravity pp wave was described by Kowalski-Glikman in
[47]. The Aichelburg–Sexl shockwave was described in [48]. Horowitz and Steif [49]
proved that pp waves are solutions of string theory exact in α′. The Penrose limit can be
found in [50], whereas its physical interpretation is described in [45]. The type IIB max-
imally supersymmetric plane wave was found in [51] and it was shown to be the Penrose
limit of AdS5 × S5 in [45, 52].
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281 17.6 Spin chain interpretation

Exercises

1. An Aichelburg–Sexl shockwave is a gravitational solution given by a massless source
of momentum p, i.e. T++ = pδ(x+)δ(xi). Find the function H(x+, xi) defining the pp

wave on a UV brane, with e−
2|y|
R instead of e

2|y|
R in (16.29).

2. If the null geodesic moves on S5, one can choose the coordinates such that it moves on
an equator, thus the Penrose limit gives the maximally supersymmetric pp wave. Show
that if instead the null geodesic moves on AdS5, the Penrose limit gives 10-dimensional
Minkowski space (again choose ρ = 0).

3. The Killing spinor equation in 10-dimensional type IIB theory is

DMε = ∇Mε + i

24
FML1...L4�

L1...L4ε. (17.69)

Show that for a generic pp wave, we have 1/2 supersymmetry preserved, but for the
maximally supersymmetric pp wave all the susy is preserved, and find the solution
ε(x+, xi) in terms of an independent constant spinor parameter ψ .

4. Write down all the N = 4 SYM fields (including derivatives) with �− J = 2.
5. Check that, by cyclicity of the trace, the operator with two insertions of �1,�2 at levels

+n and −n equals (up to normalization)

Tr[�1Zl�2ZJ−l]. (17.70)

6. Fill in the details of the diagonalization of the Cuntz Hamiltonian (17.52) to obtain the
eigenenergies (17.61).

7. Prove the regularization (cut-off or dimensional regularization) of the integral (17.65).
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18 Spin chains

18.1 The Heisenberg XXX spin chain Hamiltonian, HXXX

A spin chain is a model for magnetic interactions in one dimension, where the only relevant
degrees of freedom are the electron spins. The simplest model we can write is a model
for the rotationally invariant interaction of a system of objects of spin 1/2 with nearest-
neighbor interactions. At the classical level, the model was written (and solved in one
dimension) by Ernst Ising, a student of Wilhelm Lenz, in his PhD thesis in 1924, with
Hamiltonian

H(σ ) = −
∑
〈ij〉

Jijσiσj −
∑

j

hjσj, (18.1)

where Jij is a coupling (Jij > 0 being a ferromagnetic case and Jij < 0 an antiferromagnetic
case), σi = ±1 is a classical spin (up or down), 〈ij〉 means nearest-neighbor, and hj is an
external field. Usually one considers Jij = J and hj = 0, giving

H(σ ) = −J
∑
〈ij〉

σiσj. (18.2)

The quantum version of the Ising model is called the Heisenberg model. In the case of a
rotationally invariant system of spin 1/2 in one spatial dimension, we call it the Heisenberg
XXX1/2 model; it was introduced by Heisenberg in 1928. We replace σi = ±1 with Pauli
matrices, and add a constant to the energy, obtaining the Hamiltonian

H = −J
L∑

j=1

(�σj · �σj+1 − 1). (18.3)

Here �σj are Pauli matrices (spin 1/2 operators) at site j, with periodic boundary
conditions, i.e. �σL+1 ≡ �σ1 and J is a coupling constant.

• If J > 0 the system is ferromagnetic, and the interaction of spins is minimized if the
spins are parallel, therefore the vacuum is | ↑↑ . . . ↑〉.

• If J < 0 the system is antiferromagnetic and the interaction is minimized for antiparallel
spins, therefore the vacuum is | ↑↓↑↓ . . . ↑↓〉.
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283 18.2 The SU(2) sector and HXXX fromN = 4 SYM

Note that the non-rotationally invariant case is called the XYZ model, and has
Hamiltonian

H = −
L∑

j=1

[
3∑

α=1

Jασ
α
j · σαj+1 − 1

]
. (18.4)

The XXX1/2 Heisenberg model was “solved” (or rather, reduced to solving a set of alge-
braic equations, the Bethe ansatz equations) by Bethe in 1931, by the “coordinate Bethe
ansatz,” that is described further on in this chapter.

We can write the XXX1/2 Hamiltonian in a different way by defining the permutation
operator acting on spin states, Pij, with

Pij| . . . ↑i . . . ↑j . . .〉 = | . . . ↑i . . . ↑j〉; Pij| . . . ↓i . . . ↓j . . .〉 = | . . . ↓i . . . ↓j〉,
Pij| . . . ↑i . . . ↓j . . .〉 = | . . . ↓i . . . ↑j〉; Pij| . . . ↓i . . . ↑j . . .〉 = | . . . ↑i . . . ↓j〉. (18.5)

We can write Pij in terms of Pauli matrices,

Pij = 1

2
+ 1

2
�σi · �σj = 1

2
+ 1

2
σ 3

i σ
3
j + σ+i σ−j + σ−i σ+j , (18.6)

valid on spin states, as we can easily check. Then the Heisenberg Hamiltonian without the
constant, H = −∑

j �σj · �σj+1, can be rewritten as

H = −J
L∑

j=1

(2Pj,j+1 − 1). (18.7)

Often one uses (18.3), i.e. subtract the constant −JL from H, to obtain

H′ = −2J
L∑

j=1

(Pj,j+1 − 1). (18.8)

18.2 The SU(2) sector and HXXX fromN = 4 SYM

We will see that we can obtain the Heisenberg spin chain model from N = 4 SYM. To
obtain that, we need an SU(2) sector that can act like the spin up, spin down states of the
Heisenberg model. In the pp wave correspondence from the last chapter, we saw that a
string of length J of complex Zs with a few, M, “impurities” �m and no Z̄s acted like a
spin chain in the “dilute gas approximation,” with a discretized string Hamiltonian acting
on it. In this chapter, we call the number of sites of the spin chain L, to avoid confusion
with J, the coupling constant of the Heisenberg Hamiltonian.

Therefore, in order to construct a full spin chain, we need to consider an SU(2) sector
made up of two complex scalars

Z = �1 + i�2; and W = �3 + i�4, (18.9)
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284 Spin chains

and no �5,�6, nor Z̄ and W̄. To construct the relevant SU(2) sector we consider operators
with large, but arbitrary numbers of both Z and W, that is, operators of the type

OJ1,J2
α = Tr [ZJ1 WJ2 ] + . . . (permutations). (18.10)

The N = 4 SYM interaction Hamiltonian is

Hint = −g2
YM

∑
I>J

Tr [�I ,�J][�I ,�j], (18.11)

and this reduces in the SU(2) sector to

Hint = −g2
YM[Z, W]Tr [Z̄, W̄]. (18.12)

Considering more general single trace operators made up of �Is, Tr [�I1 . . . �IL ], the
operator that permutes the order of �Ii and �Ij is

Pij ≡ P
JiJj
IiIj

= δ
Jj
Ii
δ

Ji
Ij

. (18.13)

We can then consider the action of planar Feynman diagrams (in the large N limit) on
operators (18.10). Planar Feynman diagrams only connect nearest-neighbors.

Anomalous dimension matrix

Since energy corresponds to anomalous dimension in AdS/CFT, the Hamiltonian should
correspond to the matrix of anomalous dimensions. The renormalized operators Oren are
written in terms of the bare ones O via a matrix of renormalization factors,

OA
ren = ZA

BOB. (18.14)

Then the matrix of anomalous dimensions is

� ≡ dZ

d ln�
· Z−1. (18.15)

The eigenvectors On of � are multiplicatively renormalizable and give

〈(Z ·O)n(x)(Z ·O)n(y)〉 = 〈Oren
n (x)Oren

n (y)〉 = const.

|x − y|2(L+γn)
. (18.16)

Here the renormalization factor Z is 1+O(λ) and γn is the eigenvalue of �. As we see, the
eigenvalue of � appears in the 2-point function exponent.

In the SU(2) sector, from the Feynman diagrams in the planar limit in Fig. 18.1, we
obtain for the renormalization factor Z,

Z...JlJl+1...

...IlIl+1...
= 1+ g2

YMN

16π2
ln� 2

(
δ

Jl
Il
δ

Jl+1
Il+1

− δ
Jl+1
Il

δ
Jl
Il+1

)
, (18.17)

where the I on �I runs over Z and W. Then the one-loop planar Hamiltonian, i.e. the matrix
of anomalous dimensions �, is

H(1)
planar = �

(1)
planar =

g2
YMN

16π2

L∑
l+1

2
(
1 − Pl,l+1

)
. (18.18)
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285 18.3 The coordinate Bethe ansatz

�Figure 18.1 The action of the “Hamiltonian” or anomalous dimension matrix on operators through Feynman diagrams is defined
by the renormalization factor. Relevant diagrams are shown.

Dilatation operator

But a more precise concept of Hamiltonian, easily extendable to higher loops, is the
concept of a dilatation operator D obtained by attaching the Feynman diagrams to the
operators OJ1,J2

α , giving

D ◦OJ1,J2
α (x) =

∑
β

DαβOJ1,J2
β (x). (18.19)

In perturbation theory, D is a sum over loops, D(n) ∼ O(g2n
YM). As an action on the

operators, we can think of it as adding and removing fields in the operator. Defining the
operator

Žij ≡ d

dZji
, (18.20)

the tree level dilatation operator is the identity, which can be written as

D(0) = Tr
(

ZŽ + WW̌
)

, (18.21)

and the one-loop dilatation operator can be written as

D(1) = −g2
YM

8π2
Tr [Z, W][Ž, W̌]. (18.22)

On the operator as a spin chain, it acts as before,

D(1)
planar =

g2
YMN

8π2

L∑
l+1

(
1l,l+1 − Pl,l+1

)
, (18.23)

i.e., giving the Heisenberg Hamiltonian, with J = g2
YMN/(16π2).

18.3 The coordinate Bethe ansatz

Onemagnon

We now diagonalize the Heisenberg Hamiltonian using the method introduced by Bethe,
of the coordinate Bethe ansatz. The eigenstates (pseudoparticles) are called magnons. To
write them, we first denote by |x1, . . . , xN〉 the state with spins up at sites xi along the chain
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286 Spin chains

of spins down, e.g. |1, 3, 4〉L=5 = | ↑↓↑↑↓〉. The one-magnon state is obtained by simply
Fourier transforming,

|ψ(p1)〉 =
L∑

x=1

eip1x|x〉, (18.24)

which leads to

H|ψ(p1)〉 = −2J
L∑

x=1

eip1x(|x − 1〉 + |x + 1〉 − 2|x〉). (18.25)

If we have periodic boundary conditions around the chain, i.e. |L + 1〉 ≡ |1〉, then the
momentum p1 is quantized, p1 = 2πk/L, and the action of the Hamiltonian on |ψ(p1)〉
becomes

H|ψ(p1)〉 = −2J(eip1 + e−ip1 − 2)
L∑

x=1

eip1x|x〉 = 8J sin2(p1/2)|ψ(p1)〉. (18.26)

Twomagnons

A two-magnon state |ψ(p1, p2)〉, eigenstate of the Hamiltonian, is obtained by the ansatz
of a superposition of an incoming and an outgoing wave, related by the 2-body S-matrix
S(p1, p2) for scattering in 1+1 dimensions,

ψ(x1, x2) = ei(p1x1+p2x2) + S(p2, p1)ei(p2x1+p1x2). (18.27)

The first term is an incoming plane wave, and the second a scattered wave, where particles
interchange their momenta and are scattered by the 2-body S-matrix. The two-magnon
state is then the sum over positions of the above wavefunction, i.e.

|ψ(p1, p2)〉 =
∑

1≤x1<x2≤L

ψ(x1, x2)|x1, x2〉. (18.28)

This is the (coordinate space) Bethe ansatz for the two-magnon state. By substituting this
ansatz in the Schrödinger equation,

H|ψ(p1, p2)〉 = E|ψ(p1, p2)〉, (18.29)

we obtain

E = 8J
[
sin2 p1

2
+ sin2 p2

2

]
, (18.30)

and the form of the 2-point S-matrix

S(p1, p2) = φ(p1) − φ(p2) + i

φ(p1) − φ(p2) − i
= S−1(p2, p1), (18.31)

where

φ(p) = 1

2
cot

p

2
≡ u. (18.32)
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287 18.3 The coordinate Bethe ansatz

The proof for E and S(p1, p2) is left as an exercise. We note that the energy of the two-
magnon state is the sum of the energies of two one-magnon states of momenta p1 and p2.
This continues to be true in general, for an M-magnon state, with

E =
M∑

j=1

8J sin2 pj

2
=

M∑
j=1

2J
1

u2
j + 1/4

. (18.33)

Here φ(p) = u are called rapidities, and when ps are true magnon momenta, they are
called the Bethe roots. We must find sets of these Bethe roots, or equivalently the momenta
p1, p2 that solve a set of equations known as the Bethe equations, in the same way as we
had p1 = 2πk/L for the one-magnon state.

The 2-body S-matrix has poles at φ12 ≡ φ(p1) − φ(p2) = ±i, which means that it is a
bound state of two magnons (it is imaginary, not real). The Bethe equations come from the
condition of periodicity for x1 < x2,

ψ(x1, x2) = ψ(x2, x1 + L). (18.34)

Substituting in the Bethe ansatz for ψ(x1, x2), we obtain the equations

eip1L = S(p1, p2) = cot p1/2 − cot p2/2 + 2i

cot p1/2 − cot p2/2 − 2i
,

eip2L = S(p2, p1) = cot p2/2 − cot p1/2 + 2i

cot p2/2 − cot p1/2 − 2i
, (18.35)

called the Bethe ansatz equations. They give solutions for the Bethe roots u1, u2 or p1, p2.
Multiplying the two equations we obtain

ei(p1+p2)L = 1 ⇒ p1 + p2 = 2πn

L
, n = 0, 1, . . . , L − 1. (18.36)

In particular, we have the real solutions p2 = −p1 ∈ R, for which the Bethe ansatz
equations give

eip1L = S(p1,−p1) = 2 cot p1/2 + 2i

2 cot p1/2 − 2i
= eip1 ⇒ p1 = 2πn

L − 1
. (18.37)

Note that in general p1, p2 must be different numbers, since S(p1, p1) = −1, so we get
ψ = 0, a signature of the fermionic nature of the spin chain.

Substituting −p2 = p1 = 2πn/(L − 1) in the Bethe ansatz for the 2-magnon
wavefunction, we obtain

|ψ(n)〉 ≡ |ψ(p1(n),−p1(n))〉 = Cn

L∑
l=1

cos

(
πn

2l + 1

L − 1

)
|x2 + l, x2〉,

Cn = 2e−
iπn
L−1 . (18.38)
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288 Spin chains

N = 4 SYMmap and pp wave limit

Translating into N = 4 SYM objects, this 2-magnon state corresponds to an operator
eigenstate of the dilatation operator,

OJ,2
n = Cn

L−1∑
l=0

cos

[
πn

2l + 1

L − 1

]
Tr [WZlWZJ−l]. (18.39)

In the limit of n ! L, L →∞, we obtain the BMN operator for �i → W,

OJ,2
n → Cn

L−1∑
l=0

cos
2πnl

L
Tr

[
WZlWZL−l

]
. (18.40)

In general, when we have a number M of magnons much less than L and n ! L, the
spectrum of states is given by acting with the creation operator

a†
n =

1√
L

L∑
l=1

e
2π inl

L σ−l , (18.41)

where σ−l are Pauli matrices at site l. Acting with these creation operators, we obtain the
BMN operators, as we can easily see. The momenta are pi � 2πnk/L. Translating the
energies into N = 4 SYM variables, we get

γ = �− L − M = λ

16π2

M∑
k=1

8 sin2 pk

2
� λ

8π2

M∑
k=1

p2
k =

λ

2L2

M∑
k=1

n2
k . (18.42)

These are indeed the eigenstates and eigenvalues of the independent string oscillators on
the pp wave. But now we have that even when M ∼ L (outside of the “dilute gas approxi-
mation” of the last chapter), we have a Fock spectrum, which should correspond to string
excitations in the full AdS5 × S5, not just its Penrose limit.

General Bethe ansatz equations and integrability

The general ansatz for M magnons (M-body scattering) is obtained from the ansatz for two
magnons (two-body scattering). The fundamental reason is the integrability of the Heisen-
berg spin chain. At the classical level, for a system with a finite number of degrees of
freedom N, integrability means the existence of N integrals of motion Ti, i.e. independent
conserved quantities (constant during the time evolution). In the case of the spin chain, we
have L degrees of freedom. At the quantum level, integrability still means the existence of
L independent integrals of motion Ti, but now this is expressed by saying that the operators
T̂ i obey [T̂i, T̂j] = 0, and the Hamiltonian Ĥ is one of the T̂is. In turn, quantum integra-
bility implies that the dynamics is completely determined by giving the 2-body scattering
matrix S(p1, p2). In particular, the M-body scattering is also given in terms of the 2-body
scattering.

Then, defining the phase shifts δij = −δji by

S(pi, pj) ≡ eiδij , (18.43)
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289 18.3 The coordinate Bethe ansatz

the M-body wavefunction (for M magnons) is

ψ(x1, . . . , xM) =
∑

P∈Perm(M)

exp

⎡
⎣i

M∑
i=1

pP(i)xi + i

2

∑
i<j

δP(i)P(j)

⎤
⎦ . (18.44)

Then the Schrödinger equations imply again that the energies of the magnons,

εj = 8J sin2 pj

2
, (18.45)

add up to give (18.33). Also again periodicity of the wavefunction ψ(x1, . . . , xM) gives the
Bethe ansatz equations

eipkL = �
i�= k, i=1

M
S(pk, pi). (18.46)

As before, taking products of all the equations, we obtain ei(
∑

k pk)L = 1, which implies

P̂ ≡
∑

k

pk = 2πn

L
; n = 0, . . . , L − 1. (18.47)

And we still need all the pis to be different, since if two ps are the same, we get
ψ = 0 because of the fermionic nature of the chain, as we can verify from the M-body
wavefunction ansatz.

Bethe equations have sets of both real and complex solutions for fixed L, M. The sets
are {p1, . . . , pM}n, where n labels the solution. For M = 1 we have n1 = L − 1 sets (since
p1 = 2πk1/(L − 1), k1 = 0, . . . , n1 − 1), for M = 2 we have n2 = L(L − 3)/2, etc. The
total sum of solution sets is

L∑
M=1

nM = 2L, (18.48)

since at each site we can have two possibilities: spin up or down, for a total of 2L

possibilities.
The Bethe ansatz equations (18.46) can be rewritten in terms of the rapidities uk =

1/2 cot(pk/2), using the fact that

uk + i/2

uk − i/2
= cos(pk/2) + i sin(pk/2)

cos(pk/2) − i sin(pk/2)
= eipk , (18.49)

to obtain (
uk − i/2

uk + i/2

)L

= �
j�= k, j=1

M
(

uk − uj − i

uk − uj + i

)
, k = 1, . . . , M. (18.50)

Here u is called rapidity because u = 1/2 cot(p/2) implies

du

dp
= −1 + 4u2

4
⇒ dp

du
= − 1

u2 + 1/4
= ε(u), (18.51)
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290 Spin chains

as in the case of a one-dimensional relativistic massive particle, E2 − p2 = m2, written in
terms of rapidities μ as

E = m coshμ; p = m sinhμ⇒ E = dp

dμ
. (18.52)

Therefore the ui are the nonrelativistic analogs of rapidities, hence the name.
Taking the log of the Bethe ansatz equations in the original form (18.46), we obtain

pkL =
M∑

i �=k,i=1

δki + 2πnk, (18.53)

where nk are integers. Therefore for each solution set {pk} (Bethe roots) we have a set of
integers {nk}. Note that we do not need real momenta pk, or correspondingly real rapidities
uk, only real energies, which are given by the sum (18.33). That means that it is enough
to have uks in pairs: for any Bethe root uk, we must also have u∗k as a Bethe root. That
means that the Bethe roots are situated in the complex u plane, symmetrically about the
real axis R.

18.4 Thermodynamic limit and Bethe strings

We now consider the thermodynamic limit L →∞, M →∞ of the Bethe ansatz, since as
we see later, it is related to classical strings in the gravity dual.

Taking the log of (18.50), we obtain

L log

(
ui + i/2

ui − i/2

)
=

M∑
k �=i,k=1

log

(
ui − uk + i

ui − uk − i

)
− 2π ini. (18.54)

Here ni are arbitrary integers for each root ui, which means that the set {ni} are quantum
numbers for the multiparticle system characterized by the roots {ui}.

Assuming self-consistently that in the thermodynamic limit the magnon momenta are
of order pi ∼ 1/L, which means that the rapidities are of order ui ∼ L, makes the Bethe
equations (18.54) finite in terms of xi = ui/L,

1

xi
+ 2πni = 2

L

M∑
k �=i,k=1

1

xi − xk
. (18.55)

We saw that the roots ui can be anywhere in the complex plane, and in order to have a real
energy, we need to have for any root ui, that u∗i is also a root. Moreover, if Re(uk)=Re(ui),
the roots should have different imaginary parts, due to the fermionic nature of the spin
chain.

In the thermodynamic limit L → ∞, the Bethe equations (18.50) have left-hand side
0 or ∞, which means the right-hand side must be the same, i.e. S(pi, pk) has a pole. In
turn, that means that uk = ui ± i, i.e. the two magnons of the same energy form a bound
state by splitting their rapidities in the complex plane. Therefore, in the L → ∞ limit, the
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291 18.4 Thermodynamic limit and Bethe strings

Bethe roots with the same real parts are separated in an array with uk = Re(u) + ik. Then
from (18.55) on such an array, ni must be constant, ni = −nC characterizing the array, or
contour C, and the quantum numbers of the solution {uk} being the ks. Since uk+1−uk ∼ 1,
it follows that xk+1 − xk ∼ 1/L → 0, even when M → ∞. In this M → ∞ limit, arrays
are not vertical lines anymore (uk =Re(u) + ik), but can curve in the complex plane.

Therefore in the thermodynamic limit, the roots ui accumulate on smooth contours in the
complex u plane called Bethe strings, which must be situated symmetrically with respect to
the real axis (in order to have a real energy for the system). Then Bethe equations become
integral equations.

We define the Bethe root density

ρ(x) ≡ 1

L

M∑
j=1

δ(x − xj), (18.56)

which was normalized such that ∫
C

dx ρ(x) = M

L
. (18.57)

Then the thermodynamic limit of the Bethe equations (18.55) can be written in the integral
form

2P
∫
C

dy
ρ(y)

y − x
= −1

x
+ 2πnC(u); x ∈ C, (18.58)

where P means the principal part of the integral.
The energy of the system becomes

E

2J
=

(
−L

2

)
+

M∑
j=1

1

u2
j + 1/4

→
(
−L

2

)
+ 1

L

∫
C
ρ(x)

x2
. (18.59)

From (18.58) at x = 0, we obtain∫
C

dx
ρ(x)

x
= 2πm. (18.60)

This can also be obtained from the quantization of the total momentum (18.47), which
gives in the thermodynamic limit

M∑
i=1

1

ui
= 1

L

M∑
i=1

1

xi
= 2πm, (18.61)

thus reducing to the same.
The Bethe ansatz equations in the thermodynamic limit (18.57–18.60) can be written

independently for various Bethe strings, i.e. smooth components Cn, corresponding to
various macroscopic solutions in the thermodynamic limit.
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292 Spin chains

18.5 Spin chains from AdS space

We now turn to understanding the spin chain from the point of view of the gravity dual to
N = 4 SYM. The spin chain corresponds to large operators in the SU(2) sector, i.e. made
from Z and W.

Magnon excitations with M/J → 0 (BMN operators) correspond to the strings
on the pp wave, i.e. near a geodesic situated in the center of AdS5 and rotating around
an equator of S5. On the other hand, at large M, we expect semiclassical strings instead of
pointlike strings. Since we want the gravity dual to the SU(2) sector, the SU(2) = SO(3)
invariance suggests that the strings corresponding to them in the gravity dual must belong
in an S3 ⊂ S5 in the gravity dual.

There are various matchings of string solutions with solutions of the Bethe equations,
but we can treat them together, by looking at the thermodynamic limit with M/J finite, as
we show in the next subsection.

The worldsheet of strings belonging to an S3 ⊂ S5 has nontrivial values for X0 and Xi,
i = 1, . . . , 4, with XiXi = 1. We form

Z = X1 + iX2; W = X3 + iX4, (18.62)

and we define an SU(2) element

g =
(

Z W
−W̄ Z̄

)
=

(
X1 + iX2 X3 + iX4

−X3 + iX4 X1 − iX2

)
= X11+ iX4σ1 + iX3σ2 + iX2σ3

= Xiσ̃i, i = 1, 2, 3, 4. (18.63)

Then we can calculate the form of the matrix currents ja

ja = g−1∂ag, (18.64)

and obtain

Tr (ja)2 = −2
4∑

i=1

(∂aXi)(∂aXi), (18.65)

where there is no sum over a. The calculation is left as an exercise.

String action

The action in conformal gauge of a string moving in the flat (Euclidean) embedding space
for S3 is

S = 1

4πα′

∫
dτdσ [−(∂aX̃0)2 + (∂aX̃i)2], (18.66)

where X̃iX̃i = R2 and X̃0 also is the embedding coordinate for AdS5 of radius R. Redefining
X̃i = RXi and X̃0 = RX0, one obtains the action

S = R2

4πα′

∫
dτ

∫ 2π

0
dσ

[
−(∂aX0)2 +

4∑
i=1

(∂aXi)2

]
, (18.67)
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293 18.5 Spin chains from AdS space

where XiXi = 1 and R2/4πα′ = √
λ/(4π ). Writing this in terms of the currents ja

calculated above, we obtain

S = −
√
λ

4π

∫ 2π

0
dσ

∫
dτ

[
Tr (ja)2

2
+ (∂aX0)2

]
. (18.68)

Equations of motion and constraints

The X0 equation of motion is

∂+∂−X0 = 0, (18.69)

and, using δja/δ(Xiσ̃ i) = ∂aδ(σ − σ0), the equation of motion for Xiσ̃ i is

ηab∂a jb = 0. (18.70)

In terms of ∂± = ∂τ ± ∂σ , we get

∂+j− + ∂−j+ = 0. (18.71)

Since we have used the conformal gauge for the string action, we must supplement it
with the Virasoro constraint,

(∂±XA)2 = 0 ⇒ (∂±X0)2 = (∂±Xi)2. (18.72)

But (18.69), which means (∂2
τ − ∂2

σ )X0 = 0, can be solved by

X0 = κτ . (18.73)

Since as we saw, (∂±Xi)2 = −1/2Tr (j±)2, the Virasoro constraint reduces to

1

2
Tr (j±)2 = −κ2. (18.74)

Symmetries

The action (18.68) has global SU(2)L × SU(2)R symmetry acting as g → gh and g → hg,
with Noether currents ja ≡ σAjAa/2i and

la = gjag−1 = ∂ag · g−1 ≡ σA

2i
lAa , A = 1, 2, 3. (18.75)

The corresponding Noether charges are (see (18.68))

QA
R =

√
λ

4π

∫ 2π

0
dσ jAτ ,

QA
L =

√
λ

4π

∫ 2π

0
dσ lAτ . (18.76)

For the spin chain operators OL−M,M
α , under the right SU(2) action g → gh, (ZW) acts

as a doublet, so Q3
R(Z) = +1 and Q3

R(W) = −1. Under the left SU(2) action, g → hg,
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294 Spin chains

(
Z
−W̄

)
and

(
W
Z̄

)
act as doublets, which means that Q3

L(Z) = +1 and Q3
L(−W̄) = −1, or

that Q3
L(W) = +1. Finally, for the spin chain operators, we obtain

Q3
R(OL−M,M

α ) = L − 2M; Q3
L(OL−M,M

α ) = L. (18.77)

These are the charges which we should have for a semiclassical string in AdS space that
corresponds to spin chain operators.

18.6 Bethe strings from AdS strings

The semiclassical strings in AdS space correspond to Bethe strings, but instead of
checking this for each semiclassical string, we check that the Bethe equations in the
thermodynamical limit, (18.57–18.60), are obtained from the equations for strings in
AdS space.

Since ja = g−1∂ag, by explicit substitution we can check that

∂+j− − ∂−j+ + [j+, j−] = 0. (18.78)

Then, defining

J± = j±
1 ∓ x

, (18.79)

where x is an arbitrary variable, we obtain

∂+J− − ∂−J+ + [J+, J−]

= 1

1 − x2

[
∂+j− − ∂−j+ + [j+, j−] − x(∂+j− + ∂−j+)

]
. (18.80)

But then from (18.78) and (18.71) this vanishes for any x. This looks like the condition
of a gauge field with zero field strength in two dimensions, F+− = ∂+A− − ∂−A+ +
[A+, A−] = 0, so we can consider Ja as a “flat connection” in mathematical language. We
can define Jσ = (J+ − J−)/2 and the “monodromy” of this connection (the equivalent of
the Wilson loop W[C] for a contour wrapping around the periodic σ coordinate, and giving
the parallel transport of objects in the fundamental representation, as we saw in Chapter
14), is defined by

�(x) ≡ P exp

[
−

∫ 2π

0
dσJσ

]
= P exp

[∫ 2π

0
dσ

1

2

(
j+

x − 1
+ j−

x + 1

)]
. (18.81)

From its trace, we define the object p(x) by

Tr �(x) ≡ 2 cos p(x) = eip(x) + e−ip(x). (18.82)

From the definition, we can see that p(x) has singularities at x = ±1.
Near x = ∓1, expanding (18.81) and using (18.74), we find

p(x) � − πκ

x ± 1
+ . . . (18.83)
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295 18.6 Bethe strings from AdS strings

Near x = ∞, we find by expanding (18.81) that

Tr � � 2 + 1

x2

(
1

2

∫ 2π

0
dσ1

∫ 2π

0
dσ2

)
Tr (jτ (σ1)jτ (σ2))+ . . .

= 2 − 4π2

λ

1

x2
Q2

R + . . . = 2 − 4π2

λx2
(L − 2M)2 + . . . , (18.84)

where we have used (j+ + j−)/2 = jτ . Then we find that near x = ∞,

p(x) = −2π (L − 2M)√
λx

+ . . . (18.85)

On the other hand, near x = 0, using J±(x) = j±(1 ± x) + . . ., and ja = g−1∂ag, we obtain

Jσ (x) = J+ − J−
2

� jσ + xjτ + . . . = g−1(∂σ + xlτ )g ⇒

Tr � � 2 + x2

2

∫ 2π

0
dσ1dσ2Tr [lτ (σ1)lτ (σ2)]

= 2 − 4π2Q2
L

λ
x2 + . . . = 2 − 4π2L2

λ
x2 + . . . (18.86)

Then for p(x) near x = 0 we obtain

p(x) � 2πm + 2πL√
λ

x + . . . (18.87)

We define a function G that excludes the poles at x = ±1,

G(x) ≡ p(x) + πκ

x + 1
+ πκ

x − 1
, (18.88)

which has only branch cut singularities, and so is completely determined from its
discontinuities

G(x + i0) − G(x − i0) ≡ 2π iρ(x), (18.89)

via a dispersion relation

G(x) =
∫
C
ρ(y)

x − y
. (18.90)

On the other hand, for x ∈ Ck, we now have

p(x + i0) + p(x − i0) = 2πnk, (18.91)

in order to have eip(x+i0)eip(x−i0) = 1. Then finally we obtain for x ∈ Ck

2P
∫

dy
ρ(y)

x − y
= 2πκ

x − 1
+ 2πκ

x + 1
+ 2πnk. (18.92)

The worldsheet energy of the string in AdS, δS/δẊ0, should be identified with the
anomalous dimension � in the CFT,

� =
√
λ

2π

∫ 2π

0
dσ∂τX0 = √

λκ , (18.93)

where we have used X0 = κτ to obtain a relation between � and κ .
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Using the behavior at infinity of p(x), we obtain∫
dxρ(x) = 1

2π i

∫
dx

[
p(x + i0) − p(x − i0) + 2πκ

x + i0
− 2πκ

x − i0

]
= 2π√

λ
(�+ 2M − L).

(18.94)
Similarly, using the behavior at zero of p(x), we obtain (from the constant term)∫

dx
ρ(x)

x
= 1

2π i

∫
dx

1

x

[
p(x + i0) − p(x − i0) + 2πκ

x + i0 − 1
− 2πκ

x − i0 − 1

]
= 2πm.

(18.95)
Finally, using the behavior at zero of p(x), we obtain (from the linear term in x)∫

dx
ρ(x)

x2
= 1

2π i

∫
dx

1

x2

[
p(x + i0) − p(x − i0) + 2πκ

x + i0 − 1
− 2πκ

x − i0 − 1

]

= 2π√
λ

(�+ L). (18.96)

To match with the Bethe equations from N = 4 SYM in the thermodynamic limit, we
rescale x → 4πLx/

√
λ, obtaining for x ∈ C,

2P
∫

dy
ρ(y)

x − y
= x

x2 − λ

16π2L2

�

L
+ 2πnk,∫

dxρ(x) = M

L
+ �− L

2L
,∫

dx
ρ(x)

x
= 2πm,

λ

8π2L

∫
dx
ρ(x)

x2
= �+ L = λ

8π2
H(1−loop). (18.97)

In the thermodynamic limit of the Bethe equations, λ/L2 → 0, �−L
L → 0, �

L → 1, we
obtain the same Bethe equations of N = 4 SYM, (18.57–18.60).

Then each individual Bethe string corresponds to an individual macroscopic string in
AdS5×S5. We must calculate the Bethe curve, then calculate the resolvent G(x), the density
ρ(x), then the energy, to match against a corresponding classical AdS string. Agreement
has been found for various AdS strings (folded strings, circular strings, etc.).

Important concepts to remember

• The Heisenberg XXX1/2 spin chain Hamiltonian is the simplest magnetic interaction in
1+1 dimensions, coupling nearest Pauli spins.

• It is diagonalized by a Bethe ansatz, for excitations (“magnons”) of spin up propagating
in a sea of spin down states.

• The Heisenberg Hamiltonian is reproduced from the SU(2) sector of N = 4 SYM, using
Z = �1 + i�2 and W = �3 + i�4 to build large R-charge single trace operators, at the
one-loop planar level.

• The Hamiltonian can be thought of as an anomalous dimension matrix, or dilatation
operator, and is obtained by attaching Feynman diagrams to the large operators.
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297 18.6 Bethe strings from AdS strings

• In the coordinate Bethe ansatz, the 2-magnon S matrix defines any M-magnon scattering,
due to integrability, and the energy of the multimagnon state is the sum of the energies
of each magnon.

• The momenta pk of the magnons or the rapidities uk = 1/2 cot(pk/2) satisfy the Bethe
ansatz equations, and sets {uk} of solutions are called Bethe roots, and form a contour in
the complex plane, in the thermodynamic limit, called a Bethe string.

• Bethe strings are obtained from classical (macroscopic) AdS strings moving in an S3 ⊂
S5. Each Bethe string corresponds to a different AdS string.

• The Bethe ansatz equations in the thermodynamic limit can be obtained from the
equations of motion and constraints of strings in AdS.

References and further reading

The identification of the 1-loop SYM Hamiltonian with the Heisenberg spin chain was
done in [53]. Good reviews of spin chains in SYM are [54, 55]. However, none of the
papers and reviews for spin chains is easy to digest, the papers are at an advanced level.

Exercises

1. Check that the Bethe ansatz for two magnons, with

E = E1 + E2; S(p1, p2) = φ(p1) − φ(p2) + i

φ(p1) − φ(p2) − i
; φ(p) = 1

2
cot

p

2
, (18.98)

solves the Schrödinger equation for HXXX1/2.
2. Prove the relation (18.65).
3. Check that the Bethe ansatz for three magnons satisfies the Schrödinger equation for

HXXX1/2 if the Bethe ansatz for two magnons does.
4. Write down explicitly a 3-magnon eigenstate with p1 + p2 + p3 = 0, then deduce the

corresponding spin chain operator in N = 4 SYM and show that it reduces to a BMN
operator in the limit n ! J, J →∞.

5. Write down all the eigenstates and eigenenergies of a spin chain with three sites, using
the coordinate Bethe ansatz.

6. We have seen that Bethe strings in the J → ∞ limit have Bethe roots lying on vertical
lines uk =Re(u)+ ik. Why does the argument fail for M →∞ as well, with M/J fixed,
i.e. in the thermodynamic limit, and why can we have a curved line (Bethe strings)?
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19 Other conformal cases

In Part II of the book we have been dealing with the original duality of string theory in
AdS5 × S5 background vs. N = 4 SYM in 3+1-dimensional flat space, since it is the best
understood, and we can calculate the largest number of quantities. But since the original
paper of Maldacena, a plethora of other cases have been discovered, including theories
with less supersymmetry and/or no conformal invariance. In the cases when there is no
conformal field theory, and no AdS space, one could use the term AdS/CFT, but the proper
name of the correspondence is gravity–gauge duality, since it relates a gravitational theory
(string theory in a certain background) to a gauge theory in fewer dimensions, via holog-
raphy. In that case the gravitational background is known as the gravity dual of the gauge
theory.

In this chapter we start with other cases with conformal invariance, when the proper
name of the correspondence is still AdS/CFT.

19.1 AdS4 × S7 and AdS7 × S4

There are two other cases where the theory living at the boundary of AdS space is max-
imally supersymmetric and conformal. They are not related to the same 10-dimensional
type IIB string theory, since in fact there is a theorem [51], stating that the only max-
imally supersymmetric backgrounds of type IIB are 10-dimensional Minkowski space,
AdS5 × S5, and the maximally supersymmetric pp wave, which is just the Penrose limit
of AdS5 × S5.

Instead, they are related to M theory, which, as we explained in Chapter 7, is a theory
in 11 dimensions obtained as type IIA string theory at strong coupling, since the radius
of the eleventh dimension is R11 = gs

√
α′. In the low energy limit, M theory becomes

the unique 11-dimensional supergravity theory. The relevant maximally supersymmetric
backgrounds are AdS4×S7 and AdS7×S4, and a theorem by Kowalski-Glikman [47] states
that the only maximally supersymmetric backgrounds of 11-dimensional supergravity are
11d Minkowski space, AdS7 × S4, AdS4 × S7 and the maximally supersymmetric wave,
which can be obtained as a Penrose limit of both AdS4 × S7 and AdS7 × S4.

As in the case of the 10-dimensional AdS5×S5 background, the AdS4×S7 and AdS7×S4

backgrounds can be obtained as the near-horizon limit of extremal p-brane objects in the
theory. Of course in M-theory there are no D-branes, since there are no strings to end on
them. But instead we have branes that are the uplift of the D-branes of type IIA string
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302 Other conformal cases

theory. In type IIA string theory there is a fundamental string (“F1-brane”) electrically
charged with respect to the NS-NS field Bμν , as explained in Chapter 7, and a magnetically
charged object corresponding to the same Bμν , called an NS5-brane. There is also a D2-

brane, electrically charged under the A(10)
μνρ field of type IIA supergravity, and a D4-brane,

magnetically charged under A(10)
μνρ . These branes uplift to 11-dimensional M theory into

an electrically charged M2-brane with respect to A(11)
MNP, and an M5-brane magnetically

charged under the same A(11)
MNP. The M2-brane reduces to the fundamental string (F1-brane)

in ten dimensions when dimensionally reducing along the brane (when the string coupling
is the radius of a direction along the M2-brane), and to the D2-brane when reducing along
a direction transverse to the M2-brane (the string coupling is the radius of a transverse
direction). The M5-brane reduces to the D4-brane in ten dimensions when dimensionally
reducing along the brane, and to the NS5-brane when reducing along a direction transverse
to the brane. Thus in M theory the fundamental object can be thought to be the M2-brane,
the uplift of the fundamental string, whereas the M5-brane is solitonic in nature. Also,
since fundamental strings can end on D4-branes, it means that M2-branes can end on M5-
branes.

AdS7 × S4 vs. 6-dimensional (2, 0) theory

The metric for N extremal M5-branes is

ds2 = f−1/3
5 (r)

(
−dt2 + d�x2

(5)

)
+ f 2/3

5 (r)(dr2 + r2d�2
4),

f5(r) = 1 + πNl3P
r3

. (19.1)

Here lP is the 11-dimensional Planck length. There is also a 4-form field strength,

F(4) = ∗
(

dt ∧ dx1 ∧ . . . ∧ dx5 ∧ d(f−1
5 )

)
; (A(6) = f−1

5 dt ∧ dx1 ∧ . . . ∧ dx5), (19.2)

where A(6) is the Poincaré dual to the 3-form gauge field A(3). We take the near-horizon
limit for the same reason as in the case of the D3-branes, to decouple gravity from
field theory modes along the brane, in order to have a duality between string theory in
a gravitational background and the field theory existing on the brane. We define

U2 ≡ r

l3P
, (19.3)

and we take the gravity decoupling limit lP → 0, together with the near-horizon limit
r → 0, with U = fixed. One way to define what we keep fixed (and thus this is how we
define U) is to impose that the near-horizon, decoupling limit leads to an overall l2P factor
and everything inside is fixed. Then the metric becomes

ds2 = l2P

[
U2

(πN)1/3
(−dt2 + d�x2

(5)) + 4(πN)2/3 dU2

U2
+ (πN)2/3d�2

4

]
, (19.4)
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303 19.1 AdS4× S7 and AdS7× S4

which is the metric of AdS7 × S4, with radii RS4 = lP(πN)1/3 and RAdS7 = 2lP(πN)1/3 =
2RS4 . The 4-form field strength in the near-horizon limit becomes

F(7) = 3r2

πNl3P
dx0 ∧ . . . ∧ dx5 ∧ dr,

Fμ1...μ4 =
1√

4! 7!
√−g

εμ1...μ4
μ5...μ11 Fμ5...μ11 =

1√
4! 7!

√−g
gS4ε

μ1...μ11 Fμ5...μ11 ⇒

FS4 = 3√
4! 7!

l3PπNεS4 , (19.5)

where μ1, . . . ,μ4 are in the S4 directions and μ5, . . . ,μ11 in the rest and εS4 is the volume
form in the S4, integrating to 1 (so that RS4 cancels in the

√
gS4/R4

S4 factor defining it). As

in the case of AdS5 × S5, in order to have the supergravity approximation valid, we need
that RAdS/lP, RS/lP # 1, which implies N →∞.

In the decoupling limit above, supergravity in the AdS7 × S4 background should be
equivalent to the theory on the N M5-branes, so we need to define this theory. The M5-
brane is the uplift of the D4-brane of string theory, when the eleventh dimension R11 =
gs
√
α′ is large. But for the coupling of a Dp-brane we have from (9.12)

g2
Dp = (2π )p−2gsα

′ p−3
2 ⇒ g2

D4 = 4π2gs

√
α′ = 4π2R11. (19.6)

On the D4-brane we have 5-dimensional maximally supersymmetric Yang-Mills theory,
in the same way as happens in four dimensions on D3-branes, with coupling g2

D4. Thus
the coupling in the 6-dimensional theory on the M5-branes reduced on R11 is given only
in terms of R11, meaning that the original 6-dimensional theory has no intrinsic coupling
(dimensionless parameter). It also has no dimensional parameters (since otherwise they
would also be evident in the reduced theory, the 5-dimensional maximal SYM), and is
in fact a conformal theory. This theory has (2, 0) supersymmetries, i.e. 16 supercharges
divided into two minimal Weyl spinors of the same chirality. This superalgebra has an
SO(5) � USp(4) R-symmetry, and the spinors can be considered as four spinors ψ I in the
4 representation of USp(4) obeying a modified Majorana reality condition (as we saw in
Chapter 3 we can define such a condition for spinors in representations of USp(2N)) χ̄ i

C =
χT

j �
jiC. The only massless irreducible representation of the (0, 2) algebra is made up of a

tensor Bμν with self-dual field strength, five scalars Xm in the fundamental representation of
SO(5), corresponding to the five transverse directions to the M5-brane, and the fermions.
Then the R-symmetry rotating the scalars and the fermions corresponds to the rotation
group on the five directions transverse to the brane, or the symmetry group of the S4 present
in the near-horizon limit.

While the abelian theory on a single M5-brane is well understood, on N coincident M5-
branes we have a conformal field theory with (2, 0) supersymmetry that is strongly coupled
(since there is no dimensionless coupling that can be made small, i.e. perturbative), that
is little understood. The AdS/CFT correspondence relates this theory with supergravity in
AdS7×S4 background. While we now cannot make many tests of AdS/CFT, we can assume
that AdS/CFT is indeed valid, since we have the same heuristic derivation as in the case of
N = 4 SYM in four dimensions vs. AdS5 × S5, and derive quantities in the 6-dimensional
(2, 0) theory via AdS/CFT.
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304 Other conformal cases

AdS4 × S7 vs. 3-dimensionalN = 8 theory

The other case of interest is the case of M2-branes. The metric for N extremal
M2-branes is

ds2 = f−2/3
2 (r)(−dt2 + dx2 + dy2) + f 1/3

2 (r)(dr2 + r2d�2
7),

f2(r) = 1 + 32π2Nl6P
r6

, (19.7)

and the 4-form field strength is

F(4) = d(f−1
2 (r)) ∧ dt ∧ dx ∧ dy (A(3) = f−1

2 (r)dt ∧ dx ∧ dy). (19.8)

We again consider the near-horizon limit r → 0, lP → 0, but now we keep constant

U = r2

l3P
, (19.9)

again such that the near-horizon metric is fixed except for an l2P overall factor. The metric
becomes

ds2 = l2P

[
U2

(32πN)2/3
(−dt2 + dy2 + dz2) + (32π2N)1/3

(
1

4

dU2

U2
+ d�2

7

)]
, (19.10)

which is the metric of AdS4 × S7, with RAdS4 = lP(32π2N)1/6/2, RS7 = lP(32π2N)1/6 =
2RAdS4 , and the 4-form field strength in the directions of AdS4 becomes

F(4) = 6r5

32π2Nl6P
dr ∧ dt ∧ dx ∧ dy = π

√
N

2
l3Pε(4), (19.11)

where ε(4) is the volume form,
√−g/R4 on AdS4 (note that by rescaling t, y, z by a constant,

we can rescale the coefficient of ε(4) to anything we want).
The theory on the M2-branes should be maximally supersymmetric, i.e. with N = 8

supersymmetries. That means that there are eight Majorana fermions in three dimensions
(each with two real components, for a total of 16 supercharges), transforming in the funda-
mental of the SO(8) R-symmetry. The theory should be related to the dimensional reduction
of the 4-dimensional N = 4 SYM theory, i.e. 3-dimensional maximal SYM, which is
expected to live on the worldvolume of D2-branes. Indeed, we saw that D2-branes are M2-
branes reduced on a transverse direction, so for them only the rotational SO(7) symmetry
should be manifest, not the full SO(8).

Indeed, for the Lagrangean formulation that exists for D2-branes, we have seven scalars
corresponding to the seven transverse coordinates to the brane Xm, and a Yang-Mills gauge
field Aμ that in three dimensions has also one degree of freedom, like a scalar does. In fact,
it is Poincaré dual to a scalar (Fμν = 1/2εμνρ∂ρφ). The D2-brane theory has a coupling
g2

D2 with mass dimension one, which means that it becomes strongly coupled in the IR,
since the effective dimensionless coupling will be g2

eff = g2
D2/E. In the strong coupling

limit we should obtain the M2-brane theory, which is therefore defined as the IR limit
(fixed point) of the D2-brane theory. For a single D2-brane, the action for the correspond-
ing single M2-brane is simple to obtain because of the lack of self-coupling. It is obtained
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305 19.2 N = 2 orientifold of AdS5× S5

by just dualizing the gauge field to another scalar, to obtain a theory of eight scalars (cor-
responding to the eight directions transverse to an M2-brane) and fermions. But the theory
of multiple coincident M2-branes is again very mysterious, and is hard to define. We could
again, as in the case of M5-branes, define it by AdS/CFT. The heuristic derivation of the
correspondence follows in the same way, since we have a decoupling limit in which the
field theory on the branes decouples from the gravity theory in the bulk of (19.10), and we
obtain a duality between the two.

However, we will see in the next chapter that we can modify the duality of the multiple
M2-brane theory vs. AdS4 × S7 to a well-defined model called the ABJM model, that
involves a parameter k. When k = 1 we recover the M2-brane theory, but the perturbative
expansion, which is in 1/k, is lost. We will therefore not describe the duality further here.

Observables

We saw that in both cases, the gravitational side of the duality is better defined than the field
theory side, so observables are defined there. We can calculate correlation functions of field
theory operators in the same way as in the AdS5 × S5 case, by calculating Witten diagrams
in AdS space. We can also identify field theory solitons from solitonic branes in the gravity
dual. We can put the system at finite temperature and calculate transport properties. We can
calculate the anomalous dimensions of large operators from the energies of strings in the
gravity dual. We can calculate scattering of gauge invariant states. Most of the calculations
that can be done in AdS5 can be extended to these other conformal cases.

One difference appears in the case of the Wilson loop, which was defined for gauge
theories. But the M5- and M2-brane theories do not have gauge fields per se in order to
define P exp

[
i
∮

C Aadxa
]
. The single M5-brane theory has a self-dual antisymmetric tensor

field Bab on its worldvolume, and in the multiple M5-brane case we expect to have some
tensor field as well. The natural generalization will be something like P exp

[
i
∮
�

Babd�ab
]
,

which we will call a Wilson surface operator. The correct definition of this operator in field
theory is difficult, since there are no “nonabelian tensor fields Bab” in a simple sense, yet
we want an interacting version of the abelian operator exp

[∮
�

Babd�ab
]
. But again there

is no problem of defining this operator in the gravitational side, in a similar way to the
Wilson loop, as e−SM2[�], where SM2 is the M2-brane on-shell action, and corresponds to
a minimal volume for the M2-brane bounded by the closed surface � on the boundary at
infinity.

19.2 N = 2 orientifold of AdS5 × S5

We can also consider modifying the AdS5 × S5 background. If we still want conformal
invariance of the dual field theory, we need to maintain the AdS5 space untouched, so we
can only modify the S5, to obtain some AdS5 × X5 space. Yet if we also want to preserve
some supersymmetry, we need also to maintain invariance under a subgroup of the R-
symmetry, corresponding as we saw to the isometry group of X5 (S5 in the standard case,
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306 Other conformal cases

with isometry SO(6)). There is a well-defined procedure that can modify only X5 in such a
way, namely orbifolding or orientifolding.

Orbifolds and orientifolds in string theory

The concept of orbifold is one familiar from mathematics. It involves turning a base space
into a coset space, by dividing by a discrete isometry group �, namely identifying the
base space under the action of elements of �: x → γ x. That is, points mapped under the
action of � are identified, and the coset space is the space of equivalence classes under this
relation. The simplest example of � is a Z2 action, for instance the one that interchanges
x → −x. In the case of a circle, θ ∈ [−π ,π ], θ ∼ θ + 2π , considering the coset S1/Z2

gives θ ∈ [0,π ], i.e. an interval, with the endpoints 0 and π being fixed points of the
Z2 action. In general, under the orbifold identification by � we have several fixed points,
which are singular points. It is somewhat more obvious that fixed points are singular if we
consider the example of the complex plane z = x+ iy, identified under the spatial reflection
z → −z. In this case, as we can easily see, we obtain a cone with deficit angle π , so the
origin is singular (has infinite curvature).

A field theory defined on an orbifold space is obviously also singular, but one interesting
thing about string theory is that it is actually well defined on the orbifold space. For a field
theory, one only projects the Hilbert space to states invariant under �, but for a string
theory, one needs also to consider twisted states. These states are the result of the fact
that a closed string in the orbifold can be closed only in the projected space, not in the
covering space. Namely, it can start and end at different points in the covering space, that
are identified under �. For instance, in the case of the identification under spatial reflection
R, twisted states would be

Xm(σ + 2π , τ ) = −Xm(σ , τ ), (19.12)

when going around the string we identify only modulo R. As we see, there are twisted
states localized at the fixed point at the origin (Xm = 0). In the case of S1/Z2, we also have
twisted states under the combined action with the circle periodicity P,

X(σ + 2π , τ ) = 2π − X(σ , τ ), (19.13)

i.e. when going around the string, we identify modulo RP. Thus there are twisted states
localized at the fixed point X = π . In general then, twisted states are those that satisfy

X(σ + 2π , τ ) = hX(σ , τ ), (19.14)

where h is a discrete symmetry of the space of Xs.
Note then that there are twisted states localized at the fixed points of the orbifold.
An orientifold is an object that exists only within string theory. Like an orbifold, it is

obtained as a coset of a space, divided by the action of a discrete group. But the dis-
crete group is the product of a discrete spacetime isometry � with the worldsheet parity,
� : σ → 2π − σ , or z → z̄.
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307 19.2 N = 2 orientifold of AdS5× S5

In our example with the circle, the orientifold version would be S1/(Z2×�), i.e. identify
under

X(σ , τ ) ↔ −X(2π − σ , τ ) (X(z, z̄) ↔ −X(z̄, z)). (19.15)

Identifying the theory under worldsheet parity � alone leads to unoriented string theory,
whereas identifying under the Z2 action alone leads to an orbifold, and identifying under
the product leads to an orientifold. The orientifold has fixed points, which are the same
as those of the orbifold action (since the worldsheet parity does not change the action on
spacetime).

The main difference with respect to the orbifold is that there is no analog of twisted
states, since already the discrete symmetry involves an action on the worldsheet (one
can make a more rigorous argument for this). As a result, there are no states localized
at the fixed point of the orientifold. When the orientifold action is only in directions
p + 1, . . . , D − 1, but does not affect directions 0, 1, . . . , p, we have an O(p)-plane, where
the terminology follows that for D-branes.

Consider N D-branes in the presence of an orientifold plane, together with their N
images under the orientifold action. The generic gauge group on the D-branes, when they
are separated, is U(1)N . But besides the usual strings between the N D-branes, there are
now also strings between the D-branes and their images under the orientifold action. If we
have m D-branes coincident, we have as usual a U(m) gauge group. But if the m D-branes
are also at the orientifold plane, we have more light states coming from strings between the
D-branes and their images. In fact, they fit in the adjoint of the group SO(2m) or USp(2m)
(m(2m − 1) or m(2m + 1) dimensional representation). If all the D-branes are on a single
orientifold plane, the gauge group is the maximal SO(2N) or USp(2N).

The orientifold O(p) plane has a negative Dp-brane charge and a negative tension, that
can be cancelled by adding Dp-branes. On a compact space, this is necessary, since flux
lines that start on a source must end on another, so the total charge must be zero. The
charge of an O(p)-plane is QOp = −2p−5QDp, which is cancelled by 2p−5 Dp-branes on
a compact space (note that we are counting here only independent D-branes, without their
images; including their images we need 2p−4 Dp-branes to cancel the charge).

N = 2 orientifold of AdS5 × S5

We focus on an N = 2 supersymmetric orientifold of AdS5 × S5. The orientifold action
gives an orientifold O(7) plane singularity, therefore only two transverse coordinates are
affected. In terms of the six coordinates transverse to the N D3-branes defining AdS5 × S5,
z = x1 + ix2, x3, . . . , x6, the S5 metric d�2

5 is modified to d�̃2
5 as

dr2 + r2d�̃2
5 =

|dz|2
|z| + dx2

3 + dx2
4 + dx2

5 + dx2
6. (19.16)

Specifically, this means that if we write the AdS5 × S5 metric in the form

ds2 = R2(− cosh2 ρdt2 + dρ2 + sinh2 ρd�2
3 + sin2 θdψ2 + dθ2 + cos2 θd�̃2

3),

d�̃2
3 = sin2 θ ′dψ ′2 + dθ ′2 + cos2 θ ′dφ2, (19.17)
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then the Z2 action defining the orientifold is ψ → ψ + π . The effect of the orientifold is
to restrict to ψ ∈ [0,π ), θ ∈ [0,π/2). The orientifold O(7) plane is situated at sin θ = 0,
i.e. at θ = 0, which is an S3 inside the S5, parameterized by d�̃2

3.
It is also the position of an orbifold-type singularity of the metric, as we can easily verify

(we change the periodicity of the angle ψ , so we get a cone). The O(7) has a charge −4,
which must be cancelled by the addition of four independent D7-branes, since the O(7) is
inside the compact space S5, so we cannot have un-compensated charge. The gauge group
on the N D3-branes (and their images) is USp(2N), and the gauge group on the four D7-
branes (and their images) is SO(8). However, if we take the decoupling limit for D3-branes,
gs → 0,α′ → 0, it means that the coupling for the D7-branes, ∼ gsα

′(p−3)/2 → 0, hence
we obtain simply an SO(8) global symmetry.

Because of the singularity, the symmetry SO(6) of the S5 is broken to the symmetry of
S3×S1, i.e. SO(4)×SO(2) � SU(2)L×SU(2)R×U(1)R, which suggests that the dual gauge
theory must have R-symmetry SU(2) × U(1), corresponding to an N = 2 susy theory.

The gauge theory

Strings stretching between D3-brane i and D3-brane j have a state |i〉|j〉 as before. In the
un-orientifolded case the state corresponds to the adjoint of SU(N), giving the usual N = 4
SYM multiplet. Due to the orientifold projection, one instead obtains the N = 2 SYM
multiplet in the adjoint (symmetric, N(2N+1) dimensional) of USp(2N), which contains an
N = 1 chiral multiplet W, coupled to a hypermultiplet in the antisymmetric representation
of USp(2N) (N(2N − 1) dimensional), made up of two N = 1 chiral multiplets Z, Z′.
The complex scalar W (two real scalars) corresponds to the D3-brane motion in the two
directions transverse to the O(7) plane, whereas the complex scalars Z, Z′ correspond to
the D3-brane motion in the four directions transverse to the D3-brane, but parallel to the
O(7)-plane.

Strings stretching between D7-brane m and D7-brane n have a state |m〉|n〉 in the adjoint
(antisymmetric, 28 dimensional) representation of SO(8), but as we mentioned, they decou-
ple from the theory (their coupling to each other and to the rest of the fields becomes zero
in the AdS/CFT decoupling limit). Finally, strings stretching between D3-brane i and D7-
brane m give a state |i〉|m〉 in the fundamental representation of the gauge group USp(2N)
(due to the index i) and the fundamental representation of the (global symmetry) SO(8)
(due to the index m), described by hypermultiplets qim, q̃im, i = 1, . . . , 2N; m = 1, . . . , 4.
These can be thought of as N = 2 “quarks” in the theory, in that they have a fundamental
gauge index i (“color”), and a global symmetry index m (“flavor”). Note, however, that the
theory is still conformal, as seen by the gravity dual still having an unmodified AdS5 factor
(with SO(2, 4) isometry), so one can think of the resulting theory as a supersymmetric and
conformal version of QCD.

The symmetries of the theory are U(1) × SU(2)R R-symmetry and SU(2)L × SO(8)
global symmetry. The chiral fields Z, Z′ are doublets under SU(2)L, have zero charge under
U(1)R, and together with their complex conjugates form a doublet of SU(2)R. The chiral
field W is a singlet of SU(2)L × SU(2)R and has charge +1 under U(1)R. The fields q, q̃
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309 19.2 N = 2 orientifold of AdS5× S5

have zero charge under U(1)R, are singlets under SU(2)L, and together with their complex
conjugates, form a doublet of SU(2)R. The fields charged under SU(2)R can be written as
doublets satisfying a reality condition. Z, Z′ are written as ZAA′

ij , where A, B are SU(2)R

indices and A′, B′ are SU(2)L indices (and i, j are USp(2N) indices), and satisfy

ZAA′
ij = εABεA′B′�ii′ (Z

†)i′j′
BB′�jj′ . (19.18)

Also q, q̃ are written as qAm
i , satisfying the reality condition

qAm
i = εAB�ij(q

†)jm
B . (19.19)

The superpotential of the theory is given by (up to normalizations)

W ∼ (Wijq
imq̃jm + Wii′�

i′jZjj′�
j′kZ′

kk′�
k′i). (19.20)

Here Wij is the adjoint chiral field, Zij, Z′
ij are the antisymmetric chiral fields and �ij is the

antisymmetric form defining the USp(2N) gauge group.
From this superpotential, we can derive the F-terms, i.e. the on-shell values for the

auxiliary scalars F in the chiral multiplets,

Fq̃ i
m = Wijq

jm; Fq i
m = Wijq̃

jm,

FZ′ ij′ = Wii′�
i′jZjj′ − (i ↔ j′),

FZ ij′ = Wii′�
i′jZ′

jj′ − (i ↔ j′),

FW ij′ = Zii′�
i′jZ′

jj′ − (i ↔ j′) +�ii′q
i′mq̃jm�jj′ . (19.21)

The scalar potential is as usual (as we saw in Chapter 3) the sum of the F-terms and the
D-terms, V = ∑

i |Fi|2 + g2DaDa.

Gravity dual description

The gravity dual metric, obtained in the decoupling limit for the D3-branes, is (19.17),
which has as fixed point (“orientifold O(7) plane”) an S3 ⊂ S5, together with AdS5, there-
fore an AdS5 × S3 O(7) worldvolume. As we saw, at the same location as the O(7) we
have four D7-branes and their images, and the AdS/CFT decoupling limit means that
the SO(8) gauge theory on the D7-branes decouples. But as in the case of AdS5 × S5,
where gravity decouples from the D3-brane gauge theory, the decoupling of the D7-
brane gauge theory from the D3-brane gauge theory means that the D7-brane gauge
theory is part of the “gravity dual” theory to the D3-brane gauge theory. Therefore, we
should supplement the gravity dual with the 7+1-dimensional SO(8) SYM multiplet on
AdS5 × S3.

Then, to compare with the spectrum of operators in the N = 2 USp(2N) SYM theory
with matter, we need to KK expand the 9+1-dimensional bulk supergravity modes on S5,
and the 7+1-dimensional vector multiplet on the S3, giving towers of fields in AdS5. This is
as expected, since now there is a global SO(8) symmetry for the CFT fields, which should
correspond to a symmetry in the “gravity dual” (Note that the term “gravity dual” is now
slightly misleading, since it involves also the SO(8) SYM fields in 7+1-dimensions).
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310 Other conformal cases

Therefore, the bulk supergravity modes KK expanded on the S5 are as usual boundary
sources for CFT operators O with no SO(8) charges (they can have contributions from the
SO(8)-charged fields qim, q̃im, but with the SO(8) indices contracted), but now we also have
7+1-dimensional SO(8) vector modes reduced on the S3 corresponding to boundary sources
for SO(8)-charged CFT operators Om.... These SO(8)-charged operators are analogous to
pion operators in QCD. Indeed, the simplest SO(8)-charged operator would be made up
of two |i〉|m〉 fields, in the fundamental of the gauge symmetry USp(2N) and of the global
symmetry SO(8), thus Omn = q̄m

i qin (summed over gauge indices i, but not over global
symmetry indices m). For the pion we have a similar operator, with two quark fields q,
summed over SU(3)c gauge indices i, but not isospin SU(2)f indices m.

We see that quarks are introduced in the field theory for AdS/CFT by the addition of
a different kind of probe branes (here D7 and O(7)) in the gravity dual. Here we added
only four D7-branes to the background of N D3-branes. Of course, ideally one should con-
sider also the backreaction of the extra branes on the geometry, but if Nf ! Nc (as here,
4 ! N), we can neglect it. In the gravitational description, the addition of the branes
implies adding SYM modes living on these branes, which act as sources for pion-like
operators.

19.3 Other orbifolds and orientifolds

To obtain orbifolds or orientifolds of AdS5 × S5, in general we are interested in the near-
horizon limit of D3-branes sitting at the origin on R

3,1 × R
6/�, where � is a discrete

subgroup of SO(6) � SU(4)R, which corresponds to rotational symmetry transverse to the
D3-branes in the background. If � ⊂ SU(3) ⊂ SU(4)R, we have N = 1 supersymmetry,
since then the remaining symmetry, commuting with �, is U(1)R, whereas if � ⊂ SU(2) ⊂
SU(4)R, we have N = 2 supersymmetry. Since the near-horizon limit commutes with the
orbifold procedure, the near-horizon limit produces the space AdS5 × S5/�, and leads to a
CFT with the corresponding amount of supersymmetry. The action of � on S5 is the same
as the action on the angular coordinate on R

6.

Orbifold example: D3-branes on anR
4/Zk singularity

The field theory on N D3-branes at the Zk singularity has gauge group SU(N)k, since
we have an SU(N) at each image of the branes. Moreover, we have states |i〉|j̄〉 start-
ing on an image and ending on the next one, therefore we have bifundamental fields in
representations (N, N̄, 1, . . . , 1), (1, N, N̄, 1, . . . , 1), . . . , (1, . . . , 1, N, N̄), (N̄, 1, . . . , 1, N).

The gravity dual is obtained in the near horizon of the D3-branes, as AdS5×S5/Zk, where
the Zk action leaves an S1 fixed inside S5. The low-energy states are the untwisted sector
states, which are just the Zk projection of the original AdS5 × S5 states, and the twisted
states, which are k − 1 tensor multiplets existing at the orbifold fixed “plane” AdS5 × S1,
so reduce on S1 to k − 1 U(1) gauge fields on AdS5.
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311 19.4 Open strings on pp waves and orientifolds

Other orientifolds

We can construct more orientifolds of a similar type with the one from the previous
section, by considering instead of the Z2 orbifold action, leading to a D4 singularity, i.e. a
singularity that gives rise to an SO(8) (= D4) global symmetry from the D7-branes added
to cancel the orientifold charge, an E6, E7, E8 singularity, i.e. a singularity that gives rise to
the corresponding global symmetry when adding the D7-branes to cancel the charge.

The singular metric is obtained from an orbifold action on the angular (rotational) part
of R

6 at infinity, transverse to the D3-branes, giving

dr2 + r2d�̃2
5 =

|dz|2
|z|α + dx2

3 + dx2
4 + dx2

5 + dx2
6, (19.22)

where, from α = 1 for D4, we now have α = 4/3, 3/2, 5/3 for E6, E7, E8, respectively. By
defining

w = z1−α/2,

tan2 θ = |w|2
x2

3 + x2
4 + x2

5 + x2
6

, (19.23)

the angular part of (19.22) is written in a form similar to S5, just with a different periodicity,

ds2 = sin2 θdψ2 + dθ2 + cos2 θd�̃2
3, (19.24)

where θ ∈ [0,π/2] and ψ = arg(w) is periodic with periodicity 2π (1− α/2) (correspond-
ing to a full rotation in the z plane). We see that for α = 0 we obtain the usual AdS5 × S5,
and otherwise we get an orbifold action that reduces the periodicity, obtaining a singularity
at θ = 0, which is an AdS5 × S3 locus for an O(7) orientifold.

19.4 Open strings on pp waves and orientifolds

We can take the N = 2 orientifold projection of the pp wave, or equivalently the Penrose
limit of the N = 2 orientifold (19.17). In terms of the oscillators for the eight transverse
directions of the maximally supersymmetric pp wave, with the two directions transverse to
the orientifold plane being called 7 and 8, we have the action for the bosonic oscillators

aa
n → aI−n; I = 1, . . . , 6; a7,8

n →−a7,8
−n, (19.25)

and for the fermionic oscillators bn → i�56b−n.
We can also obtain the same result from the Penrose limit of the orientifold metric. In

the metric (19.17) we can consider the Z2 action to be ψ ′ → ψ ′ + π instead, giving a
fixed plane at θ ′ = 0 (sin θ ′ = 0), and then consider the null geodesic that is fixed in AdS5

and moves along the S5 circle parameterized by ψ , at θ = 0. Therefore we consider the
rescaling

ρ = r

R
; θ = y

R
; x+ = ψ + t√

2
; x− = t − ψ√

2
, (19.26)
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which leads to the momentum and energy

p+ = �+ J√
2R2

; p− = �− J√
2

, (19.27)

in terms of gauge theory quantities.
The S3 ⊂ S5 fixed plane at θ ′ = 0 has a symmetry SO(4) = SU(2)L × SU(2)R, and

then the J above, corresponding in the pp wave to rotations in the x7, x8 plane, and another
charge J′ that corresponds to rotations in the x5, x6 plane, are defined from the two J3

generators as

J = J3
SU(2)R

+ J3
SU(2)L

; J′ = J3
SU(2)R

− J3
SU(2)L

. (19.28)

To construct operators corresponding to the string states on the pp wave, we have to
consider the combinations (Z�)i

j = Zik�
kj, (Z′�)i

j = Z′
ik�

kj, (W�)i
j = Wik�

kj. A natural
ground state to be considered, by analogy with the N = 4 SYM case, is the BPS operator

Tr [(Z�)J]. (19.29)

It corresponds to the closed string ground state with
√

2p+ = 2J/R2.
Next, we consider BPS operators that correspond to the introduction of zero momentum

“impurities,” i.e. n = 0 string states, or supergravity states. In N = 4 SYM, we had
insertions of the 4 Das acting on Zs, corresponding to the action of the a†a

0 , a = 1, . . . , 4,

and insertions of �m, m = 1, . . . , 4, corresponding to the action of the a†m+4
0 , together with

insertions of half of the fermions, all having �− J = 1.
Similarly now, we still have insertions of the 4 Das on (Z�), with � − J = 1, cor-

responding to the action of the a†i
0 , a = 1, . . . , 4, exactly as in N = 4 SYM. The

difference arises in the introduction of scalar impurities (and fermions, which we will skip)
of � − J = 1, which are now (Z′�) and (�Z̄′), corresponding to a†5,6

0 (inside the O(7)

plane) and (W�) and (�W̄)′, corresponding to a†7,8
0 (transverse to the O(7) plane).

We have BPS states protected against quantum correction by supersymmetry,
where we consider insertions of only (Z′�) and (W�). The states should be
Tr [(Z�)J(Z′�)l1 (W�)l2 ], appropriately symmetrized. Indeed, the on-shell conditions
FZ = 0 and FZ′ = 0 in (19.21) mean that we can commute freely (W�) past (Z�) and
(Z′�), and the on-shell condition FW = 0 says that we can commute freely (Z�) past
(Z′�) (there are qq̃ terms which lead to splitting of the trace in two, but these are sublead-
ing in 1/N). Therefore the protected n = 0 closed string states are (the example below is
for l1 = l2, jl2−1 < il1 < jl2 )

J∑
i1,...,il1 ;j1,...,jl2=1

Tr
[(

(Z�)i1 (Z′�)
) (

(Z�)j1−i1 (W�)
)
. . .

. . .
(

(Z�)il1−jl2−1 (Z′�)
) (

(Z�)jl2−il1 (W�)
)

(Z�)J−jl2
]

. (19.30)

Note that since Z, Z′ are antisymmetric, while W is symmetric, we need l2 even.
States with n �= 0 are obtained by adding a momentum along the string. Therefore,

for instance, the operator corresponding to the orientifold projected closed string state
(a†7+i8
−n a†5+i6

n − a†7+i8
n a†5+i6

−n )|0, p+〉l.c. is
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313 19.4 Open strings on pp waves and orientifolds

∑
l

e
2π inl

J Tr [(W�)(Z�)j(Z′�)(Z�)J−l]. (19.31)

The string Hamiltonian acting on these states can be derived to be exactly the same as
in the N = 4 SYM case.

The interesting new feature of the N = 2 orientifold case, however, is the introduction of
open strings. The open strings arise from strings ending on the D7-branes at the orientifold
O(7) fixed point, therefore they obey Neumann boundary conditions in the directions a =
1, . . . , 6 parallel to the fixed point and Dirichlet conditions in the directions 7,8 transverse
to the O(7).

The open string ground state, with Chan–Patton factors (mn) is

qm�(Z�)Jqn. (19.32)

It has �− J = 1, since the qs have J = 1/2, and J′ = 1, since q is an SU(2)R doublet. The
state is antisymmetric, so is in the adjoint (antisymmetric) representation of SO(8), as we
expect from the open strings ending on D7-branes.

We have protected BPS operators corresponding to n = 0 (massless) open string states
at the orientifold fixed point, which have the same quantum numbers as the operator
qm�(Z�)J(Z′�)jqn, but are symmetrized over the insertions of (Z′�), i.e.

J∑
k1,...,kl=1

qm�(Z�)k1 (Z′�)(Z�)k2−k1 (Z′�) . . . (Z�)kl−kl−1 (Z′�)(Z�)J−klqn. (19.33)

Note that we cannot have Ws inside the trace, since by the FZ = 0 and FZ′ = 0 conditions
we can commute the Ws until the end, where by Fq = 0 = Fq̃ it should be zero.

Open string excited states are again found by acting with the same oscillators as in the
closed string case. We are not constrained, however, by the condition of zero total momen-
tum along the string worldsheet, since the string is no longer translationally invariant due
to the endpoints. In the gauge theory, there is no longer cyclicity of the trace to impose that
modes of nonzero total momentum give zero.

The orientifold action on the oscillators of the open string is

aI
n → (−1)naI

n; I = 1, . . . , 8; bn → (−1)nbn, (19.34)

where bn are fermionic oscillators.
As a final comment, we have described here how to construct open strings from an

“orientifold” of N = 4 SYM (corresponding to an orientifold of the AdS5 × S5 pp wave),
but we can also consider open strings in N = 4 SYM, that end on D-branes wrapped on
cycles (“giant gravitons”). We will, however, not describe them here.

Important concepts to remember

• The AdS/CFT correspondence can be generalized to other cases; in general, when there
is no AdS space, it is called gravity/gauge duality, and the gravitational background is
called gravity dual.

• The other two conformal and maximally supersymmetric cases of duality are AdS4 × S7

and AdS7 × S4 in M-theory.
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314 Other conformal cases

• The AdS7×S4 case is dual to the (2, 0) supersymmetric and conformal theory on multiple
M5-branes, which is not well understood, but is a nonabelian version of an abelian theory
with a self-dual 2-form field Bab, and admitting Wilson surface observables.

• The AdS4 × S7 case is dual to an N = 8 (maximally supersymmetric) theory in 2+1
dimensions on multiple M2-branes (membranes), and a not well understood theory, the
IR (strong coupling) limit of the theory on N D2-branes. It will be better understood
from the ABJM theory in the next chapter.

• Orbifolds are defined by dividing (considering equivalence classes under) a space by a
discrete symmetry group �. In general, the fixed points of the symmetry are singular in
the orbifold, which makes field theory on orbifolds singular, but string theory is well-
defined on them.

• String theory on an orbifold has twisted states, which are strings starting on a brane and
ending on an image of the same brane.

• Orientifolds are defined only in string theory, by dividing a space by a discrete symmetry
group � (orbifold action), times the worldsheet parity on the string.

• An orientifold fixed plane (O(p)-plane) has no twisted states on it, and D-branes on an
orientifold lead to USp(2N) or SO(2N) gauge groups, whereas on orbifold fixed planes
they lead to products of SU(N) groups.

• The N = 2 orientifold of AdS5 × S5 with an O(7) plane needs the addition of four D7-
branes at the plane and leads to a theory with an SO(8) global (“flavor”) symmetry for
decoupled gauge fields, and “quarks” qim, i.e. bifundamental fields |i〉|m〉 with one leg
on a D3-brane and one leg on a D7-brane, namely fundamentals of the gauge USp(2N)
and fundamentals of the global SO(8).

• In the gravity dual of the N = 2 orientifold we have a 7+1-dimensional SYM vec-
tor field on the orientifold fixed plane, giving sources to the SO(8)-charged (“pion”)
operators.

• The orientifold of the pp wave and the Penrose limit of the orientifolded AdS5 × S5 give
the same result, and permit the introduction of operators corresponding to open strings
on the pp wave, with q, q̃ at the endpoints of the operator.

References and further reading

For more on the various orbifolds and orientifolds of AdS5 × S5, see the review [26]. The
N = 2 orientifolds of AdS5 × S5 were studied in [76]. The N = 2 orientifold of the pp
wave theory (with open string spin chain) was studied in [77].

Exercises

1. Consider the metric of N extremal M5-branes and make it non-extremal by as usual
−dt2 → −dt2fT (r) and dr2 → dr2/fT (r). Take the near-horizon limit of the near-
extremal metric to find the finite temperature version of the AdS7 × S4 vs. (2, 0) theory
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315 19.4 Open strings on pp waves and orientifolds

duality. If we reduce on the Euclidean time direction of radius R1 and on another spatial
direction of radius R2, what can you say about the 4-dimensional theory that we obtain?

2. Consider the “Wilson surface” operator in the 6-dimensional (2, 0) theory at finite tem-
perature defined above. Using AdS/CFT, argue for the correct scaling of the VEV of
this operator when the surface that defines it bounds a large volume.

3. Consider C
n with complex coordinates z1, . . . , zn and a Zk action on it that acts in the

same way on all the coordinates zi and has zi = 0 as fixed point. Define the orbifold
C

n/Zk. How do you define string theory twisted states in this background?
4. Consider the 7+1-dimensional vector field AM existing on the 7-branes at the N = 2

orientifold fixed point in the gravity dual. Reducing it on the S3, we get a vector field in
AdS5. To what operator in the field theory should it correspond?

5. Consider a D3-brane wrapping the S3 ⊂ S5 on the 7-brane in the gravity dual of the
N = 2 orientifold. Propose a field theory interpretation for this solitonic object.

6. Consider the closed string oscillator state on the pp wave a†7+i8
−n−ma†5+i6

n a†5+i6
m |0, p+〉closed.

Construct from it a state invariant under the N = 2 orientifold action, and write
explicitly the corresponding field theory operator.

7. Write down explicitly the N = 2 orientifold operator corresponding to the open string
oscillator state on the pp wave a†7+i8

n a†5+i6
m |0, p+〉open, properly symmetrized by the

orientifold projection.
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20 The 3-dimensional ABJMmodel vs. AdS4 × CP
3

In the previous chapter, we saw that one of the other conformal and maximally supersym-
metric cases of AdS/CFT is the duality of M theory in AdS7 × S4 background vs. the CFT
on the IR of N coincident M2-branes. We also mentioned that there is a better definition
of the duality where we deform it by a discrete parameter k, and k = 1 corresponds to the
original case. The conformal field theory is called the ABJM model, after the authors of
the original paper, and is described next.

20.1 The ABJMmodel

We want to consider a model for the theory on coincident (nonabelian) M2-branes. Since
there are eight coordinates transverse to the M2-brane of M-theory, we expect a theory
with eight scalars. On the other hand, since the M2-brane theory is supposed to be the
strong coupling limit of the D2-brane theory, where there are seven scalars and a gauge
field, one expects that at least the degrees of freedom do not change. As also mentioned in
the previous chapter, what happens in the case of a single M2-brane is that we can dualize
the gauge field (with a single degree of freedom) to a scalar as Fμν = 1/2εμνρ∂ρφ, and
have a theory with eight scalars and no other bosons.

But at the nonabelian level, we cannot make the duality transformation. Therefore,
to describe a theory on M2-branes we would need eight scalars from the start. But we
also need nonabelian gauge fields, in order to have a relation to the theory of multiple
D2-branes, which is three-dimensional SYM. Yet we cannot have more degrees of free-
dom, since we already have the required number. However, in three dimensions we can
have Chern–Simons gauge fields that have no degrees of freedom. A minimal, Majorana,
fermion in three dimensions has two real degrees of freedom, so to have a supersymmet-
ric theory, we need four Majorana fermions. Therefore, the fields of the ABJM model
are four complex scalars CI , I = 1, . . . , 4, four Majorana fermions ψI and CS gauge
fields Aμ. It turns out that we need a gauge group SU(N) × SU(N) instead of the usual
SU(N), which means that there are CS gauge fields Aμ and Âμ for the two SU(N) fac-
tors, and CI and ψI are bifundamental, i.e. transforming as the representation (N, N̄) under
SU(N) × SU(N).

In this section we just write the action down and in the next section we show that it
reduces to the D2-brane theory, i.e. 3-dimensional N = 8 supersymmetric gauge theory
under a certain Higgs procedure. The action for the ABJM model is then
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317 20.1 The ABJMmodel

SABJM =
∫

d3x

[
k

4π
εμνλTr

(
Aμ∂νAλ + 2i

3
AμAνAλ − Aμ∂νAλ − 2i

3
AμAνAλ

)

− Tr
(

DμC†
I DμCI

)
− iTr

(
ψ I†γ μDμψI

)
+ 4π2

3k2
Tr

(
CIC†

I CJC†
J CKC†

K + C†
I CIC†

J CJC†
KCK

+ 4CIC†
J CKC†

I CJC†
K − 6CIC†

J CJC†
I CKC†

K

)
+ 2π i

k
Tr

(
C†

I CIψJ†ψJ − ψ†JCIC†
I ψJ − 2C†

I CJψ†IψJ + 2ψ†JCIC†
JψI

+ εIJKLψIC
†
JψKC†

L − εIJKLψ
†ICJψ†KCL

) ]
. (20.1)

Here the covariant derivative acts like

DμCI = ∂μCI + i
(

AμCI − CIÂμ

)
.

The action has N = 6 supersymmetry, instead of the maximal N = 8, which means
that the R-symmetry is U(1) × SU(4)R (SU(4) = SO(6)). The scalars CI and the fermions
ψI are in the fundamental 4 representation of SU(4)R, and have charge +1 under U(1)R.
The gauge fields are Chern–Simons type, i.e. ∝ Tr [A ∧ dA + 2/3A ∧ A ∧ A], whose field
equation is F = dA + A ∧ A = 0, meaning that there is no propagating degree of freedom.
The coefficient of the CS form is k/4π , with k quantized at the quantum level, i.e. k ∈ Z,
for consistency of eiS (so that it is single valued under all gauge transformations). Here the
integer k is called the level. Then we see that in the ABJM action the two gauge factors
have levels k and −k, i.e. SU(N)k × SU(N)−k.

The level parameter k serves as the deformation parameter away from the theory of N
coincident M2-branes in flat space (which corresponds to k = 1), and perturbation theory
is at large k. Indeed, we see that we have k/(4π ) in front of the action, where we usually
put 1/g2

YM, so that after the rescaling Aμ → gYMAμ, gYM is indeed a coupling constant.
Therefore, by the rescaling Aμ → Aμ/

√
k, we now have 1/

√
k as the coupling. Moreover,

as we saw, in large N gauge theories, the effective coupling appearing from planar Feynman
diagrams is the ’t Hooft coupling, λ = g2

YMN, which in our case becomes N/k. It follows
that perturbation theory is indeed at k → ∞, and the k = 1 case is strongly coupled, and
hard to describe, as expected (the fact that we have a Lagrangean for k = 1 is not of much
use, since we cannot use Feynman diagrams for perturbation theory).

The supersymmetry transformation laws are

δCI = iε̄IJψJ ,

δψJ = γ μεIJDμCI + 2π

k
2CKC†

J CLεKL − 2π

k
(CIC†

KCK − CKC†
KCI)εIJ ,

δAμ = −2π

k
(ε̄IJγμCJψ†I − ε̄IJγμψIC

†
J ),

δÂμ = −2π

k
(ε̄IJγμψ

†ICJ − ε̄IJγμC†
JψI), (20.2)
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3

where indices are raised and lowered with the SU(4) invariant metric δJ
I , and the susy

parameters εIJ are antisymmetric in IJ and satisfy

εIJ = 1

2
εIJKLεKL, (20.3)

which means they live in the 6 representation of SU(4).
We can understand parts of the supersymmetry laws as follows. As we know, the trans-

formation law for a scalar is of the type δφ = ε̄ψ , and in this case the indices match as
well. For the fermion, the linear part of the transformation law is δψ = ∂/φε, and again the
indices match. Since it is a nonabelian theory, we need to add the nonlinear part, which
is nontrivial and not easy to explain. The transformation law for the gauge field seems
unusual, since it is purely nonlinear, but we need to remember that the gauge field is of
CS type, with no propagating degrees of freedom, so its linearized transformation law can
only be δAμ = δÂμ = 0, as is the case. Again the nonlinear part is nontrivial and not easy
to explain.

One important piece of information concerns the gauge group. The theory presented
here is the SU(N) × SU(N) version of the ABJM model, but in fact we will see that the
theory related to M2-branes has gauge group U(N)×U(N). In terms of the action formally
nothing changes in the U(N) × U(N) case.

As we mentioned, we will only justify the ABJM action implicitly, through the fact that
we can obtain the multiple D2-brane action, 3-dimensional N = 8 SYM, the KK reduction
of 4-dimensional N = 4 SYM.

20.2 Reduction of M2 to D2 andMukhi–Papageorgakis
Higgs mechanism

The M2 to D2 transformation happens through a version of the usual 4-dimensional Higgs
mechanism specific to three dimensions, and discovered by Mukhi and Papageorgakis. In
four dimensions, in the Higgs mechanism one expands the action around a Higgs vacuum
〈�〉 = v (� is complex, but v is real), and then the vector gauge field Aμ “eats” a real
scalar degree of freedom θ (the phase of the complex field) and becomes massive, through
the redefinition A′

μ = Aμ + ∂μθ . The massive field has one more degree of freedom than
the massless gauge field, so the number of degrees of freedom is conserved.

In three dimensions, we could have the usual Higgs mechanism, but there is also another
version. A Chern–Simons (non-dynamical) gauge field can “eat” a real scalar and become
a dynamical Yang-Mills field (with one degree of freedom in three dimensions), through
the same redefinition as in the usual 4-dimensional case.

Abelian version of the Mukhi–Papageorgakis Higgs mechanism

We first explain the mechanism in a simple abelian case, where the steps are clearer. More
precisely, we start with a theory of two abelian CS fields, a(1)

μ and a(2)
μ , with levels k and

−k respectively, i.e. with action

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:55:26 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.022

Cambridge Books Online © Cambridge University Press, 2016



319 20.2 Reduction of M2 to D2 and Mukhi–Papageorgakis Higgs mechanism

k

2π

∫
εμνρ(a(1)

μ ∂νa(1)
ρ − a(2)

μ ∂νa(2)
ρ ). (20.4)

We can redefine the CS fields by aμ = a(1)
μ + a(2)

μ and ãμ = a(1)
μ − a(2)

μ , which turns the
action into (k/2π )

∫
εμνρaμ∂ν ãρ . Therefore consider the starting action for the CS aμ, ãμ

and a complex scalar � coupled to aμ,

S = −
∫

d3x

[
k

2π
εμνρaμ∂ν ãρ + 1

2
|(∂μ − ieaμ)�|2 + V(|�|2)

]
, (20.5)

and a vacuum � = b = constant (b is real). We can expand the scalar around this vacuum
as

� = (b + δψ)e−iθ , (20.6)

and substituting back in the action, we obtain

S = −
∫

d3x

[
k

2π
εμνρaμ∂ν ãρ + 1

2
(∂μδψ)2 + 1

2
(∂μθ + eaμ)2b2 + . . .

]
. (20.7)

The omitted terms are from V(|�|2) and the interactions between δψ and θ . Then making
the same redefinition as in the usual Higgs mechanism,

aμ + 1

e
∂μθ ≡ a′μ , (20.8)

the gauge field a′μ is now massive, and the scalar θ disappears from the action (is “eaten”).
The action then becomes

S = −
∫

d3x

[
k

2π
εμνρa′μ∂ν ãρ + 1

2
(∂μδψ)2 + 1

2
(ea′μ)2b2 + . . .

]
, (20.9)

and solving for a′μ,

a′μ = − k

2πb2
εμνρ∂ν ãρ , (20.10)

and defining f̃μν = ∂μãν − ∂ν ãμ, we obtain

S =
∫

d3x

[
− k2

16π2b2
(f̃μν)2 − 1

2
(∂μδψ)2 + . . .

]
, (20.11)

where again we have omitted some interaction terms.

Mukhi–Papageorgakis Higgs mechanism for ABJM: fromM2 to D2

Coming back to the case of the ABJM model, we consider the expansion around the Higgs
vacuum C4 = v (with v real) and the rest of the fields equal to 0. That is, one of the eight
real scalars takes a nontrivial VEV, and the other seven do not (since they are the ones that
will become the D2-brane scalars). Therefore we expand

CI = vδI4 + zI , (20.12)

or more precisely in terms of real scalars XI and XI+4,

CI = vδI41N×N + 1√
2

XI + i
1√
2

XI+4 . (20.13)
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We consider the case of U(N) × U(N), since it is related to the brane construction to be
understood in the next section. This ansatz breaks the U(N) × U(N) group to the diagonal
U(N) (similarly for SU(N)× SU(N) → SU(N)). Then we also expand in the generators Ta

of SU(N), obeying [Ta, Tb] = if ab
cTc and Tr [TaTb] = δab (in this section we consider

this normalization), and in T0 ≡ 1N×N . More precisely, we expand

CI =
(

XI
0√
2
+ vδI,4

)
T0 + i

XI+4
0√

2
T0 + i

XI
a√
2

Ta − XI+4
a√

2
Ta ,

ψ I = ψ I
0T0 + iψ I

aTa + iψ I+4
0 T0 − ψ I+4

a Ta,

Aμ = A0
μT0 + Aa

μTa, Âμ = Â0
μT0 + Âa

μTa, (20.14)

and redefine the gauge fields as

A+
μ = Aμ + Âμ

2
; A−

μ = Aμ − Âμ

2
. (20.15)

In terms of the new gauge fields, the CS part of the ABJM action becomes

SCS =
∫

d3x
k

2π
εμνλTr

(
A−
μF+

νλ +
2i

3
A−
μA−

ν A−
λ

)
. (20.16)

After some algebra, left as an exercise, the CS and scalar kinetic part of the ABJM action
becomes

S =
∫

d3x

[
k

2π
εμνλTr

(
A−
μF+

νλ +
2i

3
A−
μA−

ν A−
λ

)
− Tr |DμCI |2

]

=
∫

d3x

[
k

2π
εμνλ

(
A−
μa +

1

2v

1√
2

(DμX)4
a

)
F+a
νλ +

Nk

2π
εμνλ

(
A−
μ0 +

1

2v

1√
2

(∂μX)8
0

)
F+0
νλ

−
(

2vA−
μa +

1√
2

(DμX)4
a

)2

− N

(
1√
2
∂μXI+4

0 + 2vA−
μ0δ

I4
)2

−1

2
(DμX)A′

a (DμX)A′
a − 1

2
N∂μXI

0∂
μXI

0 + higher order

]
, (20.17)

where A′ = {A �= 4}.
After the shift

A−
μa → A−

μa −
1

2ν

1√
2

(DμX)4
a and A−

μ0 → A−
μ0 −

1

2ν

1√
2

(∂μX8
0), (20.18)

one obtains

S =
∫

d3x

(
k

2π
εμνλ(A−

μaFa+
νλ + NA−

μ0F+
νλ 0) − 4v2A−

μaA−μ
a − 4Nv2A−

μ0A−μ
0

−1

2
(DμX)A′

a (DμX)A′
a − 1

2
N∂μXÃ′

0 ∂μXÃ′
0 + higher order

)
, (20.19)

where Ã′ = {A �= 8}. We can solve for A−
μ as

A−
μ = k

16πv2
εμνλF+νλ + higher order, (20.20)
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and after substituting back into the action, we obtain

S =
∫

d3x

[
Tr

(
− k2

32π2v2
F+μνF+

μν

)
− 1

2
(DμX)I′

a (DμX)I′
a

− 1

2
N∂μXĨ′

0 ∂
μXĨ′

0 + higher order

]
. (20.21)

We can now define the YM coupling by

k2

32π2v2
≡ 1

4g2
YM

, (20.22)

and taking the limit k, v → ∞, with k
v = fixed, the higher order terms drop out. After

combining the traceless part of X8
a with the trace part of X4

0, the resulting theory is
3-dimensional U(N) SYM theory, i.e. the low energy theory on N D2-branes.

20.3 Brane construction: the IR limit of M2-branes onC
4/Zk and

AdS4 × CP
3 gravity dual

We turn next to obtaining the ABJM model from an M2-brane construction and obtain-
ing its gravity dual. We follow the original derivation of Aharony, Bergman, Jafferis, and
Maldacena (ABJM).

We show the brane construction, though it is very involved, so we do not explain all its
details, and we only use the final result to construct the gravity dual.

Brane construction

The ABJM model is realized on branes as follows. The first step is to start in type IIB string
theory with two NS5-branes in the directions 012345, separated in the 6 direction, which
is compact. Then consider N D3-branes in the 012 and 6 directions, with the D3-branes
wrapping the whole compact direction 6, and thus intersecting both the NS5 and the NS5′,
as in Fig. 20.1a. Thus the common worldvolume is in directions 012, i.e. 3-dimensional,
and it is an N = 4 susy theory (the system breaks 1/2 susy) with gauge group U(N)×U(N)
(one U(N) factor on each D3–NS5 intersection), with two N = 2 chiral multiplets Ai,
i = 1, 2 in the (N, N̄) representation and two N = 2 chiral multiplets Bj, j = 1, 2 in the
(N̄, N) representation.

The second step is to add k D5-branes, intersecting at the same point the NS5-brane and
the N D3-branes, in the directions 012349, as in Fig. 20.1b. This breaks the susy to N = 2
and adds k massless chiral multiplets in the fundamental N and k massless chiral multiplets
in the antifundamental N̄ of each U(N) factor.

The third step is to introduce CS gauge fields as follows. One first obtains a mass
term for the chiral multiplets by separating the intersection of the NS5-brane and k
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b)a)

c)

�Figure 20.1 a) Brane construction, step 1; b) Brane construction, step 2; c) Brane construction, step 3.

D5-branes through an intermediate bound state, called a (1, k) 5-brane, as in Fig. 20.1c.
Supersymmetry fixed the angle θ in the (5, 9) plane to be given by

θ = arg(τ ) − arg(k + τ ); τ = i

gs
+ χ . (20.23)

Then integrating out the fermions in the chiral and antichiral multiplets gives rise to a CS
term (as always in three dimensions), with a level +1/2 for each Majorana fermion of
positive mass and −1/2 for each Majorana fermion of negative mass, for a total level of
+k for the first U(N) and −k for the second U(N).

The fourth step is to rotate the (1, k) 5-brane in the (37) and (48) directions by the
same angle θ above, obtaining a brane in the 012[37]θ [48]θ [59]θ directions, for a total
3-dimensional theory with N = 3 supersymmetry.

The final step is to T-dualize to type IIA string theory and lift to M-theory. When
T-dualizing on direction 6, we obtain type IIA theory compactified on direction 6̃. The
D3-brane turns into a D2-brane, since the direction 6 is parallel to the D3-brane. The NS5-
brane turns into a “KK monopole” in the directions 012345, associated with the circle 6̃.
The (1, k) 5-brane turns into a KK monopole in the directions 012[37]θ [48]θ [59]θ , asso-
ciated with the circle 6̃, and k D6-branes on the same directions. Lifting to M-theory, the
D2-brane becomes an M2-brane, the KK monopole remains a KK monopole, just extended
in direction 10 also. The D6-brane also turns into a KK monopole, associated with direc-
tion 10, which means that the type IIB (1, k) 5-brane turns into a single KK monopole,
associated with a direction that is a linear combination of directions 6̃ and 10.
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All in all, the brane system has lifted to M-theory into a geometry of two intersecting
KK monopoles (coming from the NS5 and the (1, k) 5-brane), R

1,2 ×X8, probed by N M2-
branes, coming from the N D3-branes. Near the core, each monopole looks like R

4, but the
intersection of the two looks like C

4/Zk. Therefore, the IR limit of the system corresponds
to the near-horizon limit of N M2-branes probing the C

4/Zk singularity. On the other
hand, the IR limit of the field theory, which is the N = 3 supersymmetric U(N) × U(N)
theory with YM-CS gauge fields described before, is exactly the ABJM model, the N = 6
supersymmetric U(N) × U(N) CS gauge theory.

Gravity dual

The M2-branes probe the C
4/Zk singularity, where Zk acts on the eight Euclidean

coordinates of C
4 as

Zi → e
2π i

k Zi, (20.24)

and since as we saw in the previous chapter, the gravity dual of N M2-branes in flat space
is AdS4 × S7, the gravity dual in our case is AdS4 × S7, divided by the Zk action, i.e.
AdS4×S7/Zk, since the 7-sphere is defined by

∑4
i=1 |Zi|2. But the 7-sphere can be writtten

as an S1 Hopf fibration over CP
3, and then the Zk action just makes the S1 k times smaller,

thus leading simply to CP
3 in the k → ∞ limit. The S1 can be easily identified as the one

defined by the common angle multiplying the Zis, Zi = eiαZ′
i , so Z′

i should define CP
3. We

next describe this construction.
As we saw in the previous chapter, the AdS4 × S7 metric is

ds2 = R2

4
ds2

AdS4
+ R2ds2

S7 , R = lP(32π2N′)1/6. (20.25)

Here N′ = Nk is the charge in the covering space, such that in the gravity dual AdS4×S7
Zk

we have charge N.
We can easily see that by eliminating the S1 fiber of S7 we get CP

3, since CP
3 is defined

by coordinates ζl = Zl/Z4, l = 1, 2, 3; and by defining them, we get rid of the eiα fiber and
the 7-sphere constraint becomes

∑
l=1,2,3 |ζl|2 + 1 = 1/|Z4|2, which therefore becomes

moot (it is a constraint on Z4, that is outside CP
3). To find the metric on CP

3, we first
write the metric on S7 as a Hopf fibration, by solving the constraint in terms of |Z4| and
substituting in the embedding metric ds2 = ∑4

i=1 |dZi|2, with Z4 = |Z4|eiτ , to obtain

ds2
S7 = (dτ +A)2 +

∑
l |dζl|2

(1 +∑
l |ζl|2)

−
∑

l,k ζlζ̄kdζldζ̄k

(1 +∑
l |ζl|2)2

,

A = i
∑

l ζ̄ldζl − c.c

2(1 +∑
l |ζl|2)

. (20.26)

By dropping the first term, we get the metric on CP
3. Indeed, the Zk action amounts to the

substitution τ → τ/k, which shrinks the first factor to zero, except for the 1-form A.
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We can also rewrite the metric in terms of the original Zi variables as

ds2
S7 = (dτ +A)2 + ds2

CP
3 ,

ds2
CP

3 =
∑

i dZidZ̄i∑
j |Zj|2 − |∑i ZidZ̄i|2

(
∑

j |Zj|2)2
,

dτ +A = i

2
∑

j |Zj|2
∑

i

(ZidZ̄i − Z̄idZi),

dA = i
∑

i

d

(
Zi∑

j |Zj|2
)

d

(
dZ̄i∑
k |Zk|2

)
. (20.27)

The periodicity of τ is 2π , but it is reduced when we act with Zk, to obtain

ds2
S7/Zk

=
(

1

k
dτ +A

)2

+ ds2
CP

3 . (20.28)

The radius of the S1 fiber is R/klP ∼ (Nk)1/6/k, so the M theory limit is k5 ! N. For larger
ks, we have a small circle, and we can reduce to type IIA string theory. The reduction to
type IIA, using the reduction ansatz in Chapter 7 gives for the string metric, dilaton, and
forms

ds2
string =

R3

kl3P

(
1

4
ds2

AdS4
+ ds2

CP
3

)
,

e2φ = R3

k3l3P
∼ 1

N2

(
N

k

)5/2

,

F4 = 3

8
R3ε̂4,

F2 = kdA, (20.29)

where ε̂4 is the volume form on S7, normalized to 1. The radius of curvature in string units
is given by

R2
string

l2s
= R3

kl3P
= 25/2π

√
λ, (20.30)

where we have introduced the ’t Hooft coupling λ = N/k described before. Note that, as
in N = 4 SYM, we have R2

string ∝
√
λ.

In conclusion, the ABJM model is dual under the AdS/CFT correspondence to IIA string
theory on AdS4 × CP

3. In order for the type IIA supergravity approximation to be valid,
we need that R2

string/l2s # 1, i.e. λ # 1, and in order to be in type IIA string theory, and

not in M-theory, we need λ5/2/N2 ! 1.
Finally, we want to understand from the gravity dual the fact that we proved in the

previous section, that the ABJM model reduces, around a Higgs vacuum C4 = v, and in
the limit k, v → ∞, with k/v fixed, to the N = 8 U(N) SYM theory. Specifically, this
means that the theory on the IR of N M2-brane on C

4/Zk in the above limit, reduces to the
theory on N D2-branes in flat space. This is understood as follows.
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325 20.4 The massive deformation of the ABJMmodel

Consider first as an example the case of C/Zk→∞. Then the action of the Zk is

Z → Ze
2π i

k = Z

(
1 + 2π i

k
+ . . .

)
= Z + 2π i

Z

k
+ . . . (20.31)

Therefore, expanding around the Higgs vacuum Z = v, with v real and v/k ≡ r fixed, we
obtain the invariance under

Z → Z + 2π ir, (20.32)

or, if we write Z = X1 + iX2, it means X2 is compactified with radius r. Moving on to
C

4/Zk→∞, with the Zk action

Zj → Zje
2π i

k = Zj

(
1 + 2π i

k
+ . . .

)
= Zj + 2π i

Zj

k
+ . . . , (20.33)

and expanding around the Higgs vacuum Z1 = v, with v real and Z2,3,4 = 0, then writing
Z1 = X1 + iX2, it means X2 is compactified with radius r.

Therefore, in the limit k, v → ∞ with k/v fixed, the ABJM model, for N M2-branes
on C

4/Zk→∞, turns into the theory on N M2-branes in a flat space with a transverse
compactified dimension, i.e. N D2-branes in flat 10-dimensional space, as it should.

20.4 Themassive deformation of the ABJMmodel

The ABJM model admits a unique maximally supersymmetric mass deformation, i.e.
a mass deformation that preserves N = 6 supersymmetry. This is unlike the case of
N = 4 SYM in four dimensions, where any deformation, including a mass deform-
ation, decreases the supersymmetry. However, even though the amount of supersymmetry
is the same, which means that the supersymmetry transformation laws transform under
the same R-symmetry SU(4) × U(1), in the Lagrangean the R-symmetry is broken to
SU(2) × SU(2) × U(1)A × U(1)B × Z2. This is done by splitting the scalars as

CI = (Qα , Rα), α = 1, 2, (20.34)

and adding terms to the Lagrangean and supersymmetry transformation rules.
The SU(2) factors act independently on each of the doublets Qα and Rα , under U(1)A Qα

has charge +1 and Rα has charge −1; under U(1)B (that was the U(1) multiplying SU(4)R

before the split) Qα and Rα both have charge +1, and Z2 exchanges Qα and Rα .
The extra terms in the Lagrangean can be found as follows. We add fermionic mass

terms with mass μ, and we also add a deformation to the bosonic potential.1 The bosonic
mass-deformed ABJM Lagrangean is written as

1 These are the only possible terms in L if the only dimensionful parameter is μ, since from the kinetic terms
∼ ψ̄∂/ψ and ∼ (∂C)2, the fermion ψ has dimension 1, and the scalar C has dimension 1/2. Then the only
possible interaction terms of dimension 3 are C6 and ψ̄ψC2, already in the pure ABJM action, and μψ̄ψ and
μC4,μ2C2 giving the deformation.
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Lbosonic = k

4π
εμνλTr

[
Aμ∂νAλ − Âμ∂ν Âλ + 2i

3

(
AμAνAλ − ÂμÂν Âλ

)]
− Tr |DμQα|2 − Tr |DμRα|2 − V . (20.35)

Here the potential splits as

V = Tr
(
|Mα|2 + |Nα|2

)
,

where

Mα = μQα + 2π

k

(
2Q[αQ†

βQβ] + RβR†
βQα − QαR†

βRβ + 2QβR†
βRα − 2RαR†

βQβ
)

,

Nα = −μRα + 2π

k

(
2R[αR†

βRβ] + QβQ†
βRα − RαQ†

βQβ + 2RβQ†
βQα − 2QαQ†

βRβ
)

.

The mass deformation of the supersymmetry transformation rules is given by2

δ(μ)ψI = 1

2
εJKCK

⎛
⎜⎜⎝
μ 0 0 0
0 μ 0 0
0 0 −μ 0
0 0 0 −μ

⎞
⎟⎟⎠

I

J

. (20.36)

Because of the reality condition (20.3), we can split the susy parameters εIJ in terms
of α, α̇ independent complex components (ε12, ε11̇, ε12̇) (thus giving N = 6 real super-
symmetries), and dependent components (the εs are antisymmetric, so e.g., ε1̇1 = −ε11̇,
etc.):

ε1̇2̇ = ε12; ε22̇ = −ε11̇; ε1̇2 = −ε12̇. (20.37)

20.5 The fuzzy sphere ground state

The ground states of the mass-deformed ABJM model are found by setting to zero the
potential in (20.36), which in turn implies that Mα = 0 = Nα . We can easily find that the
two solutions to these equations are

Rα = cGα; Qα = 0 and Q†
α = cGα; Rα = 0, (20.38)

where c ≡
√

μk
2π , and the matrices Gα , α = 1, 2, satisfy the equations

Gα = GαG†
βGβ − GβG†

βGα . (20.39)

Since this is a zero energy ground state of the mass-deformed ABJM model, it preserves
all the supersymmetry of the model, i.e. it is N = 6 supersymmetric.

2 The normalization is such that the scalar mass term in the Lagrangean is −μ2Tr [C̄ICI ].
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327 20.5 The fuzzy sphere ground state

An explicit solution of the above equations (20.39) can be easily found to be

(G1)m,n =
√

m − 1 δm,n ,

(G2)m,n =
√

(N − m) δm+1,n ,

(G†
1)m,n =

√
m − 1 δm,n ,

(G†
2)m,n =

√
(N − n) δn+1,m . (20.40)

In fact, one can show that this is the unique irreducible solution, up to U(N)×U(N) gauge
transformations. Note that, since Qα and Rα are bifundamenal, so are Gα , meaning that
GαG†

β is in the adjoint of the first U(N) and G†
αGβ is the adjoint of the second U(N). One

can construct more general reducible solutions as direct sums of these irreducible ones.
In the case of the pure (massless) ABJM model, we see that c → 0, so the ground state

solution disappears. In fact, instead of a ground state solution, now we have a BPS solution,
i.e. a nontrivial, space-dependent solution that has nonzero energy, but preserves 1/2 of the
supersymmetry. The solution is formally of the same type, except now the constant c is
replaced with the function

c(s) =
√

k

4πs
, (20.41)

where s is one of the two spatial directions on the worldvolume of the ABJM model.
The interpretation of the ground state solution of massive ABJM, the solution to (20.39),

is of a fuzzy sphere. It was initially thought to be a fuzzy 3-sphere, since the ABJM model
lives on M2-branes, and in M-theory M2-branes can end on M5-branes, which would have
been the natural interpretation of the BPS solution of pure ABJM: on M2-branes, at s = 0
an extra infinite 3-dimensional volume grows, corresponding to the point on which the M2-
brane touches the M5-brane. However, it was shown that it is actually a fuzzy 2-sphere, and
we can make a precise map to the usual formulation of the fuzzy S2 described in Section
13.3. Then the interpretation is that we dimensionally reduce to type IIA string theory,
so we have actually D2-branes ending on D4-branes, and the fuzzy S2 sphere at s = 0
is the point where the D4-brane grows out of the D2-brane. In fact, this was confirmed
by calculating the action of small fluctuations around the fuzzy S2 in the classical limit
N →∞, finding that the action is the D4-brane action wrapped on S2 in the gravity dual.

The reason why the fuzzy sphere is actually a fuzzy S2 at all values of N (finite, except
N = 2, which is special) is still unclear, but in the classical limit N → ∞, when the
fuzzy sphere becomes classical, it can be easily understood. The perturbative parameter of
ABJM is the ’t Hooft coupling λ = N/k, and at N → ∞, if we want to have a pertur-
bative expansion, which is needed in order to define the fuzzy sphere and the field theory
expansion around it, we need then to have also k → ∞. But as we saw, at k → ∞, the
11-dimensional circle shrinks to zero and we are in 10-dimensional type IIA string theory
(C4/Zk becomes R

7 and AdS4 × S7/Zk becomes AdS4 × CP
3).

We give some simple arguments why (20.39) gives a fuzzy S2 to motivate it. A much
more complete analysis can be done, but will not be explained here. First, we note that the
matrices (20.40) imply the relations
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∑
α=1,2

GαG†
α = (N − 1)1;

∑
α=1,2

(G†
αGα)mn = Nδmn − Nδm1δn1; ⇒

∑
α=1,2

Tr [GαG†
α] = N(N − 1) = const. (20.42)

This would seem like the definition of a (normalized) unit 3-sphere, using a constraint on
two complex coordinates,

∑
α=1 |Zα|2 = 1, but the matrices are fixed (given) matrices, so

we cannot necessarily deduce this. In fact, we see that G1 = G†
1, so if these Gα represent

coordinates, then G1 would be interpreted as being real (zero imaginary part), in which
case the constraint would truly be for an S2, |Z2|2 + (ReZ1)2 = 1.

We can also directly find the usual SU(2) formulation of the fuzzy S2. The composite
matrices

Ji = (σ T
i )αβGβG†

α , (20.43)

where Gα are the matrices (20.40) satisfy the usual SU(2) algebra defining the fuzzy S2,

[Ji, Jj] = 2iεijkJk. (20.44)

Here σi are the Pauli matrices, and σ T
i are their transposes. In fact, we can directly find

the SU(2) commutation relations starting from the algebra (20.39), which we leave as an
exercise to prove. But we also find that

J̄i = (σ T
i )αβG†

αGβ (20.45)

satisfy the same SU(2) algebra for the fuzzy S2. It would seem that we have two indepen-
dent fuzzy S2s, with symmetry SU(2)× SU(2), which would equal the SO(4) symmetry of
S3, but in fact the two algebras are not independent, since it is only when acting together
on the representation Gα we have a symmetry, namely

JiG
α − Gα J̄i = (σ T

i )αβGβ . (20.46)

Finally, since the Gα describe a fuzzy S2, it follows that the ground state of massive
ABJM is the fuzzy S2, and the BPS state of the massless (pure) ABJM is the fuzzy S2-
funnel, since the radius of the fuzzy sphere varies as ∝ 1/

√
s, from zero at s = ∞, to

infinity at s = 0.

20.6 Some comments on applications of the ABJM/AdS4×
CP

3 correspondence

For the ABJM/AdS4 × CP
3 correspondence, one can calculate almost all the quantities

that can be calculated in the 4-dimensional N = 4 SYM case. The ABJM model has been
used primarily as a toy model for condensed matter, where most of the interesting behavior
occurs in three dimensions. We describe this in Chapter 25, hence we do not do it here.
This includes the treatment of finite temperature. Another important application is to spin
chains and integrable systems, but since we have described at length how to do this in the

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:55:26 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.022

Cambridge Books Online © Cambridge University Press, 2016



329 20.6 Some comments on applications of the ABJM/AdS4 × CP
3 correspondence

case of N = 4 SYM, we also do not describe it. Correlators of gauge invariant operators
can also be easily calculated using AdS/CFT, as in the case of N = 4 SYM treated in
Chapter 11. One can also calculate scattering of (non-gauge invariant) external states, but
since even in the case of N = 4 SYM we will only be describing that in Chapter 26, we
do not study it here either.

Important concepts to remember

• The ABJM model is a 3-dimensional conformal N = 6 supersymmetric, U(N) × U(N)
(or SU(N) × SU(N)) CS gauge theory (with levels k and −k respectively) with
bifundamental scalars and fermions.

• The Mukhi–Papageorgakis Higgs mechanism in three dimensions means that around
the Higgs vacuum, the nondynamical CS gauge field eats a real scalar and becomes
dynamical, i.e. Yang–Mills.

• The mechanism can be used to show that the ABJM model (on M2-branes) around a
Higgs vacuum reduces to N = 8 SYM theory, the theory on D2-branes.

• The ABJM model arises in the IR limit of N coincident M2-branes on the space R
2,1 ×

C
4/Zk, and its gravity dual is AdS4 × S7/Zk. In the k →∞ limit, we have AdS4 ×CP

3

in type IIA string theory.

• The ABJM model admits a mass deformation that preserves the whole N = 6
supersymmetry.

• The (N = 6 supersymmetric) ground state of mass-deformed ABJM is a fuzzy 2-sphere
written in terms of matrices Gα , and the BPS (N = 3) state of pure ABJM is the fuzzy
S2 funnel.

References and further reading

The ABJM model and its gravity dual were defined in [78]. The Mukhi–Papageorgakis
Higgs mechanism was defined in [79]; a fuller analysis was done in [82]. The massive
deformation of ABJM, and the definition of Eqs. (20.39) and their explicit solutions (20.40)
can be found in [83]. The fact that these solutions describe a fuzzy 2-sphere, which can be
mapped to the usual description of the fuzzy 2-sphere, was explained in [80, 81].

Exercises

1. Prove the invariance of the part quadratic in fields of the ABJM action (20.1) under the
linearized part of the supersymmetry transformation rules (20.2).

2. Prove relation (20.17).
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3. Prove that the transformation of coordinates from (20.26) to

ζ1 = tanμ sinα sin(θ/2) εi(ψ−φ)/2 εiχ/2,

ζ2 = tanμ cosα εiχ/2,

ζ3 = tanμ sinα cos(θ/2) εi(ψ+φ)/2 εiχ/2 , (20.47)

and reduction on τ , results in the CP
3 metric

ds2
CP

3 = dμ2 + sin2 μ
[
dα2 + 1

4
sin2 α

(
σ 2

1 + σ 2
2 + cos2 α σ 2

3

)
+ 1

4
cos2 μ

(
dχ + sin2 α σ3

)2
]
, (20.48)

where σ1, σ2, σ3 are left-invariant 1-forms on S3, given by

σ1 = cosψ dθ + sinψ sin θ dφ ,

σ2 = sinψ dθ − cosψ sin θ dφ ,

σ3 = dψ + cos θ dφ, (20.49)

and the range of the angles is

0 ≤ μ, α ≤ π

2
, 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , 0 ≤ ψ , χ ≤ 4π . (20.50)

4. Check that (20.40) is a solution of (20.39). Then check that the fuzzy funnel with
(20.41) is a solution of the pure ABJM model.

5. Show that we can derive the SU(2) commutation relations for Ji from the Gα matrices
algebra (20.39) (independent of any specific representation).

6. Consider the 3-point correlators of SU(4)R R-symmetry currents Ja
μ in the ABJM model.

From the gravity dual, argue whether it has an anomalous part, and write down the
Witten diagram in AdS4 for the nonanomalous part. Where does the vertex in the Witten
diagram come from when we dimensionally reduce the 10-dimensional type IIA action
in (7.113)?
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21 Gravity duals

For field theories with no conformal invariance, and less supersymmetry, the gravity dual
background corresponding to them has no AdS factor, and the compact space is not nec-
essarily a sphere. In order to have a gravity dual background, we need in general to find a
brane system on which the field theory lives, and to take a decoupling limit for the corres-
ponding gravity dual, that makes it possible to have a duality between the field theory and
gravity in the background.

What we are ultimately interested in is to understand Quantum Chromo Dynamics
(QCD), which is a theory that is nonperturbative at low energy, having a coupling constant
that runs with energy (asymptotic freedom), is confining, and has a mass gap. Therefore,
we look for models that have similar properties, though we will see that up to now there is
no model without caveats.

21.1 General properties, map, features

To understand the general properties of gravity duals, in particular ones that could become
close to QCD, we first look at an example.

We have in fact already seen one such example in Section 15.5, obtained by putting
N = 4 SYM at finite temperature. The finite temperature broke the conformal symmetry
by introducing an energy scale, the temperature T , whereas the supersymmetry was broken
by the presence of antiperiodic boundary conditions for the fermions around the periodic
Euclidean time. We saw that Kaluza–Klein dimensional reduction of N = 4 SYM on the
periodic Euclidean time gave us a 3-dimensional theory of pure glue (only 3-dimensional
gauge fields Aa

μ), which has a mass gap. We derived the mass gap from the fact that the
gravity dual (15.37) acts as a 1-dimensional quantum mechanical box, with a nonzero
ground state energy.

Unfortunately, in that example, the energy scale M0 characterizing the mass gap and the
masses of the discrete tower of states are proportional to the only other scale available in
the theory, the temperature scale T . However, at the scale T = 1/R we start having back
the rest of the fields of N = 4 SYM in four dimensions, instead of pure glue in three
dimensions. This is so since the masses of Kaluza–Klein states (Fourier modes around
periodic time) are given by

m2e
iny
R = −∂2

y e
iny
R = n2

R2
e

iny
R , (21.1)
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332 Gravity duals

so when we reach the energy E1 = 1/R we can neglect them no longer. The fermions
that were dropped out of the theory for being massive also have masses M ∝ T = 1/R.
That means that any quantitative statements about the mass gap or massive states in 3-
dimensional QCD are no longer quite valid, since the mass scale involved is the one at
which the theory is 3-dimensional QCD no longer. The statements about mass gap and
massive states are of course valid in the full modified QCD theory.

Unfortunately, this is the situation in all attempts at a QCD (or N = 1 Super QCD)
gravity dual analyzed until now. One would hope that there would be a separation of
scales between the interesting physics scale M0 and the cut-off scale of the model (here
T = 1/R), i.e. M0 ! T , which could in principle appear due to, e.g., string coupling
dependence. However, in all models studied so far, this never happens in a controllable
way (such that we can calculate what happens): when there is a separation of scales, we
are in a nonperturbative regime and we can calculate no longer.

With this caveat in mind, we now turn to general properties of gravity duals of interesting
field theories.

Minimal ingredients of a gravity dual theory that can simulate QCD

• A large N quantum gauge field theory. The gauge group most common is SU(N) (appear-
ing as we saw on D3-branes away from singularities), but SO(2N) or USp(2N) are also
possible (appearing when the D3-branes are sitting on orientifold planes). In the gravity
theory, N corresponds to a number of branes, and gives a discrete parameter charac-
terizing the curvature of space. We need N → ∞ to have small quantum string (gs)
corrections.

• We usually want the field theory to exist in flat space. This flat space can be identified
with the boundary at infinity of the gravity dual. However, often it is better to think that
the flat space at some position r in the fifth dimension, corresponding to a field theory
energy scale U, is identified with the flat space of the field theory at that scale U.

• Indeed, since we are interested in nonconformal field theories, the energy scale is rel-
evant (the theory does not look the same at all energy scales). The energy scale is
identified with the extra (radial) dimension of the gravity dual, whose infinity limit gives
the boundary of space. In the case of N = 4 SYM (or more precisely, for the finite tem-
perature case which is nonconformal), the energy scale is U = r/α′, as we have already
argued. We obtain the so-called UV–IR correspondence: the UV of the field theory (high
energies E = U) corresponds to the IR of the gravity dual (large distances, or r → ∞),
and vice versa.

• The gravity dual is then defined by the d + 1-dimensional space obtained from the field
theory space (boundary at infinity) and the energy scale, together with a compact space
Xm whose symmetries give global symmetries of the field theory.

• The nonconformal theories we are interested in are asymptotically free, which means
they are defined in the UV. This is the correct meaning of the statement that the field
theory exists at infinity (U → ∞) in the dual: it is there that the theory is perturbative.
However, since U is an energy scale, it means that the physics at different energy scales
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333 21.1 General properties, map, features

in the field theory correspond to physics at different radial coordinates U in the gravity
dual. This means that motion in U corresponds to RG flow in the field theory. In partic-
ular, the low energy physics (IR) of interest (since it is hard to calculate in field theory)
is situated at small values of U in the gravity dual.

Map between field theory and gravity dual

Next we want to define the general properties of the map between field theory and gravity
dual, i.e. the relations that are model-independent.

• The gauge group of the field theory has no correspondent in the gravity dual and only
quantities that do not involve color indices in a nontrivial way can be calculated (e.g.
correlators of gauge invariant states).

• Global symmetries in the d-dimensional field theory correspond to gauge symmetries in
the d + 1-dimensional space (of the gravity dual reduced over the compact space Xm),
which themselves correspond to isometries of the compact space Xm. Noether currents
Ja
μ for the global symmetries couple to (i.e., correspond to) gauge fields Aa

μ for those
gauge symmetries in the gravity dual.

• An important special case of symmetry is translational invariance, with generator Pμ in
the field theory, whose local version is general coordinate invariance of the gravity dual.
Correspondingly, the energy-momentum tensor Tμν (Noether current of Pμ) couples to
the graviton gμν (“gauge field of local translations”) in the gravity dual.

• As in the AdS5 × S5 case, the string coupling is gs = g2
YM/(4π ), which comes from the

fact that gclosed = g2
open.

• Gauge invariant operators in the dual couple to (are sourced by) d+1-dimensional fields
in the gravity dual.

• Supergravity fields in the d + 1-dimensional space (dual reduced on Xm) couple to
SYM operators (made of adjoint fields) in field theory (“supergravity ↔ gauge field
glueballs”).

• To introduce “quarks” in the field theory (fields in the fundamental of the gauge group
and some representation of a global symmetry group G), we need to introduce SYM
fields for the group G in the gravity dual, which couple to G-charged, pion-like operators
(made of “quarks”) in the field theory (“SYM ↔ pion fields”). We have seen this in the
case of the N = 2 orientifold in Chapter 19.

• Thus glueballs ↔ supergravity modes and mesons ↔ SYM modes.
• The mass spectrum Mn of the tower of glueballs is found as the mass spectrum for the

wave equation of the corresponding supergravity mode in the gravity dual, as in the
example of AdS5 × S5 at finite temperature studied in Section 15.5. A similar statement
holds for mesons. We explore this statement in more detail later in the chapter.

• As we explained in Chapter 13, baryons are operators that have more than two funda-
mental fields (in QCD, there are three, in an SU(N) gauge theory there are N). They
have a solitonic character in field theory: for example, they can be obtained as topologi-
cal solitons in the Skyrme model. The same is true in AdS/CFT: in the original AdS5×S5

AdS/CFT, we saw that the baryon vertex, understood as a bound state that couples to N
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334 Gravity duals

external quarks, corresponds to a D5-brane wrapped on the S5. The same is true in more
general models, the baryons being obtained in soliton-like fashion by wrapping branes
on nontrivial cycles.

• Wavefunctions of states in field theory, for instance eik·x, correspond to wavefunctions

�(x, U, Xm) = eik·x�(U, Xm) (21.2)

of states in the gravity dual, i.e. obtained by multiplying with a wavefunction for the
extra coordinates.

General features of gravity duals for QCD-like or SQCD-like theories

We have seen the minimal ingredients needed to construct a gravity dual, and how to map
quantities between field theory and gravity dual. But we are specifically interested in grav-
ity duals of theories that look like QCD, or perhaps like supersymmetric QCD (SQCD), so
we want to describe what features we expect from such gravity duals, and are common to
attempts at such a solution.

• At high energies, QCD or the QCD-like theories look conformal, since all mass scales
become irrelevant. Therefore in the field theory UV, mapped to the region close to the
boundary of the dual, U → ∞, the gravitational space looks like AdS5 × X5, with X5

some compact space, maybe with some subleading corrections to the metric.

• At low energies, QCD or the QCD-like theories are nontrivial, and have a mass gap. For
AdS5 × S5, the wave equation does not give a mass gap (a discrete tower of mass states),
a statement mapped to the fact that there is no mass gap in a CFT. Therefore, for the
gravity dual of the QCD-like theory, space must terminate in a certain manner before
U = 0, such that the “warp factor” U2 in front of d�x2 remains finite. In fact, since a
singularity would not be good for the field theory, the space must terminate in a smooth
manner.

We have already explained a more rigorous, though not always applicable, way to
see this. It takes a finite time for a light ray to go to the boundary of AdS space,
since ds2 = 0 implies

∫
dt = ∫∞ dU/U2 = finite. However, it takes light an infi-

nite time to go to the center of AdS space, since
∫

dt = ∫
0 dU/U2 = ∞. Therefore,

if AdS space cuts off before U = 0, as far as light is concerned, AdS space acts
as a finite box, with a discrete spectrum and a mass gap (like a quantum mechanical
1-dimensional box). We come back to this later in the chapter, when we study mass
spectra.

• If fundamental quarks are introduced in the theory, open string modes (forming a gauge
theory) living on a certain brane in the gravity dual must be introduced. These will
couple to the meson-like (pion-like) operators. We have seen this in the case of the
N = 2 orientifold, where the brane was fixed at the orientifold point. A similar way to
introduce quarks is to introduce free probe branes, that can move at different positions
U in the gravity dual, and thus probe the field theory physics at different energy scales;
this is the case of the Sakai–Sugimoto model studied later in the chapter.
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335 21.2 Finite temperature and cut-off AdS5 solutions

• If the QCD-like theory has global symmetries (like flavor symmetries or R symme-
tries), they are reflected in local symmetries in the d + 1-dimensional dual theory, or
equivalently in symmetries of the extra dimensional space Xm.

21.2 Finite temperature and cut-off AdS5 solutions

We now start to look at examples of the general description defined in the last subsection,
beginning with examples we have already started to analyze.

Finite temperature redux

We start with another look at the case of AdS5 × S5 at finite temperature, since it is the
simplest toy model for QCD in three dimensions. The n + 1-dimensional metric obtained
by Witten from scaling the AdSn+1 black hole was, as we saw,

ds2 =
(
ρ2

R2
− Rn−2

ρn−2

)
dτ 2 + dρ2

ρ2

R2 − Rn−2

ρn−2

+ ρ2
n−1∑
i=1

dx2
i . (21.3)

We also saw that the rescaling ρ/R = r/r0, τ = tr0/R, �x = �yr0/R2 leads to the Poincaré
version of the finite temperature AdSn+1,

ds2 = r2

R2

[
−dt2

(
1 − rn

0

rn

)
+ d�y2

(n−1)

]
+ R2 dr2

r2
(

1 − rn
0

rn

) , (21.4)

which for n = 3, adding the S5 metric to the above, is the same as the metric of the
near-horizon near-extremal D3-branes.

Now we want to verify the general features of gravity duals of QCD-like theories
explained in the previous subsection. We see that indeed at large r the metric goes over
to AdS5 × S5 (in Poincaré coordinates), corresponding to the fact that in the UV the field
theory is still N = 4 SYM, whereas at small r the space terminates smoothly at r = r0.
The SO(6) symmetry of the S5 corresponds as at T = 0 with the global R-symmetry of the
UV theory, i.e. of N = 4 SYM. Since there are no quarks in this gravity dual, this matches
all the general features described in the last subsection.

Cut-off AdS5 redux: modified hard-wall

The simplest possible model for QCD is obtained just by cutting the AdS5 at an rmin =
R2�. This is the “hard-wall” model for QCD, described in Section 16.1, and used for high
energy QCD scattering of colorless states via the Polchinski–Strassler prescription.

Then trivially one has that the large r metric is AdS5 × S5, and at r = rmin the space
terminates (though not smoothly). Also trivially, light travels a finite time between r = rmin
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and r = ∞, and the spectrum will be discrete and have the mass gap ∝ �, the only scale
in the theory. Therefore � can be phenomenologically fixed to be related to the mass gap.
Again we have SO(6) R-symmetry in the UV, corresponding to the symmetry of the S5,
and we have no quarks in the theory, so again we match all the general features of gravity
duals of QCD-like theories.

But one can improve this simple model, by making the cut-off dynamical, i.e. consider-
ing it as an added D-brane living at r = rmin in the gravity dual. By the arguments given
before, the modes on this extra D-brane should source pion-like operators. In fact, it turns
out that the fluctuation in the position of this D-brane is a good enough model for (a scalar
singlet version of) the QCD pion. One can use this to obtain a more precise version of the
saturation of the Froissart bound described in Section 16.5, since now we have a gravity
dual for the pion, not just for the glueball (in Section 16.5 we implicitly considered the
Froissart bound for a theory with only glueballs, no mesons).

21.3 The Polchinski–Strassler and Klebanov–Strassler solutions

We next consider two gravity duals of N = 1 supersymmetric models.

Polchinski–Strassler solution

The Polchinski–Strassler solution gives the gravity dual of N = 1∗ SYM, which is a
certain massive deformation of N = 1 SYM (there are couplings to massive modes), but
was found in an attempt to describe the gravity dual of the undeformed theory, so we just
consider it as a toy model for N = 1 SYM and QCD. The brane configuration giving it is
of D3-branes “polarizing” (puffing up, by the appearance of an extra space) into D5-branes
due to the presence of a nonzero flux. It exhibits a mass gap through a phenomenon similar
to the finite temperature AdS5 × S5 case (i.e., near-horizon near-extremal D3-branes). The
metric and dilaton are given by

ds2
string = Z−1/2

x d�x2
3+1 + Z1/2

y (dy2 + y2d�2
y + dw2) + Z1/2

� w2d�2
w,

Zx = Zy = Z0 = R4

ρ2+ρ2−
; Z� = Z0

[
ρ2−

ρ2− + ρ2
c

]2

,

ρ± = (y2 + (w ± r0)2)1/2; R4 = 4πgsN; ρc = 2gsr0α
′

R2
; r0 = πα′mN,

e2� = g2
s

ρ2−
ρ2− + ρ2

c

, (21.5)

and m is the mass parameter of the deformation. The metric goes over to AdS5 × S5 at
large ρ = ρ− � ρ+, as it should. The “near-core” region is ρ ∼ r0, which, however, is
quite complicated (depends on y and w separately), but we see that the typical warp factor
(Z1/2) is finite in this region, thus we do have the situation we advocated. At particular
points, there are still AdS-like throats that are not regulated though. There are no quarks in
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337 21.3 The Polchinski–Strassler and Klebanov–Strassler solutions

the field theory, and no nonabelian global symmetries, so we again match all the expected
features of gravity duals of QCD-like and SQCD-like theories.

Klebanov–Strassler solution

The Klebanov–Strassler solution describes an N = 1 supersymmetric SU(N+M)×SU(N)
gauge theory, with two bifundamental chiral superfields A1, A2, i.e. in the (N + M, N̄) rep-
resentation, and two chiral superfields B1, B2 in the conjugate representation (N + M, N).
This gauge theory is of the “cascading” type, meaning that at consecutive energy scales
the relevant degrees of freedom are reduced by “Seiberg duality” transformations, which
change the description to one in terms of smaller gauge groups. The Seiberg duality trans-
formation is for an SU(Nc) gauge theory with Nf flavors to go into an SU(Nf − Nc) gauge
theory with Nf flavors; when one description is strongly coupled, the other is weakly cou-
pled. In our case, from the point of view of the SU(N + M) group, we have 2N flavors, so
after the duality it turns into an SU(2N− (N+M)) = SU(N−M) group, with N flavors, i.e.
bifundamentals (N−M, N̄) and its conjugate. We still have the SU(N) group intact. We see
that after the Seiberg duality we have the same theory, but with N → N −M. This process
can then continue, N → N −M → N − 2M, etc., until we reach a minimum group. This is
known as the duality cascade, and it means that at different energy scales, the effective (per-
turbative) degrees of freedom cascade, going from groups with N to N−M to N−2M, etc.

The metric, obtained from a configuration of M “fractional 3-branes” on a “conifold
point” (we will not explain these definitions here) in the near horizon limit, is

ds2
10 = h−1/2(τ )d�x2 + h1/2(τ )ds2

6,

ds2
6 =

1

2
ε4/3K(τ )

[
1

3K3(τ )
(dτ 2 + (g5)2) + cosh2

(τ
2

)
((g3)2 + (g4)2)

+ sinh2
(τ

2

)
((g1)2 + (g2)2)

]
,

K(τ ) = (sinh(2τ ) − 2τ )1/3

21/3 sinh τ
,

h(τ ) = α
22/3

4

∫ ∞

τ

dx
x coth x − 1

sinh2 x
(sinh(2x) − 2x)1/3, (21.6)

and α ∝ (gsM)2 is a normalization factor. If one sets ε = 121/4, the prefactor 1
2ε

4/3 of ds2
6

turns into (3/2)1/3. At large τ it becomes a log-corrected AdS5 × T1,1 metric, in terms of
r ∼ [ε2eτ ]1/3, given by

ds2 = h−1/2(r)d�x2 + h1/2(r)(dr2 + r2ds2
T1,1 ),

h(r) ∼ (gsM)2 ln(r/rs)

r4
,

ds2
T11 = 1

9

⎛
⎝dψ2 +

∑
i=1,2

cos θidφi

⎞
⎠

2

+ 1

6

∑
i=1,2

(dθ2
i + sin2 θidφ

2
i )

= 1

9
(g5)2 +

4∑
i=1

(gi)
2, (21.7)

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:55:31 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.023

Cambridge Books Online © Cambridge University Press, 2016



338 Gravity duals

and g1, . . . , g5 are some independent basis of 1-forms. Here the dilaton is approximately
constant, φ = φ0. Thus again, up to the log correction, we have an AdS5 × X5 metric. The
log correction is in fact related in this model to the log renormalization of the field theory,
the running coupling constant. In the field theory IR, i.e. at small τ in the gravity dual, the
metric looks like

ds2 = a−1/2
0 d�x2 + a1/2

0

(
dτ 2

2
+ d�2

3 +
τ 2

4
((g1)2 + (g2)2)

)
, (21.8)

thus here also the space terminates smoothly and the warp factor a1/2
0 remains finite (a0 is

a constant).

21.4 The Maldacena–Núñez andMaldacena–Năstase solutions

We next look for two solutions giving N = 1 supersymmetric theories, obtained from
NS5-branes in type IIB theory wrapped on spheres. For wrapping on S2, we obtain a
4-dimensional N = 1 theory, corresponding to the Maldacena–Núñez solution, and
for wrapping on S3, we obtain a 3-dimensional N = 1 theory, corresponding to the
Maldacena–Năstase solution.

Maldacena–Núñez solution

The solution of Maldacena and Núñez involves type IIB NS5-branes wrapped on S2. Note
that in type IIB theory, NS5-branes can be thought of as the S-dual, i.e. gs → 1/gs, or
φ →−φ, transformed D5-branes. The field theory that is obtained is 4-dimensional N = 1
SYM, coupled to other (massive) modes. It has the string frame metric and dilaton

ds2
10 = ds2

7,string + α′N 1

4
(w̃a − Aa)2,

H = N

[
−1

4

1

6
εabc(w̃a − Aa) ∧ (w̃b − Ab) ∧ (w̃c − Ac) + 1

4
Fa ∧ (w̃a − Aa)

]
,

ds2
7,string = d�x2

3+1 + α′N[dρ2 + R2(ρ)d�2
2],

A = 1

2

[
σ 1a(ρ)dθ + σ 2a(ρ) sin θ dφ + σ 3 cos θ dφ

]
; a(ρ) = 2ρ

sinh 2ρ
,

R2(ρ) = ρ coth(2ρ) − ρ2

sinh2(2ρ)
− 1

4
,

e2φ = e2φ0
2R(ρ)

sinh(2ρ)
. (21.9)

Here the first two lines represent the ansatz for uplifting of a solution of 7-dimensional
N = 1 supergravity into ten dimensions on an S3, in our case the S3 transverse to the
5-branes. The rest of the formulas above represent the 7-dimensional solution of N = 1
supergravity; w̃a are left-invariant one-forms on S3, parameterized as
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g = e
iψσ3

2 e
iθ̃σ1

2 e
iφ̃σ3

2 , (21.10)

defined by

ω̃1 + iω̃2 = e−iψ (dθ̃ + i sin θ̃ dφ̃); ω̃3 = dψ + cos θ̃ dφ̃, (21.11)

and σi, i = 1, 2, 3 are the Pauli matrices for SU(2).
However, the decoupling of other modes, like Kaluza–Klein modes, cannot be done in a

controllable way, as usual. To do so, one would need to switch to a D5-brane description,
that is highly nonperturbative.

Indeed, we can make an S-duality, which in type IIB is φ → φD = −φ, and the Einstein
metric is invariant under it, gE

μν → gE
μν (the relation between the Einstein and string metric

is gS
μν = eφ/2gE

μν), and this leads from the NS5-brane to the D5-brane. The string metric
and dilaton for the D5-brane are

ds2
string = eφD

[
dx2

(4) + α′N
(

dρ2 + R2(ρ)d�2
2 +

1

4

∑
a

(w̃a − Aa)2

)]
,

e2φD = e2φD,0
sinh(2ρ)

2R(ρ)
. (21.12)

The QCD string tension coming from this gravity background is found as follows. The
quark–antiquark potential defining it is given by the Wilson loop, itself given by a funda-
mental string coming down from infinity in the gravity background. From the string tension
we get a factor 1/(2πα′) and from the background (21.12) we get the overall factor eφD,0 ,
for a tension

Ts = eφD,0

2πα′
. (21.13)

On the other hand, the KK states, which are of the order of the glueball masses, are

M2
glueballs ∼ M2

KK ∼ 1

R2
∼ 1

Nα′
, (21.14)

where R2 ∼ Nα′, and R, the radius of the 2-sphere �2, is inferred from (21.12). Then
decoupling of the KK states from the QCD string tension, which gives the sought-after
physics of confinement at low energy, implies

Ts ! M2
KK ⇒ eφD,0 N ! 1. (21.15)

However, the condition for supergravity to be valid is for the curvature of the back-
ground (21.12) to be small in string units, and we can check that the relevant parameter
is eφD,0α′N/α′, and has to be large, i.e.

eφD,0 N # 1, (21.16)

so the opposite limit to the one needed for decoupling of KK modes.
Next, we check the behavior of the metric in the UV and IR.
The behavior at ρ → ∞, corresponding to the usual boundary of space, i.e. the UV of

the field theory, is

R2 � ρ; a � 2ρe−2ρ ; φ � φ0 − ρ + log ρ

4
. (21.17)
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At first, it seems this is not good, since we do not obtain a log-corrected AdS5 × X5

space, but rather

ds2 = d�x2
3+1 + α′N

[
dρ2 + ρd�2

2 +
1

4
(w̃a − Aa)2

]

= d�x2
3+1 + α′N

[
dz2

z2
+ (− log z)d�2

2 +
1

4
(w̃a − Aa)2

]
, (21.18)

where ρ = − log z. However, now the dilaton is nontrivial, unlike the previous cases
(and unlike for pure AdS5 × S5). But in fact, this is good, since all we need is that the
5-dimensional KK reduced supergravity action is the same.

In the presence of a dilaton (and using a “string frame” metric as above), the relevant
action is

S = 1

2κ2
N

∫
d5x

√−g5

(∫
X5

√
gX5

)
e−2φ[R− (∂X)2 + . . .]

= 1

2κ2
N

∫
d5x

√−g5

(∫
X5

√
gX5

)
gμνe−2φ[Rμν − ∂μX∂νX + . . .], (21.19)

where X is a generic scalar. For a metric

ds2 = e2A(ρ)d�x2
3+1 + dρ2 + ds2

X5
= e2A(z)d�x2

3+1 +
dz2

z2
+ ds2

X5
, (21.20)

the bracket [Rμν + ∂μX∂νX + . . .] does not contain e2A factors and we get

1

2κ2
N

∫
d4x dρ

(∫
X5

√
gX5

)
e2(A−φ)δμν[Rμν − ∂μX∂νX + . . .], (21.21)

thus in fact we have the condition

φ − φ0 − A
ρ→∞→ −ρ(+ log corrections) = + log z(+ corrections), (21.22)

which before was satisfied by φ = φ0 and A → −ρ + . . . = + log z + . . ., but now is
satisfied by A = 0 and φ = φ0 − ρ + . . . = φ0 + log z + . . .. Also note that now there is
some ρ dependence in

√
gX5 as well.

So the behavior in the UV matches the expectations, though in a nontrivial way.
The behavior in the IR of the field theory, i.e. at ρ → 0 is

R2 = ρ2 +O(ρ4); a = 1 +O(ρ2); φ = φ0 +O(ρ2), (21.23)

which means that the effective warp factor e2(A−φ) is constant as in the previous examples.
So the behavior in the UV and IR matches the expectations, there are no fundamental

quarks, and there is no global nonabelian symmetry, therefore all the expected features of
gravity dual to SQCD are satisfied.

The Maldacena–Năstase solution

The Maldacena–Năstase solution is the analog of the Maldacena–Núñez solution (which
is for NS5-brane wrapped on S2) for NS5-branes wrapped on S3, and gives N = 1 SYM
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341 21.4 The Maldacena–Núñez and Maldacena–Năstase solutions

in three dimensions, with a Chern–Simons coupling, and coupled to other modes as in four
dimensions. The Chern–Simons coupling is quantized as always by a quantum number k.
The gravity dual corresponds to k = N/2, where N is the number of 5-branes, and in this
case an index computation shows that there is a unique vacuum, that confines.

The solution is

ds2
10 = ds2

7,string + α′N 1

4
(w̃a − Aa)2,

H = N

[
−1

4

1

6
εabc(w̃a − Aa) ∧ (w̃b − Ab) ∧ (w̃c − Ac) + 1

4
Fa ∧ (w̃a − Aa)

]
+ h,

ds2
7,string = d�x2

2+1 + α′N[dρ2 + R2(ρ)d�2
3],

A = w(ρ) + 1

2
wa

L,

h = N[w3(ρ) − 3w(ρ) + 2]
1

16

1

6
εabcwa ∧ wb ∧ wc, (21.24)

where wa are left-invariant forms on the S3 described by d�2
3, w̃a are the same left-invariant

forms on the transverse S̃3, and w(ρ), R(ρ),φ(ρ) have some complicated form that can be
evaluated numerically.

At large ρ they become

R2(ρ) ∼ 2ρ; w(ρ) ∼ 1

4ρ
; φ = −ρ + 3

8
log ρ, (21.25)

thus, as for the Maldacena–Núñez solution,

φ − φ0 − A →−ρ + log corrections, (21.26)

where the metric is

ds2 = e2A(ρ)d�x2
2+1 + dρ2 + ds2

X6
= e2A(z)d�x2

2+1 +
dz2

z2
+ ds2

X6
, (21.27)

implying the same dual supergravity action as in a log-corrected AdS4 × X6 background.
Thus the UV behavior is the expected one.

The behavior at ρ → 0, i.e. for the IR of the field theory, is

R2(ρ) = ρ2 +O(ρ4); w(ρ) = 1 +O(ρ2); φ = φ0 +O(ρ2), (21.28)

giving a finite effective warp factor, e2(A−φ) = e−2φ0+....
Thus the behavior of the metric in the UV and in the IR is the expected one for the

gravity dual of SQCD-like theories. And again there are no fundamental quarks or global
nonabelian symmetries, so we have all the needed features.

But we have more interesting features in this geometry. If we wrap a small number n
of branes (n ! N/2) on a noncontractible S3 in the geometry, the metric is unmodified,
but the dual field theory is modified by having k = N/2 + n, that still preserves super-
symmetry. By adding |n| (n < 0) antibranes instead, we get k = N/2 + n which breaks
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supersymmetry dynamically. Thus this dynamical (nonperturbative) breaking of supersym-
metry becomes a spontaneous (classical) effect in field theory, another good example of the
power of AdS/CFT.

21.5 The Sakai–Sugimotomodel

The Sakai–Sugimoto model is a model that incorporates quarks (i.e. fermions in the fun-
damental representation of the gauge group), but does so in a probe approximation, i.e.
without incorporating the backreaction of the modes dual to quark operators to the geom-
etry. As we mentioned, we can introduce quarks by either introducing fixed D-branes in
the gravity dual, as in the case of the N = 2 orientifold (where the branes are at the
orientifold fixed point), or by introducing moving D-branes that can probe the geometry.
The Sakai–Sugimoto model is an example of the latter. The general idea of introducing
quarks on probe D-branes, without need of orientifolds to cancel the charge, was originally
put forward by Karch and Katz.

Specifically, the Sakai–Sugimoto model involves a large number Nc of Wick-rotated D4-
branes at finite temperature (Euclidean periodic time) giving a gravity dual similar to the
one studied by Witten for D3-branes, namely

ds2 =
(

U

R

)3/2

(f (U)dτ 2 + d�x2
(4)) +

(
R

U

)3/2 (
dU2

f (U)
+ U2d�2

4

)
,

eφ = gs

(
U

R

)3/4

; F4 = 2πNc

V4
ε4; f (U) = 1 − U3

KK

U3
. (21.29)

Inside this background, one considers Nf D8-brane probes, whose single transverse
coordinate is U, and its value depends on the worldvolume coordinate τ , i.e. U = U(τ ).
The D8-branes form a U-shape, starting and ending at infinity, as in Fig. 21.1. Since the
difference between a D8-brane and a D8-brane is only its orientation (charge in one dimen-
sion only means the direction, left or right, of its flux lines), this probe is interpreted as a
susy-breaking D8 − D8-brane pair, joined in the bulk.

�Figure 21.1 The Sakai–Sugimoto model has a probe D8-brane in the gravity dual, starting from infinity and returning to it. At
infinity, it looks like a D8-brane/anti-D8-brane pair (parallel branes of opposite orientation).
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The solution for U(τ ) is given via its inverse,

τ (U) = U4
0 f (U0)1/2

∫ U

U0

dU

( U
R )3/2f (U)

√
U8f (U) − U8

0 f (U0)
. (21.30)

The modes living on this brane are dual to (i.e., couple to) mesonic operators, i.e. pion-
like operators, involving quarks and charged under the global symmetry.

Note that the backreaction of this mode on the geometry has not been included, i.e.
the background metric is not modified by the presence of the D8-branes. This means that
the model is valid only perturbatively if Nf ! Nc, otherwise one has corrections to this
solution.

The D4-brane background at finite temperature is similar to the Witten construction for
D3-branes at finite temperature, giving N = 4 SYM at finite temperature. In fact, Witten
related the D4-brane background to a construction of pure 4-dimensional SU(N) Yang–
Mills via (some transformations and) compactification on periodic Euclidean time. We
can easily see that up to an overall conformal factor, the metric has the right behavior, by
changing variables to ρ = U1/2, which gives the metric

ds2 ∼ ρ

[
ρ2(f (ρ)dτ 2 + d�x2) + dρ2

f (ρ)ρ2
+ d�2

4

]
. (21.31)

So up to a conformal factor, we get AdS6 × S4 at large U. Compactification on τ then
gives the correct behavior for the dual of the 4-dimensional theory.

Then the D4-brane metric has the right properties expected of a gravity dual of a
QCD-like theory: smooth cut-off in the IR at finite U = UKK and AdS6 × S4 in the
UV. The coordinate τ is compact, and moreover we have τ = τ (U) (evolves with
τ ), which means that the field theory probed by the D8-brane is 4-dimensional, as we
require.

21.6 Mass spectra in gravity duals from field eigenmodes;
examples

As we have already explained, mass spectra for the tower of KK modes in AdS space,
which come in increasing representations of the global symmetry group, SO(6) in the case
of AdS5×S5 and its related incarnations, correspond to the tower of anomalous dimensions
of operators.

But for a given representation of the global symmetry group of the field theory, for
instance the singlet, we still have towers of field theory states associated with the same
operator, dual to a given field in AdS space. For instance, the operator Tr [FμνFμν], dual
to the massless dilaton (scalar) in AdS, corresponds to a tower of glueball states (excited
states of a given glueball, 0++). One way to calculate these masses in field theory is from
the 2-point function of the operator. For instance, from the behavior at large distances
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|x− y| → ∞ we can calculate the mass m1 of the lowest state (the mass of the other states
appearing in subleading corrections),

〈O(x)O(y)〉 ∝ e−m1|x−y|(+#e−m2|x−y| + . . .). (21.32)

A better definition would be to work in momentum space, where the correlator should
behave like

〈O(p)O(−p)〉 ∼
∑

j

Aj

p2 + m2
j

, (21.33)

i.e., we should be able to find the masses of states from the poles of the correlator.
Then the masses of the tower of states corresponding to the operator O, that couples

to the field � in AdS space, can be found in the gravity dual from the eigenvalues of
�k2 = −m2 for solutions of the free equation of motion for �, where �k is the 4-dimensional
momentum. For similarity with QCD, we need the spectrum of this tower of states to be
discrete (and have a mass gap), which means that the equation of motion in the gravity dual
reduces to a case like the quantum mechanical 1-dimensional box.

We have argued that in the case of cut-off AdS space, the reason we obtain a quantum
mechanical box is because the time of flight between the center and the boundary of space
is finite.

Indeed, in general the simplest way to obtain an infinite discrete spectrum (with no
accumulation points) is if the time it takes a light ray to traverse the space from boundary
to boundary is finite. This effectively places the system in a box. In cases of the type
AdSn+1 × Sm, the metric looks like

ds2 = uα(−dt2 + d�x2
n−1) + du2

u2
+ d�2

m, (21.34)

where α > 0 and the boundaries of AdS in these Poincaré coordinates are at u = 0 and
∞. The time a light ray takes in between the boundary at infinity and the coordinate patch
boundary at u = 0 is t = ∫∞

0
du

u1+α/2 which is finite at infinity, but infinite at zero.
By making the brane nonextremal (introducing a temperature), one regulates this infinity,

by placing the new “boundary” a finite time away:

ds2 = uα
[(

1 − um
T

um

)
dτ 2 − dt2 + d�x2

n−2

]
+ du2

u2
(

1 − um
T

um

) + d�2
m. (21.35)

Note that for a D-p-brane in string frame in ten dimensions, the near horizon metric is

ds2
string = u

7−p
2 (−dt2 + d�x2

n−1) + 1

u
7−p

2

(du2 + u2d�2
m), (21.36)

and so the time of travel in between the boundaries is t = ∫
du/u(7−p)/2. For p ≤ 4, if

one regulates the divergence at zero, the time is finite; for p ≥ 6, the divergence at infinity
cannot be regulated, whereas there is none at zero. The case p = 5 is special, since both
boundaries have divergencies, though only logarithmic.

At the beginning of Chapter 10, we saw that if light takes a finite time between the
boundaries, in terms of the time of flight variable x defined by dx = dρ

√
gρρ/gtt, the
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massless KG equation �� = 0 becomes a 1-dimensional quantum mechanical problem in
terms of E ≡ m2 = −k2, with �k being a 4-dimensional momentum,[

− d2

dx2
+ (V(x) − E)

]
�̃(x) = 0. (21.37)

Then if the time of flight is finite, i.e. xmax is finite, the potential V(x) of the equivalent
quantum mechanical problem has finite support, which means that the energy levels En ≡
m2

n are indeed discrete, infinite in number, and with no accumulation points.
The general procedure for going to an equivalent quantum mechanical problem is thus:

change variables to time of flight x, after which the equation becomes (� → χ (x) in �k
space),

χ ′′(x) + f (x)χ ′(x) + m2χ (x) = 0. (21.38)

After the change of variables χ (x) = g(x)h(x), with h(x) satisfying h′/h = −f /2, the
resulting Schrödinger equation has the “potential” V(x) = 1/4f 2(x)+1/2f ′(x) and “energy”
E = m2.

The case of finite support described above is not the only way to obtain a mass gap
though. For instance, the NS5-brane solution in flat space has a string frame metric and
dilaton

ds2
10,string = d�x2

5+1 + dρ2 + d�2
3, φ = −ρ. (21.39)

The � operator, however, will contain the Einstein metric, so that eφ/2� = m2 +
e2φ∂ρe−2φ∂ρ , and after the procedure above, the Schrödinger potential is V(x) = 1, with x
ranging from 0 to infinity. Therefore, the spectrum is continuous above a mass gap, though
it is not discrete.

Another important case is the case of Witten’s construction of 3-dimensional pure glue
(QCD3), obtained from the Witten metric (15.37) (itself obtained either by scaling the AdS5

black hole, or by the near-horizon limit of the near-extremal D3-branes) by KK reducing
on periodic Euclidean time. The analysis of the resulting spectra (for the 0++ tower of
states of QCD3, coming from Tr [FμνFμν], dual to the massless dilaton) was done in [84],
and here we present a simplified analysis. One obtains the reduced 1-dimensional wave
equation from the massless scalar KG equation, for � = χ (ρ̃)ei�k·�x, χ ′ = dχ/dρ̃, and
ρ̃ = ρ2/R2,

ρ̃(ρ̃2 − 1)χ ′′ + (3ρ̃2 − 1)χ ′ + m2

4
χ = 0, (21.40)

and so the time of flight x and function f (x) are

x =
∫

dρ̃
1√

ρ̃(ρ̃2 − 1)
= 1√

x
2F1(1/4, 1/2, 5/4; 1/x2),

f (x) = 3ρ̃2 − 1

2
√
ρ̃(ρ̃2 − 1)

. (21.41)

Near ρ̃ = 1, we obtain for the time of flight x � √
2(ρ − 1), and for the potential V(x) �

−1/(4x2) = −1/(8(ρ − 1)), whereas near ρ̃ = ∞, we obtain for the time of flight x =
−2/

√
ρ̃ + C, and for the potential V(x) = 15/(4(x − C)2) = 15ρ̃/16. So in this case the
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potential is going to −∞ at x = 0, and to +∞ at x = xmax = C. The energy levels are
found to be all positive, and follow approximately the law m2R2 = 6n(n + 1). Here R is
the radius of AdS, the only parameter in the Witten metric (15.37). Note that at large n,
En = m2

nR2 ∝ n2, as for a particle in a box, as it should be. So in this case we have a finite
time of flight and a discrete spectrum.

Next, consider the case of the Polchinski–Strassler solution (21.5). The metric goes over
to AdS5 × S5 at large ρ, so again the time of flight is finite near infinity (dt2 = (dy2 +
dw2)/(y2 + w2)2). Near the core of the solution, one has a near-shell approximation, with
the metric developing a usual 5-brane throat (as in the D3-brane AdS5×S5 case), so strictly
speaking one cannot regulate the divergence.

For the case of the Klebanov–Strassler solution (21.6), the time of flight is finite near
infinity. As we have seen, at small τ , the metric looks like

ds2 = a−1/2
0 d�x2 + a1/2

0

(
dτ 2

2
+ d�2

3 +
τ 2

4
((g1)2 + (g2)2)

)
, (21.42)

which is a smooth cut-off (the metric is similar to that of a plane in spherical coordinates),
so the divergence in the time of flight is fully regulated. The spectrum of the scalar is again
discrete in this case.

For the case of the Maldacena–Núñez (21.9) and Maldacena–Năstase (21.24) solutions,
there is a 7-dimensional metric in the string frame of the type

ds2
7,string = d�x2 + dρ2 + R2(ρ)d�2

n. (21.43)

In this 7-dimensional space, the wave equation becomes[
−k2 + e2φR−n∂ρe−2φRn∂ρ

]
χ = 0, (21.44)

with n = 2 or 3 and the factor of e−2φ because in the string frame the action has such a
prefactor. Now the function f in the 1-dimensional quantum mechanical problem is f (ρ) =
d/dρ(log(Rn) − 2φ), and the time of flight is just ρ, since |gtt| = gρρ .

For the S2 case (Maldacena–Núñez), in the IR, we have R2 � ρ2 − (4/9)ρ4 and find
f (ρ) = 2/ρ + (8/9)ρ + . . . and the potential V(ρ) = 4/3 + . . . In the UV, R2 ∼ ρ and
φ−φ0 = −ρ+ 1/4 log ρ, so that f (ρ) = 2+ 1/(2ρ) and the potential V(ρ) = 1+ 1/(2ρ).

For the S3 case (Maldacena–Năstase), in the IR, R2 ∼ ρ2 and φ � φ0, so f (ρ) = 3/ρ
and the potential V(ρ) = 3/(4ρ2). In the UV, R2 ∼ ρ and φ − φ0 = −ρ + 3/8 log ρ, so
f (ρ) = 2 + 3/(4ρ) + . . . and V(ρ) = 1 + 3/(4ρ) + . . .

So we see that in these two cases, the potential does not have finite support (i.e., the time
of flight between the boundaries of space is infinite), the potential starts at a higher value
and ends up at V = 1 at ρ = ∞, so we have a continuum of states at high energies, though
perhaps also discrete states, if there is a potential well at finite ρ. This is a modification
in the IR of the flat space 5-brane spectrum, which as we saw had a continuum of states
above a mass gap at m2b2 = 1.

What about cases with fundamental quarks, when we can define mesonic states? We
have seen that meson operators couple to fields charged under the global symmetry group
in the dual (SO(8) in the case of the N = 2 orientifold). These fields belong to a vector
multiplet and live on a D-brane in the dual, and they are part of KK towers obtained from
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347 21.7 Mass spectra in gravity duals frommode expansion on probe branes; Sakai–Sugimoto example

KK expanding down to AdS space (on S3 in the case of the N = 2 orientifold), in the
case the D-brane is not dynamical. In AdS space, these fields can be distinguished from
the supergravity fields coupling to nonmeson operators by their quantum numbers, i.e. by
being charged under the gauge group. But from the point of view of their equation of
motion, there is degeneracy, since the quantum numbers under the global group do not
matter: the equation for a massless scalar is still �� = 0, regardless of global quantum
numbers. This means that from AdS/CFT we get a degeneracy in the masses of the towers
of states of mesonic and nonmesonic operators.

A way to ensure that does not happen is to consider a different implementation of fun-
damental quarks, as modes living on D-brane probes in the geometry. Then the fields
corresponding to mesonic and nonmesonic operators have different origins and couple dif-
ferently to the background, giving different equations of motion, hence a more realistic
scenario with respect to QCD. We analyze them next in the case of the Sakai–Sugimoto
model.

21.7 Mass spectra in gravity duals frommode expansion on probe
branes; Sakai–Sugimoto example

In the Sakai–Sugimoto model and in general in models with probe branes moving in a grav-
ity dual geometry, the spectrum of the states coming from nonmesonic (glueball) operators
can be obtained as usual from the spectrum of supergravity fields, just that now we have
to impose that the fields are restricted (pulled back) to live on the probe brane. So we look
at the equation of motion for the pulled back supergravity fields, and we want to obtain a
discrete spectrum of m2 = −�k2 from them. Since this is a priori no different from the cases
in the previous section, we will not describe them here.

Instead, we describe the new feature, the spectrum of states corresponding to mesonic
operators. In general, if there is some compact space K with a symmetry group G cor-
responding to a global symmetry of the mesonic operators, we need to first KK expand
the D-brane fields on K, as each reduced field corresponds to a different mesonic opera-
tor. Then the discrete spectrum of states coming from a mesonic operator comes from the
eigenvalues of the equation of motion of the reduced D-brane field, and usually the quan-
tization condition comes from the behavior in the radial coordinate U associated with the
field theory energy.

In the case of the Sakai–Sugimoto model, in the gravity dual metric (21.29) we have
an S4 factor, with an SO(5) gauge group, so we have to KK expand the D-brane fields on
it. We are interested in the gauge field, present on any D-brane, and we are interested in
particular in not having any SO(5) charges, so we want only the zero mode on S5 (the KK
reduced mode). Then we have the coordinates τ and U, but they are related because of the
fact that there is only one coordinate transverse to the D8-brane, so we have τ = τ (U).
Therefore, after the KK reduction on S4 and taking into account that τ = τ (U), we have
a worldvolume action for the gauge field AM , M = 0, 1, . . . , 4 on the �x, U coordinates that
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was calculated by Sakai and Sugimoto. It is best described in terms of coordinates where
the D8-brane is flat,

(y, z) = (
√

U3 − 1 cos τ ,
√

U3 − 1 sin τ ), (21.45)

such that the D8-brane is localized at y = 0 and extends in the z direction. Then the action
for the gauge field AM = (Aμ(xν , z), Az(xν , z)) becomes

S = SDBI
D8 + SCS

D8,

SDBI
D8 = λNc

216π3

∫
d4x dzTr

[
1

2
K−1/3F2

μν + KF2
μz

]
,

SCS
D8 =

Nc

24π2

∫
M4×R

ω5,CS(A),

ω5,CS(A) = Tr

[
A ∧ F ∧ F − 1

2
A∧3 ∧ F + 1

10
A∧5

]
,

K(z) ≡ 1 + z2, (21.46)

where A = Aμdxμ + Azdz. The tower of meson states (fields) coming from operators
coupling to the gauge fields Aμ and Az correspond to eigenmodes of the equation of motion
for Aμ and Az, that we will call an and φn. Then formally we can expand the gauge fields
in these eigenmodes, multiplied by functions identified with the meson states, i.e. write

Aμ(xν , z) =
∞∑

n=1

A(n)
μ (xν)an(z),

Az(x
ν , z) = ϕ(0)(xν)φ0(z) +

∞∑
n=1

ϕ(n)(xν)φn(z). (21.47)

The sets of functions {an(z)}n≥1 and {φn(z)}n≥0 are complete and orthonormal. The an(z)
satisfy

− K1/3∂z(K∂zan) = μ2
nan, (21.48)

and φn(z) are φn ∝ ∂zφn(z), n ≥ 1 and φ0(z) ∝ K(z). The orthonormality conditions are
defined by the action (21.46) as

λNc

216π3

∫
dzK−1/3an(z)am(z) = δnm,

λNc

216π3

∫
dzKφn(z)φm(z) = δnm. (21.49)

Then the DBI action in (21.46), after integrating over z, becomes

SDBI
D8 =

∫
d4xTr

[
(∂μϕ

(0))2

+
∞∑

n=1

(
1

2
(∂μA(n)

ν − ∂νA(n)
μ )2 + μ2

n(A(n)
μ − μ−1

n ∂μϕ
(n))2

)]
+ int. (21.50)
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349 21.8 Finite N?

The massless scalar ϕ(0) can then be identified with the pion in the dual field theory, and
we see that the vector fields A(n)

μ eat the massive scalars ϕ(n) and become massive via the

redefinition A′
μ

(n) = A(n)
μ − μ−1

n ∂μϕ
(n). After the redefinition we have only ϕ(0) and the

massive vectors A′
μ

(n), which can be interpreted as vector meson fields in the dual field
theory.

21.8 Finite N?

Throughout this book we have analyzed only large N (N → ∞) gauge theories, and one
can treat perturbations away from N = ∞ by including string gs corrections. But for the
case of interest, namely real QCD, N = 3, which is far from infinity. However, it is known
that for most quantities of interest, corrections are actually of order 1/N2 � 0.1, which
can be argued to be small. But one would like to know whether we can calculate anything
at finite N, and perhaps at finite λ = g2

YMN, which corresponds to string worldsheet (α′)
corrections. For generic quantities, the answer (at this point) is no.

However, there is one process for which this is possible, namely forward (small angle)
scattering of gauge invariant particles. It was shown in [58, 59] that string correc-
tions (both worldsheet α′ and quantum gs corrections) to the high energy, small angle
(forward, or in the case of 4-point scattering s → ∞ and t fixed) scattering cross-
section in a gravitational theory are exponentially small in the energy, specifically of
order

exp

(
− G2

4s

8α′ log(α′s)

)
. (21.51)

From this we can calculate, using the Polchinski–Strassler formalism described in Sec-
tion 16.2, that 1/N and 1/(g2N) corrections to the high energy small angle scattering
cross-section are exponentially suppressed in energy.

Important concepts to remember

• The noncompact extra dimension acts as an energy scale, and motion in it corresponds
to RG flow.

• We introduce quarks in the field theory by introducing branes in the gravity dual, with
vector fields on them, that couple to operators charged under the global symmetry
corresponding to the brane symmetry.

• In the gravity dual of QCD-like or SQCD-like theories, the space in the UV looks con-
formal, i.e. it is like AdS5 × X5, possibly log-corrected. In the IR, the space terminates
in some way, corresponding to the mass gap.

• Examples of QCD-like theories that satisfy these conditions are AdS5 × S5 at finite
temperature, and cut-off AdS5 × S5 (the hard-wall model), which can be modified by
introducing a dynamical brane at the cut-off, whose fluctuations correspond to the pion.
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350 Gravity duals

Examples of SQCD-like theories that satisfy the conditions are the Polchinski–Strassler
and Klebanov–Strassler solutions.

• The Maldacena–Núñez and Maldacena–Năstase solutions correspond to 5-branes
wrapped on spheres, giving N = 1 theories in four and three dimensions, respectively,
and having a metric with constant scale factor in front of d�x2, but nontrivial dilaton
φ − φ0 ∼ log z + . . ., since the relevant combination is φ − φ0 − A, where the scale
factor is e2A.

• The Sakai–Sugimoto model is a probe D8-brane (with the U-shaped topology of a D8-
brane-anti-D8-brane system) in a Euclidean finite temperature D4-brane. It is a model
for QCD with quarks.

• The masses of towers of states corresponding to a certain operator (like a glueball oper-
ator and meson operator) are mapped to the eigenstates of the gravity dual field sourcing
the operator.

• The easiest way to have a discrete spectrum for the gravity dual field corresponding to
the tower of states is a finite time of flight between the boundaries of the gravity dual.
Another is a potential that goes to −∞ at r = 0 and to +∞ at r = +∞, as in the case
of Witten’s construction of QCD3 from compactified near-extremal D3-branes.

• Meson masses in theories with quarks obtained on probe D-branes, as in the case of
the Sakai–Sugimoto model, can be calculated from the spectrum of fields living on the
probe brane. In the Sakai–Sugimoto model, the gauge field leads to the pion and a tower
of massive vector mesons.

References and further reading

The Polchinski–Strassler solution was found in [60], the Klebanov–Strassler solution in
[61], the Maldacena–Núñez solution in [62], the Maldacena–Năstase solution in [63],
and the Sakai–Sugimoto solution in [64]. The idea of introducing quarks on probe D-
branes and how to obtain mesons in these models was introduced by Karch and Katz
in [85].

Exercises

1. Consider the modified hard-wall model and for the dynamical brane at rmin, the D-brane

action in symmetrized cut-off AdS5, with warp factor |r|2
R2 = e2k|y| for |r| ≥ rmin. Write

the resulting few terms in the derivative expansion of the scalar pion action.
2. Consider the Klebanov–Strassler solution. Argue that the effective coupling of the

gauge theory dual to it runs with the energy as α ∼ α0
√

ln E/�0. What is the global
symmetry of that gauge theory?

3. Consider Wilson loops in the gauge theory dual to the Maldacena–Năstase solution,
described by string worldsheets in the gravitational background. Consider the S-dual
background, of D5-branes on S3. Show that the theory is confining, so the potential
V(L) = − 1

T ln〈W[C]〉 is linear in L at large L, and calculate the string tension.
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351 21.8 Finite N?

4. Consider the Sakai–Sugimoto model. Calculate U(τ ) at large U and find there the metric
induced on the worldvolume of the D8-brane.

5. Calculate the (maximum) time of flight and equivalent 1-dimensional quantum mechan-
ical potential V(x) for the hard-wall model.

6. Consider a harmonic oscillator potential in 1-dimensional quantum mechanics, V(x) =
ax2. Engineer a function f (x), and from it a “gravity dual” metric that would give Eq.
(21.40).

7. In the Sakai–Sugimoto model, consider a fluctuation also in the D8-brane worldvolume
scalar U. Write down an action for small fluctuations on it.
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22 Holographic renormalization

We have seen in Chapter 11 how to calculate correlation functions in AdS/CFT. But for
correlation functions of massive scalar fields, there was a problem that was implicit, so we
postponed their treatment until now. Correlation functions arose in AdS from the on-shell
supergravity action, but the latter contains divergences coming from near the boundary of
AdS. Near the boundary is the IR of the gravitational theory, but by the UV-IR correspon-
dence of AdS/CFT, this corresponds to the UV of the field theory. Hence the treatment of
these divergences corresponds to the treatment of UV divergences in field theory, subject to
regularization, renormalization, and RG flow. Learning how to deal with these divergences
is the subject of this chapter. We start with a general treatment, geared towards the appli-
cation for the metric fluctuations, which was historically the first to be considered, as there
the need for a systematic treatment of infinities was clearer. We then apply the formalism
for the simplest case, the massive scalar. We also start the treatment of RG flow with a
general discussion in this chapter, leaving for the next chapter the important application of
RG flow between fixed points.

22.1 Statement of the problem and expected results:
renormalization of infinities

As we saw in Chapter 11, the Euclidean signature correlators of operators O coupling to
boundary sources φ(0) for the AdS field φ are found by taking derivatives of the on-shell
supergravity action, written as a function of those boundary sources,

〈O(x)〉 = − δSsugra,on-shell

δφ(0)(x)

∣∣∣∣
φ(0)=0

; 〈O(x1)O(x2)〉 = δ2Ssugra,on-shell

δφ(0)(x1)δφ(0)(x2)

∣∣∣∣∣
φ(0)=0

, . . .

〈O(x1) . . .O(xn)〉 = (−1)n δnSsugra,on-shell

δφ(0)(x1) . . . δφ(0)(xn)

∣∣∣∣
φ(0)=0

. (22.1)

But as we said, the on-shell supergravity action has divergences near the boundary of AdS
due to the infinite volume of space there (

∫
dz0

√
g ∝ ∫

dz0/zd+1
0 |z0∼0 → ∞), not com-

pensated by the behavior of the fields in the Lagrangean. Therefore we need to regularize
and renormalize the supergravity action. Note that we have obtained finite results for the n-
point functions, also in the case of the 2-point functions having the expected ∼ 1/|�x−�y|2�
behavior, but that corresponded only to taking a certain prescription for regularization, it
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353 22.1 Statement of the problem and expected results: renormalization of infinities

does not guarantee that we have the right result, unless we derive a general formalism to
deal with it. Indeed, the naive extension of the method used in the massless scalar case to
the massive case leads to a result with the wrong coefficient, off by a factor of (2�− d)/�
with respect to the correct result. One can do a correct calculation, using a bulk-to-epsilon
propagator (regulated bulk to boundary propagator) and a careful treatment, as was done
in [38], but then the general formalism is obscured.

Instead, we regularize the divergent on-shell action, and get rid of the divergent terms
by adding counterterms Sct to the action to obtain the finite renormalized action Sren =
Son-shell,sugra + Sct. Now taking derivatives of Sren with respect to the boundary sources of
the fields, we are able to unambiguously define the finite correlation functions of CFT oper-
ators. Moreover, the general renormalization formalism also regulates the 2-point function
divergence at �x = �y.

The most important cases of fields that one can consider are the scalar φ, the gauge
field Aμ, and the metric gμν . We will see that the exact one-point function for the operator
corresponding to the scalar φ is

〈O(x)〉φ(0) = − 1√
g(0)

δSren

δφ(0)(x)
∼ φ(2�−d)(x), (22.2)

where φ(2�−d) is a coefficient appearing in the expansion near the boundary of the solution
to the φ equation of motion, which is in general not completely determined by the boundary
source via the near-boundary expansion of the equation of motion, though they are of
course determined by an exact solution. For the operators Ji and Tij coupling to the bulk
fields: vector Aμ and the metric gμν , we similarly obtain (whereas μ, ν = 0, . . . , d is a bulk
index, i, j = 0, 1, . . . , d − 1 is a boundary index):

〈Ji(x)〉A(0)i = − 1√
g(0)

δSren

δA(0)i(x)
∼ A(n)i(x),

〈Tij(x)〉g(0)ij = − 1√
g(0)

δSren

δg(0)ij
∼ g(d)ij(x). (22.3)

Here again A(n)ij and g(d)ij are coefficients in the expansion near the boundary of the solu-
tion to the corresponding bulk equations of motion, and again in general they are not
determined by the boundary sources via the near-boundary expansion of the equations
of motion, but are determined from an exact solution. Note that the boundary operator cor-
responding to the fluctuations of the bulk metric gμν is the energy-momentum tensor Tij(x)
of the CFT. The reason is that the energy-momentum tensor is defined as the variation of
the action with respect to the metric, Tij = −2δSmatter/

√
gδgij, so the source term added

in the CFT action by the bulk metric fluctuation δgμν is 1/2
∫ √

gTijδgij, where gij is the
metric on the boundary.

The above exact one-point functions were written in the presence of nonzero sources,
which means that if we know the exact solutions for φ(2�−d), A(n)i, and g(d)ij we can extract
all the higher n-point functions via derivatives from it, e.g.

〈O(x1) . . .O(xn)〉 ∼ (−1)n−1 δn−1φ(2�−d)(x1)

δφ(0)(x2) . . . δφ(0)(xn)

∣∣∣∣
φ(0)=0

. (22.4)
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354 Holographic renormalization

The exact one-point function also allows us to write holographic Ward identities. Turn-
ing on the gij(0) source (perturbation), one finds the diffeomorphism and conformal (Weyl)
Ward identities,

∇ i〈Tij〉g(0)ij = 0; 〈Ti
i〉g(0)ij = A, (22.5)

where A is the (holographic) Weyl anomaly. The above is understood as follows: diffeo-
morphism invariance, being a gauge invariance has no anomaly, whereas Weyl invariance
has a well-defined anomaly.

22.2 Asymptotically AdS spaces and asymptotic
expansion of the fields

We saw at the end of Chapter 2 that the Riemann tensor of AdS space is

Rμνρσ = 1

R2
(gμσgνρ − gμρgνσ ), (22.6)

with the cosmological constant � = −d(d − 1)Md−2
Pl,d /2R2. The AdS metric blows up at

the boundary, so we do not have a well-defined boundary metric, but rather a well-defined
conformal structure, i.e. a metric up to conformal transformations. This matches with the
idea that we can define the boundary conformal field theory in any coordinates related to
the flat ones by a conformal transformation.

A set of well-defined coordinates is the coordinates on the Poincaré patch. We can define
asymptotically AdS spacetimes in a more formal way, but a simple definition is that the
metric near the boundary at z = 0 can be put in the form

ds2 = 1

z2
(dz2 + gijdxidxj), (22.7)

where the metric gij(�x, z) has a smooth limit as z → 0, and satisfies Einstein’s equations.
Then near the boundary we can expand

gij(�x, z) = g(0)ij(�x) + zg(1)ij(�x) + z2g(2)ij + . . . (22.8)

Einstein’s equations then allow one to calculate all the coefficients g(n)ij(�x) with k > 0
from g(0)ij(�x). In particular, an explicit computation shows that in pure gravity all coeffi-
cients multiplying odd powers of z vanish up to order zd. If d is even, we can also have a
logarithmic term at order zd,

gij(�x, z) = g(0)ij(�x) + z2g(2)ij(�x) + . . .+ zd(g(d)ij(�x) + h(d)ij(�x) log z2) + . . . (22.9)

In exact solutions the relations among coefficients can be complicated, and even non-local,
but when the equations are expanded in z, the solutions relating the higher order coefficients
in terms of g(0)ij (and g(d)ij and h(d)ij) are algebraic. This is a general feature for all the
fields, and we see it explicitly for the scalars later on in the chapter. Here h(d)ij equals the
metric variation of the conformal anomaly, whereas g(d)ij is undetermined by g(0)ij, except
for its trace and covariant divergence.
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355 22.3 Method

Now moving on to a general field �(�x, z) (which can be scalar φ, gauge field Aμ, metric
gμν , etc., but we will suppress the spacetime indices), it has in general an expansion near
the boundary as

�(�x, z) = zm(�(0)(�x) + z2�(2)(�x) + . . .+ z2n(�(2n)(�x) + log z2�̃(2n)(�x)) + . . .). (22.10)

Except for the case where� is the metric itself, we consider the metric to be the (Euclidean)
AdS metric in Poincaré coordinates, g(0)ij = δij, g(k)ij = 0, k > 0. We should strictly speak-
ing consider at least the coupled �-metric system, but we consider a fixed AdS background
in the case that � is not the metric. If n is not an integer in the above expansion, the �̃(2n)

term is absent.
Since the equation of motion of the field � will be second order in derivative, there will

be two independent solutions. For the behavior near the boundary, the solutions are zm and
zm+2n. As we have seen in Chapters 11 and 12, the coefficient of zm, �(0), gives the source
for the dual (boundary) operator corresponding to �, whereas the coefficient of zm+2n is
a linearly independent solution (which in linear analysis does not depend on �(0), but for
a specific full nonlinear solution it does) associated with the VEV of the operator. In fact,
we already indicated that the exact one-point function 〈O(x)〉 will be proportional to the
exact solution φ(2�−d) for the scalar, g(d)ij for the metric, etc. The equations of motion will
fix the coefficients of zm+2k for k < n, �(2k), algebraically in terms of �(0), but will leave
�(2n) unfixed. Then �̃(2n) will be related to conformal anomalies.

22.3 Method

Once we have the expansion of the fields � near the boundary z = 0 where the divergences
are located, we can isolate the divergent pieces in the action by regularizing the boundary,
and add counterterms to the action to make it finite. The resulting finite renormalized action
is used to define n-point functions, and to find renormalization group (RG) transformations
on them.

Regularization and counterterms

The boundary is regularized, being considered at z = ε instead of z = 0, thus we only
integrate down to z = ε. That means that the regularized action for the field �, depending
on the boundary value �(0), after doing the integration on z is generally of the type

Sreg[�(0), ε] =
∫

(z=ε)
ddx

√
g(0)[ε

−2νs(0)[�(0)]

+ ε−2ν+2s(2)[�(0)] + . . .− log ε s(2ν)[�(0)] + finite]. (22.11)

Here, e.g., for a scalar 2ν = 2�− d, since a quadratic term (e.g. a mass term) in the action
gives

∫
dz/zd+1φ2, and we have φ ∼ zd−� near the boundary, leading to

∫
ε

dzzd−2�−1 ∼
εd−2�.
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356 Holographic renormalization

The counterterm action should be defined such as to cancel the above divergent terms.
The minimal subtraction scheme would correspond to adding exactly minus the divergent
terms, with no finite parts, i.e.

Sct[�(�x, ε); ε] = −div.terms in Sreg[�(0)(�(�x, ε)); ε]. (22.12)

Of course, we have to write the action in a general form, so we need to invert the relation
�[�(0)] and write the sources �(0) as a function of the general fields living at the regulated
boundary z = ε, �(0)[�(�x, ε)], where the metric is γij = gij(�x, ε)/ε2. This is the general
quantum field theory procedure, to add counterterms to the action that depend on the same
fields in the action, in addition to the regulator ε.

Renormalized on-shell action

There is one more subtlety, which is that the subtraction defines the subtracted action,

Ssub[�(�x, ε); ε] = Sreg[�(0); ε] + Sct.[�(�x, ε); ε], (22.13)

and it is this action that is varied in order to obtain correlation functions, taking ε → 0
only at the end of the calculation.

The renormalized on-shell action is the ε → 0 limit of the subtracted action,

Sren[�(0)] = lim
ε→0

Ssub[�(�x, ε); ε], (22.14)

and is finite, but should not be used when variations are taken.

n-point function and RG transformation

The exact one-point function is obtained from the variation of the renormalized action with
respect to the boundary source. In the case of a nontrival background metric g(0)ij(�x) we
should divide by

√
g(0), to obtain

〈O(�x)〉�(0) = “
1√
g(0)

δSren

δ�(0)(�x)
”. (22.15)

We put the result in quotation marks, since we really need to take the variations at finite ε
and take ε → 0 only at the end. Then we must rewrite everything in terms of objects on
the z = ε surface: the source �(0) as a function of �(�x, ε) = εm�(0) + . . . and g(0)ij as a
function of γij = g(0)ij/ε

2 + . . ., obtaining

〈O(�x)〉�(0) = lim
ε→0

1

εd−m

1√
γ

δSsub

δ�(�x, ε)
. (22.16)

As we mentioned, the result is proportional to the linearly independent coefficient �(2n)(�x),
but there is also a possible local function of the source�(0) that leads to contact terms in the
higher n-point functions (obtained from it via derivatives), and that is scheme dependent,

〈O(�x)〉�(0) ∼ �(2n)(�x) + F(�(0)). (22.17)
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357 22.4 Example: massive scalar

Higher n-point functions arise from further functional derivatives with respect to �(0)

according to (22.4).
RG (renormalization group) transformations in the field theory arise from bulk diffeo-

morphisms that induce Weyl transformations on the boundary, in particular

xi = μxi′; z = μz′. (22.18)

22.4 Example: massive scalar

We now exemplify the general procedure in the case of the massive scalar that we also call
� as in the general case (though the terms in the expansion are called φ(k)), satisfying the
massive KG equation in AdS space.

Perturbative solution

The expansion starts at zd−�, as we saw in Chapter 11, i.e. we have

�(�x, z) = zd−�φ(�x, z), (22.19)

with φ(�x, z) having a finite value at the boundary. The KG equation in AdS space in
Poincaré coordinates becomes

(m2R2−�(�−d))φ(�x, z)−z2∂i∂iφ(�x, z)−(d−2�+1)z∂zφ(�x, z)−z2∂2
z φ(�x, z) = 0. (22.20)

Putting z = 0 in this equation we get m2R2 = �(� − d), as we knew it should be (from
Chapter 11). Next, from the odd powers of z of the equation, we show that the odd powers
of z in the expansion of φ(�x, z) have coefficient zero, i.e. the expansion is

φ(�x, z) = φ(0) + z2φ(2) + z4φ(4) + . . . (22.21)

Then, from the coefficient of z2 in the equation of motion we obtain

φ(2)(�x) = 1

2(2�− d − 2)
∂i∂iφ(0). (22.22)

Continuing, from the coefficients of z4, . . . , z2n, we get

φ(4)(�x) = 1

4(2�− d − 4)
∂i∂iφ(2), . . . ,φ(2n) = 1

2n(2�− d − 2n)
∂i∂iφ(2n−2). (22.23)

This series ends when 2�− d − 2n = 0, when we need to introduce a term z� log z2, i.e.

φ(�x, z) = φ(0) + z2φ(2) + . . .+ z2�−d(φ(2�−d) + (log z2)φ̃(2�−d)) + . . . (22.24)

Then φ(2�−d) is not determined from the equation of motion in the z expansion, and instead
we can determine φ̃(2�−d) as

φ̃(2�−d) = − 1

22�−d�
(
�− d

2

) (
�− d−2

2

) (∂i∂i)
�− d

2 φ(0). (22.25)
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358 Holographic renormalization

Regularization and counterterms

The regularized kinetic on-shell action for the massive scalar is given by,

Sreg. = 1

2

∫
z≥ε

dd+1x
√

gd+1(gμν∂μ�∂ν�+ m2�2)

= 1

2

∫
z≥ε

dd+1x
√

gd+1�(−�gμν + m2)�− 1

2

∫
z=ε

ddx
√

gd+1gzz�∂z�, (22.26)

(the minus sign in the second term arises from the convention that z = ε is the lower end of
the z integration) and by the equation of motion for � the first term is zero, and substituting
� = zd−�φ(�x, z) in this equation we obtain

Sreg. = −
∫

z=ε
ddx ε−2�+d

(
1

2
(d −�)φ(�x, ε)2 + 1

2
εφ(�x, ε)∂εφ(�x, ε)

)
. (22.27)

This is of the form of (22.11), with

s(0) = −1

2
(d −�)φ2

(0),

s(2) = −(d −�+ 1)φ(0)φ(2) = − d −�+ 1

2(2�− d − 2)
φ(0)∂i∂iφ(0), . . . ,

s(2�−d) = dφ(0)φ̃(2�−d) = − d

22�−d�
(
�− d

2

) (
�− d−2

2

)φ(0)(∂i∂i)
�− d

2 φ(0). (22.28)

The counterterm action should cancel these divergences, but should be expressed in
terms of the fields at the ε-boundary, i.e. we need to solve for φ(2k) as a function of �(�x, ε).
Inverting (22.19),(22.21) to second order in ε2, we obtain

φ(0) = ε−(d−�)
(
�(�x, ε) − 1

2(2�− d − 2)
�γ�(�x, ε)

)
,

φ(2) = ε−(d−�)−2 1

2(2�− d − 2)
�γ�(�x, ε), (22.29)

where �γ is the Laplacean of the induced metric at z = ε, γij = 1/ε2δij.
Finally we can rewrite the counterterms, i.e. minus the divergent terms in the regularized

action, as

Sct. =
∫

boundary
ddx

√
γ

(
d −�

2
�2 + 1

2(2�− d − 2)
��γ�

)
+O(�2

γ ), (22.30)

up to first order in �γ (corresponding to first order in ε2). The expansion is an expansion
in powers of �γ , or equivalently an expansion in ε2. When � = d/2 + 1, the coefficient
of ��γ� is replaced by − 1

2 log ε, and in general when � = d/2 + k, the coefficient of
��k

γ� has a log ε.

Renormalized on-shell action and 1-point and 2-point functions

As in the general case, we write the subtracted action appearing in n-point functions as
Ssub[�(�x, ε)] = Sreg. + Sct., and the renormalized on-shell action as Sren. = limε→0 Ssub.
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359 22.4 Example: massive scalar

Then the 1-point function is (since m = d −� for the scalar)

〈O〉�(0) = lim
ε→0

(
1

ε�

1√
γ

δSsub.

δ�(�x, ε)

)
. (22.31)

In the simplest case � = d/2 + 1, the variation of the subtracted action is (note the
√

g in
the first term, which has a bulk origin, vs. the

√
γ in the second, which is truly a boundary

term):

δSsub. = −1

2
δ

∫
z=ε

ddx
√

ggzz�∂z�+ δ

∫
z=ε

ddx
√
γ

(
d −�

2
�2 − 1

2
log z��γ�

)
+ . . .

=
∫

z=ε
ddx

√
γ δ�

(−ε∂ε�+ (d −�)�− log ε�γ�
)

. (22.32)

Then we obtain
1√
γ

δSsub.

δ�
= −ε∂ε�+ (d −�)�− log ε�γ�, (22.33)

and after substituting the expansion of �, � = zd−�(φ(0) + z2(φ(2) + log z2φ̃(2))+ . . ., the
1-point function becomes

〈O〉φ(0) = lim
ε→0

(
1

ε�

1√
γ

δSsub.

δ�

)
= −2(φ(2) + φ̃(2)). (22.34)

Note that we have used � = d/2 + 1, �γ = ε2�0, �0φ(0) = −4φ̃(2) for the asymptotic
solution, log-divergent terms of type log ε2φ̃(2) have cancelled, as they should, and the
above result is the finite part (before the limit, there were O(ε2 log ε2) corrections, which
vanished).

Thus the 1-point is indeed of the general form that we indicated, 〈O〉φ(0) ∼ φ(2�−d) +
F(φ(0)), since φ̃(2) is a function of φ(0), in this case −1/4�0φ(0). Moreover, this function F
is scheme dependent: it can be removed by the addition of a finite counterterm.

In general, the 1-point function for the scalar can be shown to be

〈O〉φ(0) = −(2�− d)φ(2�−d) + F(φ(0)). (22.35)

To calculate the 2-point function, we need to find φ(2�−d) and F, which as we argued can
be extracted from the exact solution. To see how this works, we consider the exact solution
in the case d = 4 and � = d/2+ 1 = 3, Fourier transformed on �x to momenta �k. Then the
KG equation after the redefinition � = z2χ is

z2∂2
z χ + z∂zχ − (k2z2 + 1)χ = 0, (22.36)

which is the modified Bessel equation, with the unique solution that is regular in the
interior of AdS,

χ = K1(kz) ⇒ � = z2K1(kz). (22.37)

Its expansion near the boundary z = 0 gives

�(k, z) = 1

k
z

[
1 + k2z2

(
1

4
(2γ − 1) − 1

2
log 2 + 1

2
log(kz)

)]
+ . . . (22.38)
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360 Holographic renormalization

We replace the overall 1/k with an overall normalization φ(0)(k), and from the expansion
we identify φ(2) and ψ(2),

φ̃(2)(k) = k2

4
φ(0)(k) ⇒ φ̃(2)(x) = −1

4
�0φ(0),

φ(2)(k) = φ(0)(k)k2
[

1

4
(2γ − 1) + 1

2
log

k

2

]
. (22.39)

Then

〈O〉φ(0) = −2(φ(2) + φ̃(2)) = −2φ(0)(k)

[
k2

(
1

4
(2γ − 1) − 1

2
log 2 + 1

4

)
+ k2

4
log k2

]
,

(22.40)

and the 2-point function is obtained by derivation,

〈O(k)O(−k)〉 = − δφ(2)(k)

δφ(0)(−k)
= k2

2
log k2 + contact terms. (22.41)

By going to x space we obtain a regularized version of the naive 2-point function,

〈O(x)O(0)〉 = 4

π4
R 1

x6
, (22.42)

where R1/x6 equals 1/x6 away from x = 0. In general, for � = d/2 + k, one obtains

〈O(x)O(0)〉 = (2�− d)
�(�)

πd/2�(�− d/2)
R 1

x2�
. (22.43)

The (unregularized) result was first obtained in [38] using a careful application of the
Witten method, and it differs from a naive application of the method by a factor of (2�−
d)/�.

As we see, in the case of the massless scalar, � = d, and the naive result was correct
(in fact, we can already see that in (22.30) the first leading counterterm, �2, has vanishing
coefficient in this case), hence the analysis in Chapter 11 was valid.

RG transformations; operator and VEV deformations

We saw that the RG transformations were �x = �x′μ, z = z′μ. But �(�x, z) is a scalar, so
�′(�x′, z′) = �(�x, z), meaning that

φ′(2k)(�x′) = μd−�+2kφ(2k)(�x′μ), 2k < 2�− d,

φ̃′(2�−d)(�x′) = μ�φ̃(2�−d)(�x′μ),

φ′(2�−d)(�x′) = μ�[φ(2�−d)(�x′μ) + logμ2φ̃(2�−d)(�x′μ)]. (22.44)

In particular,

μ
∂

∂μ
φ(0)(�xμ) = (�− d)φ(0)(�x′μ), (22.45)

consistent with a source of an operator of dimension �. Moreover, for the general 1-point
function (22.35), we obtain
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361 22.4 Example: massive scalar

〈O(�x′)〉′φ(0)
= μ�

(
〈O(�x′μ)〉φ(0) − (2�− d) logμ2φ̃(2�−d)(�x′μ)

)
, (22.46)

consistent with a φ̃(2�−d) giving a conformal anomaly, i.e. an anomalous transformation
law under scaling for quantum VEVs.

Then, as we also saw in Chapter 12, in the expansion

� = zd−�φ(0) + . . .+ z�(φ(2�−d)(+φ̃(2�−d) log z2)) + . . . , (22.47)

for the two independent linearized solutions in AdS space, φ(0) corresponds to an operator
deformation of the theory, i.e. a source term

∫ Oφ(0) in the CFT action, whereas φ(2�−d)

corresponds to a deformation of the VEV of the operator because of (22.35), with the
φ̃(2�−d) term giving the anomalous contribution.

Important concepts to remember

• The classical on-shell supergravity action in AdS space has divergences near the bound-
ary that correspond to UV divergences in the field theory, so need to be regularized and
renormalized by adding counterterms to the action.

• The 1-point function is given by the normalizable mode φ(2�−d) from the expansion
near the boundary, which is linearly independent in the near-boundary expansion, but is
dependent on the non-normalizable mode φ(0) in an exact solution (there exists a unique
regular solution in Euclidean AdS).

• Higher n-point functions can be derived from further differentiations of the exact mode
φ(2�−d), viewed as a function of φ(0).

• In the near-boundary expansion, we generically have an expansion in z2, and the
coefficients �(2k) with 2k < 2�− d are algebraically defined in terms of �(0).

• In the holographic renormalization method, it is crucial to perform all calculations at a
finite distance ε from the boundary. We integrate only down to ε, and write counterterms
in terms of fields on a boundary at ε.

References and further reading

For more details on the method of holographic renormalization, see the review [86]. The
method was first used in [87], where the holographic Weyl anomaly was calculated (we
mention this anomaly in the next chapter).

Exercises

1. Calculate the asymptotic expansion (perturbative solution) for a gauge field (with action∫ √
gF2

μν/4) in AdSd+1, for d > 3, as a function of boundary values.
2. Do the same for AdS4. What changes?
3. Calculate the 1-point function (operator VEV) for a scalar with � = d/2 + 2.
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362 Holographic renormalization

4. Calculate the exact solution for a scalar with � = d/2 + 2, and from it find φ(4) as a
function of φ(0).

5. How are the 3-point function calculations affected by the addition of the counterterm
action (22.30)?

6. Do the Fourier transform from (22.41) to (22.42) and find the explicit form for R1/x6.
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23 RG flow between fixed points

In the previous chapter we saw that RG transformations in the field theory correspond to
motion in the radial coordinate, xi = μxi′, z = μz′. In this chapter we study a particular
motion in the radial coordinate, i.e. particular supergravity solutions depending on the
radial coordinate, such that we start and end at fixed points, with zero field theory beta
function β = 0. That means that in the field theory we have an RG flow between fixed
points, whereas in the gravity dual we have a solution that interpolates between points with
AdS symmetry.

But such an RG flow in field theory is initiated by a small relevant deformation of a
conformal field theory, i.e. by a relevant operator. Relevant means that the deformation
leads to a flow away from the UV fixed point. In the supergravity dual, the RG flow should
correspond to a solution of the same supergravity theory that starts in r, approximately like
the un-modified AdS vacuum, and ends in r at another AdS vacuum.

23.1 N = 1 supersymmetric mass deformation of
N = 4 SYM and an IR fixed point

The cases we are interested in are modifications of the N = 4 SYM dual to AdS5 × S5.
In N = 4 SYM, the deformation that is easiest to describe is an N = 1 supersymmetric

one. In N = 1 language, we have three chiral multiplets in the theory, �1,�2,�3, with
the superpotential

W = Tr (�3[�1,�2]). (23.1)

The deformation corresponds to adding a mass term to the superpotential

δW = m

2
Tr (�2

3), (23.2)

which breaks N = 4 to N = 1 (we break N = 4, since the N = 4 theory is unique, and
we still have N = 1 since we have a superpotential). The deformed theory flows towards
a nontrivial IR fixed point (with an exactly zero beta function).

There are two important coefficients that characterize fixed points. They are related to
anomalies in the conformal invariance, given by the VEV of Tμ

μ (the trace of the energy-
momentum tensor is classically zero) and in the R-symmetry, given by the VEV of the
divergence of the R-symmetry current Jμ. In the presence of a metric gμν and a source Aμ
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364 RG flow between fixed points

for the R-current Jμ, the anomalies are given in terms of the central charges c and a (the
central charge c is the same one considered in the context of 2-dimensional conformal field
theories) by

〈Tμ
μ〉gμν , Aμ = c

16π2
C2
μνρσ −

a

16π2
R̃μνρσ R̃μνρσ + c

6π2
F2
μν ,

〈∂μ√gJμ〉gμν , Aμ = −a − c

24π2
Rμνρσ R̃μνρσ + 5a − 3c

9π2
Fμν F̃μν . (23.3)

Here Fμν is the field strength of Aμ, F̃μν is its dual, F̃μν = 1
2ε

μνρσFρσ , R̃μνρσ is the dual
of the Riemann tensor, ˜Rμν

ρσ = 1
2ε

μνλτRλτρσ and Cμνρσ is the conformal invariant Weyl
tensor,

Cμνρσ = Rμνρσ − 2

d − 2
(gμ[ρRσ ]ν − gν[ρRσ ]μ) + 2

(d − 1)(d − 2)
Rgμ[ρgσ ]ν . (23.4)

In four dimensions,

R̃μνρσ R̃μνρσ = RμνρσRμνρσ − 4RμνRμν + R2 = E4 (23.5)

is proportional to the Euler density (that integrates to a topological invariant), and

CμνρσCμνρσ = RμνρσRμνρσ − 2RμνRμν + R2

3
= I4 (23.6)

is a conformal invariant combination.
The central charge c counts perturbative massless degrees of freedom in the con-

formal field theory, up to a normalization. Here the normalization is chosen such that
c = (N2

c − 1)/4 for SU(Nc) SYM.
The anomaly in the R-current Jμ has an a−c contribution coming from triangle diagrams

with two vertices being energy-momentum tensors and the third ∂μJμ, and a 5a − 3c con-
tribution coming from triangle diagrams with two vertices being Jμ and the third ∂μJμ,
as in Fig. 23.1a and b. Both are given by the chiral fermions running in the loop, as
explained in Chapter 1. For a − c, since we have a single Jμ, the anomaly is proportional
to

∑
χ R(χ ), where χ is a chiral fermion and R(χ ) is its charge; for 5a − 3c the anomaly

is proportional to
∑

χ R(χ )3, since we have three Jμs. In the UV, the assignment of charge

b)a)

�Figure 23.1 a) Anomalous diagram contributing to a− c; b) Anomalous diagram contributing to 5a− 3c.
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365 23.2 c-theorem

is R(λ) = 1 for the gaugino λ (fermion in the N = 1 vector multiplet) and R(ψi) = −1/3
for the three fermions in the chiral multiplets �i. This means that

∑
χ=λ,ψi

R(χ ) = 0 and∑
χ=λ,ψi

R(χ )3 = 8/9(N2
c − 1), giving

aUV − cUV = 0; 5aUV − 3cUV ∝ 8

9
(N2

c − 1). (23.7)

In the IR, an effective charge assignment can also be calculated, with R(λ) = 1,
R(ψ1,ψ2) = −1/2 and R(ψ3) = 0, leading in a similar way to

aIR − cIR = 0; 5aIR − 3cIR ∝ 3

4
(N2

c − 1). (23.8)

Finally, this means that

aIR

aUV
= cIR

cUV
= 27

32
. (23.9)

23.2 c-theorem

We saw in the previous section that the central charges c and a in the IR are smaller than
the ones in the UV. This is a general property, since the central charge c counts the num-
ber of massless degrees of freedom in the CFT (the number of ways that energy can be
transmitted), but RG flow from UV to IR corresponds to coarse graining, when degrees of
freedom can only get lost.

In two dimensions, there is a theorem due to Zamolodchikov called the c-theorem, which
says that if we have an RG flow between two fixed points, there exists a monotonically
decreasing function defined along the RG flow, that takes the value of cUV in the UV and
of cIR in the IR, called the c-function. Here c appears in the trace anomaly (anomaly in
conformal invariance) as

〈Tμ
μ〉 = − c

12
R. (23.10)

In four dimensions there is a similar statement proved recently by Komargodski and
Schwimmer, based on earlier work of Myers and Sinha, and conjectured originally by
Cardy, that goes under the name of a-theorem, since as we saw in four dimensions we
have a and c charges appearing in the trace anomaly (23.3), and the statement applies to a.
Moreover it can be proved constructively case by case using AdS/CFT. We will define an
RG flow and explicitly construct a c-function.

The statement of Cardy applies in general dimension to the coefficient A of the term
proportional to the Euler density Ed = R̃μνρσ R̃μνρσ in

〈Tμ
μ〉 = −2(−)d/2AEd + . . . (23.11)
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366 RG flow between fixed points

23.3 Holographic RG flow and c-theorem; kink ansatz

Holographic Weyl anomaly and central charge

One can calculate the central charge of the conformal field theory from the holographic
anomaly. One applies the formalism of holographic renormalization for the VEV (one-
point function) of the trace of the energy-momentum tensor, using (22.16), to show that the
VEV of the energy-momentum tensor is given by the variation of the action with respect
to a Weyl transformation of the metric. In this case the field � is the metric variation itself,
more precisely a Weyl transformation of the metric, δg(0) = 2δσg(0), and one considers
the renormalized action with divergent part given by (22.11), normalized as

Sreg = (16πG(d+1)
N )−1

∫
ddx

√
g(0)[. . .+ (− log ε)s(d)] + Sfinite, (23.12)

with the divergence cancelled by the counterterms. Then the anomaly is given by the
variation of the finite part,

δSfinite = −
∫

ddx
√

g(0)δσA, (23.13)

and can be shown to be given by the coefficient of the log divergence (since the regulated
action is invariant under constant δσ for δg(0) = 2σg(0); δε = 2δσε), leading to

A = 1

16πG(d+1)
N

(−2s(d)). (23.14)

Then using (22.16), we see that the conformal anomaly A is indeed related to the VEV of
the energy-momentum tensor, leading to the 4-dimensional anomaly (for a = c)

A = − a

16π2
(E4 + I4). (23.15)

A holographic calculation of s(d) in (23.12) leading to a calculation of a = c via (23.14),
that will not be reproduced here, gives

a = c = π2R3

l3P,5

= πR3

8G(5)
N

. (23.16)

Here l3P,5 = 8πG(5)
N (in general ld−2

P,d = 8πG(d)
N ), and KK compactification of the gravita-

tional action gives GN,5 = G(10)
N /R5�5 (the coefficient 1/(16πGN) of the Einstein action

gets multiplied by the volume of the compact space), where �5 = π3 is the volume of the
5-sphere.

Kink ansatz for holographic RG flow and c-function

A solution corresponding to a holographic RG flow has to be of the kink type, with metric

ds2 = e2A(r)(−dt2 + d�x2
d−1) + dr2 = e2A(r)ημνdxμdxν + dr2, (23.17)
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367 23.4 Supersymmetric flow

and scalars φi = φi(r), such that A(r) = r/R,φi = 0 corresponds to AdS space (where
we have renamed the coordinate usually called y as r). If the holographic flow is between
two field theory fixed points, it should correspond to two approximately AdS points, so
A(r) � r/R1 at the UV end (large r), and A(r) � r/R2 at the IR end (small r), with
R2 < R1.

For this metric, the nonzero components of the Ricci tensor are

Rμν = e2A(r)[A′′ + d(A′)2]ημν ; Rrr = −d[A′′ + (A′)2]. (23.18)

For a perfect fluid, the energy-momentum tensor is diagonal, and is Tμν =
diag(ρ, p1, . . . , pd−1), where pi are pressures (all equal in a rotationally invariant sys-
tem). But there is a condition believed to be satisfied by all quantum field theories,
called the weakest energy condition, ρ + pi ≥ 0, which via the Einstein equations
Rμν − 1/2gμνR = 8πGTμν translates into

A′′ ≤ 0. (23.19)

This means that the quantity

C(r) = a(r) = a0

(A′)d−1
(23.20)

is monotonically decreasing (or rather, nonincreasing, since it can be constant) along the
flow to the IR. The appropriate normalization in AdSd+1 that gives rise to (23.16) at the
endpoints is

C(r) = a(r) = πd/2

�(d/2)(l(d+1)
P A′(r))d−1

, (23.21)

which gives the c-function, or rather a-function, which takes the value of the central charge
c, or rather a, at the UV and IR fixed points.

Note that we have defined the c-function only in the context of Einstein gravity in the
dual, but one can define it with more generality.

23.4 Supersymmetric flow

In N = 4 SYM, one can find an RG flow originating from the addition of the mass term
described at the beginning of the chapter, that preserves N = 1 supersymmetry along it and
interpolates between the original N = 4 SYM fixed point and the N = 1 supersymmetric
IR fixed point.

In AdS5 supergravity, it should correspond to a kink solution interpolating between the
original N = 8 supersymmetric AdS5 vacuum and another N = 2 supersymmetric (1/4
susy) AdS5 vacuum. Then the kink must be supersymmetric, i.e. invariant under supersym-
metry, which means that the variation of the fermion δsusyψ must vanish (the variation of
the bosons is fermionic, which is automatically zero classically, since fermions do not have
VEVs because of Lorentz invariance).
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368 RG flow between fixed points

The potential for the scalars is derived from a superpotential W. Since we are in a
supergravity theory, we also have a term proportional to |W|2, with the result

V = 9

8

∑
j

∣∣∣∣∂W

∂φj

∣∣∣∣
2

− 3l2P|W|2. (23.22)

From the gravitino variation δψa
μ = 0 and the spin 1/2 variation δχabc = 0, one finds the

condition

A′ = −l2PW;
dφi

dr
= 3

2
l2P
∂W

∂φi
. (23.23)

Then the c-function (or a-function) along the RG flow is (substituting A′ = W in the
general formula)

C(r) = a(r) = π2

(l(5)
P )9W3

, (23.24)

i.e. it is given by the value of W. At the AdS vacua, one needs only to compute W to
find the central charges a = c. For the particular flow of interest, one can analyze the
N = 8 supergravity potential minima, and from them find W at the corresponding N = 2
minimum, obtaining indeed that a(0)/a(∞) = 27/32, as expected from the field theory.

Important concepts to remember

• RG flows between fixed points in field theory correspond to kink solutions depending
on the radial coordinate r in supergravity, interpolating between different AdS vacua.

• In four dimensions, the anomaly structure is governed by two central charges a and c,
which are equal in N = 4 SYM.

• An N = 1 mass deformation of N = 4 SYM triggers an N = 1 RG flow that ends in
an IR fixed point.

• The charge a always decreases along the RG flow from UV to IR, similarly to c
decreasing in two dimensions.

• In d = 2 there is a c-function along the RG flow that is monotonically decreasing and
takes the values cUV in the UV and cIR in the IR. In d = 4 there is a similar theorem for a.

• One can write a kink ansatz ds2 = e2A(r)(−dt2 + d�x2) + dr2, and then A′′ ≤ 0, meaning
that the c-function is proportional to 1/(A′)d−1 for AdSd+1.

References and further reading

The RG flow described here was found in [88]. The a-theorem was proven in [90], based
on earlier work in [89]. The central charge c was calculated in [87]. For more on the
holographic c-theorem (i.e., from AdS/CFT) in more general gravity contexts see, e.g. [91].
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369 23.4 Supersymmetric flow

Exercises

1. Show that the Weyl tensor for AdS is zero.
2. Calculate 〈Tμ

μ 〉 for AdSd+1 in Poincaré coordinates with radius R.
3. Show that the integral of E4 in four dimensions is topologically invariant (independent

of the metric).
4. Calculate aUV − cUV and 5aUV − 3cUV for the conformal field theory corresponding to

the N = 2 orientifold of AdS5 × S5 in Section 19.2.
5. Prove that the components of the Ricci tensor for the metric (23.17) are given by

(23.18).
6. Consider the superpotential

W = 1

4ρ2

[
cos 2φ1(ρ6 − 2) − (3ρ6 + 2)

]
, (23.25)

and ρ = eα . Find the extrema of W in the (α,φ1) plane.
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24
Phenomenological gauge–gravity

duality I: AdS/QCD

Until now we have dealt with AdS/CFT, or gauge–gravity duality, derived from string
theory, even if the derivation did not have mathematical rigor. We had a system of branes
in the decoupling limit giving rise to a gravitational background dual to a well-defined
field theory. In the language of fundamental string theory (string theory as a unified
theory) this is a “top-down” approach: we start with a well-defined string theory sys-
tem and we see what kind of gravity dual pair we get, looking for something close
to QCD.

But another approach is possible, a phenomenological one or “bottom-up.” That is, we
assume that there should be a gravity dual of QCD and see if we can construct it using
the properties of QCD. We need to make educated guesses about which properties should
appear in the gravity dual, and there is no guarantee that there actually exists a system of
branes leading to this dual pair. But the approach has the advantage that it can be taken to be
a phenomenological model for QCD that encodes some of its properties in a gravitational
theory, and is only approximate, on a par with other phenomenological models for QCD.

In this chapter we follow a natural evolution for three models: first an extension of the
“hard-wall” model of Polchinski and Strassler, then a version with a smooth cut-off called
the “soft-wall” model, and then a perturbative method to find gravity duals called improved
holographic QCD.

24.1 Extended “hard-wall” model for QCD

We have already described the basic “hard-wall” model for QCD of Polchinski and
Strassler. It is an AdS5 space cut off in the IR at r = rmin = R2�, or in terms of z = R2/r,
at zm = 1/�. An improved version for it was presented, where the IR cut-off is considered
as a fluctuating brane, whose scalar mode (brane position) corresponds to a pion.

But one can extend the model further, as was done by Erlich, Katz, Son, and Stephanov
(EKSS). We can add two gauge fields Aa

Lμ, Aa
Rμ, coupling to the left- and right-handed

currents for an SU(Nf )L × SU(Nf )R chiral flavor symmetry, q̄Lγ
μTaqL and q̄Rγ

μRaqR, as
well as a bifundamental tachyonic scalar field Xαβ of m2R2 = −3 (which is OK in AdS
space, since it is above the Breitenlohner–Freedman bound, which is the only requirement)
coupling to the chiral order parameter q̄αRqβL (α is in the fundamental of SU(Nf )R and β in
the fundamental of SU(Nf )L).
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371 24.1 Extended “hard-wall” model for QCD

The relevant action is

S =
∫

d5x
√−gTr

[
−|DμX|2 + 3|X|2 − 1

4g2
5

(F2
Lμν + F2

Rμν)

]
, (24.1)

where DμX = ∂μ − iALμX + iXARμ, Fμν = ∂μAν − ∂νAμ − i[Aμ, Aν], AL,Rμ = Aa
L,RμTa.

At the IR brane one needs to impose boundary conditions. For ALμ, ARμ, we need gauge
invariant boundary conditions, the simplest being (FL)zμ = (FR)zμ = 0, but others being
possible (EKSS proved that they have little effect on physical results). As we saw in Chap-
ter 11, we can choose the gauge Az = 0, which implies that the boundary condition is
simply Neumann, ∂zAL,Rμ = 0. In the UV, Aa

Lμ and Aa
Rμ go to the sources aa

L,Rμ for the
chiral currents Ja

L,Rμ.
For the scalar X, there should be a boundary condition in the IR too, which will fully

determine the solution for X together with the UV boundary condition. Since the chiral
order parameter OX = q̄αRaβL has dimension � = 3 in d = 4, by the general discussion
from Chapters 11, 12, and 22, we expect that the scalar boundary condition at z = 0 is

X → zd−�(X0 + z2�−dX(2�−d)) = zX0 + z3X(2), (24.2)

where X0 is the source for the chiral order parameter operator OX , interpreted as a quark
mass matrix Mαβ/2 (adding the term Xαβ

0 q̄αRqβL to the Lagrangean corresponds indeed to
adding a quark mass matrix). The simplest case is to assume that M = mq1. On the other

hand, X(2) ≡ �/2 gives the VEV of the operator (1-point function), i.e. �αβ = 〈q̄αRqβL〉,
and again the simplest assumption is � = σ1. The boundary condition is thus

X(z) → 1

2
Mz + 1

2
�z3. (24.3)

This extended hard-wall model then has four parameters mq, σ , zm, and g5 and three
fields, ALμ, ARμ, and X. One can introduce a vector field Vμ = (ALμ+ARμ)/2 and an axial
vector field Aμ = (ALμ − ARμ)/2, coupling to the vector current q̄γμTaq and axial vector
current, respectively.

2-point function of currents and gauge coupling

The vector field in the gauge Vz(�x, z) = 0 from the action (24.1) has the equation of motion
for the transverse Fourier components Va

μ(�q, z)[
∂z

(
1

z
∂zV

a
μ(�q, z)

)
+ �q 2

z
Va
μ(�q, z)

]
= 0. (24.4)

Denoting the Fourier transform of the boundary source coupling to the vector current by
V0μ(�q), we have

Vμ(�q, z) = V(�q, z)V0μ(�q); V(�q, z = ε) = 1. (24.5)

Plugging in the equation of motion and expanding around z = 0, we obtain in the UV

V(Q, z) = 1 + Q2z2

4
ln(Q2z2) + . . . , (24.6)
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372 Phenomenological gauge–gravity duality I: AdS/QCD

where Q2 = �q 2. Of course, the full solutions will be quantized, since they need also to
satisfy the IR boundary condition (Neumann), and as we argued in previous chapters, a
cut-off in the IR region leads to a discrete spectrum for the solution to the equation of
motion in AdS.

One can calculate the 2-point function of vector currents as in Chapter 11: for the on-
shell action, only a boundary term remains, and the 2-point function is the second derivative
of the action with respect to the source V0μ,

〈Ja
μ(x)Jb

ν (0)〉 = δ2Ssugra

δVa
0μ(x)δVb

0ν(0)

= − 1

2g2
5

δ2

δVa
0μ(x)δVb

0ν(0)

∫
z=ε

d4x

(
1

z
Va
μ∂zV

μa
)
⇒

∫
d4xei�q·�x〈Ja

μ(x)Jb
ν (0)〉 = δab(qμqν − �q2gμν)�V (Q2),

�V (Q2) = − 1

g2
5Q2

∂zV(�q, z)

z

∣∣∣∣
z=ε

. (24.7)

From the solution for V(Q, z) above, we get

�V (Q2) = − 1

2g2
5

ln Q2, (24.8)

and by comparing with the perturbative QCD result �V (Q2) = − Nc
24π2 ln Q2, one can fix

g2
5 =

12π2

Nc
. (24.9)

Decay constants

The solutions to (24.4) with boundary condition ψn(z = ε) = 0 and ∂zψn(zm) = 0 are
quantized (discrete), and correspond to a tower of meson states associated with the vector
current operator, as explained in Chapter 21. Since the field is a vector, the tower is of
vector mesons, specifically of ρ vector mesons. Consider the wavefunctions ψn(z) for the
tower of solutions (labelled by n, with �q 2 = −m2

n) corresponding to some component
μ of Vμ. As usual, the Green’s function for that component μ is written in terms of the
eigenmodes as

G(�q; z, z′) =
∑

n

ψn(z)ψn(z′)
�q 2 − m2

n + iε
. (24.10)

Since the solution to (24.5) is written in terms of the scalar Green’s function G as Vμ(�q, z) =
−1/z′∂z′G(q; z, z′)z′=εV0μ(�q), we can obtain the function V(�q, z), and from it we get

�V (�q 2) = − 1

g2
5

∑
n

|ψ ′(ε)/ε|2
(�q 2 − m2

n + iε)m2
n

. (24.11)
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373 24.2 “Soft-wall” model for QCD

The decay constants of the vector meson ρn with polarization vector εμ, defined by

〈0|Ja
μ|ρb

n〉 = Fnδ
abεμ, (24.12)

are calculated from the 2-point function of currents. Indeed, considering∑
n

〈0|Ja
μ(q)|ρb

n〉
1

m2
n(�q 2 − m2

n + iε)
〈ρb

n |Ja
μ(−q)|0〉

= 1

�q 2
〈0|Ja

μ(q)Ja
μ(−q)|0〉 = −3δa

a�v(q2)

= δa
aεμε

μ
∑

n

F2
n

m2
n(�q 2 − m2

n + iε)
, (24.13)

and equating the two sides, we obtain

F2
n = 1

g2
5

[ψ ′(ε)/ε]2 → 1

g2
5

[ψ ′′
n (0)]2. (24.14)

One can calculate various other quantities like masses, couplings, and decay constants
of fields (we will not show them here), like mρ , mπ , and fπ , and fit the three remaining
parameters, zm, σ , mq, after which we get predictions for all the other quantities.

We have seen the method to calculate masses (from eigenmodes of equations of motion
of fields in the gravity dual) and decay constants (from current 2-point functions). Coup-
lings between fields are found from the nonlinear terms in the bulk action, integrating over
z the wavefunctions in z of the corresponding fields (for example, the ρn particle has the
wavefunction ψn(z)).

24.2 “Soft-wall” model for QCD

Next, we consider modifying the background geometry so as to obtain expected properties
of the QCD mass spectrum, in order to obtain the so-called “soft-wall” model. In the cases
similar to the hard-wall model, the spectrum of modes with high excitation number, n # 1,
is m2

n ∝ n2 (for instance, we saw in Section 21.6 that the Witten model has m2R2 =
6n(n + 1) → 6n2). But from QCD data we want m2

n ∝ n, or more precisely m2
n ∼ σn

(with σ the QCD string tension) instead. Similarly, for high spin S # 1, the picture of a
semiclassically rotating relativistic QCD string predicts m2

S = 2πσS.
Therefore, one wants to modify the gravity dual in order to have

m2
n ∼ σn; m2

S ∼ σS. (24.15)

But the modification is not a UV one, despite the energy (mass) of the state being high,
but rather it is from modification of the IR. One way to understand this is that the length
of the excited meson is L ∼ mn/σ , since the energy (mass) of the state with a flux tube
(QCD string) between quarks is a linear function of length, E = σL. This means that the
high mass states are extended, i.e. governed by the IR. Another way to see this is from
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374 Phenomenological gauge–gravity duality I: AdS/QCD

the analysis of the gravity dual. With just AdS space, there is a continuum of eigenmodes,
since the time of flight between the boundary at infinity and the center of AdS is finite. The
discrete nature of the spectrum, as in the case of the 1-dimensional quantum mechanical
box, comes from the fact that we need also to impose boundary conditions at a finite IR
cut-off. Then the precise nature of the way the space is cut off in the IR leads to the
discretization of the spectrum, i.e. the behavior of m2

n = m2
n(n).

Then we look for a gravity dual that cuts off smoothly in the IR (hence the name “soft-
wall”), and we consider nontrivial metric gMN and dilaton � (since, as we saw in all the
top-down examples, these were the relevant fields). The space depends only on the radial
coordinate for simplicity, as in the domain wall, or “kink” ansatz in the last chapter. To
parameterize the solution, we can use a “conformal” coordinate system, with �(z) and
metric

ds2 = gMNdxMdxN = e2A(z)(ημνdxμdxν + dz2), (24.16)

but we can also use a “domain wall” (or kink) coordinate system as in the previous chapter,

ds2 = e2A(u)ημνdxμdxν + du2, (24.17)

the two being related by du = eA(z)dz.
Similarly to the case of the top-down models of Chapter 21, we see soon that for the mass

spectrum coming from the KG equation (excited states of a scalar) the relevant combination
is �(z) − A(z), and not A(z) by itself. To have an asymptotically AdS space in the UV
(z → 0), as needed, we would expect−A(z) ∼ log z, but we rather need�(z)−A(z) ∼ log z,
as we saw in the examples of Chapter 21. On the other hand, in the IR (large z), we shortly
see that we need �(z) − A(z) ∼ z2. The simplest solution to both these conditions is
�(z) − A(z) = z2 + log z.

The action we take in the bulk of the gravity theory needs to have the same fields
ALμ, ARμ, X as in the extended hard-wall model, and with the same action, but now we
need to introduce � in the background also, so we write

S =
∫

d5x
√−ge−�(z)Tr

[
−|DμX|2 + 3|X|2 − 1

4g2
5

(F2
Lμν + F2

Rμν)

]
(24.18)

instead of (24.1). The calculation of the gauge coupling from the 2-point function of cur-
rents in the previous subsection depended only on the UV behavior of the gravity dual,
hence is unmodified. Therefore we can still identify g5 as in (24.9), i.e. g2

5 = 12π2/Nc. The
boundary conditions in the UV are the same (as needed for holography), and the boundary
conditions in the IR are that the on-shell action is finite. The ambiguity in the choice of IR
boundary conditions noted in the case of the hard wall is lifted in the case of the soft wall.

For the vector field Vμ, in the axial gauge Vz = 0 as in the previous section, the trans-
verse components ∂μVμ = 0 have normalizable solutions Vn(z) only for discrete values of
�q 2 = −m2

n, satisfying a generalization of (24.4), namely

∂z(e
−B∂zVn) + m2

ne−BVn = 0, (24.19)
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375 24.2 “Soft-wall” model for QCD

where B(z) = �(z) − A(z). Therefore, as expected, only the combination B matters for the
spectrum mn. With the field redefinition

Vn = eB/2ψn, (24.20)

we obtain the Schrödinger equation

− ψ ′′
n + V(z)ψn = m2

nψn, (24.21)

where the “potential” is

V(z) = 1

4
(B′)2 − 1

2
B′′. (24.22)

To obtain energies En ≡ m2
n ∝ n at large n, as in the case of a harmonic oscillator, we

need that an approximately harmonic oscillator potential, V(z) ∝ z2 at large z. This in turn
requires that B = �(z) − A(z) ∼ z2 at large z, as we have indicated.

In the case of B = z2/z2
m + log z, we have the potential V(z) = z2/z4

m + 3/4z2, and the
Schrödinger equation

− ψ ′′ +
[

z2

z4
m
+ 3

4z2

]
= Eψ (24.23)

has eigenvalues

m2
nz2

m = En = 4(n + 1). (24.24)

We see then that the QCD string tension is σ ∝ 1/z2
m. The wave function corresponding to

these eigenvalues is

Vn(z) = z2

√
2n!

(n + 1)!
L1

n(z2), (24.25)

where Lm
n are associated Laguerre polynomials.

One can also calculate the decay constants through (24.14), which now reads

F2
n = 1

g2
5

[V ′′
n (0)]2 = 8(n + 1)

g2
5

. (24.26)

But until now only � − A was fixed, not � and A individually. For that, one needs to
look at the spectrum of mesons with higher spin (S > 2). For theories with higher spin,
interactions are hard to describe. But the kinetic terms of higher spin fields in AdS space,
the only thing needed for calculation of the mass spectrum, are easy to write down. The
fields are φM1...MS , totally symmetric of rank S, with gauge invariance

δφM1..MS = D(M1ξM2...MS). (24.27)

Choosing the gauge φz... = 0, there is still the residual gauge invariance with ξ satisfying
ξz... = 0 and

δφz... = Dzξ... + D(.ξ...z) = ξ ′... − 2(S − 1)A′ξ... = 0, (24.28)

which implies

ξμ1...μS−1 (z, xμ) = e2(S−1)A(z)ξ̃μ1...μS−1 . (24.29)
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376 Phenomenological gauge–gravity duality I: AdS/QCD

Redefining the field as

φ... = e2(S−1)A(z)φ̃..., (24.30)

the residual gauge invariance is

δφ̃... = ∂(.ξ̃...). (24.31)

The kinetic action

S = −1

2

∫
d5x

√−ge−�[DNφM1...MS DNφM1...MS + M2(z)φM1...MSφ
M1...MS ], (24.32)

where M(z) is a fixed function allowing for gauge invariance, reduces now to (replacing φ
and

√−g)

S = −1

2

∫
d5xe−�[e(2S−1)A∂N φ̃μ1..μS∂

N φ̃μ1...μS ], (24.33)

which is explicitly gauge invariant (and without the need to explicitly define M(z)).
From this, the equation of motion for φ̃n, a transverse traceless mode of φ̃..., is the same

as (24.19), just with

B = �− (2S − 1)A. (24.34)

Again we need m2
n ∝ n at large n, which means that V(z) ∝ z2 at large z, which in turn

means that B ∝ z2 at large z. But now moreover this has to happen independently of S,
which restricts the relations to � ∝ z2 at large z and A ∝ − log z at small z. The simplest
choice is A = − log z and � = z2/z2

m, for which the “potential” is

V(z) = z2

z4
m
+ 2(S − 1)

z2
m

+ S2 − 1/4

z2
, (24.35)

which has eigenenergies

En ≡ m2
n,Sz2

m = 4(n + S). (24.36)

In conclusion, by imposing that the spectrum of vector mesons has the QCD behavior
m2

n ∝ n we have found � − A = z2/z2
m + log z, and by also imposing the same for the

higher spin mesons we have also fixed � ∼ z2/z2
m and A ∼ − log z.

24.3 Improved holographic QCD

The hard-wall and soft-wall models phenomenologically introduced fields corresponding
to important operators; a QCD scale, quark mass, string tension, and chiral condensate,
and correct behavior for the tower of mesonic states.

But one would also like to obtain a running coupling constant that agrees with the beta
function of QCD. We can do this by engineering a scalar potential in the gravity dual that
holographically gives the desired running beta function. Note, however, that we want the
running beta function at strong coupling (which is not known theoretically), so we need an
ansatz for the exact form we want to reproduce.
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377 24.3 Improved holographic QCD

In the conformal coordinate system of the last subsection, in the UV, where A(z) �
− log z, z is related to the energy scale as usual by z = 1/E. Also in the UV, du = eA(z)dz
means that u � log z, so du = −d log E. The ’t Hooft coupling constant is λ = g2

YMNc =
Nce�. Its beta function is then generically

μ
dλ

dμ
= − dλ

d log z
= β(λ) = −b0λ

2 + b1λ
3 + b2λ

4 + . . . (24.37)

From this, one obtains by integrating that

1

λ
≡ αs = L − b1

b0
log L + b2

1

b2
0

log L

L
+O

(
1

L2

)
, (24.38)

where

L ≡ −b0 log(z�), (24.39)

and � is the RG invariant scale of QCD. We will denote by prime a derivative with respect
to −d(log z), corresponding to d logμ.

From this beta function we want to obtain a bulk potential for the dilaton, or rather for
λ = Nce�, as the Taylor expansion

V(λ) =
∞∑

n=0

Vnλ
n, (24.40)

corresponding to a perturbative SYM expansion. Substituting λ from (24.38) and expand-
ing in L, one obtains

V = V0 + V1

L
+ V2

L2
+ b1

b0
V1

log L

L2
+O

(
1

L3

)
. (24.41)

Now to fix the coefficients Vi of the potential in terms of the coefficients bi of the beta
function, we need to use a certain form of Einstein’s equations. Starting from the string
theory action for the supergravity fields, coupled to sources coming from Nf effective D4−
D̄4-brane pairs (higher Dp-branes, for instance D7 − D̄7-branes, wrapped on the compact
space we are reducing on) giving flavors (“quarks”) as in the Sakai–Sugimoto model, we
can integrate out the 5-form field strength F5 and put the axion a to zero, along with other
fields, to obtain an action for the gravity plus dilaton system in the Einstein frame

S = M3
Pl,5N2

c

∫
d5x

√−g

[
R − 4

3

(∂μλ)2

λ2
− V(λ)

]
. (24.42)

The exact form of V(λ) is not important, since we want to substitute it with the param-
eterization that will match the beta function. The rest of the action is easy to understand.
The M3

Pl,5 factor is the standard gravitational coupling. In the string frame, we have nor-

mally e−2� = N2
c /λ

2 in front of R, and when going to the Einstein frame only the λ−2

factor is removed, leaving an N2
c . The factor of 4/3 arises when going from the string

frame Lagrangean
√−ge−2�(R + 4(∂μ�)2) to the Einstein frame by the transformation

gμν = λ4/3gE
μν .
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378 Phenomenological gauge–gravity duality I: AdS/QCD

The equations of motion of this action, in terms of �, are found to be

Rμν − 1

2
gμνR − 4

3

[
∂μ�∂

μ�− 1

2
(∂ρ�)2gμν

]
− 1

2
gμνV = 0

��+ 3

8

dV(�)

d�
= 0, (24.43)

and for our ansatz in conformal coordinates they become

12Ȧ2 − 4

3
�̇2 − e2AV = 0; 6Ä + 6Ȧ2 + 4

3
�̇2 − e2AV = 0,

�̈+ 3Ȧ�̇+ 3

8
e2A dV

dφ
= 0, (24.44)

where dot refers to d/dz. These equations are rewritten in terms of λ = Nce�, in which
we impose that it has the expansion (24.38) in L. Also V has an expansion in L (24.41),
and the compatibility of the equation of motion expanded in L leads (after some very long
algebra) to the identification of the potential coefficients Vi and of the metric coefficient
e2A expanded in the same L as

V1 = 8

9
b0V0;

V2 = 23b2
0 − 36b1

34
V0 ⇒ V = V0

(
1 + 8

9
b0λ+ 23b2

0 − 36b1

34
λ2

)
+O(λ3),

ds2 =

⎡
⎢⎢⎣1 + 8

32 log(z�)
+

4

(
26 + 9 b1

b2
0
− 18 b1

b2
0

log(b0 log 1
z� )

)
34 log2(z�)

+ O
(

log2 log(z�)

log3(z�)

)⎤
⎥⎥⎦ R2

z2
(dz2 + d�x2). (24.45)

Note that V0, the cosmological constant, must be related to the AdS radius as usual, so
V0 = 12/R2. This solution is given as an expansion in the UV of the theory (small z), as it
should, since the beta function was defined perturbatively in the UV.

Therefore, in this improved holographic QCD method we have obtained a metric and
dilaton potential for the gravity dual by imposing matching with the beta function of QCD.
This was enough for the UV asymptotics, but what we are mostly interested in, in order to
obtain the relevant nonperturbative, low energy physics of QCD, is the IR of the solution.
But as we have already mentioned, the exact beta function of QCD (needed in order to
apply it at large ’t Hooft coupling λ as is needed for AdS/CFT in the IR) is of course not
known, so we can only propose various forms for β(λ) that agree with some given order in
the expansion in the UV (in the above, up to b1), and use Einstein’s equations in the bulk to
solve for the whole solution. This, however, imposes an additional layer of phenomenology,
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379 24.3 Improved holographic QCD

besides the AdS/CFT phenomenology, since we now use phenomenology for QCD in order
to define β(λ). Therefore this method is more useful for the UV expansion of the solution,
which we explained above.

Important concepts to remember

• AdS/QCD is a “bottom-up” approach, of engineering a would-be gravity dual using
properties of QCD, encoded in a gravitational theory.

• In the extended hard-wall model, one introduces gauge fields ALμ, ARμ coupling to the
chiral currents of a chiral SU(Nf )L × SU(Nf )R flavor symmetry, and a scalar coupling
to the bifundamental chiral order parameter q̄αqβ in the bulk of the cut-off AdS5 with a
fluctuating IR cut-off (“IR brane”).

• Masses of QCD states are calculated from eigenmodes of the equations of motion of
fields in the gravity dual, decay constants from the 2-point function of currents, and
couplings from the nonlinear terms in the bulk action, integrating over the wavefunctions
in the fifth dimension z.

• One fixes the free parameters of the model (g5, zm, σ , mq) from four quantities, then the
other calculations give predictions.

• The “soft-wall” model modifies the IR of the gravity dual to match the observed spec-
trum of QCD excited states, which have m2

n ∝ n at large n for S ≤ 1 mesons and for
higher spin mesons m2

S ∝ S at large spin S, with the constant of proportionality being
(up to a number) the QCD string tension.

• One takes a “domain wall” or “kink” ansatz for the dilaton and metric, depending only
on a factor e2A(z), with z being the fifth coordinate.

• The requirement to have m2
n ∝ n at large n implies that �− A ∝ z2 at large z (IR) (and

�− A ∝ − log z at small z, in the UV).

• The requirement that m2
S ∝ S at large S also implies that � ∝ z2 at large z and A ∼

− log z at small z, solved by � = z2/z2
m and A = − log z, when m2

n,S = 4(n + S)/z2
m.

• In improved holographic QCD, from the known perturbative beta function of QCD,
written as β(λ), where λ = Nce�, one extracts the perturbative form of the dilaton
potential in the gravity dual V(λ) = ∑

n Vnλ
n, and of a corresponding expansion of the

metric e2A as an expansion in the UV in log(z�).

• If we also want an expansion in the IR, in order to describe low energy physics, we need
to make an ansatz for the exact beta function β(λ) in QCD, and use it, together with
Einstein’s equations, to determine the gravity dual.

References and further reading

The extended “hard-wall” model was introduced in [92] and the “soft-wall model” of
AdS/QCD was introduced in [93]. The improved holographic QCD model was introduced
in [94].

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:55:51 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.026

Cambridge Books Online © Cambridge University Press, 2016



380 Phenomenological gauge–gravity duality I: AdS/QCD

Exercises

1. Calculate the mass of the pion, mπ , in the hard-wall model.
2. Calculate the ρ − π − π coupling in the hard-wall model.
3. For the soft-wall model with A = − log z and � = z2/z2

m, calculate the ρ − ρ − π − π

coupling.
4. For the soft-wall model with A = − log z and � = z2/z2

m, calculate the mass of the
pion.

5. Prove that the equations of motion (24.43) reduce on the conformal coordinates (24.16)
to (24.44).

6. Propose an ansatz for β(λ) that agrees with b0 and b1 and can be used at large λ.
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25
Phenomenological gauge–gravity

duality II: AdS/CMT

In this chapter we study another example of a phenomenological approach to AdS/CFT,
namely for condensed matter systems. Strongly coupled condensed matter systems are hard
to analyze, and there are few models for them, even phenomenological ones, hence gravity
dual phenomenological models are very useful. Contrary to the application of the previous
chapter, where AdS/CFT relates in principle a gravity dual to a gauge theory, even though
we do not know how to obtain QCD exactly on a system of branes with a gravity dual, in
the present case it is not even clear why there should be a nonabelian gauge theory. What
is certain is that we expect to have certain operators and symmetries, and based on that we
want to construct a would-be gravity dual with fields dual to the operators and with the
local versions of the symmetries.

We can start from a well-defined gravity dual in string theory, and try to find a reason to
apply it for a condensed matter system, even though the dual field theory is not necessarily
related to the system of interest (but operators in it might describe relevant physics). Or we
can engineer a would-be gravity dual, with some symmetry and fields corresponding to the
operators and symmetries of interest in the condensed matter system, in which case it is
not clear that AdS/CFT should be applicable, as in the last chapter.

25.1 Lifshitz, Galilean, and Schrödinger symmetries and their
gravity duals

Gravitational dual of Lifshitz points

The first example we start with is of the last type, looking to engineer a would-be gravity
dual with the right properties. Most condensed matter systems are nonrelativistic, so in this
section we learn how to deal with some nonrelativistic systems.

In condensed matter systems, near a phase transition we have fixed points that sometimes
can exhibit so-called “dynamical scaling”, or “Lifshitz scaling,” in which case we call them
Lifshitz points. Instead of the usual relativistic scaling t → λt, �x → λ�x, at the Lifshitz
points we have the scaling

t → λzt; �x → λ�x. (25.1)

Here z is called the dynamical critical exponent.
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382 Phenomenological gauge–gravity duality II: AdS/CMT

A model example for z = 2 is the Lifshitz field theory, with Lagrangean

L =
∫

d2x dt
[
(∂tφ)2 − k( �∇2φ)2

]
. (25.2)

It arises in some multicritical points of known materials.
To describe Lifshitz points, we use a phenomenological AdS/CFT approach, namely

we try to realize the symmetry group geometrically. In the case of AdSd+1, the symmetry
group SO(d, 2) is the same as the conformal group of Minkd, which suggests it is dual to a
CFTd. Assuming that AdS/CFT still holds in general gravity backgrounds, for which there
is some indication, we are led to a d + 1-dimensional gravitational background dual to the
Lifshitz point

ds2
d+1 = R2

(
−dt2

u2z
+ d�x2

u2
+ du2

u2

)
. (25.3)

Here d�x2 = dx2
1 + . . .+ dx2

d−1 and 0 < u <∞.
The metric is invariant under the scale transformation,

t → λzt, �x → λ�x, u → λu, (25.4)

with generator (Killing vector)

D = −i(zt∂t + xi∂i + u∂u). (25.5)

The metric (25.3) is not geodesically complete: u = ∞ is a pp curvature singularity unless
z = 1 (even though the Ricci scalar is R = −2/R2(z2+2z+3), so is constant on the space).

The other Killing vectors generating the algebra are the Lorentz generators Mij,
the momentum Pi (generator of space translations), the energy H (generator of time
translations), given by

Mij = −i(xi∂j − xj∂i); Pi = −i∂i; H = −i∂t. (25.6)

The symmetry algebra generated by {Mij, Pi, H, D} is easily found to be

[D, H] = z∂t = izH,

[D, Pi] = ∂i = iPi; [D, Mij] = 0,

[Mij, Pk] = δi
k∂j − δi

k∂i = i(δi
kPj − δ

j
kPi),

[Mij, Mkl] = i(δikMjl − δjkMil − δilMjk + δjlMik),

[Pi, Pj] = 0. (25.7)

This is the symmetry group of Lifshitz invariance, therefore this lends support to the idea
that the background (25.3) is gravity dual to the Lifshitz point.

But in which gravitational theory is the background (25.3) a solution? An example of an
action that has this solution for d + 1 = 4 dimensions is

S =
∫

d4x
√−g(R−2�)−1

2

∫ (
1

e2
F(2) ∧ ∗F(2) + F(3) ∧ ∗F(3)

)
−c

∫
B(2)∧F(2), (25.8)
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383 25.1 Lifshitz, Galilean, and Schrödinger symmetries and their gravity duals

where F(2) = dA(1), F(3) = dA(2) are field strength of the 1-form A(1) and 2-form A(2), and
where the cosmological constant is

� = − z2 + z + 4

2R2
. (25.9)

There is other matter one can add to gravity with a cosmological constant in order to
obtain the metric (25.3). Another example with relativistic gravity is

S = 1

2κ2
N

∫
dtdDxdr

√−g

[
R − 2�− 1

4
FμνFμν − 1

2
m2AμAμ

]
, (25.10)

with � defined by the parameters of the theory. Another way to obtain it as a solution
is in nonrelativistic gravity, the so-called “Horava gravity” model, that is approximately
relativistic in the IR, but has Lifshitz scaling in the UV. We will, however, not discuss this
here.

Gravitational dual to Galilean and Schrödinger symmetries

We can realize larger algebras geometrically using the same phenomenological AdS/CFT
approach. In particular, there is an algebra relevant for the study of cold atoms and fermions
at unitarity. It still has the same generators, {Mij, Pi, H, D}, but also the generators Ki, called
Galilean boosts, for the symmetry

t → t, xi → xi − vit, (25.11)

together with a conserved rest mass, or particle number N. The algebra they generate is a
conformal Galilean algebra.

In the case of z = 2, there is an extra generator C, called a special conformal genera-
tor, and the algebra becomes the Schrödinger algebra (note that sometimes the conformal
Galilean algebra is also called the Schrödinger algebra). This is in fact the symmetry of the
Schrödinger equation of a free particle.

In order to realize the algebra geometrically, we need to generalize AdS/CFT to a
candidate gravity dual in d + 2 dimensions instead of d + 1. Specifically, the geometry is

ds2 = R2
(
−dt2

u2z
+ d�x2

u2
+ du2

u2
+ 2dt dξ

u2

)
. (25.12)

Here, as usual, u is the radial coordinate, but we also have an extra coordinate ξ . Note that
this metric is not time reversal invariant (t → −t), unlike the Lifshitz metric. Note also
that the metric is now nonsingular, unlike the Lifshitz metric, since it is conformal to a pp
wave spacetime:

ds2 = R2

u2

(
−dt2u2(1−z) + 2dt dξ + d�x2 + du2

)
. (25.13)

The metric is invariant under the scaling symmetry

t′ = λzt, �x′ = λ�x, u′ = λu, ξ ′ = λ2−zξ , (25.14)
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384 Phenomenological gauge–gravity duality II: AdS/CMT

with generator

D = −i(zt∂t + xi∂i + u∂u + (2 − z)ξ∂ξ ), (25.15)

and Mij, Pi, H having the same expressions as before.
The extra symmetry Galilean boost Ki, with transformation

�x′ = �x − vt, ξ ′ = ξ + 1

2
(2�v · �x − v2t), (25.16)

that implies the transformations

(d�x′)2 = (d�x)2 + v2dt2 − 2�v · �xdt, 2dtdξ ′ = 2dtdξ + 2dt�v · �x − v2t dt, (25.17)

has the generator

Ki = −i(xi∂ξ − t∂i). (25.18)

Note that the term δ�x = −�vt leads to t∂i in Ki, δξ = �v · �x leads to xi∂ξ , and the term
δξ = −v2t/2 is nonlinear in the parameter v, so we do not consider it for the calculation
of Ki, which corresponds only to the linearized transformations.

Finally, the particle number (or rest mass) N corresponds to the translation symmetry in
ξ (the metric is independent of ξ ), thus the generator is

N = −i∂ξ . (25.19)

Again we can calculate the algebra of the new generators, obtaining

[Ki, Pj] = δij∂ξ = iδijN,
[D, Ki] = zt∂i − xi∂ξ + (2 − z)xi∂ξ − t∂i = (1 − z)iKi,

[Kk, Mij] = t(δik∂j − δjk∂i) + δjkxi∂ξ − δikxj∂ξ = i(δjkKi − δikKj),
[Ki, H] = −∂i = −iPi,
[D, N] = (2 − z)∂ξ = (2 − z)iN,
[Ki, N] = [H, N] = [Pi, N] = [Mij, N] = 0. (25.20)

This is the conformal Galilean algebra.
For z = 2, it also has a special conformal generator C, corresponding to the symmetry

u → (1 − at)u, xi → (1 − at)xi,

t → (1 − at)t, ξ → ξ − a

2
(�x2 + u2). (25.21)

We can find the commutation relations of C with the other generators,

[D, C] = −2iC, [H, C] = −iD, [Mij, C] = 0 = [Ki, C]. (25.22)

This is the Schrödinger algebra.

String theory realization

The metric (25.12), dual to Galilean (or Schrödinger) symmetry can be realized in string
theory. There is a procedure that maps between string theory solutions called “null Melvin
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385 25.2 Spectral functions

twist,” but this will not be explained here. Applying it to AdS5 × S5 modified by a nonzero
temperature T , we obtain the metric

ds2 = r2
[
−β2r2f (r)

k(r)
(dt + dy)2 − f (r)

k(r)
dt2 + dy2

k(r)
+ d�x2

]
+ dr2

r2f (r)
+ (dψ + A)2

k(r)
+ d�2

4 ,

(25.23)
where

f (r) = 1 − r4+
r4

k(r) = 1 + β2r4+
r2

, (25.24)

and the temperature is

T = r+
πβ

. (25.25)

At T = 0, k = f = 1, and then when KK reducing the solution on the coordinates ψ and
�4 we get the z = 2 metric.

25.2 Spectral functions

Useful quantities that can be calculated using AdS/CFT and are used to describe transport
(as we show in the next subsection) are retarded Green’s functions.

The retarded Green’s functions for observables OA and OB are

GR
OAOB

(ω, k) = −i
∫

dd−1x dt eiωt−i�k·�xθ (t)〈[OA(t, x),OB(0, 0)]〉. (25.26)

Here θ (t) is the Heaviside step function. These Green’s functions describe the evolution of
small (x, t)-dependent perturbations about equilibrium, in linear response theory.

Indeed,

δ〈OA〉(ω, k) = GR
OAOB

(ω, k)δφB(0)(ω, k). (25.27)

Proof:
Consider a time dependent perturbation to the Hamiltonian arising from the operator

OB,

δH(t) =
∫

dd−1xδφB(0)(t, x)OB(x), (25.28)

and compute the resulting VEV of OA,

〈OA〉(t, x) = Tr [ρ(t)OA(x)], (25.29)

where the density matrix ρ evolves according to

i∂tρ = [H0 + δH, ρ]. (25.30)

We go to the interaction picture, so that the time dependence due to H0 is absorbed into
OA. We then obtain for the VEV,

〈OA〉(t, x) = Tr [ρ0U−1(t)OA(t, x)U(t)], (25.31)
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386 Phenomenological gauge–gravity duality II: AdS/CMT

where the evolution operator is

U(t) = T exp

[
−i

∫ t

δH(t′)dt′
]

, (25.32)

and ρ0 = e−iH0/T . Then to first order in perturbation theory (in linear response theory), the
variation of the VEV is

δ〈OA〉(t, x) = −iTr

{
ρ0

∫ t

dt′[OA(t, x), δH(t′)]
}

= −i
∫ t

dt′dd−1x〈[OA(t, x),OB(t′, x′)]〉δφB(0)(t
′, x′). (25.33)

Then Fourier transforming, we obtain

δ〈OA〉(ω, k) = GR
OAOB

(ω, k)δφB(0). (25.34)

q.e.d.
Note that because of causality we must obtain zero for t < 0, which means that

indeed there is a multiplication by a factor of θ (t) in the definition of the Green’s function
GR
OAOB

(t, x), i.e. the Green’s function is retarded. We also consider

GR
OAOB

(t, k) =
∫

dω

2π
e−iωtGR

OAOB
(ω, k). (25.35)

Since the Green’s function is retarded (has a factor θ (t) in t space), we must evaluate it by
closing the ω contour of integration in the upper-half complex plane.

This leads to two conditions:
1) GR

OAOB
(ω, k) is analytic in the complex ω plane for Im(ω) > 0.

2) We must also have GR
OAOB

(ω, k) → 0 for |ω| → 0 (in order for the semicircle contour
integral at infinity to be zero, so that it can be added for free).

In turn, these two conditions lead to the Kramers–Kronig relations, which would be valid
for any complex function satisfying the same two conditions,

ReGR(ω) = P
∫ +∞

−∞
dω′

π

ImGR(ω′)
ω′ − ω

,

ImGR(ω) = −P
∫ +∞

−∞
dω′

π

ReGR(ω′)
ω′ − ω

, (25.36)

(here P is the principal part) which follow from the relation

GR(z) =
∮
�

dζ

2π i

GR

ζ − x
, (25.37)

where � is the contour of integration, the real line in ζ closed by a semicircle at infinity in
the upper-half plane, as in Fig. 25.1.

In the ω → 0 limit of the Kramers–Kronig relation for Re GR(ω), we obtain

χ ≡ lim
ω→0+i0

GR
OAOB

(ω, x) =
∫ +∞

−∞
dω′

π

ImGR
OAOB

(ω′, x)

ω′ . (25.38)
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�Figure 25.1 Contour of integration for GR.

Here χ ∈ R is the static thermodynamic susceptibility, since it is

χ = ∂〈OA〉
∂φB(0)

. (25.39)

The relation above is then called a thermodynamic sum rule.
Finally, there is a spectral representation for GR that follows from its definition by insert-

ing a complete set
∑

n |n〉〈n| between OA and OB. Using the canonical ensemble, which
means that the density matrix is ρ0 = e−H0/T , we obtain

GR
OAOB

(ω, k) =
∑
mn

e−
En
T

(
AnmBmnδ

(d)(knm − k)

En − Em + ω + i0
− AmnBnmδ

(d)(kmn − k)

Em − En + ω + i0

)
, (25.40)

where

H0|m〉 = Em|m〉, knm = kn − km,
Amn = 〈m|OA(0, 0)|n〉, Bmn = 〈m|OB(0, 0)|n〉. (25.41)

Note that 1
x±i0 = P 1

x ∓ iπδ(x).
The spectral function for χ is

χA(ω, k) = −ImGR
OAOB

(ω, k), (25.42)

since it appears in the integral giving χ , and satisfies ωχA(ω, k) ≥ 0.
Finally, just as we defined the retarded Green’s function in x space by

GR
OAOB

(t, x) = −iθ (+t)〈[OA(t, x),OB(0, 0)]〉, (25.43)

we can define the advanced Green’s function

GA
OAOB

(t, x) = +iθ (−t)〈[OA(t, x),OB(0, 0)]〉, (25.44)

with the momentum space representation

GR
OAOB

(ω, k) = +i
∫

dd−1x dteiωt−i�k·�xθ (−t)〈[OA(t, x),OB(0, 0)]〉, (25.45)

as well as the function

ρOAOB (t, x) = 〈[OA(t, x),OB(0, 0)]〉 = i(GR − GA). (25.46)
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388 Phenomenological gauge–gravity duality II: AdS/CMT

Its momentum space version,

ρOAOB (ω, k) =
∫

dd−1x dteiωt−i�k·�x〈[OA(t, x),OB(0, 0)]〉 = i(GR − GA)(ω, k), (25.47)

is a spectral function, since from its definition,

GR,A(ω, �k) =
∫

dω′

2π

ρ(ω′, �k)

ω − ω′ ± iε
. (25.48)

If OA,OB are Hermitian, then ρ is Hermitian, so it has real diagonal elements, which means
that

ReGR(ω, �k) = ReGA(ω, �k) = P
∫

dω′

2π

ρ(ω′, �k)

ω − ω′ ,

ImGR(ω, �k) = −ImGA(ω, �k) = −1

2
ρ(ω, �k), (25.49)

since ρ = i(GR − GA). Then,

ρ = −2ImGR(ω, �k), (25.50)

so it is indeed a spectral function (since ImGR was a spectral function for χ ).

25.3 Transport properties

In the previous subsection we saw that static thermodynamic susceptibilities χ =
∂〈O〉/∂φB(0) come from the spectral functions = imaginary parts of retarded Green’s
functions.

We now describe two important applications of the formalism.

1. Electrical conductivity

Consider electromagnetism on the boundary in the axial gauge A0 = 0, and gauge field
source fluctuations δAj(0). Then the electric field source is

Ej = F0j = −∂tδAj = −iωδAj(0). (25.51)

The induced current 1-point function (VEV) is

〈Jx〉 = σEx = −iωσδAx(0), (25.52)

and on the other hand, in accordance with the linear response theory from the last section,
it equals GR

JxJx
(ω, �k)δAx(0), which leads to the conclusion

σ (ω, �k) = iGR
JxJx

(ω, �k)

ω
. (25.53)
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389 25.3 Transport properties

In fact, usually there is no real part involved in the formula, so that the usual Kubo formula
for the electrical conductivity is

σ (ω, �k) = − ImGR
JxJx

(ω, �k)

ω
. (25.54)

The DC conductivity is obtained as the ω → 0 limit of the above.

2. Shear viscosity η

Consider a fluid at rest, with velocity field uμ = (1, 0, 0, 0), and a perturbation only in hxy,
at linear order.

In a general relativistic theory, the viscosity is defined from the expansion of the energy-
momentum tensor. The equivalent of the Navier–Stokes equations arises from solving the
conservation equation ∇μTμν = 0 as an expansion in derivatives. For an ideal fluid, we
have

Tμν = ρuμuν + P(gμν + uμuν), (25.55)

where ρ is the density and P is the pressure. Here Pμν = gμν + uμuν is a projector, since
uμPμν = 0, PμρPρν = Pμρgρν . For a dissipative fluid, we add a next term in the expansion
in derivatives

Tμν = ρuμuν + PPμν +�
μν
(1) , (25.56)

where �μν
(1) is linear in ∂uμ, and we define the Landau frame by the condition �

μν
(1)uμ =

0. Then decomposing ∇νuμ in a part parallel to uμ and a part perpendicular to it, itself
expanded in an antisymmetric piece ωμν , a symmetric traceless piece σμν and a trace θ ,

∇νuμ = −aμuν + σμν + ωμν + 1

d − 1
θPμν ,

aμ = uν∇νuμ,
θ = ∇μuμ = Pμν∇μuν ,

σμν = ∇μuν +∇νuμ − 1

d − 1
θPμν ,

ωμν = ∇[μuν] +∇u[μaν], (25.57)

the first order part of the energy-momentum tensor has a σμν part with coefficient defining
the shear viscosity η, and a θ term defining the bulk viscosity ζ ,

π
μν
(1) = 2ησμν − ζθPμν . (25.58)

If we consider only an hxy perturbation to the fluid at rest, we can calculate the resulting
energy-momentum tensor substituting in the above expansion, to obtain

Txy = −Phxy − η∂thxy +O(h2) +O(∂2h). (25.59)

In momentum space, we get

Txy = −ηiωhxy, (25.60)

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:55:56 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.027

Cambridge Books Online © Cambridge University Press, 2016



390 Phenomenological gauge–gravity duality II: AdS/CMT

which should be compared to the linear perturbation theory, which says we should get
GR

TxyTxy
hxy, leading to

η = i
GR

TxyTxy
(ω, �0)

ω
. (25.61)

In fact, again usually there is no contribution from the real part, so the usual Kubo formula
for the shear viscosity is

η = − lim
ω→0

1

ω
ImGR

TxyTxy
(ω, �0). (25.62)

But since Im GR = −ρ/2, we get also

η = lim
ω→0

1

2ω

∫
dt d3xeiωt〈[Txy(t, �x), Txy(0, 0)]〉. (25.63)

Then, to calculate σ and η from AdS/CFT, we need a prescription for how to calculate
the retarded Green’s functions.

AdS/CFT in Minkowski space at finite temperature

Son and Starinets proposed a way to calculate retarded Green’s functions in Minkowski
space at finite temperature that generalizes the result at T = 0.

If we write the on-shell kinetic action in asymptotically AdS space as a function of the
boundary value φ(0), in momentum space, as the boundary term

S =
∫

ddk

(2π )d
φ(0)(−k)F(k, z)φ(0)(k)

∣∣∣∣
z=zH

z=zB

, (25.64)

where H stands for horizon (since in the case of finite temperature we have a black
hole horizon inside the gravity dual) and B for boundary (usually at zB = 0), then the
Minkowski space prescription for the retarded Green’s function is

GR(k) = − 2F(k, z)|zB . (25.65)

Another equivalent way to calculate it is via (a generalization of) the holographic
renormalization method we have already discussed in Chapter 22. The retarded Green’s
function is

GR
OAOB

= δ〈OA〉
δφB(0)

∣∣∣∣
δφ(0)=0

. (25.66)

If the on-shell renormalized action in asymptotically AdS space is

Sren. = S[∂μφ] + Sboundary, (25.67)

then the 1-point function for the operator corresponding to φ is (see (22.31))

〈O〉 = lim
z→0

(
R

z

)� 1√
γ

(
− δS[φ(0)]

δ∂zφ(0)(z)
− δSboundary

δφ(0)(z)

)
. (25.68)
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The on-shell renormalized boundary action is, as we saw in Chapter 22 (see (22.30)),

Sboundary = �− d

2R

∫
z→0

ddx
√
γφ2, (25.69)

and the field expansion in terms of the independent variations (the non-normalizable and
normalizable modes, φ(0) and φ(2�−d) is

φ(z) =
( z

R

)d−�
φ(0) +

( z

R

)�
φ(2�−d) + . . . (25.70)

Thus the 1-point function is

〈O〉 = − lim
z→0

(
R

z

)� [
z

R
∂zφ|φ(0)=0 +

�− d

2R
2φ|φ(0)=0

]

= −2�− d

R
φ(2�−d), (25.71)

as we have already mentioned in Chapter 22.
Finally, the retarded Green’s function is given by the variation of the normalizable mode

with respect to the non-normalizable mode,

GR
OAOB

= δ〈OA〉
δφB(0)

∣∣∣∣
δφ(0)=0

= −2�A − d

R

δφA(2�−d)

δφB(0)
. (25.72)

This formulation is actually equivalent to the one in (25.65).

Other transport properties

In the case of nonzero chemical potential μ, which means nonzero charge density, the heat
(energy) and electric currents mix, so( 〈Jx〉

〈Qx〉
)
=

(
σ αT
αT κ̄T

)(
Ex

−∇xT
T

)
. (25.73)

Similarly to the other cases, we find

α(ω)T = i
GR

QxJx
(ω)

ω
,

κ̄(ω)T = i
GR

QxQx
(ω)

ω
. (25.74)

And again, the usual formulas involve just the imaginary parts,

α(ω)T = − ImGR
QxJx

(ω)

ω
,

κ̄(ω)T = − ImGR
QxQx

(ω)

ω
. (25.75)
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25.4 Viscosity over entropy density from dual black holes

As an important application of the formalism from the previous section, we calculate the
shear viscosity for a system at finite temperature, with a gravity dual having a black hole
in asymptotically AdS space. An important result is that the shear viscosity over entropy
density, η/s, has the value 1/(4π ) (for a while, it was thought that there was a lower bound,
η/s ≥ 1/(4π ), saturated by the dual black holes, but it turns out that we can have lower
values) for a large class of (almost every) gravity dual with black holes, though we will not
prove that here.

We consider just the Witten metric, or rather the black hole in Poincaré coordinates,

ds2 = r2

R2

(
−

(
1 − r4

0

r4

)
dt2 + d�x2

3

)
+ R2

r2

dr2

1 − r4
0

r4

, (25.76)

dual to N = 4 SYM at finite temperature. The change of coordinates u = r2
0/r2 leads to

the metric

ds2 = r2
0

R2

1

u
(−f (u)dt2 + d�x2

3) + R2

4

du2

u2f (u)
; f (u) = 1 − u2. (25.77)

In Chapter 15 we calculated the entropy density from the area of the horizon of the black
hole as s = π2/2N2T3.

To calculate the shear viscosity, we need to calculate the retarded Green’s function, using
the relation (25.72) for a perturbation hxy. On the other hand, writing

hxy(�x, u) = r2
0

R2u
e−iωt+i�q·�xφq(u), (25.78)

where �q · �x = qz (propagation in the direction z, transverse to x, y) the quadratic action for
φq(u) is the same as for a massless scalar field with the gravitational factor 1/(16πGN,5)
in front (this is a general property of gravitons, excitations propagating in a direction
transverse to the metric polarization). For a massless scalar, � = d = 4, so 2�− d = 4.

We should calculate the exact scalar solution in the black hole background, and calculate
δφ(4)/ωδφ(0). However, that turns out to be difficult.1 Instead, we can take advantage of
the fact that the shear viscosity calculated at the boundary equals the shear viscosity at the
horizon. One can prove that the ratio defining η does not change with u if ω = �q = 0.
In fact, in that case, the equation of motion is ∂uφ = 0, so φ(u) = constant is an exact
solution, meaning that δφ(4)/ωδφ(0) is a constant of u.

At the horizon u � 1, the equation of motion is approximately

∂2
uφq + 1

1 − u
∂uφq +

( ω

4πT

)2 φq

(1 − u)2
= 0, (25.79)

1 We can calculate approximate solutions on patches instead, and connect the patches, to find the correct solution
near the boundary that satisfies the correct boundary condition at the horizon, as in the original calculation of
Policastro, Son, and Starinets.
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393 25.5 Gauge fields, complex scalars, and fermions in AdS space vs. CFTs

with solutions

φ±q = φ0(1 − u)±i ω
4πT . (25.80)

The boundary condition at the horizon should be infalling, which selects φ−. Then we can
calculate at the horizon u = 1, using (25.65) and its u-independence, giving

GR(ω, �k) = −2F(ω, �k, u)u=1, (25.81)

so that we obtain

η = − lim
ω→0

ImGR(ω, �0)

ω
= r3

0/R3

16πGN,5
= π

8
N2T3. (25.82)

The details are left as an exercise. Dividing by the entropy density, we obtain

η

s
= 1

4π
, (25.83)

as expected. Note that η ∝ N2, so η itself is not small, but rather η/s is.
As we mentioned, this result is valid for a large class of gravity duals with black holes. In

particular, we do not need to have a string theory embedding for the gravity dual. Assuming
AdS/CFT is still valid, for any phenomenologically motivated gravity dual we can calculate
η/s, and for most we still find the value 1/(4π ). For a while, it was thought that the lower
bound η/s ≥ 1/(4π ) was valid, but it was proven that in fact quantum corrections, in the
form of certain R2 terms in the gravitational action, as well as anisotropy, can lower the
value.

25.5 Gauge fields, complex scalars, and fermions in
AdS space vs. CFTs

At the beginning of the chapter we showed how to obtain gravity duals for nonrelativis-
tically invariant condensed matter systems. Indeed, most condensed matter systems are
nonrelativistic. However, AdS/CFT is best described when we have relativistically invari-
ant systems, and we can find such relevant systems in condensed matter, so from now until
the end of the chapter we deal with relativistic systems only. Moreover, we want to have
perturbed conformal field theories, since conformality is mapped to AdS space, and as we
saw before, there are many reasons to believe physics in AdS space is always holographic
(the boundary is a finite time away, the isometries of AdS match conformal isometries on
the boundary, etc.), independently of whether we can embed in string theory via a system
of branes. In order to have a weakly coupled gravitational description, where we can cal-
culate things, we need to have a strongly coupled field theory. This is also when the gravity
dual description is most useful, since strongly coupled systems are hard to describe in con-
densed matter, even using phenomenological models. Therefore, from now on we consider
relativistically invariant, strongly coupled (possibly perturbed) conformal field theories,
dual to a weakly coupled gravitational theory in asymptotically AdS space.
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The field theories we are interested in have (global) currents Ja
μ, corresponding to trans-

port of charges, or just transport of particle number (particle number is a global charge).
Therefore, by the AdS/CFT dictionary, we want to have at least gauge fields Aa

μ coupling
to these currents. One special set of such currents forms the energy-momentum tensor Tμν ,
that couples to the bulk metric gμν , so generically we need to consider the asymptotically
AdS background to be dynamical as well. We are also generically interested in charged
operators O, i.e. operators that transform under the global symmetries, that can in princi-
ple acquire VEVs, so they need to be bosonic, usually scalar in the simplest applications.
Therefore, we need to have scalar (or other) fields in the gravity dual that are charged
under the gauge symmetry of Aa

μ. In the simplest case of abelian symmetries, the scalar
fields would be complex and charged under the U(1) symmetries.

Finally, we are sometimes interested in describing the fermions in the field theory, so we
should have fermions in the gravity dual as well. Of course, a fermion χα would couple
to a fermionic operator Oα , and it is generically difficult to consider the backreaction of
the fermion on the geometry, so we usually have the gravity dual fermions as probes. In
this case, the fermion is a source for the operator Oα , which can be thought of also as an
effective external fermion introduced in the theory.

Since usually we are interested in the properties of the condensed matter system at finite
temperature, we want to have a black hole in the gravity dual.

25.6 The holographic superconductor

We now describe the first, and most common application of this type, the holographic
description of the superconductor. It has been developed by many people over the years,
but the essential features described here were first described by Gubser, and later developed
in a more coherent model by Hartnoll, Herzog, and Horowitz.

Ingredients of a holographic superconductor

The necessary ingredients are:
a) We need an AdS background, to describe a CFT (fixed point) near the phase transition.

But since the superconductors of interest, because they are poorly understood, are high
Tc superconductors, which are non-Fermi liquids (they have Fermi surfaces, but do not
follow the standard Fermi theory), and many of them, mostly cuprates and organics, are
layered, meaning that they are effectively 2 + 1-dimensional, we are interested in an AdS4

background, dual to a CFT3.
b) We need to describe charge transport through a U(1) current Jμ, so in the gravity dual

we want to have a U(1) bulk gauge field Aμ.
c) We want to describe symmetry breaking, which means that there should be operators

(Cooper pair-like) that should condense, i.e. 〈O〉 �= 0. We want at least one O, corres-
ponding to a complex field, charged under the U(1) of the current Jμ. In order to describe
s-wave superconductors (with spherical symmetry, i.e. angular momentum l = 0), we want
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395 25.6 The holographic superconductor

a charged scalar ψ . If we wish instead to describe p-wave superconductors (with l = 1) or
d-wave superconductors (with l = 2), we would need tensor fields.

d) We want to consider temperature, so we want a black hole in AdS4.
The Lagrangean we consider then is

L = 1

2κ2

(
R + d(d − 1)

R2

)
− 1

4g2
F2
μν − |(∂μ − iqAμ)ψ |2 − m2ψ2 − V(ψ). (25.84)

For AdS4, we have d = 3.
We further consider V = 0 and m2 satisfying the Breitenloher–Freedman bound in AdS4,

i.e. m2R2 ≥ −9/4, which means that the scalar field ψ will be stable near the boundary at
infinity, where the metric is approximately AdS4.

Since we want to describe superconductivity, it means that the solution with ψ = 0 must
be thermodynamically unstable towards decay to an AdS black hole solution with “scalar
hair,” i.e. a solution with a nontrivial scalar field profile (note that in asymptotically flat
3 + 1-dimensional space, there is no such solution, but in the asymptotically AdS there
can be). This solution must have ψ �= 0 near the black hole horizon, but only for the
temperature T less than a critical temperature Tc, T < Tc. For T > Tc, we must have
ψ = 0 as the thermodynamically stable solution. Then Tc corresponds to the temperature
of a superconducting phase transition. For dimensional reasons, to have a nonzero Tc, we
need another scale, which can be eitherμ �= 0, i.e. a nonzero chemical potential, so Tc ∝ μ,
or a nonzero Q, i.e. a nonzero charge density.

As we saw in Chapter 15, by the AdS/CFT dictionary, at the boundary r →∞, A0 → μ.
More precisely, at the AdS4 boundary

A0 → μ− Q

r
. (25.85)

Here the charge Q is related to the VEV of the current Jμ on the boundary (charge density).
So either way, with either μ �= 0, or Q �= 0, we need A0 turned on.

Superconducting ansatz

We need to consider a superconducting solution, with metric

ds2 = gtt(r)dt2 + grr(r)dr2 + ds2
2(r), (25.86)

and gauge field and scalar field

Aμdxμ = �(r)dt, ψ = ψ(r). (25.87)

On this ansatz, the scalar field terms in the Lagrangean become

− |(∂μ − iqAμ)ψ |2 − m2|ψ |2 →−gttq2�2|ψ |2 − grr|∂rψ |2 − m2|ψ |2
= −grr|∂rψ |2 − m2

eff|ψ |2, (25.88)

where the effective mass of the scalar fields is

m2
eff = m2 + gttq2�2. (25.89)
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But gtt < 0 outside the black hole horizon, and |gtt| → ∞ close to the horizon (|gtt| → 0).
We need � = 0 at the horizon for it to be well defined. But if � drops to zero slower
than gtt rises to infinity, we can have m2

eff < 0 just outside the horizon, and below the
Breitenlohner–Freedman bound, which means that it becomes unstable near the horizon.
That in turn leads to scalar condensation, since

〈O〉 = −i
δZbulk[ψ(0)]

δψ(0)
= δSbulk[ψ(0)]

δψ(0)
�= 0. (25.90)

Indeed, as we have seen already, the boundary behavior of the field ψ in AdSd+1 follows
the form (25.70), i.e.

ψ(z) =
( z

R

)d−�
ψ(0) +

( z

R

)�
ψ(2�−d) + . . . , (25.91)

and leads to (25.71), i.e.

〈O〉 = 2�− d

R
ψ(2�−d). (25.92)

Here in d = 3, we have m2R2 = �(�− 3).
Thus we need to consider a solution that is a perturbation by a scalar field of a (possible

Reissner–Nordstrom) AdS4 black hole.

Solutions and operator condensates

We can consider as a background either:
1. The AdS–Reissner–Nordstrom (charged) black hole, as considered by Gubser. The

solution is

ds2 = −f (r)dt2 + dr2

f (r)
+ r2d�2

2,k,

f (r) = k − 2M

r
+ Q2

4r2
+ r2

R2
,

�(r) = Q

r
− Q

rH
,

ψ = 0, (25.93)

where for k = 0, d�2
2 = dx2 + dy2, and for k = 1, d�2

2 is the 2-sphere metric.
Or:
2. A neutral AdS black hole, as considered by Hartnoll, Herzog, and Horowitz. In the

above charged solution, we consider k = 0, so d�2
2,k = dx2 + dy2, and we put Q = 0, so

f (r) = r2

R2
− 2M

r
, � = ψ = 0. (25.94)

But in these cases, since we do not have a scalar in the background, ψ must be treated
in the probe approximation, i.e. without a backreaction on the metric solution. Note that
the backreaction has been treated also, but is not easy to analyze, and one has to resort to
numerics.
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397 25.6 The holographic superconductor

The equation of motion for ψ in the probe approximation is

1√−g
∂r
√−ggrr∂rψ + m2

effψ = 0 ⇒

ψ ′′ +
(

f ′

f
+ 2

r

)
ψ ′ + �2

f 2
ψ − m2

f
ψ = 0, (25.95)

and the equation of motion for � is the equation of motion for a static massive vector field,

�′′ + 2

3
�′ − 2ψ2

f
� = 0. (25.96)

At the horizon, � = 0 is needed for normalizability of the solution.
Considering a scalar with mass m2 = −2/R2, i.e. corresponding to an operator with

� = 1 or 2 (m2R2 = �(�− 3)), the solution has the expansion near the boundary

ψ = ψ (1)

r
+ ψ (2)

r2
+ . . . ,

� = μ− ρ

r
+ . . . (25.97)

But in this particular case, we note that both ψ (1) and ψ (2) are normalizable, which by
the general dictionary means that they should give us two nonzero condensates (1-point
functions, i.e. VEVs),

〈Oi〉 =
√

2ψ (i), i = 1, 2. (25.98)

We can choose one of them to vanish, and calculate the other. Numerically, we find for
〈Oi〉(T/Tc) the solutions in Fig. 25.2a and b. Near T = Tc, we find we can approximate

〈O1〉 � 9.3Tc(1 − T/Tc)1/2,
〈O2〉 � 144T2

c (1 − T/Tc)1/2,
T � 0.118

√
ρ. (25.99)

We can also calculate the instability of the Reissner–Nordstrom AdS4 background under
a perturbation with frequency ω, i.e. ψ = ψ(r)e−iωt. One finds that for T < Tc there
is a normalizable mode with ingoing boundary conditions at the black hole horizon, and

b)a)

�Figure 25.2 a) Condensate 1 as a function of temperature; b) Condensate 2 as a function of temperature.
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398 Phenomenological gauge–gravity duality II: AdS/CMT

Im(ω) > 0, which means that there is an exponentially growing mode, signalling an insta-
bility towards a solution with ψ = ψ(r). One can find the backreacted solution numerically
with a nontrivial scalar profile, or “charged hairy black hole.”

Effective mass and stability

One can calculate the effective mass m2
eff at the horizon in the AdS4–RN black hole

background, and find that indeed

m2
eff = m2 − γ 2q2

2R2
< m2, (25.100)

where

γ 2 = g22R2

κ2
N,4

. (25.101)

On the other hand, the horizon of the AdS4–RN black hole is AdS2 × S2. But for AdS2, the
Breitenlohner–Freedman bound is stronger than for AdS4, namely m2R2

2 ≥ −1/4, where
R2 is the radius of AdS2, different from the radius of the AdS4 at infinity, more precisely
R2

2 = R2/6. Then there is an instability if

− 1

4
≥ m2

effR
2
2 =

R2

6

(
m2 − γ 2q2

2R2

)
, (25.102)

i.e. if q2γ 2 ≥ 3 + 2�(�− 3).
That means that at low temperature, there is an AdS2 throat at the horizon in which an

asymptotically stable m2 (i.e., satisfying the AdS4 BF bound, m2R2 ≥ −9/4) can become
unstable.

This is made possible by two facts: that the BF bound at infinity is different from the BF
bound at the horizon (the bound at the horizon is stronger), and that m2

eff < m2 due to the
coupling to �.

Conductivity

Consider a perturbation in the Maxwell field, δAx = δAx(r)e−iωt, satisfying

δA′′
x +

f ′

f
δA′

x +
(
ω2

f 2
− 2ψ2

f

)
δAx = 0. (25.103)

At large r, the perturbative solution is

δAx = δA(0)
x + 〈Jx〉

r
+ . . . , (25.104)

where 〈Jx〉 = δA(1)
x is the normalizable mode. Then as we saw, we find the conductivity by

σ (ω) = 〈Jx〉
Ex

= −i
〈Jx〉
ωδAx

= −i
δA(1)

x

ωδA(0)
x

. (25.105)

Numerically, one obtains Re(σ ) as a function of ω/T , for various temperatures T ≥ Tc.
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399 25.7 The ABJMmodel, quantum critical systems, and compressible quantummatter

One finds a gap in frequency: σ = 0 for ω < ωg, and numerically we have the
approximate solution

ωg ≈ (q〈O〉) 1
� , (25.106)

exact in the probe approximation.
Moreover, one finds ωg/Tc � 8.4 in this case, and finds in any case a value close

to 8 for holographic superconductors, though a range of values is possible. For low Tc

superconductors, one usually has ω/Tc � 3.5, and in BCS theory one has ω/Tc � 3.54.
However, for high Tc cuprate superconductors, one experimentally has ω/Tc ∼ 8 also,
which means there is a good chance that we are indeed describing the physics of high Tc

superconductors, something that is very hard to obtain by other means.
In weakly coupled superconductors, ωg = 2Eg, where Eg is the energy gap in the

charged spectrum (the spectrum of electronic states). This is so, since Cooper pairs have
negligible binding energy, so the energy of the pair is just twice the energy of a single
electron.

On the other hand, at strong coupling, this need not happen. We can find the energy gap
Eg from the Boltzmann suppression factor

Re[σ (ω → 0)] = e−Eg/T , (25.107)

for Eg/T # 1. One finds for the holographic superconductor that in general Eg �= ωg/2,
except for the case of � = 2 or 1 (m2R2 = −2), treated before. It is not clear whether in
these cases, � = 2 or 1, we have a weakly coupled pairing mechanism, although in general
we have a correct strongly coupled behavior.

25.7 The ABJMmodel, quantum critical systems, and compressible
quantummatter

The ABJM model is a 2+1-dimensional Chern–Simons gauge theory with N = 6 super-
symmetry, as we saw. It has been used as a primer for condensed matter models in 2+1
dimensions. Its gravity dual is string theory on AdS4 × CP

3, which can be dimensionally
reduced to AdS4, and the resulting theory contains a lot of fields, including the ones that
were described in previous subsections, i.e. gauge fields, scalars, and fermions charged
under the same group. Therefore, we can actually think of the phenomenological AdS4

models described before as being embedded in the ABJM/AdS4 × CP
3 duality, and so of

the ABJM model as a toy model in which to embed the physics of the phenomenological
models of interest.

There are two types of condensed matter systems for which we can use the ABJM model
and its gravity dual as a primer. The systems need to be strongly coupled, conformal, and
relativistic, at least in an effective way. The two important such applications are quantum
critical systems, and compressible quantum matter in non-Fermi liquids.
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Quantum critical systems

One set of interesting phase transitions contains so-called quantum phase transitions, that
arise when we tune a parameter (“coupling” g), as opposed to a thermodynamic quantity.
Then at T = 0, close to the critical value gc, we have a phase transition, between phases
that are different topologically, or some type II (second order) phase transition.

Therefore, at T = 0, the transition is driven by quantum mechanical fluctuations, not
temperature fluctuations, hence the name quantum phase transitions.

An important example is the transition between an insulator and a type II superconduc-
tor, as we change the chemical doping g. Then as we increase the temperature, T > 0, the
phase diagram around g = gc opens up, and a new state appears, bounded by a phase tran-
sition line called the Kosterlitz–Thouless phase transition on the low g side, and another
line on the high g side, as in Fig. 25.3. The new state is a strongly coupled state called a
quantum critical state, which is poorly understood and is related via T �= 0 with the T = 0
transition at g = gc, hence it is related to a conformal field theory at finite temperature,
exactly as the gravity dual of the ABJM model.

One example of such a model is the 1 + 1-dimensional Ising model in a magnetic field
along the direction x, perpendicular to the direction z of the spins, i.e. with Hamiltonian

H = −J
∑

i

(gσ x
i + σ z

j σ
z
j+1). (25.108)

Then at g = 0 we have the usual ferromagnetic state, and at g = ∞ we have all the spins
along the x direction, so in between there must be a phase transition, which happens in fact
at g = 1.

Insulator–superconducting phase transition
Another example is an array of superconducting islands on a 2-dimensional lattice: elec-

trons in grains are locked into Cooper pairs with the same phase, meaning that the jth grain
has amplitude |ψ | and phase θj, with

ψj = |ψ |eiθj . (25.109)

In this case, the Cooper pairs act as bosons ψ .

�Figure 25.3 Quantum critical phase and Kosterlitz–Thouless phase transition.
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401 25.7 The ABJMmodel, quantum critical systems, and compressible quantummatter

Yet another example is provided by actual bosons, namely 87Rb cold atoms, on an optical
lattice. In this case, we have a superfluid–normal state phase transition, but the differ-
ence between the superfluid and the superconductor is only the charge, which in most
applications is not relevant, so it is of the same type as the above.

Bosonic Hubbard model

Both the type II superconductor phase transition and the superfluid phase transition of 87Rb
cold atoms are described by the bosonic Hubbard model. It has a Hamiltonian composed
of a term with the energy Ec required to remove a boson or Cooper pair to infinity, and a
hopping term w between nearest neighbors (between optical sites or grains),

H = Ec

∑
i

(n̂i − n0)2 − w
∑
<ij>

(b†
i bj + b†

j bi), (25.110)

where n̂i = b†
i bi. Another way to write this Hamiltonian is as

H = U

2

∑
i

ni(ni − 1) − w
∑
<ij>

(b†
i bj + b†

j bi) − μ
∑

i

ni, (25.111)

where Ec = U/2 and 2Ecn0 = U/2 + μ, and <ij> represents the nearest neighbor
interaction.

We can also write this in another way, by representing operators in terms of coordi-
nates as

n̂i ≡ ∂

i∂θj
, b†

i =
√

n0eiθi , bi = √
n0e−iθi , (25.112)

to obtain the quantum rotor model,

H = Ec

∑
i

(
1

i

∂

∂θj

)2

− J
∑
<ij>

cos(θi − θj). (25.113)

The mean field theory of this model generates the qualitative Kosterlitz–Thouless phase
transition behavior. More precisely, the ordered (superconducting) phase corresponds to
having bound vortex–antivortex pairs, and the Cooper pairs condense with rigid phases.
The disordered (insulator) phase corresponds to condensed vortices and localized Cooper
pairs.

The KT phase transition is characterized by: 1) unbinding of vortices at criticality; and
2) the duality of charges (particles) and vortices.

Landau–Ginzburg theory

From the bosonic Hubbard model, one can extract an effective field theory. We consider
the ground state of the system as ni = n0, i.e. an equal number of bosons at each site.
Next, we consider creation operators a†

i to produce extra particles at each site and creation

operators h†
i to produce extra “holes” at each site (to remove a particle; this corresponds
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to an antiparticle in quantum field theory). Then one can construct a discretized relativistic
field

φi ∼ αiai + βih
†
i , (25.114)

as in usual quantum field theory. Then time appears from temperature, by analytical con-
tinuation to Euclidean time, as usual. One can prove that the effective field theory of the
continuum version of the field φi is the relativistic Landau–Ginzburg theory with action

S =
∫

d3x
[
−(∂tφ)2 + v2| �∇φ|2 + (g − gc)|φ|2 + u|φ|4

]
. (25.115)

Note that time comes from the temperature of the system, and the system is “relativistic”
with “velocity of light” v �= 1.

Therefore the quantum critical state is to be described by the ABJM model and its gravity
dual, and it should reduce to an effective Landau–Ginzburg model.

Compressible quantummatter in non-Fermi liquids

Another application of the ABJM model, describing a strongly coupled relativistic con-
formal field theory, is to compressible quantum matter. This refers to matter that, when in
the ground state (at T = 0) and coupled to a globally conserved charge Q with chemical
potential μ, has d〈Q〉/dμ smooth and nonzero. A new and important class of such mater-
ials is “non-Fermi liquids,” with Fermi surfaces that satisfy the compressibility requirement
above.

One example is the case of graphene, close to the symmetric point. There, for μ > 0 we
have a particle-like Fermi surface, and for μ < 0 a hole-like Fermi surface, both giving
locally a close to relativistic effective dispersion relation dω/dk = const.= v, but with
v ! c. The surface is coupled to an emergent U(1) gauge field Bμ (not related to the
Maxwell field of electromagnetism) in the material, also coupled to fermionic “spinons”
ψα , with α = +,− being a spin state, and with charged bosons. The theory should have a
global symmetry current as well, which corresponds to electric charge.

A nonrelativistic model of this type that can be simulated by ABJM has the action

S =
∫

d3x

[
f †
+

(
(∂τ − iAτ ) − ( �∇ − i�A)2

2mf
− μ

)
f+ + f †

−

(
(∂τ + iAτ )− ( �∇ + i�A)2

2mf
− μ

)
f−

+ b†
+

(
(∂τ − iAτ ) − ( �∇ − i�A)2

2mb
+ ε1 − μ

)
b+

+ b†
−

(
(∂τ + iAτ ) − ( �∇ + i�A)2

2mb
+ ε1 − μ

)
b−

+ u

2
(b†
+b+ + b†

−b−)2 + vb†
+b†

−b−b+ − g1(b†
+b†

−f−f+ + h.c.)

+ c†

(
∂τ − ( �∇)2

2mc
+ ε2 − μ

)
c − g2(c†(f+b− + f−b+) + h.c.)

]
, (25.116)
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403 25.8 Reducing the ABJMmodel to the Landau–Ginzburg model

and a U(1) global symmetry current corresponding to electric charge,

Q = f †
+f+ + f †

−f− + b†
+b+ + b†

−b− + 2c†c , (25.117)

and both fundamental charged bosons b± and fermions φ± coupled to the emergent gauge
field as well as a neutral fermion c.

A relativistic version of this can be obtained by the substitution

(∂τ − iqAτ ) − ( �∇ − iq�A)2

2m
− μ→ (∂μ − iqAμ)2 − m2, (25.118)

for bosons, and for fermions, by the square root of the Klein–Gordon operator above.
To describe this in the gravity dual of ABJM, we should have a nonzero chemical

potential, therefore nonzero A0 on the boundary of AdS4.

25.8 Reducing the ABJMmodel to the Landau–Ginzburgmodel

Both the systems described in the previous section are abelian, and should correspond to an
effective field theory. Therefore, it is important to embed the abelian effective field theory
in the ABJM model. In particular, here we show how to embed the Landau–Ginzburg
model in the ABJM model, in an effective field theory manner, thus giving a justification
for the application of the ABJM/AdS4 × CP

3 duality to quantum critical systems.
We have an embedding of the Landau–Ginzburg model in the massively deformed

ABJM model, via the matrices Gα defining the (fuzzy sphere) vacuum. The massive defor-
mation of the ABJM model has bosonic fields, the bifundamental scalars CI = (Qα , Rα),
and the gauge fields for the two U(N) group factors, Aμ and Âμ. Consider the ansatz for
the reduction

Aμ = a(2)
μ G1G†

1 + a(1)
μ G2G†

2 ,

Âμ = a(2)
μ G†

1G1 + a(1)
μ G†

2G2 ,

Qα = φαGα ,

Rα = χαGα , (25.119)

with no summation for the index α in the ansatz for Qα , Rα . Here the gauge fields a(1)
μ , a(2)

μ

are real and the scalars φα ,χα are complex. From the above ansatz, we find that the field
strengths reduce in a simple manner,

Fμν = f (2)
μν G1G†

1 + f (1)
μν G2G†

2, F̂μν = f (2)
μν G†

1G1 + f (1)
μν G†

2G2. (25.120)

After some algebra, one finds that the massive ABJM model reduces to

S =−N(N − 1)

2

∫
d3x

[
k

4π
εμνλ

(
a(2)
μ f (1)

νλ + a(1)
μ f (2)

νλ

)+ |Dμφi|2 + |Dμχi|2 + U(|φi|, |χi|)
]

,

U = 4π2

k2

[
(|φ1|2 + |χ1|2)

(|χ2|2 − |φ2|2 − c2)2 + (|φ2|2 + |χ2|2)
(|χ1|2 − |φ1|2 − c2)2

+ 4|φ1|2|φ2|2(|χ1|2 + |χ2|2) + 4|χ1|2|χ2|2(|φ1|2 + |φ2|2)
]
, (25.121)
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where c2 = μk/(2π ). One can show that this truncation is consistent, i.e. its equations of
motion solve the equations of motion of the full theory.

A further truncation is possible, considering φ1 = φ2 = 0 and χ1 = b, leading to (after
some algebra)

S = −N(N − 1)

2

∫
d3x

[
k

2π
εμνλa(1)

μ f (2)
νλ +

(
a(1)
μ

)2 |b|2 + |Dμχ2|2 + V

]
,

V = 4π2

k2
[|b|2|χ2|4 + |χ2|2((|b|2 − c2)2 − 2|b|2c2) + c4|b|2]. (25.122)

We note that the field a(1)
μ is auxiliary, so it can be eliminated by its equations of motion,

giving

a(1)
μ = − k

4π |b|2 ε
μνλf (2)

νλ . (25.123)

Substituting this back in the action, we obtain

S = −N(N − 1)

2

∫
d3x

[
k2

8π2|b|2
(

f (2)
μν

)2 + |Dμχ2|2 + V

]
, (25.124)

which is the action of the sought-for relativistic Landau–Ginzburg model, with g ∼ (|b|2−
c2)2 and gc ∼ 2|b|2c2 being both tunable couplings. We can tune g to be near zero mass
(g ∼ gc), in which case |m2| ! μ2. In that case, a careful analysis reveals that all the
“nonzero modes” (modes dropped in the consistent truncation) are heavy (masses of order
μ), and the only light modes are the ones we have kept. We can then show that the couplings
of these massive modes to the light modes are negligible, so that quantum loops of the
former are decoupled, and we have a consistent truncation even at the quantum level. That
means that one can indeed think of the reduced model (Landau–Ginzburg) as an effective
theory, exactly as in the condensed matter case.

We can write the LG theory in canonical normalization by redefining

a(2) = 2πb

Nk
ã(2) , χ2 = χ̃2

N
, (25.125)

in terms of which the action becomes

S =
∫

d3x

[
−1

4

(
f̃ (2)
μν

)2 − |Dμχ̃2|2 − V

]
, (25.126)

where Dμ = ∂μ − igã(2)
μ and g = 2π |b|

Nk and the potential is

V = g2

2

[
|χ̃2|4 + μ2k2N4

4π2
+ |χ̃2|2N2

(
−4μk

2π
+ |b|2 + μ2k2

4π2|b|2
)]

. (25.127)

Note that in order for the further truncation of (25.121) to the Landau–Ginzburg model to
be consistent, one needs to satisfy an extra equation, which turns out to be satisfied if the
BPS condition is satisfied.
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Important concepts to remember

• Lifshitz scaling is t → λzt, �x → λ�x, and can be represented holographically by a metric
with the same scaling, together with u → λu for the radial coordinate.

• The conformal Galilean and Schrödinger algebras can also be realized holographically in
a gravity dual, and the resulting metrics can be embedded in string theory (even though
the general models are AdS/CFT phenomenological).

• Retarded Green’s functions give the linear response theory of a VEV 〈O〉 to a source
perturbation, δ〈O〉 = GRφ(0), and its imaginary part is a spectral function for χ =
∂〈O〉/∂φ.

• Transport properties can be found from the imaginary parts of Green’s functions.
The conductivity is given by σ = −ImGR

JxJx
/ω and the shear viscosity is η =

− limω→0 ImGR
TxyTxy

(ω, �0)/ω.
• In AdS/CFT in Minkowski space at finite temperature, retarded Green’s functions are

obtained from the on-shell kinetic action
∫
φ0(−k)F(k, z)φ0(k)|zH

zB
as GR = −2F |zB , or

from the exact solution φ expanded near the boundary, which can be written as GR =
−[(2�− d)/R] δφ(2�−d)/δφ(0).

• The viscosity over entropy density from plasmas corresponding to most dual black holes,
thus including the case of N = 4 SYM at finite temperature, is η/s = 1/(4π ).

• Phenomenological approaches to 2 + 1-dimensional condensed matter, conformal and
strongly coupled, involve asymptotically AdS4 black holes, with gauge fields and
charged scalars, and possibly fermions.

• In the holographic superconductors, the VEV of a scalar operator should condense, 〈O〉,
for a T < Tc. This happens due to the effective mass of a scalar in the gravity dual being
lowered by the coupling to an electrostatic potential for a gauge field, �, and due to the
fact that the Breitenlohner–Freedman bound in the AdS2 factor near the horizon of the
black hole is stronger than the BF bound in the AdS4 at infinity, allowing for a scalar that
is stable at infinity, but unstable at the horizon.

• The ABJM model is a primer for 2 + 1-dimensional strongly coupled, conformal, rela-
tivistic states, that can be used for the quantum critical phase and compressible quantum
matter in non-Fermi liquids.

• The massive deformation of the ABJM model can be reduced to an effective Landau–
Ginzburg model, which is also the effective model for the quantum critical phase in
condensed matter.

References and further reading

For more details on the holographic approach to condensed matter systems (AdS/CMT),
see the review by Hartnoll [71]. Other useful reviews for specific areas of AdS/CMT
include [112], [113] and [111]. The gravity dual Galilean and Schrödinger symmetry was
described by Son [96] and Balasubramanian and McGreevy [97]. The gravity dual of Lif-
shitz symmetry was described by Kachru, Liu, and Mulligan [95]. The Lifshitz gravity
dual was obtained in Horava–Lifshitz gravity in [98]. The string theory embedding was
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406 Phenomenological gauge–gravity duality II: AdS/CMT

obtained in [99–101]. The recipe for calculation of correlation functions in AdS/CFT at
finite temperature was proposed in [104]. The calculation of viscosity over entropy den-
sity is described in the review [103]. It was first found in [105] for N = 4 SYM, and in
[106] it was shown to be valid for a large class of models with gravity duals involving
black holes. The calculation of transport properties in the ABJM model (2+1 dimensions)
from dual black holes was described in [108]. The model of a holographic superconductor
described here was first proposed by Gubser in [107], and developed by Hartnoll, Herzog,
and Horowitz [102]. The applications of the ABJM model to condensed matter physics are
reviewed in [109]. The reduction of the ABJM to the Landau–Ginzburg model was found
in [110].

Exercises

1. Prove explicitly the invariance of the metric in (25.12) under the (finite) symmetries
generated by D, Pi, H, Mij, Ki, N, and C.

2. Calculate holographically the spectral function for the Green’s function for a scalar
operator with � = 3 in d = 4.

3. Find the Kubo formula for the bulk viscosity ζ .
4. Fill in the details leading to (25.82).
5. Calculate the entropy and the temperature of the black hole solution in (25.93).
6. Consider the further reduction χ1 = φ2 = 0 in (25.121). Find the reduced action and

show that the reduction is consistent.
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26
Gluon scattering: the Alday–Maldacena

prescription

In this chapter we describe a way to calculate scattering amplitudes of gluons at strong
coupling using AdS/CFT, that was proposed by Alday and Maldacena. But in order to
describe it, we need first to describe an important symmetry of string theory, that was just
touched upon before, called T-duality.

26.1 T-duality of closed strings and supergravity fields

We consider bosonic strings on compact spaces, more precisely the simplest case possible,
of a circle S1 in the direction X25, i.e. we identify

X25 ∼ X25 + 2πR. (26.1)

But then a string can now also wind around this direction n times,

X25(τ , σ = 2π ) − X25(τ , σ = 0) = 2πmR ∼ 0. (26.2)

Define the winding w = mR/α′, so the boundary condition is now

X25(τ , σ + 2π ) = X25(τ , σ ) + 2πα′w. (26.3)

But X25 satisfies the wave equation for a closed string, so we have the solution

X25(τ , σ ) = X25
L (τ + σ ) + X25

R (τ − σ ) ≡ X25
L (u) + X25

R (v),

XL(u) = xL
0 +

√
α′
2
α̃0u + i

√
α′
2

∑
n �=0

α̃n

n
e−inu,

XR(v) = xR
0 +

√
α′
2
α0v + i

√
α′
2

∑
n �=0

αn

n
e−inv. (26.4)

The boundary condition, rewritten now as

XL(u + 2π ) − XL(u) = XR(v) − XR(v − 2π ) + 2πα′w, (26.5)
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408 Gluon scattering: the Alday–Maldacena prescription

implies that α̃0 − α0 =
√

2α′w. Then the momentum is

p = 1

2πα′

∫ 2π

0
(ẊL + ẊR)dσ = 1√

2α′
(α0 + α̃0), (26.6)

so that finally

p = 1√
2α′

(α0 + α̃0), w = 1√
2α′

(α̃0 − α0) ⇒

α0 =
√
α′
2

(p − w), α̃0 =
√
α′
2

(p + w). (26.7)

Then the classical solution is

X25(τ , σ ) = XL + XR = x0 + α′pτ + α′wσ + i

√
α′
2

∑
n �=0

e−inτ

n
(αneinσ + α̃ne−inσ ). (26.8)

Since the momentum in a compact direction is quantized, p = n/R, then together with
w = mR/α′, they are both discrete.

When quantizing, we must consider the constraints L0, L̃0, and impose L0 − L̃0 = 0,

L0 = αI
0α

I
0

2
+ N⊥ = α′

4
pipi + α25

0 α25
0

2
+ N⊥,

L̃0 = α′

4
pipi + 1

2
α̃25

0 α̃25
0 + Ñ⊥ ⇒

L0 − L̃0 = α′pw + N⊥ − Ñ⊥. (26.9)

The constraint L0 − L̃0 = 0 therefore gives

N⊥ − Ñ⊥ = α′pw = nm. (26.10)

On the other hand, the mass-shell constraint gives

M2
compact = −kμkμ = 2p+p− − pipi = 2

α′
(L0 + L̃0 − 2) − pipi

= p2 + w2 + 2

α′
(N⊥ + Ñ⊥ − 2). (26.11)

Note that the length of a string winding around the circle m times is 2πRm, which means
that the energy is 2π |m|R/(2πα′) = |m|R/α′ = |w|, which explains the w2 term. Finally
then, writing the spectrum in terms of n, m, and R, we get

M2
compact =

( n

R

)2 +
(

mR

α′

)2

+ 2

α′
(N⊥ + Ñ⊥ − 2). (26.12)

At this moment, we note a symmetry in the spectrum, called “T-duality.” Consider R̃ =
α′/R, then

M2(R; n, m) = M2(R̃; m, n). (26.13)

This symmetry then exchanges R with R̃, and m with n (momentum with winding), and
leaves the spectrum invariant.

Since R is an adjustable parameter, characterizing the vacuum, i.e. a modulus, this dual-
ity relates different vacua. It relates a small compactification circle with a large circle, and
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409 26.2 T-duality of open strings and D-branes

happens only in string theory (not in particle theory), since only strings can wind around
compact directions.

Exchanging n with m means that we exchange

α̃25
0 ↔ α̃25

0 , α25
0 ↔ −α25

0 , (26.14)

which can be extended to a symmetry acting on X25(τ , σ ), namely exchanging it with

X′25(τ , σ ) = XL(τ + σ ) − XR(τ − σ )

= q0 + α′wτ + α′pσ + i

√
α′
2

∑
n �=0

e−inτ

n
(α̃ne−inσ − αneinσ ), (26.15)

where q0 = xL
0 − xR

0 . Thus the extended symmetry exchanges

x0 ↔ q0; p ↔ w; αn ↔ −αn; α̃n ↔ α̃n, (26.16)

and we can check that again M2 is invariant under this symmetry. We can in fact extend it to
a full quantum symmetry, not only at the free field level, but also at the level of interactions.

We have described here T-duality for bosonic strings, but this generalizes easily to
supersymmetric strings.

Buscher rules

In fact, we can extend the action of T-duality to action on the full massless fields of the
superstring, i.e. the supergravity fields. The resulting transformation rules are known as
the Buscher rules, and their action on gμν , Bμν , and φ for duality on direction 0 is given by

g̃00 = 1

g00
; g̃0i = B0i

g00
,

g̃ij = gij − g0ig0j − B0iB0j

g00
,

B̃0i = g0i

g00
; B̃ij = Bij + g0iB0j − B0ig0j

g00
,

φ̃ = φ − 1

2
log(g00). (26.17)

One can extend the Buscher rules to an action on the antisymmetric tensor fields (coupling
to D-branes), and they can be proven from a transformation of the string path integral, but
we will not show it here.

26.2 T-duality of open strings and D-branes

We now consider T-duality of bosonic open strings. We start with an open string with Neu-
mann boundary conditions in the compact direction X25. Then the solution to the equations
of motion is
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410 Gluon scattering: the Alday–Maldacena prescription

X25(τ , σ ) = x25
0 +√

2α′α25
0 τ + i

√
2α′

∑
n �=0

α25
n

n
cos nσe−inτ

= X25
L (τ + σ ) + X25

R (τ − σ ),

X25
L = x25

0 + q25
0

2
+

√
α′
2
α25

0 (τ + σ ) + i

√
α′
2

∑
n �=0

α25
n

n
e−in(τ+σ ),

X25
R = x25

0 − q25
0

2
+

√
α′
2
α25

0 (τ − σ ) + i

√
α′
2

∑
n �=0

α25
n

n
e−in(τ−σ ), (26.18)

where α25
0 = √

2α′p25 = √
2α′n/R. Under T-duality, X25(τ , σ ) is exchanged with

X′25(τ , σ ) = X25
L (τ + σ ) − X25

R (τ − σ ) = q25
0 +√

2α′α25
0 σ +√

2α′
∑
n �=0

α25
n

n
e−inτ sin nσ ,

(26.19)
which is the same expansion as for a string between two D-branes, with

α25
0 = 1√

2α′
x25

2 − x25
1

π
. (26.20)

Here x25
1,2 are the positions of the two D-branes in the X25 direction. Then

X′25(τ ,π ) − X′25(τ , 0) = 2α′p25π = 2πα′ n

R
= 2π R̃n (26.21)

can be identified with x′25
2 − x′25

1 and X′25(τ , 0) = q25
0 can be identified with x′25

1 , which
means that there is a D-brane at X′25 = q25

0 , and strings wind n times around the circle and
return to it.

Moreover,

∂σX25(τ , σ ) = dXL

du
(u = τ + σ ) − dXR

du
(u = τ − σ ) = ∂τX′25(τ , σ ),

∂τX25(τ , σ ) = dXL

du
(u = τ + σ ) + dXR

du
(u = τ − σ ) = ∂σX′25(τ , σ ). (26.22)

These can be written together as

∂αX25 = εαβ∂βX′25. (26.23)

This means that under T-duality, the Neumann boundary condition in X25 is exchanged
with the Dirichlet boundary condition in X′25 and vice versa, Dirichlet for X25 with
Neumann for X′25,

∂σX25 = 0 → ∂τX′25 = 0 (⇒ δX′25 = 0),
∂τX25 = 0 → ∂σX′25 = 0. (26.24)

The interpretation is that the space-filling D25-brane we started with is exchanged with
a D24-brane under T-duality. That means that T-duality changes the dimensionality of the
D-brane: T-duality on a direction parallel to the Dp-brane leads to a D(p − 1)-brane, and
T-duality on a direction transverse to the Dp-brane leads to a D(p + 1)-brane.
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411 26.3 T-duality on AdS space for scattering amplitudes

From this fact, we can understand that T-duality takes us from type IIA to type IIB string
theory and vice versa, since IIB allows only odd p, whereas IIA only allows even p.

26.3 T-duality on AdS space for scattering amplitudes

We now turn to the description of gluon scattering amplitudes using AdS/CFT. Gluon scat-
tering amplitudes are not really observables, since they suffer from IR divergences, as
gluons are massless states. But they are quantities that can be used for observables. For
instance, in a QCD scattering experiment performed at accelerators, we can describe the
scattering as a composition of the scattering of quarks and gluons, together with a model
for hadronization of initial and final states (the nonperturbative process turning quark and
gluon states into hadronic states). Also, we describe gluon amplitudes in N = 4 SYM,
which is a conformal theory, and in a conformal theory we cannot really define asymptotic
states and therefore scattering, since all scales are equivalent, thus there is nothing special
about “infinity” (the boundary, where we are supposed to separate states).

Nevertheless, we can formally define the gluon scattering amplitudes as the sum of Feyn-
man diagrams, but we get IR divergent results. To get finite results, we need to regularize
the theory. One useful way to do this is via dimensional regularization, since the dimen-
sionally regularized theory is not conformal anymore, so we can define asymptotic states
and scattering, but it is still relativistically invariant and supersymmetric. Another way
would be a direct IR momentum cut-off, which as we will see is relevant to understanding
scattering in the gravity dual.

To describe gluon scattering in the gravity dual, we consider the fact that gluons are open
strings states, and open strings end on D-branes. Then in AdS/CFT, where the D-branes
exist on the boundary at infinity, the scattering of gluons would correspond to thin open
strings ending on the D-branes at infinity and the scattering is described by the worldsheet
that extends into AdS and ends on the thin strings, as in Fig. 26.1a.

More precisely, in the AdS space in Poincaré coordinates,

ds2 = R2 dxμdxμ + dz2

z2
, (26.25)

one can consider a D3-brane in the IR of AdS, at z = zIR → ∞, and strings ending on it.
This provides an IR regularization for the scattering amplitudes.

We can now consider the T-dual 3+1-dimensional coordinates yμ, defined by

∂αyμ = i
R2

z2
εαβ∂βxμ. (26.26)

The factor of i is because the 3+1-dimensional space is Minkowski, but the string world-
sheet has Euclidean signature, and we have added the factor R2/z2 in the transformation
(compared to (26.23)). If we formally make the T-duality on the flat 3+1-dimensional
coordinates, which means just using yμ instead of xμ and applying the Buscher rules on the
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412 Gluon scattering: the Alday–Maldacena prescription

b)

c)

a)

�Figure 26.1 a) String worldsheet ending on the boundary on thin open strings going to infinity, giving the scattering amplitude of
open strings; b) After T-duality, it is mapped to a string worldsheet ending on the boundary on a (Wilson loop type)
contour; c) The contour is a null polygon in four flat dimensions of zigzag type.

supergravity background, namely the AdS space, i.e. g̃00 = 1/g00 in the 3+1 directions,
and redefine the radial coordinate, we obtain

ds2 = R2 dyμdyμ + dr2

r2
, r = R2

z
, (26.27)

which is again AdS space! But the T-duality exchanges the momentum integer n =
�Xμ/(2πR) with the winding number m = pμR, which means it exchanges �yμ with
2πpμR2. The R2 factor has already been used in the definition of yμ, so extending this def-
inition of T-duality to the noncompact case means that, after extending it, the string extends
in the 3+1 dimensions a distance

�yμ = 2πpμ. (26.28)

Since pμ is null, and for a scattering amplitude
∑

i pμi = 0 for momentum conservation,
after the T-duality, at the D-brane position we have a closed polygon contour made up of
null lines (null polygon), and a string worldsheet ends on it, as in Fig. 26.1b and c.

After the T-duality, the regulator D-brane is at r = R2/zIR → 0, i.e. on the boundary of
the T-dual AdS space, so we have a string worldsheet corresponding to a Wilson loop for a
null polygonal contour.
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413 26.4 Scattering amplitude prescription

26.4 Scattering amplitude prescription

The gluon scattering amplitude prescription of Alday and Maldacena is then the following.
The amplitude can be written as the tree amplitude, that contains all the dependence on
polarization tensors εi, and a scalar factor,

An(pi, εi) = An,tree(pi, εi)a(pi), (26.29)

and then the scalar factor a(pi) is given at strong coupling from AdS/CFT by

a(pi) = eiSstring[C], (26.30)

where C is the null polygonal contour described in the previous subsection, with sides
equal to 2πpμi .

One puzzle arises, since in the original AdS5 space, before the duality, we should have
quantities defined on the boundary, but they were defined at z → ∞, which seems not
to be there. But from the T-duality relation (26.26) we see that if yμ is to be finite, and
z is infinite, we need that the original coordinates also have xμ → ∞. But this region,
xμ →∞, z →∞ with all ratios fixed, is actually a part of the boundary, as one can check
by analyzing the Penrose diagram, so we have no problem.

Dimensional regularization

As mentioned, by calculating the string action Sstring[C] we obtain an infinite result. Indeed,
we have already calculated it in Chapter 14 for the Wilson loop, where we subtracted the
infinity. But in the case of the gluon scattering amplitude, the result is supposed to be
infinite, so it only needs to be regularized. For calculations, it is easier to use dimensional
regularization.

We consider Dp-branes, where p = D − 1 and D = 4 − 2ε. That means that we still
have a theory with 16 supercharges, i.e. we have N = 1 SYM in ten dimensions reduced
to D dimensions.

The dimensionally regularized gravity dual is

ds2 = f−1/2dx2
D + f 1/2(dr2 + r2d�2

9−D),

f = cDλD

r8−D
, cD = 24επ3ε�(2 + ε), λ = g2

DN. (26.31)

Since the ’t Hooft coupling in D dimensions λD has dimensions, it is written in terms of the
dimensionless 4-dimensional ’t Hooft coupling λ and the IR cut-off scale μ (dimensional
transmutation parameter) as

λD = λμ2ε

(4πe−γ )ε
. (26.32)

Performing the T-duality on xD directions of the metric, we obtain the T-dual dimensionally
regularized AdS metric,

ds2 = f 1/2(dy2
D + dr2) = √

cDλD
dyμdyμ + dr2

r2+ε . (26.33)
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414 Gluon scattering: the Alday–Maldacena prescription

Note that the way we have calculated the gluon amplitude involved a string worldsheet
ending on a contour at infinity, similarly to the Wilson loop, but in the T-dual AdS space.
Thus, at least at strong coupling, there is a duality between Wilson loops and gluon scat-
tering amplitudes. Such a duality has also been proven perturbatively, after the Alday and
Maldacena prescription was put forward. We say more on it in the last section of this
chapter.

26.5 4-point amplitude

We now turn to calculating the 4-point amplitude using the Alday–Maldacena prescription.
We need to find a worldsheet that ends on the boundary on a null contour C of lengths
proportional to the momenta kμi , i = 1, . . . , 4. We consider 2 → 2 scattering with the
spatial momenta on a plane. That means that we can choose y3 = 0, and the worldsheet is
in the directions (y0, y1, y2, r), and of Euclidean signature. We can choose any ordering of
the external momenta in order to calculate the amplitude, but if we choose k1, k2 incoming
and k3, k4 outgoing, the projection of C on the (y1, y2) plane is singular (two null lines
going up, followed by two going down), so we choose instead k1, k3 incoming and k2, k4

outgoing, which means that we have a zigzag pattern in the (y0, y1, y2) space (one line up,
one down, one up, one down), as in Fig. 26.1c.

If we choose the “static gauge” for the string worldsheet, y1 = σ 1, y2 = σ 2 (since the
worldsheet has Euclidean signature, we can choose the worldsheet coordinates σ 1,2 to be
equal to two spatial coordinates), the string action is found to reduce to

S = R2

2π

∫
dy1dy2

√
1 + (∂ir)2 − (∂iy0)2 − (∂1r∂2y0 − ∂2r∂1y0)2

r2
. (26.34)

Alternatively, if we choose the conformal gauge (γab = δab on the worldsheet), we obtain

iS = − R2

2π

∫
dσ 1dσ 2 1

2

∂ar∂ar + ∂ayμ∂ayμ
r2

. (26.35)

We leave the details of this as an exercise.
One first finds the string worldsheet that ends on the Wilson contour that corresponds to

equal Mandelstam variables s = t (s = −(k1+k2)2 and t = −(k2+k3)2), whose projection
in the (y1, y2) plane is a square, since s = t means that all |�ki| are equal. The edges of the
square are chosen to be (y1, y2) = (±1,±1).

The boundary conditions in static gauge for ending on the null polygon with square
projection in (y1, y2) are

r(±1, y2) = r(y1,±1) = 0; y0(±1, y2) = ±y2; y0(y1,±y1) = ±y1. (26.36)

Then a solution that satisfies these boundary conditions and the equations of motion of the
action (26.34) is

y0(y1, y2) = y1y2; r(y1, y2) =
√

(1 − (y1)2)(1 − (y2)2). (26.37)
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415 26.5 4-point amplitude

The same solution in conformal gauge, that satisfies the equations of motion of (26.35), is

y1 = tanh σ 1; y2 = tanh σ 2; y0 = tanh σ 1 tanh σ 2; r = 1

cosh σ 1 cosh σ 2
. (26.38)

One can find the solution for s �= t, when the contour is projected in the (y1, y2) plane
onto a parallelogram, by boosting the solution in conformal gauge with b = νγ in the
embedding directions for AdS5, that define it via

∑4
i=1(Yi)2 − (Y0)2 − (Y5)2 = −R2. The

result after the boost is

y1 = a tanh σ 1

1 + b tanh σ 1 tanh σ 2
; y2 = a tanh σ 2

1 + b tanh σ 1 tanh σ 2
,

y0 = a
√

1 + b2 tanh σ 1 tanh σ 2

1 + b tanh σ 1 tanh σ 2
; r = a

cosh σ 1 cosh σ 2

1

1 + b tanh σ 1 tanh σ 2
. (26.39)

By considering the limit σ 1 → ∞, we find r = 0 and that we span a line between the
points

A : y1 = y2 = a

1 + b
; B : y1 = −y2 = a

1 − b
, (26.40)

reached for σ 2 → ±∞. The other two vertices are obtained by taking σ 1 → −∞, again
finding r = 0, and then σ 2 → ±∞. Here s and t are given by the square of the diagonals
of the parallelograms, since −s = (k1 + k2)2 = (2π )2(y1 − y2 + y2 − y3)2 and −t =
(k2 + k3)2 = (2π )2(y2 − y3 + y3 − y4)2, and yi are the four vertices. We obtain

s = −8a/(2π )2

(1 − b)2
; t = −8a/(2π )2

(1 + b)2
⇒ s

t
= (1 + b)2

(1 − b)2
. (26.41)

However, in order to obtain a finite result for the action of the worldsheet, we have
already seen that we need to regularize. We use dimensional regularization. In the
dimensionally regularized metric (26.33), an approximate solution is

rε �
√

1 + ε/2 rε=0; yμε � yμε=0. (26.42)

Substituting this back in the dimensionally regularized action and using the fact that (∂ar∂ar
+ ∂ayμ∂ayμ)/(2r2)|ε=0 = 1, we obtain

S =
√

cDλD

2π

∫ Lε=0

rε

= i

√
cDλD

2π

∫ +∞

−∞
dσ 1dσ 2(rε=0)−ε

[
1 + ε

2

(
∂ar∂ar

2r2

∣∣∣∣
ε=0

− 1

)

−ε2

4

(
∂ar∂ar

2r2

∣∣∣∣
ε=0

− 1

)
− ε2

4

]
. (26.43)

One can calculate this integral and obtain for the amplitude (note that iSstring = − R2

2π A =
−

√
λ

2π A, with A being the area of the worldsheet):
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416 Gluon scattering: the Alday–Maldacena prescription

A/Atree = eiSstring = exp

[
iSdiv +

√
λ

8π

(
log

s

t

)2 + C̃

]
,

C̃ =
√
λ

4π

(
π2

3
+ 2 log 2 − (log 2)2

)
,

iSdiv = 2iSdiv,s + 2iSdiv,t,

iSdiv,s = − 1

ε2

1

2π

√
λμ2ε

(−s)ε
− 1

ε

1

4π
(1 − log 2)

√
λμ2ε

(−s)ε
, Sdiv,t = Sdiv,s(s → t). (26.44)

The result was found later to be completely fixed by conformal invariance except for
the constant part C̃, as is the result for the 5-point function, so possible freedom (reflecting
dynamics, not just conformal invariance) starts to appear only from the 6-point function on.

26.6 IR divergences

The IR divergent structure of the 4-point amplitude is in general given by

Adiv,s = exp

[
− f (λ)

16

(
log

μ2

−s

)2

− g(λ)

4

(
log

μ2

−s

)]
, (26.45)

where f (λ) is called the cusp anomalous dimension, since it appears in other contexts, like
the dimension of operators of high spin S, �−S � f (λ) log S, or soft anomalous dimension
or Wilson loop anomalous dimension (since it appears in the Wilson loop divergence), and
g(λ) is called the collinear anomalous dimension.

In dimensional regularization, where there is an ε defining the dimension (D = 4− 2ε),
the divergence is written as

Adiv,s = exp

[
− 1

8ε2
f (−2)

(
λμ2ε

sε

)
− 1

4ε
g(−1)

(
λμ2ε

sε

)]
, (26.46)

and the functions f (−2) and g(−1) are defined through(
λ

d

dλ

)2

f (−2)(λ) = f (λ); λ
d

dλ
g(−1)(λ) = g(λ). (26.47)

By comparing with the result in (26.44), we obtain

f =
√
λ

π
, g =

√
λ

2π
(1 − log 2). (26.48)

In general, for an n-point amplitude, the IR divergence comes from the cusps joining
neighboring momenta kμi and kμi+1, through si,i+1 = −(ki + ki+1)2. In the exponent, we
now get the sum of the same factors as before,

logAn/An,tree|div. =
n∑

i=1

logAdiv,si,i+1

= − f (λ)

16

n∑
i=1

log2
(

μ2

−si,i+1

)
− g(λ)

4

n∑
i=1

log

(
μ2

−si,i+1

)
. (26.49)

Downloaded from Cambridge Books Online by IP 132.248.29.129 on Thu Jun 16 20:56:01 BST 2016.
http://dx.doi.org/10.1017/CBO9781316090954.028

Cambridge Books Online © Cambridge University Press, 2016



417 26.7 Fermionic T-duality

In the Alday–Maldacena prescription, the IR divergence is related to the cusps in the
contour joining momenta ki and ki+1. We know that is the case for Wilson loops, and the
calculation here is the same.

Therefore one has

logAn/An,tree|div. = iSdiv.(ε) =
n∑

i=1

Si,i+1,div.(ε). (26.50)

Defining the variables y± = y0 ± y1 and choosing the static gauge σ 1 = y−, σ 2 = y+,
the ε = 0 (4-dimensional) action for the string is

S = R2

2π

∫
dy+dy−

√
1 − 4∂−y2∂+y2 − 4∂−r∂+r − 4(∂−y2∂+r − ∂−r∂+y2)2

2r2
, (26.51)

and if the 3-momenta �ki, �ki+1 are chosen (without loss of generality) to be

2π�ki = z1(1, 0, 0); 2π�ki+1 = z2(α, 1,
√
α) ⇒ (2π )2s = −αz1z2, (26.52)

the solution of the string action ending on the wedge formed by these lines is

r(y−, y+) = √
1 + ε/2

√
2

√
y−

(
y+ − y−

α

)
; y2(y−, y+) = 1√

α
y−. (26.53)

One can substitute this solution back into the string action and find

iSi,i+1(ε) =
√
λDcD

2π

∫ Lε=0

rε
= − 1

ε2

√
λ

2π

√
μ2ε

(−si,i+1)ε
C(ε),

C(ε) =
√

cD

2ε/2

(2π )−ε

(4πe−γ )ε/2

√
1 + ε

(1 + ε/2)1+ε/2
, (26.54)

which is the same as iSdiv,s(ε) for s → si,i+1. Therefore, indeed, the IR divergence in
the 4-point amplitude comes from the cusps, and then the total IR divergence of the n-
point amplitude comes from the sum of these IR divergences inside the exponential, as we
described.

This is an example of a result which would have been very hard to calculate by perturba-
tion theory: the full IR divergent structure, together with the exact form of the anomalous
dimensions f (λ) and g(λ) at strong coupling λ→∞.

26.7 Fermionic T-duality

We mentioned that, because the gluon amplitudes are found from the same calculation as
the Wilson loops, this implies that there is a duality symmetry that exchanges Wilson loops
with gluon amplitudes, at least at strong coupling λ → ∞. This duality was in fact also
proven perturbatively to all orders in the coupling.

Another important implication related to the Alday and Maldacena calculation is that
there is a new conformal symmetry, called “dual conformal symmetry,” of N = 4 SYM,
which acts on coordinates yμ defined by �yμ = 2πkμ. This is reflected in the gravity
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418 Gluon scattering: the Alday–Maldacena prescription

dual by the fact that, after making the (bosonic) T-duality transformation, we obtain a dif-
ferent AdS space, with its own isometry, dual to a conformal invariance, unrelated to the
isometry (mapped to a conformal invariance) of the original AdS space. So dual conformal
symmetry is a symmetry of amplitudes, easily seen from the gravity dual. It has also been
proven in the mean time, and it was shown that when commuting its generators with the
generators of the usual conformal invariance, we generate an infinite symmetry (with an
infinite number of generators) called the Yangian, which is a symmetry of N = 4
SYM.

But more precisely, Berkovits and Maldacena showed that the symmetry that relates the
original superstring in AdS5 × S5 background to another superstring in another AdS5 × S5

background is the bosonic T-duality that we have shown, together with a new type of T-
duality called fermionic T-duality, which acts on eight of the 32 fermions of the superstring
θαi. On a single fermion θ1, it acts as (similarly to the action of bosonic T-duality on a
single worldsheet boson = spacetime coordinate X)

θ1 → θ1 + ρ, Xμ → Xμ, θ Ã → θ Ã, Ã = A, �= 1, A = (αi). (26.55)

The resulting combined bosonic and fermionic T-duality was proven to be an exact sym-
metry of string theory, and to relate gluon amplitudes to Wilson loops and conformal
symmetry to dual conformal symmetry.

Important concepts to remember

• T-duality is an exact string symmetry that exchanges the compact radius R with
R̃ = α′/R, momentum and winding charges, m ↔ n, and X with X′, where ∂αX =
εαβ∂βX′.

• For D-branes, T-duality parallel to the Dp-brane turns it into a D(p − 1)-brane, and
T-duality perpendicular to it into a D(p + 1)-brane.

• A formal T-duality on AdS space turns it into a dual AdS space, with center and
boundary interchanged, and gluon momenta into a boundary condition for the string
worldsheet to end on a null segment.

• The prescription to calculate An/An,tree is to calculate eiS[C] in the T-dual AdS space, as
for the Wilson loop, ending on the boundary contour C, which is now a null polygonal
contour, with sides �yμ = 2πkμ.

• The result is infinite due to IR divergences, and one needs to dimensionally regularize
the background and the string solution to get a finite result.

• The IR divergences are due to the cusps where the null lines meet, and can be calcu-
lated. They are given by two anomalous dimension functions f (λ) and g(λ), the cusp and
collinear anomalous dimension functions.

• A bosonic plus a fermionic T-duality exchanges an AdS background with itself, confor-
mal invariance with dual conformal invariance and gluon amplitudes with Wilson loops,
and is an exact symmetry of superstring theory.
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419 26.7 Fermionic T-duality

References and further reading

The prescription developed to calculate gluon scattering amplitudes at strong coupling
using AdS/CFT was proposed and tested on the 4-point amplitude in [114]. The IR diver-
gences for a general n-point amplitude were derived in [115]. The fermionic T-duality was
proposed in [116].

Exercises

1. Consider T-duality of closed strings on both directions of a torus T2. Write down the
mass formula generalizing (26.12), and the Buscher rules for this duality.

2. Consider T-duality in the presence of two intersecting Dp-branes, with p − k common
spatial directions. What possibilities for the resulting intersecting branes are allowed
after the T-duality? Is this consistent for any k, and why?

3. The gluon scattering amplitude in the conformal theory N = 4 SYM has a “confor-
mally anomalous” part, plus a part that can depend only on the conformally invariant
“cross ratios” uijkl, that can be expressed in terms of the vertex positions for the null
polygon on which the string worldsheet ends, specifically in terms of

xij ≡ xi − xj = 2π (ki + . . .+ kj−1), (26.56)

as

uijkl =
x2

ijx
2
kl

x2
ilx

2
jk

. (26.57)

How many independent cross ratios are there for the n-point amplitude? Specialize for
n = 4, 5, 6 and comment on the result.

4. Prove that the string action in AdS5 in static gauge reduces to (26.34), and in conformal
gauge reduces to (26.35).

5. Prove that the solution (26.37) satisfies the equations of motion of (26.34) and the
solution (26.38) satisfies (26.35).

6. Verify that the solution in (26.53) solves the equations of motion of (26.51).
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27
Holographic entanglement entropy: the

Ryu–Takayanagi prescription

In this chapter we describe how to calculate holographically a type of entropy that depends
on dividing a system into two subsystems, called entanglement entropy. We see that the
result is given holographically by the same kind of minimal surface that was used for the
calculation of the Wilson loop and the gluon scattering amplitudes, but with a different
geometry and dimensionality for its boundary (a closed 2-dimensional surface bounding a
spatial volume on the boundary on AdS, on which a 3-dimensional worldvolume ends).

27.1 Entanglement entropy

Consider a quantum mechanical system with many degrees of freedom, in various space-
time dimensions. Spin chains, lattices, and quantum field theories are standard examples.
Then consider the (total) system in the pure state |�〉, with density matrix

ρtot = |�〉〈�|. (27.1)

It has total von Neumann entropy, Stot = −Tr ρtot log ρtot = 0.
However, if we divide the system into two subsystems A and B (imaginary division, not

any physical procedure), for instance in the case of a spin chain we consider in A only the
sites left of site l and for B the sites right of l, we can define a notion of entropy called
entranglement entropy of the subsystem A as follows. The total Hilbert space is a product
of the Hilbert spaces of A and B, Htot = HA ⊗HB. For an observer who only has access
to A, we need to trace the density matrix over the states of B, so he will experience the
reduced density matrix

ρA = Tr Bρtot. (27.2)

The entanglement entropy is then the von Neumann entropy of the reduced density matrix,

SA = −Tr AρA log ρA. (27.3)

This is a measure of how entangled the wave function |�〉〈�| is.
One can also define the entanglement entropy at finite temperature T , SA(β), obtained

from using instead of the ρtot above, the thermal ρtot,thermal = e−βĤ . Of course, if A is the
total system, the thermal entropy and the entanglement entropy are the same.
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421 27.2 Application for black holes

Properties

1. We find that if ρtot is pure (as for T = 0 above), the entanglement entropy of subsystem
A is the same as of subsystem B,

SA = SB, (27.4)

since the entropy is entirely due to the division of S into two subsystems. In particular, this
means that the entanglement entropy is non-extensive.

2. For three subsystems A, B, C that do not intersect each other, we have

SA+B+C + SB ≤ SA+B + SB+C,

SA + SC ≤ SA+B + SB+C, (27.5)

called strong subadditivity.
3. In particular, one can put B = 0 in the above and find

SA+C ≤ SA + SC, (27.6)

which allows the definition of mutual information I(A, B) by

I(A, B) = SA + SB − SA+B ≥ 0. (27.7)

27.2 Application for black holes

One of the original motivations of the definition of entanglement entropy was to describe
the physics of black holes. Indeed, the black hole information paradox can be stated as
follows. If we start with a system in a pure quantum state (non-entangled, with zero von
Neumann entropy) |�〉, and the system evolves unitarily according to the laws of quan-
tum mechanics, i.e. with the unitary evolution operator U, but such that when describing
the final state classically, a black hole forms, then the final state should be thermal, i.e. a
mixed state, with ρtot,thermal = e−βĤ , since we have a Hawking radiation at temperature
T = 1/β. But this is a paradoxical situation, since we were supposed to be in a pure state
|� ′〉 = U|�〉.

A possible way to explain this is if we consider that in the presence of the black hole, the
event horizon shields the interior of the black hole from causal relation with the outside,
Htotal = Hinside ⊗ Houtside. And since we can never have access to the states inside the
horizon, we should be tracing over them, to have the density matrix

ρoutside = Tr inside|� ′〉〈� ′|. (27.8)

This allows for the possibility that ρoutside is a thermal density matrix e−βĤ , as one needs.
One immediate problem seems to be that in general the entanglement entropy is not exten-
sive, whereas the thermal entropy should be. Another arises since, as we shortly see, the
entanglement entropy in quantum field theories contains divergences, whereas the black
hole entropy does not.
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422 Holographic entanglement entropy: the Ryu–Takayanagi prescription

But there are ways to fix these problems, and in particular it was found that quantum
corrections to the entropy of the black hole in the presence of matter fields equals the
entanglement entropy. Nevertheless, as the apparent black hole information paradox is one
of the most important unsolved problems of theoretical physics, it is clear that the details
of any description of black hole entropy and radiation from entanglement are in general
difficult to realize.

27.3 Entanglement entropy in quantum field theory

Consider a quantum field theory on a spatial manifold M, moving in time Rt. Consider a
submanifold A at time t = t0, A ∈ M, bounded by ∂A, that separates the submanifolds A
and B, the complement of A inside M. Then we can define the entanglement entropy of A
as before. But since the entanglement entropy is always divergent in quantum field theory,
we need to introduce an UV cut-off a (in a lattice regularization, it would be the lattice
cut-off).

The divergence in d + 1 spacetime dimensions is proportional to the area of ∂A,

SA = γ
Area(∂A)

ad−1
+ subleading, (27.9)

for d > 1, where γ is a constant that depends on the system. For a d = 1 conformal
field theory (in 1+1 spacetime dimensions), and for an infinitely long total system and a
subsystem A of length l, we have

SA = c

3
log

l

a
, (27.10)

where c is the central charge.
In higher dimensions, the general form for d even is

SA = p1(l/a)d−1 + p3(l/a)d−3 + . . .+ pd−1(l/a) + pd, (27.11)

and for odd d we have

SA = p1(l/a)d−1 + p3(l/a)d−3 + . . .+ pd−2(l/a)2 + c̃ log(l/a), (27.12)

which of course includes the case d = 1 for c̃ = c/3.

Calculation of entanglement entropy in QFT using path integrals

The calculation of the entanglement entropy is done using the replica trick, of formal
differentiation with respect to an integer n,

SA ≡ −Tr AρA log ρA = − ∂

∂n
Tr Aρ

n
A|n=1. (27.13)

We calculate Tr Aρ
n
A for integer n and then analytically continue the result in n and

calculate SA from it.
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423 27.3 Entanglement entropy in quantum field theory

�Figure 27.1 Contour for calculation of the reduced density matrixρA.

We consider a 1 + 1-dimensional quantum field theory to exemplify the main idea.
We can calculate the ground state density matrix ρ = |�〉〈�| from the path integral

formalism. Consider flat Euclidean coordinates (tE, x) and at time tE = 0 take A to be the
interval x ∈ [−l/2,+l/2]. The ground state wave functional � depends on the value φ0(x)
of the field on the tE = 0 line, and is found by path integrating from tE = −∞ to tE = 0,
such that tE = 0 is the boundary of the region of integration,

�[φ0(x)] =
∫ tE=0

tE=−∞
Dφ e−S

∣∣∣
φ(tE=0,x)=φ0(x)

. (27.14)

This wave functional corresponds to the ket state |�〉. To find its complex conjugate
�̄[φ0(x)], corresponding to the bra state 〈�|, we path integrate from tE = +∞ to tE
instead. Then the total density matrix ρ’s matrix element between states defined by φ0 and
φ′0 is

(ρ)φ0φ
′
0
= �[φ0(x)]�̄[φ′0(x)]. (27.15)

The reduced density matrix ρA is obtained by taking φ0(x) = φ′0(x) for x ∈ B and
integrating over it, giving for its matrix element between φ1 and φ2,

(ρA)φ1φ2 = (Z1)−1
∫ tE=+∞

tE=−∞
Dφe−S

∏
x∈A

δ(φ(0+ε, x)−φ1(x))δ(φ(0−ε, x)−φ2(x)). (27.16)

Here Z1 is a normalization factor such that Tr AρA = 1. So one considers the plane R
2 in

(tE, x) and in it a cut at tE = 0 between −l/2 and +l/2, and the boundary condition φ1

above the cut, and φ2 below it, as in Fig. 27.1.
Finally, to calculate Tr ρn

A, we need to calculate

(ρA)φ1φ2 (ρA)φ2φ3 . . . (ρA)φnφn+1 . (27.17)

We see that we need n copies of the above construction on R
2, but with φ(0 + ε, x) in the

first identified with φ(0 − ε, x) in the next, etc. We easily see that this gives a Riemann
surface with n sheets Rn, so we need to calculate the partition function

Tr Aρ
n
A = (Z1)−n

∫
(tE,x)∈Rn

Dφe−S[φ] ≡ Zn

Zn
1

, (27.18)

where Zn is the partition function on Rn.
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424 Holographic entanglement entropy: the Ryu–Takayanagi prescription

This 2-dimensional construction can be easily generalized to higher dimensions. We
need to calculate the partition function in the space obtained by gluing n copies (“Riemann
sheets”) of the original space along the boundary of A, ∂A, resulting in a deficit angle
2π (1 − n) along ∂A.

27.4 Ryu–Takayanagi holographic prescription

We wish to calculate the entanglement entropy in a conformal field theory in d + 1 flat
dimensions, from the gravitational theory in AdSd+2 in Poincaré coordinates (t, xi, z), i =
1, . . . , d. Then M = R

d is the spatial manifold, existing on the UV-regularized surface
z = a. Note that the UV cut-off zUV = ε was identified with the UV regulator used in
the definition of the entanglement entropy scaling. In the case of gluon amplitudes, the
preferred regulator was dimensional regularization, but now, as in the case of the Wilson
loop, the preferred regulator is z = ε, also used in the (related) holographic renormalization
method.

We consider a spatial volume A ⊂ M (at t = t0) bounded by a closed d − 1-dimensional
surface ∂A, and B its complement. In the bulk, we consider the same time slice t = t0, and
we consider a d-dimensional surface γA that ends on the closed surface ∂A, ∂γA = ∂A.
Similarly to the 2-dimensional case of the string worldsheet giving the Wilson loop and
also gluon amplitudes, in AdS there is a minimal surface for γA, meaning one of minimal
area. Then the holographic formula for the entanglement entropy is

SA = Area(γA,min.)

4G(d+2)
N

. (27.19)

Note that this formula is very similar to the Bekenstein–Hawking formula for the entropy
of a black hole. In fact, it is a kind of generalization of that, since if we consider the AdS
Schwarzschild black hole, the minimal surface tends to wrap the horizon, so we indeed
obtain the Bekenstein–Hawking formula.

Heuristic derivation

To derive this formula using AdS/CFT, we must start by finding a solution to Einstein’s
equations with � < 0 (AdS background) that asymptotes to the surface Rn with n Rie-
mann sheets and deficit angle δ = 2π (1 − n) at the surface ∂A, at the boundary of
AdS z → 0.

This problem is difficult, but in AdS3 (dual to CFT2) we can find a solution. Indeed,
gravity in three dimensions has no propagating degrees of freedom (the transverse traceless
graviton gμν has (D−1)(D−2)/2−1 = 0 degrees of freedom), which implies that solutions
are given by patches of AdS3 glued together, with the only possible nontrivial fact being
the existence of lines (codimension two surfaces in AdS3) where deficit angle is localized,
and where matter sources are localized. Such a solution, when lifted to four dimensions on
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425 27.5 Holographic entanglement entropy in two dimensions

a trivial fourth direction, is called a cosmic string in cosmological context. Then the Ricci
scalar is a delta function,

R = −4π (1 − n)δ(γA) + d + 2

d
16πG(d+2)

N �, (27.20)

where the last term is the constant Ricci scalar in AdS space (� < 0), and we have written
the formula in AdSd+2, since there is a natural generalization of this construction to γA

being a codimension two surface of constant deficit angle (though in this case it is not
obvious such a solution exists).

Minimizing the Einstein–Hilbert action with the above Ricci scalar implies that we need
to find the γA of minimal area, γA,min. Substituting in the supergravity action to obtain the
on-shell action, we have

Son-shell,sugra(γA,min) =
∫

dd+2x
√−g

(
R

16πG(d+2)
N

−�

)
+ . . .

= − (1 − n)

4G(d+2)
N

Area(γA,min) + const. (27.21)

But by AdS/CFT, the quantity we want to evaluate in order to find Tr (ρn
A) via (27.18), the

CFT partition function on Rn, Zn, equals the supergravity partition function in the classical
limit, exp[−Son-shell,sugra]. Since for n = 1, Son-shell,sugra(γA,min) gives zero, we obtain

SA = − ∂

∂n
Tr [ρn

A]

∣∣∣∣
n=1

= − ∂

∂n

[
(1 − n)Area(γA,min)

4G(d+2)
N

]
n=1

= Area(γA,min)

4G(d+2)
N

. (27.22)

q.e.d.

27.5 Holographic entanglement entropy in two dimensions

We now consider the application of the formalism above to field theories in two dimen-
sions. For a conformal field theory in two dimensions, a holographic calculation of the
central charge, as in the 4-dimensional case in (23.16), gives

c = 3R

2G(3)
N

. (27.23)

We want then to reproduce holographically the formula (27.10) with the above central
charge. For that, we need an infinitely long total system and a subsystem A of finite length
l, chosen between x = −l/2 and x = +l/2. For the holographic calculation in Poincaré
coordinates, γA is the geodesic line obeying the boundary condition at z = a that the
endpoints are (x, z) = (−l/2, a) and (x, z) = (+l/2, a).

The geodesic is found to be

(x, z) = l

2
(cos s, sin s), ε ≤ s ≤ π − ε, (27.24)
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where ε = 2a/l. One can check that this satisfies the geodesic equation, but the proof is
left as an exercise. Then the total length (“Area” L) is

L(γ ) = 2R
∫ π/2

ε

ds

sin s
= 2R log

l

a
. (27.25)

Then the entanglement entropy is

SA = L(γA)

4G(3)
N

= R

2G(3)
N

log
l

a
= c

3
log

l

a
. (27.26)

q.e.d.

27.6 Holographic entanglement as order parameter and
confinement/deconfinement transition

The holographic entanglement entropy can act as an order parameter for the confinement/
deconfinement phase in a confining gauge theory. Indeed, we can guess this fact from
the analogous fact for the Wilson loop, calculated holographically from the string world-
sheet of minimal area ending on a fixed contour on the boundary. We saw in that case that
the Wilson loop gave an area law scaling at large distances in the confining phase, and a
Coulomb scaling in the deconfined phase.

The simplest case is the case considered by Witten, of dimensional reduction on
Euclidean time down to 3-dimensional pure Yang–Mills (since the fermions become mas-
sive, as they have antiperiodic boundary conditions on the compact direction), a confining
theory. We can then Wick rotate back to Minkowski space on a different direction to obtain
the AdS soliton, a double Wick rotated black hole,

ds2 = r2

R2
(−dt2 + f (r)χ2 + dx2

1 + dx2
2) + R2 dr2

r2f (r)
, (27.27)

dual to pure Yang-Mills after reduction on the compact direction χ . Here f (r) = 1− r4
0/r4

and the periodicity of χ is L = πR2/r0.
In the reduced theory (trivial χ dependence for everything), γA is 2-dimensional, like the

string worldsheet giving a Wilson loop, so the calculation is very similar, but the contour C
on which this “Euclidean worldsheet” ends is in the x1, x2 plane, where it bounds a closed
spatial region, taken to be the same infinitely long rectangle as in the Wilson loop case,
−l/2 ≤ x1 ≤ l/2, 0 ≤ x2 ≤ V , with V →∞ taking the role of T for the Wilson loop.

We can then parallel the calculation of the Wilson loop here and find we need to
minimize

Area

L
� V

∫ l/2

−l/2
dx1

r

R

√(
dr

dx1

)2

+ r4f (r)

R4
. (27.28)
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427 27.6 Holographic entanglement as order parameter and confinement/deconfinement transition

We then think of x1 as “time,” so the “Hamiltonian” H = (dr/dx1)δArea/δ(dr/dx1)−Area
is conserved (x1 independent), which gives

dr

dx1
= r2

R2

√
f (r)

(
r6f (r)

r6∗f (r∗)
− 1

)
, (27.29)

integrating to ∫
dx1 = l

2
= Lr0

π

∫ �

r∗
dr

1

r2

√
f (r)

(
r6f (r)
r6∗f (r∗)

− 1
) , (27.30)

where we have used R2 = Lr0/π . Here r∗ is defined as the minimal value of r, since we
parameterized the constant “energy” such that dr/dx1 = 0 (inflexion point of the curve)
when r = r∗, and � is a UV cut-off. The relation above implies a maximum l for which
we have a solution, obtained when r∗ → r0, i.e. when the curve descends all the way to
the horizon, touches it and goes back up,

l ≤ lmax � 0.22L. (27.31)

For l > lmax, there is no connected minimal surface, and instead there are just two discon-
nected lines descending from the boundary to the horizon, so their lengths are independent
of the separation l.

This means that the entanglement entropy, related to the area of the minimal “world-
sheet,” i.e. to the length Area/LV , depends on which is smaller. For l ≤ lmax, the minimal
surface is the connected one, and we obtain a holographic entropy that is l dependent,
which in fact has a finite part that scales as l → 0 as

SA(l)|finite = −c1VN2l−(d−1), (27.32)

and is a constant (−c2VN2) for l > lmax, a behavior characteristic of a phase transition.
One can make this more obvious by defining the derivative of SA,

C(l) ≡ ld

V

dSA(l)

dl
, (27.33)

which is discontinuous, jumping from a finite value at l ≤ lmax to zero at l > lmax. There-
fore C(l), which also does not depend on the constant divergence of SA, acts as a good
order parameter for the confinement/deconfinement phase transition.

The above example was for a confining background with constant dilaton φ = φ0.
But the Ryu–Takayanagi prescription has a proposed (conjectured) extension to confining
backgrounds (e.g. Klebanov–Strassler),

S = − 1

4GN

∫
e−2φArea, (27.34)

where the e−2φ factor is natural, because 1/GN contains 1/g2
s = e−2〈φ〉. The entanglement

entropy again acts as an order parameter for a phase transition. For a confining phase, there
is an lmax as above, but it is found that sometimes there could be a confining Vqq̄ from the
Wilson loop, yet no lmax in the entropy, so the relation between these two order parameters
is not clear.
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428 Holographic entanglement entropy: the Ryu–Takayanagi prescription

Important concepts to remember

• The entanglement entropy is the von Neumann entropy of a pure total state of two
entangled subsystems A and B, when we trace over the degrees of freedom of one of
them, A.

• The entanglement entropy is non-extensive and SA = SB.

• The black hole information paradox can be intuitively understood as entanglement
between the inside and outside of the event horizon. There is entanglement entropy for
the outside observer even if the total state is a pure state.

• Entanglement entropy in a QFT is defined by separating space in two regions by a closed
surface ∂A, and is UV divergent and the leading divergence is proportional to the area
of ∂A.

• The SA is calculated from Tr [ρn
A] by the replica trick, and Tr [ρn

A] is calculated from the
partition function on a space Rn with n Riemann sheets at ∂A.

• The holographic entanglement entropy is found from the minimal area of a surface γA

ending on ∂A at the boundary as SA = Area(γA,min)/4GN .

• The derivative with respect to the size l of A of SA acts as an order parameter for the
confinement/deconfinement phase transition in gauge theories.

References and further reading

The prescription to holographically calculate entanglement entropy was proposed in [117].
A review of holographic entanglement entropy can be found in [118].

Exercises

1. Calculate the mutual information for the infinite 1-dimensional chain, with A the line
between x = −l/2 and x = +l/2. Explore the limits l → 0 and l →∞.

2. Use the holographic formula (27.19) to prove strong subadditivity, Eq. (27.5).

3. Generalize the construction of the entanglement entropy of QFT in 1+1 dimensions
in Section 27.3 to 2+1 dimensions, for a boundary ∂A= circle in the two spatial
dimensions.

4. Prove that the solution in (27.24) is a geodesic, satisfying the geodesic equation

d2xμ

dτ
+ �μ

νρ

dxν

dτ

dxρ

dτ
= 0, (27.35)

where dτ is the length element along the trajectory.

5. Consider the gravity dual obtained from the near-horizon limit of (extremal) D2-branes.
Calculate the holographic entanglement entropy for the boundary closed spatial contour
C given by −l/2 ≤ x1 ≤ l/2, 0 ≤ x2 ≤ V , with V →∞.
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429 27.6 Holographic entanglement as order parameter and confinement/deconfinement transition

6. Compare the holographic calculation in 2+1 dimensions of the Wilson loop to
the calculation of the entanglement entropy (27.28). What are the similarities and
differences? Keeping f (r) general, can one find a result that shows a phase transi-
tion in the Wilson loop, but does not show a phase transition in the entanglement
entropy?
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