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PREFACE 

Relativistic Quantum Mechanics and Field Theory are among the most challenging 
and beautiful subjects in Physics. From their study we explain how states decay, 
can predict the existence of antimatter, learn about the origin of forces, and make 
the connection between spin and statistics. All of these are great developments 
which all physicists should know but it is a real challenge to learn them for the 
first time. 

This book grew out of my struggle to understand these topics and to teach 
them to second year graduate students. It began with notes I prepared for my 
personal use and later shared with my students. About two years ago I decided to 
have these notes typed in w, little realizing that by so doing I had committed 
myself to eventually producing this book. My objectives in preparing this text 
'Alect the original reasons I prepared my own notes: to write a book which (i) 
can be understood by students learning the subject for the first time, (ii) carries the 
development far enough so that a student is prepared to begin research, and (iii) 
gives meaning to the study through examples drawn from the fields of atomic, 
nuclear, and particle physics. In short, the goal was to produce a book which 
begins at the beginning, goes to the end, and is easy to read along the way. 

The first two parts of this book (Part I: Quantum Theory of Radiation, and Part 
11: Relativistic Equations) assume no previous experience with advanced quantum 
mechanics. The subjects included here are quantization of the electromagnetic 
field, relativistic one-body wave equations, and the theoretical explanation for 
atomic decay, all fundamental subjects which can be regarded as necessary to a 
well rounded education in physics (even for classical physicists). The presentation 
is modeled after the first third of a year-long course which I have taught at various 
times over the past 15 years and these topics are given in the beginning so that 
those students who must leave the course at the end of the first semester will have 
some knowledge of these important areas. 

To prepare a student for advanced work, the last two parts of this book in- 
clude an introduction to many of the unique insights which relativistic field theory 
has contributed to modem physics, including gauge symmetry, functional meth- 
ods (path integrals), spontaneous symmetry breaking, and an introduction to QCD. 

xiii 



xiv PREFACE 

chiral symmetry, and the Standard Model. Part I11 also contains a chapter (Chap- 
ter 12) on relativistic bound state wave equations, an important topic frequently 
overlooked in studies at this level. I have tried to present even these more ad- 
vanced topics from an elementary point of view and to discuss the subjects in 
sufficient detail so that the questions asked by beginning students are addressed. 
The entire book includes a little more material than can comfortably fit into a year 
long course, so that some selection must be made when used as a text. 

To make the book easier to read, most proofs and demonstrations are worked 
out completely, with no important steps missing. Some topics, such as the quan- 
tization of fields, symmetries, and the study of the Lorentz group, are introduced 
briefly first, and returned to later as the reader gains more experience, and when 
a greater understanding is needed. This “spiral” structure (as it is sometimes re- 
ferred to by the educators) is good for beginning students but may be frustrating 
for more advanced students who might prefer to find all the discussion of one 
topic in one place. I hope such readers will be satisfied by the table of contents 
and the index (which I have tried to make fairly complete). Considerable empha- 
sis is placed on applications and some effort is made to show the reader how to 
carry out practical calculations. Problems can be found at the end of each chapter 
and four appendices include important material in a convenient place for ready 
reference. 

There are many good texts on this subject and some are listed in the Reference 
section. Most of these books are either classics, written before the advent of 
modern gauge theories, or new books which treat gauge theories but omit some 
of the detail and elementary material found in older books. I believe that most of 
this elementary material is still very helpful (maybe even necessary) for students, 
And have tried to cover both modern gauge theories and these elementary topics 
in a single book. As a result the book is somewhat longer than many, and omits 
some advanced topics I would very much like to have included. Among these 
omissions is a discussion of anomalies in field theories. 

Many people have helped me in this effort. I am grateful to Michael Frank, 
Joe Milana, and Michael Musolf for important suggestions and help with indi- 
vidual chapters. I also thank my colleagues Carl Carlson, Nathan Isgur, Anatoly 
Radyushkin, and Marc Sher. S. Bethke and C. Wohl kindly gave permission to 
use figures 17.4 and 10.9 (respectively). Many students suffered through earlier 
drafts, found numerous mistakes, and made many helpful suggestions. Among 
these are: S. Ananyan, A. Colman, K. Doty, D. Gaetano, C. Hoff, R. Kahler, Z. 
Li, R. Martin, D. Meekins, C. Nichols, J. Oh, X. Ou, , M. Sasinowski, P. Spickler, 
Y. Surya, X. Tang, A. B. Wakley, and C. Wang. Roger Gilson did an excellent 
job transforming my original notes into T B .  And no effort like this would be 
possible or meaningful without the support of my family. I am especially grateful 
to my wife, Chris, who assumed many of my responsibilities so I could complete 
the work on this book in a timely fashion. I could not have done it without her. 

FRANZ GROSS 
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QUANTUM THEORY OF RADIATION 



CHAPTER 1 

QU ANTI ZATI 0 N 
OF THE NONRELATIVISTIC STRING 

This book will discuss how nonrelativistic quantum mechanics can be extended 
to describe: 

0 relativistic systems and 

0 systems in which particles can be created and annihilated. 

The key td both of these extensions is field theory, and we therefore begin with an 
introduction to this topic. In this chapter we will discuss the quantization of the 
nonrelativistic, one-dimensional string. This is a many-body system which is also 
simple and familiar. Quantization of this many-body system leads directly to the 
(new) concept of a quantum field, and many of the properties of quantum fields 
can be introduced and illustrated using the nonrelativistic one-dimensional string 
?s  an example. The goal of this chapter is to use this simple system to develop 
dn intuition and understanding of the meaning and properties of quantized fields. 
In subsequent chapters some of these ideas will be developed again in a more 
general, abstract way, and it is hoped that the intuition gained in this chapter will 
remove much of the mystery which might otherwise surround those more abstract 
discussions. 

The discussion of relativistic systems begins in the next chapter, where the 
ideas developed here are immediately extended to the electromagnetic field. 

1.1 THE ONE-DIMENSIONAL CLASSICAL STRING 

We will approach the treatment of a continuous string by first considering a system 
of point masses connected together by “springs” and then letting the number of 
point masses go to infinity, and the distance between them go to zero, in such a 
way that a continuous system with a uniform density and tension emerges. 

Start, then, with a “lumpy” string of overall length L made up of N points, 
each with mass m, coupled together by springs with a spring constant k. Assume 
that the oscillators move about their equilibrium positions in a periodic pattern, 
which is best realized by thinking of the string as closed on itself in a circle, as 

3 
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4 QUANTIZATION OF THE NONRELATIVISTIC STRING 

shown in Fig. 1.1. The oscillators are constrained to vibrate along the circum- 
ference of the ring (which has a radius very much greater than the equilibrium 
separation t? so that the system will be treated as a linear system with periodic 
boundary conditions). The 0th and Nth oscillators are identical, so that if is 
the displacement of the ith oscillator from equilibrium, then 

&j0 d 4 N  1 periodic boundary conditions. 

d t  d t  
-= -  

The kinetic energy (KE) and potential energy (PE) are 

N-1 2 

K E = i m x ( % )  

PE = Z k  C (&+I - &)' . 

i = O  
2 

N-1 

t = O  

Now, take the continuum limit by letting l' -+ 0, N -+ 00, such that the 
length L = N I ,  mass per unit length p = m/L, and string tension T = ke are 
fixed. Then the displacement and energy of the string can be defined in terms of 
a continuous field &(zl t ) ,  where 

&(t) = &zi, t )  --t 6(.tl t )  

The Lagrangian and Hamiltonian are 

L = KE - PE = l L d z  { f p  (2)' - iT (z)'] = l L d z C ( z l t )  

H = K E + P E =  lL d z  ( i p  (g)2 + iT (g)'] = lL d z 7 i ( z l t )  

where C and H are the Lagrangian and Hamiltonian densities. In this example, 
the field function d ( z , t )  is the displacement of an infinitesimal mass from its 
equilibrium position at z. In three dimensions, 6 would be a vector field. 
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Fig. 1.1 
enlarged. The equilibrium position of the oscillators are the solid lines separated a distance e. 

Drawing of the circular string with the location of the oscillators in the interval [ i ,  i + I] 

Anticipating later applications, we redefine 4 by absorbing fi: 

&J?;4=q5. 
Then introducing the wave velocity 

gives 

(1.2) 

The equations of motion for the string can be derived from the Lagrangian 
using the principle of least action [for a review, see Goldstein (1977)J. This 
principle states that the “path” followed by a classical system is the one along 
which its action A is an extremum. For the “lumpy” string, made up of discrete 
coupled oscillators, this condition is 



6 QUANTIZATION OF THE NONRELATIVISTIC STRING 

where& = d & / d t .  Working out the variation gives the Euler-Lagrange equations 
for the motion of each oscillator: 

= o  ( i = O t o N - 1 )  . d aL aL 
d t  a& a& 

However, in the continuum limit as the number of oscillators N + 00, 

1 (&+I  - $2) - ($2 - &-I)  

e e = ke [ 
I3 ac 

(1.3) 
where z+ = z + i.k is the midpoint of the interval z2+1 - zi, and z- = z - the 
midpoint of the interval zi - zi-1. These are appropriate arguments for the two 
derivatives which arise in the next to the last step of Eq. (1.3). Also: 

d a L  - a2&, t )  
dt a;2 = m4i = - -  

a t 2  

Hence the Euler-Lagrange equations can be expressed directly in terms of C, the 
Lagrangian density 

a ac 

where the eJ?' factor can be discarded. 
More generally, C can also be a function of 4 as well as a d / &  and adlaz,  

and for a scalar field in three dimensions, where T ,  = (z, y, z )  are the three spatial 
components, we obtain directly 

where summation over repeated indices is implied. Assuming that 6 (V24) = 
V, (64) and integrating by parts (assuming boundary terms are zero because the 
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boundary conditions are periodic and that the variations 64 at the initial and final 
times are zero) give 

Using the notation 

x p  = ( t ,  2, Y, 2) P = = o , 1 , 2 , 3  , 

which can be readily generalized to relativistic systems (it will later be the con- 
travariant four-vector), gives the famous Euler-Lagrange equations for a continu- 
ous field 

where summation over repeated indices is assumed. For the one-dimensional 
string treated in this chapter, the Euler-Lagrange equations give the familiar wave 
equation 

Nhere the wave velocity was defined in Eq. (1.1). 
In summary, we have shown in this section how a quantity referred to as a 

continuous field emerges as the natural way to describe a system with infinitely 
many particles. In this example, the field is 4 ( z ,  t ) ,  and it gives the displacement 
of each particle from its equilibrium position at z. Since we absorbed f i  into the 
field, its units (for a one-dimensional system) are L d w .  In the narural system 
of units, where ti = c = 1, it is dimensionless (for a discussion of the natural 
system of units, see Sec. 1.3 and Prob. 1.1). In three dimensions, the dimensions 
of such a field are L-’, which can be deduced directly from the observation 
that J d 3 r  L: has units of energy. Regardless of its dimensions, it is useful to 
remember that a field is always the “displacement” (in a generalized sense) of 
some dynamical system, and that therefore ab/at is a generalized velocity. 

1.2 NORMAL MODES OF T H E  STRING 

As a preparation to quantizing the string, we find its normal modes. The solutions 
of the wave equation which satisfy the periodic boundary conditions are 
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where periodicity requires 

and the wave equation gives 
w, = V  k, . 

Note that there are both positive and negative frequency solutions. We will adopt 
the convention that w, is always positive, and use -w, for negative frequency 
solutions. The states with positive frequency are written 

2 2 2  

The negative frequency states have a time factor e i w n t ,  and since k, is both 
positive and negative, it is convenient to denote the negative frequency states by 
qj;(z, t). The normalization condition which these states satisfy is 

However, by direct evaluation it is also true that 

#.L 

co the states are not orthogonal in the usual sense. The most general real field 
can be expanded in normal modes as follows: 

00 

4(zr t> = C cn {an(o)4n(zr t )  + a; (0)4; (~1  t ) }  
n=-m 

where a,(O) are the coefficients of each normal mode in the expansion (1.10) and 
the real normalization factor c,  will be chosen later. It will sometimes be conve- 
nient to incorporate the time dependence of each normal mode into a generalized 
an(t>v 

a,(t) = a n ( ~ ) e - a w n t  (1.11) 

as was done in the second line of (1.10). The condition that 4(z1 t) is real means 
that the coefficient of 4; must be the complex conjugate of the coefficient of 4,. 

Equation (1.11) shows that each normal mode behaves as an independent 
simple harmonic oscillator (SHO) satisfying the equation 

iin(t) + w i a n ( t )  = o 
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To quantize the field, it is only necessary to quantize these oscillators. 
Before doing this, however, we evaluate the energy in terms of the dynamical 

variables an (t). Using the “orthogonality” relations (1.8) and (1.9), which can be 
written 

dta:,(O)4:,(z,t)arn(O)4rn(z,t) = bn,m Ian(o>l2 = bn,m lan(t>12 

1” dz an(0)4n(zj  t)arn(O)4rn(z, t )  = b-n , rnan(o )a -n(o )  e-2iwnt 

= b-n , rnan( t )a -n ( t )  3 

we obtain 

Using iLn(t) = - i w n a n ( t )  gives 

In natural units where h = 1. E = tw = w, and the frequency w has units of 
energy. It is convenient to choose cn to make an dimensionless. If we choose 

1/2 

c n = ( & )  7 

the Hamiltonian assumes a simple form 

m 

n=--m 
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An alternative choice of coordinates will enable us to quantize these oscilla- 
tors. For this we need generalized positions and momenta, which must be real. 
Choose 

1 
qn( t )  = - [an( t )  + 4 ( t ) ]  Jzw, 

The a’s can then be expressed in terms of the real p’s and q’s 

and the Hamiltonian becomes 

(1.12) 

which is a sum of independent oscillator Hamiltonians. This is confirmed by 
substituting (1.12) into Hamilton’s equations of motion 

d H  q - - = p n  
a p ,  

n -  

wnich gives back the familiar equations of motion for uncoupled oscillators. 

1.3 QUANTIZATION OF T H E  STRING 

We now quantize the string by the canonical procedure: the canonical variables 
are made into operators which are defined by transforming the Poisson bracket 
relations into commutation relations [for a review of this procedure see, for ex- 
ample, Schiff (1968), Sec. 241. For the generalized coordinates and momenta this 
leads to the following commutation relations: 

(1.13) 

In what follows we will always set h = c = 1. This defines the so-called natural 
system of units, which is very convenient. It is important to realize that the correct 
factors of h and c can always be uniquely restored at the end of any calculation, 
if desired. These units are discussed in Prob. 1.1 at the end of this chapter. 
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From the commutation relations (1.13) we obtain 

OF THE STRING 11 

(1.14) 

where the complex conjugate of a complex number (sometimes called a c-number) 
must be generalized to the Hermitian conjugate of an operator (sometimes called 
a q-number), and the operators an are independent of time. The time dependence 
is in the fields, which are also operators*: 

= +(+)(z, t )  + t )  , (1.15) 

where the positive frequency part, $(+I, contains the sum over an (later to be 
identified as annihilation operators) and the negative frequency part, $(-), is the 
sum over a; (the creation operators). In this case 4 is Hermitian because it is 
associated with a physical observable (the displacement), but in general a field 
need not be a Hermitian operator. We will study such fields in Part III of this 
book. 

The Hamiltonian is also an operator, and its precise form depends on the 
order of at and a, which was unimportant when these were c-numbers. Perhaps 
the most "natural" form for H is 

I 

n = - w  

However, the sum over $Wn gives an infinite contribution to the energy (the 
zero-point energy), which can be removed simply by redefining the energy. This 
redefinition will lead to the idea of a n o m l  ordered product, which will be defined 
and discussed in Sec. 1.6 below. For now we will simply adopt the following form 
for H: 

w 

H =  C wnaJ,an (1.16) 
n = - w  

Note that H is the sum of the dimensionless operators aAan, each multiplied by 
the energy wn of the normal mode which it describes. 

'To avoid singularities, we will exclude the state n = 0 from this sum. Later, when we take the limit 
L 4 00 (the continuum limit), the sum will include states of arbitrarily small energy. 
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1.4 CANONICAL COMMUTATION RELATIONS 

The commutation relations between a and at also imply relations between the 
fields 4. Suppose we regard 4 as a canonical coordinate. Then, the canonical 
momentum is [using L defined in Eq. (1.2)] 

Then, generalizing the commutation relations (1.13) to a continuous field, we 
expect to find relations of the form 

(1.17) 

where the 6(z  - z’) function is the generalization of the Kronecker brim which ap- 
pears in (1.13). These important commutation relations are known as the canonical 
commutation relations, sometimes referred to as the CCR’s. 

To prove the relations (1.17), we use the explicit form for K: 

Then 

However, the functions h e i k n z  are complete (i.e., any periodic function can be 
expanded in terms of them) and orthonormal, and hence 
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which is the property of the &function, and hence 

(1.18) 

This proves the first of the relations (1.17). To prove the others, note that 

[ l - 1 ] = 0  a 

A field theory may be quantized with either the CCR’s (1.17) or the com- 
mutation relations (1.14) between the operators a and at. As we have seen, these 
two methods are equivalent. Should either be regarded as more fundamental than 
the other? Many prefer to start from the CCR’s because of their close connection 
with the fundamental relations (1.13), but in this book the relations (1.14) between 
the a’s will be chosen as the starting point for quantizing new field theories. The 
reason for this choice is that the relations (1.14) are directly related to the oscil- 
lators which describe the independent dynamical degrees of freedom associated 
with the field, and therefore always have the same form, while the fields them- 
selves sometimes include degrees of freedom which are not independent (such as 
the vector degrees of freedom of the electromagnetic field) and in these cases the 
form of the CCR’s must be modified so that these dependent degrees of freedom 
are removed from the commutation relations. This will be apparent in the next 
chapter where the quantization of the electromagnetic field is discussed. 

1.5 THE NUMBER OPERATOR AND PHONON STATES 

Next, we find the eigenstates of the Hamiltonian (1.16). The first step is to find 
the eigenstates of the operator 

Nn = aLan 

known as the nwnber operator. These are easy to find from the commutation 
relation for the a’s. 

Since N = ata is Hermitian (from now on we suppress n), it has a complete 
set of orthonormal eigenstates. Denote these by Im). Then 

Nlm) = mlm) 

(m’lm) = 6m’,rn 
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At this point we know only that m is real. 
Now consider the state atlm). From the commutation relations (1.14) we 

have 

Hence 

Nat lm) = { [N, at] + a”} Im) 

= (at +at,) Im) = (m + 1)atIm) 

aqm) = C+(m + 1) , 
where C+ is a number to be determined. A similar argument gives 

alm) = C-lm - 1) 

The numbers C+ and C- can be determined from the norms 

Similarly, 
Ic-I2 = (m la+al m) = m . 

The axiomatic development of quantum mechanics requires that all quantum 
mechanical states lie in a Hilbert space with a positive definite norm. Hence we 
require that m > 0, or if m = 0, 

al0) = 0 . 
Furthermore, since m can be lowered by integers, all positive m must be inte- 
gers; otherwise, we could generate negative values for m from positive values by 
lowering m repeatedly by one unit. 

Hence, it is possible to choose phases (signs) so that (m 2 0) 

alm) = f i l m  - 1) 
atalm) = mlm) . 

(1.19) 

This means that all the states can be generated from a “ground state” 10) (some- 
times called the “vacuum”) by successive operations of at :  

For a mechanical system like the string, these states Im) are referred to as phonon 
states, and if a = a,, we will show that m can be interpreted as the number of 
phonons of energy w,, where the quantum of energy carried by the phonon is 
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associated with the entire system. This justifies calling N the number operator 
and suggests that the operators a and at have the following interpretation: 

a: creates a phonon with frequency wn 
a, destroys a phonon with frequency w, . 

This description is further supported by the Hamiltonian (1.16) which now has a 
simple physical interpretation. If aAa, is an operator which gives the number of 
phonons of frequency (energy) w,, then (1.16) expresses the total energy (H) as 
a sum of the energy of each phonon (un) times the number of phonons with that 
energy (aLa,). The most general eigenstate of the Hamiltonian can therefore be 
written*: 

(1.20) 

Since all creation operators commute, these states are completely symmetric and 
satisfy Bose-Einstein statistics. Such states, with a definite number of phonons of 
various frequencies, are referred to as Fock states. 

It is sometimes tempting to try to relate the particles associated with the 
field (the phonons) to the original mass points from which the string was con- 
structed. However, there is no connection between these two kinds of particles. 
The phonons are associated with frequencies, or normal modes of the string, and 
hence are related to the motion of the string as a whole, its collective motion. 
*.hey are localized in “frequency,” or momentum space, while the particles in the 
string are localized in position space. Later we will see that there are also parti- 
cles associated with abstract fields which have no connection with any mechanical 
system. 

1.6 T H E  QUANTA AS PARTICLES 

The quanta associated with a quantum field (the phonons in this example) really 
are physical particles which cany both momentum and energy. In the previous 
section we saw how the phonons carry energy. The Hamiltonian tells us that the 
total energy of a state with a definite number of phonons (a Fock state) is simply 
the sum of the energy carried by each of the phonons in the state. To complete the 
description of phonons as particles, we must show that they also carry momentum. 
This will be done in this section by first finding the momentum operator of the 
field and then showing that the total momentum of a Fock state is simply the 
vector sum of the momentum of each of the phonons in the state. 

*Of course, if more than one state has the same energy (there is a degeneracy), the most general state 
will be a linear combination of all the states with that energy. 
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Using Noether's theorem, the momentum (and energy) operators can be de- 
termined in an elegant and completely general way for any abstract field theory. 
This will be discussed later in Chapter 8. In this chapter we exploit the physical 
properties of the one-dimensional string and determine the momentum operator 
from the continuity equation. 

The energy density carries with it a momentum density which describes how 
the energy flows. This momentum density is related to the energy density by the 
continuity equation, which in three dimensions is 

1 a& 
- -+vipa=o. 
v2 at 

(1.21) 

Digression: To recall the origin and physical content of this equation, consider 
a compressional wave traveling with velocity v in the positive t-direction. This 
wave has a local mass density p( t  - v t )  different from the average density of the 
string. Then, the kinetic energy associated with this excess density is 

By the virial theorem applied to a collection of SHO's, an equal energy also comes 
from the potential energy, so that 

3 u t  the momentum density associated with the mass flow is 

p =  = p(. - Vt) v 

so that one obtains Eq. (1.21): 

Now we will use the continuity equation to find the momentum operator. For 
the string, & equals the Hamiltonian density of Eq. (1.2), and hence 
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Hence the classical momentum density must be 

(1.22) 

We can turn (1.22) into a quantum mechanical operator by replacing the 
classical fields by their quantum mechanical operator equivalents. Since the field 
operators do not in general commute, the order of the terms in any product is 
important, and it is convenient to choose this order so that (in this example) the 
expectation value of the momentum of the ground state 10) is zero. To this end 
we define the normal ordered product of two field operators as follows: 

(+I (+I +($(-I (+I 
:4142:=4142- (01414210) =41 4 2  1 4 2  + 4 2  41 (-1 (+I 

+ 4;-Id-) + [ 4 K  4;-)] - (01414210) 

= ($+I 1 4 2  (+I + 4 p # p )  + 4$-)&) + 4$-)4;-) (1.23) 

where 4!+) and ${-' are the positive and negative frequency parts of the field 4,. 
as defined in Eq. (1.15), and to obtain the last line use the facts that 4(+)lO) = 0, 
(Ol4(-) = 0, and the commutator [r$p), is a c-number, so that it is equal to 
its ground state expectation value. Hence the normal ordered product of operators 
which satisfy commutation relations like (1.17) can be obtained simply by reorder- 
ing any terms in which creation operators are on the right and the annihilation 
operators are on the left, so that all the terms have either two annihilation opera- 
tors, two creation operators, or a creation operator on the left and an annihilation 
operator on the right. 

Using this definition, the total momentum operator of the one-dimensional 
string is 

I 1 

(1.24) 

I I 

The total momentum assumes a simple, clearly interpretable form when ex- 
pressed in terms of the a's. To obtain it, substitute (1.15) into (1.24), honoring 
the normal ordered definition (1.23): 

1 = - - 
2 

{ k-,ana-, e-2iwnt + k-,,a!,aI, e2iwnt - 2kna!,an} . 
n 
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However, the first two terms sum to zero, because they are odd when n is changed 
to -n (recall k ,  = - k - ,  but w, = w-,). Hence 

P” = knaLa, , 
n 

(1.25) 

which expresses the total momentum as a vector sum of the momentum of each 
phonon ( k , )  times the number of phonons with that momentum (aLa,). [The 
full vector character of the momentum operator is only partially illustrated by this 
one-dimensional example, where P, has only a z component and all k, must be 
in  the i-direction so that k ,  can be only positive or negative.] We see that the 
momentum operator is precisely what we would expect from the interpretation of 
phonons as particles with energy w,, and momentum k,. 

1.7 T H E  CLASSICAL LIMIT:  FIELD-PARTICLE DUALITY 

The Fock states are the quantum mechanical eigenstates of the Hamiltonian. What 
do these have to do with the classical vibrational states of a string? What is the 
classical limit? Before giving a full answer to these questions, we make two 
preliminary observations. 

First, note that a state with a dejnite number of quanta corresponds to a case 
where the average j e l d  is zero, but otherwise the field is completely unknown. To 
show this, consider a state with nl quanta of type I :  Inl). Then, for quanta of 
dny type m (including m = 1) 

so that the average field is zero, 

However, the average of the square of the field is not zero. In fact, 
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because C, 1iJ-l diverges. Hence the uncertainty in 4, A@, is 

A q 5 = d v F G F = -  

and 4 is completely uncertain, beyond knowing that (4) = 0. [To define the field so 
that Aq5 # 03, we may “smear” it, introducing 

where f ( z )  is strongly peaked in the neighborhood of a point z = 20, and very small 
elsewhere; see Prob. 1.5 at the end of the chapter.] 

For our second observation we note that no state behaves like a classical wave 
for all z and t.* This would require that the field 4 and its “velocity” T commute, 
and the CCR’s (1.17) show that this is not the case. Another way to see this is to 
rewrite 4 as a sum of traveling waves, 

{A, cos ( k , t  - w,t) + B, sin (k , z  - u,t)} , 
1 4 ( z , t )  =WE- 

n - 
where 

U,  = 5 1 (A, - ZB,) UL = 4 (A, + ZB,) 
or, dropping the n 

A = a + u t  B = i ( a - u t )  . 

The operators A and B must be simultaneously diagonalized in order that 4 ( z ,  t) 
have a definite value for all z aid t. But this is impossible, because A and B are 
non-commuting operators: 

[A, B] = i [ (a  + at) , (U - at)]  = -2i 

and hence cannot be simultaneously diagonalized (i.e., cannot both have definite 
values). Furthermore, the above commutator implies an uncertainly relation 

A A A B 2 1 .  (1.26) 

These two results give limitations on our ability to define the field and show 
that it cannot be defined exactly. However, states do exist in which A and B have a 
very small fractional uncertainty. Such states correspond to a classical field as much 

*Thanks to Charles Sommerfield and Alan Chodos for clarification of this point. 
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as is possible in quantum mechanics. Since an optimization of (1.26) requires that 
A A  cv A B  2: 1, small fractional uncertainty in the values of (A) and (B) is possible 
only if ( A )  and ( B )  are both very large. However, these quantities are related to the 
average number of quanta through the relation 

A'+ B2 = 4a ta+2  = M + 2  

and hence such states must have a large average number of quanta (N). If we 
parameterize (A) and ( B )  by 

( A )  2 2 m c o s S  

( B )  2 - 2 m s i n s  

and if ( N )  + 00, then the fractional uncertainty in (A) and ( B )  goes like 

1 

and the fractional uncertainty in A and B is small and the average field (4) is well- 
defined in both amplitude and phase (except for exceptional cases where sin 6 or 
cos 6 = 0). 

An example of a class of states with this property is the coherent states, which 
are the eigenfuncfions of the annihilation operator a. These states can be written 

Kn (Kat)" 
IK) = C c -In) = C 

~ 10) 7 n! 
n=O Jn? n=O 

(1.27) 

where C is a normalization constant, and K is the complex eigenvalue corresponding 
to the eigenvector I K )  

O0 K n  O0 K n  
alK)  = C c -aln) = C -&In - 1) 

n=O d2 n = l  Jn? 

We will parameterize the eigenvalue K by 

and normalize the state 
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It is worth noting that the operation of the creation operator on the coherent state 
is equivalent to differentiating the state with respect to the complex number K, 

(1.28) 

Using these remarkable results, we can quickly calculate (A) ,  (B), AA, and 
AB. First, using (Klat = ( K J K ' ,  

(KlalK) = K 
(KJa'IK) = K' 
(KlaatIK) = 1 + JK1' 

(KlatlK) = K' 
(Klut2lk) = K*' 
( K l a t ~ l K )  = 1KI2 = N 

and hence 

(A)  = ( a  + at)  = 2ReK = 2N1/' cosa 
( B )  = i ( a  - at)  = -21mK = -2N'/' sina 

(A') = (a' + at2 + uut + at,) = 2Re(K2) + 1 + 21K(1' 

(B')  = - (a' +at  - .at - 

= 2N(cos2a + 1) + 1 = 4Ncos2a + 1 

a 
2 

= -2ReK' + 1 + 2(K)' 

= 2 ~ ( 1 -  cos2a) + 1 = 4 ~ s i n '  a + 1 . 

Therefore 

11' 

11' 

A A  = ((A') - (A)') = (4Ncos' Q + 1 - 4Ncos' = 1 

AB = ( ( 8 2 )  - (B)') = ( 4 ~ s i n ' a  + 1 - 4~sin'a)l ' '  = 1 

and the fractional uncertainty in A and B does indeed approach 0 if N -, 00. 

Furthermore, 
(N) = N  

( ~ 2 )  = ((at,)') = (Iatuatal) 

= (lafa + atutaal) = N' + N 
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so that N is indeed the average number of phonons, but the uncertainty in the 
number of phonons also approaches zero as N -+ 00: 

So far our considerations have been limited to a specific frequency. To obtain 
a well-defined field, we must construct a coherent stare for eachfrequency. Hence 
the general state is of the form 

(KI)"' . . . (K,)n- . . . 
n I . . .  & I ! ) . * .  (n,!).. .  

1K1.. . K,. . .) = ( 7 1 . .  . c, 9 . .  5 In1 . . .n, . . .) 
n,. =a 

and there is a field-particle uncertainty relation, or complementarity principle. If 
AJV = 0. then A4 = 00, while if A4 is small, AN must be large. 

1.8 TIME TRANSLATION 

One of the most fundamental problems in physics is the determination of the time 
evolution of physical observables. In the language of quantum mechanics, this 
problem is solved by finding an operator from which it is possible to calculate 
how matrix elements of quantum mechanical operators evolve in time. We close 
'his chapter with an introductory discussion of how this is done in field theory. 
We will return to this issue several times in later chapters, but our development 
will always be very similar to the one presented here. 

The time translation operator can be found from the Hamiltonian, which 
describes how states evolve over an injiniresimal period of time. In field theory, 
this property of the Hamiltonian is described mathematically by the following 
relations: 

I t 

(1.29) 

L I 

These fundamental relations are sufficient to establish H as the generator of time 
translations and to permit the construction of the operator forfinire time translations 
(for more discussion, see Chapter 8). 

To prove the above relations for the one-dimensional string, we ignore the 
fact that H is normal ordered, since the only difference between a regular product 
and a normal ordered product is a c-number, which commutes with 4 and 7r. Then 
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we use the CCR’s to obtain 

1 
= 1” dz’u2 5 [ ~ ‘ ( z ’ ,  t ) ,  4 (z ,  t ) ]  . 

If [A, B] = c, where c is a complex number, then 

(A2,  B] = 2cA . 

Hence, from the CCR, 

(1.30) 

For the second relation, use (1.30), 

and find the commutator by differentiating the CCR, 

Hence, integrating by parts and using the wave equation, 

. 1 a24(z,t) .aT 
v2 at2 

= -2- 
at . -2- - - 

This completes the derivation of the relations (1.29). 
The next task is to use these relations to construct the time translation op- 

erator, but first we must decide how we are going to describe this operator. In 
general, in quantum mechanics, there are two choices which can be made. One 
may choose to have the states change with time and the operators remain fixed (the 
Schriidinger picture) or the states remain fixed and the operators change with time 
(the Heisenberg picrure). In the Schrodinger picture, there is a time translation 
operator which evolves the states from time to to t: 

7 I It) = U ( t ,  t o ) l t o )  I Schrodinger picture. (1.31) 
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In this picture, the operators are fixed at the reference time to,  and matrix elements 
at arbitrary time t are written ( t l&(to) l t ) .  [For simplicity, in the remainder of this 
section, we will ignore the dependence of 4 on z, and write 4 ( z 1  t )  -+ 4(t).] The 
time translation operator is a unitary matrix which operates on the vector space 
of possible states. It must be unitary because the norm of the state vector, which 
is the total probability, must be conserved. (If there are several channels, the 
probability that any particular channel will be occupied may change with time, 
but the sum of all the probabilities must always add up to unity.) 

In the Heisenberg picture, the operators depend on time, and the states are 
fixed at the reference time to. Since all matrix elements must be independent of 
which picture we use, the relation between the two pictures follows from 

(tl4(to)lt) = (tol4(t) l to)  . - -  
Schrodinger Heisenberg 

These are equivalent if the operators in the Heisenberg picture evolve with time 
according to the following relation: 

We will use the Heisenberg picture (which has been employed so far) and the 
commutation relations Eq. (1.29) to find the form of U ( t ,  t o ) .  Begin by writing 
a4/at in two equivalent ways: 

where, in the first line, we used U- 'HU = H ,  which follows from the fact that 
H is independent of time, and the second line is simply the time derivative of 
Eq. (1.32). Using U U-' = 1, which implies 

d (&) u-1 + u-u-' dt = 0 

Eq. (1.33) can be rearranged as follows: 

(1.34) 

- 1  
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or 

Now this must hold for any operator 4, and assuming that these operators are a 
mathematically complete set, so that any operator on the space of Fock states can 
be expanded in terms of them, the combination H - i (s) U-' can commute 
with all 4 only if it is a multiple of the identity (this is an application of Schur's 
Lemma), giving 

(1.35) 

where Eo is an arbitrary constant. Hence 

dU 
d t  - = - i (H - E0)U . 

For H independent of time, this gives 

U ( t ,  t o )  = exp [ - i (H - Eo)(t - t o ) ]  , (1.36) 

where the normalization of the exponential is fixed by the initial condition 

V(t0,to) = 1 . (1.37) 

This result assumes H is independent of time but can be generalized to cases 
where H depends on the time, which is normally the case when interactions are 
included. This will be discussed in Chapter 3. 

If we choose EO to be the ground state expectation value of H ,  then H - EO 
has a zero ground state expectation value, and that is equivalent to using the 
normal ordered form for H and taking EO = 0. With this choice (which we made 
in the previous sections), 

4(.,t) = e iH ( t - t o )  4(z r O  t ) e - i H ( t - t o )  . 

The form (1.15) for 4 satisfies this condition (see Prob. 1.4). 

magnetic field. 

(1.38) 

In the next chapter we apply these ideas to the quantization of the electro- 

PROBLEMS 

1.1 In this book we are using natural units in which tL = c = 1. This means that 
length ( L )  and time (t) have the same dimensions and that mass (m) has the 
dimensions of an inverse length. 

(a) Using the Fermi ( f )  as the fundamental unit of length, where If = 
meters, find: 
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0 The mass of the electron. 
0 The mass of a 7r meson. 
0 The radius of the first Bohr orbit of hydrogen. 
0 The energy of the ground state of hydrogen. 

(b) Repeat part (a) using the MeV as the fundamental unit of energy. Find a 
conversion factor between f and MeV. 

(c) An expression in natural units can always be converted uniquely into an 
expression in ordinary units (L, t , rn)  by inserting h and c in the correct 
places. Give an argument describing precisely how to do this for any expres- 
sion and give some examples showing the correctness of your argument. 

1.2 The momentum operator of the string is 

Prove that this is the generator of translation in the r-direction. In particular, 
Drove that 

1.3 Consider the Lagrangian density 

where 4 = d ( z ,  t )  is a generalized coordinate. 

(a) Find the momentum conjugate to 4. 
(b) Find the equations of motion for the fields and the solutions. Use periodic 
boundary conditions. 
(c) Suppose the field is expanded in normal modes 

$ ( z ,  t )  = 1 cn {andn(Z,  t )  + .:4;(z,t)} 1 

n 

where a,  satisfy the commutation relations 

Find the coefficients c, which will insure that the CCR’s assume the standard 
form 

(d) Find the Hamiltonian density, and express the Hamiltonian in terms of 
the number operators .La,,. 

(el What is the physical significance of this field? 

[ $ (z ,  t ) ,  7r(z’, t ) ]  = i6(z - 2 )  . 
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1.4 The Hamiltonian is the generator of time translation. This means that 

eiHi(t-to)($(* r O  t ) e - i H i ( t - t o )  = 4(.Z,t) 

Prove that this relation holds for the onedimensional string. 

that introduced in Prob. 3 above: 
1.5 [Taken from Sakurai (1967).] Consider a three-dimensional scalar field like 

where k, x = w,t - k, - r and a at ,  = cij,,,,,, w, = v f m 2  + kz. I.,, n l  

(a) These fields are singular operators. Show that 

(b) To make the fields more regular, we smear the fields by averaging them 
over a small region of space. Suppose we define the average field in the 
neighborhood of the origin by 

Show that if b << A, then 

1 
(01cj2(o, t)lo) = (numerical factor) - b2 * 

Find the precise result if m = 0. 



CHAPTER 2 

Q U A N T I Z AT I 0 N 
OF THE ELECTROMAGNETIC FIELD 

We now use the techniques developed in Chapter 1 to quantize the electromagnetic 
(EM) field. This system is one of the most important in physics but is also one 
of the most complicated. The EM field appears to be two coupled three-vector 
fields, but through Maxwell's equations and gauge invariance, it can be reduced to 
a single four-vector field with only two independent components. The elimination 
of these redundant components, which are connected with the gauge invariance 
of the system, poses a new problem unlike any discussed in the previous chapter. 
The relativistic nature of the EM field is also a new feature which needs to be 
discussed. 

This chapter begins with a description of the properties of Lorentz transfor- 
mations and a discussion of gauge invariance, topics which must be addressed 
Fjfore we can quantize the field. The particles which emerge from this quantiza- 
tion are photons, familiar from elementary studies. The vector nature of the EM 
field means that the photons have spin one as well as energy and momentum. The 
appearance of this spin, and its connection to the vector property of the field, will 
be the last topic covered in the chapter. 

The goal of this chapter is to lay the foundation for the treatment of the 
interaction of the EM radiation field with matter, which will be discussed in 
Chapter 3. 

2.1 LORENTZ TRANSFORMATIONS 

We begin with a brief discussion of Lorentz four-vectors and transformations. 
The emphasis here will be on notation; the properties of the Lorentz group will 
be discussed in more detail in Chapter 5.  In the natural system of units, the speed 
of light, c, is equal to unity, so that the spacehime four-vector is denoted 

x p  = ( t , r )  = ( t , z , g , z )  = (t ,r ' )  
z p  = ( t ,  - r )  = (4 -2, -y, - z )  = ( t ,  9 2 )  , (2.1) 
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where x p  is the contravariant and x,, the covariant form. Note that Greek indices 
on four-vectors (such as p )  vary from 0 to 3, while Roman indices on three-vectors 
(such as i) vary from 1 to 3.’ The invariant length of this four-vector is written 

where gPu = gp” is the metric tensor and a sum over repeated indices is always 
assumed. Note that (2.2) implies that the relation between the contravariant form 
of x (xp) and the covariant form (2,) is 

A Lorentz transformation (LT) is any transformation which leaves the length 
of four-vectors, defined in (2.2), invariant. In general, a transformation A which 
operates on the space of four-vectors can be written? 

In this notation the requirement that the four-vector length remain invariant be- 
comes 

which leads to the following condition on A: 

Any transformation which satisfies this relation is an LT. In Sec. 5.8 we will show 
that all of the transformations which satisfy (2.6) form a group in the mathematical 
sense. 

*We will adopt the convention that the Roman indices on three-vecrors will always be written as 

superscripts. Be careful to always include the minus sign when converting the spatial components of 

a covariant four-vector to a three-vector! 

+Free indices on both sides of a relativistic equation must always be in the same position (either up 

or down). and indices on one side of an equation which are summed (or contracted) must always 

be. paired, with one up and one down. This will insure that both sides of the equation transform in 

the same way. In three-vector equations, the position of the indices is arbitrary, and placement is by 

convention. 
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Matrix Notation 

It is convenient to introduce a matrix notation for LT's. The following correspon- 
dence will be made: 

A = { A p , }  = (F) 

1 
- I (2.7) 

-1 

-1 

-1 

where the matrices have been written in block form, with the upper left element 
the (0,O) component and the lower right element representing the 3 x 3 submatrix 
of spatial components. The Greek indices, p and v, always run from 0-3, while 
the Roman indices, i and j ,  run over the spatial components 1-3, and the corre- 
spondence is { p }  = (0 ,  i) and {v} = (0 ,  j ) .  As we have written it, p labels the 
rows and u labels the columns. Note that therefore A v p g , ,  = ATG. 

In this notation, the defining equation (2.6) for the LT's becomes 

and, representing the contravariant four-vector by 2, and the covariant one by Gx, 
so that X I  = Ax, Eqs. (2.2) and (2.4) become 

X I  = Ax 
Gx' = GAGGx = (AT)-1 Gx 
x2 = x T G x  . 

Note that the four-gradient 

transforms as a covariant four-vector. To prove this easily, use (2.4): 
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which is the same as the transformation law for a general covariant four-vector 
{ z p }  = Gx, as given in Eq. (2.9). If V p  is a contravariant four-vector, the 
divergence is 

a 
at 

a J ~ = - v O + V . v .  

the 

anc 

Note that a plus sign appears in this equation, instead of the minus sign which 
might be naively expected. 

The LT’s are not necessarily orthogonal matrices. The rorurions, which leave 
the time component of any four-vector unchanged (and also one direction in space, 

rotation axis, unchanged), can be written 

are orthogonal. The boosts, which leave two directions in space invariant, are 
not orthogonal. A simple example is the boost in the r-direction 

cosha 0 0 s inha  

A B = [  

sinhcr 0 0 cosha 

which leaves the x- and y-directions invariant. Note that A: = AB, nor hi1. 

2.2 RELATIVISTIC FORM OF MAXWELL’S THEORY 

The Maxwell equations (with c = 1) are 

V . B = O  
aE 

V x B = j + - .  
at 

These are in rationalized Gaussian units where Coulomb’s law for a point charge 
is V = e2/47rr and the fine structure constant is cr = e2/47r. We replace two of 
these equations with potentials 

B = V x A .  (2.10) 
a 

E = - V $ -  -A 
at 

These solve the two homogeneous equations identically, leaving 

a E  
at V x B - - = j .  (2.11) 
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To cast these equations into a relativistic form, identify two four-vectors 

Note that the so called “scalar” potential 4 is now the time component of a four- 
vector, and it is sometimes convenient to denote it by Ao instead of 4. This 
potential is still a scalar under rotations, but is no longer a scalar under boosts 
(and hence is no longer a scalar). Since E and B are coupled, there are six field 
components which transform into each other. This is just the correct number for 
an antisymmetric 4 x 4 tensor, which is denoted FP”. Since three-vectors are 
always written with their Roman indices as superscripts, we identify 

Here E i j k  is the familiar three-dimensional antisymmetric symbol with €123 = 1. In 
this notation, the homogeneous equations (2.10) and the inhomogeneous equations 
~2.11) become - 

(2.13) 

The form of these equations shows immediately that the theory is invariant under 
Lorentz transformations if A’’ and j P  are four-vectors and FP” is a second rank 
tensor. In this case 

Check Eq. (2.13): Noting that V + V, and A + A’ and using the identity 
E l I k t j k , ~  = 26,,1, SO that El,kElkr~Ba’ = -€rlkF3k = 2B’, give 
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Next, 

aE 
+ - - + V x B = j  at 

and Eq. (2.13) is confirmed. I 

Relativistic Lagrangian 

In order to maintain Lorentz invariance, the Lagrangian density for the EM the- 
ory must be a scalar invariant constructed from the field tensor, the four-vector 
potential (from now on the four-vector potential will be referred to simply as the 
“vector” potential), and the currents. This means that all scalar products must 
be constructed from two quantities, one of which transforms like a contravariant 
four-vector (or tensor) and one which transforms like a covariant four-vector (or 
tensor), as in Eq. (2.2). We will show that the Lagrangian density 

gives the desired equations of motion, and hence is a suitable choice. Discussion 
of how this Lagrangian density might be uniquely determined from fundamental 
principles will be deferred to Chapter 13. 

To find the equations of motion from (2.14), simplify the expression as fol- 

= - ~ ~ ” g ” ’ ”  [6, ,A,aP~AU~ - aPAvdulAP~] . 
In these expressions, the a in a term like aAB operates only on A, while in 
d ( A B )  it operates on borh A and B. Hence 

and the Euler-Lagrange equations reduce to 

- -a,Fap + j p  = 0 , ac 

which are the correct equations (2.13). Note that current must be conserved (i.e., 
its four-divergence is zero), because 

a p j p  = apa,Fap = o . 
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Gauge lnvariance 

The electromagnetic Lagrangian has two special features not encountered before: 

(i) The generalized momentum conjugate to the time component of the four-vector 
potential (which will be denoted by A', instead of 4, in this subsection) is zero. 
This follows from the fact that the Lagrangian density (2.14) does not depend on 
dAo /at. and hence 

Because of this, the Poisson bracket of A' with 7ro (or, after we quantize the 
field, the commutator [Ao, TO]) must also be zero. If we attempt to quantize the 
field component A' by turning it into an operator, it would therefore commute 
with all operators, and by Schur's Lemma would reduce to a c-number. The field 
component A' is special. 

(ii) If the current is conserved (and we have seen that consistency requires it), 
then the Lagrangian is invariant under the gauge transformation 

A: = A , - 8 , A c  , (2.15) 

where A, is a scalar. Note that the Lagrangian density is not locally gauge invariant 
[i.e., is not invariant under the transformation (2.15) at every space-time point z], 
because 

j,A,' --t j,A, - j ,  P A ,  ~ - 
not zero 

(2.16) 

However, the action dt L (and hence the theory) is gauge invariant. To show 
this, use the fact that the fields are assumed to satisfy periodic boundary conditions, 
so that when integrating over all space any surface terms which might arise from 
any integrations by parts can be assumed to vanish or cancel. To justify dropping 
the surface terms from the time integration, assume that A, = 0 at t = *too. 
Therefore, integrating the non-zero term in (2.16) by parts gives 

d4x j, dph, = - d4x (Wj,) A, = 0 , s 
In order to obtain a definite solution for the E M  fields, the arbitrariness 

associated with the gauge freedom (2.15) must be removed so that the fields can 
be uniquely specified everywhere. This process is referred to as "gauge fixing" and 
involves imposing some constraints on the fields which will fix the gauge function 
A, and remove the gauge freedom. Two popular choices for the constraint, or 
choice of gauge, are the Lmentz and Coulomb gauges, defined by the constraints 

(2.17) 
8,AP = 0 Lorentz gauge 

V . A = &A' = 0 Coulomb gauge . 
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There are advantages and disadvantages which accompany the use of each of these 
gauges, and the choice of gauge is closely related to how the time component of 
the four-vector potential, A', is to be treated. Since the time derivative of Ao 
does not occur naturally in the Lagrangian, and since the gauge transformations 
give us some freedom to redefine the field in a convenient way, the solution of 
the electromagnetic problem may be approached in one of two ways: 

0 The quantity A' may be eliminated from the Lagrangian by expressing it 
in terms of the remaining components of A,,. This approach is simplified by 
using the Coulomb gauge. 

0 A new term may be added to the Lagrangian which contains the time 
derivative of Ao. In this case, the Lorentz gauge is the preferred constraint. 

To see what is involved in eliminating A' from the Lagrangian, look at Eq. 
Each of these approaches will now be discussed briefly. 

(2.13) when Y = 0: 

a,, [VAO - doAp]  = -VZAo - 800 . A  = p . (2.18) 

This equation is greatly simplified by imposing the Coulomb gauge, which reduces 
the equation to Poisson's equation 

V Z A o = - p  , 

and this equation has the unique solution 

-1 Ao(t , t )  = - d r - Ir' - T I  Coulomb's law . (2.19) 

This solution is zero if p = 0. Had we chosen to use the Lorentz gauge, the 
equation for A' which would result from (2.18) is 

O A ' = p ,  

where 

(2.20) 

is the familiar wave operator. This equation is manifestly covariant, but the 
solutions of the wave equation may depend on time and are not zero even when 
p = 0. For these reasons the Coulomb gauge, which gives Coulomb's law, is 
used in the study of atomic and other low energy systems, and it will be used in 
Part I of this book. The disadvantage of this choice is that the Coulomb gauge 
condition is not manifestly covariant; to maintain this gauge condition in different 
frames requires that a new gauge function A, be chosen for each frame, so all of 
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the results obtained from this gauge will look non-covariant. The final results of 
any calculation will always turn  out to be covariant, but often this is only apparent 
after the final answer is obtained. 

Now consider the second approach to the study of the EM field, in which a 
term containing the time derivative of Ao is added to the Lagrangian. This must 
be done in such a way that the theory is not altered, and a convenient way to do 
this is to add the following gauge &ing term to the Lagrangian density: 

( 2 . 2 1 )  

This extra term can be regarded as a constraint, with the redundant field com- 
ponents related to Lagrange multipliers [see Itzykson and Zuber (1980)l. The 
parameter a is the gauge parameter and may assume any finite value. Two well- 
known choices are a = 1, the Feynman gauge, and a -+ 0, the Landau gauge. 
Note that the overall theory is not affected by the addition of the gauge fixing 
term because it is zero after the gauge condition 8,A” = 0 is imposed. These 
gauges are very convenient for the study of high energy scattering processes where 
it is desirable to maintain manifest Lorentz invariance, and using the method of 
Gupta [Gu 501 and Bleuler [Bl 501 [see also Bogoliubov and Shirkov (1959)], 
it is possible to quantize all four components of A” as independent degrees of 
freedom. A modern approach, in which these gauges are used in conjunction with 
the method of path integrals, will be discussed in Chapter 15. 

It is important to realize that the physics is unaffected by the choice of gauge. 
Any gauge may be used, as long as it is used consistently in all parts of the 
cilculation. The intermediate steps may be very different, but the final result for 
m y  physical observable must be independent of the gauge used to calculate it. 

For example, note that a scalar gauge function A, can always be found so that 
either the Coulomb or Lorentz condition is satisfied. Suppose first that V . A  # 0 
and we wish to impose the Coulomb condition. Then change A to A’ so that 

V .A’ = V .  ( A  - VA,.) = 0 . 

This implies that 
V2A, = V .  A 

and we know that this equation (Poisson’s equation again) can be solved. Similarly, 
suppose that a,A. # 0, and we wish to impose the Lorentz gauge. Then change 
A to A’ so that 

a,A+ = a, ( A ,  - PA,) = o . 

m , = a ” ~ p  . 
This implies that 

This is the inhomogeneous wave equation, which also can be solved. Since the 
physics does not depend on the scalar A,, the physics also cannot depend on the 
gauge. 
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The Lagrangian in the Coulomb Gauge 

The next task is to rewrite the Lagrangian density using Coulomb's law to defne 
A'. The resulting Lagrangian will then depend only on the three components of 
the vector potential A' (and the charge and current densities, considered sources 
of the fields and not dependent on them). The three components of A1 will be 
treated as independent fields, and the Lagrangian will be constructed so that the 
correct equations of motion for these fields will emerge naturally. 

To see more clearly what this means, look at the equation for the vector 
potential. From the field equations (2.13), this equation is 

(2.22) 
a 
at 

n A i  + V i  V . A  = ji - - V i A o  = j i  , 

where ji is referred to as the transverse current. Taking the divergence of both 
sides of this equation and assuming that A0 is given by Poisson> equation give 

a 
at 

= V . j  + - p  = 0 (by current conservation) . (2.23) 

Hence, if we did not know that the Coulomb gauge condition V . A  = 0 had been 
used to relate A.  to p. this equation would enable us to recover it in the following 
sense: if V . A = 0 and a (V . A )  / a t  = 0 holds at one time, it will hold at all 
times. In this sense the Coulomb gauge condition can be regarded as a dynamical 
rmsequence of Eq. (2.22) for A .  Our task is to construct a Lagrangian density 
which will give this equation. 

To find the correct Lagrangian density, we will first separate out the A' 
terms from the Lagrangian density (2.14). All three-vectors will be expressed in 
a "standard" form, which is taken to be A' + A and V ,  -+ V .  Hence we use 
A,, -+ ( A o ,  - A a ) ,  3' -+ (ao, -Vi ) ,  and obtain: 

,f = - I F  F P V  - j AP 4 PV P 

= - 1-8 2 P  Ao ( P A o  - aoAP) + +&Aa ( P A '  + V , A P )  - pAo + j . A  

= - $ V J A o  ( -V ,Ao  - a o A J )  + iaoAa (aoA' + V , A o )  

+ $V,A' (-V,A' + V , A J )  - pAo + j . A  

= IV 2 J  AoV,Ao + $dOA3aOAJ - fB2  + VJAoaoAJ - pAo + j . A  . 
(2.24) 

The third term in the last line was obtained using the identity cykcatm = 6Jt6km - 
6Jmbkt: 
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The first term in the last line of (2.24) can be reduced by integrating by parts 
and dropping the boundary terms, which are guaranteed to vanish because of the 
periodic boundary conditions imposed on the fields and sources. This procedure 
has been used several times before and will be used many times again in the 
following chapters. Stated in general terms, this freedom to integrate by parts 
means that rwo Lagrangian densities which difler by a rhree-divergence give the 
same Lagrangian and hence are equivalent. Using V2Ao = - p  in the last step 
gives 

VJAOVjAO = V j  (AOVjAO) - AoV'Ao 

- A ~ V ~ A , ,  - total - 
divergence 

+ Aop . 
Similarly, the fourth term is the last line of (2.24) can be replaced by 

VjAOaoA' -AJdoVjAo . 

This replacement is perhaps best justified by noting that both terms are proportional 
to V.A (plus a total divergence) and hence will give zero after the Coulomb gauge 
condition is applied. 

With these substitutions, the Lagrangian density (2.24) can be written as the 
sum of two terms: 

C = CO + Lint 

where 

To see that this Lagrangian density gives the correct equations of motion for 
the A*, compute 

Hence the Euler-Lagrange equations implied by C are 

+ O A ' + V , V . A  = j ;  . (2.25) 

These are the desired equations (2.22). 
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A vector field V which has a zero three-divergence, V . V = 0, is said to 
be transverse. Physically, this condition means that the field is perpendicular to 
its momentum, as will be discussed below. After the equations of motion have 
been obtained, and the gauge condition applied, V . E L  = 0, and only transverse 
radiation fields remain in C. The longitudinal component of E, sometimes denoted 
by Ell3 

Ell = -VAo , 

is no longer a dynamical variable and is expressed in terms of p. 
Finally, the Lagrangian derived from L assumes a nice symmetrical form: 

L = d3rL = d 3 r { ! j l E ~ ( r , t ) 1 2  - !j (B(r , t )I2 + j L ( r , t ) . A ( r , t ) }  

1 3 I t ) P ( T ' ,  t )  
J J  

- - / d 3 r d  87r T IrI - r1 (2.26) 

Note the presence of the instantaneous Coulomb interaction, which makes this 
approach ideal for application to relativistic atoms. As advertised, L is no longer 
manifestly covariant. 

2.3 INTERACTIONS BETWEEN PARTICLES AND FIELDS 

To complete the picture, and to introduce interactions, add two spherically charged 
particles to the Lagrangian. The location of these particles will be described by 
generalized coordinates 

q,(t) a =  1 and 2 , 

and their charge density will be denoted pa ( 14, - rl ) ,  where 14, - rl is the length 
of the vector which connects the location q, of the ath particle to the field point r. 
To simplify the notation, the particle coordinates will usually be denoted simply 
by q,, and the charges by p,(r),  although both depend on time. The four-current 
of each particle is 

$ ( r )  =Pa(.) (1 7 4, ) 7 (2.27) 

where q, = dq,(t)/dt and the total charge and current is the sum of the single 
particle charges and currents: 

P ( T )  = P l ( T )  + PZ(7-1 

j q T )  = j f ( T )  + j,"(.) 
Note that the current of each particle is conserved: 
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where pb(r) denotes the derivative of P,(T)  with respect to its argument, lqa - r ) .  
The Lagrangian of this field-particle system is composed of three terms: 

L = &articles + LEM + Lint 

where 

(2.28) 

(2) Note that the second term in Lint, which we will refer to as Lint,  is zero once 
the Coulomb gauge is taken into account, and therefore this term will make no 
contribution to the particle equations or to the total energy. 

Equations of Motion 

Adding the particle coordinates to the Lagrangian does not change the derivation 
af the equations for Ai given in Sec. 2.2. We have, as before, 

O A ' + V i V . A = j i  , 

where A' is shorthand for the solution of the Poisson equation and the gauge 
condition V . A = 0 is imposed. The only new feature is that the current is now 
specified in terms of the particle coordinates. 

The equations for the motion of the two particles become 

where use was made of 



2.3 INTERACTIONS BETWEEN PARTICLES AND FIELDS 41 

and the fact that the second interaction term, Liz:, integrates to zero. 
Now simplify the equation (2.29) and extract the Lorentz force law. First, 

the second and third terms in (2.29) are reduced by integrating by parts and using 
current conservation: 

1 = J d 3 r  { Y A j ( r , t )  - pa(r )E i ( r , t )  - qi pa(r)VjAi(r,t) 

J d3r { - P a ( T ) E i ( r ,  t )  + 4; pa(.) (V'Aj - VjA') } . 

However, the second of these terms is recognized as related to Y x B  (where Y = q): 

Y x B = Y x (0 x A )  + C ~ ~ ~ V ' C & ~ V ~ A ~  

= vi (VjA' - ViAj) . 
The fourth term in (2.29) can be simplified by integrating by parts and using 

1 1 vr- = -vrt- 
Ir - r'l Ir - T ' I  

to get 

d3r d3r' 1 ' J -  2 4n ( ( V r l j m )  

x P a ( r )  [P~(T') + PZ(T')I - Pa(r')  [ ~ l ( r )  + P~(.)I) . ( 
Note that regardless of the value of a, the only terms in the square brackets which 
survive are those for particle 6 # a, giving 

AO(r,t) from b 

Combining all terms gives the Lorentz force law: 

maiia = J d3r {pa(.> Ea(r9 t )  + pa(.) 4, x B(r, t ) )  7 

where no summation over the repeated index a is implied and 

Note that the Ea field which enters the force law only includes the longitudinal 
Coulomb part due to the other charges, so there is no self-force. 
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Hamiltonian 

In preparation for calculation of the Hamiltonian, first find the canonical mo- 
menta: 

s (2.30) 

aL  
aqq, 

p a  1 -  - - = ma$, + d 3 r p a ( r ) A i ( r ,  t )  

7r i (T ,  t )  = - - - = - E l ( T , t )  
aAi - ac . 

a(aoAz) at  

Hence the Hamiltonian, dropping the second interaction term L!::, is 

H =  ~ p a . q a + / d 3 r 7 r ( ~ , t ) .  - dA - L  
a t  a 

d3r {E?(T, t )  + B2(T, t ) }  . 1 / d3rd3r’ p(r)p(r’)  + 1 / 
47r IT- - rq 2 

= f Emad:  + 2 
2 

Expressing this in terms of the canonical momenta and the canonical coordinates 
gives 

2 J 47r IT - T’I 

The energy can be redefined so that the Coulomb self-energies (the terms propor- 
tional to the square of the charge density of a single particle) are ignored [choose 
EO from Eq. (1.36) correctly]. The second term is then more familiar: 

Pl(T) PZ(7-7 
IT - T’I 

Second term = 1 
Note that the first term has the familiar Cp - structure. 

2.4 PLANE WAVE EXPANSIONS 

If there are no charges and currents, the vector potential A in the Coulomb gauge 
is the solution of the equations 

n A = O  

V . A = O .  
(2.32) 
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Note that the first of these tells us that each componenf of A satisfies the wave 
equation, and the second places a restriction on the three components. Therefore 
the solutions we found in Chapter 1 can be immediately applied to the EM field 
if they are generalized to: 

0 three-dimensional space and 
0 two independent vector degrees of freedom (only two because V . A = 0 

constrains the third). 

Referring back to Eq. (1.15). the vector field must therefore have the form 
In addition, the wave velocity is now that of light, so that = c = 1. 

where the sum is over three integers n = (nz,ny,n,) ,  corresponding to the 
requirement that the solutions of the wave equation satisfy periodic boundary 
conditions in each of the three space dimensions (referred to as box normalization), 
and the integer Q = 1 or 2, corresponding to the two independent vector degrees 
of freedom of the vector potential which are not constrained by the Coulomb 
gauge. Specifically, the momenta of the plane wave solutions are given by the 
three-dimensional generalization of Eq. ( 1 A), 

(2.34) 

dnd the argument in the exponential of the plane waves is the generalization of 
( 1.7) to three space dimensions 

2nn, 
L k,, = - n i = O , k l , f 2  , . . .  i = x , y , t  

kn . x = w,t - k n Z x - k n ,  y - k n Z z  = wnt - k ,  . r . 

The plane wave solutions must satisfy the wave equation, which fixes the fre- 
quency 

k: = k: = c2w2 = w; ' c = l .  (2.35) 

As in  Chapter 1, the frequency will always be chosen to be positive, so that 

and the negative frequency solutions are the complex conjugates of the positive 
frequency ones, with the phase i k  . x .  

The vectors E are referred to as polarization vectors. They carry the vector 
direction of A and are dependent on n. The Coulomb gauge condition requires 
that they must be orthogonal to k,:  
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A 
X 

Fig. 2.1 The relative orienta- 
tion of the two polarization vectors 
of the photon and its momentum A. 

and hence there can only be two independent vectors for each k,. To maintain 
the normalization for the u , , , ~ ’ s  introduced in Chapter 1, we require that these 
vectors be normalized to unity. Since they are in general complex, they will be 
defined so that -1 (2.37) 

There are many ways to choose independent 6 which satisfy (2.37). We will 
define a linearly polarized basis by choosing, for k, in the E-direction, E~ = f 
and e2 = $, so that 

€; x €2 = k, 
1 

€: x I ,  = €, 

I ,  x €: = €; , 

(2.38) 

where the relative orientation of the two independent polarization vectors is shown 
in Fig. 2.1. There are only two independent t: ’s, and they are both perpendicular 
to k. It is this property which leads to the description of the vector potential as 
transverse. There is no simple relation between E: and e:,. 

Before we turn to the quantization of the EM field, we will briefly discuss 
massive vector fields and the differences between massless and massive fields. 

2.5 MASSIVE VECTOR FIELDS * 

In order to highlight the unique properties of the EM theory, we consider the 
effect of adding a “mass” term to the Maxwell theory. Massive vector fields 
play a fundamental role in physics; the W* and 2 bosons which mediate the 
electroweak interactions are examples of such fields, and these will be discussed 
in Sec. 9.10 and in Chapter 15 [see also Appendix D]. For now we are primarily 
interested in how the massive theory differs from the massless one. 

‘This section may be omitted on a first reading. 
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Start by adding a new term to the Lagrangian (2.14): 

L~ = -1 F Fpu + 1 M 2 A , A p  - j , A p  , (2.39) 4 P” 2 

where, for now, M is simply regarded as a real parameter. Later we will see 
that it can be interpreted as the mass of the particles which emerge from the 
quantization of the field. As before, the four-current j ,  is the source of the field, 
and it is assumed to be conserved. The equations of motion obtained from this 
Lagrangian are known as the Proca equations: 

t3,Fpu + M2A” = j ”  . (2.40) 

Taking the four-divergence of both sides and remembering that F P ”  is antisym- 
metric give 

M 2  &A” = a,j” = 0 . (2.41) 

Because the mass is not Zero, the Lorentz condition emerges as a necessary con- 
straint.’ We no longer have the freedom to choose another constraint (such as the 
Coulomb gauge condition) because the mass term is not gauge invariant. Under 
a gauge transformation 

M 2 A p A p  -+ M’ALA‘’” = M 2  (A,Ap - Ll,,AcAp - A , P A ,  + 8,AC P A c )  

# M ~ A , A ~  . 

Using the Lorentz condition, the equations for the field simplify, 

( O + M 2 ) A ” = j ”  . (2.42) 

If the source is zero, this equation has plane wave solutions 

A” - 6; e-’k.x , 

provided the four-vector k satisfies the following equation: 

k 2 = M 2  * k k o = E k = d m  . (2.43) 

This shows that the parameter M is indeed a mass. The Lorentz condition means 
that the polarization vectors accompanying these plane wave solutions must satisfy 

kpcE = 0 , (2.44) 

which is satisfied by three independent polarization states (instead of only two as 
in the massless case). Two of these are the transverse states previously introduced 
for the E M  field, and the third is a longitudinal state witn a three-vector part 

*Note that this constraint must hold for free fields. even if the current is not conserved. 
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in the direction of the particle momentum (for more detail see the discussion in 
Sec. 9.10). 

The most general solution for afree massive vector field can therefore be 
written 

3 
1 

A"(T, t )  = d7 {c:pan,a e- ik 'z  + .cEp*aL, e i k ' s }  , (2.45) 
2EnL n a=l 

where En and .c" satisfy the constraints (2.43) and (2.44), respectively. While this 
equation appears to be almost identical to the E M  field expansion (2.33), it differs 
in two essential ways. First, the energy arid four-momentum are those appropriate 
to a massive particle and, second, there are three independent polarization states 
instead of only two. 

In conclusion, we restate some of the main points of the previous discussion. 
The Lagrangian for a massive vector theory, Eq. (2.39), still does not depend on 
dAo/dt ,  so that the time component of the field, Ao, must in some sense depend 
on the sources and other components, as was the case in the massless theory. 
However, because the massive theory is no longer gauge invariant, the Lorentz 
condition emerges automatically as the only appropriate constraint on the field, and 
the Lorentz condition is the constraint which fixes the component A' in terms of 
the other components. Once this condition is taken into account, the free massive 
field can be expanded in plane waves with three independent polarization degrees 
of freedom. In the massless case, it is gauge invariance which allows (in fact, 
requires) us to remove fwo degrees of freedom from the field, which (in Coulomb 
gauge) amounts to removing the components Ao and A3 (if the momentum is in 
.he 2-direction), leaving only two independent polarization states. 

We now return to a discussion of the quantization of the E M  field. Much 
of the following discussion will be extended to the massive case in Sec. 9.10. 

2.6 FIELD QUANTIZATION 

We now quantize the theory, described by the Hamiltonian (2.31), for the inter- 
action of the electromagnetic field with nonrelativistic particles, by turning all 
canonically conjugate variables into operators. The nonrelativistic particles are 
quantized by the replacements: 

r - r r  

p - r - i v  , 

where the operator r is simply multiplication by r. Similarly, the E M  field is 
quantized by turningA into an operator. The development used in Chapter 1 for the 
string will be followed again here. This involves two steps. The simple harmonic 
oscillators which describe the classical field must be found and described, and 
then they must be quantized. 



2.6 FIELD QUANTIZATION 47 

The plane wave expansion (2.33) for the EM potential A is the solution to 
the first of these steps; it expresses the field A in terms of independent oscillators 
described by the quantities an,a. The second step, the quantization of the field, is 
done in precisely the same way it was done in Chapter 1; the quantities an,a are 
turned into operators by imposing the commutation relations 

The only difference between Eq. (2.46) and the corresponding relations for the one- 
dimensional string is the fact that now there are three space dimensions and two 
polarizations. This means that Eq. (2.46) must describe many times the number 
of normal modes, and hence many times the number of independent operators, 
than were described before. However, this does not really change the result, 
since operators corresponding to independent normal modes still commute, and 
the commutation relation for a and at for a single normal mode is the same. 
Thus Eqs. (2.33) and (2.46) give the complete description of the EM field and its 
quantization, and we will now use them to work out several details. 

Canonical Commutation Relations 

Because of the gauge condition, the forms of the canonical commutation relations 
for A and 7r differ from those found for the string. The CCR can be worked out 
‘rom 

where z = (t, r) and z‘ = (t, r’). This can be further reduced using the fact that 
the polarization vectors, together with in (the unit vector in the direction of kn) ,  
form a complete orthonormal set. Hence, for each n, 

a 

or 

(2.47) 
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[ A j ( ~ ‘ , t ) , r ’ ( ~ , t ) ]  = i ( 6.. ,3 - - $) 63(r - r’) E 6 3 T ( ~  - T’ )  . 

where bT is the transverse &function. This gives 

(2.48) 

Recalling that the sum over the plane wave states gives a delta function for each 
direction in space leads to the following expression for the CCR’s for EM theory: 

The extra a,aj term is necessary in order that the CCR’s be consistent with the 
gauge condition: 

(V+)j [ A ~ ( T ’ ,  t ) ,  T’ (T ,  t ) ]  = i [V, - Vj] 6 3 ( ~  - T ’ )  = 0 

= [V * A , T ’ ( T , ~ ) ]  = 0 . 

Note also that C [Ai(r’,  t ) ,  T’ (T ,  t ) ]  = 2 i 6 3 ( ~  - T ’ )  , 
i 

where the factor of 2 appears because there are two independent polarization states. 
All of these commutation relations hold at equal times, and the commutators 

are zero if the two points are separated in space. Under Lorentz transformations, 
the interval (t-t’)2-(r-r’)z = (z-z’)~ is invariant, and thus one consequence of 
a relativistic generalization of the CCRs is that the field operators commute when 
their arguments are separated by a space-like interval [i.e., one for which the 
four-vector distance (z - z ’ ) ~  < 01. This has a beautiful physical interpretation: 
it is impossible to exchange information between two points separated by a space- 
like interval, and hence any physical observables (fields in this case) at two such 
points must be truly independent of each other. The mathematical expression 
of this independence is the statement that the operators corresponding to these 
quantities must commute. This is an important principle, referred to as local 
commurativily or microscopic cauralify, which can be used as a starting point for 
an axiomatic development of field theory [see Streater and Wightman (1964)l. 

Perhaps the appearance of the transverse &function in the CCR’s (2.48) could 
have been anticipated from the start, but in any case, it follows in a straightforward 
way from the commutation relations (2.46). These commutation relations between 
the creation and annihilation operators involve only the independent degrees of 
freedom, and hence are the same for all types of fields. It is for this reason that 
we have chosen to use them to begin the quantization of any field theory. 
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Hamiltonian and Momentum Operators 
The form of the Hamiltonian and momentum operators can be inferred from the 
discussion of the string in Chapter 1. Here we will demonstrate that the Hamilto- 
nian does indeed have the expected form. The proof that the momentum operator 
also has this form is deferred to Prob. 2.1. 

For simplicity, assume that the polarization vectors are real. Then, recalling 
Eq. (2.31), the Hamiltonian for the free EM field is 

1 1 H =- d3r { : E i ( r , t ) : + : B 2 ( r , t ) : }  = - 
n,n’  

2 ’J 4L3 

where the normal ordering prescription has required all cross terms to be written 
as at,. Using the fact that 

and k ,  = -k-,, give 
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to obtain finally 
7 

(2.49) 

This is a straightforward generalization of the result for the string. Now there 
are number operators for photons with momenta in all three spatial directions and 
with two polarization states. 

We leave it as an exercise, Rob. 2.1, to show that the momentum operator 
is 

(2.50) 

This expression shows that the total momentum of the field is a vector sum of the 
momenta of each photon, as expected from our study of the string. 

P = d 3 r : ~ l ( r ,  t )  x ~ ( r ,  t ) :  = Ck,ak, ,an, ,  . J n,a 

2.7 SPIN OF THE PHOTON 

In the final section of this chapter we show that the particles which emerge from 
the quantization of the EM field (the photons) have spin one. Spin can be regarded 
as an internal degree of freedom of the quanta which is closely connected to the 
structure of the field from which they emerge. In particular, the quantization of 
vector fields always gives rise to quanta with spin one, while the quantization of 
scalar fields gives quanta with spin zero. 

To obtain these results, it is necessary to discuss the behavior of the field under 
rotations. Just as the energy of the quanta is displayed by the Hamiltonian (the 
generator of time translation) and the momenta are displayed by the momentum 
operator (the generator of space translations), so it is that the spin will emerge 
from a discussion of the angular momentum operator, the generator of rotations. 
This section therefore begins with a brief discussion of the rotations of vector 
fields. A deeper discussion of these topics is postponed until Chapter 8. 

Rotations 
When transforming vector fields, which are continuous functions of space and 
time, both the components of the vector and the arguments of the function must 
be transformed. For example, a scalar function under rotation transforms in a 
non-trivial way, as illustrated in Fig. 2.2. In this book, all transformations will 
be interpreted as active transformations, i.e., they transform the state functions, 
leaving the coordinate system fixed. From examination of the figure, we see 
that, under an active rotation R, the transformed function $R(r ,  t ) ,  where r is 
a shorthand notation for the three spatial coordinates (2, y, z) ,  is related to the 
untransformed function 4(r,  t) by 
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Fig. 2.2 
to a new direction. The third figure is identical to the second: only the paper has been turned. 

A scalar function q4 (with contours originally pointing in the r-direction) is rotated actively 

This result can be used to find the transformation law for a vector function. 
Consider the function @(r, t )  = a . A ( r ,  t ) ,  where a is some reference vector. 
Under the rotation R this function becomes 

a~ . A R ( r , t )  = a . A ( R - ' r , t )  , 

and hence the vector function A satisfies the following transformation law: 

A k ( r ,  t )  = RZ3A3(R- lr ,  t )  . (2.52) 

,Vote that we rotate both the components and the arguments. 
A rotation about the z-axis will be written 

where Iz is the generator of rotations about the z-axis. The specific form for I,, 
and its generalizations to rotations about the axis i, is 

- ( I l ) J k  = - i E t 3 k  . (2.54) 

Hence, the change in a vector r under an injnitesimal rotation about the i-axis 
through angle 60 is 

6r;I = -60cvpre = -i68 ( l i ) j e  re . 



52 QUANTIZATION OF THE ELECTROMAGNETIC FIELD 

Similarly, the change in a vector field A under the same infinitesimal transforma- 
tion, using (2.52), is 

AiR,  ( r ,  t )  = (1 - i6f?I,)3e Ae ([l + i601,] r ,  t )  

= A J ( r ,  t )  + i68, [ - l i e A e ( r ,  t )  + IfmrmaeA3(r,  t ) ]  . 

Introducing the familiar orbital angular momentum operator, Li = -i finerm&, 
this can be written 

(2.55) 

Now we are ready to apply these ideas to the EM field. 

Angular Momentum Operator 

The angular momentum operator for the EM field is 

W = d3r [ r x :  ( E L  x B ) : ] '  . (2.56) s 
This can be reduced to a more tractable form by expanding out the double cross 
product, 

0' = d 3 r  t i j e rJc~kmEffmabdaAb  s 
= / d 3 r  cz3erJ { E p t A b  - E l  . V A e }  , 

and simplifying the last term by integrating by parts and recalling that E l  is 
transverse, 

Substituting for E l  and using the orbital angular momentum operator L = - i ( r  x 
V )  give a more compact form for R: 

(2.57) 
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To interpret each of the two terms in (2.57) it  is instructive to compute the 
commutator of R with A .  This is easily done using the CCR’s: 

The djab term is zero: 

d T -6 (T - T ’ )  [LtAb(r’ ,  t )  - i ftbeAe(r’, t ) ]  J3T3 
d 
v2 

d 
0 2  

= - J d 3 d 2 6 3 ( ~  - r’)db [-i ctemredmAb - i clbeAe] 

= - J d 3 X ’ 2 6 3 ( T  - T ’ )  [ - 2  fzbmdrnAb - 2 t l ~ m ~ P d m d b A b  + 2 flebdbAe] = 0 , 

so that (2.58) simplifies to 

Note that the right-hand side of this equation describes the infinitesimal rotation of 
the field around the ith axis [compare with Eq. (2 .55)] ,  showing that the angular 
momentum operator R is indeed the generator of rotations for the field theory. 

jpin 

The spin of a particle, or a field quanta, is an intrinsic property. This suggests 
separating the total angular momentum operator into two parts: 

Ri = Q; + Ripin , 

with the spin part associated with transformation of field indices and the orbital 
part associated with transformation of the field arguments, and 

Note, however, that 

(2.60) 
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The extra term in both commutators is required to make each expression consistent 
with the Coulomb gauge. 

From the vector nature of the field we expect it to have spin one, but our 
task is to see how this comes about naturally in  the particle picture. To do this 
we will express nipin in terms of the a's and at ' s ,  using real polarization vectors 
for simplicity, 

n,n '  

The first term in the { } bracket is symmetric i n  j and k. This can 

1 

be seen by 
changing n to -n and a ts a'. Hence it is zero when contracted with E t J k .  The 
second term is clearly antisymmetric in j and k and requires Q # a'. Hence 

-#a' 

Recall that e1 x e2 = k. Hence, carrying out the sum over a,a' gives 

This is not a convenient form because it is not given in terms of number operators. 
We can express aspin in terms of number operators by introducing a new 

polarization basis referred to as the circular, or heliciry, basis. If e1 ---f 2,  e2 -+ ij, 
and k + 2 ,  then the circular polarization basis, in which the states have a definite 
spin projection along 2 ,  is defined by 

1 

1 

e+ = spin in +k-direction = -- (E' + i e2) 

E -  = spin in -&-direction = - (el - i e2) 
(2.61) Jz 

fi 
. 

Note the appearance of the minus sign in  the definition of e+;  this is a standard 
phase convention used in the construction of the spherical harmonics Y,,,, for 
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C = 1 and rn = &l from j. and 9. Then we define a*, the annihilation operators 
corresponding to these circularly polarized states, by the relation (suppress n for 
now) 

1 2 
a1 + E a2 = €+a+ + € - a _  . 

This gives 

1 
a1 = --(a+ - u - )  

a2 = --(u+ + .-) 

Jz 

Jz 

[a+, a;]  = [u - ,  a 9  = 1 

[.+ 3 .-I - [a- ,  U L ]  = 0 t -  i 

Hence 
u2a1 t - u1u2 t = -i[u+u+ t - u-a-1 t 

and, restoring n, 

The spin operator has now been expressed in terms of number operators for pho- 
tons with a definite helicity. Note that it is a vector sum of terms which point in 
the +k-direction for positive helicity and in the -k-direction for negative helicity. 

In general, the helicity of a particle is the projection of its spin along the 
direction of its motion, and if a massive particle has spin s, its helicity can take 
on any integer value between s and -s (i.e., s, s - 1, s - 2, . . . , -s). The direction 
of motion is simply one special direction in space, and a massive particle of spin 
s has 2s + 1 states which can always be expanded in terms of states having a 
definite spin projection along any chosen axis. However, Eq. (2.62) shows that 
photons do not have this property. It shows that the photon has spin 1, but that 
out of three possible states (kl or 0). only helicity states +1 and -1 can occur. 
The absence of helicity zero is due to the transverse nature of the field (Coulomb 
gauge) which is due in turn to the absence of a photon rest mass. 

The restriction of the photon helicity to its maximum and minimum possible 
values, f l ,  illustrates a property of any massless particle. In general, if a massless 
particle has spin s, it may have only two helicity states: f s .  The other possi- 
ble states are prohibited. This remarkable result is one of the consequences of 
Wigner's famous analysis of the representations of the Poincare' group (which is 
the group which results from combining the Lorentz transformations with space- 
time translations). It turns out that the representations of the Poincark group are 
characterized by both mass and spin and that the familiar 2s + 1 degeneracy as- 
sociated with the spin s representations of the S U ( 2 )  rotation group occur only 
when the mass M of the particles described by the representation is non-zero. If 
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M = 0, the spin representations are only two dimensional, explaining why there 
are only two states with spin projections f s  . For more information see Ryder 
(1985) or Wigner's original paper [Wi 391. 

PROBLEMS 

2.1 Prove that 

What is the significance of this result? 

2.2 (a) Compute the following matrix element: 

where 
I t  1 1 n , o ~ 1 n ~ , a ~ )  = - f i a n , a 4 , Q !  10) 

is a two-photon state. 

(b) In what physical process might this matrix element play a role? 

2.3 (a) Compute the following matrix element: 

where 

is the state of m k z  photons with momentum kz and polarization a2. 

(b) Discuss the physical significance of your result. 

Eq. (2.60). 
U ~ , ~ U , , ~ , ~ / ,  and also show that 

2.4 The orbital part of the angular momentum operator Cll, was defined in 
Prove that it contains no terms of the form a~,,u~,,, ,  or 

where I l k )  is the state of one photon with momentum k and polarization a. 
What is the significance of this result? 



CHAPTER 3 

INTERACTION OF 
RADIATION WITH MATTER 

In this chapter, the Lagrangian obtained in the last chapter is used to show how 
atomic decay is explained by field theory. Then the famous Lamb shift is calculated 
and discussed. The Lamb shift is the splitting between atomic levels with the same 
total angular momentum but different orbital angular momentum and cannot be 
explained without the use of field theory. The largest such splitting is between 
the 2S1/2 and 2P112 levels and is a noticeable feature of the hydrogen atom 
spectrum. Finally, we calculate the photodisintegration of the deuteron, one of 
the first examples of the conversion of energy to mass. To set the stage for these 
calculations, the chapter begins with a discussion of how to determine the time 
evolution operator in a case when the Hamiltonian depends on time. 

3.1 TIME EVOLUTION AND THE S-MATRIX 

Since the interaction Hamiltonian is, in general, time-dependent, we will calculate 
the interaction between nonrelativistic systems and the quantized EM radiation 
field using time-dependent perturbation theory.' For definiteness, the nonrelativis- 
tic system will be taken to be a heavy atomic nucleus with charge 2 at rest at the 
origin and a single electron of mass m with a negative point charge located at re 
(other systems will be discussed in Sec. 3.5). The charge distribution for these 
two particles, in the language of Eq. (2.27), is therefore 

pe(lre - rl) = -eb3(re - r )  

P,(Irl) = Zeb3b-) 3 

and the only particle coordinates we need to consider are those of the electron. 
The Hamiltonian given in Eq. (2.31) can therefore be broken up into three parts: 

H ' = H A + H E M + H ~  , (3.1) 

*The particles in this chapter are treated nonrelativistically, but the derivation of the time evolution 
operator is completely general, and the results we obtain here will be applied, in Chapter 9. to relativistic 
systems. 
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where 

H A = - - -  P2 Z Q  
2m re  

where Q = e2/4x is the fine structure constant. The first two terms, H A  + H E M ,  
will be considered the unperturbed Hamiltonian, with HI the perturbation. Note 
that we have included the Coulomb interaction term [the third term in Eq. (2.31)] in 
H A  because we intend to develop the perturbation theory in terms of atomic wave 
functions, which include the (nonrelativistic) Coulomb interaction to all orders 
(exactly). We have omitted the Coulomb self-energies of the atomic nucleus and 
the electron; for point particles these are infinite constants which may be subtracted 
by a convenient definition of the energy [as discussed following Eq. (2.31)]. The 
interaction term H i  is the expansion of the familiar (p - eA)2 factor and includes 
a term which is first order in the electron charge e and linear in A and a second 
order term proportional to A 2 .  

First, consider the case when the interaction term is zero. Then the E M  
field coordinates, which are the vector potential operators A ,  are contained only 
in HEM, and the electron coordinates, r,  are contained only in H A ,  which is the 
usual Schrodinger Hamiltonian. We found the quantum mechanical eigenstates for 
the free E M  field in Chapter 2; the solutions are a Fock space of photon states 
.vhich are time-independent. The eigenstates of H A  are also known from previous 
studies of nonrelativistic quantum mechanics; the bound states of hydrogen-like 
atoms can be described by wave functions 

where a labels the quantum numbers of the bound state. These states evolve in 
time by a phase factor only, in the sense that 

This expression is similar to Eq. (1.31) with the choice t o  = 0. [Any time t o  
could be chosen, but this choice corresponds to the usual phase convention in 
which atomic states are real when t = 0.1 

In Chapters 1 and 2 we used the Heisenberg representation for the fields, while 
the atomic wave functions are usually given in the Schrodinger representation. It 
is more convenient to choose a common representation for all fields and operators, 
and in the remainder of this book we will use the interaction representation. In 
this representation the time dependence of the free, non-interacting Hamiltonian 
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is in the operators, and under the influence of the free Hamiltonian, the states 
will not evolve in time. However, under the full Hamiltonian, which includes 
an interaction term, the states will evolve in time, and the principal goal of this 
section is to calculate this evolution. But before we proceed with this calculation, 
we must give the electron operators the time dependence associated with the free 
Hamiltonian. This means that, instead of using H’ given above, we will use 

H ( t )  = u;’(t)H’(t)UA(t) . (3.4) 

Since H A  commutes with itself and the EM field operators A, H A  and H E M  are 
unaffected by this transformation, but Hi becomes HI, where 

I 

with UA( t )  defined in Eq. (3.3). 
.5) 

The solutions to the free Hamiltonian HO = H A  + H E M  are just direct 
products of atomic wave functions and photon states, which we will write 

= $Cl(re)ln) 1 (3.6) 

where a labels the atomic states and In) the photon Fock states as described (for 
the string) in Eq. (1.20). The scalar product of the atomic states requires an 
ntegration over the coordinate re ,  

The states lain) are a complete set and are stationary under the unperturbed 
Hamiltonian Ha, which is independent of time. When the interaction H I  is turned 
on, the states are no longer stationary. The question we ask is: “How do these 
states evolve in time?’ In practice, this may mean “How do excited states la, 0) 
decay into other states Ib, n) where n photons are emitted?’ 

To answer this question, we must find the time translation operator for the 
full Hamiltonian ( 3 . 3 ,  which will be written 

H ( t )  = Ho + H r ( t )  . (3.7) 

This Hamiltonian depends on time. We assume that H l ( t )  is switched on at time 
t = to so that 

We found the time translation operator for a Hamiltonian which is independent of 
time in Sec. 1.8, and we therefore know Uo(t, to)  corresponding to Ho (it is just 

H ( t )  = HO if t < to . (3.8) 
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Utotai(t, t o )  = Uo(t,to)Ur(t, t o )  . 

the product of UA and a similar expression for the field). The total time translation 
operator will be defined to be 

(3.9) 

It is therefore sufficient to find an equation for UI. Since HI need not commute 
with Ho, and since it depends on t, the form of UI depends on the definition 
(3.9). Note that our definition differs in important ways from that given in, for 
example, Fetter and Walecka (1971). From the definition (3.9) the interaction time 
translation operator is unitary, but note that U~(t~,tz)U~(tz,t~) # Ur(t1, t3) [see 
Rob. 3.51. 

Now consider any physical observable represented by the operator O(t). 
Under the full time translation operator it evolves according to 

Under the free, noninteracting Hamiltonian the same observable evolves according 
to 

(3.11) 

Note that the free observable Oo(t) is not equal to the interacting observable 
O(t) because the free time translation operator UO is not equal to the full time 
translation operator Utotal. This is because when t > t o ,  the time at which the 
interaction is turned on, UI # 1. However, because of our definition (3.9), there 
is a simple connection between these two quantities: 

Oo(t) = U,-l(t, to)O(to)Uo(t, t o )  

Hence the connection between the free observable and the interacting observable 
is 

UI(t, to)o(t)Uyl(t, t o )  = Oo(t) 3 

and the operator UI converts free observables into interacting 
vice versa. 

We can find the operator UI from the relations 

a 
at 
a 

[ H ( t ) ,  O(t)] = 4-O( t )  

[Hog Oo(t)] = -iGoo(t) , 

(3.12) 

observables, and 

(3.13) 



3.1 TIME EVOLUTION AND THE S-MATRIX 61 

which are the infinitesimal equivalents of Eqs. (3.10) and (3.11). Hence 

a a [Ho, Oo(t)] = -Z-Oo(t) = 4- [UI O(t)  u;'] at at 

L J 

= -i [ %v;lOo(t) + iuI [H( t ) ,  ~ ( t ) ]  u;' - Oo(t) X U ; ~ ]  dUI , 
(3.14) 

where the last term was simplified using Eq. (1.34). However, H is a function of 
the fields 4 (a particular subset of the physical observables O), 

where the square brackets [ ] will be used whenever we wish to express H as 
a function of field quantities and round brackets ( ) are used to express H as a 
function o f t .  Since H can be expanded in powers of 4, 

Hence, Eq. (3.14) becomes 

. dUr 

or 

(3.18) 

This is a remarkable equation. Because the HI  in this equation is a function 
of the free fields q50, the equation allows us to determine the interaction time 
translation operator entirely in terms of the free fields. Since 00 is any operator 
in a complete set, and since any operator which commutes with all operators in a 
complete set must be a multiple of the identity (Schur's Lemma), this means that, 
just as in Eq. (1.33, 

(3.19) dUi 
H I [ ~ o ]  = i-Uyl dt + Eo(t) , 

where EO is a complex number which can depend on time. Hence we obtain an 
equation for U I ,  
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This can be written as an integral equation 

which builds in the initial condition U ~ ( t o ,  t o )  = 1. This is a very beautiful result. 
It gives UI in terms of fi, only, and H ,  is a function of the free fields & ( t ) ,  
which are known. 

Now we use perturbation theory to solve Eq. (3.20). If H I  is small, we may 
solve the equation by iteration: 

Note that fi,(tl) does not necessarily commute with fir(t2); the order of‘terms 
in the double integral is important, and the later time stands to the left. If we 
define the time-ordered product 

T ( H ,  ( t ) fi, (t2 )) = f i I  (tl ) fi, ( t2  )e(t  - t2 ) + H I  (t2 fi, (tl t2  - t , (3.22) 

where O(z) = 1 if z > 0 and is zero if z is negative, then the double integral may 
be “symmetrized,” 

as shown in Fig. 3.1. Hence, 

(-i)? fi,(t1)fi,(t2)) +. . . . 
(3.24) 

Since there are n! time orderings for a time-ordered product of n terms, the 
expansion looks like an exponential and may be formally written 

However, because each of the terms in  the power series expansion (3.24) of the 
exponential is time ordered, the terms cannot actually be summed up into a closed 
form, and (3.25) should be regarded only as a shorthand for the original infinite 
sum (3.24). 
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Fig. 3.1 The shaded areas in the two left-hand figures are the regions t 2  < t i  and t i  < t 2 .  and 
the integrals over each of these areas are equal, as shown in Eq. (3.22). Adding the two together gives 
the integral over the total area (shown in the right-hand figure). 

The S-Matrix 

The time evolution operator gives us the tool necessary to describe scattering and 
atomic decay. If there are no interactions, the states la) are eigenstates of the 
Hamiltonian, and only their phase will change with time. Under the interaction, 
?n initial state la) will evolve, over time, into a mixture of final states la). In the 
interaction picture, where the free states do not depend on time, this is expressed 
in terms of the time translation operator: 

U t O t d ( T / 2 ,  -T/2) l a )  = N ( T )  sflQ(T/2, -T/2) Uo(T/2 ,  -T/2) I@) ‘ 
0 

(3.26) 
In words, this equation says that the state which begins as la) at an ini- 
tial time -T/2 evolves into the state I@) at the time T / 2  with probability 
IN(T) SpQ(T/2, -T/2)I2. The operator Uo has been added to the RHS of the 
equation in order to insure that the “trivial” time-dependent phase factors arising 
from the time evolution of the unperturbed states will not be included in the ex- 
pansion coefficients S(T/2,  -T/2),  and N ( T )  is a normalization constant to be 
specified shortly. If the time interval is infinite, described by letting T + 00, the 
expansion coefficients S(T/2 ,  -T/2) -, S are referred to as the S-matrix, and 
calculation of these matrix elements is a central problem in quantum mechanics. 

Using Eq. (3.9) and the orthogonality of the states, the S-matrix elements 
become 

(3.27) 
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The 5’-matrix will be defined by choosing N(m) = (olU~(00, -oo) lO) ,  so that 

(3.28) 

where (Y and ,L3 are non-interacting states of HO and 10) is the ground state. In 
nonrelativistic atomic theory, this state is a direct product of the ground state wave 
function of the atom and the photon vacuum (Fock state with no photons). 

There are important reasons why we choose to normalize S by dividing by 
(OlU,(m, -m)JO). First, we show that this number must have unit modulus: 

( o I u I I o )  = eic  , (3.29) 

where c is a c-number. To prove this use the facts that U is unitary (which is a 
consequence of the conservation of probability) and that the ground state is stable 
(otherwise it would not be the ground state). Stability of the ground state implies 
that 

(PlUrlo) = 0 if0 # 0 , (3.30) 

where we assume that there is only one vacuum state. Hence, from U!U, = 1, i t  
follows that 

This proves the result. 
Normalizing the S-matrix elements by this phase factor ensures that they are 

independent of any overall c-number phases. For example, if a c-number is added 
to H I ,  then the time translation operator is changed to 

- - e-+to)u,(t, t o )  , (3.32) 

and this phase becomes infinite as t - t o  -+ 00. But this multiplicative factor can- 
cels in Sfla, since it occurs both in the numerator and in the denominator. Thus 
this cancellation is very useful, since it works even for c’s which are infinite. An 
infinite c-number, which might occur order-by-order in U and which would other- 
wise disturb our concentration, is seen to be irrelevant since it exponentiates and 
cancels from S, and we may therefore ignore c-number infinities when calculating 
S. In the context of the time evolution of states, this provides the justification for 
dropping the electron and nucleus Coulomb self-energies, as discussed in Sec. 2.3. 
In addition, we now can justify dropping the additional &(t)  which arose in the 
derivation of Eq. (3.20) and use HI instead of H I .  
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3.2 DECAY RATES AND CROSS SECTIONS 

Experimentally, the dynamics of physical systems are studied by preparing an 
initial state and then following its-time evolution in the laboratory. In the broadest 
terms, it is practical to prepare only two types of initial states: those consisting of 
a single particle (or a bound state which behaves like a single particle) and those 
consisting of a beam of two particles (or two bound states) directed toward each 
other so that a collision is possible. The other logical possibilities, which include 
the direction of three or more beams at each other so as to produce a three or more 
body collision, are impractical, except in the most exceptional cases. Hence, our 
experimental studies are more or less limited to the following types of reactions: 

one particle ==+ many particles 

two particles =+ many particles . 

In the first instance, if the single particle remains a single particle, then we may 
measure its mass (or. in some cases, the frequency with which it oscillates into 
another single particle), while if it decays into two or more particles, we can study 
the decay rate or, when decay into two or more channels occurs, the brunching 
fraction. In the second case, we measure the cross section. Hence, decay rates and 
cross sections are very important; they are among the very few physical quantities 
which can be measured. We now turn to a discussion of how decay rates and 
cross sections are calculated from the S-matrix. 

Decay Rates 
The differential decay rate AWo,(T) will be defined to be the probability that 
a state a will decay into state p in the time interval [T/2, -T/2] divided by the 
total time T (hence a rate). Formally 

Under most experimental circumstances, when a decaying system is isolated from 
the apparatus, the measurement is made over a time interval long compared to the 
internal time scale of the system, and we may therefore take the limit as T -+ 00. 

This limiting rate is denoted AW,,, 

(3.34) 

Later, we will see that our calculations of the Spa(T/2, -T/2) can always be 
expressed in the form 

P- 1 
Spcl(T/2, -T/2)  = -i27rd1(T) (&) foa  ’ (3.35) 
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where the reduced matrix element fpa is independent of T and L3 is the volume 
of the box in which the states are normalized, p is the number of particles in the 
final state (counting the heavy final atomic state as one “particle”), and 

where A E  = IEQ - Epl. Note that 

T+a, lim d l ( T )  = 6 ( E ,  - E ~ )  . (3.37) 

[ Proof: As T -+ 00, d l ( T )  oscillates rapidly around zero unless A E  = 0, and 
the integral of dl (T)  over A E  is unity. ] Hence the S-matrix (for decays) can be 
written 

which shows that energy is conserved for all decay processes which are allowed 
to take place over a long time interval. 

We now use these results to reduce (3.34) to a convenient form. Returning 
to (3.35), squaring and dividing by T give 

Now introduce d z ( T ) :  

(3.39) 

(3.40) 

and observe that 
lim d z ( T )  = 2n 6 (EQ - Ep) . (3.41) 

[ Proof When T --t 00, d z ( T )  is zero unless A E  = 0, and the integral of d z ( T )  
over A E  is 2n. ] Hence the differential decay rate can be written in the following 
convenient form: 

T-a, 

I 1 
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# particles scattered into solid angle AQ/sec 1 da= 
(# particles incidentkec) (# scattering centerdarea) ’ 

The formula for the total decay rate, sometimes referred to as the Fermi 
golden rule, is found by summing (integrating) AWoa over all final states which 
are detected experimentally. In this formalism where the particles are treated 
nonrelativistically, the final atomic state is fixed in space, and we sum over all 
momenta of the light particles produced in the decay (photons in this example), 
so the total decay rate is 

(3.46) 

where, in the last step, we took the limit L -+ 00, referred to as the continuum limit 
because the spacing between levels Ak = 2 r / L  -+ 0, and for each momentum 
variable, 

The 6-function insures that energy is conserved in the decay, and the final result 
is proportional to a density of final states times lfpaI2. We will develop these 
details in applications (below). 

If we had worked directly with the S-matrix (3.38). we would encounter the 
square of a 6-function in the computation of the decay rate. A review of our 
r’:rivation, which was carried out first for a finite time interval and then followed 
oy taking the limit T -+ 00, shows that the final result (3.42) could be obtained 
directly from the S-matrix by using the substitution 

This formula, which is a shorthand for the steps we followed, is very convenient 
and will be used frequently in the subsequent sections. 

Cross Section 

To treat photon scattering from atoms we will need to calculate the differential 
cross section. This is defined experimentally as 
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target 

solidangle All 

Fig. 3.2 
the scattering angle 0. 

Drawing of an idealized scattering process showing the differential solid angle An  and 

where the quantities are defined with the help of Fig. 3.2. Note that the cross 
section has the units of an area. In most experiments, the target is larger than the 
beam, as illustrated in Fig. 3.2, so that the number of scattering centers in the path 
of the beam per unit area is 

p i  N , = - =  
mC mass of each scatterer 

(3.47) 
target density(p) x target length(l) 

If the particles in the beam have charge eo, then the number of beam particles 
incident per second can be determined from the beam current 

j n o = - ,  
e0 

(3.48) 

where j is the beam current. For photon beams, the quantity no is determined 
indirectly from an analysis of how the beam is produced. 

Theoretically, we evaluate the cross section assuming one scattering cen- 
ter, and a number of particles incident per second determined by the velocity v 
and a density derivable from one particle in volume L3 (consistent with the box 
normalization introduced in Chapter 2). Hence 

ptA 1 1 
‘ - ( m . ) A  A 

N -  - - = -  

c__ 
=1 

no=(+- 1 Avt 9 

(3.49) 

where A is the area of the beam and Avt is therefore the volume swept out by 
the beam in time t (see Fig. 3.3). Scattering differs from a decay in that there 
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So, = -i27r6 (E ,  - Eo) 

Fig. 3.3 Drawing illustrating thc calcu- . A  

Scattering, (3.50) 

- V t  - lation of no. 

is always an additional incoming plane wave in the initial state, and hence for 
scattering the reduced matrix element fpu is defined 

where p is again the number of particles in the final state. The extra factor of 
L - 3 / 2  in this equation [compared to Eq. (3.38)] is the normalization factor for the 
incoming plane wave. The rate at which the scattering takes place is the transition 
probability divided by the time interval (T)  and is equal to 

P 

-- Is’a12 T - 27r 6 ( E ,  - Ep) ($) Ifoa12 1 

where the convenient substitution (3.45) has been used. Combining all of these 
factors gives the following result for the differential cross section: 

P- 1 
ISPa12 

T 1 
Auoa = c 

(-&Au) (i) PEAn 

(3.51) 
where the sum is over all final states P which scatter into AR and u is sometimes 
called theflwrfucfor. In the continuum limit ( L  + M) defined above, the cross 
section is 

3.3 ATOMIC DECAY 

We are now ready to calculate the electromagnetic decay of an atom! The calcu- 
lation is so simple, it’s almost an anticlimax. 
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If the initial state a and the final state p are not identical, which is always 
the case for a decay, (Pllla) = 0, and to first order in perturbation theory the 
S-matrix element is 

(3.53) 

where the superscript (1) reminds us that this is the first order expression only 
and we have assumed that (O~V(cq-oo)~O) = 1, which is usually true to first 
order. The interaction Hamiltonian HI was given in Eq. (3.5). and the states were 
defined in Eq. (3.6). For one-photon decay of an initial atomic state a into a final 
atomic state b and a photon with energy wn and polarization A, the states are 

where Ilnx) = aAxlO) is the one-photon state with frequency wn and polarization 
A. Hence 

where pe = -iVe and Ve A(re, t) = 0 were used to obtain the simplified form 
(3.55). Since the states are direct products, the matrix element (3.55) reduces 
immediately to the product of two terms, an atomic matrix element expressed as 
an integral over re and an EM matrix element: 

where Ea and Eb are the energies of the two atomic states. Now, taking the matrix 
element of the field operator between the vacuum and a one-photon state gives a 
non-zero result! This is the origin of electromagnetic decay. We get 

Only the term with n’ = n and A’ = A survives, and 
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Inserting this expression into (3.56) gives 

1 
= - i 2 ? r 6 ( E b + u n  - Ea) f b a  I 

where the decay avplitude f b a  is 

(3.59) 

The next step is to reduce f b a  and compute the decay rate. In most atomic 
decays, the energy of the emitted photon, which is equal to w, = E a  - E b ,  is 
much less than 1/R, where R is the size of the atomic system, and hence the 
maximum range of the integral over T,. In this case, the dipole approximation 

e-ik,,.re N - 1  (3.60) 

is extremely good. Introducing matrix elements of the momentum operator, 

P b a  = ' J d 3 r e  $; ( r e )  ve $ a ( T e )  7 (3.61) 

we can write the dipole approximation to the decay amplitude in the following 
reduced form: 

(3.62) 

and the differential decay rate becomes 

Summing over all final photon states to get the total a --+ b decay rate gives 

where, in the second step, we took the continuum limit (3.44). Eliminating the 
&function by integrating over the magnitude of k and using k = w gives 

(3.65) 
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f 
4 

Fig. 3.4 Orientation of the rno- 

mentum vector with respect to the 
axes defined by the photon rnornen- A - 

A 
turn and polarization states. 

This integral can be evaluated by integrating over all directions k of the 
outgoing photon. However, since the integrand is rotationally invariant, it is more 
convenient to fix k along the direction of the z-axis and integrate over all directions 
of the vector Pba.  This procedure allows us to avoid the problem of defining the 
directions of the polarization vectors c1 and c', which depend on k but can be 
fixed along i and j j  if = i. The geometry is shown in Fig. 3.4. The integral 
over the direction of P b a  becomes (the polarization vectors are now real) 

F / dfl 
1' = lPba 1' / d$ sin 8 d8 ( sin2 8 cos' $ + sin' 8 sin' 4) 

Then the total rate for the decay of the state a into 6 is 

(3.66) 

(3.67) 

Finally, the total decay rate for the state a into any atomic state b is the sum of 
the individual decay rates into all states b with Eb < E,: 

(3.68) 
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We leave the calculation here, assuming that applications of this result are familiar 
from previous studies. 

Note that quantization of the EM field has given a natural explanation for 
decay [ (lnA(A(re, t ) l O )  # 0 ] and the normalization of the decay rate is uniquely 
predicted by the theory. Also, note how energy conservation (w = E, - Eb) arises 
naturally. 

3.4 THE LAMB SHIFT 

We search for additional effect due to the quantization of the electromagnetic field. 
Imagine ourselves back in the late 1940’s. The Lamb shift has been discovered.* 
Everyone believes it is due to field quantization. Can we calculate it? H. A. 
Bethe did [Be 471, and it is said that he did it on a train, while returning from a 
conference. 

The Lamb shift was measured by W. E. Lamb and W. E. Retherford in 1947 
using microwave techniques [LR 471. It is the splitting between the 2S112 and 
2P1p states, which are degenerate to order (v/c)’ (and even exactly to all orders 
when the Dirac equation is used). The S-state is higher than the P-state by about 
1060 MHz. A diagram of the energy levels of hydrogen-like atoms is shown in 
Fig. 3.5. 

To calculate the shift in energy of a bound state, we use second order pertur- 
bation theory. The derivation of the energy shift starts from the equation 

A Ea 

where X is a parameter which keeps track of the orders of perturbation theory but 
is eventually set to X = 1. The derivation of the formula for the energy shift in 
the general case is identical to that from ordinary nonrelativistic, non-degenerate, 
bound state perturbation theory, so we will not repeat the steps here. We obtain 
the usual result, valid to second order: 

(3.70) 

The task is to evaluate AE, to second order, i.e., to order e2. 
First, note that (alH,la) = 0, because the only such term which might be 

non-zero, the A’ term in H I ,  is normal ordered. Hence its vacuum expectation 
value is zero, and 

(a ,  0 1 : A ’ ( ~ , ,  t ) :  ( a ,  0) = 0 . (3.71) 

Thus the entire contribution comes from the sum in (3.70). 

‘For a review of the early experiments see [La 511. 
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f hyperfine splitting - 1420 MHz 

Fig. 3.5 
,hift is of the same order as the hyperfine splitting and cannot be understood without field theory. 

Energy level diagram for a hydrogen-like atom. The splittings are nor to scale. The Lamb 

However, if la) = la, 0) is a pure atomic state (with no photons present), the 
only states which can contribute to the sum p are atomic states with one photon 
present. [In this section we will represent these one-photon states by I l k ) ,  where 
Ic is the momentum and the polarization X will be suppressed for now.] These are 
the only states which contribute to the sum because only for these states is 

Furthermore, we have already evaluated these matrix elements. They are just the 
first order matrix elements of H I  evaluated in Sec. 3.3. In terms of f introduced 
in Eqs. (3.35) and (3.38), 

(3.72) 

where 10) = 16, l k )  is a direct product of an atomic state 6 and a one-photon 
state with momentum k. In this section we denote f by fba to emphasize that it 
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depends on atomic states a and b and is (nearly) independent of the photon states. 
Hence AE,  reduces to 

(3.73) 

Note that a = b is included in the sum over b. Even when a = b, I/?) # lo), 
because ID) has one photon and lo) does not. 

The low energy contributions to the sum (3.73) can be estimated using the 
dipole approximation for fb,, Eq. (3.60). We obtain 

The term in brackets looks like the transition rate, except that it is not on the 
“energy shell” defined by w = E, - Eb. Introducing a “virtual” transition rate, 

where Wba(E, - Eb) = Wba, permits us to write the energy shift in the following 
convenient form: 

I I 

The integral has a singularity at w = E, - Eb, which is defined using the 
“it prescription.” With this prescription, the energy denominator E, - Eb - w is 
replaced by E, - Eb - w + zc, where the limit t -+ 0 is understood. The sign of i t  
is  determined by causality. To see this, note that the denominator can be written 

- Z T ~ ( E ,  - Eb - w )  (3.76) 
1 =IP 1 

E, - Eb -id + i f  E,  - - w  
where IP is the principal value integral. Hence the energy shift is now complex, 
with 

dw - 1 
W b a ( W )  - i  2 w b o  =‘?”I 27T E, - Eb - b 

Eb E a  

= ReAE, + i ImAE,  . (3.77) 
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Hence, choosing +ie gives AE, a negative imaginary part, which equals 
total decay rate of the state u, 
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of the 

ImAE, = -iWP,,,, . (3.78) 

However, this is just what we should expect from the energy-time evolution factor 

+,(t)  = e-'Eat+,(0) 
(3.79) 

- - e- i (Ez+ReAEa) t  e - t w ~  t +,(o) , 

(3.80) 

corresponding to exponential decay of the state a with a half-life equal to the 
reciprocal of the total decay rate 

(3.81) 

The +ie prescription therefore gives a decay in the probability l@,(t>l2. If we 
had chosen a -ie prescription, we would have obtained an exponentially growing 
probability, contrary to causality. 

The imaginary part of the energy shift makes the Hamiltonian appear to be 
non-Hermitian and the norm of Ijl, not conserved. However, when the entire Fock 
space is considered, it can be shown that the norm of the total system is conserved. 
A decrease in norm of Ijl, is accompanied by an increase in the norm of states 
with Eb < Ea and with one photon. In detail, the total state is 

ID) = aO$alO) + al$bllu) + ai+btllut) -k ' * *  (3.82) 

and the total norm 
luo12 + la1I2 + Ia:12 -I-*.. = 1 (3.83) 

is conserved. 
Now, the real part of AE, gives the shift in energy of the bound state, but 

it diverges. To see this, insert the expression for the decay rate, Eq. (3.67), into 
(3.77). Since bbal is independent of w, we obtain 

The integral diverges linearly, and we must introduce a high energy cutoff (upper 
limit) in order to define it. There are physical processes which we have ignored - 
one is the breakdown of the dipole approximation which is certainly unreliable for 
w 21 m - which naturally damp out the integral at high energies and help to define 
such a cutoff. But the sensitivity of the integral (3.84) to the precise choice of the 
cutoff makes the final result too sensitive to be useful for any reliable estimates. 
An even greater problem is that the result (3.84) is not physically observable. This 
leads us to the issue of mass renormalization. 
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Mass Renormalization 

We make the integral more convergent following Bethe's method (first suggested 
by Kramers) for renormalizing the mass of the bound electron. The idea is to 
calculate the observed energy shift, which must be the difference between the shift 
of a bound electron and the shift of a free electron, each of which is separately 
not observable. In the process we observe that the Lamb shift is interpretable as 
the additional shift in the mass of an electron which occurs in the vicinity of a 
strong electric field. 

electron with momentum pa is 
Repeating the steps which lead to Eq. (3.75). the energy 

where 6 and a refer to states of a free electron with momenta pb 

shift of a free 

! (3.85) 

and p a .  A free 
electron is described by a plane wave, which in box normalization is 

(3.86) 

For such a state, the dipole approximation is not reliable, but the relevant matrix 
element can be calculated exactly: 

(3.87) 

Hence the denominator becomes 

As we did in calculating (3.84), assume w << m, and consider free electron 
momenta lpal which are identical to the average momenta of electrons bound 
in the atomic state a, which means that lpal < m. Then the denominator is 
approximately -w,  and 

where the sum over b has been fixed by the 6 i o l P b + k .  
Note that AEfree has the form 

(3.89) 
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where p 2  = kal2. Hence 

and we see that C has the effect of shifting the mass of the electron by 

(3.90) 
1 m c * mobs = -- - - -  1 

2mobs 2m 1 - 2mC ' 

With the cutoff given in Eq. (3.88), C = 2 a / ( 3 n m )  and the size of the correction 
is small, 

(3 .91)  
4a 

2mC = - N 0.005 . 
3n 

Of course, without the cutoff the correction diverges linearly. 
Now, the observed energy shyt for the atom is the difference between the 

energy shift of a bound electron and that of a free electron with the same average 
momentum p a  and is therefore given by 

where IpaI2 has been replaced by (uIp21u). We can cast the last term in a more 
convenient form using the completeness of atomic states 

(3.93) 

Then the two terms can be combined to yield 

This expression now diverges logarithmically, which makes the result far less 
sensitive to the cutoff (which we still need). If x > 0, the principal value is 

E m a x  dw dw E m a x  X - - c  

= - log(z - w) 1;- -log@ - z) 1;;:. 
= - log ( 5 )  - log ( Ernax - x) 2 - log (*) 

X E 
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If z < 0 we have directly 

Hence, 

The log varies slowly with E, - E b ,  so it can be factored out of the sum, replacing 
Ea - Eb by a mean value 

The rapidly varying sum can be done quickly using a favorite trick from atomic 
physics: 

Hence the “final” result is 

where a = e2/4n S 1/137 is the fine structure constant. 

Discussion 

We draw the following conclusions from Eq. (3.99): 

0 Only for S-states is lLa(0) # 0. Hence the shift is largest for S-states. 
There is a much smaller shift for other states with L # 0 arising from small 
terms which we have not calculated. 

0 The shift is positive because Emax > \E, - 
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Fig. 3.6 An energy level diagram for 
hydrogen showing how far into the contin- 
uum the mean value (3.100) lies. 

I S  

To evaluate Eq. (3.99) it is reasonable to take Em,, = m. However, a good 
estimate of (IE, - Ebl) is hard to obtain, and the reader is referred to Bethe and 
Salpeter (1957) for a good discussion. This quantity can be estimated by carrying 
out the sum over many atomic states, and for the 25' state one obtains 

a2m 
2 

(IE, - Ebl)zs 2 16.640Ry = 16.640- = 226.3 eV . (3.100) 

'his result, illustrated in  Fig. 3.6, shows that statesjiur inro the continuum region 
are important. The typical excited state contributing to the sum has an excitation 
energy of N 200 eV. With these numbers, 

and for hydrogen (2 = l) ,  assuming the 2P1l2 shift is negligible, 

where a0 = l / a m  is the Bohr radius. Hence the transition frequency between 
the 2S112 and 2Pl12 states is 

0.911 x 10-27 (3 1010)~  
- - (a5%) 2 1051MHz . (3.102) 1.054 x 
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This, of course, is only a rough estimate. There are numerous other terms, and 
the result can be calculated without a cutoff once the theory is fully renormalized. 

The comparison of precise calculations of the Lamb shift (and many other 
energy shifts) with precise measurements continues to be an active area of research 
and is a good way to test the validity of the quantum theory of radiation (which 
becomes Quantum Electrodynamics when we also treat the particles as relativistic 
quantum fields; see Chapter 10). Recent theoretical and experimental results for 
the Lamb shift in hydrogen are*: 

Theory: 1057857( 14) kHz [KS 841 

Experiment: 1057845(9) kHz [LP 861 
1057851 (2) kHz [PS 831 

where the numbers in parentheses are an estimate of the errors. So far none of 
these tests have led to any clear failures; QED is a remarkably successful theory. 

3.5 DEUTERON P H OTO D IS I N T EG RAT I0 N 

As a final application of the quantum theory of radiation, consider the photodisin- 
tegration of the deuteron. The deuteron is the only two-body bound system of two 
nucleons (the neutron and proton) and is therefore the simplest nuclear system. 
Its binding energy is 2.23 MeV, a very large number when compared with atomic 
binding energies but quite small on the nuclear scale; it is only about 2% of the 
mass of a nucleon. Deuteron photodisintegration can occur when a photon (y) 
. i t h  an energy greater than 2.23 MeV strikes a deuteron (d )  and breaks it into its 
constituent nucleons: 

y + d - + p + n ,  

where p is the proton with momentum p p  and n the neutron with momentum 
pn. The observation of this reaction in 1935 was an early confirmation of the 
conversion of “energy” to “mass” as predicted by relativity [CG 351. 

To calculate this reaction, we use the Hamiltonian (3.5). with the proton 
replacing the electron as the charged particle which interacts with the electro- 
magnetic field (the neutron has a magnetic moment which can also interact with 
the EM field, but this is a small contribution which can be ignored in a first 
calculation). Then the interaction Hamiltonian is 

where mp is the proton mass and 

(3.103) 

(3.104) 

‘For a recent summary see [BG 871 
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with HN the Hamiltonian of the neutron-proton system. The scattering matrix S 
and reduced amplitude f ,  in lowest order perturbation theory, are 

1 S f ,  = -i2n6 ( E f  - E l )  L3fJz 
00 (3.105) 

= -21,. ( f I H , ( t ) I i )  , 

where Eq. (3.50) has been used to relate the reduced amplitude f to S, li) is the 
initial state consisting of a deuteron and a photon, and I f )  is the final free neutron 
and proton. 

The nuclear system consists of two particles, the proton at rp  and the neutron 
at rn.  The center of mass ( C M )  and relative coordinates for these two particles 
are R = ( r p  + r n ) / 2  and r = r,, - r,. If the initial deuteron is at rest, its wave 
function is 

(3.106) 

where 4 ( ~ )  is the internal wave function of the deuteron and the factor L - 3 / 2  is 
the wave function for the center of mass of the deuteron (obtained from a plane 
wave with box normalization and zero total momentum). We will discuss the 
internal wave function shortly. The wave function for the final neutron-proton 
pair will be approximated by a plane wave 

1 
$Jd(T, R )  = L3/2 4 ( T )  1 

1 (3.107) I @  r+P .R)  
1Dnp(T, R)  = - e 

L3 

Jhere P = p p  + p ,  is the total momentum and p = ( p p  -p , ) /2  is the relative 
momentum of the outgoing pair. In this notation, the incoming and outgoing states 
are therefore 

1 
L 3 / 2  12) = - 4 ( r )  a : , m  

I f )  = 3 

+ 
(3.108) one lncornlng 

photon 

10) 1 

e i @ . r + P R )  

where k is the momentum of the incoming photon. Hence 
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where Tp and T, are the kinetic energies of the outgoing proton and neutron, 
E = mp + m, - md is the binding energy of the deuteron, and w is the energy 
of the incoming photon. Note that the field is evaluated at the proton point 
rp = R + $1.. Integrating over R gives P = k, and the reduced amplitude f can 
be extracted, 

(3.110) 

where the term f& .k is zero because the photon polarization vectors are transverse, 
and 4 is the momentum space wave function. Now, the energy conservation 
relation will give 

m ’ 4 m  m ’ 4 m  m 

a p 2  = m ( w - ~ )  , (3.111) 

where we neglect the differences in the proton and neutron masses, so that mp Z 
m, S m. The neglect of k2  compared t o p 2  is justified by the last step which 
rives p 2  2 mw, while k2 = u2 is much smaller. Hence p = lpl >> Ik(, and we 
can safely replace p + ik by p in the argument of the momentum space wave 
function of the deuteron (this is just the dipole approximation). The f amplitude 
therefore reduces to 

and the cross section is 

where the flux factor is unity because = c = 1. Next, assuming the momentum 
of the photon is in the %direction, we average over initial polarization states using 
Fig. 3.4, which gives 

(3.114) 
1 2 1  

- C 2 x  2 
.pI = -p2 sin2 6 

and hence the unpolarized cross section reduces to 
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where we have expressed the answer in terms of the dimensionless quantity y = 

To complete the calculation, we must find the wave function of the deuteron. 
One of the important features of photodisintegration near threshold (the threshold 
energy is the energy at which the process just becomes physical, which in this 
case is w = E )  is that it is insensitive to the details of the deuteron wave function, 
and hence a reliable prediction is possible without knowing much about the short 
range structure of the nuclear force. 

To see why this is so, we estimate the wave function using the Hulrhin 
model for the nuclear potential. This is a crude model which nevertheless is very 
useful for such estimates. The model assumes that the nuclear force at long range 
(i.e., for large internucleon separation r )  is dominated by the exchange of a single 
pion (a good approximation) and that spin dependence of the interaction can be 
neglected (which is not too bad an approximation for interactions which depend 
only on the charge but overlooks many features of the deuteron, such as the D 
state).* Under these assumptions the potential is a Yukawa potential with a range 
of the pion mass (denoted by p) .  The Hulthin model approximates this potential 

W f E .  

(3.116) 

This approximation captures the correct behavior of the potential at both long and 
short range and permits us to solve the Schrodinger equation for S states exactly. 
The equation for the relative coordinate is 

Substituting a wave function of the form 

into this equation gives a solution, provided 

(3.117) 

(3.118) 

The momentum space wave function is the Fourier transform [worked out in 
Eq. (4.52)], and hence 

*The one-pion exchange force will be derived from field theory in Sec. 9.9. 
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Note that the second term is very small. For example, if p = 0, the two terms are 
in the ratio of 

2.2 x 936 
2 0.061 2i 6% 

62 
-cv 
( p  + 6)' - (139 + ,./m)2 

Therefore a very good estimate is obtained by using the asymptotic wave function 
only (in which case the answer does not depend on the use of the HulthCn model). 
The normalization constant for the asymptotic wave function is N = m, and 
the square of the asymptotic wave function, evaluated at p 2  = m ( w  - E ) ,  is then 

Substituting this into (3.115) gives finally 

(3.120) 

We emphasize that this result only includes the contributions from the proton 
charge (the electric dipole interaction) and that only the contributions from the 
asymptotic deuteron wave function were retained. It might appear that corrections 
from the interior part of the deuteron wave function would be uncertain and 
hard to estimate, but Bethe and Longmire [BL 501 showed that these additional 
contributions can be expressed in terms of the effective range for the scattering of 
two nucleons in the 3S1 channel, a quantity which is readily measured. There are 
also additional contributions from the magnetic interactions of the nucleons which 
contribute an angular independent background term which dominates at energies 
within 0.1-0.2 MeV of the threshold but contribute only a few percent to the cross 
section at higher energies. 

Because of the simplicity of this process and its insensitivity to the details of 
the nuclear force, deuteron photodisintegration has been of considerable interest 
for many years. Recent precise measurements of the angular distribution at low 
energies (see, for example, [De 851) show the large sin' 8 dependence expected 
and are in good agreement with theory. 

PROBLEMS 

3.1 The ground state wave function of the hydrogen atom is 

$lo = Noe-'/"O , 

where a0 is the Bohr radius, a0 = l /ma, and NO is a normalization constant. 
The first excited state is four-fold degenerate. Four linearly independent wave 
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functions which span the space of excited states are 

Y e - r /2ao  
Qly  = N1- 

a0 fi 

where N1 is another normalization constant, and 5, y, and z are the three 
spatial coordinates of the election and T = J x 2  + y2 + z 2 .  

(a) Derive a formula for the lifetime of the state Reduce your answer to 
an integral over the spatial coordinates x, g, z or T ,  8, 4 and constants (NO,  
N1, a. and other constants). It is not necessary to fully evaluate the integral, 
but you should reduce the triple integral to a single integral. 

(b) Is the photon which is emitted by the decay polarized? If so, what is its 
polarization (i.e., in which direction does P point)? 

(c)  What is the lifetime of the states Qlz and Qly? Are the photons emitted 
by these decays polarized? If so, in which direction? 

3.2 A nonrelativistic particle of mass m and charge e is trapped in an infinite 
one-dimensional square well described by the potential 

V ( z )  = 0 o i r i e  
V ( 2 )  = K! z < O  or e < z .  

Calculate the lifetime of the first two excited states. (Suggestion: treat the 
E M  field as one-dimensional.) 

3.3 [Taken from Sakurai (1967).] Suppose a photon of energy w is incident on 
a hydrogen atom in its ground state. The photon may be absorbed, ionizing 
the atom. This is a simple model for the photoelectric effect. 

(a) Using the formalism developed in this chapter, write the matrix element 
for the lowest order contribution to this process. (Note that the final state is 
a scattering state of an electron and a proton.) 

(b) If the energy of the incident photon is so large that the final electron- 
proton scattering state can be approximated by plane waves, show that the 
differential cross section, defined in Eq. (3.52), is 

- = 3 2 ( $ ) ( & )  du 1 sin2ecos2 4 
dR (brl aoI5 [i - vcose]4 ' 

where the spherical coordinate variables 8 and Q, are defined so that the 
incident photon momentum is along the z-axis, its polarization is along the 
x-axis, and a0 is the Bohr radius. 
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3.4 [Taken from Sakurai (1967).] The phenomenological interaction Hamiltonian 
responsible for the decay of the spin f Co hyperon (Co + A + y) located at 
r = 0 can be taken to be 

where rA2 is an operator that converts a CO-state into a A-state, leaving the 
spin unchanged, u are the Pauli matrices, which in this case connect the spin 
f spaces of the two hyperons, and K is a dimensionless constant. 

(a) Show that the angular distribution of the decay is isotropic even when 
the parent Co is polarized. 

(b) Find the mean lifetime (in seconds) for K = 1 (VIA = 1115 MeV and 
mc = 1192 MeV). 

3.5 The interaction time translation operator was defined in Eq. (3.9); rewriting 
this gives 

In the following, assume that Utotal(t, t o )  and Uo(t,  t o )  are unitary and that 
they satisfy the multiplicative property U(t1 ,  t z ) U ( t ~ ,  t 3 )  = U ( t 1 ,  t 3 ) .  

(a) Prove that UI is unitary. 

(b) Show that UI does not satisfy the multiplicative property. How would 
Ur have to be redefined in order to satisfy the multiplicative property? 

UI( t , tO)  = U,-'(t,to)utotal(t,to) . 
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CHAPTER 4 

THE KLEIN-GORDON EQUATION 

In the last chapter we brought the subject to the point where the electromag- 
netic field was quantized, and the production and annihilation of the field quanta 
(photons in that case) could be treated. The treatment of the E M  field was 
fully relativistic, even if it was not manifestly covariant (because of the Coulomb 
gauge). However, the treatment of the particles (electrons and protons) remained 
nonrelativistic, and we had no way to describe the production and annihilation 
of these particles (which must always occur in particle-antiparticle pairs because 
both electron and baryon numbers are conserved). With this chapter we begin 
to develop the tools necessary to describe “classical” particles, such as electrons, 
covariantly. The development will eventually lead to the construction of field 
theories for electrons and other classical particles (Chapter 7), with the capability 
to describe the production of particle-antiparticle pairs. Only then will the dis- 
,inction between classical particles and fields disappear, with the recognition that 
the quantum field is the single entity suitable for the description of all matter and 
energy. 

However, before we can introduce these new quantum fields we must first 
understand how to describe single particles in a covariant fashion. This is the 
subject of the next three chapters. In this chapter we begin with the simplest 
relativistic equation, the Klein-Gordon ( K G )  equation. Then we discuss the 
Dirac equation (Chapter 5 )  and applications of the Dirac equation (Chapter 6) .  

4.1 THE EQUATION 

We begin our systematic study of relativistic equations by briefly considering the 
following equation: 

Z$ll(x) = 6 Z T @ ( x )  , (4.1) 

where, as in the previous chapters, 2 represents both the time and space depen- 
dence of the wave function, so that $(z) = $ ( r ,  t )  is understood. This equation 
follows the traditional “rules” of quantum mechanics in that it can be obtained 
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from the relativistic energy relation E = d m  by the substitution 

. a  
at E +  2- 

p +  -iV . 

There is no problem in principle with the operator Eo = d v ;  this operator 
is defined by either (i) expanding any function in terms of the eigenfunctions of 
V (the momentum eigenfunctions), on which the operation Ev is easily carried 
out, or (ii) defining Ev by its power series expansion 

(4.3) 

While this series may not always converge, we may consider its analytic contin- 
uation to be the definition of the operation of Ev on any function. 

The disadvantage of Eq. (4.1) is that it is not manifestly covariant. To 
be manifestly covariant, we must know how to transform the equation not only 
in time and space, described by the infinitesimal generators H and P, but also 
under the homogeneous Lorentz group, which includes rotations, generated by 
the angular momentum operators J ,  and the boosts, generated by the operators K 
(the Lorentz group and its generators will be discussed in Sec. 5.8). While these 
transformations can sometimes be worked out for equations of the type (4. I ) ,  
many problems are encountered, and therefore this route was not the one taken 
in the original developments which led to the quantum field theory of elementary 
,articles [except that the Dirac equation can be regarded as arising from the 

linearization of the square root in (4. I ) ;  see Chapter 5 ) .  Now we know that many 
particles originally supposed to be “elementary” (such as the proton) are in fact 
complicated composite structures of valence quarks and a sea of quark-antiquark 
pairs and hence cannot be described by a single local quantum field. In the search 
for approximate methods of describing such particles, interest in equations of the 
type (4.1) has been rekindled and is an active area of current research. Such an 
approach sometimes is identified as relativistic Humiltonian dynamics and will not 
be discussed further here.’ 

The alternative route is to introduce equations which are manifestly covariant, 
and this method is soraetimes referred to as manifestly covariant dynamics. It is the 
route which is traditionally taken to relativistic field theory. A simple, manifestly 
covariant wave equation is obtained if the substitutions (4.2) are made into the 
mass energy relation E2 = m2 +p2. This gives the Klein-Gordon (KG) equation 
for a free particle 

I I 

‘For a review see [Co 891 and [KP 901. 
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where the wave operator, 0, was previously introduced in Chapter 2, Eq. (2.20). 
and m is the mass of the particle (to be confirmed below). This equation is 
manifestly covariant because the wave operator is a scalar, and if the mass m and 
the wave function $J are also scalars, the equation and the wave function have the 
same form in all reference frames. Note that Eq. (2.42) for a free massive vector 
field (i.e., with j, = 0), which we obtained in Sec. 2.5, is just a KG equation for 
each component of the field. 

This equation is not first order in the time derivative. This means that it is 
not sufficient to know the wave function at a particular time in order to determine 
it at later times; one must also know the time derivative of the wave function at 
that time. In this sense, Eq. (4.4) appears to depart from one of the basic tenets of 
quantum mechanics: that knowledge of the wave function at one time is sufficient 
to determine it at all later times. However, as we shall soon see, this is only an 
apparent problem and will lead to a reinterpretation of the wave function. Instead, 
this equation, in common with all manifestly covariant equations, has another 
problem which is more serious and will be discussed shortly. 

To introduce electromagnetic interactions into the KG equation, recall that, in 
the four-vector notation introduced in Chapter 2, the energy-momentum operator 
is 

Using minimal substitution [as encountered in Eq. (2.30)] we are led to the re- 
placement 

p p  -+ p p  - eAp minimal substitution, (4.6) 

where Ap is the four-vector potential previously introduced in Chapter 2. This 
gives 

[- ( i &  - eA, )  (i& - e A p )  + mZ] +(z) = 0 

or, expanding out the product, 

(4.7) 

where the generalized “potential” U ( x )  consists of a scalar and a vector part 

a a 
a x p  
a a 

U ( x )  = ie-Ap + i e A p -  - e2ApAI ,  

= i - V p  + i V p -  +S . 
dX, 
P 

required by 
hermicity 
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In these equations, the 8/8xp operator operates all the way to the right, so that 
in the first term it operates on both A (or V )  and @. While all the terms in (4.8) 
are scalars, the first two terms consist of a vector potential which is contracted 
with the 8, operator to make an overall scalar, while the last term is a scalar by 
itself. Note that the symmetrized form of the vector term is required in order to 
maintain the hermiticity of the interaction. In the most general case, the scalar, S, 
and vector, V p ,  parts of the potential could be independent interactions, but for 
electromagnetism they are related by 

s = -  e2ApA,  V p = e A ,  . (4.9) 

In some of the following discussion, the vector and scalar parts will be treated as 
independent interactions, and at other times we will specialize the discussion to 
electromagnetism, Eq. (4.9). 

4.2 CONSERVED NORM 

Because of the second time derivative, the conserved norm is no longer 
To find the correct norm, consider the following two expressions: 

d3r $J*$J. 

?I; (0 + r n 2 + U ) $ J a = 0  

?I, (0 + m2 + u') = o , 

$here a and b are the quantum numbers of any two solutions. Subtracting these 
two expressions gives 

where the arrow over the operators tells in which direction they operate. In 
particular, an arrow pointing to the right (+) means that the operator operates 
all the way to the right, including operating on any wave functions which may 
eventually stand on the right. Similarly, the arrow pointing to the left (t) operates 

all the way to the left. [The expressions $Jbf n& and & ~ l J l b +  are therefore 
identical.] The above expression can therefore be written as the four-divergence 
of a four-current j p ,  

+ c 

where 
H 

(4.10) 

(4.11) 
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and the double arrow is an obvious generalization of the single arrow notation: 

(4.12) 

If we integrate (4.10) over all space (i.e., over a volume L3 with periodic boundary 
conditions), the spatial divergence integrates to zero, and the volume integral of 
the time component is a constant. In general, for any vector field j p  which is 
conserved, so that apjp = &'/at + V . j = 0, and which satisfies periodic 
boundary conditions, we have 

l3 d3r j o  + l, d3r V . j  = 0 + 

d S f i . j = O +  
(4.13) 

=O l3 d3r j o  = constant . 

For the case given in Eq. (4.10), this becomes 

1 
H 1, d3r [$J; i g &  - 2V0+;$Q = constant . (4.14) 

If a = b, this is the conserved norm for the state a, and it explicitly involves 
the potential (the time compqment of the vector part). This result, unusual from 
the point of view of conventional quantum mechanics, is a general feature of 
many manifestly covariant relativistic equations (especially two-body equations). 
Before discussing this norm further, we will obtain the solutions of the free particle 
equations. 

4.3 SOLUTIONS FOR FREE PARTICLES 

The solutions of the free particle KG equation (i.e., with U = 0) can be obtained 
by separation of variables. Using box normalization with periodic boundary con- 
ditions, the solutions are 

4i*) ( r ,  t )  = N ei(kn.r 'F Ent)  1 (4.15) 

where En = d m 2  + kz is always positive and the superscript (k) refers to the 
sign of the energy in the exponential. As in the cases discussed in the previous 
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chapters, solutions with both signs occur; solutions with the superscript (+) will 
be referred to as “positive” energy solutions (because the factor of -iEnt in the 
exponential corresponds to positive energy in nonrelativistic Schrodinger theory), 
and those with superscript (-) will be referred to as “negative” energy solutions. 
The periodic boundary conditions, imposed inside of a cube of length L on each 
side, require 

(4.16) 

The norms of the positive and negative energy solutions have different sign, 

(4.17) 

where 6,, = 6nz,z6,,,mu6,~m~. Using the zeroth component of the conserved 
current to define invariant scalar products, the different solutions are orthogonal, 

(4.18) 

If we choose N = (2EnL3)- l i2 ,  then the two types of solutions, 4(+) and 4(-), 
will each be normalized and orthogonal: 

(4.19) 

The positive energy solutions 4(+) have norm +1, and the negative energy solu- 
tions 4(-) have norm -1. 

l 2  cannot be a probability density, 
and historically this was regarded as a reason for rejecting the KG equation. This 
point of view is too narrow, but the existence of negative norm solutions is an 
indication that the quantum mechanics described by such an equation departs from 
the classical rules of quantum theory. One of these rules is that the states span 
a vector space with a norm which is positive definite, and this is certainly not 
the case for the K G  equation. Later we will see that if the KG equation is used 
as the basis for a field theory (recall Prob. 1.3), then the states defined by the 
field theory will all have positive definite norm, and the negative energy states 
can be reinterpreted as positive energy states of antiparticles. Before developing 
the field theory, however, it is useful, and maybe even necessary, to study the 
properties of a quantum mechanics which is based on the use of the KG equation 
as the equation for single particle states (referred to as the first quantized form 
of the theory). This is the purpose of this chapter, and it is well to realize that 

Because negative norm solutions exist, I 
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even though the first quantized theory can be only partially successful, it is just as 
important in its own right as the study of the first quantized theory for the Dirac 
equation (which is taken up in the next chapter). The first quantized theories for 
both of these equations suffer from the same fundamental disease; they both have 
negative energy solutions which cannot be treated fully until they are reinterpreted 
as antiparticles, and this is only fully successful in the second quantized (field 
theoretic) form. 

Keeping these comments in mind, we proceed with our study. If the K G  
equation is applied to the description of a charged particle, the norm will be 
interpreted as a charge density, with positive norm states describing + charges 
and negative norm states describing - charges. The conservation of charge then 
appears as a consequence of the invariance of the norm. If the particle has no 
electric charge but has some other quantum number (a generalized charge) which 
satisfies an additive conservation law, the norm can be interpreted as the density 
of this generalized charge. In either case, the existence of two states, one carrying 
positive charge and one carrying negative charge, is assumed. 

Before we develop these ideas further, it is useful to look at a simple example 
which illustrates how the KG norm can be consistently interpreted as a charge 
density and how both particles and antiparticles are described by the equation. 

4.4 PAIR CREATION FROM A HIGH COULOMB BARRIER 

Since the norm is conserved, we might suppose that if we start out at some initial 
time t o  with a superposition of states with only positive norm, these will evolve 
'.t a later time t into a superposition of states with only positive norm, and that 
therefore in this case we could still interpret the wave function as a probability 
density. We shall show here that when interactions are present, states with negative 
norm can still appear, and hence they cannot be eliminated from consideration. 
Our discussion will also enable us to interpret the norm physically. 

Consider the reflection of positively charged mesons (7r+ mesons for exam- 
ple) from a high Coulomb barrier. The K G  equation (1.7) for this case is 

0 + m2 + 2 2 e ~ -  - e2V2  +(z) = o ( at " (4.20) 

where V is zero to the left of the barrier and a constant to the right, as shown in 
Fig. 4.1A. We seek a solution of the form e-aEt, corresponding, in region I, to a 
free particle with positive energy. We guess the solutions in regions I and I1 to 
be of the form 

$I(zl t )  = A ei (pz-Et )  + B e -a (pz+Et )  
(4.21) 

+II(z, t )  = c e i ( P z - E t )  + D e - i ( P z + E t )  . 

'Much of the material in this section is discussed in an interesting paper by Winter [Wi 591. 
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eV 
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I e V - E  

Fig. 4.1 
appearance of the "barrier" to a negatively charged particle with total energy - E  in region 11. 

(A) Regions I and I1 and the high Coulomb barrier as described in the text. (B) The 

These trial functions will solve the KC equation in the two regions if 

p = d m  P =  Jm, (4.22) 

Fnd the complete solution will later be obtained by requiring that the wave function 
and its derivative be continuous at the boundary between the two regions. We see 
that the solution in region I consists of waves moving toward the right (with the 
coefficient A) and toward the left (with coefficient B). Later we will construct 
wave packets from these functions and observe that they describe a particle (with 
positive charge) which approaches the barrier from the left, reflects, and travels 
back'to the right. If eV < E + m, the wave number P in region I1 is complex, 
and the solutions correspond to damped and growing exponentials, as expected. 
The particle cannot penetrate into that region, and the correct solution is the one 
with a purely damped exponential. However, if eV > E + m (a high barrier), 
then P is real and we have oscillating solutions in region II! Before we find all 
the coefficients, let us investigate the nature of these solutions. 

First, we compute the norm of these solutions in region 11. If D = 0, for 
example, we have (for box normalization when - L / 2  < z < L/2) 

(4.23) 

if eV > E + m (the high barrier). Hence these oscillating solutions have negative 
norm and we see that the interaction has forced us to consider such states, even 
though the solution in region I is the sum of two terms, both with positive norm. 
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To see how these solutions develop in time, we smear in E to make wave 
packets. Smearing around E = EO we have, for ordinary solutions like those in 
region I, 

where vo = po/Eo, and the envelope function is 

sinqAE A E  

f(v) = / dEeaE" = 2- . 
- A E  77 

(4.25) 

Note that these packets travel in the direction of p with the classical relativistic 
velocity v = p / E .  

The packets in region 11 behave differently, however. We have 

where 
(4.27) 

Note that this packet propagates to the Zefr; its group velocity is negative even 
though its phase velocity is positive. It travels with the classical relativistic ve- 
locity of a free particle with kinetic energy corresponding to eV - Eo. Since a ?r+ 

cannot have a positive kinetic energy in this region, the packet must be describing 
something else. If it were negatively charged, then it would see the potential 
barrier as a deep hole, and it could have positive kinetic energy. In that case it 
would have total energy 

Po - PO 
210 = 

e V - E o  - d m  - 

Etotal = (eV - E) - eV = -E , 
as shown in Fig. 4.1B. A consistent picture of a particle of mass m and charge 
-e emerges; it is a 7r- meson! 

To complete the description, we compute the coefficients for a state which is 
initially a pure ?r+ traveling to the right toward the barrier. This means that any 
A- meson must be produced by the interaction and will travel toward the right 
into region II. Hence the boundary condition is that C = 0, and it is convenient 
to choose D = 1. Then the continuity of the wave function and its derivative at 
z = 0 require 

A + B = 1  
p(A - B) = -P , 

(4.28) 
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which gives 

(4.29) 

and the solution becomes (renormalizing so A = 1) 

i ( p z - E t )  + p e - i ( p z + E t )  

p - P  
If!JI(Z,t) = e 

(4.30) 
: -- 2P e - i ( P z + E t )  

p - P  

To interpret this solution, smear in E and assume that the coefficients are slowly 
varying functions of E which can be approximated by their value at the central energy 
Eo. We then get 

(4.31) 

Using the fact that the envelope functions are non-zero only when their arguments 
are small, a moving picture of this state can be constructed as shown in Fig. 4.2. 

Note that the norm of the state is a constant of the motion. At t -+ -00, only 
the incoming packet on the left-hand side exists, and if we take its norm to be one, 
then the norm of the reflected packet (traveling to the left in region I) is 

R =  (-)2 (4.32) 

and, recalling Eq. (4.23), the norm of the "transmitted" packet traveling to the right 
in region I1 is 

(4.33) T = - ( L ) ' (  eV-Eo Eo ) - = -  uo 4POPO 

Po - Po '0 (Po - P d 2  ' 

where the ratio (eV - Eo)/Eo comes from the energy factor in (4.23) divided by 
a similar factor which appears in the norm of the states in region I (which must be 
divided out because the incoming state is normalized to unity). and the ratio uo/u0 
is the effect of the fact that the z dependence of the envelope functions is scaled by 
the velocities in the two regions (see Fig. 4.2). Note that T < 0, corresponding to 
the negative charge of the particle in region I, so that even though R > 1, 

1 = R + T  (4.34) 
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region I1 region 1 

1 I r=-2 

2.02 

2.02 

- 1.02 

- 1 .w I 

Fig. 4.2 A moving picture of the solution (4.31) for four times around t=O. For this picture we 

took E = am and eV-E = bm. where u=# and b= 9. The location and size of the wave packets are 

to scale for these parameters, and the packets include the energy factor which enters the normalization, 

as in Eq. (4.23). The normalization of the packets is written above each packet. Note that for t > 0, 

there are 2.02 units of positive charge moving to the left in region I and - 1.02 units of negative charge 

moving to the right in region 11. which add up to the original I unit of charge incident on the barrier. 

The incident packet has reflected and produced + and - charged pairs. 
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as required by the conservation of the norm (the charge). 
We interpret this result by saying that the incident pion not only scatters 

from the barrier but also stimulates the barrier to produce x + x -  pairs, and the 
x -  particles travel into the barrier, which is negative to them, while the x +  
particles produced by the scattering join the scattered x+ particles. If the norm 
is interpreted as a charge density, the interpretation is consistent and makes good 
physical sense. Energy and charge are conserved. 

4.5 TWO-COMPONENT FORM 

In order to display these two states explicitly, and to further develop our under- 
standing of the KG equation, we will now discuss how the equation can be cast 
into a “two-component” form. This will help to understand the equation and to 
study its nonrelativistic limit. 

Any second order differential equation can be transformed into two coupled 
first order differential equations. If this transformation is applied to the time 
dependence of the KG equation, we emerge with a set of coupled equations of 
the form 

(4.35) 

where 4 is a vector in a complex two-dimensional space and H is a 2 x 2  matrix. 
We gain several advantages from this reduction. First, the equation is now first 
order in the time, so that the time dependence of the two-component wave function 
is uniquely determined by its initial value, in agreement with the rules of quantum 
.iechanics. This means that the perturbation theory we developed in the preceding 

chapters, which implicitly assumed an equation which is first order in  time, can be 
used with the two-component KG equation. Finally, study of the matrix structure 
of the two-component equation is good preparation for the study of the Dirac 
equation, which has a similar matrix structure. However, the two-component KG 
equation is no longer manifestly covariant, and for this reason it will be discarded 
after this chapter is concluded. When we encounter the KG theory again in 
Chapter 7, we will use the original version presented in the preceding sections. 

The transformation to two-component form can be carried out by introducing 
1c, and d1c,/at as independent functions. However, instead of 1c, and a1c,/at, it is 
helpful to take a more symmetric linear combination. Introduce two functions d+ 
and 4- determined from 1c, and by 

*Much of the material in this section is drawn from the interesting review by Feshbach and Villars 
[FV 581. 
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where the f subscripts should not be confused with the (k) superscripts; they 
have a completely different meaning. We point out that the choice (4.36) is 
not unique; it was chosen because it is simple and gives equations with some 
features suggestive of the Dirac equation. Another choice, interesting because 
it diagonalizes the Hamiltonian in the absence of interactions, is presented in 
Prob. 4.4. 

The functions (4.36) will be defined to be the upper and lower components 
of a new wave function, 4, and will be organized into a two-component column 
vector 

@ =  (;I) 
This vector satisfies the first order differential 

(P - VI2 m + V o +  2m 
H =  

(4.37) 

equation (4.35) with 

I 2m 

-m + V o  - 
2m 2m 

(4.38) 
( p - v ) 2 .  

2r2 * [m+ ' - v ) 2 ] T 3 + ~ ~ +  2m 2m 
- - 

where r, are the Pauli matrices (given explicitly in Appendix A). 

(4.39) 

Proof: From the definition (4.36) it follows that 

1 $ = -  6 (4+ + 4-1 

i % = f i  V 0  
- (d+ - d-) + - (d+ + 4-1 . 

at 6 
Differentiating (4.36) and using the KG equation and (4.39) give 

1 
= [I ( V o f m )  f '- v'2] (d+ +@--I + ;I(mT V O ) ( ~ +  - 4-1 

2 2m 
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Writing this in matrix form gives (4.35) and (4.38). I 

Substituting (4.39) into (4.14) shows that the two-component form of the 
conserved norm is 

L3 d3T 4+T34 = l3 d 3 r  ( 14+12 - 14- 1’) = constant . (4.40) 

It is instructive to prove that this is conserved directly from the matrix form of 
the equation, (4.35). To do this, note first that H is not Hermitian but that 

r 3 H t r 3  = H . (4.41) 

The matrix 7 3  thus plays the role of a “metric ttnsor,” and 

i - / d 3 ~ 4 ’ r 3 4  d = i / d 3 r {  ,t(btr34+(btr3,} a 84 
d t  

= - / d 3 ~ { m t [ H t r , - r 3 H ] 4 }  = O  . (4.42) 

We may simplify the notation somewhat by introducing the KG adjoint, defined 
as follows: - 

4 = 4+ r3 . (4.43) 

The conserved norm is then written 

l3 d3r 4 4 = constant . (4.44) 

The solutions of the free KG equation can be found directly from the two- 
component form of the equation, 

P2 ’ P2 - 
2m 

m+- 
2m 

\ 2m 

(4.45) l l .  
k2 k2 

f E - m - -  
2m 

(4.46) 
1.2 1.2 

f E + m + & /  “” 
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It is easy to see that a solution requires E2 = m2 + k2 and that 

(4.47) 
-kZ 

4i-i = N -  ( ol ) , - t ( & ~ - E t )  

Note that &) has negative norm. If we require 

then 

(4.49) 

We will see later that these solutions bear a striking resemblance to those of the 
free Dirac equation. 

Charge Conjugation 

The KG and other manifestly covariant equations (such as the Dirac equation) 
have a symmetry related to the existence of both positive and negative energy 
,elutions. These solutions can be transformed into each other by an operation 
referred to as charge conjugation. Under this transformation, the interaction term 
changes sign, but the equation otherwise remains unchanged (in particular, the 
mass remains the same). This transformation provides a good way to interpret the 
meaning of the negative energy solutions, $(-). 

In the two-component theory, the operation of charge conjugation is defined 

4*(bc =‘T,C#J* . (4.50) 

Now note that @ satisfies the same equation as 4, except with Vfi ---* -Vfi. To 
see this, remember that p + -iV, so that p = -p. Then 

by 

’ + v)2 i.) 4* . (4.51) 
. a  
at 2m 

Hence, multiplying both sides of this equation by -7, and using the fact that 7, 
anticommutes with T~ and T~ give 
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which completes the proof. Hence, for electromagnetism, 4c describes a particle 
of opposite charge. Furthermore, note that 4 ( - ) C  has positive norm 

(4.53) 

Also, for the free particle states, 

= 4 k  (+) . (4.54) 

The charge conjugation operation turns a negative energy state of momentum -k 
into a positive energy state of the opposite charge and momentum k .  This is 
the origin of the idea that a negative energy state traveling backward in time is 
equivalent to an antiparticle state traveling forward in time. This idea will be 
developed in considerable detail later in this chapter (see Sec. 4.8). 

4.6 N 0 N R E L AT IVI ST I C LIMIT 

T;, gain further insight into the structure of the KG equation, we study its nonrel- 
ativistic limit. This is the limit when the mass of the particle is much larger than 
all momenta or energies and the positive energy solutions have an energy near 
m. Since the rest mass is not normally included in the nonrelativistic energy, we 
introduce a difference energy T = E - m. Assuming a solution of the form 

and using H given in Eq. (4.38), the coupled equations reduce to 

where the term m7, in H has been moved to the LHS of the equation, where 
it cancels a similar term in the first equation but doubles the similar term in 
the second equation. As m -+ 00, the dimensionless quantities bI/m, IVol/m, 
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IVl/m, and ITl/m are all << 1, and therefore q << x. Expanding the second 
equation in inverse powers of m and discarding terms of order m-3 or higher 
give 

(4.56) 

Substituting this result into the first equation gives an equation for x accurate to 
order l /m3, 

If V = 0, the relativistic corrections to the energy up to order m-3 are 

v4 
A H R ~ ~  = -- 

8m3 ‘ 
(4.58) 

This is the only term which can give fine structure contributions for a spin zero 
particle. (See Prob. 4.2 at the end of the chapter.) 

Zeeman Effect 

The Zeeman effect is the splitting of energy levels which occurs when a bound 
state (atom) is placed in a weak, magnetic field. In this case the field, B, can be 
assumed to be uniform over the size of the atom, in which case the corresponding 
vector potential is simply 

A = - i ( r x B )  . (4.59) 

Note that the definition of A is consistent with the Coulomb gauge, and with the 
identification of B as a constant magnetic field 

For a positive charge e,  the magnetic interaction term then becomes 

1 ie ie 
2m 2m m @ .  V + v . p )  = - (V . A  + A  . V )  = - A .  v -- 

ie ie e 
= -- (t x B ) . V  = - B .  (r x V) = - - B . L  , 

2m 2m 2m 
(4.60) 

where L is the familiar angular momentum operator. This interaction gives the 
“normal” Zeeman effect only (see Prob. 4.3). 
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Discussion 
The KG equation describes the behavior of a spin zero particle and hence would 
be the correct equation to use for an approximate description of pionic atoms 
(atomic states with a R -  substituted for an electron). Unfortunately, the pion is 
very short lived, and these “atomic” states have a very short lifetime. In addition, 
because the pion is so much more massive than the electron, it is bound in a very 
small orbit. The orbit is so small that there is a significant probability that the pion 
will overlap with the nucleus, where it will interact strongly, further broadening 
the states. These effects make it difficult to study pionic atoms, and direct tests of 
the applicability of the K G  equation to such states is a topic of current research. 

In any case, the study of the structure of (perhaps hypothetical) atomic states 
with spin zero constituents is an interesting intellectual question. Comparing 
results obtained from the KG equation with those we will obtain later from the 
Dirac equation will tell us how much of the observed fine structure is due to 
relativity alone and how much is due to the spin of the electron. Similarly, 
comparison of the Zeeman effect predicted by each equation helps us separate 
effects due to the orbital motion of the bound particle (all that we have in the KG 
theory) from additional effects present in the Dirac theory. 

4.7 COULOMB SCATTERING 

As an illustration of the usefulness of the two-component theory, we calculate the 
scattering of a charged spin zero particle from a fixed Coulomb potential 

0 0  v =z- 
T 

(4.61) 

which comes from a point charge Ze fixed at the origin. 
Because of the fact that the two-component KG theory satisfies a first order 

differential equation, we may use the formalism for time-dependent perturbation 
theory developed in Sec. 3.1. The first order S-matrix element is [compare with 
Eq. (3.53)] 

sfi = -i 1 dt (f IHl(t)li) 1 (4.62) 

where li) and I f )  are initial and final KG free particle states with momenta k ,  and 
kf. The interaction Hamiltonian in this equation, H I ,  must be expressed in the 
interaction representation, just as we did in Sec. 3.1 in our study of electromag- 
netism [recall Eqs. (3.4) and (3.5)]. For a pure Coulomb interaction, V = e A  = 0, 
and the Schrodinger representation of H I  can be deduced from Eq. (4.38). In the 
interaction picture, it becomes 

(4.63) 
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(4.64) 

The unperturbed or free particle Hamiltonian, Ho,  was introduced in Eq. (4.45). 
As in Chapter 3, the sole effect of the operators UO is to give time-dependent 
phases when they operate on the initial and final state wave functions: 

The matrix elements must be put together using the correct scalar product. 
The matrix element of an operator 0, (floli), is constructed by inserting the 
“metric tensor” T~ between the final state and 0 li) or, alternatively, forming 
the scalar product by multiplying from the left by the adjoint state defined in 
Eq. (4.43). For the scattering of positive energy states, this gives 

relat lvtstt‘  
f se torr  

The time integral gives an energy conserving delta function, and hence E j  = E, 
and the new relativistic factors reduce to unity, showing that the S-matrix is 
identical to the nonrelativistic result. However, the cross section will include 
relativistic effects which arise from the flux factor. 

The cross section becomes [recall Eq. (3.52)] 
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where ffl is the reduced matrix element, which for this example becomes (q 
ki - kf, and 141 = 9) 

1 
zq aq - E -q - E 

(4.67) 

[Note the use of the screening factor e - e r ,  inserted to insure convergence of the 
integrals and removed after they have been done by letting E -+ 0.1 Now substitute 
(4.67) into (4.66), and assume AR is small enough so that all dependence of the 
integrand on the directions of k, can be ignored. This gives 

El k 2 d k  ( 2 ~ 4 ~ )  
d u j ,  = dR / $ $ 2 ~  6( El - Ei)  

q4 (4.68) 
da _ -  
dR - q4 

This is the Coulomb differential scattering cross section for a spin zero particle 
scattering from a fixed scattering center. Because there is no recoil, the behavior 
of the cross section is dominated by the familiar 4 - 4  factor, where 

(4.69) 

The scattering is sharply peaked in the forward (6 = 0) direction. 

4.8 NEGATIVE ENERGY STATES 

The simple example we considered in Sec. 4.4 was sufficient to show that 

0 negative energy states cannot be ignored and 

0 they describe the production of particle-antiparticle pairs, which can occur 

The (one-particle) KG equation can only do a limited job of describing pair 
production; a complete description of antiparticles must await the development 
of field theory (Chapter 7). In this section we lay the background for this study 
by developing the mathematical description of both positive and negative energy 
states, to the extent possible without the use of field theory. 

virtually in higher order processes. 
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To illustrate the techniques, we will calculate the matrix element for Coulomb 
scattering to second order in the electric charge e. From Eq. (3.24) for the time 
translation operator, the second order S-matrix element is 

The superscript (2) is to remind us that this is the contribution to the infinite sum 
(3.24) which is second order in the small electric charge e. While this formula 
was originally obtained for a field theory, it applies equally well, as noted in the 
previous section, to any quantum mechanical system described by an equation 
first order in time and which has been separated into an unperturbed Hamiltonian 
Ho and an interaction Hamiltonian HI (written in the interaction picture). We 
may apply it to the two-component form of the KG theory, which casts the KG 
equation into a differential equation first order in the time. 

The way to evaluate S(2)  is to insert a complete set of states between H I  ( t 2 )  
and Hr(t1). Before we can do this, we must discuss the completeness relation 
for the K G  states. 

Completeness Relation 

We are working in the interaction representation where the free states have been 
fixed in time (at t = 0 for convenience). The completeness relation for the K G  
states can be written 

(4.71) 
where 1 is a unit 2 x 2 matrix in the two-component space. 

Proof: 
properties. For any KG state 4 ( ~ ’ )  

We can use the orthogonality relations to show that this has the correct 

(4.72) 

where the minus sign in the second term compensates for the minus sign which 
comes from the norm of a negative energy state. However, it is instructive to 
prove (4.7 1) directly by construction. Substituting the solutions (4.47) directly 
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into K,,, and remembering that I$ is a column vector and 4 is a row vector give 
(letting Ek = E) 

I 

Returning to the second order S-matrix and inserting a complete set of states 
using (4.71) give the following expression for scattering from an initial positive 
energy state with momentum k, to a final positive energy state with momentum 
k, : 

where the integrals over the spatial coordinates have been written explicitly. In- 
troducing the KG Coulomb matrix elements 

the S-matrix can be reduced to 
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Next, introduce T = i ( t l  + t 2 )  and t = ( t z  - t l )  to get 

The integral over T gives an energy conserving &function, and the S-matrix reduces 
to the standard form 

with the reduced amplitude f given by 

(4.76a) 
Note that the negative energy states make a conrriburion to this sum, unless f;;; or 
f;;: = 0, which is not generally the case.' 

This confirms our conclusions from Sec. 4.4; the negative energy states cannot 
be ignored. Even if the initial and final states are restricted to positive energy, the 
full solution to any problem will usually include virtual contributions from negative 
energy intermediate states. 

The next task is to give a physical interpretation to such contributions. At this 
point the single particle KG equation does not give a unique answer. First, observe 
that 

because the integral overt gives b(& + Ei) ,  which is always zero. Adding this term 
to Eq. (4.76a) and noting that O ( t )  + 0( - t )  = 1 give an alternative equation for the 
reduced amplitude 

$- f k f k f k , k  (-1 (-)* e(- t )  e i [Ek+E, ]  t } . (4.76b) 

This equation gives the same mathematical result for the reduced amplitude f 
but suggests a very diferent physical interpretation. Later, we will see that field 

*Note that these (-) matrix elements are zero if energy is conserved but are not zero in second order 
perturbation theory because the energy of the intermediate state is not the same as the energy of the initial 

(or final) state. 
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time - time - 

Fig. 4.3 The left diagram illustrates the forward propagation of a positive energy intermediate 
state, while the right is the backward propagation of a negative energy intermediate state. The right- 
hand diagram is reinterpreted as the creation of a pair at time t2, forward propagation of the antiparticle 
to time t l ,  followed by annihilation of the antiparticle at time t i .  

theory naturally gives us the interpretation suggested by (4.76b), and this is the 
only picture which makes sense physically. 

In the first of these two descriptions, Eq. (4.76a). both the negative energy and 
positive energy states propagate forward in time. In the second, Eq. (4.76b), the 
negative energy states propagate backward in time [because of the 0 ( - t )  function 
which implies t 2  < t l ] .  The meaning of this strange statement is illustrated in 
' ig. 4.3. The second figure shows that the requirement t 2  < tl  means that the line 
joining tl and t 2  travels backward in time unless we turn the direction ofmotion 
around and think of a particle-antiparticle pair being created at time t 2  and then 
annihilated at a later time t l .  Thus the idea that negative energy states propagate 
backward in time, while at first very strange, actually enables us to reinterpret 
them as antiparticle states propagating forward in time. If the antiparticle states 
are the charge conjugates of the negative energy states, so that they carry opposite 
charge, opposite momentum, and have positive energy, then charge is conserved 
in both descriptions. Reinterpreting the virtual negative energy contributions as 
virtual antiparticle contributions shows how these contributions describe virtual 
pair production. This is consistent with the results we obtained in Sec. 4.4. 

In order to reduce the amplitude further, we prove an important identity which 
will be used several times throughout this book: 

(4.77) 

In this identity the limit 6 -+ 0 is implied. 
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Proof: Look at the complex w plane. The integrand has only one pole at CJ = 
E - it in the lower half plane. If t > 0, the contour must be closed in the lower 
half plane, while if t < 0, it must be closed in the upper half plane, in order that, 
in either case, the exponential has a negative real part and the contribution from 
the arc at 00 converges (to zero). Therefore, the integral is e - I E t  if t > 0 and 0 

I if t < 0. This agrees with the LHS of the identity. 

Using this identity (with n = 0) for the first term in (4.76b), and using it 
with t + -t and w + -w in the second term, gives the following reduction of 
(4.76b): 

(4.78) 

Discussion 

The main results of this last section are: 

0 We will define the matrix elements so that positive energy states propa- 
gate forward in time, associated with e(t2 - t l ) ,  and negative energy stares 
propagate backward in time, associated with e(t1 - t 2 ) .  This is the Feynman 
prescription. There are two rime-ordered diagrams, as shown in Fig. 4.3. 

0 By turning the negative energy line around and reinterpreting it as an 
antiparticle propagating forward in time, we see how pair production, a multi- 
particle process, is described by the one-particle KG equation. 

For this interpretation to be consistent with the conventional rules of quantum 
mechanics, all incoming states with energy E must have the usual phase factor 
e-aEt and outgoing states the complex conjugate phase e+lEt .  Using E j  = Ei, it 
is easy to demonstrate that this is indeed true for both of the terms in Eq. (4.76b): 

Furthermore, the energy denominators given in Eq. (4.78) are consistent with the 
rules of second order perturbation theory for positive energy intermediate states 
(with one intermediate particle for the first term and three for the second, as 
required by Fig. 4.3, and with a small negative imaginary part assigned to the 
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energy of the intermediate state in cases when the denominator might be zero, as 
discussed in Sec. 3.4): 

These same features will also arise in our study of the Dirac equation, which is the 
subject of the next chapter. 

PROBLEMS 

4.1 Solve the manifestly covariant form of the Klein-Gordon equation for the 
ground state of the hydrogen atom. Specifically, assume 

and show that the ground state wave function can be written 

Find E, p, and E .  Then examine the nonrelativistic limit by projecting out 
the C$+ and 4- components defined in Eq. (4.36). Interpret your results and 
compare with the Schrodinger theory. 

4.2 Calculate the fine structure splitting of the energy levels for a pion bound in an 
atom with charge Ze. Draw an energy level diagram showing all the levels up to 
n = 3. (You may use the nonrelativistic form of the Klein-Gordon equation and 
calculate the splitting in perturbation theory using suitably modified hydrogen 
atom wave functions.) What are the Bohr radii of these orbits and what is v /c?  
Estimate the probability that a pion in the S-state will be inside the nucleus. 

4.3 Calculate the Zeeman splitting of the levels up to n = 3 for a pionic atom. 

4.4 Suppose a pion is bound by a scalar potential of the form 

V(z) = V ( r )  = -vO b3(r)  

Solve the KG equation for the special case when the solution is static (i.e., 
independent of time). Discuss the significance of your result. 
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4.5 A pion of mass p is bound by a scalar one-dimensional square well potential 
V(x) defined to be: 

region I R < x  V(x) = 0 

region I11 x < o  V(x) = 00 

region 11 0 < X  < R V(X) = -/A’ Vo 

(This could be a very rough model for a pion inside of a nucleus of radius R.) 
(a) Solve the KG equation (4.7) in one space dimension for the positive energy 
ground state. (Take U ( x )  = V(z).) 
(b) Find the value of R such that the positive energy ground state has energy 

Estimate the size of the pion cloud. 
(c) Find the positive and negative energy parts, as defined in Eq. (4.36), of the 
solution found in part (a). Discuss your result and explain how the negative 
energy part should be interpreted. 

4.6 New two-component form for the KG equation. One of the features of the 
two-component form introduced in Eq. (4.36) is that it does not completely 
decouple positive and negative energy solutions, even if the potentials are zero. 
In particular, for the free particle solutions 

For conceptual purposes, it might be convenient to further diagonalize H so 
that the non-diagonal terms come from interactions only. This can be done by 
defining new components: 

where EV is defined by the power series given in Eq. (4.3). Show that: 
(a) The conserved norm is identical to (4.40) with T~ the “metric tensor.” 

(b) The equations assume the form (4.35) with the free Hamiltonian being 
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This completely diagonalizes the (+) states for free particles. 

( c )  The charge conjugation operation and nonrelativistic limits are as before. 

(d) The “old” form can be transformed into the “new” form using the fol- 
lowing transformation: 

In particular, show that this transformation preserves the norm by proving 
that 

U+$J =7-3 . 

Also, using the explicit forms (4.47), show that 

Hence U transforms 4( * )  into states with only an upper (or lower) component. 
Finally, show by direct computation that 

zg - V O + E v  

-28 + V” + E v  

which shows explicitly that U transforms the “old” two-component form into 
the “new” two-component form. 



CHAPTER 5 

THE DIRAC EQUATION 

In this chapter we continue the discussion of relativistic equations for the first 
quantization of particles. The Klein-Gordon equation introduced in the last chapter 
describes spin zero particles. In this chapter we discuss the Dirac equation [Di 281, 
which describes particles with the two internal degrees of freedom characteristic 
of a spin f particle. Since both electrons and quarks have spin f ,  the Dirac 
equation has many interesting applications, and some of these will be developed 
in the next chapter. 

5.1 THE EQUATION 

rs discussed in Sec. 4.5, the two-component form of the KG equation could be 
written 

. a  ”+ = H?L 

While this equation is first order in the time derivative, the KG Hamiltonian 
(4.38) is second order in the space derivatives and hence does not treat space and 
time in an equivalent fashion. Furthermore, because the conserved norm for the 
K G  theory was not positive definite, the two-component KG “Hamiltonian” is 
not Hermitian. Finally, the covariance of the KG equation is only manifest in its 
original, one-component form. It is natural to ask: “Is there a relativistic equation 
which is first order in time, treats space and time in a manifestly symmetric 
fashion, has a positive definite conserved norm (implying that H is Hermitian), 
and is manifestly covariant?’ The investigation of this question leads directly to 
the Dirac equation. 

To answer this question, we look for an equation which is first order in both 
space and time and which is Hermitian. The equation must have the form 
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where CY and 
momentum relation should emerge naturally, so we require 

are Hermitian matrices and p = -iV. The relativistic energy 

= (p’ + m’) $ . (5.3) 

Demanding that this relation hold for all ?,LJ gives 

= c 1 (P I ) ’  +m2 , (5.4) 

where { A ,  B }  = AB + B A  is the anticommututor of two operators A and B. 
This equation can hold only if 

(5.5) 

To construct such an equation therefore requires a vector space large enough to 
contain four anticommuting, Hennitian matrices. 

It is easy to prove that such a space must have a minimum of four dimensions 
and that therefore the matrices a, and P must be at leust 4 x 4. The proof follows 
in four steps: 

Lemma 1: The matrices 0 and at are traceless. 
To prove this for the matrices a*, note that the anticommutation relations imply 

Making use of the fact that the trace of a product of matrices is unchanged by 
cyclic permutation of the matrices gives 

t r  { p a i p }  = - t r a ,  

= tr { a i P P )  = t r a ,  

Hence t r  a, = 0. A similar argument shows that tr 0 = 0. 

Lemma 2: 
Since cri and 0 are Hermitian, they can be diagonalized, and because (a,)’ = 
0’ = 1, their diagonal elements (eigenvalues) can only be f l .  

Lemma 3: 

The eigenvalues of a, and 0 must be f l .  

The dimension of the matrices must be even. 
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I i$ = H+ = [a, (-iV, - eA’) + eAo + @m] @ 

In diagonal form the diagonal elements of a, and @ can be only kl, and because 
t r  (ai) = tr @ = 0, all of these matrices must have the same number of +l’s as 
-1’s. Hence the dimension can only be even. 
Lemma 4: The number of dimensions must be greater than 2. 
In general, in n dimensions there are n2 independent Hermitian matrices; sub- 
tracting the identity there are n2 - 1 Hermitian traceless matrices. Hence there 
are only three for n = 2 (which can be taken to be the Pauli matrices, oi), but for 
n = 4 there are fifteen, more than enough. 

We will choose the following representation for the four Dirac matrices: 

(5.11) 

where the matrices are written in 2 x 2 block form and oi are the Pauli matrices. 
Hence the free particle Dirac equation becomes 

(5.7) 

Alternatively, the equation may be written in terms of the 7’’ matrices, defined 
by 

7 ,  = (P,@a,) 

(5.8) +(’  0 -1 0 )  y l =  (”, 0“i) 
Cxpressed in terms of the y matrices, the anticommutatinn relations (5.5) become 

{r”,r”} = 29,” I (5.9) 

and multiplying the Dirac equation by 
form (recall Vi = d/as’): 

permits us to write it in the following 

covariant 
Dirac equation. 

(5.10) 

Electromagnetic interactions may be added to the Dirac equation by using 
the minimal substitution p p  4 p p  - eAp .  This gives 

I I 

or, in covariant form, 

[yp (i& - eA,) - m] $ = 0 . (5.12) 
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We will use the non-covariant form of the Dirac equation in the next few sections 
and will return to the covariant form in Sec. 5.9 when we discuss the covariance 
of the equation. 

5.2 CONSERVED NORM 

The conserved norm is easily obtained from the equations. Note that, for any two 
solutions of the Dirac equation, 

(5.13) 

Hence, if the electromagnetic interaction (or any other potential) is independent of 
energy, it will cancel when we subtract the above two equations, and subtracting 
the first from the second gives 

where the arrow over the derivative tells us in which direction in acts, just as in 
Sec. 4.2. Hence the two terms on the right-hand side become a perfect divergence 
and 

i -  (+L+b) + ivi (+ ;a ,+b )  = 0 . 

As in the KG case, we have a four-current which is conserved. The conservation 

a 
at 

law can be written a 
iG [@c!Y0Yp$b] = 0 (5.14) 

If we integrate this equation over all space and use the periodic boundary condi- 
tions to eliminate the spatial part, just as we did in our discussion of Eq. (4.13). 
we find that the following quantity is a constant of the motion: 

d3r +L$b = constant . (5.15) 

Note that this expression is positive definite if a = b, and hence the states can be 
normalized as follows: 

d3r$:+, = 1 , (5.16) 

This norm is a constant of the motion, and the Dirac equation has no states with 
negative norm. This was first believed to be a great advantage of the Dirac 
equation, but as we will soon see, the Dirac equation suffers from the same 

J 

s 
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problem as the KG equation; it has negative energy solutions which are difficult 
to interpret physically. 

5.3 SOLUTIONS FOR FREE PARTICLES 

As in the KG theory, we will show that the solutions of the free particle Dirac 
equation have the general form 

(5.17) 

where the (k) superscript designates the positive (+) or negative (-) energy 
solutions. We use periodic boundary conditions as before, so that 

2n 
L pn = -(nzr ny, 72,) 12, = 0, kl, f2,. . . (5.18) 

and Ep > 0 always. For simplicity, the subscript n will be frequently ignored, so 
that pn + p ,  and the magnitude of p will be denoted by p.' 

Consider the positive energy solutions first. Substituting the ansatz (5.17) 
into the free particle Dirac equation gives 

Hence 

(5.19) 

In order for these equations to have a non-zero solution, the determinant of the 
matrix of coefficients must be zero. Using (u . P ) ~  = p2 the requirement that the 
determinant be zero gives the correct energy-momentum relation 

E i = p 2 + m 2  , 

Then, using the second equation to express q in terms of ,y gives 

.=(=+o Ep + m  (5.20) 

*The symbol p will be used to denote either the four-vector or the magnitude of the three-vector. They 
can he distinguished from each other by the context in which they are used. 
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This gives the positive energy solution in terms of an arbitrary two-component 
spinor x. Choosing x t x  = 1 and normalizing the states to unity determines the 
normalization constant Np:  

d3r7)+@ = 1 = N2L3xt  P 

1 + -  =Np’L3- 2EP . (5.21) [ E p + m  
The normalization constant is therefore 

Np=,/* 2 ~ ~ ~ 3  . (5.22) 

It is customary to write the positive energy solution (5.17) in terms of the 
positive energy Dirac spinor, u(p, s ) ,  which is defined to be 

where x(’) is a two-component spinor describing the states of a spin f particle. 
If we choose to quantize the spin in the 2-direction, the spinors x(’) will be 
eigenvectors of g 3  

I 1 

(5.24) 

1 I 

Finally, the normalized positive energy solutions of the free particle Dirac equation 
are 

(5.25) 

Now find the negative energy solutions. In this case the ansatz (5.17) reduces 
the coupled Dirac equations to 

(5.26) 

As in the positive energy case, the condition E2 = p 2  + m2 insures that the 
determinant of the matrix coefficients of (5.26) is zero, so that a non-zero solution 
exists. Solving for x in terms of q gives 

(5.27) 
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We choose qtq = 1, and normalize the state to unity, as before. This gives the 
same result (5.22) for the normalization constant Np. For reasons which will be 
apparent in the next section, we choose phases (signs) such that 

(5.28) 

where u2 is the Pauli matrix. Note that this phase convention differs from Bjorken 
and Drell (1964). who choose ~ ( 4 )  = (A). If we introduce the negative energy 
Dirac spinor, v(p, 8) .  

I I 

the normalized negative energy solutions become 

(5.30) 

Note that the negative energy solution for momentum - p  and spin -s is expressed 
in terms of the v spinor with momentum p and spin 8. This is in accordance with 
the hole theory interpretation to be discussed soon. Note that the (+) and (-) 
solutions are orthogonal because of the orthogonality of the positive and negative 
energy spinors: 

vy-p, S')U@, 8 )  = U ' k ,  s)v(-p, 9') = 0 . 1 (5.31) 

Comparison with the TwctCornponent KG Solutions 
It is instructive to compare these solutions with the two-component KG solutions 
given in Eq. (4.47). The comparison is presented in Table 5.1. 

The principal difference is that the Dirac theory has an extra two-component 
structure (located in the two-spinors ~("1) .  which is identified with the internal 
degrees of freedom possessed by a spin 3 particle. Otherwise, the structure of the 
positive and negative energy solutions in the two cases is similar. In both cases the 
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Table 5.1 Comparison of Dirac and KG solutions. 

positive 
energy 

iegative 
energy 

norm = 1 

norm = 1 

lower component(s) of the positive energy solutions is (are) smaller than the larger 
Jpper component(s), and conversely for the negative energy solutions. In the 
Dirac theory this suppression of the small components depends on spin (through 
the appearance of the Pauli spin matrices) and is proportional to the magnitude 
of p / ( E ,  + m), while in the KG theory the suppression goes as the square of a 
similar factor and is therefore greater. This leads us to expect (correctly) that the 
relativistic corrections are spin dependent and larger in the Dirac theory than they 
were found to be in the KG theory. This will be studied in detail in Sec. 5.7. 

5.4 CHARGE CONJUGATION 

As in the K G  theory there exists a charge conjugation operation which maps the 
negative energy states into positive energy states. 

Consider the following operation on the states: 

II, -4 lJlc = CP$* I (5.32) 

where 

(5.33) 
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Note that C2 = -1 and that, because a2 is the only imaginary Dirac matrix, 

CdC-' = -d' , (5.34) 

where d represents any of the Dirac matrices P or ai. The operation of C on the 
covariant yp matrices is 

Taking the complex conjugate of the Dirac equation (5.1 l), multiplying from the 
left by CP, and using the relation (5.34) give the equation for 4": 

C y @ c - l =  - y F T  . (5.35) 

= [cr. (is - eA1) + eAo - Prn @" . 1 
Hence 

(5.36) i-+" a = [ai ( - i -  a + eai> - ~ A o  + om] +c at 3x1 
and the charge conjugate amplitude satisfies a Dirac equation with opposite charge 
from the equation satisfied by @. Furthermore, the state +(-) has positive energy. 
To see this, note that 

because  up*^ = -u. This simple relation is possible only because of the 
phase convention introduced in Eq. (5.28) for the two-component spinor 7 which 
enters into the definition of w. A similar relation holds for the u spinors; the two 
relations are 

I 1 

(5.38) 

Using this result we find 

CP+$&(x) = @;;)(z) I (5.39) 

which shows that +( - )C  describes a positive energy particle with identical mass 
and spin bur opposite charge. We identify @(-) C with the physical positive energy 
state corresponding to @(-). It is an antiparticle. To summarize, 
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$c)(x): is the wave function for a particle with positive energy, mo- 
mentum p, and spin projection s. 

$-p,-.8(z): (-) is the wave function for a negative energy state with momen- 
tum - p  and spin projection -s, which is interpreted as an 
antiparticle state with positive energy, momentum p ,  and spin 
projection s. 

In our study of the KG equation in Chapter 4, we also interpreted negative 
energy states as antiparticles. However, the way in which this interpretation is 
developed is significantly different for the two equations. First, KG particles (spin 
zero) obey Bose-Einstein statistics, and there is no limit to the number of negative 
energy particles which can occupy any negative energy state. Any positive energy 
KG state is therefore intrinsically unstable; there is no way to prevent it from 
decaying eventually to a negative energy state. On the other hand, Dirac particles 
(spin f) obey Fermi-Dirac statistics (which will be shown in Chapter 7). This 
means that no more than one particle can occupy any one state (the Pauli exclusion 
principle). If the physical vacuum is assumed to be the state in which all negative 
energy states are jilled, a single positive energy state will be stable, since decay 
to negative energy states will be Pauli blocked by the filled negative energy sea, 
and we are able to “explain” why the lowest energy of a single particle is m 
(and not -cm as might be expected if the negative energy states were not already 
occupied). Furthermore, since the energy of the ground state can always be chosen 
to be zero [by choosing the appropriate constant EO in Eq. (3.19)], this picture of 
the vacuum is physically sensible. In this picture, referred to as hole theory, an 
antiparticle is interpreted as a “hole” in the vacuum, i.e., as the absence of one of 
the particles from the otherwise filled negative energy sea. Being the absence of 
a negative energy state, the antiparticle has positive energy. 

These ideas are illustrated in Fig. 5.1. In Fig. 5.1A the vacuum has no 
particles, so a single particle with energy -E < -m, momentum -p, and spin 
projection --s can exist. In Fig. 5.1B the vacuum is assumed to be filled with 
negative energy states. The absence of a single negative energy state with quantum 
numbers - E < -m, -p ,  and -s then appears as a hole in this vacuum. Since 
the vacuum values for these quantum numbers must be zero (by definition), the 
hole therefore behaves just like a particle with energy 0 - (- E) = E, momentum 
0 - ( -p) = p ,  and spin projection 0 - ( - s )  = s, or a positive energy antiparticle 
with energy E > m, momentum p ,  and spin projection s. Thus hole theory 
provides a physical picture of how negative energy and antiparticle states are 
related. Mathematically, this relation is expressed through the charge conjugation 
transformation. 

Hole theory played an important role in the development of relativistic quan- 
tum mechanics but is superseded by modern field theory. We no longer think of 
the vacuum as filled with negative energy particles. In Chapter 7 we will see 
that a quantum field is equally well suited to the description of either spin zero 
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A 

0 

- - - - - - - - - - - .  0 ; 
negative energy state 7 

hole in a filled negative 
energy sea 0 - - - - - -  

energy = 
/ O - ( - E ) = E > n i  

Fig. 5.1 In the model shown in (A), the vacuum is empty and a single negative energy state 
has energy -E. In (B), the vacuum is the state in which the negative energy sea is filled, and an 
antiparticle is interpreted as a hole in this sea. 

particles (which do not satisfy an exclusion principle) or spin $ particles. In 
either case both particle and antiparticle degrees of freedom have positive energy. 
However, hole theory still gives us a useful physical picture of the connection 
between physical antiparticles and the negative energy states which emerge from 
a one-body relativistic wave equation. 

5.5 COULOMB SCATTERING 

To illustrate the use of Dirac wave functions and the Dirac formalism, we calculate 
the lowest order scattering of a Dirac particle by a Coulomb potential. The method 
is identical to our treatment of Coulomb scattering by a spinless particle, given in 
Sec. 4.7. The EM potential is assumed to be 

zff 
A = O  e A o =  - , 

T 

and the S-matrix is given by (4.62)i 

Sf, = - a  ' / dt (f lHl(t)l i) 

except that now li) and I f )  are initial and final Dirac free pal 
and HO and H I  are 

Ho = aipa + prn 

H I = U ,  -1 -(' zff ')Uo 
T 

icle s ates at t = 0 

(5.40) 
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with I;o = e-aHot  as in Eq. (4.64). Hence 

Sf, = -2 d t d 3 r ~ j ; f ) + ( T ) ~ , ~ ~ ~ ) ( T )  s 
x ut (Pf, S f )  u ( P a l  sa) ‘ 

The reduced matrix element f f l  now becomes 

(5.41) 

where q2 = (Pi - p f ) 2  as before. Note that the only difference between (5.42) 
and the KG result (4.68) is the factor in [ 3 .  

The reduced amplitude f f i  now depends on the polarization of the initial and 
final particles. We will calculate the unpolarized cross section, which will require 
us to average over initial spins (incoming particles are equally likely to have spin 
up as spin down) and sum over final spins. 

Part of the calculation of the unpolarized cross section requires the calculation 
of the following double sum. In evaluating this sum, we use the fact that E f  = 
Ei = E ,  and hence p ;  = pf = p 2 ,  to yield 

U ‘ P i U ’ P f  x ( s J )  1 1 * ‘ P f U ’ P i  

2 ( E + T ~ ) ~ ]  [’+ ( E + T ~ ) ~  
= - ( E  + m)2 CX+(Sf) [ 1 + 

*I 

Now use 
tr (gig,) = 2&jaj 

(a .p ) ’  = p2 
(5.43) 
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to get 

This is further reduced by using p ‘pi = p 2  cos 8, where 8 is the scattering angle 

L 

Hence, finally 

The 4EZ factor in front is canceled by the (1/2E)2 factor in 
steps are the same as for the KG case, Sec. 4.7, giving 

2 - da = (a;.-)2 2 Z a E  [I - u sin2 :] , 
dR 

(5.45) 

Iffi12. The final 

(5.46) 

.vhere u2 = p 2 / E 2 .  This famous result is the Mort cross section for the scattering 
of a spin particle. Comparing it with the K G  result, Eq. (4.68), we see that it 
differs by the factor 

[ 1 - u2 sin2 g] . (5.47) 

For large energy, u 2: 1, and the cross section goes to zero in the backward direc- 
tion. (See Fig. 5.2.) This difference in the backward direction is due to magnetic 
scarrering: the interaction of the magnetic moment of the electron (associated with 
its spin) with the magnetic field it sees when moving toward the fixed Coulomb 
field. 

5.6 NEGATIVE ENERGY STATES 

In this section, the role of negative energy states in the Dirac theory is examined. 
We will treat second order Coulomb scattering as an example, so the discussion 
will parallel the development given in Sec. 4.7, where the contribution of nega- 
tive energy states to second order Coulomb scattering of spinless ( K G )  particles 
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I 
I 
I 

- 0.4 - 

0 45 90 135 180 

scattering angle 8 

Fig. 5.2 The Coulomb scattering cross section in arbitrary units. The solid line is the cross 

section for a spin zero particle, and the dashed line is Eq. (5.46) for a spin 4 particle. Note that both 

cross sections peak strongly in the forward direction but that there is an additional suppression in the 

backward direction for the spin 4 particle. 

vas studied. As the results for the Dirac theory are very similar, the discussion 
here will emphasize the similarities and differences. 

Completeness Relation 

Recall that the evaluation of the second order matrix element for the S-matrix 
required the completeness relation. For the two-component KG theory, the needed 
relation was given in Eq. (4.71). The corresponding relation for the Dirac equation 
is 

KD(T,T’) = { $ J ~ ) ( T ) $ $ > ) ~ ( T ’ )  + $;;)(r)$j)t(r’)} = 1 b3(r - T ’ )  . 
P , S  

(5.48) 
Note that a plus sign stands in front of the negative energy sum; the KG complete- 
ness relation. Eq. (4.71). had a minus sign. This difference is due to the different 
normalization condition satisfied by the positive and negative energy states in the 
Dirac and KG theories. 

Proof: The general proof of (5.48) is identical to the general proof of Eq. 
(4.71). Even the proof by construction is similar, except that now the matrix is 
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4 x 4 instead of 2 x 2. We have 

I 

Now, the Dirac matrix elements of the Coulomb interaction term can be 
written 

where n is a shorthand notation for the quantum numbers {pn, s,} and the reduced 
.natrix elements f):) were given in the preceding section [see Eq. (5.42)]. We 

have not calculated the reduced matrix element f);', but it could be evaluated 
from (5.49). All we need to know now is that it is in general not zero. In terms of 
these reduced matrix elements, the second order S-matrix element for Coulomb 
scattering can be written 

SE) = - i 2 d  ( E f  - E l )  2fji (2) , 
where 

(5.50) 
f ( + ) f ( + ) *  f'-'f'-'* 

P I P  P1P - P I P  P * P  

Ep  - Ei - a6 Ep + E,  - it 

The derivation of these results for the Dirac theory is identical to that for the KG 
theory [review the arguments which led from Eq. (4.73) to Eq. (4.78)]. Each of 
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these two expressions for f(') differs from its KG counterpart [which is (4.76b) 
for the first and (4.78) for the second] only in the sign of the negative energy 
term. And here, as in the KG theory, the propagation of the negative energy 
states backward in time is interpreted as the propagation of the corresponding 
antiparticle states forward in time (recall Fig. 4.3). 

The difference in sign of the negative energy contributions to the KG and 
Dirac expressions for f(') will appear again in field theory. In that discussion the 
sign difference will come from the fact that Dirac particles satisfy Fermi-Dirac 
statistics (i.e., their field operators anticommute) and that when the time ordering 
of the interactions is changed, as it is for the negative energy states, there is an 
extra minus sign for fermions. 

5.7 NONRELATIVISTIC L IMIT 

We now investigate the non-relativistic limit of the Dirac equation. As we did for 
the Klein-Gordon equation, we will work out the expansion to order (v/c)'  - 
(p/m)'x leading terms. In making our estimates, we assume all potentials V o  
and V to be of the same order as the kinetic energy term (justified by the virial 
theorem). Since all of these leading terms are of order p2/m, we want all terms 
up to order p4/m3. 

Assume a positive energy solution of the form 

(5.51) 

where E = m + T.  Then, using the Dirac equation, the coupled equations for 
x ( r )  and q ( ~ )  become 

T X  = V ' X + U .  (p- V ) q  
(5 .52)  

( 2 m  +T)q = Voq + U .  (p - V ) X  . 

In the non-relativistic limit, T ,  lpl, and all components of I V p l  = JeApI are 
assumed to be very much smaller than m. Hence, the second of the two equations 
(5.52) shows that the lower components of the Dirac spinor are very much smaller 
than the upper components, and therefore the equations are solved approximately 
by eliminating the lower components, as we did for the KG equation. However, 
if we proceed directly by solving the lower equation for q and substituting the 
solution into the equation for x, we obtain 

1 
(2m + T - V o  (5 .53)  

Since T is of the same order as Vo. which is N p2/m, it is necessary to expand 
the denominator of the second term if we want to collect all terms of order p4/m3. 
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This expansion gives 

1 
- V )  a.(p - V )  

1 
4m2 

- V ) ( T - V O ) a . ( p - V )  x . I (5.54) 

Note the presence of the energy T in the last term on the right-hand side. This 
means that the effective Hamiltonian defined by Eq. (5.54) is dependent on the 
energy, and an energy-dependent Hamiltonian leads to many complications which 
should be avoided, if possible. The explicit dependence on the energy should 
be eliminated. Since the T dependence occurs only in the highest order term, it 
might seem that it could be removed by replacing it by an estimate obtained from 
the solution of the lower order equation, i.e., 

1 
2rn 

T N V o  + - u .  (p - V )  U .  (p - V )  . 

However, this method will not give a unique answer because T is a number and 
commutes with a .  (p - V), while Vo,  part of the above estimate for T, does not. 
It is better to attack the problem from a different direction. 

A better method, known as the Foldy-Wouthuysen (FW) transjormation 
[FW 501, is to transform the equations to a new form in which the off-diagonal 
elements of the Hamiltonian are so small that the leading order estimate of the 
lower components (which does not depend on the energy T) is sufficient to get 
the effective Hamiltonian to the desired order of accuracy. For example, in this 
problem where we want the Hamiltonian to order p4/rn3,  it would be sufficient 
to reduce the off-diagonal elements to order p2/m. If they were that small, the 
leading contribution from the lower components would be of order p2/m2,  and 
their contribution to the equation for x would therefore be of order p4/rn3,  suffi- 
cient for our purposes. In the KG case treated in the last chapter, the off-diagonal 
elements were initially that small, so we were able to get the desired result im- 
mediately. Here, the off-diagonal elements of the Dirac equation are of (larger) 
order p ,  so the simplest approach did not work. 

To prepare for the application of the F W  transformation, return to the matrix 
equations (5.52). and write them in terms of Dirac matrices 

The off-diagonal terms are those involving the Dirac matrices a, and they are 
large (of order rn'). We want to transform the equation so that they are of order 
m-I. Then, when the equation is solved, T will not enter into the rn-3 term. 

The equation will be transformed using a general unitary transformation con- 
structed from the Dirac matrices. Since the large off-diagonal terms we wish to 
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reduce depend on a . p ,  it is sufficient to 

U = Ut = AD+ - a . p  
X 
m 

use a transformation of the form 

where X is a parameter which will be chosen later. Using the anticommutation 
relations satisfied by the Dirac matrices, it is easy to see that 

uut = U t U  = 1 (5.57) 

for any A. The fact that U is unitary means that the transformed wave function 

has the same norm. Transforming Eq. (5 .55 )  gives 

(5.58) 

(5.59) 

where the individual contributions to the Hamiltonian (5 .55)  become 

U(--m)U-'  = -m 

UVOU-l = AVoA + B- (AVO a . p  - a . p  V'A) + (a) a * p VO a . p  
x 
m 

U a . ( p  - V)U-' = - A a . ( p  - V ) A  
X + p- [ A a . ( p  - V ) a  . p  + a * p a . @  - V ) A ]  
rn 

(5.60) 

2 
UmPU-' = mPA2 + 2XAa . p  - p X 2 t  

m 

The off-diagonal terms are those proportional to an odd power of a, and they 
need only be calculated to order m-l. Noting that A can be expanded, 

(5.61) 

we see that the only off-diagonal terms which survive come from the first term 
on the RHS of the third of Eqs. (5.60) and the second term on the RHS of the 
fourth of Eqs. (5.60) and that A - 1 is sufficient to get all of the 0 (m-') terms, 
giving 

(5.62) HLff-diag = -a.(p - V )  + 2 X a . p  + 0 
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Hence, choosing X = f gives 

which is 0 (m- l )  by assumption. 
With these approximations, the coupled equations (5.52) become 

(5.64) 

where only the largest (leading) terms have been retained in every element but 
H i l ,  which is yet to be reduced. We may now neglect Tq' in the second equation, 

Note that the V 2 / 2 m  term is 0 ( m P 3 ) .  
The remaining task is to reduce H i ,  using X = f. Noting that the large 

terms proportional to m occur in the combination (-1 + b), which makes no 
contribution to the H i ,  matrix element, we have, to 0 ( m P 3 ) ,  

H' N V o  - P V o  2 - V 0 P  + a . p V 0 a . p  
8m2 8m2 4m2 1 1  - 

1 P4 P2 + - ( ~ . ( p - V ) a . p + a . p a . ( p - V ) ) - - - -  - , (5.66) 
2m 8m3 2m 

where the first three terms on the RHS are the expansion of A VOA, the first two 
in the second line are the expansion of the contributions from U a . ( p  - V ) U - ' ,  
and the last is the combined contribution from Urn0U-l .  To further reduce these 
terms we will use the identity 

Using this identity gives 

( a * @ -  V ) a . p + a . p  a.(p - V ) )  

= 2p= - a * p  a . V -  a.VC7.p 
= 2p2 - p .  v -  v . p  - Zd. (p x V )  - ia. (V x p )  
= (p - V)2 f p 2  - v2 - d .  [V x V ]  

= (p - V ) 2  + p2 - V 2  - e m .  B , (5.68) 

where the use of square brackets will mean that p or V operates only within the 
brackets. Note the new term describing a magnetic moment interaction, which 
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was obtained by replacing V by the vector potential eA and using B = V x A. 
Next, reduce the second through fourth terms in (5.66): 

p'V0 + VOp' = [p' VO] + 2 [p VO] ' p  + 2VOp' 

a s p  V0a.p =u * [p VO] a . p  + VOp' (5.69) 

=[pVO] . p + i a .  ([pVO] x p )  +VOp' . 

Thus, in the combination which occurs in H i ,  the Vop2 and [p Vo] . p terms 
cancel: 

a . p  v0a.p - [p' vO] + 
. ( [p vO] x p )  - -- 1 

4m2 
-- (p'V0 + VOp') + 

8m2 4m2 8m2 
(5.70) 

e p4 e [V'd] e 
+ e $ - - u + B - - + -  8m3 8m2 +---u.([V41 4m2 X P )  ' 

v2 (P-eA)' H' +-= 
l 1  2m 2m 2m 

(5.71) 
Assuming that the potential is spherically symmetric, so that 4 = 4(r )  where 
is the radial coordinate, leads to VC#J = (r/r)dd/dr,  giving finally the effective 
Hamiltonian 

e [v"] e d 4  + -- u . L  , (P - 
Heff = 2m 8m2 4m'rdr 

where L is the orbital angular momentum operator. 
We assume that the reader is familiar with the effective Hamiltonian (5.72) 

from previous studies, and we will only give a very brief review of these results.. 
Historically, this effective Hamiltonian was obtained well before Dirac discovered 
his equation, so that the derivation of the result from the Dirac equation can be 
regarded as a great success and a grand confirmation that the Dirac equation does 
indeed give the correct description of the interactions of a spin f particle with an 
EM field. Each of the terms in (5.72) was originally derived independently, but 
using the Dirac equation all of them emerge automatically. 

In addition to the -p4/8m3 term found for the KG equation, there are 
three new corrections connected with the spin of the electron. These give new 
contributions to the fine structure and Zeeman effect. 

Fine Structure (Dirac) 

The fine structure now comes from three terms in Eq. (5.72). These are 

0 -- p4 relativistic mass increase (also from KG theory) 
8m3 

*For an introductory discussion of these topics see, for example. Gottfried (1966) or Sakurai (1985). 
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e e Ze2 
8m2 8m 8m2 

0 -V24 = -:V . E  = -b3(r) Darwin term 

Because of the S3(r), this term is non-zero for S-states only. Physically, it comes 
from quantum fluctuations in the position of the electron, referred to as Zitterbewe- 
gung (jittering motion), which make the electron sensitive to the average potential 
in the vicinity of its average position. The average of the potential is proportional 
to V24 N S3(r), and this accounts for the general structure of the Darwin term. 

(’ ”) S L spin orbit term 
e 1 d 4  - - - - - . L = -  _ _  

4m2 T dr 2m2 T dr 
where S = a/2 is the electron spin operator. This term is due to the interaction of 
the electron’s magnetic moment with the magnetic field it sees due to its motion 
and automatically includes the Thomas precession, which reduces the result naively 
expected by a factor of 2. It is zero in S-states, because L = 0. 

The Darwin term contributes only to L = 0 states, and the spin orbit term 
only to states where L # 0, but when both corrections are taken into account, 
the spin orbit splitting is given by a single formula which depends only on the 
principal quantum number and the total angular momentum j of the state, 

(5.73) 

The first term is the familiar nonrelativistic result, and the second is the fine 
structure, which splits states with the same n but different j .  In the next chapter 
we will show that the exact solutions of the Dirac equation also predict levels 
which depend on n and j only. This gives a good account of the main features of 
the hydrogen atom spectrum, but the additional L-dependent Lamb shift can only 
be explained by field theory, as we discussed in Chapter 3. 

Zeeman Effect (Dirac) 

The full Zeeman effect comes from two terms. The orbital part is the same as 
the result obtained from the KG equation and was calculated in Eq. (4.60). The 
result is e e 

2m 2m 
-- ( p * A + A * p ) = - - B * L  . 

Combining this with the spin part, -eB . a / 2 m ,  gives 

(5.74) 
e e 

B . ( L + a ) = - - B . ( L + 2 S )  . Hzeeman = -- 2m 2m 

Note thefactor of2 for the electron’s intrinsic gyromagnetic ratio. This factor has 
no classical explanation but was discovered empirically before the Dirac equation 
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was discovered. Its automatic appearance in the Dirac theory is one of its major 
successes and provides the only “explanation” for this effect that we have. 

5.8 THE LORENTZ GROUP 

The Dirac space is four-dimensional but is otherwise an abstract space unrelated 
to physical space-time. To discuss the Lorentz transformation (LT) of a Dirac 
wave function, the Dirac equation, or a Dirac matrix element requires that we first 
construct a representation of each Lorentz transformation on the Dirac space and 
then show that the wave functions and matrix elements transform in such a way 
that the Dirac equation is invariant in form and the matrix elements transform as 
scalars, four-vectors, or tensors, depending on their structure. In this section the 
properties of the Lorentz group will be reviewed, and in the next two sections the 
representation of the Lorentz group on the Dirac space will be worked out and 
the construction and transformation of Dirac matrix elements will be discussed. 

In Sec. 2.1 we discussed how Lorentz transformations change the space-time 
coordinates. Any transformation which leaves the metric tensor invariant is, by 
definition, a LT. In the matrix notation, Eq. (2.8), this was written 

A T G A = G  . 

The set of all transformations which satisfy this constraint form a group, which 
is called the homogeneous Lorentz group. The four group properties are easily 
demonstrated: 

0 If A1 and A2 are members of the group, then AlA2 is also, because 

0 The multiplication law (matrix multiplication in this case) is associative: 

There exists an identity A = 1 which is a Lorentz transformation. 
For each A, there exists an inverse A-’ because 

ATGA = G + (det A)2 = 1 (5.75) 

and hence det A = fl, and since it is not zero, A-’ exists. Multiplying 
Eq. (2.8) by (AT) -’ from the left and A-’ from the right gives 

G = ( A - ~ ) ~  GAP 

showing that A-’ is a Lorentz transformation. 
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The physical Lorentz transformations are real (because they map a real space 
onto a real space) but complex LT’s are very important to the proof of the PCT 
theorem (see Chapter 8). 

The real transformations can be separated into four classes. First, from Eq. 
(5.75), they may be separated according to whether or not their determinant is 
+1 (proper transformations) or - 1 (improper transformations). Next, writing the 
defining relation (2.8) in block matrix form, 

shows that the 00 component of the LT satisfies the following relation: 

(5.77) 2 (ATGA)oo = Aio - 1 (Ajo) = 1 . 

Therefore, for real transformations, the values of A00 must satisfy one of the two 
conditions 

(5.78) A00 2 1 
A00 5 -1 non-orthochronous . 

Together with the condition on the determinant, there are therefore four 
classes of real transformations. Since A00 cannot be changed continuously from a 
value greater than 1 to a value less than 1, and the determinant cannot be contin- 
uously changed from +I to -1, these four classes are disconnected, as illustrated 
ill  Fig. 5.3. LT’s in each class can be continuously deformed into any other LT in 
that class, and the different classes can therefore be characterized by one of the 

j 

orthochronous 

four basic transformations: 1, T ,  P,  or T P ,  
space inversion (parity). Explicitly, 

where T is time inversion and P is 

The properties of the four classes of Lorentz transformations are summarized 
in Table 5.2. The restricted group is a subgroup, but none of the others are groups 
because they have no identity. It can be shown that every A E L! can be written 
as a product TA‘, where A‘ E L i ,  and hence T can be viewed as a mapping from 

T L : = L ~  . (5.80) 
L i  to L I :  

Similarly, P maps Lk to L!. and T P  maps L i  to L i :  

PL: = LI_ 
TPL:=L:  I 

(5.81) 
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Properties 

Fig. 5.3 
connected by the discrete transformations T, f, and Tf. 

Diagrammatic representation of the four classes of the homogeneous Lorentz group 

Class 

Figure 5.3 illustrates this continuity by showing the four classes as disconnected re- 
gions, with a continuous distribution of transformations within each region (class). 
The figure and the above equations show that to study the homogeneous Lorentz 
group, it is sufficient to study the group of continuous transformations L: and the 
two discrete transformations T and P. 

The complex LT’s must also have det A = fl, but the restriction (5.78) on 
.ioo no longer holds [because (Ajo)’ need no longer be positive]. Therefore 

A00 1 1 
detA = +1 

Table 5.2 Properties of the four classes of homogeneous 
Lorentz transformations. 

orthochronous, proper 
restricted group 

Label 

L -  

L 1  Aoo I -1 
det A = -1 

non-orthochronous 
improper 

non-orthochronous, proper A00 5 -1 
det A = +1 

orthochronous, improper A00 2 1 
det A = -1 

Continuity 
with 

1 

T P  

P 

T 
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the complex LT’s separate into only two classes, depending on the sign of the 
determinant, and the transformations in Li and L i  can now be connected by a 
continuous path. As an example of such a “path,” consider the transformations 

A0 = (-7) cos e i sin 8 

which depend on the continuous parameter 8. These transformations satisfy (2.8) 
for all values of 8 and hence map out a continuous path of transformations in the 
space of complex LT’s. By varying 8 continuously from 0 to 7r. we are able to 
connect the transformations 1 and -1. This fact will be of crucial importance to 
our discussion of the PCT theorem in Sec. 8.7.* 

(5.82) 

Infinitesimal Transformations in L+ t 
Consider the real LT’s in the subgroup LL. Because they can be continuously 
connected to the identity, they can be written 

A = e  ex , (5.83) 

where B is a number and X is said to be the generator of the transformation A. 
[This is assumed without proof. It is a general property of a continuous group.] 
The structure of the group can be inferred from the structure of the generators A. 

To study this structure, it is sufficient to consider those transformations for 
v-hich 8 = E is infinitesimally small. In this case, the transformations can be 
expanded and only the first order terms retained, so that 

A = ~ + E X .  (5.84) 

Since A is a LT, 
(1 + €AT) G (1 + EX) = G (5.85) 

or, to first order in c, 
X ~ G  + GX = o 
XT=-GXG . 

(5.86) 

It is easy to determine the structure of X from this equation, which looks like 

*For more discussion of these issues see Sweater and Wightman (1964). 
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From this equation we draw the following conclusions: 

0 All diagonal elements of A are zero. 
0 There are three independent A’s which are symmetric. These have space-time 

0 There are three independent A’s which are antisymmetric. These have space- 

The generators therefore span a six-dimensional vector space. The six independent 
generators which will be taken to be basis vectors for this space are denoted wpu, 
where p # v and wpu = 1 in the pth column and vth row, is symmetric or 
antisymmetric depending on the indices, and has zeros for all other elements. 
Explicitly, 

components and are the generators of boosts. 

space components and are the generators of rotations. 

w 3 0  = wO3 = (v-) w 3 1  = - w 1 3  = (v) 0 0 0  * 

-1 0 0 
(5.88) 

These generators can be written in the following compact form: 

1 (5.89) ( w p u )  @ = - $ p ” A g € A o a @  , CI 

where c p U a ~  is the four-dimensional antisymmetric symbol normalized to 

60123 = 1 * (5.90) 

The w’s are the basis for a six-dimensional space of 4 x 4 traceless matrices, 
so that any generator is now described by six continuous parameters. The most 
general infinitesimal LT is then 

A = 1 + <tW,0 + i02 6 t j k W j k  . (5.91) 

The continuous parameters are [, and 0,. By considering a succession of infinites- 
imal transformations, we can exponentiate this expression and write the finite 
transformations as in Eq. (5.83), 

A = e ( c , W , O + + e ,  e131iwJb)  (5.92) 

Equation (5.92) is the explicit characterization of the LT’s in Lk which we have 
been seeking. To better understand this equation, we look at a few examples. 
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- - 

Examples 

First, consider a rotarion through angle t9 about the z-axis. In this case t9 = 19,. 
and [compare with Eq. (2.92)] 

- 1  0 0 0' 

0 cost9 -s in8 0 

0 sin0 cost9 0 
- - 

1 0 0  0 1- - 

- 1  0 0 

o i-$P -t9++e3 o 
o e - + e 3  i - p Z  o 

-0 0 0 

- 1 + ; p  < + $ < 3  0 0 -  cosh< sinhJ 0 0 -  

sinh< cosht 0 0 

0 0 1 0  

0 0 0 1- 

t +  +!<3 1 + 0 0 - - 
0 0 1 0  

- 0  0 0 1- 

Next, consider a boost in the x-direction. The generator for this boost is w10, 

so that 

t' = t cosh < + x sinh J 

x' = t sinh< + x coshJ 

E = mcoshJ 

p ,  = msinh t  
(5.96) 

Y' = u 
2' = z p , = o .  

P, = 0 

These transformations permit us to identify the velocity of the boosted particle 
with the parameter <, which is referred to as the rapidity 

u = v/c = tanh< . (5.97) 
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Then, using the familiar relations between the hyperbolic functions leads to the 
correspondence 

(5.98) 
V 

s i n h t  = - 1 

JC-3 
cosht = - 4- 

and the familiar form for the active boost 

The active boost in the i-direction propels a particle of mass m from rest into 
motion along the z-axis with momentum p , .  

5.9 COVARIANCE OF THE DlRAC EQUATION 

Now we are ready to study the covariance of the Dirac theory. To establish 
covariance we must construct a represenration of the Lorentz group on the four- 
dimensional Dirac space. In general, a representation of a group is a mapping 
of each element of the group A into a matrix S ( A )  which preserves the group 
multiplication law. This means that if A1 A2 = A3. then S(A1)  S ( A 2 )  = S(A3). 
Since each group element has an inverse, the matrices which represent the group 
must also be non-singular, and the identity of the group is represented by the 
identity matrix. 

The representation S(  A)  we seek should operate on the four-dimensional 
Dirac space in such a way that the Dirac equation is invariant in form. For this 
purpose we use the covariant form, Eq. (5.12), with the -yp matrices defined in 
Eq. (5.8),  

Then, for any LT A which transforms the coordinates and four-vector potential 
from an unprimed frame to a primed frame, 

(YP [pp - e A p ( 4 l  - m) = 0 . 

X’ = AX A’(x’ )  = A A ( x )  , (5.100) 

we seek a representation, S ( A ) ,  which transforms the Dirac wave function from 
the unprimed to the primed coordinate system 

2L’(z’) = W ) N X )  . (5.101) 

Covariance is the requirement that this transformation leave the Dirac equation 
(5.12) invariant in form, so that in  the primed frame, 

( rP [p: - eA; ( z ’ ) ]  - m) $’(x’) = 0 
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This requirement determines S(A) .  To find the equation which defines S(A), 
substitute (5.101) into the above equation and multiply by S - ’ ( A ) .  Recall that 
p’’ = AP,,p” implies that p ;  = ( A p 1 ) ”  p,,, and obtain 

S- ’ (A)  (7’ ( A - l ) u p  (p,, - e A , ( z ) )  - m }  S(A)$(z) = 0 . 

This equation is invariant in form if 

(A-~)”~S-~(A)~~S(A) = y’ , 

which implies 

S-’(A)7’S(A) = Ap,,y” (5.102) 

This equation will tell us how to construct the S ( A ) .  
Each A E Lk has the form given in Eq. (5.92) and is defined by six numbers 

{ e l ,  &}, The existence of a representation of the Lorentz group on the Dirac space 
implies that, for every choice of the six parameters, there exists a corresponding 
S(A)  of the form 

S(A) = e ( ~ t B l + + & ~ , , k ~ , k )  . (5.103) 

with the same six parameters but with new generators which describe how the 
transformations act on the Dirac space. To find all of the representations, we need 
only construct the six generators. 

To find the generators, it is sufficient to apply (5.102) to all infinitesimal 
transformations. If the parameters are infinitesimal, then 

s ( A )  = 1 <zBz f i o i f z j k R j k  

A = 1 + <z wzo f iez f z j k w j k  7 

and Eq. (5.102) becomes 

s-l(A)’Y’s(A) = (1 - <,Bz - $ e i f z J k R j k )  7’ (1 -t ~ Z B Z  f i e z f z j k R j k )  

’Y’ - [&, 7’1 - + e E f l l k  [ R j k ,  7’1 

= [I + EzWiO -k i e z f i j k W j k ] ’ u  ’Y’ . (5.104) 

Since the parameters <% and 13, are independent, we must equate their coefficients, 
giving 

- [B, 3 7’1 = ( W Z O Y  V Y U  

- [Rjk I’Y”] = (Wjk)’  ”7’ . 
Substituting the specific forms for the w’s given in Eq. (5.88) gives the following 
results for the boosts, B,: 
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(Remember that only for four-vectors is the placement of the index important; 
yi = - ~ i ,  but the a’s are always written at.)  To describe the generators of 
rotations, R J k ,  we introduce two new Dirac matrices which will be used frequently 
in  the following sections: 

(5.106) 

In terms of these matrices, the generators of rotations become 

[yo? R j k ]  = 

[Y r R j k ]  = 
e k 

Remembering that j # k, this last equation follows from 

Digression: The generators can be 
matrix 

g p u  = 

written in a covariant form. Introduce the 

(5.109) 
i 5 [YplYul . 

= i y o y l  = 2iB1 

= ay1y3 = 2iRlJ i # j , 

and 
1 

where 

f y ’ v  = -0”b 

elo = t1 8Jk = e , € l l k  . (5.111) 

I This notation is beautiful but is also cumbersome, and we will not use it. 

In the notation we have introduced, the general Lorentz transformation on the 
Dirac space is 

S ( h )  = (5.112) 
I I 

We now find the explicit forms of the boosts and rotations. 
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Boosts in the Dirac Space 

The matrices given in Eq. (5.112) for S ( A )  can be found in closed form by 
explicitly summing their power series. For the boosts, the first few terms in this 
series are 

(5.113) 

Since 
powers a multiple of the unit matrix and odd powers a multiple of a. Hence 

= E 2 ,  the power series (5.113) is a “repeating” series, with all even 

S(LC) = (1 + f (;) + . . .) + (.a (- 5 + - 1 2  ( ) + . . .) 
2 3! 2 

< A  < 
= cosh - + <.a sinh - , 

2 2 
(5.114) 

where E = I[/ is the magnitude of the vector [ and i = [/[ is a unit vector in 
the direction of <. This transformation can be expressed in terms of the energy of 
the particle if we recall from Eq. (5.96) the relation between the rapidity < and 
the energy E imparted by the boost to a particle of mass ni, 

lnd use relations satisfied by the hyperbolic functions 

cash- < = Jcosh: + 1 = J E  + m  
2 2m 

Hence, if the boost (5.1 14) acts on the Dirac wave function of a particle of mass 
m at rest. 

we obtain 
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Recalling the definition of $ p , s ,  we see that 

and, except for an overall factor m, $ p , s  can be obtained from by 
a Lorentz boost. The non-covariant factor is present because we have 
chosen to normalize the Dirac states in a non-covariant manner; this will be 
discussed further in the next section. 

Rotations in Dirac Space 

The explicit form for rotations in Dirac space can be found in the same way that 
the boosts were found. The general rotation about the &axis is 

(5.116) 

Since y5 commutes with (2: and ( - , 5 ) 2  = 1, it follows that ( i ~ ~ 8 . a ) ~  = -02, 
where 6' = (61 is the length of the vector 8, and therefore 

S ( R e ) =  2 2  ...) -z-,5(!j*a(!-L(!)3+ 2 3! 2 ...) 

e . -  9 
= cos - - ~ 7 ~ e . c ~  sin - . 

2 2 

As an example, consider a rotation through angle t9 about the i-axis. Recall- 
ing that -,'a = u, where (T is the diagonal spin matrix (5.106), the action of the 
rotation about the i-axis on the Dirac spinor u@, s) can be written 

where s(6) is the representation of the rotation on the 2 x 2 spinor space, and 

is the new two-component spinor which results from the rotation Re. familiar 
from previous studies. The matrix d:.!(e) is the Wigner spin $ rotation matrix.* 

*For a discussion of the d functions, see Rose (1957) 
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The lower components can be further reduced using the properties of the Pauli spin 
matrices 

e cos - - ia, sin !) cr . p  (cos - + ia, sin - ( ;  2 2 

= a,p, + a, lp, cos 6 - p ,  sine] + aY [py cos 8 + p, sin81 = cr . p' . 

Hence, 
S(&)&,&) = + P W ( Z / )  = +;&/) (5.1 18) 

and we see that S(R,) does indeed rotate the state through angle 0 about the &axis, 
provided x ( ~ )  are spin 4 spinors. 

Parity 

Next, we find the representation of the parity transformation on the Dirac space. Us- 
ing the defining Eq. (5.102) and the explicit expression for the parity transformation 
(5.79), we require 

S-'(P)yOs(P) = yo 

s - ' (P) r i s (P)  = -71 . 

This is satisfied by 
S(P)  = ei"yo , (5.119) 

where the phase ei" = f l  if we require S ( P ) 2  = 1. This phase is related to the 
intrinsic parity of the particle or state and will be denoted qp . 

Now suppose 

(5.120) 

If the state has a definite parity, it is unchanged by the transformation, i.e., +I = 7 ) .  

In that case, 

(5.121) F( r , t )  = qpF( - r ,  t )  
G(r , t )  = -vpG(-r, t )  , 

and we find that the upper component of a Dirac wave function has the same 
spatial parity as that of the overall state, while the lower component has the op- 
posite spatial parity. This result is due to the action of the yo matrix, which 
gives an extra phase to the parity transformation on the lower components. We 
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S+yOS = yo yostyo = s-1 . 

will use this result in the next chapter when we construct the most general solution 
to the Dirac wave equation. 

To complete the discussion of the homogeneous Lorentz group, we need only 
to find the representation of the time reversal transformation S(T) .  This will be 
postponed until Chapter 8, where time reversal will be discussed in some detail. 

(5.126) 

5.10 BILINEAR COVARIANTS 
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The requirement of covariance has thus led to the introduction of an indefinite 
metric, similar to the one we encountered in the two-component KG theory (the 
operator yo plays a role analogous to T ~ ) .  Because this metric must occur in 
all matrix elements with well-defined covariance properties, it is convenient to 
introduce the Dirac adjoint as follows: 

G ( x )  = @+(x)rO . (5.127) 

This is always a row vector, and a Dirac matrix element will be formed by 
multiplying from the left by the adjoint spinor q ( x )  and from the right by the 
normal spinor @(x). Then 

@’(x‘) = S(A)$(z) 
q’(x’) = q(x)S-’(A) 

p ( 5 )  = q ( 5 ) @ ( x )  = q ’ ( d ) @ y X ’ )  = p’(5. ’ )  

and 
(5.128) 

is a Lorentz invariant scalar density. 
All Dirac matrix elements will now be written in the form 

G(x)r@(4 1 

where r is a 4 x 4 complex matrix. The most general such matrix can always 
be expanded in terms of 16 independent 4 x 4 matrices multiplied by complex 
coefficients. In short, the matrices r can be regarded as a 16-dimensional complex 
vector space spanned by 16 matrices. 

It is convenient to choose the 16 basis matrices, 1 so that they have well- 
defined transformation properties under LT’s. Since the yp’s have such properties, 
we are led to choose the following 16 matrices for this basis: 

1 scalar 
# matrices 

1 

y p  vector 4 

i [yp, y”] = op” antisymmetric tensor 6 (5.129) 

y 5 Y  axial vector 4 
iy0y1y2y3 = y5 pseudoscalar - 1 

16 

It can be seen by inspection that all of these matrices are linearly independent. 
Furthermore, their properties under Lorentz transformations are suggested by their 
labeling. For example 

(5.130) 
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the correct transformation law for a vector field. Note that the y5 defined above 
is identical to the one previously introduced in Eq. (5.106) and that an alternative 
form is 

p u X 6  (5.131) Y - --EpuxaY Y Y Y . 
i 

24 
5 -  

This way of writing y5 is useful for proving that y5 transforms as a pseudoscalar 
(see Prob. 5.4). In particular, one can show that 

S - ’ ( A ) Y ~ S ( A )  = (det A) y5 (5.132) 

so that 

p k ( 2 ’ )  = 4’(x’)75?4’(x’) 

= 4(x)S-’(A)y5S(A)I#J(x) = (det A) ps(x) , (5.133) 

which is the correct transformation law for a pseudoscalar if A E L1 

Applications 

(1 )  Normalization of Dirac wave functions. 
gral, which involves $t@, can be expressed in terms of the following density: 

Note that the normalization inte- 

‘his makes it clear that it is the fourth component of a four-current, which is 
conserved. We already wrote this conservation law in covariant form in Eq. (5.14); 
in terms of the Dirac adjoint it is 

(5.134) 

The appearance of the factor in the boost of a Dirac free particle 
state, Eq. (5.115), can now be understood. The free particle state I#Jp,s(x) has 
been normalized to unity using the normalization condition 

Since this condition is the fourth component of a four-vector, the requirement that 
it be the same in all frames (i.e., behave like a scalar) is inconsistent with its 
Lorentz nature and must break covariance. We therefore expect a non-covariant 
factor in the transformation law which carries this state to the rest frame, 
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The normalization condition (5.135) requires that N = m, as already given 
in Eq. (5.1 15). To see this, observe that 

= N 2  d3r ?~O,~(Z’ )  [yo cosht + y . i s i n h t ]  $o,,(z’) . 

But, &,,(z’)yO$o,,(z’) = l /L3,  and because GO,,  has no lower components and 
7 . i is off-diagonal, 1Lo,,(z’)-y . ~ $ I O , , ( X )  = 0. Hence 

s 

which gives the desired result. Thus the extra non-covariant factor 1/N = fi 
already incorporated in the definition of $p,s  is just what is needed to insure the 
state is normalized to 1 in any frame. Because the normalization condition is 
non-covariant, the states $ p , s  must include a non-covariant factor. 

(2) Normalization and orthogonality relations for Dirac spinors. Because 
of the negative sign in yo, the covariant normalization and orthogonality relations 
satisfied by the u and v spinors are: 

~ ( p ,  s)u(p, s’) = 2m bsst 
~ ( p ,  s)v(p,  s’) = -2m 6,,! (5.136a) 

U(p,s)v(p,s’)  = 0 . 

Note that the negative energy v spinors now have negative norm. For convenience, 
the non-covariant versions of (5.136a) are 

U +  (p, s ) u ( ~ ,  s’) = 2E6,,1 

v t  (p, s ) v ( ~ ,  s‘) = 2Eb,,, 

u+(p,s)v(-p,s’) = 0 . 
(5.136b) 

(3) Energy projection operators. 
project out the positive and negative energy subspace. The matrices 

It is useful to find projection operators which 
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$=P,Yl” . 

are projection operators with the properties 

(5.139) 

A: = A+ 
A- 2 = A -  

A + A -  = 0 

A+ + A- = 1 
(5.138) 

If any state $ is expanded in terms of 11 and z 1 s p’ inors 

= C asub,  s) + C b s v b ,  s) , 
S S 

then the operators A+ will project out the separate plus and minus parts 

S S 

All of these results follow directly from the orthonormality relations (5.136a). 
An alternative form for these projection operators is very useful and is con- 

veniently expressed in terms of the Feynman notation for the scalar product of 
any four-vector p with the y matrices, 

Then, if p” = ( E , , p ) ,  the equations satisfied by the u and u spinors, Eqs. (5.19) 
and (5.26), can be written in the following compact form: 

($ -m)u=O 
( $ + r n ) v = O  

(5.140) 

Using these equations, it is easy to see that the projection operators can also be 
written 

I I i A * = * .  2m I (5.141) 

I I 

These relations can also be obtained by direct construction from Eqs. (5.137). 
Using $ $= p2 = m2, it  is a simple matter to prove directly that A$ = A* and 
A+ A -  = 0. 

(4) Spin projection operators. The spin projection operator for a non-relativistic 
two-component spinor is 

5 1 (1 + d . j‘) x ( s )  = x ( s )  , (5.142) 

where d is the unit three-vector in  the direction of the spin. For spins in the 
2-direction, for example, 0 = ( O , O ,  Itl) for spin up (+) or spin down (-), 
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Since we use u and v spinors in applications, we define the spin operator 
so that, for a Dirac particle at rest, i = (O,O, 1) projects out u(0, f )  and v(0, i). 
Since 

~ ( 0 , ; )  = (i) v ( 0 , i )  = (i) 1 

this gives 

C ( i )  = - 1 ( = i ( 1 + y 5 y p i p )  , (5.143) 

where, in the rest system of the particle, 5 is generalized to the four-vector ,? = 
(0 , i ) .  Note that this polarization four-vector has the same properties as that 
encountered in Sec. 2.5: 

2 o  

pi, = -1 i ' p ,  - - i,p; = 0 , (5.144) 

where p ,  is the four-momentum of the particle at rest. These conditions define 
the polarization four-vector in  any frame, as discussed in Sec. 9.10. 

To find the spin projection operator in any frame, use the invariance of the 
equation 

If p = A p R ,  where p g  = (m, 0) ,  then s = A i ,  and 

C(i)u(O,  i)  = u(0, i) . 

S(A)C(~)S-'(A)S(A)U(O, 5 )  = S(A)u(O, i) 

= 3 [1+ y5 (A-')' yv  i,] u(p, s) 

= f [1 + ySyvsv ]  u(p,  s) = u(p, s )  , 

Hence, in general, 

C ( i s )  = f [1 f 7 5  13 (5.145) 

where sp  is any four-polarization vector satisfying the conditions (5.144). (Check 
that these are projection operators by direct calculation.) 

5.11 CHIRALITY AND MASSLESS FERMIONS 

In this last section we discuss some of the special properties possessed by Dirac 
particles with zero mass. These particles are particularly fascinating and may 
very well exist in nature. If the masses of the neutrinos (see Appendix D) are not 
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exactly zero, they are certainly very small, and the up (u) and down (d )  quarks, 
which make up the first generation (Appendix D), are believed to have a free 
mass (the mass before interactions are turned on) of only a few MeV, so that for 
many considerations it is an excellent approximation to regard them as massless. 

The spinor for a free massless fermion is ( l j  = p / ( p ( )  

(5.146) 
ff . p  

where xA is the two-component spinor of the fermion quantized in the direction 
of its motion (the helicity spinor), so that A = ik!j and 

u * p x ,  = 2 A x x  . (5.147) 

For antiparticles, 

(-:”) (-hx;) , (5.148) 

where the second step follows immediately if we use Ui 02 = -ff2 0:. 
Note that the helicity srares of the massless spinors have upper and lower 

components which are equal in magnitude. This means that they are eigenfunctions 
of the operator y5 

y5u(p1A) = 2Au(p,A) 

7 5  vcp, A )  = -2A .(p, A)  
(5.149) 

The eigenvalue of the operator y5 is referred to as the chirality of the state. 
Introducing the projection operators 

P* = f (1 f y 5 )  (5.150) 

and letting .(A) = u(p, A) or v(p, -A), then 

P+ z (  +) = z (  4) = z R  

P- z (-+) = 2 (-f) = 2, 

P- z (  f) = o  
P+ z(-f) = o  . 

(5.151) 

Particles with helicity +f are referred to as right-handed, and those with -f are 
left-handed (see Fig. 5.4). In this language, the projection operator P+ projects 
out right-handed particles and left-handed antiparticles, denoted collectively by 
z R ,  while the operator P- projects out left-handed particles and right-handed 
antiparticles, denoted by z, . Note that free right-handed and left-handed states 
retain their identity under the proper Lorentz transformations only if they are 
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spin spin 

positive helicity: 
clockwise (right-handed) spin 

negative helicity: 
counter-clockwise (lef-handed) spin 

Fig. 5.4 
handed particles. 

Illustration of the relative orientation of spin and momentum for right-handed and left- 

massless, because only in this case is it impossible to change a particle’s helicity 
by bringing it to rest and reversing its direction of motion. 

Right- and left-handed states are not invariant under parity, however. Spin 
is unchanged by parity (for more discussion see Chapter 8), while momentum 
changes sign, and hence helicity also changes sign. For massless Dirac particles 
this result follows from the fact that the parity operator changes the right-handed 
projection operator into a left-handed one: 

TOP* = P 7 y  0 . (5.152) 

For this reason, right- and left-handed states were merely a curiosity until it was 
discovered in the 1960’s that parity in not conserved in the weak interactions. 
We now know that only left-handed neutrinos interact weakly, and in the Stan- 
dard Model of the electroweak interactions only left-handed neutrinos exist! We 
postpone further discussion of these points until Chapters 9 and 15. 

This completes our introductory discussion of the Dirac equation. In the next 
chapter we will use this equation to study some interesting problems. 

PROBLEMS 

5.1 At t = 0 the wave function for an electron (normalized in a volume L3)  is 
known to be 

where p = (0, 0, N )  ( N  is an integer) and a ,  b, c, d are independent of r and 
t and satisfy 

laI2 + lb12 + lc12 + ldI2 = 1 . 

Find the probabilities that the electron is in the following states: 
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(a) E > 0, spin along z-axis. 

(b) E > 0, spin along -z-axis. 

(c) E < 0, spin along z-axis. 

(d) E < 0, spin along -z-axis. 

5.2 An electron scatters from a repulsive spherical Coulomb potential of the form 

T > R  

U = constant r < R . 
A’(.) = 

(a) Calculate the unpolarized cross section in first Born approximation (lowest 
order in A’). Use the Dirac formalism. 

(b) Compare your relativistic result [from (a) above] with the result you 
would obtain from the Schrodinger equation in first Born approximation. 

5.3 Suppose the Coulomb potential transformed relativistically like a scalar field 
(rather than like the fourth component of a vector field) so that the interaction 
of the electron with the Coulomb potential would read 

e$( x)$( .)Ao (x) (scalar case) 

instead of 
e$ (x)ro$ ( .)Ao (x) (vector case), 

where in both cases e A’(.) = -Ze2/4nlr‘l = - Z C ~ / T .  Calculate the differ- 
ential cross section in the Born approximation for the scalar case and show 
that, at high energies, both the angular and energy dependence are completely 
different from the vector case, even though the two differential cross sections 
are identical at nonrelativistic energies. 

5.4 Prove that $y5$ transforms like a pseudoscalar. If ,!?(A)$ = $’, prove that 

$’(x’)-y5$’(x’) = (det A)  $(x)r5$(x) 

5.5 Consider the following Dirac matrix element: 

where up” was defined in Eq. (5.129). 

(a) From the structure of M ,  guess how it transforms under LT’s. Write 
down the transformation law explicitly, using the notation x’ = Ax. 

(b) Using the Lorentz transformation properties of the Dirac wave functions, 
Eq. (5.101), and the property Eq. (5.102), prove that your transformation law 
is correct or find the correct one. 
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5.6 [Taken from Bjorken and Drell (1964).] The Dirac equation describing the 
interaction of a proton or neutron with an applied electromagnetic field will 
have an additional magnetic moment interaction representing their observed 
anomalous magnetic moments: 

where Fp'is the electromagnetic field tensor. 

(a) For the proton, i = p ,  ep  = lei; for the neutron i = n, e, = 0. Verify 
that the choice of nP = 1.79 and K,  = -1.91 corresponds to the observed 
magnetic moments and check that the additional interaction does not disturb 
the Lorentz covariance of the equation. Check also that the Dirac Hamiltonian 
is Hermitian and that probability is conserved in the presence of the additional 
interaction. 

(b) Make a Foldy-Wouthuysen transformation for the neutron, keeping terms 
up to order ( v / c ) ~ .  Give a physical interpretation of the individual terms. 

(c) Suppose a negatively charged particle of mass m, charge -e, and anoma- 
lous moment K is captured by a nucleus of charge Z e .  Suppose that 
m >> me, so that screening by the other electrons can be ignored. Cal- 
culate the fine structure splitting of the energy levels, and comment on how 
the splitting depends on K .  

5.7 New diagonal form for the Dirac equation. Paralleling the discussion 
following Eq. ( 5 . 5 3 ,  we can introduce a FW transformation which will com- 
pletely eliminate the lower components from the free positive energy solutions 
and the upper components from the free negative energy solutions. The ad- 
vantage of such a representation is that it allows us to regard the mixing of 
upper and lower components as a dynamical consequence of the interaction; 
the free Dirac equation is fully diagonalized. A unitary transformation which 
accomplishes this is 

(a) Show that U is unitary by direct computation. Show that 

("b"') u u@, s) = rn 
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(b) Show that 

which is a diagonal form comparable to the one found for the KG equation 
in Prob. 4.6. 

(c)  Show that, in this representation, the Dirac equation with electromagnetic 
interactions can be written 

Introducing 
-iV -- D = - -  P 

E + m  E v + m  

show that the H's  are 

H~ = e ( vo + D, vOD,) e 
H~ = -e (v  . D + D . v)  e 
H; = e ( i e Z J k ~ , v o ~ , )  e 
H4 = - e ( i ( V  x D )  + i ( D  x V ) ) e  

H g = e ( - V +  ( D . V ) D + D ( V . D )  - D,VD,)e 

H6 = e ( N O D  - ~ D v O )  e 
H~ = e (iEtJk~,v,~,) e . 



CHAPTER 6 

A P P L I CAT I 0 N 
OF THE DIRAC EQUATION 

This chapter begins with a discussion of the general form of the solutions to the 
Dirac equation for a potential which is spherically symmetric. Using these results, 
it is an easy matter to find the solutions for a particle confined by a spherically 
symmetric square well, a simple model for the treatment of the confinement of 
quarks in hadrons. The chapter concludes with a discussion of the exact solutions 
for hydrogen-like atoms. 

6.1 SPHERICALLY SYMMETRIC POTENTIALS 

In many problems of interest, the potential in the Dirac equation is spherically 
ymmetric, i.e., a function of r = Irl only. For example, if the four-vector potential 

has the form V p ( r )  = (V( r ) ,  0), which is the case for the Coulomb potential, the 
equation reduces to 

I a 
at [ ax' 

2- = -iq- + p m + V ( r )  II, . 

This is an array of four coupled partial differential equations and looks like it would 
be formidable to solve. However, because of the spherical symmetry, it turns 
out that these equations can be reduced to only two coupled first order ordinary 
differential equations, which are comparatively easy to solve. This reduction is a 
good starting point for the study of many interesting problems, two of which will 
be treated in the subsequent sections. 

The equations are reduced by first finding the symmetries of the system and 
then using these symmetries to express the solutions in terms of the minimum 
number of unknown functions which are not determined by symmetry and there- 
fore must be determined from the dynamics. We will see that all solutions can be 
expressed in terms of only two sculurfuncrions and that these can be determined 
from two coupled first order differential equations. 
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Symmetries of the Motion 
Begin with the introduction of the orbital angular momentum operator 

L = r x p  = -i (r x V) (6.2) 

and the spin operator 
S = l y a .  1 5  

Remark: Note that this spin operator is nor the same as the covariant spin operator 
$y57 introduced in the last chapter. The difference arises from the fact that, as 
introduced in Eq. (5.29), the spin up negative energy state, for a free particle at rest, 
is proportional to v(0,  -$), so that 

and using the S, defined in Eq. (6.3) gives 

as expected. The operator (6.3) therefore identifies the states q!~$),~ (z) and $J;>:? (x) 
as “spin up” states, which is the correct definition for use in the first quantized 
treatment of spin 4 particles. In the last chapter we designed the spin operator so 
that the “spin up” states were proportional to u(p, f ) and v(p, f ), which is the correct 
one for use in the second-quantized (field theoretic) treatment. I 

However, note that 

are constants of the motion. Furthermore, 

J i  = Li + si 

. .  

(6.6) s 2  = S’S‘ = 1,. a = 3 
4 4 

is also a constant of the motion but will be suppressed since it always has eigen- 
value S2 = = (;)($) which supports the interpretation that we are describing 
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a spin particle. We leave it as an exercise to show that [ L 2 , H ]  # 0. Hence 
L is not in general a good symmetry, but in this case the states will still have a 
definite value of L because it turns out that t? is fixed uniquely by the parity, which 
is a good symmetry. 

The parity operator is 
P=yOP (6.7) 

where TO operates on the Dirac space and P operates on the coordinate space. 
Note that P2 = 1 and that 

[P, H ]  = [TOP, -2aiai1 

= -2  {ToPaida - aaaayOP} 

= -i { -70aiai - cvi-yOdi} P = 0 . (6.8) 

Hence, the solutions of the Dirac equation in a spherically symmetric potential 
are characterized by the following conserved quantities: 

3 
4 

E ,  J2, Jz, S2 = -, y o P = f l  . 

We ignore S2 from now on. 

Structure of the Solutions 

Tonsider a solution of the general form 

(6.10) 

where F and G are two-component spinors which can depend on the quantum 
numbers which characterize the states. Since parity is a good quantum number, F 
and G have opposite spatial parity, as shown in Eq. (5.121). and the parity of the 
overall state is the spatial parity of its upper component. Hence we may define 
F* and G* with the following properties: 

+ ( r )  = f F * ( - r )  
G*(r) = rG* ( - r )  

(6.11) 

The structure of these functions may be further specified by exploiting the 
rotational symmetry. The total angular momentum operator has the form 

L + +  0 
L + i a  O ) * 

J =  ( (6.12) 
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Hence it is clear that both the upper and lower components can be expanded in 
terms of the generalized spherical harmonics Y:m(f), which are constructed by 
vector addition’ from the spatial spherical harmonics Yern(?) and the spin f states 

a =  (3 P =  (3 (6.13) 

The f superscript on the Y’s denotes the parity. With this notation, the states 
have the overall structure 

(6.14) 

where f and g are now functions of the radial coordinate only and the phase 
factor i multiplying the lower components is introduced for convenience. Note 
that (6.14) incorporates the results of (6.11) by explicitly using Y’s with opposite 
parity to describe the upper and lower components. With the construction (6.14), 
the states are now eigenstates of angular momentum and parity, with the usual 
properties 

J2$;m(4 = j ( j  + M;m(r) 

~lltji,(r) = &Q:m(-r) 

J*$,’,(d = m@$Ar) (6.15) 

The total angular momentum quantum number j is half an odd integer, and the 
commutation relations between the components of J permit us to introduce raising 
and lowering operators in the usual way: 

(6.16) 

Hence the Y states can be explicitly constructed using Clebsch-Gordon (CG) 
coefficients 

Y j m ( f )  = (Im-4; 4 +l jm)aYt ,m-+( f )  

+(em+&;+ - 4 j m y t , m + p )  1 (6.17) 

where the CG coefficients come from Table 6.1. 
As Eq. (6.17) and Table 6.1 show, there are precisely two 3’’s for each j (and 

m, which we ignore in the following discussion). These have values of the orbital 
angular momentum I equal to j + $ or j - $. The parity of the Y’s depends 
on whether this value of I is even or odd. Once j and the parity are specified, 
P is uniquely determined. However, instead of designating these states by parity, 
which is rt. we introduce a new quantum number k defined in the following way: 

+ i f - t = j + f  + k = I  

- i f I = j - f  k = - ( I + 1 )  . 
(6.18) k = f ( j  + $) 

* A  general discussion of angular momentum eigenfunctions and the addition o f  angular momentum 
can be found, for example, in Rose (1957). 
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Table 6.1 Clebsch-Gordon (CG) coefficients. 

The quantum numbers j and k now determine the parity quantum number (and 
therefore also the correct t corresponding to any particular j) as shown in Table 
6.2. It is very convenient to re-express the Y* in terms of this quantum number 
k. This will simplify all subsequent formulae. 

To see how this works, first note that the use of k simplifies the CG Table 6.1. 
When expressed in terms of k ,  both coefficients in each column (i.e., both parity 
states) can be expressed by one algebraic expression: 

k + i - m  J 2 k + 1  
(em-+;+ t l j m )  = -sgnk 

(6.19) 
k + + + m  J 2 k + 1  ’ 

( t  m++; 4 - 4 l j m )  = 

where sgn k is +1 if k > 0 and -1 if k < 0. Instead of y* we will use Yk, 
where 

I 

Note that Y* and Yk are identical, provided the identification of k and f is 
made consistent with Table 6.2, and hence the solution can be written in this new 
notation: I 

(6.21) 
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5 
2 

Table 6.2 Relationship betweenj, k, f2, and parity. 

j k e I parity I 

- f 3  3 
-3 2 + 

Properties of the Angular Functions 

Next, we prove some useful properties of the Y,k,(?) functions which will permit 
us to completely eliminate the angular dependence from the Dirac equation. We 
prove the following three relations: 

Proof: To prove (6.22a), use 

Rearranging this gives 

Hence 
a 1  

- in . V  = - i a . f  - - - a .  (T x L) , 

To reduce the last term, use u i u j  = 6 , j  + i E , j k O k  to obtain 
dr T 2  
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To prove (c), note that 

J 2 = L 2 + S 2 + u . L  . 

Y,k,(+) 
j ( j  + 1) - 

j ( j  + 1) - 

- ( j +  4) ( j  + g)  
- ( j  - f )  ( j  + a) 

if k > 0 + C = j  + 3 
if k < 0 + C = j  - f 

Because of the definition of k, this result holds for both signs of k, and (c) is 
proved. 

Finally, to prove (b), we will first show that c 1 ?Y!m(f) has angular mo- 
mentum quantum numbers j and m and opposite parity from Y,k,(F). This will 
establish that 

0 .  iY,f’ ,(f)  = N3Y;;(?) , (6.23) 

To prove (6.23), it is sufficient to show that J’ commutes with u. f and that 
where N3 is a constant of proportionality. Then we will show that N3 = -1. 

the spatial parity operator anticommutes with u . i :  

[ J * , u . f ]  = O  and { P , a + f }  = O  . (6.24) 

Then it follows that 

J’ u. i ytm(i) = u . i J’ J’,k,(i) 
P a .  iY,k,(f)  = -u. i P Y , k , ( f )  , 

and since the Y’s are uniquely specified by j ,  m, and k and the last expression 
implies that u . ?Y!m(f) has opposite parity from ytm(f ) ,  it follows that u . 
f Y f m  ( i )  must be proportional to Y;,” (i). 

However, the relations (6.24) are readily proved by direct computation. For 
the first relation, 
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This completes the proof of (6.23). 

4 = 0, or i = 2. Using 
To find N j ,  we evaluate both sides of Eq. (6.23) for the special case 0 = 

we have, fo rm = - $  and k > 0 so that k = I, 

and if k < 0, so that e = - ( k  + l), 

Hence, for both cases, 

and Nj = -1, which completes the proof of (6.22~). I 

Using Eqs. (6.22) it is a simple matter to reduce the Dirac equation to two coupled 
differential equations. 

Reduction of the Equations 

Assuming a solution of the form @(x) = @,k,(r) PEt ,  the Dirac equation now 
becomes 

@m ( r )  * 

(6 .25)  
For the solution with the structure given in Eq. (6.21), the identities (6.22) may 
now be used to reduce these coupled equations to 

I m + V ( r )  - - t a . r Z  . - a  +ia . i+  

-m + V ( T )  a - t7.L [ -ia + i + ia . r 
E1CI;m ( r )  = 

where the first equation is the coefficient of the angular function Yfm(f) and the 
second the coefficient of yJ2(i) .  The angular variables have thus been completely 
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removed from the equation, leaving only two unknown functions of the radial 
coordinate. Rearranging terms and dropping the subscripts and superscripts give 

This completes the task for this section. In the next section these equations are 
solved for a constant potential. 

6.2 HADRONIC STRUCTURE 

As an illustration of the modern use of the Dirac equation, we give a very simple 
introductory discussion of the structure of hadrons (strongly interacting particles).. 

There is strong experimental evidence to support the view that mesons and 
baryons are composed of elementary spin f particles called “quarks.” (For a 
brief summary of the particles of modern physics, see Appendix D.) Mesons 
are believed to be composed of a “valence” quark ( 4 )  and antiquark ( i j )  pair, 
surrounded by a “sea” of gluons and other qq pairs, and baryons composed of three 
valence quarks surrounded by a similar sea. Furthermore, quarks are believed to 
:xist only in the combinations of quarks and antiquarks which exist in baryons 
and mesons. If we attempt to remove a single quark from such a combination, the 
energy grows with the distance the quark is separated from its neighbors, until it 
becomes so large that it is energetically favorable to create a qq pair and break the 
“string” connecting the quark to its neighbors. The situation is similar to trying 
to isolate a single north or south pole of a magnet; if we cut the magnet apart, a 
new pair of poles is created, defeating our purpose. Because of this property of 
the forces which bind quarks together, they are said to be conjned. 

The MIT bag model is a very simple model for hadronic structure.+ Suppose 
the hadron occupies a spherical volume of radius R. If a quark is inside this 
volume, we assume its mass is small, and it may be taken to be zero. If it  gets 
outside, interactions with the neighboring quarks which make up the rest of the 
hadron are assumed to generate an infinite mass for the quark. Since this implies 
infinite energy, the quark will not penetrate outside of the hadronic volume, which 
is designated “Region I” in Fig. 6.1, and is assumed to be spherical. 

*For a review of modem ideas about hadronic structure, see Bhaduri (1988). 
+Two early papers introducing the bag model are [CJ 741. Additional references can be found in 

Bhaduri (1988). 
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f + ( E 2 - T $ )  f = o  . (6.27) 

- 

Fig. 6.1 Diagrammatic representation of a hadron in the MIT bag model. Quarks are confined 
inside a spherical volume (Region I) by the simple ansatz that their mass is injnite outside the bag 

(Region 11). 

To describe this model quantitatively, we must solve the Dirac equation under 
t+e assumption that V = 0 and that m = mq = 0 inside the volume and m = 
mq + 00 outside. The solutions in the two different regions I and I1 must be 
continuous at the surface. (Since the coupled differential equations are first order, 
and since m is discontinuous at the boundary, we cannot require that the derivative 
of the solution also be continuous at the boundary, as we will see below.) 

We therefore begin with a study of the solutions of the spherically symmetric 
Dirac equation for V ( r )  = 0. We will first obtain solutions for arbitrary quark 
mass m and later specialize to the limiting cases of interest to the hadronic structure 
problem. Differentiating the second of Eqs. (6.26) and eliminating g(r )  give 

dg 
dr 

= ( E  + m)- = - (E2 - m 2 )  f - 
dr2 

( 1 - k ) d f  - + - f ]  l + k  
7 [dr  r 

= - (E2 - m2) f - 

Hence: 
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Recall that the spherical Bessel functions are solutions of the equation* 

(6.28) 

Hence if k: = E2 - rn2 1 0, the solutions of (6.27) are 

j t (k0r)  regular as r -+ 0 

nt(kor) singular as T -+ 0 

while if k$ = -Ki  = E2 - rn2 < 0, the solutions are 

All of these functions satisfy the recursion relations 

2e + 1 -f&) = fi-l(.) + ft+l(X) 

fX4 = 2&+1 [efe-ib) - ( l -  l)ft+i(x)l 
(6.29) 2 

1 

where f' refers to the derivative of f with respect to its argument x. Finally, for 
future reference note that 

sin x (1) e-x 

sinx cosx (1) ' e-" 
22 2 X 

h, (ix) = -- 
jo(.) = 2 X 

(6.30) 

j,(x) = - - - h, (22) = i- (1 + ;) . 

For the study of the structure of hadrons, we are interested in positive energy 
solutions (antiquarks will be described by their positive energy charge conjugate 
states) for which rn is both less than and greater than the bound state energy E. 
There will be two kinds of solutions, depending on the parity (or the sign of k) 
of the state. If k > 0, C = k, and for solutions in the vicinity of the origin we 
must choose 

. f(r)  = fk(x) = Njk(k0r) 1 (6.31a) 

where N is a normalization constant and z = ~ O T .  The other solution, proportional 
to nk, is singular, and hence unacceptable. For a normalizable solution, we must 
also choose the one which approaches zero as T -+ 00, or 

f ( r )  = fk(X) = N@(iKor) , (6.3 1 b) 

*A good reference for special functions is Abramowitz and %gun (1964). 
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where 5 = X o r .  In either case the corresponding g, 
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from Eq. (6.26), is 

1 

K l + k  
E + m  

where in both cases 2 = Kr, so that K = ko for solutions proportional to j and 
K = iK0 for solutions proportional to h(l). The equation for g may be simplified 
using a recursion relation obtained by combining the two relations (6.29) 

Hence, since k = e, 

The full solution is therefore 

(6.32) 

where Eq. (6.22b) has been used to express y P k  in terms of yk, and remember 
that k = e, x = Icr, and f k  is given by Eq. (6.31a) or (6.31b), depending on 
whether T < R or r > R. 

The other type of solution occurs when k < 0. In that case, d = -(k + l),  
and we must choose 

if r > R. In either case, the lower component is 

1 
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where K is as before. This suggests manipulating the recursion relations in a 
different way: 

Hence 

The full  solution of Type 2, with k = - ( e  + 1) < 0, is therefore 

(6.34) 

I I 

where now f is given by Eqs. (6.33). Note that the solutions (6.32) and (6.34) 
involve the same f's (only the I's are different) and identical definitions of K and 

We now return to the hadronic structure problem. Only the solution for 
k = -1 will be obtained here. (This is the lowest energy level, or the ground 
state.) The solution in region I (inside the hadron where T < R) with rn = 0 is 

2. 

where x ( ~ )  is a two-component spinor. (When k = -1, y&, reduces to a two- 
component spinor independent of ?.) Outside, in region 11, we let m >> E and 
neglect E: 

Using the forms of h,-, and hl given in (6.30). we have 

We want to take the limit m -+ 00, but in such a way that the solution is not zero 
for T = R, so that continuity is possible at T = R. To accomplish this, choose 

N I I  = -mNoemR 
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1.2 

Fig. 6.2 
mass in region I1 is large but finite. The bag radius is at “0 = 2.04. 

Graph of the upper component of the ground state bag wave function when the quark 

where NO is finite. Then 

{ ( ?) x(’) at r = R - 
m-cc 

for all T > R , 

The upper component of this solution is shown in Fig. 6.2 (for the case where m 
in region I1 is large but still finite). We see that the form of $11 at r = R requires 
that the upper and lower components be equal for $1 at r = R. Specifically, we 

(6.38) 

The eigenvalue condition, for a massless quark confined in a volume of radius R, 
is therefore 

(6.39) 

This equation is a transcendental equation which can only be solved numerically. 
Recalling the forms of j o  and jl (see Fig. 6.3) we see that the “cross-over’’ point 
must be less than T. It is in fact at 

xo = 2.04 . (6.40) 
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1.2 

0.8 

0.4 

0.0 

-0.4 1 -. . 
0.0 2.0 4.0 6.0 

X 

Fig. 6.3 
equal. 

Graph of the first two spherical Bessel functions showing the point at which they are 

Hence E is a function of R: 
m 1 E = R .  

2.04 I (6.41) 

u 
The energy of a massless quark confined in a volume of radius R goes inversely 
with R. This result can also be obtained (qualitatively) from the uncertainty 
principle. 

We leave it as an exercise (Prob. 6.2) to find some of the other solutions and 
' J  prove that the condition (6.41) gives the minimum energy. 

6.3 HYDROGEN-LIKE ATOMS 

As our final example, we obtain the exact solutions to the Dirac equation for 
hydrogen-like atoms,* where 

v = - - .  20 
T 

In this problem, it is convenient to introduce reduced wave functions 

gn 
7- r 

g = -  f = -  f n  

in terms of which the coupled equations (6.26) become 

T 

(6.42) 

(6.43) 

'For an elementary discussion see Das (1973). 
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When r -+ 00, the equations reduce to 

These equations show that the bound state solutions, with E < m, go like 

Hence, it is convenient to scale the equations by introducing 

p = dm2 - E 2 r  

Then the coupled equations reduce to 

(6.45) 

(6.46) 

where 

.=J"" ,  m + E  (6.48) 

For weakly bound states (which is the case when 2 is near unity), E << 1. 

expansion for the reduced wave functions fn  and g R :  
The equations (6.47) can be solved by assuming the following power series 

m 

n=O 
m 

(6.49) 

n =O 

Substituting these series into the coupled Eqs. (6.47) and equating the coefficient 
of the (R - 1)th power of p give: 

1 
(V + 72 + k )  An - An-l - - ZaB, = 0 

E 

(V + R - k )  Bn - Bn-l - EA,-~ + ZQA, = 0 . 
(6.50) 
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The indicia1 equation for u is obtained when n = 0: 

(6.51) 

To have a non-trivial solution (i.e., A0 or BO # 0) requires 

v Z - k 2 + ( Z a ) 2 = 0  * v = * J m  . (6.52) 

Now the reduced wave function goes like p” at the origin and is singular if v is 
negative. In order for it to be normalizable, this singularity cannot be stronger 
than p - 4 ,  which implies the condition v > -4. Hence, negative values of v must 
be rejected because, even for the smallest value of lkl (lkl = l), negative v are 
less than -f (unless Z is very large, and we will not discuss such extreme cases). 
Hence 

v = @ q z @ ,  (6.53) 

and eliminating A,-1 and B,-1 from the coupled Eqs. (6.50) gives the following 
relation for B, in terms of A,: 

E(V + n + k) - za B, = A ,  
v + n - k + Zac 

(6.54) 

The recursion relations for A ,  can now be found by substituting (6.54) into the 
coupled Eqs. (6.50), 

An+l - (v + n + 1 - k + ZCXE) (2v + 2n + Za ( E  - 2)) -- . (6.55) 
A ,  (v + n - k + ZaE) ( ( u  + n + q2 - k2 + (2a)Z) 

The eigenvalue condition emerges from the recursion relation (6.55). First, 
note that as n -, 00, the ratio A,+l/A, 4 2/(n + 1). For comparison, 

where the ratio of successive terms of this comparison series is 

By the ratio test, the series for fR and gR will therefore go like 

(6.56) 

(6.57) 
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which is unacceptable as a solution. Hence the series must terminate. This 
produces the eigenvalue condition. Only one of the two terms in the numerator 
of Eq. (6.55) can be zero and terminate the series. In order for this to happen for 
some integer N, we require 

(6.58) 
ZCr 

2v + 2N - -(1- E ’ )  = 0 . 
E 

Substituting for E 
ZaE = o ,  d m  v + N -  

and solving for E gives 

EN,k = J(7 = m , / T  Y + N)’ + (Za) , 
v + N)’ + (Za)’ 

where the subscripts remind us that E depends on N and k. Finally, using Eq. 
(6.53) to eliminate v and doing some rearranging give 

. (6.59) I”’ (ZQI2 

( N  + lk1)’ + 2N 

This is the exact solution of the Dirac energy of a hydrogen-like atom. 
Before we discuss this result, note that if k is positive, there is no solution 

for N = 0. This is because in this case the term in the numerator of the recursion 
relation (6.55), which would normally terminate the diverging series, is canceled 
by a zero in the denominator, so the series does not terminate and the would-be 
“solution” must be discarded. The ratio in question is 

2v + ZCYE - ZQ/€ 
Y - k + Z a €  

R =  1 

and to see that this can never be zero when k is positive, multiply numerator and 
denominator by the factor v + k + Zae (which can have no zeros if k is positive), 
and substitute k2 = v’ + (Za)’ in the denominator, giving 

(v + k + ZQE) (2Y + Za€ - za/E) 
(v + ZM)’ - Y’ - (Za)’ R =  

- (v + k + Z ~ E )  - 
ZCY€ 

9 

which shows that the expected zero at 2v = Z Q / E  - Zae is canceled. In the 
following discussion we must be careful to exclude the case N = 0, k > 0 from 
consideration. 
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Energy Level Scheme 

Since lkl = j + $ and there is no solution for N = 0, k > 0, it is convenient to 
define a new quantum number n as follows: 

n = N + J k I _ > l  - n < k < n .  (6.60) 

This quantum number is identical to the familiar nonrelativistic principal quantum 
number. In terms of it, and expressing (kl in terms of j ,  the energy can be written 

1 -  (,w2 
n2 + 2 (n - ( j  + 4)) [ Jm - ( j  + l)] 

(6.61) 
This is our final expression for the exact energy of a Dirac particle bound 

by a Coulomb potential. Note that the energies depend on only two quantum 
numbers, n and j .  Hence, as we discussed in Chapter 3, the Lamb shifr (which 
gives the splitting for different e's associated with the same j) is a physical effect 
not described by the Dirac equation. 

It is amusing to expand the exact result to order a4. This gives 

E - m z - m -  (z(u)2 -m- [ . i] + 0 ( ( Z C Z ) ~ )  . (6.62) 
2n2 2n4 + - 

As expected, this agrees exactly with the fine structure results we obtained previ- 
ously in Sec. 5.7 using the FW transformation. 

The first few Dirac energy levels are tabulated in Table 6.3.  The explicit 
expression for the Dirac wave function for the ground state of a hydrogen-like 
atom is 

where 

(6.63) 



182 APPLICATION OF THE DIRAC EQUATION 

Table 6.3 
first nine energy levels of hydrogen-like atoms. 

Quantum numbers and exact Dirac energies of the 

Note that 

- 
k 
- 

-1 
- 

-2 

-1 

1 
- 

-3 

-2 

2 

-1 

1 
} m / m  5 + 4 J z z 7  

and to lowest order in ( Z Q ) ~ ,  the ground state wave function becomes 

j ( - l ) ( r )  = AoP-t(zO)’ e - P  

g ( - l ) ( r )  = - ~ z O A o p - i ( z a ) z  ,c-P . 

The upper component is very similar to the non-relativistic wave function except 
for an enhanced (singular) part at small p which goes like 

(6.65) 

1 
& Z d Z  . 
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This singularity is very weak, and the solution is still integrable near the origin. 
The lower component is very much smaller (by a factor of 42,) than the upper 
component. Hence the relativistic solution differs from the non-relativistic solution 
only to order Za, or at very short distances. 

This concludes our study of first quantized relativistic equations. In the next 
chapter, we begin the study of field theories based on these equations. 

PROBLEMS 

6.1 

6.2 

6.3 

Consider quarks confined in a spherical volume, as discussed in Sec. 6.2. 
Suppose that it requires energy to “make” a volume in which the quarks can 
move freely, so that the total energy of n non-interacting quarks inside a 
volume R is 

71x0 47r 
E R = - + - R ~ B  , 

R 3  
where, for ground state quarks, 20 = 2.04, and B is the energy density of 
the empty volume. 

(a) Minimize the energy with respect to R and show that 

Rmin = 

Suppose the proton (mass 940 MeV) is made of three quarks. What is 
its radius? What is the mass and radius of a qq system? How does this 
compare with masses of the known mesons (n- % 140 MeV, p Z 770 MeV, 
w z 783 MeV)? 

(b) Suppose the confined quark has a rest mass m, # 0. Find an equation 
for its energy if it is confined in a spherical volume of radius R. 

Find the solution for the first excited state of the MIT bag. 

Suppose a massless quark moves under the influence of a SHO potential with 
both scalar and vector terms, 

V ( r )  = X1r2 + p (vo + X2t-2) , 

where the term proportional to X1 is the fourth component of a vector, the 
second term (with the Dirac matrix p) is a scalar mass term, and VO, XI, and 

(a) Find the correct coupled equations for the upper and lower radial functions 
f k ( r )  and gk(r) of the Dirac wave function of such a state. 

are constants. 
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(b) Find the single second order equation for f k ( r ) .  

(c)  Choose the constants Vo, XI, and X2 so that this equation reduces to 
a Schrodinger equation for a particle moving in a pure simple harmonic 
potential. Find the ground state energy and the Dirac wave function for the 
ground state of a massless quark moving in such a potential. Discuss the 
significance of your result. 

6.4 A massless spin f particle moves in a one-dimensional scalar potential of 
the form 

V ( z )  = 0 

= vo t < - R  and R < z ,  

where the constant VO is large and positive. 

(a) Write down the correct Dirac equation for the motion of this particle. 

(b) Show that the equation found in part (a) is invariant under the parity 
transformation t -, -2. 

(c)  Solve the equation for the ground state energy and wave function of the 
trapped particle. Take the limit VO --t 00, and sketch the solution for this 
case. Comment on any interesting features which the solution possesses. 

6.5 A Dirac particle of mass m and positive charge e scatters from the one- 
dimensional high barrier shown in Fig. 4.1. 

(a) Write down the Dirac equation which correctly describes the scattering if 
the potential energy eV is the zeroth component of a four-vector (a Coulomb- 
like interaction). 

(b) Write down the Dirac equation which correctly describes the scattering if 
the potential energy is a scalar (invariant under all Lorentz transformations). 

(c) Consider solutions in region I1 of the form 

where x and q are two-component spinors, E > 0 is fixed, and eV > E + m. 
Solve the Dirac equation in region I1 for the two cases described above, and 
discuss the nature of the solutions. Can particles propagate in region II? 

(d) Find the full solution for both of the cases described in (a) and (b), and 
discuss the time evolution of a positive energy state which is localized at 
large negative z at large negative t and approaches the barrier. Show that the 
norm is conserved in both cases, and discuss your results. 
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CHAPTER 7 

SECOND QUANTIZATION 

The wave equations discussed in the last three chapters were able to describe 
the quantum mechanical behavior of single particles in a covariant manner. Such 
a treatment is referred to as first quantization. It is suitable for the descrip- 
tion of the interactions of massive particles with kinetic energies much less than 
the particle rest mass, where energy conservation forbids the production of real 
particle-antiparticle pairs. However, at higher energies where the production of 
single particles (for cases when particle number is not conserved, such as for 
neutral pions, T O ’ S ) ,  or particle-antiparticle pairs (in cases where particle number 
is conserved) is energetically possible, the first quantized form fails completely, 
and we need to develop a new quantization scheme capable of describing particle 
production and annihilation fully. Such a quantization scheme is referred to as 
swond quantization. 

The quantum field theory of the E M  field developed in Chapter 2 is just 
such a theory. In the case of the E M  field, we started immediately with the 
second quantized (field) theory because a useful first quantized theory of photons 
does not exist. This is because photons have zero rest mass and photon number 
is not conserved, and therefore photons can always be created, no matter how 
small the energy. For classical particles the first quantized theory developed in 
the preceding three chapters was a useful development in itself and an essential 
first step to a more complete theory. 

We are now ready to extend our previous treatment of the E M  field to the 
description of classical particles, such as spin $ electrons, quarks, or protons or 
spin zero pions. We proceed by first interpreting the single particle wave functions 
which emerge from the first quantized theory as “classical” fields and then turning 
these c-number fields into quantized q-number (operator) fields, just as we did for 
the photon. The resulting quantum fields have the same general structure as the 
E M  quantum field, showing that classical particles and classical waves (photons) 
are ultimately described by the same mathematical object, a quantum field. 

In this chapter we will discuss the construction of theories which describe free, 
non-interacting particles. A very important result will emerge. The requirement 
that the energy of free states be positive leads to the conclusion that the states of 
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spin f particles must be antisymmetric and satisfy Fermi-Dirac statistics, while the 
states of spin 0 particles must be symmetric and satisfy Bose-Einstein statistics. 
This famous result is referred to as the connection between spin and statistics 
and is one of the great achievements of relativistic quantum field theory. We will 
conclude this chapter with a brief discussion of how interactions are included in 
quantum field theories. The study of interacting field theories will resume again 
in  Chapter 9, after a discussion, in Chapter 8, of the role which symmetries play 
in the development of field theories. 

7.1 SCHRODINGER THEORY 

For comparison, we first discuss the second quantized form of the Schrodinger 
theory. The first step in this development is to regard the Schrodinger wave 
function, +(x), as a classical field. A Lagrangian density which will yield a 
Schrodinger equation for this complex field is 

+ t 
1 a 1 a 1 +  4 L = -+*(x)i-+(x) - -+*(z)i-dj(z) - -V$*(x).  V+(x) 
2 at 2 at 2m (7.1) 

where the arrow over the operator shows in which direction it acts. If II, and @* are 
independent (corresponding to two independent real fields), the Euler-Lagrange 
equations are 

aC a+(x) i a@(x:) -v2$(x) 1 = o  , - -=  a ac - 
a x p a ( % )  a p  2 at 2 at 2m 

where one of the two d+/at terms comes from the derivative of C with respect 
to a+*/at and the other from the derivative of C with respect to +*. Combining 
these terms gives the familiar Schrodinger equation for + 

(7.2) i-+(x) a = --V 1 2  $(x) . at 2m 
The momentum conjugates to + and +* are* 

ac i ac i 
= -+*(x) 2 .(x) = (7.3) 

Hence the Hamiltonian density is 

*In order to agree with the convention we will use later for Dirac fields, the momentum conjugate to 
1L will be denoted by K'. and nor K. 
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and the total Hamiltonian, after integrating by parts and assuming the bound- 
ary terms vanish (because of the periodic boundary conditions we have always 
imposed; recall the discussion in Sec. 2.2), becomes 

H =  J d3r 'H= J d 3 r $ * ( x )  ( -- " ) w  . 
2 m  (7.5) 

This is simply the expectation value of the kinetic energy operator, a result familiar 
from elementary studies. 

Note that a popular alternative to the Lagrangian density (7.1 ) is 

This Lagrangian density will also give the Schrodinger equation for $ but is not 
Hermitian and breaks the symmetry which naturally exists between $ and $*. In 
particular, it gives 7r* = i$* and 7r = 0 which is inconsistent with other relations. 
We will always use a Hermitian Lagrangian density. 

For the free Schrodinger theory, the eigensolutions of the Schrodinger equa- 
tion satisfy 

and imposing the same periodic boundary conditions we used in Chapters 2 and 
3, they are explicitly 

(7.7) 

wherep, = F ( n x l n y , n x )  and E: = p i / ( 2 m ) .  These states are orthogonal and 
normalized, 

d3r $p)* (x) $F) (x )  = b,,( . (7.8) 
L 3  

We will now quantize this classical field theory. The general procedure, 
which was fully developed in Chapters 1 and 2,  is to expand the field in terms of 
eigensolutions of the field equations and to interpret the expansion coefficients as 
annihilation and creation operators. For the Schrodinger theory, all EZ > 0, so 
the most general expansion is 

(7.9) 
n 

where $$,+)(x) are positive energy normalized solutions (7.7) of the field equation 
(7.6) and an are annihilation operators with the following interpretation: 

a,  

ut, 

destroys a particle of momentum p ,  

creates a particle of momentum p ,  . 
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These operators satisfy (for now) the commutation relations 

[an‘, uA]  = 6nn) - (7.10) 

[we shall see later that we could also use anticommutation relations with the 
Schradinger theory.] 

Substituting the field expansion (7.9) into the expression (7.5) for H and 
using the Schrtidinger equation (7.6) and the orthogonality relations (7.8) give 
immediately 

H = c E ~ a ~ a ,  (7.11) 
n 

This form is familiar from Chapters 1 and 2, and all of the consequences we 
worked out in those chapters can be carried over to this case. The eigenstates of 
H are the Fock states, and (7.11) tells us that the total energy of any Fock state is 
simply the sum of the energies of each of the particles in that state. The equation 
tells us to first compute the number of particles with momentum pn  (the number 
operator a?,an), then multiply by the energy of a single particle with momentum 
p,, and finally add these contributions together. 

The canonical commutation relations for this field theory are 

[$(r, t ) , d ( T I ,  t)] = i ; 63(r - T‘ )  , (7.12) 

from what is expected (showing that it is better to which differs by a factor of 
use the [a, at] commutation relations). To prove this, note that 

2 [$h t), +’, t ) ]  = [$(? t), $Jt ( T I ,  t)] 

and 

[$b, t), $t(TI, t ) ]  = c $A++, Wi+)*(r’, t) 
n 

= C$i”(r,O)$i’)*(r’,O) = 6 3 ( ~ ‘  - r )  . (7.13) 

The last relation could be proved from the explicit form of the solutions, but it 
follows more generally from the completeness relation. Because of this factor of 
2, the CCR’s are usually written, for a theory of this type, in the form 

n 

* I  I [$(T,  t ) ,  $+(r‘, t)] = 63(r‘ - 7.) (7.14) 

Next, observe that the Hamiltonian has the required property of time trans- 
lation, 

(7.15) 
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The proof is simple and instructive. The commutator is 

From the commutation relations it follows that 

[UnU,,Un/] t = -bnn’Un . 

Hence 

(7.17) 

(7.18) 

Note that the commutation relation (7.17) is a necessary and sufJicient condition for 
the result (7.15). As long as the Hamiltonian has the form (7.11) and the relation 
(7.17) can be proved, the Hamiltonian will be the generator of time translations. 

7.2 IDENTICAL PARTICLES 

As we saw in Chapters 1 and 2 and in the preceding section, the quantization 
of a classical field leads immediately to creation and annihilation operators and 
to the introduction of Fock states which describe many particles. The particles 
associated with the quantization of a single field are identical. Quantum mechan- 
ically, this means that no measurement can be constructed which will distinguish 
them, and since the results of measurements in quantum theory are expressed as 
absolute squares of matrix elements, the requirement of indistinguishability takes 
the mathematical form 

I(f1011n11nz)12 = I(f1011nz1n1)12 7 (7.19) 

where lln, In,) is the Fock state of two identical particles, one with momentum 
711 and the other with momentum 712 (in general, we will use the notation INn,) 
to denote a state of N particles with momentum nl), 0 is any operator, and ( f l  is 
any final state. Equation (7.19) is the statement that we can only know that one of 
the particles has momentum 711 and the other has 712, but we cannot know which 
particle has which momentum (this is, in fact, a meaningless question). From 
Eq. (7.19) we conclude that 

(fIOIln,ln,)  = ei6 ( f I 0 I l n z l n l )  1 (7.20) 

where the phase factor must be &1 if we assume that two interchanges necessarily 
carry us back to the same state. Since 0 and ( f l  are arbitrary, we obtain the result 
that the Fock states of a quantum field must be either symmetric or antisymmetric: 

Il,, l,, . . .) = f )1,,1,, . . -) . (7.21) 

This in turn means that the creation operators (and therefore the annihilation 
operators as well) must satisfy either commutation relations or anticommutation 
relations. We have already discussed quantization with commutation relations and 
will now discuss anticommutation relations. 
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Anticommutation Relations 

To construct a field theory based on either commutation or anticommutation rela- 
tions, it is sufficient to require the following commutation relation: 

(7.22) 

This one equation is sufficient to both identify the operator a i a ,  as the number 
operator and at, as a creation operator and permit us to proceed with the construc- 
tion of the Fock states of the theory. [To see this, return to Sec. 1.5 and confirm 
that the above relation was all we used to construct the states and establish the 
properties of at.] 

We now assume that the creation operators at, satisfy anticommutation rela- 
tions (which also implies that the annihilation operators do), and use the required 
relation (7.22) to find the correct relations between at, and a,. Using the notation 
[ , IT to represent either a commutator or an anticommutator, the implications 
of (7.22) can be worked out immediately: 

a;a,, a:, = a;a,a,, t - a,,a,a, t t  

t t  t t  

t t  t t  

= a; [a,, a;,] a,a,,a, - a,,a,a, 

= a; [an, a;,] a,,a,a, - a,,a,a, 

=a!  , (7.23) 

[ I  
T 

r 

where the anticommutation of at, and a:, is used in going from the second line 
to the third. Hence, only the lower sign (anticommutation relation) will give the 
required result and leads to the requirement 

We are therefore led to the following set of anticommutation relations: 

(7.24) 

where { , } denotes the anticommutator. 
We next discuss a remarkable fact: the Schrodinger theory can be quan- 

tized equally well by imposing commutation or anticommutation relations on the 
operators a and a t .  As a demonstration of how this works, we show that the 
Hamiltonian satisfies (7.15), a condition which must hold if the Hamiltonian is to 
be interpreted as the generator of time translations. 
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IInl In2 * . ln, * . *) = a+ n1 U' nz . . . a i ,  . . .lo) . 

The proof of (7.15) is almost trivial because for either commutation or anti- 
commutation relations we have 

[aia,, ant] = aianant - a,taia, 

= a; ( f a n t a n )  - anraian 
= -6nnran + antaLan - antaian 
= -6nn'an , (7.25) 

(7.28) 

where the upper sign holds for the commutation relations and the lower sign for 
anticommutation relations. But, as we saw above, this is the necessary and suf- 
ficient condition for (7.13, and hence H is the generator of time translations, 
regardless of whether or not the a's satisfy commutation or anticommutation rela- 
tions. We will not demonstrate it here, but the same holds for the other generators 
of the Lorentz group. 

Implications of Anticommutation Relations 
The use of anticommutation relations corresponds to the imposition of Fermi- 
Dirac statistics and leads to the Pauli exclusion principle. The latter follows from 

{ a ~ , a ~ }  = 2 a L 4  = o . (7.26) 

Hence the attempt to create a state with two identical particles gives zero. For 
other states 

(7.29) 

where a different vector must be used for each momentum state n. In terms 
of these states, the annihilation and creation operators have the following matrix 

(7.30) 
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These matrices have the following properties: 

(7.31) 

as required by their definition. 
Finally, we summarize the main result: The Schriidinger theory is consistent 

with either commutation relations (Bose-Einstein statistics) or anticommutation 
relations (Fermi-Dirac statistics) and hence provides no connection between spin 
and statistics. The same statement does not hold for relativistic field theories. One 
of the major triumphs of relativistic quantum field theory is that it does provide 
such a connection. It can be shown that 

Integer spin @ Bose-Einstein statistics 

Half (add) integer spin @ Fermi-Dirac statistics 

We will show this for spin 0 and spin 4 systems now. 

7.3 CHARGED KLEIN-GORDON THEORY 

A charged KG field must be complex [otherwise the current defined in Eq. (4.1 1)  
would be zero]. The Lagrangian density for a classical complex Klein-Gordon 
field is 

(7.32) 

where 4 and @* are regarded as independent fields (corresponding to two inde- 
pendent real fields required to describe the two charge states of the field). The 
equation of motion which follows from this Lagrangian is the KG equation 

The generalized momenta are 

so that the Hamiltonian density becomes 

= T *  - a@ + - a4* T - L: = T* T + Vi@*Vib + rn 2 4*4 . 
at at 

(7.34) 

(7.35) 
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Therefore the total Hamiltonian is 

H = d3r X ( r ,  t )  = d3r [T* T + 0,4*V,4 + rn24*4] . s s (7.36) 

A convenient formula for the total energy can be obtained from this expression if 
we substitute for 7r, integrate by parts (dropping surface terms), and use the K G  
equation to simplify the final expression: 

H = d 3 r X ( r ,  t )  = + Vi$~*Vi4 + mZ4*4 s 

(7.37) 

where v a t  = q a t  - @at is familiar from the KG norm, Sec. 4.2. 
Now expand the KG field in terms of positive and negative energy solu- 

tions of the free KG equation. As before, the field is quantized by imposing 
commutation (or anticommutation) relations on the expansion coefficients, a step 
which turns them into particle creation and annihilation operators. As we saw in 
Chapter 4, the complete expansion of a relativistic field requires both the positive 
and negative energy solutions and therefore has the form 

n (7.38) 

where q&*)(x) are the normalized 4~ energy states, defined in Eq. (4.19), and we 
will show that the operators a and c have the following interpretation: 

a,  
cn 

destroys a particle with momentum p, and positive charge 

destroys an antiparticle with momentum p ,  and negative charge 

a i  

c i  

creates a particle with momentum p ,  and positive charge 

creates an antiparticle with momentum p ,  and negative charge . 

The interpretation assigned to the an’s is a straightforward application of our 
previous study. That the c,’s should destroy and create antiparticles (instead 
of negative energy particle states) is necessary if the field theory is to describe 
only positive energy states, which is clearly the goal. That the coefficient of c, 
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should be dIT,)(z) instead of &-)(z) is required because the charge conjugation 
transformation shows us that the antiparticle states of momentum p ,  are related to 
negative energy states with momentum -pn. An additional, desirable feature of 
the expansion (7.38) is that ~$::(z) has the covariant form of the scalar product p x  
in its exponent, instead of the clumsy form E,t +pn ‘t. The operator c: (instead 
of c,) must accompany a, for two reasons. First, both a, and ck lower the charge 
of a state by one unit; a, does this by destroying a particle with + charge, while 
CL does this by creating an antiparticle with - charge. Thus the field operator 
4 always destroys one unit of charge, and by a similar argument, the operator 
4t creates one unit of charge. Hence the operator 4t4 conserves charge. Had 
c, been chosen to accompany a,, the operator @+@ would not conserve charge; 
it would include terms like aLc,, which creates two units of charge, and cLa,, 
which destroys two units of charge. A second consequence of this assignment 
is that if the particles were neutral, then the particles and antiparticles might be 
identical (but not necessarily); if they were, then a = c + @ = dt. A charged 
field requires that a # c and $J # 4t. 

Next we use the orthogonality relations satisfied by free KG wave functions 
to reduce the Hamiltonian (7.37). These relations, previously given in Sec. 4.3, 
are 

Hence the Hamiltonian becomes 

(7.39) 

(7.40) 

where we have been careful to preserve the order of the operators a,, a i ,  c,, 
c?,. Note that the second term is +c,cL, with the + sign coming from the 
negative norm of the c$(-) states. This term has the cct in the wrong order to be 
a number operator. If the c’s (and hence the a’s) satisfy either commutation or 
anticommutation relations, we may write 

c,c; = *c;c, + 1 , (7.41) 
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where + is for commutation and - for anticommutation relations. Hence, if the 
second term is expressed in terms of the number operator tic,, 

H = c En {aLa, f c;cn> + (OlHlO) , (7.42) 
n 

where the infinite c-number arising from the sum over the number 1 in (7.41) 
has been written as a vacuum expectation value (OlHlO). In the general case 
(i.e., when either cornmutation or anticommutation relations are used), the normal 
ordered product is defined by the relation 

: H :  Ei H - (OlHlO) . (7.43) 

This definition is equivalent to, but more general than, the one used in Chapters 1 
and 2. Redefining the Hamiltonian by subtracting its c-number vacuum expectation 
value, as we discussed following Eq. (3.32) in Sec. 3.1, gives the following: 

: H : = C E , (  a;a, k c;c, ) , ( 7.44) 
v v 

number of number of n 
particles sntiparticlea 

where the plus sign is for commutation relations and the minus sign for anticom- 
mutation relations. 

We now conclude that the requirement that the total energy be positive defmite 
can be achieved only if the a S and c S satisfy commutation relations and, hence, 
Bose-Einstein statistics. This is because the second sum, which is the energy of 
$11 antiparticles, is positive in this case. Since the KG theory describes spin zero 
particles, we have 

spin zero + Bose-Einstein statistics . 

The commutation relations are 

Note finally that our treatment is similar to that of the EM field, which is a real, 
neutral field with a = c. Hence, we also have found that 

spin one -----r. Bose-Einstein statistics . 

We now discuss the second quantization of the Dirac theory. 
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7.4 DIRAC THEORY 

It turns out that anticommutation relations are needed in order to keep the energy 
positive definite in the Dirac theory. 

The Lagrangian density for a “classical” Dirac field, which is similar in some 
ways to the Lagrangian density for the Schrodinger theory, is 

(7.46) 

H + C  

where the 8 = a - 8 as in the KG theory. Note that this is Lorentz invariant. 
Treating 6 and $ as independent fields, we obtain the Dirac equation: 

The momentum conjugates to the independent fields 4 and lJt are 

aL: 2 -  0 -  A=-  

(7.48) 

where i? is a row vector and A is a column vector. In what follows, we will be 
careful to always construct scalar products involving i? by multiplying from the 
left and A by multiplying from the right. Hence, preserving this Dirac matrix 
structure, the Hamiltonian density is 

Integrating by parts, as we have done frequently, and using the periodic boundary 
conditions to justify dropping the boundary terms give the following familiar result 
for the Hamiltonian: 
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We now turn this classical theory into a quantum field theory by turning 
the field $ into an operator. This is done by expanding $ in a complete set 
of positive and negative energy eigenfunctions, introducing annihilation operators 
b,,, and dn,, as follows: 

where the $(*I are the positive and negative energy wave functions defined in 
Sec. 5.3. The structure of (7.51) is similar to the one we introduced for the KG 
theory and is justified in precisely the same way. The operators are interpreted as 
follows: 

bn,, annihilates a particle of spin projection s, momentum pn 

dn,, annihilates an antiparticle of spin projection s, momentum p, 

b:,, creates a particle of spin projection s, momentum pn 

d:,, creates an antiparticle of spin projection 8. momentum p ,  , 

) must go with and, as required by charge conjugation, (instead of 

4 , s .  
The Hamiltonian can be re-exDressed in terms of annihilation and creation 

operators following a now standard method. Using the fact that the $(*) are 
eigenfunctions of the Dirac operator and orthonormal relations satisfied by the 
states $(*I, the Hamiltonian reduces to 

(7.52) 
n,, 

Note that if d and b were complex numbers instead of operators, the second term 
would be negative, so H could not be positive definite, and there is no classical 
Diruc theory. Ironically, the positive definite norm gives us trouble with negative 
energy states since there is no way to change the sign of the energy. 

However, if the b's and d's satisfy anticomutation relations, H can be made 
positive definite. If we require 

(7.53) 
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with all other anticommutators zero, we get 

or, again, 

Note that the nonnal ordered product for fieldr which anticommute still has all 
creation operators to the left and all annihilation operators to the right but that 
the signs which arise when the order of the operators is changed are preserved. 
Hence, for example, 

: dn,adAt,at: = - d ~ l , a l d n , a  . (7.56) 

We conclude that the requirement that the energy be positive definite leads to 
anticommutation relations for the Dirac theory. Since this theory describes spin 
4 particles, we have 

spin - Fermi-Dirac statistics . 1 ;  
Furthermore, the canonical anti-commutation relations for Dirac fields are 

(7.57) 

This is easily shown by writing out the the LHS of the equation: 

{$a (ri t )  i +J ( T I ,  t ) }  

(7.58) = b3(r - r’)fiap , 
where a and /3 are the D i m  indices on the spinors in the wave functions, usually 
suppressed, and the last equation above is recognized as the completeness relation 
for the Dirac f solutions. 
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This completes our discussion of the construction of free field theories and 
the connection between spin and statistics. We are now ready to study how inter- 
actions are added to these field theories. 

7.5 INTERACTIONS: AN INTRODUCTION 

The first step in finding the Lagrangian which correctly describes a given physical 
system is to identify the fundamental degrees of freedom, or particles, which are 
needed to describe the system. For atomic systems these are electrons and nuclei. 
The nuclei are complex composites, but at the energy scales probed by atomic 
physics they may be treated as fundamental. For nuclear systems, the choice of 
the fundamental constituents is still very much at issue; at energies of a few MeV, 
most physicists would agree that the neutrons and protons can be chosen to be 
the constituents, but at higher energies, when the structure of the nucleon begins 
to become evident, the basic constituents are the quarks and gluons which are the 
ultimate building blocks from which hadronic matter is formed. Nuclear physicists 
are currently trying to understand precisely how to incorporate quarks and gluons 
into the description of nuclei and at what energy scales the structure of nuclei 
becomes sensitive to the presence of these fundamental constituents. Finally, 
particle physics now has the very successful Standard Model, which includes 
six flavors of quarks and six leptons organized into three generations as shown 
in Appendix D, five kinds of gauge bosons, and the Higgs. Particle physicists 
continue to look for the sixth flavor of quark and for the Higgs and to search for 
evidence for the existence of possible additional particles, which would signal the 
‘Jreakdown of the Standard Model. 

In general, each fundamental constituent is described by a separate quantum 
field, and the full Lagrangian density is a sum of the free particle Lagrangian 
densities C, for each of the constituents plus an interaction term: 

i 

The free Lagrangians can describe particles of any type. If the interaction term 
Lint is zero, the general solutions to the problem are states which are direct 
products of the free particle states described by each of the free Lagrangians L,, 
and the particles are all free particles which do not interact. The interaction term 
contains fields which enter more than one C, and hence couples the fields together 
and produces the interaction. 

How are we to determine the structure of the interaction Lagrangian? Much 
of the rest of this book will discuss this question. There is no simple answer, 
and the art of finding the correct interaction is at the heart of modem research 
in particle physics. In the last 15-20 years, interactions have been constructed 
to obey certain symmetries, and this appears to be the “correct” way to find the 
interaction. Gauge invariance appears to be one of the key symmetries, and the 



202 SECOND QUANTIZATION 

properties of gauge invariant theories will be the subject of much of the latter half 
of this book. For now we note that Lint must satisfy the following constraints: 

0 it must be Lorentz invariant; 

it must be Hermitian; 

0 it should be local. 

The last requirement means that all of the fields in fint are evaluated at the same 
poinr in space-time. Interactions for which this is not the case are said to be non- 
local, and if used, care must be taken to insure that the non-locality is constructed 
in such a way that Lorentz invariance is not violated. Non-local theories will not 
be discussed in this book. 

In addition to the rules outlined above, the interaction Lagrangian should be 
simple with as few free parameters as possible. The fewer the number of param- 
eters, the greater the predictive power of the resulting theory. Another criterion, 
motivated more by simplicity that by any compelling physical requirement, is that 
Lint should, if possible, contain no time derivatives. If this is the case, the gen- 
eralized momenta are not changed by the interaction, and the Hamiltonian can be 
calculated from 

H = C H i + H i n t  , 
1 

where 'Hi are the free Hamiltonian densities corresponding to C, and 'Hint = 
-Lint. This condition makes the theory simpler, but it is sometimes not possible 
(for example, the EM interactions of scalar fields and quantum chromodynamics 
(QCD) involve time derivatives). In practice, interaction Lagrangians are usually 
polynomials in the fields, with a single parameter which defines the strength and 
' 3  referred to as a coupling constant. 

As an example, consider a system with two fundamental constituents de- 
scribed by the Dirac field I I ,  and a Hermitian (therefore charge zero) scalar field 4. 
A simple interaction between these fields which satisfies the above requirements 
is 

Lint = -Hint = -g : $(z)II,(+fO): (7.60) 

where g is a real constant (in order that f be Hermitian). We will refer to this 
as a theory with q53 structure because the interaction Lagrangian i s  a third order 
polynomial; the term b3 theory will be applied exclusively to theories with an 
interaction involving three scalar fields interacting at a point. 

It is important to get a physical feeling for the meaning of an interaction like 
(7.60), and this is fortunately very easily done. First recall that each field operator 
must create or annihilate only one particle. Hence if n fields act at a point (a 
theory with qP structure), the interaction always describes a situation in which 
n - t particles come into the point and C leave (for any 0 5 .t 5 n). For example, 
to first order in a perturbative treatment of the interaction, a theory with a 43 
structure, such as that described in Eq. (7.60). describes the eight elementary pro- 
cesses shown in Fig. 7.1. The reason for this i s  that &!~q5 contains precisely 
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- 
time 

e = 0 3 particle annihilation e = 3; 3 particle production 

e = 1 ; particle absorption and 2 body annhilation 

\ \ 

\ 
k 

-+-- 

!= 2; particle emission and 2 body decay 

'ig. 7.1 Diagrams showing the possible interactions which result from the single term given in 
Eq. (7.60). The antifermion lines have mows pointing in a direction opposite to the flow of time (see 

the discussion in Sec. 10.3). 

three annihilation or creation operators and therefore has non-zero matrix elements 
between the following states: 

where pl and p2 are momenta of fermions, p 1  and p2 are momenta of antifermions 
(all described by the Dirac field ?,LJ), and k is the momenta of the scalar particle, 
which is its own antiparticle. All other matrix elements of Xint are zero. In higher 
orders, other processes are possible (as we shall soon see), but they must all be 
built up out of the eight elementary processes above. Six of these (corresponding 
to e = 1 or 2) describe emission and absorption of one particle at a time. 
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Many other interactions can be constructed. Examples of other types are: 

44 structure: 4!(x)41(44&442(.> [3(3”412 44(4  

where in all of these cases 4 is a Hermitian field and 41 is a complex (non- 
Hermitian) field. The so-called %on-linear” interaction derives its name from the 
fact that it contains polynomial interactions of all orders. 

The simplest and most commonly encountered interactions have a 43 struc- 
ture, and these will occupy our attention in Chapter 9. Later, in Chapter 13, 
we will see that interactions with a 44 structure occur in QCD and the standard 
electroweak theory and that the nonlinear interaction arises in the nonlinear sigma 
model. But before we begin our study of the dynamics of interacting theories, we 
take a first look at consequences which can be derived solely from the presence 
of a symmetry of the theory. 

PROBLEMS 

7.1 Show that the charged KG field discussed in Sec. 7.3 satisfies the CCR 

[$(T, t), T + ( T ’ ,  t)] = ib3(T - T ’ )  (7.61) 

and that all other commutators are zero. 

7.2 Neutral KG theory. Construct the theory for a neutral KG particle (i.e., 
where the field 4 is Hermitian) from the following arguments: 

(a) If the charged field 4 = (41 +i&)/&. where $1 and 4 2  are commuting 
Hermitian fields, and if the charged field 4 satisfies the CCR’s worked out 
in hob. 1 above, show that 

where 4, is either 41 or 4 2 .  

(b) Show that the Lagrangian density for the charged field 4, 

(7.62) 



PROBLEMS 205 

[which is just the operator form of Eq. (7.32)], can be written as the sum of 
two independent Lagrangian densities 

t=C1+L2 , 

where each density L, is multiplied by an overall factor of g ,  

(7.63) 

compared with the Lagrangian density for its charged counterpart. 

(c) Using the density L,, find the momentum 7ri conjugate to 4,, and find 
the Hamiltonian density 'Hi for a neutral theory. Express the Hamiltonian 
HI in terms of the annihilation operators al, = (a, + c,.,)/fi and the 
corresponding creation operators a!,, = (a, + c , ) + / f i .  

(d) Discuss the significance of your results. What is the Lagrangian density 
for a neutral scalar theory? 

7.3 Using the ideas developed in hob. 2 above, and working from the Lagrangian 
density for a neutral massive vector field [given in Eq. (2.39) in Sec. 2.51, 
find the Lagrangian density for a charged massive vector field. 

7.4 Consider a 43 theory with a charged scalar field iP1 and a neutral scalar field 
4 and an interaction Lagrangian density of the form 

t i n t  = -A : iP;(x)+1(x)f$(z) : . 

(a) Write out the full Lagrangian density for the theory. 

(b) Evaluate the following matrix element: 

where lp) is the state with one neutral particle with momentum p and 1 kF) is 
the state with a charged particle with momentum k and a charged antiparticle 
with momentum k'. 

(c) When is the matrix element evaluated in part (b) not equal to zero, and 
what is its physical significance? 

7.5 Construct a theory in which it is possible for two particles to scatter and 
produce a third (2 -+ 3) at a single point in space-time. 



CHAPTER 8 

SYM M ETRl ES I 

This is the first of two chapters devoted to the discussion of symmetries in field 
theory. Symmetries are important for two reasons. First, if a symmetry is ob- 
served in nature, then the Lagrangian must be invariant under the transformations 
which describe the symmetry, and this imposes a constraint on the form of the 
interaction Lagrangian. Second, any properties which can be shown to be the con- 
sequences of an exact symmetry must be exact results, regardless of the details of 
the interactions. It is very difficult to obtain exact results in any other way. 

In this chapter we begin with Noether’s theorem, which shows that there 
exists a conserved quantity associated with every continuous symmetry and also 
how to find it. We then study the discrere symmetries which the Lagrangian 
may satisfy. Discrete symmetries are are single, isolated transformations with no 
infinitesimal form, and the three which are of great importance in field theory 
are parity (space inversion), charge conjugation (the interchange of particles and 
antiparticles), and time reversal (or, more correctly, the reversal of the direction 
of motion). After discussing each of these in turn. we discuss the famous PCT 
theorem, which states that the product of all three of these transformations must 
always be a symmetry of the system, even if individual members of this set are 
not symmetries. The non-trivial consequences of PCT invariance are among 
the most secure predictions of field theory. In Chapter 13 we continue, with a 
discussion of non-Abelian gauge symmetries, chiral symmetry, and spontaneous 
symmetry breaking, all ideas of paramount importance in modem physics. 

8.1 NOETHER’S THEOREM 

The foundation of all of our discussion of continuous symmetry will be Noether’s 
theorem, which we now state and prove. 

Theorem: For every continuous transformation of the field functions 
and coordinates which leaves the action unchanged, there is a definite 
combination of the field functions and their derivatives which is con- 
served (i.e., a constant in time). 
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X -1 a 

Fig. 8.1 
x-direction. 

Illustration of the active translation of a scalar function through a distance a in the 

The infinitesimal transformations of the coordinates and fields will be written 

where X and R are known functions of x and E’ are infinitesimal parameters which 
describe the transformation. Note that the range of i is not specified. In particular, 
i need not range from 0 3 and ei may not be a four-vector. 

Examples of Continuous Transformations 

qefore we proceed with the proof of Noether’s theorem, we give some examples 
of transformations. (Review Sec. 2.7 and 5.8.) 

’Ikanslations in space and time. The translation of a scalar function +(z) 
through a distance a is illustrated in Fig. 8.1. Here 

where in this case v [the i of Eq. (8.1) ] runs from 0 to 3 and a’ is a four-vector. 
If we translate both the function and the coordinates, everything is unchanged, so 
that 

q5W = q5k) (8.3) 

or 
q5‘(2+) = q5 (zlh - gp,  a,) . 

In this case: 

XP, = gp, 

R,, = 0 
translations. (8.4) 
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Homogeneous Lorentz transformations. As an example, consider a vector 
field A p .  To see how this transforms, follow steps similar to those taken in 
Sec. 2.7 in our discussion of rotations. First, form a scalar product 

where n p  is a fixed but arbitrary direction in four-dimensional space. Then, 

or, if x‘ = A x ,  then 

nLA‘”(x’) = n p A P ( K 1 x ’ )  

= gpu npAU(A-’x’ )  

Recalling Eq. (2.6), 

gpu = h a p  gap 1 

this becomes 

gag n‘aA‘4(x‘) = gap A Q p  nph4uA”(A-1x’)  

= gao ntaApvAU(A-’x‘)  . 

Since this holds for any n’, we have the transformation law 

= A P ” , A ” ( A - ’ ~ ’ )  . 

This result holds for all Lorentz transformations. 
Recalling Eq. (5.89), where the generators of an LT were written 

we define the generators of rotations [compare with Eq. (5.91)] by 

The relation €0123 = -6°123 = 1 = € 1 2 3  was used in the last step to relate the 
three- and four-dimensional 6 symbols. Using the identity 

gives 
a ( q ) O p  = -€Oi p . 
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Pi = (r# y x u  = - -€QiPy x u  

R,, = E O ~ ~ ~ A ~  vector fields rotations, 
i aQa = -- (r5a'@) a 2 

spinor fields 

(8.8) 

(8.10) 

The transformation laws of vector fields under gauge transformations will be given 
in Chapter 13, where we discuss these important symmetries in detail. 

Proof of Noether's Theorem 
We return now to the proof of Noether's theorem. We assume that symmetry leaves 
the Lagrangian density locally invariant (i.e., unchanged in the neighborhood of 
any point) so that the variation of the action over any finite volume is zero. This 
means that 

b[A] = A' - A = 0 

(L'(x')  - L ( x ' ) )  d x '  + 
volum. YOIUII). 

V' V 

order 

1.t = J, ( L ' ( x )  - L ( x ) )  d4x 
order 

(8.11) 

where J is the Jacobian of the transformation, a L / a x p  is the total variation of L 
with respect to x ,  [with all other zV(v # p )  being held constant], and it is 
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Fig. 8.2 Figure illustrating the transfor- 

mation of a finite volume of space-time un- 

der a symmetry transformation. 

assumed that V’ is obtained from V by mapping the boundary f(x) = 0 to a new 
boundary f(x’) = 0 (as suggested in Fig. 8.2). In the last step, all expressions 
nave been expressed in terms of the original volume V (since the difference C’ - C 
is already first order, it can be equally well evaluated by integrating over V as 
V’). Before continuing with the argument, we emphasize that S[d] = 0 over any 
finire volume, and it is this feature which will give us a conservation law which 
will hold for each cell in space-time (i.e., a local conservation law). Note that 
this argument is quite different from the one used to derive the Euler-Lagrange 
equations; in that case the derivation required integrations by parts, and hence the 
‘ :tion was integrated over all space so that the boundary terms resulting from 
those integrations would be zero. In deriving Noether’s theorem, boundary terms 
will play no role because the proof does not require any integrations by parts. 

To reduce (8.1 l), we first calculate the Jacobian of the transformation, which 
is 

(8.12) 

We only want the terms up to first order in E ,  and hence we need only keep the 
product of the diagonal terms of the matrix, which when multiplied out to first 
order in E become 

J - 1 = - -  tz  (summed over p and i) . (8.13) 
axp 

Next, the variation in the structure of C (i.e., variation with IC held constant) is 

6[C] = L’(z) - L(z )  = 
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where the two terms are the variations with respect to the shape or structure of 
and dp& (with x held constant). The notation S2[f refers to the variation of 

f with respect to the continuous parameter E’, so that 6,[f] E’ is the total variation 
with respect to all parameters 6%. In this case 

(8.15) 

where, in going to the last step, we used 
order. In a similar manner. 

2 2, which is correct to lowest 

a [Z;] axp 
6, - = - (6,[7b,]) E l  (8.16) 

Putting all this together gives, to first order in E ’ ,  

6[d]  = 0 

8dJa = d4x{ %PI + - f l a l  - -Au.) ( dx” 
d L  

w a  

a a$., dXpl 
axp - (0.. - + L-} E’ . (8.17) 

dL + 

Now use the equations of motion 

to eliminate dL/d+a. This permits us to extract a perfect differential, and drop- 
ping E’ we obtain 

(8.18) 
d 

Since this holds for any volume, it must be a local relation and we obtain the 
local form of the conservation law 

d4x -Op2 = 0 . J.;. asp 

(8.19) 
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where Op, is the conserved current density 

Of course this “current” density does not necessarily have anything to do with the 
usual electric current; the term used here refers to any general four-vector quantity 
which satisfies a local conservation law. 

If the fields fall to zero at spatial infinity, we obtain the constant of the motion 
by integrating the four-divergence of 0 over an infinite slab bounded by any two 
times tl and t z .  

(8.21) 

integrate8 
to zero 

Integrating the first term from t l  to t z  and noting that t l  and t z  could be any two 
times permit us to conclude that 

(8.22) 

This quantity is the conserved charge (i.e., the total time component of the con- 
served current), and the proof is now complete. 

A nice feature of this proof is that it leads to the explicit construction of the 
ronserved quantity, so that we know what is actually conserved as a consequence 
of the continuous symmetry. We now illustrate the consequences of this important 
theorem in a number of special cases. 

8.2 TRANSLATIONS 

Noether’s theorem provides the ultimate justification for the definitions of the 
energy, momentum, and angular momentum operators, which we introduced in 
Chapters 1 and 2. To obtain these quantum field operators we take the classical c- 
number quantity (8.21) and substitute the quantum field operators for the classical 
fields. The order of the terms now matters, and in order to insure that the ground 
state has zero energy, momentum, and angular momentum, we normal order the 
terms as discussed in Chapter 1. 

As an example, consider the implications of translational invariance for the 
Dirac theory. From Eq. (8.4), Xp, = gp, and R,, = 0, and the conserved current 
density, which is called the stress energy tensor, is 

(8.23) 
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The conserved "charges" are therefore 

As a consequence, we obtain four conserved quantities associated with invariance 
under translations in any of the four space-time directions: 

(a) Time translations ( p  = 0): 

which is consistent with the usual definition of the Hamiltonian. 

(b) Space translations (v = i = 1,2 ,3) :  

(8.26) 

For example, the momentum operator in the Dirac theory is 

(8.27) = - Z / d 3 r $ ' -  a$ , 
dXi 

where we integrated by parts. Substituting the field expansions 

and the orthogonality of the Dirac wave functions give 

(8.28) 
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Now, using the anticommutation relations to put this into normal order gives 

(8.29) 

as expected. 
Note the great power of Noether’s theorem. In the above example we were 

able to find the momentum operator in a case with no classical analogue. This 
provides justification for our heuristic development in Sec. 1.6 and later in Sec. 2.7. 

8.3 TRANSFORMATIONS OF STATES AND OPERATORS 

In general, a symmetry in quantum mechanics is a group of transformations which 
preserves matrix elements. Therefore each transformation in a symmetry group 
can be represented by a unitary matrix which operates on the quantum mechanical 
states, transforming them under the symmetry 

u(e)lr1) = , - * Q e l n )  = in’) (8.30) 

where 8 is a continuous real parameter and Q is a Hermitian matrix referred to 
as the generuror of the transformations (for simplicity we limit ourselves here to 
groups with only one continuous parameter and one generator). Each value of 0 
picks out a different member of the group, which is a continuous group because 

The transformation law for the operators can be determined from the trans- 
can be varied continuously. 

formation law for the states using the following rule: 

(ml0ln) = (m’J0’ln’) , (8.31) 

which states that matrix elements are unchanged if both the states and the operators 
are transformed. Hence 

(dp’(d) = (mlv+(e) o’v(e)ln) = (mioin) (8.32) 

and since m and n are arbitrary states, this gives 

0‘ = u(e) c3 u+(e) = e - i Q s ~  eiQe . (8.33) 

If the untransformed operator 0 does not depend on 0, then differentiating both 
sides of Eq. (8.33) gives 

[Q, 0 ( 8 ) ]  = -i- (8.34) 
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Hence, the injnitesimal change in any operator 0 under a symmetry transfonna- 
tion is given by the commutator of the generators of the symmetry group with the 
operator. This is a very general relation which we have used several times before. 

If the symmetry in question is also a symmetry of the Lagrangian, then the 
transformations (8.30) will commute with the Hamiltonian, and the generator of 
the transformations will be a constant of the motion. In this case, the generator is 
the conserved “charge” associated with the symmetry, given in Eq. (8.21). In lieu 
of a proof of this statement, we will show that it is true for the translations. 

The finite translations are constructed from the generators of translations, 
which are the momentum operators, in the following way: 

Note that phase in the exponent is +i, instead of the -i used for the time translation 
operator; this is consistent with the covariant scalar product H t  - Pirr  (and agrees 
with our definitions in Chapter 1; recall Prob. 1.2). For translations of a scalar 
operator 0 = 0(z) = O’(z’), with x’ = z + a,  and we have 

0‘(2) = U 0 ( x )  U +  = 0 ( s  - a )  . (8.36) 

For infinitesimal a this reduces to 

(8.37) 

Equation (8.37) is an example of the general relation (8.34) and is consistent with 
Eq. (1.38). To see this, note that the time translation operator was U ( A t )  = 
eCiHAt (for H independent of time) and that therefore (1.38) could be written 

d(to + At) = U + ( A t ) $ ( t o ) U ( A t )  . (8.38) 

Changing At -+ -At and noting that U ( - A t )  = U t ( A t )  permit us to rewrite 
(8.38) as 

~ ( ~ t ) d ( t , ) ~ ~ ( ~ t )  = 4(to - at) , (8.39) 

which agrees with (8.36). 
We will return to the discussion of continuous symmetries in Chapter 13, 

where we discuss gauge invariance and chiral symmetry. Now we turn to a dis- 
cussion of the three discrete transformations of great importance to the construction 
of interactions: space inversion, charge conjugation, and time inversion. 
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P4(r,  t ) P +  = 4) = &(-r, t )  
P@(r, t)Pt = @‘ = T$S(P)@( - T ,  t )  = q@yo@( -T ,  t )  

P A p ( r ,  t )Pt  = A” = A ( P ) ” , , A V ( - ~ ,  t )  

8.4 PARITY 

(8.41) 

We start with a discussion of space inversion, realized by the parity transforma- 
tion. Assume that there exists a unitary operator P which transforms the spatial 
coordinates from r -+ -r. Its representation on the Fock space of particle states 
will be denoted 

Pin) = In’) . (8.40) 

Then the field operators transform according to Eq. (8.32), 

(m/141nt) = (ml4ln) = (rn’IP4PtIn’) 

4 / =  POP+ . 

1 

which implies [recall Eq. (8.33)] 

Since parity is space inversion, the transformation law for the fields is 

where the phases 77: and r$ are the intrinsic parities of the scalar and spinor 
fields and 

A(P)”v= ( I  -1 -1) (8.42) 

is the representation of the parity operator on the four-vector space. Because 
P2 = 1, the phases must satisfy the relations 7j: = 7; = 1 and hence can only 
be f l .  The final determination of their value depends on experiment. Equation 
(8.41) incorporates the fact that the photon is known to be a vector field (negative 
parity but positive intrinsic parity). The representation of the parity operator as 
yo (space inversion) for the spinor field was already developed in Sec. 5.9 [recall 
Eq. (5.1 19)]. 

The operation of parity on the annihilation and creation operators can be 
readily found from the field transformation laws: 

P4(r ,  w = V,P4(-T1 t )  
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where k was changed to -k in the sum in the last expression. 
Fourier coefficients gives 

On single particle states, this means that 
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Hence, equating 

(8.44) 

(8.45) 

which shows that parity changes the direction of momentum of a state (as expected) 
and that particles and antiparticles have the same intrinsic pariry. 

For spinors, a similar argument gives 

W ( r ,  t)pt  = v$70$(-r7 t )  

(8.46) 
The Dirac spinors satisfy the relations 

yOu(-k, s) = u(k, s) 

y v ( - k ,  s) = -v(k, s) 0 , 
and therefore 

I 1 

(8.47) 

Hence Fermi particles and antiparticles have opposite parity, and the direction 
of their spin is unchanged (as we would expect from its cross product nature 
L = r x p ) .  

For the transverse EM field we have a similar result. Using the circular 
polarization basis, 

PA(r, t ) P t  = -A(-r, t )  

where the two helicity states are [recall Eq. (2.61)] 

(8.49) - 1 - ( 2 - 2 6 )  . Jz E ,  = 
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If the transformation from z to --z is achieved by rotating about the y-axis by T ,  

then 

and therefore 

pa,,*p+ = -a-k,r . 

(8.50) 

(8.51) 

Hence the photon has odd parity, and its momentum and helicity change sign under 
parity. 

Now, if parity is a symmetry of the Lagrangian, then 

PL(X)Pt = C(- r ,  t )  , (8.52) 

implying that C is a scalar. This places restrictions on the types of interactions per- 
mitted in the Lagrangian. For example, for x N N  interactions with no derivatives, 
we must have 

cP = 4 ( z ) y 5 $ ( x )  d(z) pseudoscalar (8.53) 

if the pion field is pseudoscalar and 

i f  i t  is a scalar. To prove this formally, use the transformation laws (8.41), 

(8.55) 

where we have used qZ2  = 1 in the last step. 

Parity Transformation of Spin and Angular Momentum 

Recall that angular momenta (and hence spins) have even parity and are therefore 
axial vectors (since normal vectors change sign under parity). To show this, recall 
that the angular momentum vector is a cross product, 

R = r x p  . 

In terms of its components, 
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and under any transformation 7 - 9  = AJe re,  

But 
€ykAPnA3eAkm = (det A)E,em , 

and hence, multiplying this expression by At’ ,  and summing over n (for orthog- 
onal transformations A where A”nA’n = bp, )  give 

Hence the transformation (8.56) can be written 

Rli = (det A)AznEnemr e m  p 

= (det A)Ai,Rn . (8.57) 

The extra factor of det A shows that R does not change sign under the parity 
transformation and hence is an axial vector. 

8.5 CHARGE CONJUGATION 

The charge conjugation transformation, as we saw in Chapters 4 and 5 ,  is associ- 
ated with a symmetry of a relativistic wave equation which allows us to transform 
ne negative energy solutions into positive energy solutions which satisfy the same 

wave equation but with the sign of the charge reversed. Such a transformation 
can also be defined when a particle has no charge but has some other quantum 
number which changes sign under the transformation (for example, the KO,  
system). Hence charge conjugation might be more appropriately referred to as 
“field conjugation.” 

To extend this idea to field theory, we postulate the existence of a unitary 
operator C which transforms the fields according to the relations 

(8.58) 

where again the 77’s are phases which can be f l  and C (to be distinguished from 
C) is the Dirac conjugation matrix introduced in Eq. (5.32) with the following 
properties: 

c = - C T  = -c-’ CyF = -y’lTC . (8.59) 



220 SYMMETRIES I 

The form of the transformation laws (8.58) is obtained from the corresponding 
transformation of free KG particles discussed in Sec. 4.5, the transformation 
of Dirac particles discussed in Section 5.4, and the observation that the charge 
changes sign under C and hence the EM field must also. 

The proof that the free Dirac Lagrangian is invariant under C begins in the 
same way as it did for parity, 

+ 

CC(z)Ct = -C$Ct i-f- - m C?/Ct + h.c. 
2 - ( a:P ) 

(8.60) 

Since this is a scalar, we may take the transpose in Dirac space. However, if we 
interchange $ and ?/, which we need to do when taking the transpose, we are 
exchanging $ and 1c, not only in Dirac space (which we are entitled to do), but 
also in the Fock space. and since 4 and $ anticommute, this will introduce an 
extra minus sign. (The c-number anticommutator which emerges from interchange 
will be ignored because we normal order the final answer anyway.) Hence the 
transpose of (8.60) becomes 

(8.61) 

Note that this term is just the Hermitian conjugate (h.c.) of what we started with, 
and it is easy to verify that the h.c. term transforms into the original term. Under 
C the two terms interchange places. Hence 

CC(2)Ct = C(x) , (8.62) 

Now we find the effect of C on the annihilation and creation operators and 
proving that L is invariant under C. 

hence on the states. For scalar fields, 

C(b(Z)C+ = V , C ( b + ( 5 )  

(8.63) 
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Since the exponentials are independent, and since C is unitary, we have 

(8.64) 

Thus C interchanges particles and antiparticles, with the same phase. For single 
particle states, assuming C/O)  = lo), we have 

c I ~ c )  = CaLlo) = C&+C~O)  

= 77:c:Io) = 77:lQ 9 (8.65) 

where lk) is the state of a single antiparticle with momentum k. The same relation 
holds for antiparticles. 

ClL) = #k) . (8.66) 

For the Dirac field, the derivation requires use of Eq. (5.38), which can be 

(8.67) 

Using these relations, 

Hence 

1 
{bA, ,v(p,  s )  eiP" + d p , , u ( p ,  s) e - t p ' r }  . 

(8.68) 
=77; c P33 Jqp 

(8.69) 

and the effect of C on fermions is the same as it is on bosons. 
Finally, for photons 

C A ( x ) C t  = - A  , (8.70) 

which gives 

and this requires 

Photons are odd under charge conjugation. 

Cak,,C+ = -ak@ . 

(8.71) 

(8.72) 
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Positronium Decay 
To illustrate the usefulness of charge conjugation invariance, we consider positro- 
nium decay. Positronium is a bound state of the e+e- system, which can decay 
through the annihilation of the e+e-  pair into photons. This decay is most likely 
to happen when the e+ and e- are very close to each other, and this in turn is 
only probable in S-states, where the wave function at the origin is not zero. There 
are two types of S-states: the spins of the particles may be aligned, so that the 
total spin is one (a spin triplet state), or they may be antialigned in a spin zero (a 
spin singlet state). The standard spectroscopic notation for these states is "+'LJ,  
where J ,  L,  and S are the total angular momentum, orbital angular momentum 
(in the S, P, D, . . + notation), and total spin, respectively. Now, experimentally, 
it is observed that the 3S1-states of positronium decay only into 37's (27 decay 
is not observed and l y  decay is forbidden by energy momentum conservation) 
while the 'So-states decay only into 27's. Since 37 decay is much less probable 
that 27 decay (because the decay rate is smaller by an extra factor of (Y and is 
further suppressed by the small size of the three-body phase space), the 3S1-state 
is metastable. 

To understand these results, we will represent the positronium states by the 
vector 

(8.73) 
s,s' 

where p is the relative momentum of the e+e- pair (the total momentum being 
zero by assumption) and s and s' are the possible spin states of the electron and 
positron, respectively. The wave function of the state is related to f, which for 

states depends only on the magnitude of p ,  so that fb; s, s') = f( -p;  s ,  s ' )  = 
f(p; s, s'). Angular momentum conservation insures that f separates into a triplet 
part, symmetric in s and s', and a single part, antisymmetric in s and s'. We can 
therefore distinguish two different functions f ,  one symmetric under s t, s' and 
the other antisymmetric, 

fc(P; s, s ' )  = ffc(P; s', s) , (8.74) 
where t = +1 for 3S1-states and -1 for 'So-states. Hence, 

(8.75) 

Now note that 

s.s' 

s,s' 

= - E l l ? , € )  , (8.76) 
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where the minus sign in the next to the last step arises when the two creation oper- 
ators are interchanged. Since the E M  interactions conserve C, and remembering 
that the photon is odd under C, we obtain the following correspondence: 

3S1 E = 1 

'S1 

odd under C 3 (or 5 ,  7, . . .) y's only 

even under C 2 (or 4, 6, . . .) y's only. 
(8.77) 

The decays of positronium are explained by C invariance. Note that the anticom- 
mutation of the Dirac creation operators played an essential role in the argument. 

c = -1 

8.6 T I M E  REVERSAL 

We now turn to time reversal, the last of the discrete symmetries. This discussion 
leads us to a new consideration: in order that the time reversal operator leave the 
Hamiltonian (energies) positive, and be an invariance of the theory, it must be an 
antiunitary operator. 

To understand the precise difference between a unitary and antiunitary oper- 
ator, return to basic definitions. A linear operator 0 has the property 

0 (.I.) + bly)) = aOls) + b(31y) linear , (8.78) 

while an antilinear operator 0~ has the property 

OA (a\.) + b(y))  = a' 0 ~ 1 ~ )  + b' ( 3 ~ 1 ~ )  antilinear . (8.79) 

Complex conjugation is an example of an antilinear operator. Finally, a norm 
preserving operator N has the following property: 

(NxlNx) = (XI.) norm preserving . (8 .80)  

Now, we use these definitions to obtain some derived relations. By definition, 
a unitary operator U is both linear and norm preserving. From this it follows that 

(8.81) 

Proof: Consider the vector 1.) = 1.) + ily). Then 

Next, consider lw) = 1.) + Iy). Then 
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W A ~ ~ A Y )  = (~IY)* = (~1s) 

Hence 

antiunitary . ( 8 . 8 2 )  

(Ua:IUY) + (UYlU4 = M Y )  + ( Y l 4  3 

and from this it follows that 

I 

An antiunitary operator U A  is defined to be both antilinear and norm pre- 
serving, and it is now quite easy to see that such an operator has a somewhat 
different property: 

Proof: The proof is almost identical to the above, except 

where the change in sign of the imaginary terms is due to the anrilinear nature of 
the operator UA.  Hence 

which gives the result (8.82), 

I 

Transformation of Operators under Antiunitary Transformations 

We now investigate how a typical operator 0 transforms under an antiunitary 
transformation U A .  The operator is defined by its effect on a typical vector Is), 
which is transformed by 0 into another state 1%): 

The antiunitary operator U A  transforms these two vectors as follows: 
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The transformed 0, denoted by O‘, is defined by the requirement 

12’) = 0’12’) . 

Hence 
U A I Z )  = O’uA1X) 

= UAOlZ) 

This equality must hold for any 12). which gives the relation 

0’ = UAOUi’ . (8.83) 

Furthermore, under U A  the matrix element (yl z )  transforms as 

from which we obtain the general result for the transformation of operators under 
antiunitary transformations, 

(ylO12) = (y’p’15’)* = (d)O’t ly/) . (8.84) 

Now we will discuss why the physics requires that the operation of time 
inversion, 7, must be an antiunitary operator. If O is a scalar operator which 
depends on time, O ( t )  = 0(-t). Since the Hamiltonian is the time component 
of a four-vector, we would expect the transformation law to be H’(t)  = - H ( - t ) ,  
but this would have the undesirable effect of changing the sign of all energies. 
Ve thus require that the correct transformation for H be H’(t)  = H(-t). If this 
is the correct transformation law for the Hamiltonian, the effect of time inversion 
on the interaction time translation operator can be found by examining its effect 
on the nth term in its expansion, Eq. (3.24), which is 

00 

Hence the operation of time inversion gives 
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P i t  

l i >  T I i t >  

P2t P‘2 t  P ‘ 2  P2 

Fig. 8.3 
scattering process on the left is transformed into the process on the right. 

Under time inversion, which is interpreted as the reversal of the direction of motion, the 

where in the first line we used the assumed antiunitarity of 7 when we changed 
the factor of (-i)n to (+i)“, in the second line noted that when the action of 
7 on H changed the sign of the time, terms which were time ordered became 
“anti-time-ordered” (denoted by T’), in the third line changed t -+ -t in each of 
the time integrals, and finally in the last line replaced the anti-time-ordering with 
the Hermitian conjugate. Hence we conclude from (8.86) that 

7 U I  I-’ = u; = u,t = u,‘ . (8.87) 

This is a very elegant result. Taking matrix elements and using Eq. (8.84) 

(8.88) 
give 

( f~ur~ i )  = (itlu;+~jt) = (itlurlft) 

vhere I f )  and li) are the final and initial state, respectively, and l i t )  and Ift)  are 
time-reversed initial and final states. As illustrated in Fig. 8.3, this gives a beautiful 
interpretation of the 7 operation as the reversal of direction of motion. This 
interpretation would not emerge without the mapping li) -+ I f t )  and I f )  -+ lit) 
and without the change in the sign of z which insures that it is the same (correct) 
time translation operator Ul which is involved in both cases. And both of these 
properties are a consequence of the assumption that 7 is antiunitary. 

The necessity for time reversal to be antiunitary can also be demonstrated 
with two simple arguments: 

0 If the energy E is to be kept positive under time inversion, then the exponent 
in the factor e P i E t  must not be allowed to change sign. If t -+ -t, the only 
way to insure this is to change the sign of i, which requires that 7 be 
antiunitary. 

0 If we wish to preserve the meaning of H as a time translation operator, we 
must preserve the relation 

(8.89) 

and this requires that 7 be antiunitary. 
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To see why the preservation of Eq. (8.89) requires that 7 be antiunitary, consider 
a scalar field, which satisfies the following transformation law: 

If 7 were unitary, (8.89) would transform as follows: 

= 7 [ H ,  4]r1 = [H‘,  4’1 , (8.91) 

and hence its time-inverted form would become 

(8.92) 

which can be restored to the original form only by letting H’ = -H. In this case 
we would obtain the unphysical result that 7 changes the sign of all energies. 
However, if 7 is antiunitary, i 4 - i ,  and 

(8.93) 

Now we preserve the result if H‘ = H, which is desired. We conclude that the 

We now apply this to the various fields we have been studying previously. 
‘zysics requires that 7 be an antiunitary operator. 

Their transformation laws under time inversion assume the following form: 

74(r ,  t)74 = 7); $(r,  - t )  

7 @ ( r ,  t ) 7 - ’  = 7); T @ ( T ,  - t )  (8.94) 

7 A P ( ~ , t ) 7 - ’  = -A(T)’”.A”(r, -t) 

where the 7)’s are intrinsic phases which can only be f l .  The vector potential must 
change sign to compensate for the change in sign of the current under reversal of 
the direction of motion. The Dirac matrix T which generates time inversion for 
the Dirac equation is yet to be determined. It will turn out to be 

T = C y 5  , (8.95) 

where C is the charge conjugation matrix. We turn now to a discussion of the 
implications of these transformations. 
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First, look at scalar fields. The transformation law gives 

where in the first line the combined effect of changing t .+ -t and k - - k  
(in the sum) leads to a change in sign of the exponents and in the second line, 
because of the antilinear nature of 7, the sign of i in the exponents was changed 
as the operator 7 passed by them. Hence 

(8.97) 

Note that these are consistent with the notion of reversal in direction of motion. 
We have, for arbitrary Iy), 

(Y \ lC)  = ( Y I a k l O )  = ( y t l a t k l o ) *  

= ( O l a - k l Y t )  = ( - k l Y t )  ’ (8.98) 

The momentum of the particle changes sign, and its position in the matrix element 
changes from an initial to a final state. 

Next, consider Dirac fields. First, determine T by requiring that the free 
Pirac Lagrangian be invariant under 7, or that 

7 L ( X ) 7 - ’  = C(T , - t )  . (8.99) 

Transforming the Lagrangian gives 

(8.100) 
where x ’ p  = ( - t , r )  and the hermiticity properties of the y matrices, namely 
yo+ = yo and y’t = -?*, were used to make the replacement, 

The requirement (8.99) then leads to the following conditions: 

= ~ - f  

y o ~ + y o ~  = 1 . (8.101) 
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The first is satisfied by T = XCy', where X is a constant. The second determines 
the square of A, 

JXI2r5CtCr5 = 1 * 1x12 = 1 . (8.102) 

Since the overall phase can only be f l ,  as previously discussed, we are free to 
choose 

T = C r 5  . 

It is left as a problem (Prob. 8.7) to show that 

(8.103) 

Results such as these are expected, because under 7 both the direction of mo- 
mentum and the direction of spin should change. The origin of the phase will be 
discussed shortly. 

Now we find the implications of time reversal for Dirac fields. If 77; = 1, 
the transformation law (8.94) becomes 

+ e-'P'xu*(p, s) 7 d k , s 7 - 1 }  , (8.104) 

where the complex conjugation of the spinors in the second line arises because of 
the antilinear nature of 7. Using the relations (8.103) and changing the sign of s 
in the first sum give 

(8.105) 

The spin-dependent phase has a very simple physical origin. For spin 
particles it says that 

(8.106) 
71P, + a )  = -I - p 1 - a) 
7114-4) = I -P,++) . 
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We will now show that these two equations are consistent with, and required by, 
the normal phase convention used to define angular momentum states. To see this, 
work with a particle at rest, p = 0, and recall that the states are related to each 
other by the raising and lowering operators, 

J+lO, -3) = ( J x  + iJy) 10, -;) = 10, +) 
J-10, 3) = ( J z  - iJy) 10, +}  = (0, - 4 )  , 

(8.107) 

If we choose the phase so that 

and use the fact that 7 J ,  = - Ji 7 ,  we obtain 

Hence, the negative phase for the spin “up” state is required by all of the definitions 
and choices previously imposed! 

We conclude this section by discussing time inversion for the photon. Using 
the helicity representation, Eq. (8.50), 

the photon polarization vectors satisfy the following relations: 

Ef+ -2 =e;* = -  E i  + . (8.109) 

Therefore, under time inversion 

(8.110) 
and the transformation law for the annihilation operators is 

7 a k , a 7 - l  = a-k@ . (8.111) 

Note that the phase is positive, and the helicity does not change sign, because 
both the momentum and the spin do. 



0.7 THE PCT THEOREM 231 

8.7 THE PCT THEOREM 

We conclude this chapter with a discussion of one of the more interesting theorems 
in the subject of symmetry. 

Theorem: If the Lagrangian density is a Hermitian, normal-ordered, 
Lorentz invariant operator constructed from fields quantized with the 
usual connection between spin and statistics, then the product of the 
PC'T transformations is always a symmetry of the theory. 

Interactions can readily be constructed which violate P,  C, or 7 individually 
(often it is only necessary to change the phase of a coupling constant to achieve 
this), but the PCT theorem says that it is possible to choose the phases q [which 
enter into the transformation laws Eqs. (8.41), (8.58), and (8.94)] so that the 
product of all of these symmetries, 0 = PC'T, is always a symmetry of the 
rheory, regardless of how the interactions are constructed (provided only that they 
conform to the restrictions stated in the theorem) and regardless of the phases of 
the coupling constants. In this section, a proof of this theorem will be sketched 
and implications discussed. 

If 0 = PC'T, then from the previous sections, 

(8.112) 

where, as in the previous cases, the phase q+ is free to be chosen, subject to the 
condition q$ = 1. However, as we will discuss below, the PCT symmetry will 
emerge only i f  the phase q4 accompaning the transformation of spin zero fields is 
chosen to be +l. Since the Lagrangian density is a scalar, invariance under this 
transformation implies 

0c(2)0-' = C+(-z) = C(-Z) (8.113) 

because L is also Hermitian. 
Now consider the most general Lagrangian density imaginable. Lorentz in- 

variance requires that all terms involving the Dirac 1c, fields be construcred from 
the bilinear covariants discussed in Sec. 5.10, which must in turn be' contracted 
with other tensors constructed from other fields which have the same Lorentz 
invariance properties. We have denoted these bilinear covariant matrices by r, 
and without loss of generality we may assume that the r's are Hermitian (any 
non-Hermitian terms we might want to consider can be constructed from Hermi- 
tian I"s multiplied by complex coefficients). The II, fields will therefore enter the 
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Lagrangian through combinations like $(z)r$(X).  Consider the transformation 
of this quantity under 0. Because 0 is antiunitary, 

Now, we can remove the transpose in the Dirac space by re-ordering the Dirac 
fields (as we did in Sec. 8.5),  remembering that this will give a minus sign. Hence, 
since 71; = 1, 

[The normal ordering which is implied means that we can drop all anticommutators 
which would otherwise emerge when the bbt terms and ddt terms were exchanged 
under interchange of $ and d.]  Now, the implied hemiticity of the r’s gives the 
requirement 

[4(5)r(z)$(5)] + = d(4r0rtr0!N4 
so that 

-,Ortyo = r . 

Using yOyptyO = ye, the specific (Hermitian) forms of the 16 r’s are 

(8.116) 

,lence, recalling that y5 anticommutes with all yp, under 0 the r’s transform to 

r’ = y 5 r y 5  . (8.118) 

Under PCT the r’s therefore fall into two classes: 

Note that I”s with one Lorentz vector index change sign; those with an even 
number (0 or 2) do not. However, r’s with one vector index must necessarily be 
multiplied by 

or another r A  . a 
A”(x)  or - 

8% 
All of these also change sign under 0, so that their product with r A  does not. If 
a I’ has an even number of vector indices, it must be contracted with other terms 
which have the same (even) number of indices, and there will again be no sign 
change. This result can be immediately extended to include interaction terms with 



0.7 THE PCT THEOREM 233 

complex coupling constants; if the Lagrangian includes the term Xl? x l?, where X 
is complex, the hermiticity of the Lagrangian density guarantees that the Hermitian 
conjugate of this term is also present, and the combined term XI' x I? + X ' r  x l? 
does not change sign under PCT. Hence, while individual factors involving the 
fermion fields may change sign (or phase) under 0, this change of sign (or phase) 
is always balanced by other terms with a compensating change of sign (or phase) 
and therefore all terms involving fermions are invariant under 0. 

It now remains to examine interactions involving 4. The Lagrangian density 
could contain (for example) an interaction term of the form 

c = -X43(z) - X * 4 t 3 ( X )  , 

which is both Lorentz invariant and Hermitian. Under PCT, 4(x) is transformed 
to Q&+ (-x) and $t(x) to q&(-x), and remembering that 0 is antilinear, these 
terms transform into each other, with an overall phase change of 17;. If we chose 
the phase 774 = - 1, these terms would be odd under PCT, and the theorem would 
not hold. However, choosing q+ = +1 guarantees that all such terms are even. 
This choice also insures that any terms involving products of Dirac and scalar 
fields are even. We conclude that L is invariant under 0 [i.e., it transforms like 
Eq. (8.113)]. 

As we have seen, the freedom to choose Q+ = f l  is central to the proof of the 
PCT theorem, and it must be demonstrated that this choice is always permitted 
by the physics. A full discussion of this point requires techniques which we 
have not developed in this book. Briefly, it can be shown that a field theory 
can be fully defined by the vacuum expectation values of all products of its field 
pperators, and that these matrix elements, initially defined for real space-time 
points, can be analytically continued into complex space-time. The concept of 
analytic continuation is familiar from elementary studies of complex functions. It 
is a remarkable fact that a smooth function which is initially known only over an 
interval of the real axis can be continued into the entire complex plane and that this 
continuation is unique. In a similar fashion, the matrix elements of a Hermitian 
scalar field (a simple example), initially defined for real space-time points, can be 
defined uniquely in complex space-time. Now, for points in real space-time, the 
matrix elements of a scalar field are invariant under the real Lorentz group, and 
their unique extension into complex space-time is necessarily invariant under the 
group of complex Lorentz transformations. However, as we discussed briefly in 
Sec. 5.8, for the group of complex Lorentz transformations, T P  is continuously 
connected to the identity, so that any function must transform under T P  with the 
same phase as it does under the restricted group LL (recall Fig. 5.3 and Table 5.2). 
A scalar field is invariant under L i ,  and because T P  is connected to the identity 
through the process of analytic continuation, the phase q4 for a Hermitian scalar 
field must therefore equal +1. Hence there can be no physical impediment to this 
choice, which is, in this case, required by the interpretation of 7 P  as space-time 
inversion. For further discussion, the interested reader is referred to Streater and 
Wightman (1964) and to the literature (see, for example, [Lu 571) . 
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Implications of PCT lnvariance 
We begin our examination of the implications of PCT invariance by con- 

sidering the effect of PCT on meson annihilation and creation operators. Since 
776 = 1, we have 

(8.121) 

(8.122) 

where, as before, lk) is the state of an antiparticle with momentum k. The operator 
0 turns particles into antiparticles. We can therefore use PCT invariance to prove 
the following theorem: 

Theorem: The masses of particles and antiparticles are equal pro- 
vided they are stable or cannot decay into any other single particle state. 

Proof: 
the total Hamiltonian, and therefore 

For stable particles, the proof is simple because they are eigenstates of 

(8.123) 

where Ek = d m  and Ek = d n  are the energies of the particle and 
antiparticle states of momentum k. But because of the invariance under PCT, 0 
commutes with H. and 

U H ( k )  = EkOIk) = Eklil') 
= H O ( k )  = HIE) = E k ( k )  . (8.124) 

Hence Ek = El;, which implies m = m. An example is the proton; mp = a,. 

the Hamiltonian, 
For unstable particles the energy is, by definition, the expectation value of 

(8.125) 

Therefore, under PCT 



8.7 THE PCT THEOREM 235 

If these particles do not couple to another single particle state, the Hamiltonian 
on the subspace of single particle states is diagonal, 

(8.127) 

and the equality of the diagonal elements implies equality of the masses. An 
I example is the x+ and x -  mesons. 

Any violation of these predictions would imply a breakdown of PCT invariance 
and would have profound implications for field theory and for physics. 

The K O ,  h?' System 

We conclude this discussion by noting that there are particles and antiparticles 
which can couple to each other. This can happen only when they are neutral, 
have a sufficiently long lifetime to be observed as particles with a well-defined 
mass, and have some non-zero quantum number which is violated by the weak 
interactions but conserved by the strong interactions which produces them. Hence, 
under the strong interactions they are distinct particles with a well-defined mass. 
Their coupling through the weak interactions will mix the two states, however, 
leading to a mass splitting in apparent (but not real) violation of the equality of 
masses of particles and antiparticles. Such a system is the KO, I?' system. 

The KO and I ? O  states can be represented by a two-component vector 

In this subspace, the Hamiltonian has the form 

H = (  B' A " ) ,  A 

(8.128) 

(8.129) 

where PCT invariance insures us that the diagonal elements are equal, 

but says nothing about the off-diagonal elements, 

Because B is non-zero (even though it is small), the eigenstates of the matrix H 
are no longer (i) and ( y ) .  The eigenvalues (for k = 0) become 

m + = A f I B I ,  (8.130) 
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corresponding to eigenstates 

Note that the masses are no longer equal. If C P  is conserved, it turns out that 
B = B’, and KS decays into an even number of 7r’s (mainly 2n), while K L  decays 
into an odd number (only 37r’s since single pion decay is forbidden by energy- 
momentum conservation). It was the observation that K L  sometime decays into 
27~’s. which led to the discovery of CP violation. 

PROBLEMS 

8.1 Find the momentum operator Pi for the Klein-Gordon field (using Noether’s 
theorem) and prove that 

= -i [pi,@] . 3 
dX‘ 

8.2 (a) Show explicitly that 

is Hermitian. (Here $ is a Dirac field, 4 a scalar field.) Also show (assuming 
all phases are unity) that 

(i) this interaction does not conserve parity, but 

(ii) the interaction does conserve PC7.  

(b) Assuming all phases are unity, what other transformation (7 or C) is 
not conserved by this interaction? Compute the effect of 7 and C on the 
interaction. 

8.3 Construct a field theory with spin zero particles only, in which 

(i) 3 particles interact at a point 

(ii) 4 particles interact at a point 

Assume that parity is conserved. What is the parity of the particles in each 
case? [To “construct a field theory,” it is sufficient to write down C and 3-1.1 
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8.4 Show that the following Lagrangian density is invariant under charge conju- 
gation: 

where 4 is a Hermitian scalar field with a positive phase under charge con- 
jugation and .J, is a Dirac field. 

8.5 Consider a field theory with the following interaction: 

where g is a real constant. 

(a) Prove that Lint is Hermitian. 

(b) Prove that Lint does not conserve parity. 

(c) What are the simplest physical interactions described by Lint? 

8.6 Suppose the electron had a static electric dipole moment analogous to the 
magnetic moment. Write a Hamiltonian density that represents the interaction 
of the electric dipole moment with the electromagnetic field and prove that 
it is not invariant under parity. 

8.7 Show that 
Tu(-p, -s) = (-l)%+%*(p,S) 

T+P, -s) = (-1)++5~*(p,4 , 

where T = Cr5 



CHAPTER 9 

INTERACTING FIELD THEORIES 

With this chapter we begin a systematic study of interacting field theories in 
which all particles are described by relativistic quantum fields. This means that 
all particles are handled in a similar way and that the annihilation or creation of 
particles or particle pairs can be treated in a way consistent with the description 
of their scattering. The particles are isolated from their surroundings and interact 
only with each other, so that momentum (as well as energy) is conserved, and 
the recoil of the target in a collision process can be properly described. One of 
the great successes of this treatment is that it leads naturally to a description of 
particle forces. 

9.1 43 THEORY: AN EXAMPLE 

We often want a simple interacting field theory to use as an example when we 
begin the discussion of a new subject. In this book we will use 43 theory for this 
purpose. While this theory has very few applications, it has the virtue of being 
one of the more simple theories which can be constructed and is also rich enough 
to illustrate the general techniques used to treat any interacting theory. 

In its most complete form, our illustrative 43 theory will include three kinds 
of scalar particles: two charged scalar particles with masses mi, i = 1,2, and a 
neutral scalar particle with mass p. As discussed in Sec. 7.5, each particle will 
be described by a separate quantum field, which is for particles 1 and 2 and d 
for the neutral particle. The total Lagrangian is the sum of four terms, 

The free Lagrangians for the charged fields were discussed in Sec. 7.3 and are 

a+; a+, 
ax, ax, 

C, =: - - - m:+;a,: 
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where i is not summed over, and for the neutral scalar field, where 4+ = 4, the 

as discussed in Prob. 7.2. All three of these Lagrangians describe spin 0 Klein- 
Gordon particles, and hence their corresponding fields satisfy commutation rela- 
tions. The interaction term will have a 43 structure and consist of three possible 
terms, 

x 
3! 

L i n t  = : + ! ( X ) + ~ ( X ) ~ ( X ) :  --xZ : + ; ( x ) + ~ ( x ) ~ ( x ) :  --: ( ~ ~ ( 2 ) :  , (9.4) 

where the coupling constants of the theory are XI, X2, and A, all of which are 
real because (9.4) must be Hermitian. In some references, the term “43 theory” 
is reserved exclusively for a purely neutral self-interaction term like the last term 
given in (9.4), but we will refer to any of the interaction terms in (9.4) as a “43 
theory.” The reason for dividing the neutral 43 term by 3! will be discussed 
later. In some applications we will take some of these constants to be zero, 
giving simpler theories. According to the discussion in Sec. 7.5, this interaction 
Lagrangian describes elementary processes in which three particles interact at a 
point. 

The fields at(.) and d(x) have the following structure: 

P 
(9.5) 

where the subscripts on the annihilation and creation operators, sip, label both the 
particle type, i, and the momentum, p ,  and the corresponding operators for the 
neutral particle will be distinguished by having only one subscript, the momentum 
k. The subscripts on the wave functions iP label both the particle type and the 
momentum. 

The interaction Hamiltonian corresponding to the 43 theory proposed in 
Eq. (9.2) is 

x 
3! ?l int  = - L i n t  = x1: + ; ( z ) a l ( X ) q q x ) :  +x2:  iP ; (x )+z (z )4 (X) :  +-: 43(x): . 

(9.6) 
The perturbation theory for the time translation operator, worked out in Sec. 3.1, 
can also be applied to a perturbative treatment of interacting second quantized 
theories, and we will carry it over without further discussion. Expressed in terms 
of Hamiltonian densities, the time translation operator to second order is 

I I 
(9.7) 
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where the T operation is the time-ordered product of the Hamiltonian densities, 
with the later times on the left. 

In the next few sections, we will discuss particle decay (which happens in first 
order in d3 theory) and particle scattering (which happens in second order). Our 
discussion here parallels the discussion in Sec. 3.2 but is more general because all 
particles are treated relativistically, with the possibility of particle production and 
annihilation, and there is no longer any fixed center of force. The latter allows us 
to conserve momentum as well as energy. 

9.2 RELATIVISTIC DECAYS 

The Hamiltonian (9.6) will permit the neutral particle to decay into a particle and 
antiparticle of type-1 if p > 2ml. In this section we will calculate this decay 
rate and the corresponding lifetime of the neutral particle. While the details of 
this calculation are given for this example, nearly all of our results apply to any 
decay process and thus are very general. We will extract the general features of 
the calculation as we go along. 

The S-matrix for decay is 

s = (PP’  IUII k )  9 (9.8) 

where k is the momentum of the neutral, heavy particle and p and p’ are the 
momenta of particles and antiparticles of type-1. The bar over a momentum 
variable will be used to denote an antiparticle. To lowest order in the interaction, 
this matrix element is 

s = -i o a lpc lp f  d45~1:aPr(2)a1(2)~(5): a: o , (9.9) 

where, if A2 # 0, the term with must be zero because the interaction term is 
normal ordered and there are no annihilation or creation operators for particles of 
type-2 in either the initial or the final state to prevent these operators from acting 
directly on the vacuum state and giving zero. Now, recalling the expansions for 
@ I  and 6, given in Eq. (9.3, and the commutation relations satisfied by these 
operators, we see that the only non-zero term can come from the a terms in 6,, 
the a! terms in !3!, and the ci terms in @ I .  Furthermore, using the result 

( I  s I >  

(9.10) 
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where E,(p)  = d m  for i = 1 or 2 and w ( k )  = d m  for the neutral 
particle. Integrating over all 2 and going to continuum limit (L -+ 27r) show that 
this result can be cast into the following form: 

(9.11) 

where the relativistic M-matrix has been introduced. In the general case, when the 
total number of particles entering and leaving the interaction is R ,  the relativistic 
M-matrix is defined by the relation 

where, if Ei is the energy of the ith particle (either El or w in this example), then 

for each particle entering or leaving the interaction. 
t'ie M-matrix is simply the coupling constant 

M = X 1 .  

Decay Rate 

To obtain the decay rate the calculations in Sec. 3.1 

In this simple 43 example, 

(9.13) 

must be generalized. Since 
there is now no potential, or fixed center of force, decay (or scattering) takes place 
throughout all space. In this case, the decay rate per unit volume is calculated, 
and the result is summed over all space and all momenta. Hence, for a box of 
volume L3, the differential decay rate is 

(9.14) 

where the first term is the rate per unit volume and L3 is the volume. The rate per 
unit volume is calculated in much the same way as the time average was treated 
in Eq. (3.34). If the volume integral over the wave functions is denoted by A, 
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then the volume average of the square of the integral, which is what is needed for 
the calculation of the decay rate, is 

Hence, in the continuum limit, we have a formal relation completely analogous 
to the time average relation Eq. (3.45). 

(9.17) 

Using this, and Eq. (3.45) for the time average, gives, in the continuum limit, 

The generalization of this formula to an n-body decay satisfies the following rules: 

0 Define M as in Eq. (9.12). 

0 Construct the decay rate dW as follows: 

0 a factor of ( 2 ~ ) ~ 6 ~ ( p j  - p i ) ,  

0 a factor of 
d3P 

( 2 7 ~ ) ~  2Ep 

for each particle in the final state, 

0 a factor of 1/2E for the initial particle which is decaying, 

0 the absolute square of the M-matrix. 

These rules are also recorded in Appendix B for future reference. 

independent of angles) is 
The total decay rate for the c $ ~  example under consideration (in which M is 

d3pd3p’ ( 2 . ) 4 ~ 4 ( ~  + P’ - k) 1 ~ 1 2  

BE1 (PWl ( P ’ ) W ( k )  

(9.19) 
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where the calculation was carried out in the rest system of the neutral particle, 
so w ( k )  = p and E l ( p )  = El(p') ,  and the relative momenta of the two decay 
products is obtained from the equation 

Ef(p') = m; + p * 2  = , 

so the final result can be written 

(9.20) 

where T is the lifetime. 

Remarks 
Decays exhibit the following features: 

0 The decay rate is proportional to A:, and hence, if A1 is small so that the 
decay is well described by the lowest order perturbative result, the magnitude 
of the coupling constant A1 can be determined from the decay. 

0 The decay will not take place unless p > 2ml. 

0 The decay rate is proportional to the phase space, which for this simple S 
wave two-body decay is 

P' 
4np 87r 

p ( p ; m l , m l )  = - = (9.21) 

If p is very close to 2m1, the rate is low (the lifetime long), even if X 1  is 
large. 

The phase space of an n-particle decay is defined to be 

where k is the four-momentum of the decaying particle and k z  = p2 .  The phase 
space p is an integral operator, but if it acts on a constant M-matrix, all the 
integrals can be carried out and it can be reduced to a known function of the 
masses. Evaluation the phase space integral is a useful way to estimate many 
body decay rates and cross sections. For two-body decays it is easy to work out, 
and the task of obtaining the general result is left to the reader (Prob. 9.4). 

9.3 RE L AT IV I S T  I C SCATTER IN G 

To describe scattering, we need to go to second order in the d3 interaction Hamil- 
tonian (a 44 term would be needed for scattering to occur in lowest order). As our 
first example, consider the case of a particle of type-1 scattering from a particle 
of type-2. The process is represented diagrammatically in Fig. 9.1, where the 
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k‘ k 

Fig. 9.1 Diagram of the scattering of particles of type I and 2. 

momenta of particle 1 are k and k’ and of particle 2 are p and p’. We will assume 
k # k’, p # p’, which means the scattering is not in the forward direction. 

The S-matrix is (the factor of f is compensated by two identical terms) 

x T {: @ ! ( ~ i ) @ i ( x i ) 4 ( x i ) :  : @;(Sz)@z(Sz)$(Sz): 

(9.23) 
This is the only term to second order which can contribute to the matrix element. 
The a; in @:, a1 in 3 1 ,  ad in @;, and a2 in $ 2  are the terms which survive. 
Using 

which holds for any operator 0 which commutes with al ,  a:, a2. and ad. gives 

where @ii)(x) is the K G  wave function for a free particle of type-1 with mo- 
mentum k’, etc. Now, to carry out the integrals, introduce 

and use the fact, which we will show later, that 
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is a function of T only, and go to continuum normalization to obtain 

we obtain 

In this example, the M-matrix is proportional to the Fourier transform of the 
vacuum expectation value of the time-ordered product of two field operators. This 
vacuum expectation value is referred to as the propagator and is a very important 
concept in field theory. 

Instead of calculating the propagator of the neutral field (9.30), we will 
calculate the propagator for a charged field with the same mass. Since a charged 
field has antiparticles which are distinct from its particles, as discussed in Sec. 7.3, 
lhis calculation will enable us to track the role of antiparticles more easily. At the 
end, we will see that the two propagators have the same mathematical form. In 
coordinate space the charged propagator is 

where the charged field expansion is 

(9.32) 

The charged field differs from the neutral field only in that ck # U k ;  the wave 
functions 

The propagator is easily calculated. Only the a at and cct  terms can con- 
tribute, and these contribute to different time orderings. Using the (by now) 
familiar result (which also holds for the c's) 

are identical in the two cases. 
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= Cmtr+)(~~)mtr+)*(~~)e(t~ - t z )  + ~ m ! , , ) * ( x 2 ) 4 1 ; ! ( ~ l ) ~ ( t 2  - t l )  . 

(9.34) 
n n 

The particle part of this expansion is the first term, which propagates positive 
energy solutions to times tl > t 2 ,  while the antiparticles contribute to the second 
term, which has the form of negative energy solutions propagating to times tl < 
t 2 .  Thus the field theory propagator automatically gives us the interpretation we 
developed in Sec. 4.8 (recall Fig. 4.3). 

Having shown that the antiparticles are responsible for the t l  < t 2  part of the 
propagator, we return to our discussion and observe that the neutral propagator 
gives a result identical to (9.34) because dc,,) = $2'. Substituting for &+I, 

letting W k  = d m .  and taking the continuum limit give 

(9.35) 
where the integration was changed from k -+ -k in the second term. Recalling 
the identity (4.77), 

we can write the propagator in the following form: 

- p 2 - k $ + k 2 - i t '  

where the identity (4.77) with t --+ -t  and Ico 4 -ko  was used for the second 
term. Since the role of the i f  term in the denominators is only ro tell how to go 
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around the pole in the complex plane, the c2 term in the last denominator can be 
ignored, and ic’ = 2icwk is completely equivalent to i c  (because Wk > 0), and 
in all subsequent calculations we will assume this equivalence by taking c‘ = E 

without comment. Putting this all together gives 

This is a beautifully simple, covariant formula for the configuration space 
propagator of a spin zero particle. It shows that the propagator depends only on 
21 - 2 2 ,  and hence justifies Eq. (9.27). It displays the propagator as the four 
dimensional Fourier transform of a simple function of the square of the virtual 
four-momentum of the particle. The integration is over all four components of 
k 2 ,  and k2 # p2. We say that the four-momentum of the propagating particle is 
“off-mass-shell,” or simply “off-shell.” Inserting this result into Eq. (9.30) gives 
the following second order result for the M-matrix which describes 1 + 2 - 1 + 2 
scattering in this simple theory: 

(9.38) 

This calculation of the M-matrix was more lengthy that the calculation of 
the decay amplitude in Sec. 9.2 but was still reasonably easy. The calculation of 
more complicated processes can be very tedious if done in this way (as we shall 
8 :e!), and in the late 1940’s Feynman discovered a very beautiful diagrammatic 
way to organize perturbative calculations so the results can be obtained much 
more easily. In the next section we begin our discussion of the famous Feynman 
rules. 

9.4 INTRODUCTION TO THE FEYNMAN RULES * 

One of our principal objectives as we continue to study interactions will be to 
extract the Feynman rules for the calculation of the M-matrix. For the rest of 
this chapter and during the next two, we will calculate results directly from field 
theory the “hard” way, but as we do so, we will pause at the end and introduce 
new Feynman rules illustrated by the particular calculation just completed. In 
this way we will demonstrate explicitly how most of the Feynman rules arise in 
lowest order calculations and also develop an understanding of how results can be 
obtained directly from the field operators using perturbation theory. A summary 
of the Feynman rules we will introduce is included in Appendix B, and the reader 
is encouraged to refer to this frequently. 

‘Two of the original papers, [Fe 491. are reprinted in a nice introductory volume by Feynman (1961). 
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- 1  
I 
I 

q =  ( k - k ' )  

I 

- 2  
P' (-+!I P 

Fig. 9.2 
tering of two scalar particles. 

Feynman diagram for the scat- Fig. 9.3 Feynman diagram for 

the decay of a heavy scalar particle. 

The approach we are taking in the next few chapters will not demonstrate that 
the Feynman rules we extract from our lowest order calculations will also work 
to all orders in perrurbarion rheory. This proof is rather difficult and clumsy to 
carry out with the operator formalism we are using in this part of the book and 
will be defered until Chapter 14. where we introduce the path integral formalism. 

Returning to the 43 scattering calculation just completed in the last section, 
we write the final result for the M-matrix in the following way: 

This illustrates the first three Feynman rules for the construction of the M-matrix 
in b3 theory: 

0 First, draw all Feynman diagrams which describe a given scattering process 
to a given order. These are topologically distinct drawings which describe 
possible mechanisms for particle production, annihilation, and propagation 
which can lead to the final scattering process. For this example there is only 
one such diagram (shown in Fig. 9.2) which describes the exchange of the 
neutral particle between particles 1 and 2. 

0 Next, find the mathematical factor associated with each diagram, and 
add the factors for all diagrams together to get the total result. The rules 
which enter in this first simple example are 

Rule 0: a factor of i. 
Rule 1: a factor of - i X ,  for each vertex where the neutral particle is 
emitted or absorbed by particle j. 
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Rule 2: a factor of 
-i 

p2 - k2 - if 

for each internal line of four-momentum k corresponding to the virtual 
propagation of a scalar particle. 

Four-momentum is to be conserved at each vertex, like current flowing 
through a circuit. 

Note that the decay calculated in the last section also followed these rules (refer 
to Fig. 9.3). 

The Feynman rules fall into two general categories. There are rules which are 
very general and apply to all theories and rules which are specific to a particular 
theory. Rules 0 and 2 above are examples of the first type, and Rule 1 is of the 
second. Each theory has its own characteristic interactions, and for each type of 
interaction there is a Rule 1 with a unique structure. Many of these are summarized 
in  Appendix B. Rule 0 may seem frivolous; if the factor of i is omitted from every 
amplitude, it will be of no consequence for any prediction since all observables 
depend on the absolute square of an amplitude. However, omitting this factor is 
inconvenient from a theoretical point of view, since many amplitudes known to 
be real (or imaginary) will not have the expected property unless it is included. 
Finally, the propagator is a key building block in the construction of Feynman 
amplitudes, and the propagator given above (Rule 2) is the correct propagator to 
use in any Feynman amplitude which includes an internal scalar particle, and in 
this sense it is a general result. We will discuss some of the properties of the 
2ropagator now. 

The Propagator 

We will first rederive the explicit form for the propagator given in Eq. (9.37) 
using a different technique. This new derivation will give us experience with the 
treatment of matrix elements of field operators and insight into the physics which 
goes into its definition. 

We begin by showing that the propagator iA(z) = (O(T ($(s)$(O)) (0) [recall 
Eq. (9.3 I) ]  satisfies the following inhomogeneous KG equation: 

(0 + p2)  A ( s )  = -S4(z) (9.40) 

To prove this, note that the field operators satisfy the KG equation (they are 
constructed from its plane wave solutions), so the only non-zero contributions 
must come from the time derivatives of the &functions associated with the time- 
ordered product. Recalling that 

(9.41) 
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we have 

where the canonical commutation relations were used to discard the commutator 
in the second line and to obtain the additional S3(r) term in the last line and the 
a2d/dt2 terms are discarded because they are canceled by the remaining Vz - p2 
from the KG equation. Hence we have proved Eq. (9.40). 

If the propagator and the &-function are expanded in plane waves, Eq. (9.40) 
can be used to obtain the following solution for the propagator: 

+ homogeneous solution , (9.43) 

where the homogeneous solution is fixed by the boundary conditions we wish to 
;.npose. Before we discuss this, note that the denominator of the inhomogeneous 
term in (9.43) still has the same two zeros at Ico = f w k  that we encountered 
before. The integral is defined by regarding these as poles in the complex ko 
plane, and there are four possibilities: both poles could be in the upper half plane, 
both in the lower half plane, or we could have one in each. We choose to put 
the positive energy pole in the lower half plane and the negative energy one in 
the upper half plane, as illustrated in Fig. 9.4, and to set the homogeneous terms 
to zero. This choice is referred to as the Feynman prescription and is equivalent 
to imposing the requirement that positive energy states propagate forward in time 
and negative energy states propagate backward in time and is, as we have seen, 
the correct prescription for a theory in which negative energy states are to be the 
antiparticles. We leave it to the reader to show (Prob. 9.5) that any other choice 
of propagator differs from the Feynman choice only by a homogeneous term, and 
hence the Feynman prescription is equivalent to imposing boundary conditions on 
the theory. With the Feynman prescription, our solution (9.43) becomes identical 
to the original solution (9.37) and our rederivation of the result is complete. 

We conclude this discussion by showing, directly from Eq. (9.37), that the 
Feynman prescription propagates positive energy states forward in time and nega- 
tive energy states backward in time. [In other words, we show that the steps which 
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Fig. 9.4 The complex ko plane showing the location of the two poles of the propagator. 

lead to (9.37) can be reversed.] Consider the integral over the virtual energy, dko. 
Factoring the Feynman denominator, 

shows that there are two poles in the complex ko plane, located at &(w - z c )  
as shown in Fig. 9.4. To evaluate the integral, we must extend the path of 
integration into either the upper or lower half plane, making a closed contour so 
that the integral may be evaluated using the calculus of residues. If t = tl - t 2  > 0,  
the contour must be closed in the lower half plane where the integrand converges 
to zero at infinity. If t = t l  - t2 < 0, it must be inclosed in the upper half plane. 
This gives 

e i U k ( t 1 - b )  

+ q t 2  - t l )  I (9.45) 
2Wk 

in agreement with our starting point. We call attention to the fact that this result 
leads uniquely to the physical interpretation that positive energy states propagate 
forward in time and negative energy states propagate backward. This interpreta- 
tion is a mathematical consequence of our placement of the poles in the complex 
plane using the “i6” prescription we introduced in Eq. (9.36), and this in turn is 
a consequence of our use of the identity Eq. (4.77). 

Now examine the role of the momentum space propagator, Rule 2, in the 
final result for the scattering matrix, Eq. (9.38). Factoring the propagator into 
two terms gives 

l +  l l  

1 - - 1 =- [  1 
/.L’ - ( k  - k’)2 w 2  - (El - Ei)2 2~ w + Ei - El w + El - E{ ’ -- 

A B 
(9.46) 
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Feynman diagram time-ordered diagrams 

Fig. 9.5 The Feynman diagram on the left is the sum of the two time-ordered diagrams A and B. 

where w 2  = p2 + (k - k')* and El = Jv, Ei = d m .  This 
decomposition is interpreted diagrammatically in Fig. 9.5. It illustrates a very 
general feature of Feynman diagrams: a single Feynman diagram is equal to the 
sum of a number of time-ordered diagrams. A time-ordered diagram is one in 
which the times at which particles are emitted or absorbed are in a definite well- 
defined order, which is nor the case for Feynman diagrams, where times at which 
particles are emitted or absorbed can have all possible orderings. For a diagram 
with n vertices, there are n! possible time-orderings and hence n! time-ordered 
diagrams correspond to each Feynman diagram. The two time-ordered diagrams 
.A and B shown in Fig. 9.5 are similar to the two diagrams we discussed in Fig. 4.3. 

9.5 CALCULATION OF THE CROSS SECTION 

In this section we return to our general discussion of scattering theory and work 
out the general rules for obtaining the relativistic cross section from the M-matrix. 
We will work out the details for the two body scattering case labeled in Fig. 9.1. 

As in  the case of decays, we must calculate the transition rate per  unir volume, 
since the scattering is now viewed as taking place over all space (corresponding to 
momentum conservation). However, our discussion following Eq. (3.46) is essen- 
tially unchanged, because the rate per unit volume occurs in both the numerator 
and the denominator. We have 

da x (#target particles) 
(area of beam-target interaction) 

(# particles scattered into AR/sec-vol) 
(# particles incident/sec-vol) 

-=  

(9.47) 
Note that this way of writing the expression shows clearly that du has dimensions 
of an area. 
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Now, the number of particles scattered into Afl/sec-vol is proportional to 
[using Eq. (9.14) and the discussion following] 

ISI2 ( 2 ~ ) ~ 6 ~ ( p ’  + k’ - p - k ) l M I 2  - 
1 (9.48) - - 

T L3 L1216E1EiE2E4 

where the particle energies will be denoted E l ( k )  = El ,  etc., for simplicity. The 
rest of the analysis parallels our development in Sec. 3.1, except we now have an 
extra factor of L3,  

L6 1 

( 2 ~ ) ~ 6 ~ ( p ’  + k’ - p - lc)lM12 d o  = C L” II 16E1 Ei E2 Ei 
Afl 

(9.49) 

where the sum is over all momenta in the final state, consistent with the restriction 
to solid angle Afl, and v is the flux factor introduced in our discussion in Sec. 3.1. 
Note that the L6 term cancels, and 

1 ( 2 ~ ) ~ 6 ~ ( p ’  + k’ - p - k ) l M I 2  
v 16ElEiE2E; 

p‘EAR k’EAfl 

Going to the continuum limit gives 

(9.50) 

This is a special case of the general formula for the cross section, which 
builds do from the following factors: 

0 a factor of ( 2 ~ ) ~ 6 ~ ( p f  - p i ) / v ,  where v is the flux, 
0 a factor of 

d3pi 
( 2 ~ ) ~  2E, 

for each particle in  the final state, 

0 a factor of 
1 - 

4EE’ ’ 
where E and E’ are the energies of the two particles in the initial 
state, 

0 the absolute square of the M-matrix. 
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Now, reducing the cross section Eq. (9.50) in the center of mass ( C M )  frame 

IM12 ? (9.51) 

where all the energies can be expressed in terms of Ei = d v  and E, = 
,/-, because, in the CM frame, p = -k (which implies that p = k), and 
the three-momentum delta function therefore gives p’ = -k’ (implying p‘ = k’). 
The flux factor u, which is the sum of the approach velocities of the two particles, 
is 

gives 
d3k’ 6 (Ei + Eb - Ei - E2) 

da = L, (2.)2 (-& + &) 16E1EiE2Eh 

To evaluate the energy conserving &function, note that 

d(E; + E;) k‘ k‘ k‘ 
- - - + - = -  (Ei+Eh)  . dk‘ Ei Eb EiEb 

(9.52) 

(9.53) 

Dividing by this factor enables us to evaluate the &function easily. If AR + dR, 
then 

kI2 Ei EbE1 E2lM 1’ du = dR- 
( 2 ~ ) ~  k’(E’, + Eb)k(E1 + E2)16EiEiE2Eh ’ 

where the energy conserving delta function gives k‘ = k and E‘ = E. Hence, for 
elastic scattering of spinless particles in t heCM system, 

(2T)216(E1 + E2)2 

Evaluation of Cross Section in the Laboratory Frame 
We return to Eq. (9.50) and show that da is covariant, at 
frames colinear with the velocity of the incident particle. 

To show this, note that 

(9.54) 

least in all reference 

(9.55) 

where 6+(m2 - p 2 )  = 6(m2 - p 2 )  8 ( p 0 ) .  This shows that sd3p’/(2Eh) is covari- 
ant. Also, b4(p‘ + Ic’ - p - k )  is obviously covariant, and M is covariant. The 
only remaining factors in the cross section are El Ezu, which can be written 

= J E i k 2  + Efp2 + 2ElE2kp , 
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Compare this to 

d( k . P ) ~  - m9m; = d( El E2 + kp)2  - mfm; 

= d E : p 2  + E i k 2  + 2E1E2kp 

Hence, for any colinear frame, 

El E22) = d ( k  . p ) 2  - mym; , 

which demonstrates the covariance of El Ezv, and hence da .  

255 

(9.56) 

Now evaluate da  in the laboratory (LAB) frame, where m2 is at rest. The 
initial expression is 

k’2dk’6(E1 +m2 - E{ - (9.57) (’ T ) ~  ( E l )  1 6 E l m 2 E { E ;  
da  = d R  

The &function is now far from trivial. Recalling that 8 is the scattering angle in 
the LAB system and using 

(E;  + E;) = ,/-’+ J-, (9.58) 

where, by three-momentum conservation, 

2 pt2 = (k - k’) = (k’ sin 8)2 + ( k  - k’ cos 8 ) 2  

= k’2 + k2  - 2kk’cosO , (9.59) 

gives 

Ei Ei = E; k’ + Ei (k’ - k cos 8) 

= (El + m2 - E1)k‘ + Ei (k ’  - k c o s 8 )  
= (El + m2)k’ - E ; k c o s 8  . (9.60) 

It turns out to be convenient to express this in terms of the square of the four- 
momentum transfer, which can be written in many different ways and will be 
useful in later applications: 

q2 = (k’ - k ) 2  = 2m;  - 2 E 1 E i  + 2kk’cosO 
= (p’ - p ) 2  = 2m;  - 2m2E; = 2m2(m2 - Eh)  
= 2m2(E:  - E l )  . (9.61) 
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lM12 
’ 

Hence: 

(9.63) 

E‘ 
” )  = (El + m2)k’ - 4 (q’ - 2m;  + 2 E 1 E i )  d k‘ 2k 

d (E i  E{ E; 

’El Eim? El 
k’ k‘ 2k‘ 

+ - - -(m; + k”) = ( E l  + m2)k’ - - 
’E’ m2 
2k’ k’ 

= mzk‘  - + ‘ ( E I  - E l )  

(9.62) 

The exact formula for the elastic cross section in the LAB frame, in which m2 is 
at rest, is therefore 

This agrees with the C M  result in the same limit, 

(9.64) 

IMI2 + IMI’ (9.65) 
( 2 ~ ) ~ 1 6 ( &  + E2)2  m2-M ( 2 ~ ) ~ 1 6 m i  ’ 

as it must. 

ml -+ 0. In this case set k = El and k’ = Ei,  and note that 
The other limit of interest occurs when k -+ m, and therefore we may take 

42 = 2m: - 2E1 Ei + 2kk’ cos B 

-+ -4E1Ei  sin’ 
2 .  (9.66) 

Then 

(9.67) 
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Note that the recoil factor may now be significant. We will return to this formula 
later. 

9.6 EFFECTIVE NONRELATIVISTIC POTENTIAL 

We can use Eqs. (9.29) and (9.54) to relate M to the nonrelativistic potential (in 
momentum space). Recall that the nonrelativistic S-matrix [from Schiff (1  968). 
for example] for non-forward scattering is 

i 
h s = --27r6(E, - E , ) T ( q )  

i 
h 2 --27rb(E, - E,) V ( q )  , (9.68) 

where T is the reduced nonrelativistic scattering amplitude (which plays a role 
similar to M) and the second equation expresses the result in the first Born 
approximation. The momentum transfer is q = (k - k'), and v(q) is the potential 
in momentum space 

v(q) = d3r V ( T )  e-tq'r . (9.69) s 
In terms of these quantities, the differential cross section is 

where m is the reduced mass, 

(9.70) 

(9.71) 

To extract the efSective nonrelativistic potential from the relativistic theory, 
assume that V should be chosen to give the correct result for M and da/dR 
in the first Born approximation. Equating the relativistic formula (9.54) to the 
nonrelativistic formula (9.70) gives, in the nonrelativistic limit, 

+ -  I M ,  (9.72) 

where the sign, which cannot be determined from the cross sections (which involve 
the square of both quantities), is fixed by a comparison of the nonrelativistic 
scattering amplitude T, given in Eq. (9.68), and the relativistic scattering amplitude 
M, defined in Eq. (9.29). In both cases the factor relating these quantities to the 
S-matrix is a factor of -i (because of Rule 0), so they have the same sign. 

m l + m 2  M 
'('1 = ( El + E2) nonrel 4mlm2 
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Hence the effective coordinate space potential between the charged particles 
ml and m2, which arises from the exchange of the neutral particle in the I $ ~  

theory investigated above, is obtained by Fourier transforming the result (9.38), 

(9.73) 

where El - E', = 0 in the C M  system. Recalling the Yukawa integral, Eq. (4.67), 

This gives finally 

(9.74) 

(9.75) 

(9.76) 

The famous Yukawa potential therefore arises from the exchange of a particle in 
rield theory and is a natural consequence of the simplest interaction. 

There are three general features of this result which are of considerable sig- 
nificance and should be noted for future reference: 

0 V ( T )  is attractive. This is a general feature of scalar particle exchange. 

0 The strength of V ( T )  depends on the coupling constants A t & ,  which in 43 
theory have the dimensions of energy (mass). 

0 The range of V ( T )  depends on the mass of the exchanged particle, p. 

The extraction of effective interactions from field theory is a major industry, and 
we will soon see how the famous one-pion exchange (OPE) potential is derived. 
The study of effective interactions is continued in Chapter 12. 

9.7 IDENTICAL PARTICLES 

In this section we discuss some of the additional complications which arise when 
identical particles are present in the initial or final state. The d3 theory introduced 
in the first section will be used to illustrate the discussion, but all of the results 
will be quite general. 
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For identical particles we must be careful how the states are normalized. For 
a two-particle state, we have 

1 ~ 1 ~ 2 )  = NataLlO) , (9.77) 

where n/ is a normalization constant to be fixed shortly, and we will adopt the 
convention that the order of the variables in the “bra” is the same as the order of 
the operators, which matters only for fermions [recall Eq. (7.28)]. For “kets” we 
will use the same rule, so that 

In either case. 
+ for bosons 

- for fermions. 
IPlP2) = flP2Pl) (9.79) 

The normalization constant N is fixed by the completeness requirement 

c lPlP2)(P2Pll = 1 ? (9.80) 
P I P 2  

which implies 

Put with identical particles 

(k2k11k:k;) =N2 (Ola2a1 a,,a,,JO + + )  
(9.82) 

Substituting (9.82) into the completeness relation (9.81) and doing the sums over 
p l  and p2 give 

=N2 [6klki6k2k; f 6klk;bkzk;I * 

2N4 [6kik;6kzk; f 6klk;6kzk;] = N2 [6klk;6kzk; f hkIk;6kzk;] i 

which leads to the requirement 

1 N = -  
Jz (9.83) 

Now the factor 1 / d  is inconvenient and can be omitted if we use the 
convention, for identical particles only, that pl > p2, or in the center of mass 
system where both momenta always have precisely the same magnitude, p1 will 
be the momentum which has a polar angle O1 5 7r/2. In this case the second 
Kronecker delta 6klk;6k2k; = 0, and the above derivation would give N = 1. This 
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is the convention we will adopt. This convention can be extended to more that one 
identical particle, in which case the momenta are restricted by pl > p2 > . . .p,, 
or el < O2 + - On; with this restriction the n-particle normalization also equals 
unity. 

This convention requires care when integrating over final states in the cal- 
culation of cross sections or decay rates. If we choose to integrate over the full 
solid angle 4n then, for a two-body final state, we are counting both p l  >_ p2 
and p2 2 pl, so we must divide by 2. [Note that this factor would arise naturally 
if we had used N = l /f i  for final states (which is appropriate if we place no 
restriction on the final momenta), giving a factor of fl = in cross sections 
and decay rates.] For an n-body final state, we can again integrate over all final 
momenta ifwe divide by afactor of n! . These factors are called sratisriculfacrors. 
In summary, our convention for the treatment of identical particles involves two 
new rules: 

0 for identical particles take N = 1 and order the momenta 

0 when integrating over final states, ignore the ordering and divide 
by the statistical factor n!. 

With these rules in mind, we will now calculate the elastic scattering of two 
particles of type-1 (i.e,, 1 + 1 4 1 + 1) to lowest order in 43 theory. Our beginning 
.s very similar to Eq. (9.23) for the S-matrix, 

except that now there is only one term (the square of the A1 interaction term) 
which can account for the scattering, so the factor of 3 remains. Also, since the 
initial state contains two creation operators, a t ,  aip2 lo), and the final state two 
annihilation operators, (O~ulp;ulp; , we will need both of the annihilation operators 
contained in @(q) and @(Q) and both of the creation operators contained in 
@ t ( q )  and Qt(22)  to “balance” the a’s and at’s in the initial and final states 
and give a non-zero result. Specifically, in place of (9.24) we need the following 
matrix element: 
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which displays all the pairings which are possible when the particles are identical. 
Note that as the creation operator a l ,  is moved to the left, for example, a term 
S,, arising from the commutator [al,,aii] will appear, but all such terms can 
be ignored because they will eventually require the momenta in the initial and 
final states to be equal, and we are specifically excluding forward scattering from 
consideration. Substituting (9.85) into (9.84) and inserting the wave functions 
give four terms: 

Using the fact that the propagator depends only on 11 - x2 and introducing the 
sum and difference variables R and T as we did in Eq. (9.26) allow us to extract 
the M-matrix as we did before. The four terms collapse in two different terms, 
each multiplied by 2, giving 

The first term is the same as the result we obtained when the particles were not 
identical, and the second term is obtained from the first by symmetrizing rhe$final 
state (or the initial state, but we will adopt the convention that the final state is 
to be symmetrized). This illustrates a new Feynman rule, Rule 4 (as they are 
numbered in Appendix B): 

Rule 4: symmetrize between identical bosons in the final state. 

Let’s briefly review the calculation and see where the two terms given in 
(9.87) came from. For this purpose it is best to think of the interaction unfolding 
in space-time, where, according to (9.84). one interaction takes place at point x1 

and the other at 5 2 ,  where the points 11 and x2 will be deftred to be the points 
of arrival of the incoming particles with momentum pl and par respectively. The 
propagator describes the propagation of the neutral particle between these two 
interaction points. Now, because the interactions at 2 1  and x2 involve the same 
particles, the particle in the final state with momentum p i  could emerge equally 
well from either of these two points, as illustrated in Fig. 9.6, and this explains 
why both of the diagrams shown in Fig. 9.6 must be present. 
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PI P1' Xl p1 P2' x1 

I I 

+ 

Direct Exchange 

Fig. 9.6 
of the interaction points "1 or 2 2 .  and hence there must be two diagrams as discussed in the text. 

If the particles are identical, the final particle with momentum p i  can emerge from either 

As a final example, consider the elastic scattering of two identical neutral 
particles, p + p .+ p + p. This scattering is described by the third term in the 
interaction Hamiltonian (9.6), and the S-matrix is 

' /here now the initial and final states contain the creation and annihilation operators 
of the neutral 4 field. As before, two of the fields in (9.88) must pair to produce 
a propagator which connects the space-time points at 5 1  and 5 2  (otherwise the 
matrix element will be zero), but now all the fields are identical, so any field 
from either interaction term may be used to construct the propagator. There 
are therefore 3 x 3 = 9 possible pairings to form (OIT ( d ( 5 1 ) d ( z 2 ) )  lo), and the 
S-matrix reduces to 

However, since all the fields are Hermitian, each contains the same operators, and 
therefore a completely new possibility emerges; it is now possible for the two an- 
nihilation operators in the ~'(sz) term (for example) to balance the two creation 
operators in the initial state and for the two creation operators in the d'(z1) term 
to balance the two annihilation operators in the final state. [This was not possible 
before because the term @!(z2)@p1(52) contained only one term, an ata term, 
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xi 

Direct 

(A) 

Annihilation 

(C) 

Fig. 9.7 
Note the (new) annihilation diagram C. 

For the symmetric d3 theory, these three diagrams contribute to second order scattering. 

which could balance the initial and final operators.] Furthermore, the &(Q) term 
can pair with the initial state in two ways, or with the final state in two ways, and 
counting up all of these possibilities gives 2 x 2 + 2 x 2 = 8 possible terms of 
this kind, which cancels the remaining factor of 8 in Eq. (9.89). A similar factor 
of 8 emerges for each of the two possible diagrams shown in Fig. 9.6, so the final 
result for the M-matrix for this example is 

- x2 
1 (9.90) 

- A 2  - A2 
M =  2 f  2 +  

PZ + (Pi - Pl) P2 + (Pi - P1) PZ + ( P z  + P d 2  

which corresponds to the three diagrams shown in Fig. 9.7. 
The new process, Fig. 9.7C, describes the virtual combination of the two 

incoming particles into a single off-shell particle, followed by its disintegration 
into the original two particles. While this process is physically very different from 
the other two, its existence and mathematical form follows from the same Feynman 
rules we have already obtained, including the requirement that the momentum of 
the propagating particle be fixed by four-momentum conservation. This example 
shows that we must understand what processes are possible before we can draw 
all of the allowed Feynman diagrams. 

The reason for inserting the additional factor of 1/3! into the interaction 
Hamiltonian for the pure b3 theory is now clear. This factor was eventually 
canceled by the many combinations of identical terms which led to the same final 
physical process. However, when these particles appear inside internal loops (see 
Chapter 1 l),  this factor is not canceled completely, and loop diagrams involving 
such particles carry with them special suppression factors, called symmetry factors. 
These will be discussed in Chapters 11 and 15 and need not concern us now. 

With the experience we have acquired, are now ready to study a more realistic 
problem. 
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9.8 PION-NUCLEON INTERACTIONS AND ISOSPIN 

We now consider the case of two nucleons (neutron and proton) interacting with 
neutral and charged pseudoscalar fields (pions). The Lagrangian density is com- 
posed of four terms 

where CN is the sum of two non-interacting spin Lagrangian densities for the 
proton, Qp, and the neutron, $,, with m, = mp = mN for simplicity [recall 
Eq. (7.46)]. The C+ is the Lagrangian density for a non-interacting charged 
pseudoscalar field, identical to the charged scalar field, Eq. (7.32) [or its operator 
form Eq. (7.62)]. (The difference between scalar and pseudoscalar fields does 
not show up until we discuss Lint.) This field will be denoted r$+ and describes 
charged 7r+ pions. Next, CO is the Lagrangian density for a non-interacting neutral 
pseudoscalar field, identical to LO given in Eq. (9.3). This field is a self-conjugate 
(Hermitian) field, denoted by 40, and describes neutral pions, xo and ?io, which 
are identical. For simplicity, we also assume the mass of the charged and neutral 
pions are equal to m,. 

Hence, the first three Lagrangian densities describe the following four non- 
interacting fields: 

C = C N  + C+ + CO + Lint 3 (9.91) 

$, : proton p mass = mN + charge 

Q,, : neutron n mass = mN 0 charge 

4+ : 7 r + ;  antiparticle f +  = K- mass = m, + charge 

40 : T O ;  identical to its antiparticle mass = m, O charge. 

These four fields interact through Lint, which has a generic 43 structure. We take 

Lint = - ig,: 4 p ~ 5 + p :  do - ig,: 4ny5$n: do 

- ig+: 4ny5$p: 4; - ig+: $py5$'n: 4+ , (9.92) 

where g,, gn, and g+ are three real constants. Note that: 

(i) The interaction conserves charge. The neutral field 40, which describes 
mesons, couples to the proton and the neutron with independent coupling 
constants gp and g,. The p + n + 7r+ and 7r+ + n + p charge conserving 
interactions are described by the two terms with coupling constant g+. 

(ii) Lint is Hermitian if g,, g,, and g+ are all real. The gp and g, terms are 
individually Hermitian because $0 = & The two g+ terms must have the 
same coupling constant to preserve hermiticity. To prove this, recall that 
7: = 1 and y5t = y5, so that 

6, --is 

The factor of i therefore makes these terms Hermitian if g+ is real. 
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lsospin and SU(2)  Symmetry 

Now suppose that the neutron and proton are indistinguishable under AN interac- 
tions. This means that they can be transformed into each other without altering the 
interaction. Mathematically, it means that p and n are components of a two-vector 

(9.93) 

in some abstract two-dimensional space and that the interaction is invariant under 
all unitary transformations in this space. The group of all unitary transforma- 
tions separates into multiplication by a common phase, the U(1) group, and the 
remaining group of unitary transformations with unit determinant (a condition 
which fixes the overall phase of the transformation), the familiar S U ( 2 )  group. 
Each of these groups can be considered separately. The abstract two dimensional 
space is referred to as isospin space, and the SU(2)  transformations in this space 
are called isospin transformations. The mathematics of isospin transformations is 
identical to ordinary spin 3 transformations, but the space is a different, abstract 
spin space; hence the name isospin. 

Denoting the (now) two-component nucleon field by 

(9.94) 

the interaction Lagrangian density can be written 

Lint = -i:?,Jy5@+: (9.95) 

where @ is now a 2 x 2 matrix with the form 

@ = gpi(1 + 73)#0 + g n i ( 1  - 73140 + g + i ( T 1  + iTZ)d+ + g+{(T1 - iT2)d‘l 

= i ( g p + g n ) d ) O +  ~ ( g p - g n ) 7 3 q 5 0 $ . 9 + 7 1 ~ ( 4 +  +d\)+ig+TZ$(d’+ -4!+). 
(9.96) 

It is convenient at this point to introduce two self-conjugate fields q51 and 4 2  

defined by 

41 = 2- (4+ + 4;) 4 2  = -i (d+ - 4;) . Jz Jz (9.97) 
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as expected. Hence, 41 and 4 2  are independent self-conjugate fields similar to 
$0 = 4 3 ,  and the field matrix can be written 

Note that the free pion Lagrangian 

c, = c+ + co = a p 4 p p 4 +  - rn:4;4+ + ; { a p ~ o a p 4 0  - m:&} (9.101) 

can be simplified if we use 

and 
4;4+ = f (4: + 4 3  

so that 

(9.102) 

where 4 is a vector in an abstract three-dimensional space (corresponding to a 
state with isospin I), 

Because C, depends only on the square of the length of the vector ap4, it is clear 
that it is invariant under rotations of the 4 field in the isospin (one) space. 

Now we demand that the full Lagrangian be invariant under isospin rotations, 
i.e.. under transformations of 

We have just seen that LN + C, is invariant; it only remains to see what require- 
ments must be imposed if Lint is also to be invariant. Invariance of CN and C, 
requires that the transformation of + be unitary in two dimensions and the trans- 
formation of 4 be an orthogonal transformation (rotation) in three dimensions. 
The transformations correspond to different representations of the same rotation. 
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Using our experience with rotations and angular momentum, we therefore expect 
(recall Sec. 5.8) 

(9.105) 

where 8i are three continuous parameters describing the transformation and $T, 

and Li are the generators, defined by 

These are the familiar algebraic properties of SU(2)  symmetry. 

implies 
The requirement that the interaction Lagrangian be invariant to lowest order 

$yW$JI' = 4y5@$ 

S 4 [1 + i0id'Ti]  7' [1 - if?&'] @ [1 - i e k i T k ]  $ 

% $r5@$ + 240i$y5 {['Ti, @ ]  - 2 L i @ }  $ . (9.107) 

The term proportional to 6i must be zero, which requires that 

(9.108) 

The third equation is satisfied identically; the first two are satisfied for any 4z if 

g p  - g n  = f ig+ g p + g n = O  . (9.110) 
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Hence 
9+ = 

QP = -gn = - d r g  
and the interaction can be written 

(9.11 1) 

tint = -ig: l i ;y5r$ 9 : . (9.112) 

This structure is obvious once we recall that $T$ must transform like a vector 
(by analogy with ordinary spin), so its contraction with 4 will be a scalar. 

9.9 ONE-PION EXCHANGE 

We are now ready to calculate the one-pion exchange (OPE) diagrams in pertur- 
bation theory. Since this is the first time we have dealt with spinor fields, we will 
work out all the details carefully. 

The basic structure of the second order result for non-forward scattering is 
identical to the results we worked out for d3 theory. The S-matrix is 

Throughout this discussion we will suppress the fact that the nucleon field + and 
the Dirac spinors u and IJ are really direct products of rwo-component spinors 
in isospin space and four-component spinors in Dirac space; the two-component 
isospin structure is implied but not written explicitly. 

The evaluation of (9.113) parallels the evaluation of (9.84) quite closely, so 
the steps will be quite familiar. As in the earlier calculation, only the b and bt 
terms from the field expansions will contribute; they are precisely what is needed 
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to “balance” the two bt’s in the initial state and the two b’s in the final state, 
which is required if the matrix element is to be non-zero. One new feature is the 
anticommutation relations satisfied by the annihilation and creation operators; in 
place of Eq. (9.85), we have the identity 

(dS!2, d s :  Ib:;,r; bkl,rl bk;,r; t bkz,rz lplsl~ p2-92) 

- - ( Otbp;,s; b ~ ;  ,s; bk;,r; t b k ~ , r l  bk;,r; t b k ~ , n b i l  ,sl b p a , ~ z  t l o )  
= [6p;k;bs;r; 6p;k;bs;r; - 6p;k;6d,r; hp;k;bs;r;] 

x [-6klpl 6klpz6rZsz + 6 k l p 2 6 r l s 2 6 k ~ p 1 6 ~ , ~ 1 ]  * (9.114) 

To prove this, note that there are four possible pairings of b’s with bt’s and that 
the signs are different because of the anticommutation relations. For example, two 
terms with different signs result when b:,,., is moved to the left in the following 
expression: 

1 1  

Jsing this identity, the second order S-matrix element becomes 

- i6,, 
rn: - k2 - ic 
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where, in the first line, we used the fact that the time ordered product can be 
evaluated using any one of the fields 4, (because they all give the same answer) 
and the last step follows from Eq. (9.37). Finally, we call attention to the sign 
difference between the first and second term in Eq. (9.116), which is due to the 
anticommutation relations. 

We now can simplify the result (9.116) for S if we introduce 

x = ;(XI + z2) 5 1  = x + ;x 
x2=X--x . 1 z = 21 - x2 

(9.118) 

With this substitution we can integrate out the overall energy conserving S- 
function, and separate the M-matrix, defined in Eq. (9.12). This gives the fol- 
lowing result: 

- exchange term with {p\s\} t) {pbsa} . (9.119) 

This result leads to the two Feynman diagrams shown in Fig. 9.6, except that 
in this case the states are antisymmetric so the second diagram comes in with a 
minus sign. The following Feynman rules apply to this example: 

Rule 0: a factor of i. 
Rule 1: the operator gqy5 at each n N N  vertex. 
Rule 2: a factor of --is;, 

mi - k 2  - ic 

for each pion propagator with four-momentum k and isospin indices i, j .  
(Fix k by momentum conservation.) 
Rule 3: for fermions, assemble the incoming fermion spinors, vertex 
operators, and outgoing fermion spinors in order along each fermion 
line to make a well-formed matrix element. In particular: 

0 multiply from the feft by ii(p, s) for each outgoing fermion with 
momentump and spin s. 
0 multiply from the right by u(p, s) for each incoming fennion with 
momentum p and spin s. 

Rule 4: antisymmetrize between identical fermions in the final state. 

Except for Rule 3 we have encountered versions of all of these rules before. Note 
that Rule 1 assumes a different form because of the spin-isospin dependence of the 
n N N  interaction, and Rule 2 includes the isospin of the exchanged pion. Rule 3 
is new; in cases where the initial or final state particles have spin or other quantum 
numbers, there will always be a spinor or a vector carrying this information which 
will be a part of the M-matrix. 
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The OPE Potential 
We saw in Sec. 9.6 how the effective potential for two equal mass particles of 
mass mN can be related to the nonrelativistic limit of the M-matrix, 

Hence the famous nuclear OPE potential can be obtained from Eq. (9.119) by 
taking the Fourier transform of its nonrelativistic limit. In the C M  system, where 
El = Ei = E, etc., the Dirac matrix elements become 

= X : + U . q X 1 = U l . q  , (9.120) 

where we use the compact notation 6 1  = xitUxl. In this notation, 

where the minus sign in the first (direct) term comes from 6 2  . (p2 -ph)  = -u. q 
and T~ is the matrix element of the isospin operators 7 for nucleon number 1. 
Then the direct term in the potential, VD, is 

Carrying out the differentiation gives 

e-m,r 
U l  ' U 2  - 
- r  
central 

tensor 
(9.122) 

This is the famous OPE potential with central and tensor parts. The full potential 
is the direct term minus the exchange term, as indicated in Eq. (9.121). 
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Remarks and Phenomenology 
(i) The angular dependent part is referred to as the tensor force. Its structure, 

clearly displays the L = 2 character of the tensor force and shows that it averages 
to zero when integrated over solid angles, 

Jms12 = o  . (9.124) 

Note also that the tensor potential is highly singular at short distances (- $). 

(ii) The properties of the central potential can be inferred from the values of 6 1  ' ~ 2  

and 7 1  . 7 2 .  If the total spin of the state is S and the total isospin is I, then 

Hence the central part of the potential is attractive and has the same strength in 
the two S-states, but is repulsive in the P-states. Using the spectroscopic notation 
introduced in Sec. 8.6, 

(iii) The central force obtained from the OPE is about 10 times smaller than the 
central force which is inferred from a phenomenological analysis of N N  scattering 
data. Furthermore, the empirical central force is stronger (more attractive) in 'SO 
than it is in 3S1, yet the only bound state, the deuteron, is a mixture of 3S1 -3D1. 
The reason that the 3S1 - 3D1 channel is more tightly bound than the 'SO channel 
is due to the tensor force, which is attractive in the 3S1 -3Dl channel (but zero in 
the 'SO channel) and provides the necessary binding. It turns out that the tensor 
force is well described by the OPE potential. 

The study of the nuclear force continues to be a problem of current research. 
The approach discussed in this section can be extended by adding the exchange of 
other mesons; such a model is referred to as a one-boson exchange (OBE) model. 
It has been found that the force can be very well parameterized by an OBE model 
with pion, scalar, and vector meson exchanges. 
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9.10 ELECTROWEAK DECAYS 

For a final example, we consider the decay of the charged pion. This decay takes 
place through the weak charged current, which couples the charged pion with 
leptons. First, we will discuss these charged currents, and then we will compute 
the decay of the T+. 

The weak interactions (which are unified with the electromagnetic interac- 
tions, as discussed in Sec. 15.4) are now known to include both charged and neutral 
currents, but in this section we will discuss the charged currents only. These are 
interactions of the generic 43 structure, and add the following interaction term to 
the Lagrangian: 

Lint W* = -geff (J,”Wtp + J,”’WP) , (9.126) 

where Serf is the effective weak coupling constant,* W ,  is a complex (positively 
charged) vector field, and J r  is the weak charged current. The field W, will be 
described by the free Lagrangian 

Lw = -1Ft  2 Irv FPw - hl&WLWp . (9.127) 

Note that this Lagrangian density is almost identical to the one introduced in 
Sec. 2.5, except that it is constructed from complex vector fields and, as in the 
charged 93 theory, must therefore be regarded as describing two real fields. Hence 
the Lagrangian density (9.127) is twice as large as the neutral density (2.39) (see 
Prob. 7.3). Other aspects of the massive spin one theory are the same; in particular, 
the W, field satisfies the Lorentz condition and the wave equation with mass term 

a,wp = 0 
( U + M & ) W P = O ,  

(9.128) 

and the fields are described by an expansion similar to (2.45), except that the 
charged field is not self-conjugate. We have 

where @L*)(x) are the plane wave solutions for the W boson. 
The weak current is a sum of hadron and lepton parts: 

(9.130) 

‘This effective coupling constant is gw cosOw in the notation of Sec. 15.4 
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The lepton part has the famous vector - aria1 vector (V - A )  structure, 

where there are believed now to be only three terms in the sum (9.131), one 
for each generation of leptons (see the table in Appendix D). In the examples 
discussed in this section, we will be concerned only with the first two generations, 
consisting of the electron and the electron neutrino, denoted ve, and the muon 
and muon neutrino, denoted vcl. (The muon is often denoted by p but we will 
use the subscript “muon” in order to avoid confusion with the vector index p.)  
Note that the coupling (9.13 I )  only involves left-handed neutrinos (and right- 
handed antineutrinos) and therefore violates parity. There is 110 role for right- 
handed neutrinos (or left-handed antineutrinos) in the electroweak interactions, 
and whether or not they exist, along with the question of whether or not the mass 
of the neutrino is exactly zero, is currently not known. 

The most fundamental definition of the hadronic current is in terms of quark 
fields. However, for phenomenological applications we can express these currents 
directly in  terms of the composite hadrons which are observed in the laboratory. 
Among these will be contributions from the nucleon, the pion, and other hadrons, 
but in this section we will discuss the pion contribution only, which can be written 

(9.132) 

where C#J is the positively charged pion field and fn is the famous pion decay 
constant. Since the pion and W fields have dimensions of mass, the constant fT 
must also have dimensions of mass, and as defined here its value turns out to be 

fir = 93.0 MeV . (9.133) 

In Chapter 13 we will show how the current (9.132) can be obtained from a 
particular model, and more generally such a current can be justified directly from 
the quark structure of the pion, but now we will simply assume that a current of 
the form (9.132) exists, and use it to study pion decay. 

Using the interaction Lagrangian (9.126) with the currents (9.13 1 )  and 
(9.132), the second order matrix element for T -  decay is 

where lq) is the initial T -  state with four-momentum q and (pel  is the final state of 
an outgoing electron with momentum p and an electron antineutrino with momen- 
tum t .  The decay is illustrated in Fig. 9.8. We are forced to consider the decay 
into leptons because energy-momentum conservation would not permit the de- 
cay of a T- into a real W boson unless its mass were identical to the mass 
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Fig. 9.8 Diagram describing pion decay. The heavy shaded line is the virtual W boson. 

of the T-, which is approximately 139 MeV. In fact, the mass of the W -  is 
80.2 GeV, a very large mass compared to the mass of the T-. Because of this, 
the decay must be second order, with the virtual W connecting the pion to the 
leptons. Charge conservation requires that the final state be either an electron and 
an electron-antineutrino or a muon and a muon-antineutrino; we will speak of 
the electron channel, but the calculation for both cases is the same. 

The matrix element of the W fields is the propagator and can be reduced as 
we have done several times before, 

( 0  IT (WPt(51)WU(52))I 0) 

(9.135) 

The new feature is the sum over the polarization states, which is easily done if 
we remember that k, . en = 0. Hence, the polarization vectors for a boson with 
momentum k, in the 2-direction are 

En 1p = (0,1,0,0) 

€2 = ( O , O ,  1 , O )  (9.136) 

These are uniquely defined by the requirements that they be normalized to - 1 and 
that they reduce to the vectors 2,  y, and i when the boson is out at rest. Using 
these definitions, you can show by direct computation (Prob. 9.7) that 

(9.137) 
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where M w  is the mass of the boson and ifi = (En,kn), with En = \ iM$ + k;. 
Hence, going to continuum normalization and using (4.77) to eliminate the 8- 
functions give immediately 

(0  IT ( W ~ + ( 2 1 ) W V ( 2 2 ) ) (  0 )  

1 i (gp” - kpk”/M$) 
(9.138) 

To obtain this result, we used (4.77), with n = 0 for the spatial components and 
with n = 2 for the (0,O) part. This is the general form for the propagator of a 
massive vector meson. 

Now we must reduce the matrix element 

Since $J,,~ destroys electron neutrinos and creates electron antineutrinos, this matrix 
element describes the decay 

(9.140) - 
7r - - + e + F e .  

For the pion at rest, this matrix element becomes (letting L -+ 27r) 

Inserting (9.141) and (9.138) into (9.134), doing the integration over 21, 22, and 
k, and extracting the M-matrix from the result give 

2 

= -ig’f,r.iLeCp, Xe)  B ( 1  - y5)vue  (e ,  xu) t (9.142) 
M& 

where the second expression neglects terms of order rnZ/M$ 2 lop6. 

This evaluation illustrates some new Feynman rules: 
The Feynman diagram for this process has already been drawn in Fig. 9.8. 

Rule 1: 0 a factor of 
-ig,ff?Yl - Y 5 )  



9.10 ELECTROWEAK DECAYS 277 

for each W -  -+ e + ve weak vector, where p is the polarization index 
carried by the W. 
0 a factor of 

for each interaction in which a T -  of momentum q turns into a virtual 
W -  with polarization index p .  

Rule 2: a factor of 

-geR.fzq’ 

i (9’” - k’kv /M2)  
M 2  - k 2  - ic 

for each internal line describing the propagation of a spin one boson 
with mass M, momentum k, and polarization indices p and v. 
Rule 3: multiply from the right by v(p,  A) for each outgoing antifemion 
with momentump and spin (or helicity) A. 

(9.143) 

Using these rules (and Rule 0) it is easy to reconstruct the result (9.142). 
The quantity g&/M& is related to the Fermi coupling constant G, 

(9.144) 
1 2 

_ -  - geff = 1.015 x lop5- 2 1.15 x Jz - M& 4 
GeVP2 . 

The Fermi constant G was introduced when the weak interactions were first de- 
scribed as a current-current interaction of the form 

(9.145) 

Since the boson mass Mw is very large, the lowest order results obtained from 
.3.126) and (9.145) are equivalent as long as the identification (9.144) is made. 
However, if one tries to calculate higher order corrections, one finds that (9.145) 
is unrenonnalizable (see Chapter 16) while (9.126) can be renormalized if the 
theory is converted into a gauge theory. These issues will be discussed further in 
Chapter 15. 

For now, we take the result (9.144) and compute the decay rate of the 
pion. Summing over the final spin states and integrating over all momenta, as in 
Eq. (9.19). give 

(9.146) 
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Next we must square the M-matrix and sum over the spins of the outgoing 
electron and antineutrino. A simple and elegant way of doing such spin sums will 
be presented in the next chapter, but in this case it is instructive to do the sum 
directly using the helicity representation for the spinors given in Sec. 5.11. 

First, we must define the electron and antineutrino states correctly. In .ihe 
center of mass of the pion, we will take the momentum of the electron to be in 
the +f-direction and the momentum of the antineutrino to be in the -..?-direction. 
This means that the antineutrino spinor can be obtained from a spinor initially 
oriented aIong the +i-axis by rotating the state through an angle x about the 
$-axis which rotates +i into -2 [other definitions are possible, but this is the 
conventional one* and is consistent with the definitions (SSO)]. Using the helicity 
spinor given in Eq. (5.148) and the Dirac rotation operators from (5.116) give 

=6( 1 ) X i "  

-2x, 
(9.148) 

Hence the matrix element is 

(9.149) 

Note that the antineutrino must be right-handed, as we discussed in Sec. 5.11, and 
hence the & x L  matrix element in  Eq. (9.149) automatically restricts the electron 
to its right-handed state also (as required by angular momentum conservation). 
Hence the spin sum contains only one term and reduces to 

2 

(9.150) 
Hence (9.146) reduces to (using we = up = p )  

'For a clear discussion of the definition and properties of helicity states see the classic paper by Jacob 

and Wick [JW 591. 
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Note that the ratio of this decay channel to the muon decay channel is 

Hence the decay of the IT- into p + fiP is 10,000 times more probable, even 
though the phase space is much smaller. [For a discussion of phase space, refer 
back to Eq. (9.21).] This surprising result is an example of a general feature of 
vector (and axial vector) interactions. Generalizing the discussion which led to 
Eq. (9.150), we can show that the coupling of a vector (or axial vector) current to 
massless fermions conserves helici9, which in this example means that helicity 
combinations Ae + A, which add to zero (the total helicity of the initial state) 
should be favored over those which add to unity. However, in this case the vector 
current couples to a spin zero state and angular momentum conservation requires 
A, +A, = 1 (i.e., both particles must be either right- or left-handed). The resulting 
matrix element will therefore be suppressed by the factor l-p/(Ep+rn) 2 m / E ,  
(if Ep >> m), which is proportional to the mass of the fermion and a measure of 
the extent to which helicity conservation can be violated by vector interactions. In 
our discussion, this suppression factor of the fermion mass appeared automatically 
when we used the Dirac equation to reduce Eq. (9.147). 

Since W, in Eq. (9.15 1 )  has dimension of mass, it can be converted to inverse 
seconds by dividing by A 2 6.6 x MeV/sec. Substituting numbers into the 
formula gives 

47r 6.6 x 
- 

1 
T = - =  

(1.15)2(0.093)2(0.105)2(0.139) 1 - 0.139 ( (0 .105)2)2 

Wrn"0rl 

= 2.57 x sec. , (9.153) 

in good agreement with the measured decay rate of 2.60 x sec. 

PROBLEMS 

9.1 Suppose the interaction Hamiltonian contains a term like 

where 4 is the 7r+ meson field and 4~ is the field corresponding to a neutral 
KO meson of mass 498 MeV. (The mass of the charged pion is 140 MeV, 
and anti-& meson, denoted KO. is not identical to KO.)  Suppose g = 
4 x MeV. Compute the lifetime of the KO meson assuming that its 
dominant decay mode is into charged 7r pairs. (The real KO decays are more 
complicated than described above.) 
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9.2 The neutral pion, 7ro, usually decays into two photons but can also decay 
into an electron-positron pair. The effective Hamiltonian density for the 
latter decay is 

x i n t  = ig $(z)r510(z) #(z) , 
where q5 is the no field and q!~ is the electron field. 

(a) Show that 'HI is Hermitian. 

(b) Calculate the rate for the decay 7ro -+ e- + e+. [Note that m,o = 135 
MeV and me = 0.511 MeV, so you may approximate me = 0.1 

9.3 [Taken from Sakurai (1967).] Consider the decay of the Ao into a n + xo 
(which happens about 35% of the time). Represent the Ao, which is a neutral 
Dirac particle, by 

where U A  and V A  are Dirac spinors for the A and 

bt,s destroys a A of momentum k, spin s 

dt ,s  destroys a A of momentum k, spin s. 

and bAt, bA, dA, and d*t satisfy the usual anticommutation relations char- 
acteristic of a Dirac field. Represent the interaction describing the decay 
by 

'Hint =: [gA$n(z)y5$'Ao (z) - g i $ A o  ( Z ) r 5 ! b n ( Z ) ]  : 9 

where gA is a constant and # and lon are the ?yo and neutron fields, respec- 
tively. Since no is neutral, #t(z) = #(z). 

(a) Compute the transition rate for the decay Ao n + 7ro. Express your 
answer in terms of numbers times (gA1'. 

(b) From the experimental lifetime of the A' and from the fact that 35% of 
all he's decay into n + no, compute 1gAl. 

9.4 Compute the phase space integral p ( M ;  ml, mz) for the most general two- 
body decay. Be sure to express your results only in terms of numbers and 
the masses M ,  ml, and m2. 

9.5 Suppose the two poles in the propagator (9.43) are placed in the upper half 
plane. Show that the resulting propagator differs from the Feynman propaga- 
tor only by a homogeneous solution of the KG equation. Discuss the physical 
difference between this propagator and the Feynman propagator. [Compare 
with the discussion in Sec. 4.9.1 
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Fig. 9.9 Diagrams for N N  scattering (Prob. 9.6). 

9.6 Suppose the nucleon interacts with a neutral, scalar, meson according to 

Rint = g4(z)Q(x)4(z)  i 

where 1c, is the nucleon field and r$ = r$+ is the neutral scalar meson field. 

(a) Compute the scattering amplitude to order g2, and using Eq. (9.72). 
find the precise form of the N N  potential which arises from scalar meson 
exchange. 

(b) Investigate nucleon-untinucleon scattering to order g2 in the scattering 
amplitude. There are two terms corresponding to the diagrams shown in 
Fig. 9.9. By explicit calculation of the second order S-matrix, find the M -  
matrix for each of these diagrams and extract the Feynman rules for the 
treatment of antiparticles. 

3.7 Prove the relation (9.137) which is needed in the derivation of the propagator 
for a massive vector meson. 



CHAPTER 10 

QUANTUM ELECTRODYNAMICS 

We now turn to what is perhaps the most important of all theories - Quantum 
Electrodynamics (referred to as QED). In addition to being important in its own 
right, it is also the prototype for Quantum Chromodynamics (QCD), which will 
be discussed in greater detail in Chapter 15. 

Quantum Electrodynamics is the theory which describes how structureless 
(point-like) charged particles (usually with spin 4) interact with the E M  field. 
As such, it is the foundation of the subject of Atomic Physics and of fundamental 
importance to Condensed Matter, Nuclear, and Particle Physics. We already pre- 
sented a preliminary discussion of some of these topics in Chapters 2 and 3. The 
quantization of the E M  field follows the development given in Chapter 2, and 
the results obtained there will be carried over without further change. The new 
aspect of our discussion in this chapter is the treatment of the charged fermions, 
which will now be described by a fermion quantum field of the type introduced 
in the preceding three chapters. 

10.1 THE HAMILTONIAN 

We start with two species of charged fermions and the neutral electromagnetic 
field. For definiteness we take the fermions to be electrons and protons, so that 
our fields are 

$= destroys electrons 

$ p  destroys protons 

A p  destroys and creates photons. 

Quantum Electrodynamics assumes that these fermions only interact through the 
E M  field, which is an excellent approximation for electrons (and muons, which 
will be considered later in the chapter), but a poor approximation for quarks 
and protons, which also interact strongly. Nevertheless, in some situations the 
strong interactions can be taken into account without explicitly calculating their 
effects. For example, it turns out that a good estimate for the total cross section 
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for the production of hadronic matter in e+ e- annihilation at high energy can 
be calculated from QED alone, and we will discuss this in Sec. 10.4. And even 
though the proton is a bound state of quarks and gluons with a complex structure 
and a significant size, it is still very useful to calculate electron-proton scattering 
by first ignoring these effects, as we do in Sec. 10.2, and then include them by 
modifying the calculation later. With these applications in mind, we include a 
point-like hadron (which we call the proton) in our description of QED. 

The Lagrangian density for this theory is 

C = Le + C, - f FP’ Fpv - JPA, , 

J P  = e [ & Y d J p  - G e ~ ~ d J e ]  

(10.1) 

where J P  is the current, written 

(10.2) 

Ce and C, are free Dirac Lagrangians (discussed in Sec. 7.4), and FP” and the 
electromagnetic Lagrangian with current were encountered before in Sec. 2.2. 
Normal ordering is understood. We leave it as an exercise to show that this 
Lagrangian gives the correct Dirac equation with minimal electromagnetic substi- 
tution for both the electron and the proton as well as the correct Maxwell equations 
with J P  as current. Note also that the Dirac equation insures that the current is 
conserved. 

Next, we impose the Coulomb gauge, solve for A’, and eliminate it from the 
Lagrangian just as we did in Sec. 2.2. This gives us 

, (10.3) 
1 1 J d3r’ p(r,  t )  . p(r’,  t )  c = L , + C ~ +  - (E;  - B ~ )  + J . A  - - - 
2 2 47r IT - T’I 

where p = J’, and 

B = V x A .  (10.4) 

Next calculate the corresponding Hamiltonian. The reduction is easier in this 
case than it was for the nonrelativistic case (Sec. 2.3) because the current does 
not depend on the generalized velocities. Neglecting the self-energy terms in the 
Coulomb interaction gives immediately 

aA 
E L  = -- 

at 

where 

H,“ = d3r’Kt = d3r + L ( T ,  t )  [ -ZCY.  V + meP] &(r ,  t )  J J  (10.6) 
H’&,,, = / d 3 r  { E t ( x )  +B2(x)} , 
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and, as always, x = (r, t )  is understood. 
With this Hamiltonian we may treat both relativistic atoms and relativistic 

scattering problems, but the method is somewhat different in the two cases. 

Relativistic Atoms - Here the instantaneous Coulomb term is treated to all orders 
by solving the Dirac equation with a Coulomb interaction exactly. Then the inter- 
action with the radiation field is treated perturbatively. [In bound state problems, 
the weak binding potential must always be treated to all orders, since the bound 
state owes its existence to higher order effects of the potential-see Chapter 12.1 
Therefore, for problems of this type we separate the Hamiltonian into the free 
(unperturbed) and interacting parts as follows: 

where, as in Chapter 3, we omit the self-energies of the electron and nucleus. 

Relativistic Scattering - Here the interaction takes place only over a short time, 
so that both the instantaneous Coulomb and the radiation interaction are treated 
perturbatively. Hence, 

(10.8) 
We shall show later that these two interaction terms combine to give an explicitly 
covariant result. 

Before treating either of these cases, it is helpful to note that the structure 
of the unperturbed fermion fields depends on the structure of the unperturbed 
Hamiltonian Ho. We will now study this correspondence in general. 

Suppose the unperturbed Hamiltonian can be written 

Ho = d 3 T $ + ( T l  t )  d $ ( T ,  t )  , (10.9) s 
where d is an operator which operates on the Dirac space, and the unperturbed 
fields satisfy the usual anticommutation relations: 

(10.10) 

(10.11) 
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To find the structure of the field II, implied by these conditions, note first that 
(10.11) and (10.10) imply 

or, in a more compact notation, 

(10.12) 
z,@=O@ . a  . 

The operator 0 therefore specifies the wave equation which the unperturbed fields 
must satisfy. 

Therefore, if the field is expanded in terms of annihilation and creation op- 
erators. 

where 

{ b A ,  b a r }  = ~ A A ’  = { d ~ ,  d a l }  , 

then (10.12) implies that the expansion functions $J,a”(r) must satisfy the follow- 
ing equations: 

(10.14) 

Therefore, they are eigenfunctions of the operator 0. Furthermore, since the 
fields satisfy the anticommutation relations ( 10. lo), it follows that the expansion 
functions satisfy the following relation (the completeness condition): 

from which it follows that any function (which satisfies the correct boundary 
conditions) can be expanded in terms of them. Hence all of the eigenfunctions of 
the operator 0 must be used in the field expansion (10.13). 

Thus we see that the “free” (or more correctly, the unperturbed) field can be 
expanded in terms of the solutions of any Hamiltonian. In the study of relativistic 
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atoms, where the unperturbed Hamiltonian includes the Coulomb interaction, this 
is equivalent to the requirement that 11, be expanded in terms of a complete set of 
normalized bound state wave functions (including negative energy states) and that 

b A  

d A  annihilates negative energy states A , 
annihilates positive energy states A 

and 
\A)  = bLl0) \A) =dL lO)  . ( 10.16) 

Note also that 

In summary, for relativistic atoms the $A’S  are solutions to the wave equation 
with the instantaneous Coulomb interaction, while for relativistic scatfering the 
$A’S are plane wave states. 

10.2 PHOTON PROPAGATOR: ep SCATTERING 

In this section we calculate the differential cross section for electron-proton elastic 
scattering, This calculation is not only important in its own right, but it also 
illustrates how the photon propagator arises in QED. 

Use the relativistic scattering form of the Hamiltonian, where 

HINST HRAD 
(10.18) 

where HIN~T is the contribution from the instantaneous Coulomb interaction and 
HRAD is the contribution from the radiation field. We are interested in the lowest 
non-trivial scattering result, which is of order e2, 

(10.19) 

Note that the annihilation and creation operators for the proton (denoted by a 
subscript p, such as b p )  commute with the annihilation and creation operators for 



10.2 PHOTON PROPAGATOR: ep  SCATTERING 287 

the electron (denoted by a subscript e, such as be), so the order of the momenta 
in [P ip i )  does not matter. 

Thejirst tern in (10.19) is particularly straightforward, giving 

[a (p f ) ro4p i ) ]  [fibf)rO.LlcPa)] 1 
J ;::-'; e-i@, -pi 1.r' - i (pf  -p i )  .r 

(10.20) 
where €i = dm and Ei = 4- and the spins of the fermions have 
been suppressed for simplicity, i.e., u(p) = u(p,s). To reduce this, follow the 
now standard procedure and introduce 

(10.21) 

Then the integrals give &functions, and the reduced M-matrix can be extracted, 

4 4 

The integral over p is the familiar Yukawa integral, giving 

e2 

q2 
MINST = -- [a(pf)rou(pi)] [ii(pf)rOu(pi)] (10.22) 

The second term in (10.19) involves a contraction of the Ai field. Most of 
the details are similar to the OPE calculation worked out in Sec. 9.8, except that 
the particles are no longer identical. Keeping only the e-p interaction term gives 
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where we anticipated the fact that (OIT (Ai(x1)AJ(x2)) 10) is symmetric in x1,z2 
and i, j. Again, introduce 

5 = I1 - 22 21 = x + $x 
22 = x - 5” 1 x = $(x1 +z2) 

(10.24) 

and use the fact that (OJT (Ai(x1)AJ(x2)) 10) depends only on 5 to obtain 

MRAD = i e 2  d4x (OIT (A’(x~)A~(xz)) 10) elq’” 

x [Wf)YZ4P2)] [ f i ( P , ) Y J ~ ( P , ) ]  + (10.25) 
J 

Next, compute the transverse photon propagator, iDt,, which is defined to be 

i D i ’ , ( ~ )  (OJT (A’(x1)A3(x2)) 10) 

= (OIA’(+)(zl)A3(-)(x2)B(tl  - t2) + AJ(+)(xz)A’(-)(xl)B(t2 - t 1 ) l O )  

(10.26) 

where At(*) are the positive and negative frequency parts of the vector field 
Jperator A’ and the E’S are the polarization vectors first introduced in Chapter 2. 
Recall that the E’S are transverse; i.e., k . E = 0. Hence 

( 10.27) 

Replacing the sums over k in (10.26) by integrals over k ,  using Eq. (4.77) to 
express the 0 functions as integrals over ko # w ,  and recalling that w2 = k2 give 

where the two poles in the denominator give contributions for 20 > 0 and xo < 0 
as described in Eq. (9.45). Equation (10.28) for the transverse photon propagator 
is very similar to the expressions for the other propagators we have obtained 
previously; the only difference is the factor in square brackets. To obtain a more 
useful form, let us introduce the reference vector q p  = (1,O). Then 
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and doing the d4k integration gives 

+ - -gP” - QQ ” + - rlP9”40 Q ~ O ” 9 0  

q2 !I2 q2 

Next, note that 

9’’ ~(Pj)~pu(Pi) = (pf - pi)’” u(Pf)ypu(pi) 

= (mp - mp)  E(P1) .(Pi) = 0 (10.31) 

so that all terms with a q” can be dropped. (This is just current conservation.) 
Hence 

MRAD = e2 [Q(P~)~~U(P~)I [ ~ ( ~ f ) y , u ( ~ i ) ]  (- q 2  - if ) [gfi”+q”v”Q q2 2 1  . 
(10.32) 

Combining Eqs (10.22) and (10.32) gives the total result for the M-matrix 

..nd the non-covariant term cancels, giving, finally, 

Manifest covariance has been restored in the final result. 

EM interactions involving the exchange of a virtual photon: 
This example illustrates how the Feynman Rules 1 and 2 are modified for 

Rule 1: the operator - iey,  at each vertex where a photon with polar- 
ization p is emitted from or absorbed by a fermion with positive charge 
e. 

Rule 2: a factor of 
io@” 
1 

-92 - if 

for each internal photon line carrying momentum q and polarization 
indices p and v. (Fix q by momentum conservation.) 
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Fig. 10.1 
scattering. 

Feynman diagram for ep 

The final result is obtained by multiplying by the appropriate spinors u or U as 
before. Photon propagators are usually represented by wavy lines, as shown in 
Fig. 10.1, which shows the Feynman diagram corresponding to the result (10.33). 

The Unpolarized ep Cross Section 
The differential cross section for unpolarized elastic scattering of electrons from 
protons in the LAB frame can be found from our general result Eq. (9.63). With 
notational changes including m2 = 7np = M; ml = me = rn, we have 

where the cross section is unpolarized because we have summed over all final spins 
of the proton and the electron and averaged over all initial spins. Since there are 
two spin states of the proton and the electron, the initial average is computed by 
cqmming over all initial spins and dividing by 2 x 2 = 4, which explains the 
origin of the factor of before the spin sum in (10.34). 

The spin sum is 
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Hence the spin sum in Eq. (10.35) can be reduced to a trace 

C G ( P ~ ?  sf)yp [u(Pi,  si)fiL(Pi, sill Y ~ U ( P ~ ,  sj) 
SfS, 

= CGQ(Pf,sf)  [ Y p ( M + q i ) Y V 1 @ u P  ( P f ? S f )  
Sf 

Sf 

= C "P (Pf, Sf) fia (Pf, S,) [yP ( M +  $1) YVIQ0 

= ( M +  4,) Pa [Y' ( M +  $i )yvlap  

= trace { ( M +  qf) yp (M+ qi) y ~ }  . (10.38) 

This is a general technique we will employ frequently from now on. It gives spin 
sums as traces of products of y-matrices. There are tricks for evaluating such 
traces which will now be discussed. 

Theorems for Computing 'kaces of Products of y-Matrices 
Theorem 1: The trace of an odd number of y-matrices is zero. 

Proof 

Theorem 2: The traces of zero, two, and four powers of y-matrices are 

t r (1)  = 4  (10.40a) 

(10.40b) 

t r (Pf i{#)  = 4  ( a . b c . d - a . c  b . d + a - d  b - c )  . (10.40~) 
t r (4  6) = 4 a .  b 

Proof 

t r  (4 6) = t r (b  4) = 3 tr  (Cli + $4)  = a .  6 t r (1)  = 4 a .  b 
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Hence 
2 tr (4 j ,4 #) = 8 ( a .  b c .  d - a 1 c b .  d + a .  d b .  c)  . I 

Using these theorems, the trace (10.38) becomes 

t r { ( M + Q r  ( M +  qi) y’} = 4( M2gp” + PT P,” - Pf . Pi g p u  + Py Pr 

and Eq. (10.35) becomes 
(10.41) 

[MI2 = 16 f { ( M 2  - Pf . Pi)gpu + P f P /  + P;Pr} 
spins q4 

x {(m2 - P f  .Pa)gpv + ~ j p ~ z v  + P f u P a p }  

q4 2 M 2 - q 2  t q 2  - -- 
= 16- 4(M2-Pf.Pz)(m2-p~.pa)+2Pf.P,(m2-pf.p,) 

q4 
zm2-q2 t q2 

-7 + 2 P f  * Pl ( M  - P f  . P*)  

e4 {‘ 

+ 2Pf ‘ P f  Pa ‘ p z  + 2Pf ‘pipz * P f  . (10.42) 

In simplifying these formula, it is convenient to recall that in the LAB system q2 
can be expressed in many ways: 

1 
q2 = (Pf  - P,)’ = 2MZ - 2Pf 9 P, = 2 ( m  2 - p f  a p t )  

= 2M(M - €/) = 2M(E’ - E )  , (10.43) 

where E f  is the energy of the final proton [recall the discussion following 
Eq. (10.20)]. The q4 terms in the { } cancel, and evaluating the other terms 
in the LAB system permits us to use 

P, * p f  = ME’ P, * p ,  = M E  (10.44) 

so that we get 

- + q= - 
IMI2 = 16 - q 2 ( M 2  + m2) + 2M2EE’ + 2ME(p, . p f  - m2) 

spins q4 e4 { 
1 +2M2EE’+2ME‘(m2 - p f . p , )  - 

3 92 

4M2EE’ + q 2 ( M 2  + mz) + q2 M(E‘ - E )  - 
(10.45) 

t q2 
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[,,E'+q2(l+$)+&] 
. 

da e4 1 
dR - 
- -  ($) 7 1 - 4 2 (El- g) 

2p'2M 

Hence, combining the other factors from Eq. (10.34) gives 

(10.46) 

This is an exact formula rarely found in the literature. Two limiting cases are of 
particular interest. 

Limiting Cases 

The first limiting case of interest is the nonrelativistic limit, which can be realized 
by letting M + 00. In this limit, proton recoil is unimportant, and 

p2ip' E z E ' ,  

and the differential cross section reduces to 

da a2 - = -[4E2 + q 2 ]  
dR q4 

(10.47) 

where, as always, cr = e2/47r. Using 

q2 = (pf -pi)' = 2m2 - 2EE' + 2pp'cosO 
z -2p2( 1 - cos 6 )  = -4p2 sin2 e/2 , (10.48) 

the formula can be written 

- - 4m2 + 4p2 cos2 
- - " [  da 
dR 44 

If m + 0, which implies p + E, we have the familiar Mott cross section 

(10.49) 

2 

2E sin2 t Matt (10.50) 
cross section. 

The second interesting case is the ultra-relativistic limit when proton recoil 
becomes important. Here p' - El, p - E ,  rn -K E ,  but E # El. We have 

4EE' + q2 + 7 
(10.51) 

2M 

1-- q2 

da a2 
dR q4 

2E'M 
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da 
- = OM (5> [ 1 - & tan2 :] dR 

In this limit, q2 = -4EE’sin’ !, so 

cos2 ; - 
FEE’( 1 - sin2 :) - &4EE’sin2 g 

2E 2 8  
1 + -sin - 

M 2  
(10.52) 

or simplifying, 

magnetic moment 

2 1-  - tan - 
crcos ; [ 2M2 2 

(10.53) 2~ 2 e  
1 + -sin - 

M 2  
Mott cross section - 

recoil factor 

2E sin2 % =  ( ) - 
This is the famous Rosenblurh cross section for a point Dirac proton. It is built 
up from three factors: 

0 the Mott cross section, 

0 the recoil factor [l + 
0 an extra term due to scattering from the Dirac magnetic moment of the proton. 

An alternative expression for this cross section often found in the literature follows 
f ‘om the observation 

- 2 6  * (10.54) 

sin2 (!)I-’, 

1 El 
E 1 +%sin  
_ -  

Hence 

Rosenbluth 
cross section (10.55) 
point proton. 

Form Factors and the Structure of the Proton 

The strong interactions modify the proton current by introducing a significant pro- 
ton structure. This structure leads to the appearance of form factors in the proton 
electromagnetic current. A complete description of the structure of a physical 
proton requires only two form factors, denoted by F1 (the Dirac form factor) and 
F2 (the Pauli form factor), and these modify the proton current as follows: 
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Fig. 10.2 One of the many Feynman di- 
agrams which contributes to the proton form 
factor. 

For physical protons (Pf = M 2  = P,"), the form factors can depend only on q2.  
Furthermore, at q2 = 0 the above expression must reduce to the static expression 
for the generalized current discussed in Prob. 5.6 Hence 

Fl(0) = 1 (charge) 

Fz(0) = K~ (anomalous magnetic moment = 1.79). 

These form factors are thought of as arising from the quark structure of the proton, 
or in the older meson theory would arise from loop diagrams like that shown in 
Fig. 10.2, which we will discuss in detail in the next chapter. 

The cross section will be modified by the form factors. For this purpose it 
is customary to introduce new form factors, 

GE(q2) = Fi(q2) + T F 2 ( q 2 )  

GM(q2) = Fi(qz) + Fz(q2) 3 

where -7 = qz /4M2. Then 

GE(O) = 1 (charge) 

GM(O) = p p  = 2.79 (full magnetic moment). 

In terms of these, the ep scattering cross section becomes 

(10.57) 

where 

(10.59) 

is the cross section for scattering from a target with no structure (NS). If the proton 
is structureless, with no anomalous moment, then 

G E = G M = l  (10.60) 

and the general formula reduces to the simpler expression Eq. (10.55). 
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Remarks 
Electron-proton scattering is used to measure GE and GM.  These can be separated 
by measuring the differential cross section at two different scattering angles 0 for 
the same q2 (referred to as a Rosenbluth separation). Specifically, one measures 

da I 

(10.61) 

and separates A and B by plotting the ratio as a function of tan2 g .  The structure 
functions are related to the form factors by 

(10.62) 

Forward scattering (scattering at small electron angles 0) is dominated by G E  and 
backward scattering (where 0 is near 180deg) by GM. At very high q2,  GE is 
hard to measure because 7 >> 1. At very small q2, T << 1 and then GM is hard 
to measure. 

10.3 ANTIPARTICLES: e+e- -+ p+p- 

We now turn to another important illustration of the power of field theory. In 
addition to electrorr scattering, the same expressions also describe the production 
of p p  pairs from e+e- annihilation. Instead of describing pjj production, we 
describe p+p- production, because the p meson does not interact strongly, and 
therefore the lowest order E M  result is more accurate. While the same mechanism 
works for p p  production, it is modified by subsequent strong interactions in the 
final state, so that the QED result is not very reliable. 

The relevant Feynman diagram is shown in Fig. 10.3. It must arise from 

(10.63) 

where &, --+ $,,- (with a corresponding change in the sign of the charge), but 
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Fig. 10.3 Feynman diagram for production of p+ p- pairs. 

otherwise the expressions are identical to those treated before. The momenta of 
the particles (e- and p - )  are k- and p - ,  and those of the antiparticles (e+ and 
p+) are k+ and p + ,  as shown in the figure. 

The first term in (10.63) gives 

+W 

-i(P-P+l Lw dtHINST(t) Ik- k+) 

st+' tLt- 

bi-dl+lO) (10.64) 

&-) $!+' 
where b and d are the creation and annihilation operators for the electron, B and 
D are the creation and annihilation operators for the muon, and the muon and 
electron spinors will be distinguished by their argument (with spins suppressed). 
For example, the familiar field expansion for the muon is 

= gr)(rl t )  + ~ L - ) ( T - ,  t )  . (10.65) 

Note that (10.64) will be zero unless the interaction term contains precisely one of 
each of the operators b, d, Elt, and Dt and that this requires the unique combination 
of positive and negative frequency parts of the fields given in (10.64). Now, from 
the anticommutation relations of the b and d operators belonging to the same 
particle, 

t 
( o l D p +  B p -  B& dq2 bql bl- dk+ lo) =6q93,~-6q4,~+b9~,k-692.k+ 

(10.66) 
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and the sums over q1 . . .q4 collapse, giving 

SINST(P-P+ , k-  k+) 
ie2 27r6(&+ + &- - E+ - E - )  

47r ( 2 ~ ) ~ d 1 6 & + & - E + E -  
_ _  - - 

(10.67) 

The T ,  r' integrals can be done using the familiar substitution (10.21), and pulling 
out the factors which relate the S- to the M-matrix gives 

Defining 
K = k+ + k-  (10.69) 

and using 77'' = ( 1 , O )  permit us to write the instantaneous M-matrix in the 
following way: 

e' 
MINST = 9 [C(P-)Y+J(P+)] [ f i (k+)rY4-)I  7 7 p ~ v  . (10.70) 

Note that this is similar to Eq. (10.22) except for the sign, which is now + because 
both the p- and e- have negative charge, and the appearance of v spinors, which 
' Jil l  be discussed below. 

The second term, due to HRAD,  becomes 

d , ( x z )  @ l . ( X Z )  

where use was made of the fact that the two terms with z1 H 2 2  are identical and 
can be accounted for by multiplying by 2. Using the same pairings we worked 
out before gives us 
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The transverse photon propagator was evaluated in Eq. (10.28). 

g ~ ” + V v ~  k2 

Substituting X = ;(XI + XZ) and x = 21 - x2 makes it a simple matter to extract 
MRAD from Eq. (10.72): 

When added to the instantaneous result (10.70), the q,q, term cancels, giving the 
final result: 

Discussion 

(i) The derivation made use of the fact that the terms like qpK” and Kpq” are 
again zero. This follows from current conservation in the form 

fi(k+)r”.(k-)& = a@+)($+ + # - ) 4 - )  
= a(k+)(-me + m , ) ~ ( k - )  = 0 . (10.75) 

(ii) Feynman rules: The Feynman diagram corresponding to this process was 
given in Fig. 10.3 but is redrawn in Fig. 10.4 with the antiparticles (et and p+) 
labeled as if they are moving in the opposite directions and with their momentum 
given an opposite sign so that the new diagram is identical to the old one. This 
labeling is often done to help with the construction of matrix elements involving 
antiparticles. The Feynman rules illustrated by this calculation are: 

Rule 0: a factor of i. 
Rule 1: the operator - i ey ,  at each vertex where a photon with polar- 
ization 1.1 is emitted from or absorbed by a fermion with positive charge 
e. 

Rule 2: a factor of 
igp’ 

-92 - ie 

for each internal photon line carrying momentum q and polarization 
indices p and v .  (Fix q by momentum conservation.) 
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Fig. 10.4 Feynman diagram for the production process showing the flow of charge. 

Rule 3: for fermions, assemble the incoming fermion spinors, vertex 
operators, and outgoing fermion spinors in order along each fennion 
line to make a well-formed matrix element. In particular: 

0 multiply from the lefr by E ( P -  , s-) for each outgoing fermion 
with momentump- and spin s-. 
0 multiply from the right by u(k- , s-) for each incoming fermion 
with momentum k- and spin s-. 
0 multiply from the right by v(P+, s+) for each outgoing an- 
fifemion with momentump, and spin s+. 

0 multiply from the left by f j (k+,  s+) for each incoming antifemion 
with momentum k+ and spin s+. 

Note the peculiar fact that 6 is associated with incoming antiparticles, yet must be 
cn the left to make a Lorentz invariant matrix element. Similarly, v is associated 
with outgoing antiparticles but must be on the right. The labeling of antiparticles 
given in Fig. 10.4 helps suggest this ordering. On the electron side of the diagram, 
the direction of the momentum of the incoming positron is reversed, suggesting 
that the incoming positive charge is to be regarded as equivalent to an outgoing 
negative charge. The negative electron charge flows into the vertex along the 
electron line with momentum k- and “out” of the vertex along the positron line 
with momentum -k+. This flow of negative charge is the same as the ordering 
of the Dirac indices: 

order of Dirac indices 

flow of negative charge. 
8(k+)(+ieyp)u(k-) e== (10.76) 

Similarly, the order in which the p -  matrix element is constructed follows the 
flow of negative muon charge. In this case the incoming negative charge is carried 
by the positive muon flowing backward and into the vertex with momentum -p+ 
and by the negative muon flowing out of the vertex with momentum p- :  

order of Dirac indices 

flow of negative charge. 
C(p-)(+ieY)v(p+) - + (1 0.77) 
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Warning: The momentum in the v or V spinors is the actual physical momentum 
of the antiparticle. 

(iii) Sign ambiguity: If we choose the p+ to be the particle and the p- to be 
the antiparticle, the current would be of the opposite sign, and we would have for 
the muon 

i i (p+)(- ieyp)v(p-)  . 

Taking the transpose of this expression and using Eq. (5.38), from which the 
relations 

v(p) = C d @ )  a@) = v'@) c 
follow, give 

/lT CTV(p+) . ( 10.78) [d .p+)(- ieyp)v(p-)]  = i i ( p - 1 ~ ~  ( - iey ) 
T 

But, CT = -C = C-l, and CypTC-' = -y@, and therefore 

(10.79) 
T 

[ i i (p+)  ( - ieyp)v(p-)]  = ii(p-) ( - ieyp)v(p+) 

which gives the opposite sign to (10.77). However, this sign ambiguity is com- 
pletely unphysical, because the p+p- sector is completely independent of all other 
~tctors. This means that amplitudes with one pfp-  pair can interfere only with 
other amplitudes with one p+p- pair and cannot interfere with amplitudes with 
a different number of p+p- pairs. Hence the overall sign of such amplitudes 
cannot be measured and may be separately fixed by an arbitrary sign convention. 

(iv) Application to e+e- + e+e-: Our calculation also applies to e+e- -+ 

e+e- scattering. However, in this case there is another diagram. The two diagrams 
are shown in Fig. 10.5, and the M-matrix corresponding to them is 
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e +  

. f ie+ 
Fig. 10.5 The two Feynman diagrams which describe e+e- scattering to second order. 

where K 2  = ( k -  + k + ) 2  and q2 = ( k -  - P - ) ~ .  Note the relative minus sign 
between the two terms and the fact that the second term can be obtained from the 
first by the interchange of 

-k+ - p -  I (10.81) 

provided we also interpret i i ( -k+)  = a(k+)  and a ( - p - )  = fi@-). This can be 
understood as a generalization of the Pauli principle which holds when identical 
particles exist in the initial and final states. The interchange is shown diagram- 
matically in Fig. 10.6. To use this symmetry, it is best to regard an incoming 
positron with four-momentum k+ as equivalent to an outgoing electron with four- 
nomentum - k + .  From this point of view there are two outgoing electrons in 
this problem - one with four-momentum p -  and one with four-momentum - k+. 
Hence, it is expected that the amplitude should be antisymmetric under interchange 
of the two. 

This sign arises naturally from the field theory reduction. For identical par- 
ticles, the matrix element (10.66) must be replaced by two matrix elements: 

(OID+B-BiDadz bl b L d i ( 0 )  is replaced by 

(Old,, bp- bi di dz bi b:- d:, lo) - (Oldp+bp- bl b4 di d2 bL- d:, 10) . 
(10.82) 

The two terms arise because there are now two qualitatively different ways the 
matrix element can be non-zero. To see this, recall that the full normal ordered 
expansion of the fermion product in the Hamiltonian density is 

: 1 J ; e ~ ’ V e :  + b i  bl [ G ( q Z ) Y u ( q 1 ) ]  + b z  d i  b ( Q z W ’ v ( q i ) I  t t -  -- 
term 1 term 2 

PP 
term 3 term 4 

+ dz bl [@(42)YP~1(41)1  - 4 dz [ f i ( q z ) Y P 4 q 1 ) 1  ! (10.83) 
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ex+ e+ -P+ -k+ 

e +  n+ 
Fig. 10.6 
diagram by antisymmetrization of the two “outgoing” fermions. 

Illustration showing how the exchange diagram can be obtained from the annihilation 

where the minus sign in front of term 4 comes from the interchange of the d and 
dt operators required by the normal ordering. For e+e-  + p + p - ,  only term 
3 occurred (paired with term 2 from the muon matrix element), but there were 
two terms which give rise to it. In e+e- 4 e + e - ,  the requirement that we have 
precisely one of each of the b, b t ,  d, dt can occur four ways, by the following 
pairings: 

term 2 x term 3 + term 3 x term 2 = 2 x [term 2 x term 31 

term 1 x term 4 + term 4 x term 1 = 2 x [term 1 x term 41 . 

’iowever, as the brackets in Eq. (10.83) show, these lead to the two diagrams 
given in Fig. 10.5 with a relative minus sign. Furthermore, the two terms differ 
only in the exchange of -k+ ++ p - ,  as has already been discussed. 

Cross Section 

The next task is to calculate the total cross section for the production of p+p- 
pairs in e+e- collisions. These experiments are normally carried out in colliding 
beam accelerators, where the LAB system is the same as the CM system. Hence 
the calculation will be carried out in the CM system. In this system, the energies 
of the initial and final particles are the same, but the magnitude of the momenta 
are different. Introduce 

s = 4E2 = (k+ + k - ) 2  = 2m2 + 2k+. k- 

= ( p + + p - ) 2 = 2 M 2 + 2 p + . p - ,  

where m = me is the electron mass and M = mp is the muon mass. 
The unpolarized cross section from Eq. (9.54), is 

1 1  do 
dR - (2~)~16s 4 - c IMI2 1 
_ -  

spins 

10.84) 

10.85) 
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where [recall the discussion following Eq. (10.35)] 

x c W + ) r p 4 k -  11 Mk- )-/”@+)I 
h c t r o n  

spin- 

e4 

- K4 - - t r  { (M+ ?L) YP ($+ - M )  Y”} 

x t r  { (P, -m) 7 P  (m+ P-> 7”) 1 (10.86) 

where the projection operators for u and v spinors, Eqs. (5.137) and (5.141), have 
been used. 

It is left as an exercise (Rob. 10.2) to complete the calculation of the cross 
section. If the energy E >> M or m, the total cross section reduces to 

47rff2 
35 

n=- (10.87) 

where, as always, a = $ is the fine structure constant. This is an interesting 
result; it leads to a discussion of the total cross section for the production of 
strongly interacting particles (hadrons) and to a discussion of the evidence for 
quarks. 

10.4 efe- ANNIHILATION 

As an application of the ideas developed so far, consider e+e- annihilation into 
hadrons at very high energy. We can compute the total cross section for this 
process if we borrow two facts from high energy physics: 

0 All hadrons are made of spin 8 quarks, which are charged, and spin 1 gluons, 
which are neutral. 

0 The strong coupling constant, ge, is small at very high energies. In particular, 
the strong fine structure constant, as = g,2/41r, is a function of q2, the square 
of the momentum transfer, and ( r e ( q 2 )  decreases as q2 increases. For high 
q2 in the range of 10’s to 100’s of GeV2, a8(q2) 5 0.3, and we can use 
perturbation theory. 

The first of these ideas was already used in Sec. 6.2. 
Using these facts, the production of hadrons from a virtual photon (created 

by the e+e- annihilation) must proceed first through the creation of a qq pair. 
The diagram is identical in structure to the production of a pji pair and is shown 
in Fig. 10.7. Since gluons are neutral, the first correction to this diagram is 
single gluon emission by a quark, which is described by the two Feynman dia- 
grams shown in Fig. 10.8. In Feynman diagrams, it is customary to represent 
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Fig. 10.7 Diagram for the pro- 

duction of hadronic matter from 
electron-positron annihilation. 

the gluon by a curly, corkscrew shaped line. Since the qqg and qqg vertices in 
these diagrams are proportional to the strong coupling constant gs, they are smaller 
than the leading diagram (10.7) at high energy. Corrections from such processes 
will be calculated in Chapter 17; their effect can be expressed as a multiplicative 
enhancement of the lowest order cross section 

cross section cross section 

The first correction is about 10% of the lowest order result, and it is natural to 
assume the higher order terms are negligible. 

Comment: If the hadrons are expressed in terms of q, q,  and gluon degrees of 
freedom, the calculation is as simple as described above. However, the qq pair is 
not seen in the final state. Somehow, the qq pair converts itself into a variety of 
hadrons: N, N, K+, K-, K’s, etc. If we were to expand the hadrons in terms 
of these degrees of freedom, the calculation would be very complicated, and it 
* ,odd be impossible to predict definite results. Hence, using q. q, and g degrees 
of freedom, we are able to predict total cross sections, but we cannot predict 
the production of N N  pairs, say, without understanding how qq + NN, a very 
complex process referred to as hadronization. 

The prediction of the total hadronic cross section is usually expressed in 
terms of the ratio R, where 

(10.88) 

where up.tP- is the p+p- production cross section given in Eq. (10.87). It sets 

uhad R = - ,  
g P + P -  

Fig. 10.8 The leading corrections to R come from these one-gluon emission diagrams. 
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Table 10.1 The six flavors and three generations of quarks. 

flavor charge mass name 

UP 
2 
3 21 

N 5 - 7 MeV 
-- 1 down 

first 
d 3 

- 1.5 GeV charmed 2 
3 
1 

- C 
second 

S -- - 150 MeV strange 

the scale of the hadronic cross section. 

diagram (10.3) only by the charge of the quark, we see immediately that 
Since the qQ production diagram (10.7) differs from the p - p +  production 

(10.89) 

where Q, is the charge of the ith quark (in units of e) and the sum i s  over all 
quarks which can be produced at the energy &. This is because the cross section 
is independent of mass, etc., and depends only on (Qie )2 .  Thus, only QP enters 
the ratio. 

The known and conjectured, quarks are grouped into three families (or gener- 
ations), as shown in Table 10.1, (See Appendix D for more discussion.) According 
to QCD, each flavor of quark comes in three colors (an internal quantum number 
analogous to spin), so that we have the following predictions: 

3 ( !+ ;+ ; )=2  f o r W = & s 3 G e V  

i { 9+3(;)=+ f o r 9 5 W W 2 2 m t o p .  

CQT= 2 + 3 ( $ ) = 9  f o r 3 5 L s 9 G e V  (10.90) 

The corrections to these simple predictions are about +lo%, as described above. 
A compilation of the data for R is shown in Fig. 10.9 [taken from RP 921. 

Added to the upper figure are solid lines corresponding to the predictions given 
in Eq. (10.90). The solid lines in the lower figure are the prediction R = with 
theoretical corrections from electroweak and higher order QCD processes. Note 
that: 

0 The ratio R does increase at the c and b thresholds and is more or less 
constant between thresholds. 
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6 

5 

4 
R 

3 

2 

4 6 
1 

t "  ' - - ' I  
5 

t 
t I ,  

4 
R 

3 

2 

* VENUS 
0 A M Y  L JADE 
0 CELLO + LLNA 
ffl C l E O  0 MAC 
(1 CRYSTAL MALL 0 M A H K  J 

cusu X PLUTO 
0 UASI' I I  XTASSO , 

Fig. 10.9 The ratio R as a function of center of mass energy Ecm = W (taken from [RP 921). 

0 At the thresholds, cC bound states (the J/+-states), and bb bound states (the 
T-states) exist. These produce strong final state enhancements which modify 
R, as expected. Note that above the thresholds, R "settles down." 

0 The theoretical curves at high energy [which include corrections to the simple 
prediction (10.90)] are in good agreement with the data. 

In all, these predictions are a beautiful confirmation of the correctness of QCD 
and the quark model. In particular, they give strong support for the choice of 
three colors. 

10.5 FERMION PROPAGATOR: COMPTON SCATTERING 

As a final example, we treat Compton scattering, which is the scattering of photons 
from electrons y + e -+ y + e. This introduces two new Feynman rules: (i) the 
treatment of (real) y's in the initial and final state and (ii) the use of a fermion 



308 QUANTUM ELECTRODYNAMICS 

propagator (in this case an electron) describing the propagation of a virtual, off- 
mass shell spin f particle. 

The first (lowest order) non-zero contribution to non-forward Compton scat- 
tering comes from the second order contribution of the radiation part of the Hamil- 
tonian: 

where k ,  and kj are the momenta of the incident and outgoing photons, and p ,  
and p i  are the momenta of the electron. (Why doesn’t the H I N ~ T  term contribute 
in this case?) Interchanging x1 and 52 permits us to eliminate T in favor of a 
O(t1 - t z )  function and a factor of 2, giving 

where the u’s are the annihilation operators for the A field. Next, recall that 

Q e ( x )  = q!I:+)(x) +&) (x ) ,  where I):’) - h and &) - d. Hence, to “balance” 
the h and ht of the final and initial states, we need precisely one I/)(+) and one 
;(+). The other 11, and 6 operators must be left to balance each other; i.e., their 

h, h t ,  d, dt must pair off so that they give a non-zero vacuum expectation value. 
Such internal pairing is referred to as contraction, and we have seen i t  before 
whenever a propagator arose. This case is different only because the contraction 
is between the same field (electron) which also occurs in the initial and final 
state. Since contractions cannot occur between j e lds  in a single H R A D  (because 
the.y are normal ordered and all vacuum expectation values give zero), there are 
precisely two terms which contribute, corresponding to the two different possible 
contractions: 

s = - ez(Olhp, Uk, / d 4 X 1  d4x2 O ( t 1  - t z )  

x {: 4 ! + ) ( x 1 ) y .  A ( x 1 ) V e ( x 1 ) :  : qe(x2)y . A ( x ~ ) $ J : + ’ ( x ~ ) :  

+ $ e ( X l ) y  ‘ A ( x l ) q ! I L + ) ( ~ 1 ) :  ~ L + ) ( ~ Z ) Y  A ( x 2 ) y l e ( s ~ ) : } a l ,  b;, 10) > 

(10.93) 
where the contractions are shown by the horizontal brackets. Each of these terms 
generates two more terms corresponding to different pairings of each A with ak, 
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or u;,. Hence we obtain 

d4xl d4xz e( t ,  - t z )  
= - e2 ./ (2.)6J 1 6 ~ ,  w f E I E ,  

1 x c ; * f J  e i ( k f . z l - k , . z z )  + c J  I c Z  p l ( k f . Z z - k , , ~ l )  [ l ’  f 1 ‘  

x { 21, 

- I I . ~ ( ~ , ) Y ; ~  (oI4-,(~1 ) d ~ p ( z z )  10) y+n ( p l ) e ’ ( P ~ ~ x z - P ~ . s ~ )  

(ol+a (51 )4-, (zz) 10) y/6 116 ~ p ,  )ei(pf.z1 -p1 .*2 )  

l1 
(10.94) 

where the minus sign in front of the second fermion term comes from the fact 
that this term requires an odd number of interchanges of anticommuting Fermi 
fields to get $(+)(XI) to the right and #+)(xz)  to the left. Both terms in { } 
can be combined if we interchange i ++ j and 21 - x z  in the second term. The 
combined result can be written 

x ez(Pf J 1  -PI 1 2 )  ua(P f )Y ;p  - iS~- , ( t lJz)- / ;g~b(P,)  3 (10.95) 

where 

iSO7(51.Z2) = e(t1 - t z )  ( O 1 + ’ B ( ~ l ) ~ r ( ~ Z ) / O ) - ~ ( ~ z  - t l )  (OI~,(~z)dJ4(~1)10) 

= (OIT (V&?(z1)47(Zz)) 10) . 
(10.96) 

Note the extra minus sign in the vacuum expectation value of the time-ordered 
product of Fermijield operators, which arises from the change in sign which must 
accompany any interchange of Fermi operators. This is the Fermi propagator. 

To evaluate the Fermi propLgator, first note that only some of the (*) parts 
of the fields will contribute, 

- va(k ,  .)a#, S) erk.(zl-z2) e ( t z  - t i ) }  , 

where k = ( E k , k ) .  Recall the matrix form of the Dirac spin sums, 

(10.97) 
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Replacing the spin sums by these matrices gives 

+ (m - y .  k - EkyO) e t k . ( r l - r z )  e t E k ( t l - t z )  0 ( t  - tld}! 

(10.98) 
where we have changed k -+ -k in the second term. Now, using the identities 
(4.77), we may re-express these integrals as 

Note that 

(10.100) 

where k = ( k o , k ) .  We have just proved a very useful identity, which is 

U(k, s)C(k, S )  - c v ( - k ,  s )*( -k ,  S )  

m2 - k 2  - i c  E l , -  k o - i c  E k + k g - i c  

(10.101) 
This is an important tool for relating relativistic and nonrelativistic calculations. 

Our final result for the fermion propagator is 
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Inserting this result into the original expression (10.95) for S and separating the 
2 1 ~ x 2  integrations into X = ;(XI + 22) and 2 = x1 - 2 2  give the following 
result for the M-matrix: 

where we used the fact that ~i and cf have no time components to write -y’.~> = 
--yPc,,f = - f f .  Carrying out the z and k integrals gives 

This result corresponds to the two Feynman diagrams shown in Fig. 10.10 
and gives some new Feynman rules. In addition to those previously encountered, 
we have: 

Rule 2: a factor of 
-i(m+ 
m2 - k2 - i c  

for each internal fermion line canying momentum k and Dirac indices 
cr and 0. (Fix k by momentum conservation.) 
Rule 3: take matrix elements along each fermion line by assembling 
the incoming fermion spinor, vertex operators, propagators, and outgoing 
fermion spinors in order along the fermion line to make a well-formed 
matrix element. 
for photons, construct well-formed vector products by saturating any 
free vector polarization indices p on current operators 7’1 by: 

0 multiplying by c; for each outgoing phofon with polarization 
index p .  
0 multiplying by f,, for each incoming phoron with polarization 
index p. 

Rule 4: symmetrize between identical bosons in the initial and final 
states. (This rule is analogous to the need to anti-symmetrize when 
identical fermions are in the initial and final states.) 
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Fig. 10.10 Feynman diagrams for Compton scattering. 

With these new additions to Rules 2 4 ,  we have most of the basic rules needed 
for elementary calculations. We are still missing the rules associated with renor- 
mafization (so far, all renormalization constants have been set to unity), closed 
loops, and some of the rules associated with isospin. We have also not discussed 
the electrodynamics of spin 0 and 1 bosons. We will cover some of these topics 
in the next chapter and later in Chapters 13 and 15. 

Cross Section 

We now calculate the unpolarized Compton scattering cross section in the LAB 
frame. To simplify the expression, we use 

E k ' k , = € f ' k f = € i . p i = E f . P , = O .  (10.105) 

The last two conditions hold in the LAB frame, where p i  = (m, 0) and = (0, e), 
hut would not hold in an arbitrary frame. (This is a feature of the Coulomb 
gauge, which requires that E' = 0, a condition which is not frame independent. 
Nevertheless, the total result is frame independent.) Also, (pi + ki )2  = m2 +2mq 
because k: = k;  = 0. Taking Ef to be real for simplicity, 

( 10.106) 

we have reduced M using $i f i =  2p, * €i -  f i  $i= - f i  

etc. 

out spin sums which we worked out in the previous sections gives 

and $i .(pi) = mu(pi), 

Next, calculate the sum over spins of IMI2. Using the technique for carrying 
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To reduce this expression (essential because we have products of eight 7-matrices, 
which are too complicated to work with), expand out the product and use results 
like $:=C2- 0 and fi = -1 = f f .  We have 2 2 

f -  

=O 

A 
[fj C i f i  + f i  -1 C j f j  (Aff + f f f i )  m }  

W f  
- 2 ( m + # f )  7 

where the last expression was obtained by moving the C's in the factor (#% - $ f )  
to the right (or left by cyclically permuting the trace) and using C 2 =  0. Next, 
note that 
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Then the two kf . c,/(u,uf) terms cancel, the two k, - cf / (u ,wf)  terms cancel, 
and the coefficients of the l/w, term and the l / w f  term are equal. Finally, we 
get 

+ ( $ 2  + $, - t f ) f G ] } .  (10.108) 
Wf 

After noting the cancellations and using g2= 0, we obtain 

- I t ,  P I  

- 4rn(€, . Ef) $* (* + fa)} 
Wf 

(10.109) 

Now return to the cross section. Using the general formula (9.63) gives (let 
kf = k’, k, = k) 

(10.110) 
1 1  

where the f is for the average over initial electron spins. Here 

q2 = (kf - k,)’ = -2k .  k’ = -2kk’(l - cos8) 
= ( p f  - P,)~ = 2m2 - 2mEf  = 2m(k’ - k) . (10.1 11) 

Hence, as we found before, the recoil factor is 

(10.112) 
k’ - - - 1 - - 1 

I - &  i + k ( i - c o s 8 )  k ‘  

Thus 

or, in terms of k’ = us, k = ui, and 8, using ki.  kf = kk’( 1 - cos 8) = m ( k  - k’), 
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we have 

(10.114) 

This is the famous Klein-Nishina formula. 

Thomson Cross Section and the Classical Limit 

We now assume that k and k’ << m, so there is no recoil and k Z k’ (long 
wavelength limit). Then 

du a’ 
dR m2 

= - ( € .  . - (10.1 15) 

If we average over initial polarization states and sum over final states, using 

we obtain 

Hence 

1 
2 

= - (1 + cos2 e) 

a2 1 
- - - -  (1 + C O S ~ )  

unpolarized m2 

(10.116) 

(10.117) 

and integrating over the solid angle gives the famous Thomson cross section 

(10.118) 

This classical result can be obtained quite easily directly from the relativistic 
M-matrix by letting k N k’ -+ 0 right from the start. A remarkable fact emerges 
from this calculation. If we use the identity (10.101) 
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This is a convenient form for taking the classical limit, and the Thomson cross 
section can be easily computed in this way. However, it turns out that the classical 
limit comes entirely from the I J C  terms (the negative energy contribution). It is 
left as an exercise (Prob. 10.3) to work this out and discuss the results. 

PROBLEMS 

10.1 Calculate the differential cross section, in the one-photon exchange approx- 
imation, for the scattering of electrons from pions (pseudoscalar particles) 
initially at rest. First, write down the correct M-matrix using the Feynman 
rules (the form of the vertex for a spin zero boson is given in the Appendix). 
Then, square and calculate the unpolarized cross section. Finally, show that 
when the energy E of the incoming electron becomes very large, 

2 8  do 2 cos 5 
dR = (3 sin4; 1 + 2Esin [ m, 2 e 1  . 

10.2 Calculate the total cross section for the annihilation of electrons and positrons 
into muons and antimuons. (The muon is just like a heavy electron.) Do 
the calculation in the center of mass system, which is also the LAB system 
in a colliding beam accelerator where this experiment would usually be 
performed. When the energy E of the electron becomes very large, show 
that the unpolarized ford cross section becomes 

4 7 r a 2  
3s 

u=- s = 4 E 2  . 

[You may use the results from Eq. (10.85) and (10.86).] 

10.3 Show that the Thomson cross section can be obtained from the relativistic 
Feynman diagrams for Compton scattering using only the negative energy 
part of the virtual electron propagator. That is, using the decomposition 

m+ fJ U(P1 s ) q P ,  s) - 4 - P ,  -S).ii(-P1 -s) 
EP +PO -=(&)?{ m 2 -  P 2 E , - p o  
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show that the full result for the Thomson cross section comes from the 
second term in this decomposition, the first term giving a vanishingly small 
contribution. To make the calculation simple, carry out the calculation in 
the limit when all momenta are << m right from the start. 

10.4 Suppose the muon could decay onto an electron and a photon through an 
electromagnetic-like term of the form 

X i n t  = -9 [ & n u o n ( x ) Y $ J e ( z )  + Icle(x)yaVmuon(x)]  &(x) 5 

where g is an unknown constant. (As far as we know, this process does 
not occur.) Calculate the total rate for this decay in terms of the unknown 
constant g. 

10.5 Consider the annihilation of electron-positron pairs into two photons, i.e., 
e- + e+ 4 27. 

(a) Draw all of the Feynman diagrams which contribute to this process to 
order e2 in the electric charge. Let the momenta of the incoming electron 
be p - ,  of the incoming positron p + ,  and of the outgoing photons k1 and kz. 
Label each diagram with these momenta and the momenta of any internal 
lines. 

(b) Write down the correct Feynman amplitude for each diagram. 

10.6 Assume two protons scatter by exchanging either a photon or a neutral d' 
meson. 

(a) Draw clearly labeled Feynman diagrams showing the interactions to 
lowest order in the electric charge e or the 7rNN coupling constant g. 
Give the mathematical expression for the M-matrix corresponding to each 
diagram . 
(b) Give a rough estimate of the comparative size of the different diagrams 
when the scattering takes place at high energy and at non-forward angles 
(0 > lo", for example). Which process is more important? 

10.7 Consider electron-proton ( e p )  and positron-proton ( c p )  scattering in the 
framework of QED. 

(a) Draw all the Feynman diagrams which contribute to e p  and Fp scattering 
in lowest order perturbation theory. Write the M-matrix corresponding to 
each diagram. 

(b) Calculate the difference in the cross sections for e p  and el-, scattering. I t  
is sufficient to find c IMtP - c IMI& . 

spins spins 

Alternatively, you may be able to see the answer by examining M,, and 
M Q, directly. 

(c) Using the insight gained in part (b), roughly how accurate an experiment 
would be required to distinguish between e p  and L'p scattering? 
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\ / 
\ / 
\ I 

Fig. 10.11 Diagrams for nN scattering (Rob. 10.8). 

10.8 Pion nucleon scattering. 
(a) Calculate the total cross section for n+p and n-p scattering near thresh- 
old using only the two Feynman diagrams shown in Fig. 10.11. Assume the 
T N N  coupling is - f i g y 5  for positively charged pions, g-y5 for n'pp, and 
-gy5 for nomi, where g2/4n = 14.0. Carry out the following steps: 

(i) Write down the exact Feynman amplitudes, from the two diagrams in 
Fig. 10.1 1, for the following processes: 

7r+p --+ n+p 
n-p -+ n-p 

n - p  + n'n 

(ii) Evaluate these amplitudes in the center of mass system in the limit 
when the momenta lpl of both the proton and pion is zero. 

(iii) Calculate the total cross section for n+ + p  + anything and n- + p  + 

anything and compare with the experimental results, which are 

4n 
u , + ~  = - (0.0114 f 0.0006) 

m: 

(0.0249 f 0.0014) , 4n 
U , - p  = - 

m: 

where m, is the pion mass. 

(b) Redo the calculation of part (a) with the A N N  coupling replaced by 

y5 for positively charged pions 

+ for nopp 
- for norm, y5 for neutral pions 

(h - $ a )  

fg 2mN 

where p f  is the outgoing nucleon four-momentum, pi  is the incoming nu- 
cleon four-momentum, and m N  is the nucleon mass. Do all three steps of 
this calculation just as you did for part (a) above. (If you are very careful, 
you will discover an important result in nN physics.) 



CHAPTER 11 

LOOPS AND 
INTRODUCTION TO RENORMALIZATION 

We now turn to the general question of how to calculate the higher order terms 
which arise in the perturbation expansion for the S-matrix. We have chosen to 
introduce this study by examining all the terms which arise in second order QED. 
The discussion therefore serves two purposes: the specific examples we study are 
of practical importance, and they also are rich enough to illustrate most of the 
issues which will arise in  a general study. 

A survey of all Feynman diagrams generated by second order processes shows 
that they are of two kinds. In some, the momenta of the internal (or virtual) par- 
ticles is fixed by energy-momentum conservation. Such diagrams are referred to 
as “tree diagrams,” and their “computation” involves no more that writing them 
down and evaluating all internal momenta using energy-momentum conservation. 
Examples of tree diagrams are scattering in the one-photon exchange approxima- 
+;on, annihilation and pair production through a single intermediate photon, and 
Compton scattering, all of which were studied in the last chapter. The second 
kind of diagram has closed loops in which the momenta of all of the internal 
particles are not fixed by the four-momenta of the external particles. For each 
loop there is one four-momentum completely unspecified by energy-momentum 
conservation. Each different value of this internal four-momentum will give a 
different amplitude connecting the same initial and final states, and these am- 
plitudes are therefore indistinguishable, and the rules of quantum mechanics tell 
us that these must be added together (by integrating over all possible values of 
the internal four-momentum) before we square the result to obtain predictions for 
physical observables. The evaluation of loop diagrams therefore requires that loop 
integrals be carried out, and this is much more difficult. Remarkably, there is a 
very powerful, standard method for evaluating loops. This method, referred to 
as dimensional regularization, will be introduced in Sec. 11.6. We will see that 
these integrations will sometimes produce infinities, which must be systematically 
removed if we are to obtain meaningful answers from the higher order terms. 
The infinities are first isolated through a process called regularization and then 
removed from the theory through a process referred to as renormalization. This 
involves systematically redefining the coupling constants and masses of the theory 
so that the infinities are systematically absorbed into these parameters, which are 
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then taken from experiment. 
This chapter prepares the way for the more complete study of renormalization 

presented in Chapters 16 and 17. It also is a prerequisite for the study of bound 
states and unitarity presented in Chapter 12. However, a reading of this chapter 
in not necessary for the additional study of symmetries presented in Chapter 13, 
nor for a large part of Chapters 14 and 15, and the reader may prefer to turn to 
these topics first. 

11.1 WICK'S THEOREM 

We begin this chapter with a brief study of Wick's theorem, a standard tool for 
the study of higher order processes when quantum fields are treated as operators 
on a Fock space. Later, after we have introduced the path integral formalism in 
Chapter 14, we will be able to obtain the same results we obtain here using a 
completely different method. 

The first problem we encounter in computation of higher order terms is the 
computation of the matrix elements of products of field operators, and Wick's 
theorem provides a systematic way to reduce these products. There are two 
theorems: one tells how to reduce a product of field operators to a sum of terms, 
each of which is a normal-ordered product, and the second tells how to reduce 
the product to a sum of terms, each of which is a time-ordered product. In the 
following discussion, we will use the symbol 4 to denote any quantum field: 
scalar, vector, or spinor. 

'Nick's Theorem for Normal-ordered Products 
A contraction of two fields will be defined to be their vacuum expectation value 
and will be denoted by a square bracket connecting the two fields, 

(11.1) 

This contraction occurs naturally when normal ordering a product of two fields. 
Recall that fields can be broken into positive and negative frequency parts, 

and since the (-) parts are always associated with creation operators, 

(11.2) 



11.1 WICK'S THEOREM 321 

In order to treat commuting and anticommuting fields at the same time, we will 
use the notation 

[a,  b]* f ab f ba . (1 1.4) 

Then, it follows that, for both Bose and Fermi fields, 

Also, since d(+)(x)lO) = 0 and @t(+)(z)IO) = 0, it follows that 

and therefore, for both Bose and Fermi fields, 

(11.6) 

(11.7) 

This observation was previously encountered in Eq. (7.43), but now will be gen- 
eralized to products of more than two fields. 

When more than two fields are present, we will frequently encounter the 
product of a contraction (a c-number) multiplied by a normal-ordered product of 
fields (a q-number). For this purpose it is convenient to define a rearrangement 
of this product in the following way*: 

( -1) 'Uk : $1 ' '  ' @ j - l $ j + l  ' '  '$k-ldk+l ' '  '@n: 

=: $162 ' ' . qj ' .  ' $ k .  . . on: , (11.8) 

where 4% = 4t(xz) and p is the number of interchanges of Fermi fields (even or 
odd) required to move q5J and $h from their position on the RHS of the equation to 
their position on the LHS of the equation where they are in front of the product. 
This notation is convenient, but don't forget that no contractions are possible 
within a normal ordered product because the normal ordering insures that any 
vacuum expectation value of any twoje lds  is  zero. The product on the RHS of 
( 1  1.8) should not be thought of as a contraction of fields within a normal-ordered 
product, but only as a shorthand for the LHS of the equation. Finally, note that 
the phase ( - l ) P  is always +1 unless both d j  and $k are Fermi fields, and there 
are other Fermi fields "in the way" which must be passed in pulling 4j and (bk to 
the front. 

With these definitions, the Wick theorem for normal-ordered products can be 
stated in a deceptively simple way: 

Theorem: The ordinary product of field operators is equal to the sum 
of normal products with all possible contractions, including the normal 
product with no contractions. 

'The discussion here follows Bogoliubov and Shirkov (1959). 
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Formally, we can write 

41.. . &  =:41.. . & :  +: w 2 . .  . & :  +: w 3 .  * .&:  +..  . 
+: 4 * @ 3 . .  . (bn: + . . . 

+: w 2 w 4 W 6 4 7  * * '$n  + ' '  ' . (11.9) 
+ : w 2 W 4 $ 5 ' ' ' @ n : + ' ' '  

Note that if all pairs of fields have non-zero contractions (which is not generally 
the case, of course), then for even n the above sum contains 

1 uncontracted term 

terms with one contraction 

terms with two contractions 

n ( n - 1 )  
2 

1 n(n-1) In-2)(n-3)  
2 2  2 

fully contracted terms. n!  
2"/2(n/2)! 

However, only fields with non-zero commutation or anticommutation relations 
can give a non-zero contraction, and thus in practice most of the fields will not 
contract. Hence, for example, 

7&=0 pJ=o  @ # O  @ t # O  

= 0 if is a charged field @ {  # 0 if r$ is self-conjugate . 
The general proof of Wick's theorem (which is not difficult) can be found in 

many texts. Rather than present a general proof, we will work it out for second 
order QED. We limit ourselves to spinor QED, where the radiation part of the 
interaction Hamiltonian has the form H =: q(x )$ (z )u (z ) : ,  where, in the interests 
of simplicity, the Dirac matrix and vector indices have been suppressed. The 
second order product of two radiation terms (time-ordered products will come 
later) which we will encounter is 

H 2  =: $(z)$(z)A(s) :  : ~ ( Y ) ~ J ( Y ) A ( Y ) :  . (1 1.10) 

Fields within a normal-ordered product must not be contracted, because they are 
already in normal order. Applied to the above product, Wick's theorem gives eight 
terms: 

H 2  =: q(.)dJ(.)A(z)~(Y)l(Y)A(Y): +: q(zc)l(.)A(s)d(Y)$(Y)A(Y): 
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Bringing all of the contracted fields to the front gives 

In every case in this example the p of Eq. ( 1  1.8) is even. 
We will now prove that Eq. ( 1  1.12) is the correct result by putting all of the 

fields into normal order, being careful to keep any commutators or anticommutators 
which may arise in the process. Since the A's commute with the @Is. we can place 
the A's in normal order independent of the @'s. The A's therefore give 

A(x)A(y) =: A(x)A(y): +A(x)A(y) . (11.13) 

Now, look at the $ terms. These are 

: 1cl(z)@(z): : $(y)$(y): 

= ( f ( - ) ( x )  [@'+'(Z) + +(-)(z)] + 4(+)(5)$(+)(2) - lJ(-)(x)lj(+)(x) 

x ( W Y )  [$'+'(Y) + W Y ) ]  + 4(+)(Y)$(+)(Y) - $(-)(Y)$+)(Y)) . 
(1 1.14) 

*.o put in normal order, all +(-)'s to the right of any @(+) must be moved to the 
left, and all +(+)'s to the left of any ~ ( - 1  must be moved to the right. The terms 
not already in normal order are 

These reduce to a sum of normal-ordered terms plus additional terms as follows: 

Terms 
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Now, combining the li, terms with the A terms gives 

Multiplying these out generates the eight terms given in Eq. ( 1  1.12) if we recall 
that [$(+)(z),@)(y)]+ = w ( y ) ,  etc. 

Wick's theorem for normal-ordered products is a useful result, but what is 
really needed is an analogous theorem for the time-ordered products which occur 
in the perturbation expansion for U,. We turn to this now. 

Wick's Theorem for Time-ordered Products 
First, consider the time-ordered product of a single pair of field operators. This is 
defined to be 

(1 1.15) 

where 7 is -1 for the Fermi fields and +1 for the Bose fields. However, following 
our previous discussion this is just 

However, the order of terms in a normal-ordered product can be changed (if we 
respect the anticommutation relations) and hence we can define a time-ordered 
contraction by 

(11.17) 

where the time-ordered contraction is distinguished from the normal-ordered con- 
traction by placing the square brackets above the fields, and from Eqs. (11.16) 
and (11.17) 

(1 1.18) 
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From the definition of the normal-ordered contraction, ( 1  1.18) can also be written 

or 
I 

(1 1.20) 

~~ 

We see that the time-ordered contractions are just the propagators we have 
already computed. Recall Eq. (9.37) for self-conjugate fields, 

Eq. ( 1  0.102) for Dirac fields, 

and Eq. (10.28) for the radiation field, 

(OIT ( A * ( z ) A j ( y ) )  10) = i D',: (x - y) 

We now are ready to state and prove Wick's theorem for time-ordered prod- 
ucts: 

Theorem: The T product of a system of linear operators is the sum 
of their normal products with all possible time-ordered contractions, 
including the term with no contractions. 

The formal statement of the theorem is almost identical to the previous theorem: 
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where 77 is f l  depending on whether there are an even or odd number of inter- 
changes of Dirac fields required to put the 4's in the desired order. Now apply the 
Wick normal order theorem to this product. The normal-ordered contractions will 
all be present with the correct time ordering. Next, using the fact that the order- 
ings of fields within a normal-ordered term can be interchanged (with the usual 
phase for Fermi interchanging), we can restore the normal-ordered terms to their 
standard order, 4142 . . + &. The resulting phase which will remain will be f l ,  
depending only on whether the normal-ordered contractions have an even or odd 
number of Fermi interchanges. Finally, for all terms with the normal contraction 

corresponding to tl > t z ,  there exists identical terms corresponding to t l  < t 2  
which give 

77WlX ' 

These terms may be combined, giving 

which proves the theorem. I 

We are now ready to apply these ideas to a systematic study of QED in second 
order. 

11.2 QED TO SECOND ORDER 

We use QED to illustrate these ideas because it is the simplest. most successful 
quantum field theory for which perturbation theory works. (Recall (Y 2: 1/137). 
We will consider electron interactions only, so the Hamiltonian is a version of the 
one given in Eq.(10.8) and has the form 

H~ = H," + H&,, 
H I  = - / c J : ( r , t ) J : ( r ' , t )  1 - /d3rJe(r,t).A(r,t) (11.23) 

87r Ir - T ' I  
= HINST + HRAD I 

where 
J," = -e: [7j+7,!1] : . (11.24) 

Note that there are no protons (there is only one fermion, the electron) and that we 
have restored the electron instantaneous self-energy term ignored in our previous 
discussions. Also, our treatment of H I N ~ T  will depart from the normal procedure. 
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Instead of normal ordering the entire term, we will only normal order each J,“ in 
this term. That is, we use 

J:(r,t)J:(r’, t )  = e 2 :  [q ( r ,  t ) ro$(r ,  t ) ]  : : [$(TI ,  t)r’lL(~’, t ) ]  : (11.25) 

instead of 
e2: [lo(r, t)?’l~(r, t ) ]  [&TI, t ) y o + ( ~ ’ ,  t ) ]  : . (11.26) 

These give Hamiltonian densities differing from each other only by a constant, so 
the physics is the same, but the first choice is more convenient, as we will see 
below. Using this Hamiltonian, the time translation operator to second order was 
given in Eq. (9.7), 

We now reduce this expression for the time translation operator using Wick’s 
theorem. First, note that the instantaneous term can be written 

- 7 (11.27) kZ 
- -! / d4x1d4x2 T [ J 0 ( q ) J 0 ( x 2 ) ]  

2 

where the insertion of the T product in the second line has no effect but produces 
a formula more easily compared with the radiation part. The radiation part of the 
time translation operator, to second order, includes terms where the photon field 
is contracted. As we have just seen, these reduce to 

. . ”  

Now, if either the incoming or outgoing electron is virtual, it is no longer true 
that k ,  J p  = 0, but i t  can be proved, to any given order in the electric charge e, 
that all k, J p  terms cancel, so that we may make the replacement 

k t J i  + koJo , (11.28) 
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just as if k,  J ,  = 0.  This is a consequence of the gauge invariance of the theory. 
With this replacement, the instantaneous and radiation term can be added together 
as we did in Sec. 10.2, giving 

A(s)A(y)  terms = - d 4 z 1  d 4 x 2  T [Jp(x1)J”(22)] 

= O  
(1 1.29) 

Hence, whenever A? contractions arise, we may use the four-current J p  and the 
relativistically invariant photon propagator, defined to be 

In conclusion, the effective second order interaction time translation oper- 
ator for QED consists of six terms which contribute to the following physical 
processes: 

annihilation and exchange terms 

Compton scattering terms 

Y 

vacuum bubble term 
These six terms arise because the original time-ordered product has been replaced 
by normal-ordered products, each of which can be identified with particular phys- 
ical processes, as we will discuss. The contractions are the propagators given in 
Eqs. (11.21 a-c), and they describe the propagation of virtual particles from an 
interaction point at 21 to one at 2 2 .  
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4 
Fig. 11.1 Example of discon- 

nected Feynman diagrams gener- 

ated by the first term in Eq. ( 1  1.30). 

The first term, the fully normal-ordered term, has no contractions, and hence 
the integration over d4xl and d4x2 can be carried out independently. This gener- 
ates two independent energy-momentum conserving delta functions, the form of 
which depends on the process under consideration. Since the term is fully normal 
ordered, only matrix elements involving a combined presence of six particles in 
both the initial and final states can contribute. An example of such a process, 
shown in Fig. 1 1.1. is e -  + e-  --$ e -  + e -  + 27. Since there are no contractions, 
the interactions at z1 and 52 are independent of each other, and the delta functions 
in this case are 

h4 (p ;  + kl - p i )  b4 (ph + k2 - p2) = 0 . (1 1.31) 

They are zero because a physical electron cannot decay into a real photon and 
another physical electron. Examination of other processes generated by this in- 
teraction shows that the above analysis holds in every case. The first term makes 
no contribution to any process. 

e:x: e e-y; e +  

annihilation exchange 

Fig. 11.2 Annihilation and exchange diagrams generated by the second term in Eq. (11.30). 
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u e e - 

Compton scattering two -photon annihilation 

Fig. 11.3 Examples of diagrams generated by the third term in Eq. ( 1  1.30). 

The second term gives rise to annihilation or photon exchange diagrams like 
those shown in Fig. 11.2. These were discussed in Secs. 10.2 and 10.3. The 
third term gives rise to Compton scattering and huo-photon processes, such as 
those given in Fig. 11.3. Compton scattering was discussed in Sec. 10.5, and 
the annihilation of an e-  e+ pair into two y's is a process which contributes to 
the decay of positronium, as discussed in Sec. 8.5. The reader should be able 
to calculate this diagram with the Feynman rules we have already obtained. All 
the diagrams involving a single contraction in second order are examples of tree 
diagrams, which are diagrams with no loops. 

The first loop diagram which we will discuss now in some detail comes from 
the fourth term in Eq. (1  1.30). It gives rise to the electron self-energy and also 
introduces us to the infinities which can arise in field theory. 

11.3 ELECTRON SELF-ENERGY 

The fourth term will contribute to matrix elements of a single free electron: 

( 1 1.32) 

where the sums in the ?i; and $J fields have been reduced to one term anticipating 
the result { bq, t ,  b i , . }  = ~ 5 ~ , ~  &,. Making this reduction and doing the integrals 
over xl  and x z  give 

(11.33) 
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where 

(11.34) 

Note that the M now involves a non-trivial integral over the internal four- 
momentum of the virtual photon, k ,  and corresponds to the Feynman diagram 
shown in Fig 11.4. In this process, the four-momentum of the virtual photon 
is not constrained, even though energy-momentum is conserved at every vertex. 
The process illustrates a new Feynman rule: 

Rule 5: integrate over each internal four-momentum k not fixed by 
energy-momentum conservation with a weight 

The electron self-energy, denoted by C ( p ) ,  is related to M c  by 

M E  = ii(p', s') C ( p )  u@, S) . (11.35) 

Lquation ( 1  1.34) therefore gives, to second order in the electron charge, the fol- 
lowing result for the electron self-energy: 

We will postpone discussion of how to evaluate such integrals until Sec. 11.6. 
Now we will discuss the physical significance of the self-energy. 

k 

P '  p ' - k  P 

Fig. 11.4 
be constrained by momentum conservation. 

Feynman diagram for the electron self-energy. Note that the loop momentum k cannot 
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second order fourth order 

sixth order 

Fig. 11.5 
propagator. 

First three of an infinite class of Feynman diagrams which defines the dressed electron 

dass and Wave Function Renormalization 

To understand the physical significance of the electron self-energy, consider Comp- 
ton scattering to higher order in e. There are an infinity of diagrams, but they can 
be organized into an infinite number of classes, with each class itself containing 
an infinite number of diagrams. The first three diagrams in one class are shown in 
Fig. 11.5. Recalling the definition of the electron propagator, Eq. ( 1  1.21 b), these 
first three diagrams can be written 

--z 
(1 1.38) -i(m+$) - - iS (p )  = m2-p2-i€ m--$-ic ' 
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This infinite class of diagrams can be summed using the geometric series 

n=l 

= - i e 2 ~ @ z )  ICj ~s’(P) fj 9 (11.39) 

where the dressed propagator, S’(p), is 

W P )  = 2 S(P) [ 1 + C(P)S(P) + [C(P)S(P)12 + - * * ] 
(11.40) - - i S(P) 

1 - V P ) S ( P )  * 

Because C ( p )  is a matrix in Dirac space which transforms like a scalar and because 
p p  is the only four-vector on which it can depend, C ( p )  must have the form 

C ( P )  = mA(p2)+ $ W P 2 )  t (11.41) 

where A(p2)  and B ( p 2 )  are scalar functions of p 2 .  Hence C ( p )  commutes with 
iS(p) ,  and 

I I 

I -i 
m- $ + C ( p ) -  it 

iS’(p) = (11.42) 

The effect of the self-energy C ( p )  is to modify both the mass and the nor- 
malization of the propagator. To see how this comes about, we regard C ( p )  as a 
function of $ [which is consistent with Eq. (1 1.41) because $2= p 2 ] ,  and expand 
C($) in a power series in the quantity ($ -m), 

C($)  = C(m) + ($ -5)C’(rn) + i($ -E)2C”(Sit) + f .  * 

= C(5 )  + ($ -rn)C’(E) + C R ( $ )  , (1 1.43) 

where E is a constant to be chosen shortly and the coefficient of the second term 
can be found in the usual way, 

even though the matrix $, which is constructed from the y-matrices, can never 
equal 5, which is a multiple of the identity. Note that the second line of ( 1  1.43) is 
exact because C R  is simply the sum of all the higher order terms in the expansion, 
and therefore, by construction, 

C R ( $ )  = ($ -5)’ R 7 (11.44) 
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where R is some function of $ which may not be zero at $= E. 

and choose iii so that the propagator will have the form 
Now, we substitute the expansion (1 1.43) into the dressed propagator (1 1.42) 

(1 1.45) 

We will show that this form insures that the dressed propagator has a pole at E, 
with residue 2 2 ,  and relate these two quantities to the self-energy. To show that 
the dressed propagator has a pole at E, use ( 1  1.44) and multiply numerator and 
denominator of (1 1.45) by $ +iii, 

-i(E+ $)Z2 
(iii2 - p 2 )  [I + (fi- $) ZzR] is’($) = (11.46) 

This displays the pole at p 2  = E2, 
physical mass. Furthermore, since 

justifying our interpretation of iii as the 

(1 1.47) 
- =rn+O(p2-iii2) , 

S‘ assumes a form identical to S near the pole, 

(1 1.48) 

which shows that the residual self-energy C R  is negligible near the pole and that 
2 2  is the residue of the dressed propagator at the pole. 

Furthermore, from Eqs. (11.42), (1 1.43), and (11.45) it is easy to see that 

- m - m = C ( E )  
2;1 = 1 - cym) 

In terms of A and B defined in Eq. (1 1.41), 

(11.49) 

so that 
C(iii)  = mA(E2) + i i iB(E2) 

(11.51) 



11.3 ELECTRON SELF-ENERGY 335 

Fig. 11.6 
internal fermion line. 

The factor 2 2  is removed by absorbing i t  into charges which occur at the end of each 

In principle, these equations can be solved for iii and 2 2 ,  but in practice, 
2, is removed from the theory (discussed below) and Ti is fixed at the physical 
electron mass. An exception to this general rule occurs in the special case when 
the unrenormalized mass is zero. In this case, the renormalized mass will also be 
zero. This follows from Eq. ( I  1.49) for the renormalized mass, which is 

iii=iiiB(iii2) , (1 1.53) 

and hence, in the absence of special conditions, Eq. ( 1  1.53) tells us that iii = 0. 
In anticipation of Chapter 13, we point out now that in theories with spontaneous 
symmetry breaking (not QED), special conditions are established so that mass is 
spontaneously generated by the interaction. In this case the self-energy functions 
.! and B are calculated from Feynman diagrams using the anticipated iii in place 
of m (which is zero, by assumption). Then the contribution from A is no longer 
zero, and Eq. (1 1 S 3 )  is replaced by a transcendental equation for E, known as 
the gap equation. We defer any further discussion of these ideas to Chapter 13. 

The process by which 2 2  is removed from the theory is referred to as wave 
function renormalization, and the change of m to iii is referred to as mass renor- 
malization. It is important that this can be carried out, because A(iii2) and B(FT2) 
are infinite, and if these infinities could not be removed, we could not obtain 
predictions from QED. After the renormalization is carried out, the remaining ex- 
pressions are finite, and the theory makes meaningful predictions. In the end, the 
only thing lost in the renormalization process is the ability to calculate the mass 
shift of the electron and the change in its electric charge, and since the theory 
does not tell us how to calculate the electron mass and charge anyway, this does 
not reduce the predictive power of the original theory. 

There are two steps which must be taken to remove the renormalization 
constant 2 2 .  First, for internal electron lines, break 2 2  = GG and absorb 
one factor of into each charge at each end of the electron line, as shown in 
Fig. 11.6. Hence the “bare” charge, eo. must be renormalized as follows: 

(1 1.54) 
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Next, we must also multiply the wave function of each external electron by fi 
so that the charge operator connected to each incoming and outgoing electron is 
similarly renormalized. The Feynman rule which incorporates this step is: 

Rule 8: for each external fermion, a factor of G u ,  G v ,  6 2 1 ,  
or G B ,  depending on whether or not the fermion is a particle or an 
antiparticle, and incoming or outgoing. 

The origin of the external factor is associated with renormalization of the 
free field functions in the presence of interactions. 

The reader is warned that rhe charge will undergo further renormalization, 
so this is not what is called “charge renormalization. ” 

Note that the dressed propagator (11.45) has been defined so that the 2 2  

multiplying C R  can also be absorbed into the renormalization of the charges in 
C R ,  so the renormalized dressed propagator, denoted by 3, is 

(1 1.55) 

Near the particle pole, the renormalization insures that the dressed propagator has 
the same form as the original undressed propagator. 

-1.4 VACUUM BUBBLES 

Turn now to the last term in Eq. (1  1.30). Since it is fully contracted, it is a c- 
number and has a non-zero vacuum expectation value. It describes (see Fig. 11.7) 
a vacuum fluctuation in which an electron of four-momentum p ,  a photon of four- 
momentum k, and a positron of four-momentum - p -  k spontaneously materialize 
from the vacuum at space-time point x1 and propagate to space-time point 2 2 ,  

where they annihilate. It is not zero because the particles are off-shell, so energy 
and momentum can be conserved. 

However, it is not necessary to calculate such vacuum fluctuations; they can 
be shown to disappear from the theory. To prove this, note that the second order 
contribution from vacuum bubbles can be written 

-i (01 dt He* ( t ) l O )  = -2cg , s ( 2 )  
(11.56) 

where it can be shown from (1 1.30) that c2 is real. This same matrix element also 
occurs (squared) in  fourth order, where the four space-time points 2 1 ,  22, 2 3 .  
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and 2 4  can be connected pairwise in three different combinations: [q z2] [23 241, 

[XI 23)  [ 2 2  241, and [XI 241 [ 2 2  231. In fact, in (2n)th order, there are (2n)!/(2" n!) 
combinations, so that the sum of these contributions to the interaction time trans- 
lation operator to all orders is 

u,". = 1 + - 1 (-icZ) + -3(-icz)' 1 + . . * (-ic2)" + . 
2 4! 

+.. .+- ( -- i ; ) n + .  
n! 

- e - i ~ a / 2  - . (11.57) 

This result can be generalized to bubble diagrams of all orders, in which case 
c2/2 is replaced by c, the sum of all bubbles. 

However, bubbles can also be present in the background while other pro- 
cesses, such as scattering or annihilation, are occurring. By an extension of the 
db0W argument, we may show that the bubble diagrams modify these processes 
by the same multiplicativefactor we worked out above. The full time translation 
operator can therefore be written 

UI = e-+U; , ( 11.58) 

where U; is the time translation operator without the bubble diagrams. Recalling 
the exponential structure of the perturbation expansion for the time translation 
operator, Eq. (3.25), and using the fact that c is a c-number, we can write 

1 (11.59) = e-ic u; 

which shows that extraction of the bubble diagrams from UI is equivalent to 
redefining the Hamiltonian by subtracting all bubble contributions. Furthermore, 
because of our definition of the 5'-matrix in Eq. (3.28), 
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the phase from bubble diagrams cancels, 

(1 1.60) 

Hence, the S-matrix may be calculated from U;, which has no vacuum bubbles. 
The removal of the vacuum bubbles does not change any physics because vacuum 
bubbles contribute only to an overall phase, which is unobservable. 

11.5 VACUUM POLARIZATION 

Now consider the fifth term in Eq. ( 1  1.30). This contributes to the self-energy of 
a photon and is referred to as the vacuum polarization. The relevant Feynman 
diagram is given in Fig. 11.8. From our experience so far, we expect the Feynman 
diagram to give the following integral: 

(1 1.61) d4p t r  {f; [m+ $1 f, [m+ $ - el} 

This result is almost correct. The correct result includes an extra minus sign which 
is associated with every closed fermion loop and gives us another Feynman rule: 

Rule 6: for each closed fermion loop, a minus sign. 

To derive this result, with the correct sign, compute the matrix element of 
the fifth term in  Eq. (1  1.30): 

The photon matrix element gives 

x { &’ 2 1 - ¶  4 3  *€; + f f f  f a }  . 2 2 - - 4  2 1 )  t *  3 

(1 1.63) 
The two terms come from the two possible pairings of annihilation and creation 
operators in : A A: . The rest of the integrand is symmetric under i u j, x1 w x2, 
and p ++ p‘, because the trace can be cyclically rearranged. Hence the two terms 
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P 

Fig. 11.8 Feynman diagram which gives the vacuum polarization to second order. 

add, and the combined result is 

where 

( 11.64) 

We see that this differs from the answer we guessed by an overall sign. The minus 
sign can be traced to the interchange of Fermi field operators required to obtain 
this term in Eq. (1 1.30). 

As in the electron case, we generalize our discussion to off-shell photons, 
and introduce 

M n  = €;f n””(q) 7 (1 1.66) 

where 
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Note that this integral has terms which go, at large p ,  like 

(1 1.68) 

and hence is quadratically divergent! Since the vacuum polarization is an especially 
important quantity, we will study how these divergences are handled in detail in the 
next section (1 1.6). For now we anticipate the results of that section and complete 
our discussion of the dressed photon propagator. 

The Dressed Photon Propagator 
In the next section, we will show that the vacuum polarization has the form 

(11.69) 

where II (q2)  is a scalar function of q2,  so that (1 1.69) displays the dependence of 
the vacuum polarization on the initial and final photon spin indices. Also, note that 
JIP” satisfies the gauge invariant constraints 

qpr IP’v  = 0 = n’l’qy . (1 1.70) 

Following the discussion of the electron self-energy we consider the infinite 
sum of photon self-energy terms, such as might occur in e f e -  + p + p - .  These are 
shown in Fig. 11.9. The infinite sum of these terms gives the dressed propagator, 
which becomes 

(11.71) 

where we used the relation gPA [gxAtq2 - q x q x ~ ]  gx’”  = q2gf iu  - qPq’  -+ q 2 g P u  
because the qpqy terms will give zero when they are contracted into the free final 
p+p- or initial e+e- currents. Note that the photon pole remains at q2 = 0, a 
consequence ofgauge invariance. Hence there can be no mass shift for the photon, 
and we introduce only one renonnalization constant, called 2 3 ,  as follows: 

I I 
igp”  2 3  

- q 2  - ’ 1 + z3iT(q2) ’ i D I p u ( q )  = (1 1.72) 

where n(q2) = n(q2) - n(0) and the equivalence of this result with Eq. (1 1.71) 
requires 

(1 1.73) 
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+ + . . . .  

Fig. 11.9 Three diagrams which contribute to the dressed photon propagator. 

Hence Z3 removes the infinity contained in II,(O),  and its removal from the theory 
will eliminate the infinities associated with vacuum polarization. 

The constant 2 3  is absorbed into the charge, just as was done with Z Z  for 
the electron. There must be one charge at the end of each photon line, and hence 
& is absorbed into each charge (in this case it is only fi because only one 
photon is connected to each charge). Therefore the result [Eq. (1 1.54)] for charge 
renormalization gets extended to 

eo - & f i e 0  . ( 1 1.74) 

However, we have still not finished with charge renormalization! 

giving us an addition to Rule 8: 
Finally, external photons must be renormalized in the same way as electrons, 

Rule 8: for each external photon, a factor fi P or & P * depending 
on whether or not the photon is incoming or outgoing. 

We close this discussion with a final observation. For 1q21 small, after removal 
of Z3,  the dressed photon propagator becomes (see the next section) 

(1 1.75) 
i gp”  1 

For electron scattering, the momentum transfers qz are negative, and hence we see 
that the efective force behveen charged particles which are scattering increases 
with higher energy (momentum transfer) corresponding to an increase in the force 
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at shorter distances. This can be restated by saying that the eflective charge at 
short distances (high momentum trcnsfer) grows. To get a quantitative estimate 
of the importance of this effect on atomic systems, expand ( 11.75) for y2 = -q2 ,  

( 1 1.76) 

Fourier transforming this to momentum space gives the familiar Coulomb potential 
plus the Uehling term, 

(11.77) 

Note that this affects S-states only, and contributes to the Lamb shift which we 
estimated in Chapter 3. It is of the opposite sign, contributing about -27 MHz 
to the overall shift of about 1058 MHz. Since the Lamb shift is known to about 
0.01 MHz, this effect makes a small but important contribution to the total, and 
the overall agreement between theory and experiment confirms the correctness of 
this estimate. 

In QCD, other terms due to gluon self-interactions contribute to the gluon 
self-energy. These terms change the sign of the corresponding n-function, giving 
the result that the effective coupling constant decreases at short distances (high 
momentum transfer). This leads to the remarkable property of QCD known as 
asymptotic freedom, in which the forces go to zero at high energy. It also suggests 
that the forces will increase at high distances (low energy) and hence suggests 

onfinement. These very interesting subjects will be taken up in Chapter 17. 
We now discuss the evaluation of the loop integral (1 1.67). 

11.6 LOOP INTEGRALS A N D  DIMENSIONAL REGULARIZATION 

In this section we develop a general method which can be used to evaluate any one- 
loop Feynman integral. The method will be extended in Sec. 16.2 to the evaluation 
of Feynman integrals with more than one loop, and with these techniques we 
will be able to evaluate all Feynman diagrams. All of the formulae needed are 
summarized in Appendix C. 

A general one-loop Feynman integral (in four space-time dimensions) is of 
the following form: 

(1 1.78) 

where the A, are the denominators of Feynman propagators [cf. Eq. ( 1  1.36) for 
the electron self-energy and Eq. (1  1.67) for the vacuum polarization] and N is 
a numerator function which is a polynomial in the loop momentum k p .  The 
calculation of this Feynrnan integral is carried out in two steps. 
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The different denominators are combined into a single denominator, and the 
combined denominator is reduced to standard form by translating, or shifting, 
the internal loop momentum. 

0 The integral is then evaluated using an integral identity. 

The first step makes use of identities of the form 

which are easily proved by direct integration. The integration variables z, are 
referred to as Feynman parameters. The two identities (11.79) are the only two 
we will need in this chapter, but a completely general identity which covers any 
case which might be encountered is proven in Sec. 16.2, and given in Appendix 
C. 

To complete the reduction to stsndard form (the first step), it is necessary to 
observe that the combined denominator D always has the form 

where k is the internal loop momentum and Q is a vector function of the external 
momenta and the Feynman parameters. This form follows from the observation 
that each of the individual propagators in the loop is itself of the form Ai = 
rn? + k . qi - k 2 ,  so that when they are combined as in Eq. (1 1.80), the k 2  term 
has the coefficient tl + z2 + (1 - z1 - z 2 )  = 1. This holds for a loop with 
any number of propagators. Thus the square of the denominator can always be 
completed by shifting k = k' + Q,  which gives 

D - + D ' = B 2 + Q 2 - k t 2  . (1 1.81) 

This shift must also be carried out in the numerator N ,  which assumes the general 
form 

where the N' are tensors which do not depend on k'. Since the denominator is 
even in k' (in fact, it depends on kI2 only), all of the odd terms reduce to zero 
and the even ones can be simplified using identities we will introduce shortly. 
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After step one has been completed, we are confronted with an integral of the 
following form: 

(1 1.83) 

where n is an integer and we will assume for now that the numerator N is 
independent of k .  We will assume that there are no zeros in the denominator 
for finite k 2 ,  and consider the convergence of the integral at large k .  If n > 
2, the integral will converge, but we will encounter many cases when n 5 2, 
and the integral is divergent (the vacuum polarization and electron self-energies 
are examples where n = 2). The general method for treating these divergent 
integrals is to imagine that we are evaluating them in a number of space-time 
dimensions d < 4. In this case, the volume integration goes like ddk - k d ,  
but the denominator still goes like k2", so the integral will converge as long as 
d < 2n. As d ---* 4, the singularity returns, but it is easily identified and isolated 
into a renormalization constant, as we have already discussed briefly, and the finite 
pan of the integral is then clearly defined. The process of separating the integral 
into its finite and infinite parts is referred to as regularization and must be done 
before the infinity can be removed by absorbing it into the coupling constants of 
the theory, a process referred to as renormalization. The general procedure for 
renormalizing theories is discussed in some detail in  Chapter 16; in  this chapter 
we introduce these ideas using second order QED as an example. 

The integral (1 1.83) can be evaluated using the following identity: 

where d is the number of dimensions (as discussed above) and r ( a )  is the fa- 
miliar generalization of the factorial function with r ( a )  = ( a  - l)r(a - 1) and 
r (1 )  = 1. For (Y = n, an integer, r(n) = ( n  - l)!, but r ( a )  is also defined for 
noninteger values of a. A convenient integral representation for r which we will 
use frequently is* 

r m  

We will use this representation to prove (1 1.84). 

(11.85) 

Proof: We begin with the observation that 

(11.86) 

~- 

* A  good reference for special functions is Abramowitz and Stegun ( I  964). 
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This identity is easily proved by direct integration: 

1 - 2  - - 

Note the crucial role played by the “ i f ”  prescription; it defines the integral in 
(11.86) by providing convergence for large z and plays a similar role by defining 
the function at any singular points 0’ = 0. 

The identity ( I  1.86) is now generalized by differentiating both sides n - 1 
times with respect to C2: 

in-1 cc - i  - 1 d z z n - l  e - t z [ C 2 - k Z - r ~ ]  

(C2 - k 2  - z c )  r ( n )  (11.87) 

Next, we integrate (11.87) over k using the following identities, which hold be- 
cause z > 0, 

( 1 1.88) 

These integrals may be evaluated using well-known methods for integrating func- 
,ions in the complex plane. Initially, the integrals are along the real axis in the com- 
plex ko (or k l )  plane. To evaluate the first integral, rotate the ko contour through 
a positive angle 4. Then ko + r ei*, and Ic; = r2 e2** = r2(cos 2 4  + i sin 2 4 ) ,  
so that the integral converges as long as x / 2  > 4 > 0 (and the contribution from 
the arc at ko = 00 is zero). At 4 = x / 4  = 45” we have optimal convergence: 

For the d k l  integral, convergence requires rotating by 4 = - x / 4 ,  giving the 
opposite sign for i. 

For an integral with one time dimension and d - 1 space dimensions, the 
combined effect of the identities (1 1.88) is stated in the following identity: 

( 1  1.90) 
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To prove this identity, note that in d dimensions, k Z  = k i  - Cfz: k: and ddk = 

dko n::: dk,. Hence the integral factors into d terms, 
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.1 
- - 

which proves (1 1.90). 
Finally, combining the results ( 11 37)  and (1 1.90) gives the result 

Scaling this integral by substituting t = iz (C2 - if) gives 

However, the integral over t is just the integral representation for r (n  - d/2), 
I Eq. ( 1  1.85), and hence the identity (1 1.84) has been proved. 

Before returning to our discussion of vacuum polarization, observe that the 
integral over the vector components of k can be quickly reduced using the results 
we have previously obtained. We will show that 

To prove this, first note that terms with p # v are zero because they are odd under 
changing kp  + -kp  (or k” -+ -k”). For the p = u terms, assume that C2 is real 
and positive, and note that the singularities in the ko complex plane are therefore 
in the second and fourth quadrants: 

ko = f ( d D - i r )  . 
Hence we may rotate the ko integration contour as we did above by letting ko = 
T ei@ and changing 4 continuously from 0 to ~ / 2 .  This changes k i  --+ - k i ,  and 
the resulting integral is transformed from a d-dimensional Minkowski space’ to a 

* A  Minkowski space is one with an indefinite metric (in our example the diagonal elements of the 
metric are +1,  -1, -1, -1 in d = 4 dimensions). The rotation of the ko contour has the effect of 

changing the metric to a Euclidean form: -1, - 1 ,  - 1 ,  -1. 
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d-dimensional Euclidean space, where the integrand is completely symmetric in all 
components of k ,  and from this symmetry we can conclude that kpk” -+ 6p” k 2 / d .  
Rotating back to Minkowski space changes the sign of the k: term on both sides, 
giving the first line of the identity ( 1  1.93). 

To get the second, we use the properties of the r-function, as follows 

k 2  f / $ (C2 - k 2  - 26)” 

C2 d d k  1 d d k  1 
= d / (2.n)d (C2 - k 2  - i t)n (Cz - k2 - if)‘‘-’ 

n- l -d /2  

r (n  - 1) 
i - - 

r(n - 1 - d / 2 )  d [.- 1 - 5 - ( n -  1) 
r (n )  

i - - 

(11.94) 

which completes the proof of (1 1.93). 
While all of these identities have been derived for integral d, the final re- 

sults are expressed as functions of d which can be analytically continued into 
the complex d plane. Hence, from now on, we will think of d as a continuous 
variable. 

Finally, we are ready to return to the integral ( 1  1.67). We will evaluate 
it following the steps we have just discussed. First, we write the integral in d 
,imensions, and start off by assuming that d < 2,  so that the integral is convergent 

and everything is well defined. Then we combine the two propagators using the 
first of the identities (1  1.79), 

ddp [m2gpu + 2p”p” - ppq” - qpp” - gpup. ( p  - q ) ]  

(m2 - p2 - it) (m2 - ( p  - q ) 2  -it) 

. (11.95) = -4ie2 1’ d s  / * NP” 

[m2 - p2 + 2 p .  qs - 42s - ZE] 

Next we complete the square in the denominator by introducing p = k + qz. 
Because the integration is over all of space-time, adding or subtracting a fixed 
four-vector to p does not change the volcrne of integration, and the new integral 
is 

N I P ”  

IIz”(q)  = -die2 1’ d s  / fi 2 ’  (2TId [m2 - k2 - q2s( l  - s) - if] 

where the transformed numerator is 

NIMu =m2gpu + 2 k p k u  + ( q P k u  + k p q ” )  ( 2 s  - 1) - 2 q p q u 4 1  - s) 

- gpu ( k  + 42) .  ( k  - q ( 1  - s)) . 
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Next, drop terms odd in k, and use the identity (11.93), kpk” 
reduce N I P ”  to 

gP”k2/d, to 

“PV = gP” (7112 + (5 - 1) k2 + qZz(1- z) - 2qPqYx(l- x )  . ) 
Now we may evaluate the integrals over k using the identity (11.84) and the 
identity ( 1  1.93) for the term proportional to kz in the numerator, 

(m2 - q%(l - z)) 
r ( 2  - d/2) 

+ ( g q 2  - q y )  2 4 1  - z) . 1 
Using the properties of the r-function, we see immediately that the coefficient 
of the gP” term is zero! This is a nice feature of dimensional regularization; it 
respects the gauge invariance of the theory. Other regularization methods give 
the same result, but only after considerable labor. The remaining term is gauge 
invariant and has the form we anticipated in Eq. (11.69). Extracting the scalar 
part. n d ( q 2 ) ,  gives 

(1 1.96) 
cr r(3-d/2)  2x( 1 - 5) 

nd(q2) = (2 - d/2)(4n)d/2-2 2 - d / 2  * 

In this expression, the singularity which exists for d = 4 dimensions appears 
as a pole in &. This pole corresponds to a logarithmic singularity in the original 
integral; the quadratic divergence has disappeared because it was contained in the 
gauge violating gp” term, which integrated to zero. This means that the vacuum 
polarization is now well defined for all d < 4, and the physical result can be 
obtained from the limit d -+ 4. The scalar vacuum polarization will now be 
written as the sum of two terms, an (infinite) constant corresponding to its value 
at q2 = 0 and a (finite) term obtained by subtracting the integral (1 1.96) at q2 = 0. 
This gives 

b ( q 2 )  = b ( 0 )  -k ( n d ( q 2 )  - nd(0) )  

= nd(0)  -k n d ( q 2 )  1 (11.97) 

where &(O)  is singular, 

(11.98) 
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with E = 4 - d now regarded as a small quantity which approaches zero as d -+ 4. 
The subtracted self-energy is 

n d ( q 2 )  = (4.)-'/2 - a 4r(i + 4 2 )  /d1 x(1- x) [ 1 -11 . 
[m2 - q2x(1- x > ~ ' ' ~  m' 

(1 1.99) 
This part is finite and can be evaluated by taking the limit E + 0. The only term 
which survives in this limit comes from the expansion of the fractional powers 
involving m2. Using 

lim A' = 1 + E log A + 0 ( e 2 )  , 
€+O 

we obtain 
4 

7 I ' d z z ( 1  - .)log 1 - -x(l - x) . (11.100) 1 [ 2 - - 
rId(4.2) rI(q2) = -- 

Note that this is zero at q2 = 0, as expected. For small (qI2 << m2, n(q2) can 
be approximated by expanding the logarithm 

(1 1.101) - 2a q2 a q2 
n(q2) - - - dxx2(1 - z ) ~  = - - 

15n m2 

which is the result we anticipated in (1 1.77). 
Note that the subtracted self-energy n(q2) is complex if q2 2 4m2. To see 

.nis, note that the maximum value of x( 1 - x) in the interval [O, 11 is i, and hence 
when q2/4m2 > 1, the argument of the log in Eq. (11.100) becomes negative 
at some point in the region of integration, and the log becomes complex. As 
this is an example of a general property of Feynman diagrams which is of great 
importance, we will discuss it in more detail in the next section. 

11.7 DISPERSION RELATIONS 

We begin our discussion of dispersion relations by considering the self-energy of 
a neutral particle in the symmetric 43 theory. The self-energy in second order 
comes from the matrix element 

s j .  - -- x2 (p'( / d4sl 8 x 2  T (: 43(21): : 43(~2):  ) ( p )  . (11.102) 
2(3!)2 t -  

Using Wick's theorem, four of these fields must be contracted into propagators, 
leaving the remaining two to balance to annihilation and creation operators con- 
tained in the final and initial states. However, since all of the fields are identical, 
the two contractions can be made in many ways. There are 3 x 3 = 9 possible 
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ways to make the first pairing, and 2 x 2 = 4 ways to make the second, but the 
correct number of different choices is (9 x 4)/2 = 18 because it does not matter in 
which order the pairings are made (they are all identical). Finally, the remaining 
normal product : 4(x1)4(22): can balance against the creation operator from the 
initial state and the annihilation operator from the final state in two ways. The 
resulting factor of 18 x 2 = 36 cancels the factor of (3!)2 in (11.102), leaving an 
extra factor of $, giving the following result for the self-energy: 

The extra factor of f is referred to as a symmetvfucror and is a new Feynman 
rule: 

Rule 7: for each bubble diagram involving identical bosom, a symmetry 
factor of %. 

Except for the symmetry factor, the self-energy ( 1  I .  103) has the same structure 
as the vacuum polarization (without the numerator). It diverges logarithmically 
in d = 4 dimensions. If we evaluate it for d < 4, the steps leading to the 
evaluation of the vacuum polarization can be retraced and give (we will return to 
this computation in Chapter 16) 

This diagram has the same singularities as the vacuum polarization diagram and 
xill be discussed first. 

Before we discuss dispersion relations in  general, we will cast the integral 
( 1  1.104) into a dispersion form. To this end, integrate ( 1  1.104) by parts to obtain 
a more convenient form: 

C(q2)  = - 

The first term is simply C(0) and is singular. We consider the finite part, defined 
by 

A2 1 x(  1 - 22) z d z [ p 2  - q%(l -.)I 
(1 - 2x)Z 1 

A2 

2 ( 4 ~ ) ~  
-- - - 

dx [ p 2  - q2x(1 - 2)] ' 
( 1  1.106) 
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Next, change integration variables from 2 to s = p2/s(l - x). This gives finally 

(1 1.107) 

where ~(fi; p, p )  is the two-body phase space factor defined in Chapter 9, 
Eq. (9.21). 

Equation (1 1.107) is an example of a dispersion integral. It expresses the am- 
plitude as an integral over the region where it is singular. In addition to displaying 
the singularities of the Feynman amplitude explicitly, this integral representation 
defines the amplitude as an analytic function, so that we may study it using the 
powerful mathematics of complex analysis. If the location of its singularities is 
known, the mere knowledge that a dispersion relation exists can sometimes be 
used to estimate the behavior of an amplitude. But the real power of dispersion 
theory rests in three facts: 

0 All Feynman diagrams satisfy dispersion relations, and hence the exact 
amplitudes probably do also. 
0 There will be a singularity, or a cut, in an amplitude whenever the external 
variables have values for which it is possible for all the particles in an 
intermediate state to be on-mass-shell, i.e., to be physical. 

0 The imaginary part of the amplitude (referred to as its absorptive parr) 
along any of its cuts can be determined from unitarity. 

The last two observations give dispersion theory an element of predictive power, 
and the first means that it is a very general technique for the study of relativistic 
interactions. In the 1960's. before the advent of gauge theories, it was believed by 
some that dispersion theory might be the best method for the study of the strong 
interactions. This did not turn out to be true, but these methods still belong in the 
arsenal of the well-equipped physicist.* 

Our task here is to use the self-energy (1 1.107) and the vacuum polarization 
to illustrate the last two of the above general facts about dispersion theory [the 
first is already illustrated by (1 1.107)]. The second is illustrated in Fig. 11.10. For 
the 43 self-energy, the two intermediate particles can be physical whenever the 
total energy in their center of mass is greater that 2 p ,  and since q2 is the square 
of this energy, the cut runs from 4p2 + 00. The same is true of the vacuum 
polarization diagram; the production of physical e+ e- pairs is possible whenever 
the energy of a virtual photon at rest is greater than 2m, or when q2 > 4m2. 

*For a review of dispersion methods see, for example, Barton (1965). For details about the singularities 
of Feynman amplitudes, see Todorov (1971). 
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Fig. 11.10 
physical if the energy is sufficiently great. 

Self-energy diagram showing the cut where the two intermediate particles can be 

The third principle says that the imaginary part is given by unitarity, which 
follows from the unitarity of the time translation operator. We will derive this 
relation in the next chapter (see Sec. 12.8); for now we merely note that the 
unitarity statement is 

Im M j i ( s )  = -1 p(&,ml, m2, .  . - ,  m,) M:,(s) M ~ S )  , (11.108) 
2 a  

where p is the phase space operator defined in Eq. (9.22) and the sum over a 
and integration (contained in the phase space operator) are over all momenta and 
spins in the intermediate state. For the symmetric 43 theory, the decay amplitude 
,s given simply by M = A, so the unitarity statement beccmes 

I m M  = -ap (&;p ,p )X2  , (1 1.109) 

where the extra factor of is the statistical factor for identical particle decays 
which we discussed in Sec. 9.7. Using the fact that C(0) is real, and remembering 
that A = M / q 2 ,  we obtain precisely the result for I m  A implied by (1 1.107). 

We conclude this discussion by returning to the vacuum polarization ampli- 
tude. Turning the discussion around, we first calculate the imaginary part of the 
polarization diagram from 

I m  MP’” 
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where both intermediate particles are on-shell, so that p 2  = ( q  -p)' = m2. In the 
center of mass, where qp = ( f i ,O) ,  one can readily see that the (0,O) component 
of (1  1. I 10) is zero, as it must be, and averaging over the direction of p gives 

(i - 2 s  (4 - ma)) . Im Mij  = -2p( 6; m, m) e2 b,, (11.111) 

Extracting the vacuum polarization scalar and dividing by q2 give the following 
dispersion integral: 

p(&; 712,772) [s + 2m2] 
s2(s - q2 - Zt) 

. (11.112) B(n2) = 

We will now derive this same expression directly from Eq. (11.100). 
First, get a usable expression by integrating (1 1.100) by parts, which gives 

(11.113) 

This integral is very similar to (1 1.106). and we reduce it using the same trans- 
formation, which gives the correspondences 

S =  m2 
x = 1 2 (1 + /F) 

6x 2 - 4 2  3 -l=/F(l+F) . 

x(l  - x) 

Substituting these into ( 11.1 13) gives (1 1.112), and the equivalence is established. 
We will return to a discussion involving dispersion relations several times in 

the remainder of this book. 

11.8 VERTEX CORRECTIONS 

We have completed our discussion of the six second order terms in Eq. (1 1.30). 
and now turn to a discussion of the second order correction to the electromagnetic 
vertex. This is an extremely important special example, leading to a calculation 
of the anomalous magnetic moment of the electron and additional contributions 
needed to conclude our discussion of charge renormalization. 
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The 

Fig. 11.11 

diagram we will calculate is shown in Fig. 11.11. Since the 

The lowest order “correction” to the electromagnetic vertex. 

electron 
charge is negative, the bare vertex is i e y p ,  and the-lowest order term shown in 
Fig. 11.11 adds a “correction” factor of the form zeA”(P,q), where P = $ ( p ’ + p )  
and q = p ’ - p ,  as shown in the figure. Adding Rule 0 and external electron states, 
the Feynman amplitude corresponding to this diagram is 

- e G b ’ ) A V ,  4)d.P) 

(1 1.1 14) 

where the fictitious photon mass X will be taken to zero after the integrals have 
been done. 

With the understanding that we may later want to reduce A” by using the 
Dirac equation, so that 

$p’)y”[m+ li’ - #lr”[m+ I I  - # l r ” ’ ( - g v v 4 ~ @ )  
X [m’ - (p‘ - k ) 2  - it][m2 - ( p  - k)’ - i 6 ] [ X 2  - k2  - if]’ 

$’ = m (when operating towards the left) 

+ = m (when operating towards the right,) 
(1 1.115) 

we will drop the initial u. and final G spinors, and separate out A 

Q )  

= ie2 - d4k Y ” b +  +’ - $lr”Im+ + - $17” 

€1 .  J ( 2 ~ ) ~  [mZ - (p’ - k ) 2  - 261 [m2 - ( p  - k ) 2  - ZE] [Az - k 2  - i 
(11.116) 

This integral is evaluated following the steps described in Sec. 11.6. We first 
combine the three Feynman denominators using the identity (1  1.79): 

1 1 
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where 
A1 = m2 - (p‘ - k)’ - 26 = 2p’ . k - k2 - iE 

A2 = m2 - (p - k)’ - zc = 2p k - k2 - ic 

A3 = X2 - k2 - if . 
The combined denominator becomes 

2 .  D = 2 (rip’ + ~ z p )  . k + X2(1 - 21 - 2 2 )  - k - ZE . 
Next, shift k so as to complete the square of the denominator: 

k = k’ + zip’ + ~ 2 p  . (1 1.117) 

The shifted denominator reduces to 
2 D = ( Z I P ’  + z z p )  + X2(1 - z1 - 22) - k‘2 - ic 

= (2: + 2:) m2 + 22122 p’ . p + X2(1 - 21 - 2 2 )  - k” - ic 

= (zl + z2)’ m2 - 2 1 ~ 2  q2 + X2 (1 - 21 - 2 2 )  - k” - ic , 

which shows that D is also symmetric in z1 and 2 2 .  

This shift in k -+ k’ must also be carried out in the numerator, where it gives 

N p  =yv [m+ $’ (1 - z1) - zz $ - $1 y p  [m+ $ (1 - 2 2 ) -  $’ z1- $1 yv 

= y U  [m+ $’ (1 - 21) - 22 $1 [m+ $ (1 - 22)  - a $7 yU 
+ Y U  P’ Yp B’ Y v  

where all terms linear in k’ have been dropped (because they will integrate to 
TWO). Using the identities 

(1 1.1 18) 
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where Eq. (1  1.11 5 )  was used in the second step, 22 - z1 terms have been dropped 
because they integrate to zero, and we used the Dirac equation to reduce 4- 0. 
Next, use the identity (1  1.93) to replace kpk”  by gP”k2/4 in the numerator: 

NP =yP (-2m2 [l + (1 - z1 - z Z ) ~ ]  - 2q2(1 - ~ ) ( l  - 21) + k’2) 

+ 4 m ( l - z l  - ~ ) ( p ‘ + p ) ’ + 4 m ( l - t . l  - ~ 2 ) ( 1 -  4 ( ~ 1 + ~ 2 ) ) i 0 ’ ” ~ v ,  

where $ [r’, d ]  = d‘”q, .  Finally, use the Gordon decomposition (see Prob. 11. I ) 

(p’ + p)” = -ia’”q, + 2my’ ( 1 1.1 19) 

to get 
NP =y”{ -2m2 [l - 4(1 - z1 - z2) + (1 - z1 - ~ 2 ) ~ ]  

- 242( 1 - z1)( 1 - 2 2 )  + k ’ 2 )  

- i2m o””q, (1 - z1 - z 2 ) ( z 1  + z2) . 

Our calculation has shown that the first correction to the “bare” electromag- 
netic coupling generates a correction to the yp term and a new term of the form 
ia’“q,. Specifically, the form of the electromagnetic vertex function is 

(1 1.120) 
iop’q, 

A P ( R  4 )  = Fl (s2)r” + F2(q2), 1 

where the functions F1 and F 2  are scalar functions of q2 ,  the yp term is the 
.amiliar Dirac current, and the aPwq” term is the induced anomalous (or Pauli) 
current discussed in Prob. 5.6 and Sec. 10.2. While we have not shown it, ( 1  1.120) 
is the most general form which A” can take. Higher order corrections will not 
contribute any new operators; they will only add to the scalar functions F1 and 
FZ. To second order, these functions are 

Note that F1 diverges (because of the kt2 term in the numerator), but F2 is finite. 
We will return to a discussion of F1 later. For now, we evaluate F2 at q2 = 0. 
The value of F2 at this point is the anomalous magnetic moment of the electron, 
which we denote by K .  
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At g2 = 0, the integral for Fg(0) = K becomes 

( 1  1.122) 
4m2(zl + zg)(l - z1 - z2) 

( 2 ~ ) ~  [ m 2 ( q  + z2)2 + X 2 ( 1  - z1 - 2 2 )  - kI2 - 2cI3 ' 

We first do the d4k' integration using the identity ( 1  1.84) with d = 4 and n = 3, 

1 ____ - - 1 J& (B2 - k2 - 26) ' 3 3 2 ~ 2 B 2  * 

This reduces the integral to 

The singularity at z1 + 22 = 0 is only a point in a two-dimensional space and 
hence is integrable. Let X2 -+ 0 and change variables from z1 and 22 to E and 17, 
where 

E = 21 t 2 2  

q = -(21 - z g )  
2E 

1 (1 1.124) 
. 

Then the volume element transforms to 

( 1  1.125) 

and the anomalous moment is quickly calculated, giving the famous result 

This value was first calculated by Schwinger in 1948 [Sc 481. 
The current agreement between theory and experiment represents an impres- 

sive confirmation of the correctness of QED." The magnetic moment is often 
expressed in terms of the gyromagnetic ratio g related to the magnetic moment 

e e a  
p = g-s = g-- 

2m 2 m 2  ' 

by 

where, as we saw in Chapter 5 ,  the value predicted by the Dirac equation is g = 2. 
It turns out that the departure from this value, usually expressed in terms of the 

'For a recent account. see [KL 901 
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anomalous moment K = g/2 - 1, can be measured directly and has been measured 
recently with very high accuracy [VS 871: 

Kexpt = .001159 652 1884(43) , 
where the numbers in parentheses are an estimate of the error (in the last digits 
given). The theoretical value has been calculated to eighth order [KL 901: 

2 4 a: 
Kth = - - 0.328478966 (?) + 1.17611(42) (“)3 - 1.434(138) (?) 

2n 7r x n 
= .001159652 140(28) , 

where the theoretical error is mainly do to the uncertainty in a: (which is currently 
determined from the quantized Hall effect) but also includes the uncertainty in the 
numerical evaluation of the sixth and eighth order integrals. Hence the difference 
(experiment - theory) is 0.000 000 000 048(28), giving agreement (within 1.7 
standard deviations) for the value of g to a part in 10l2! 

11.9 CHARGE RENORMALIZATION 

As we saw, the vertex correction to the electron current diverges as k + 00. 

However, the divergence is localized entirely in the FI term which multiplies 
7”, and hence only affects the charge. We can renormalize it by subtracting the 
value of the vertex at q2 = 0, which guarantees that the remainder term is zero at 
q2 = 0, and hence does not affect the charge. We write 

The infinite constant Fl(0) will be a new renormalization constant which we will 
define to be 

1 .  (1 1.128) 
1 FI(0) = - - 
21 

We can now fully discuss the renormalization of the charge. 
First, note that the sum of all the Feynman diagrams which describe in- 

teractions “near” a single charge can be organized into four classes as shown in 
Fig. 11.12. The central circle represents “proper” vertex corrections, illustrated by 
the diagram (1) in the upper right comer of the figure. Proper vertex corrections 
are those which cannot be separated into two disconnected pieces by cutting one 
electron or one photon line. One says that they are one particle irreducible. The 
other three diagrams shown in the figure are one particle reducible, or “improper” 
contributions to the vertex function; they can all be separated into two parts by 
cutting a single line which connects them to the vertex. The vacuum polarization 
contribution (2) can be separated from the vertex by cutting the photon line (the 
dark dashed line shown in the figure is the “cut”), and both of the electron self- 
energy contributions, (3) and (4). can be separated by cutting an electron line, as 
shown. 
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Fig. 11.12 The full, improper vertex (A) is a product of the proper vertex corrections, symbolized 
by figure (1). and contributions to the dressed propagators, arising in lowest order from the self-energy 
diagrams (2). (3). and (4). 

The significance of this analysis is that the sum of all Feynman diagrams 
vhich contribute to the vertex (both proper and improper) is the product of all 
of the diagrams in each of the four separate classes. This is the justification 
for considering dressed propagators and (proper) vertex corrections separately. 
The full vertex, F’P, can therefore be expressed in terms of the proper vertex, 

= 7’’ + A P ,  through the following relation: 

s(~’)r’~‘P’,P)S(~)A(P’ - P )  = s’(~‘)rP(P’,~)s’(~)A’(P’ - P )  1 (11.129) 

where S‘ and A’ are dressed propagators and S and A are bare, undressed prop- 
agators. 

Remembering that the renormalization of the propagator must be shared 
equally between the two charges at either end, we can use (11.129) to obtain 
the following final result for the renormalization of the electric charge: 

(1 1.130) 

If the charge is renormalized in the above fashion, the three renormalization con- 
stants 21, Zz, and 2 3  will all be removed from the theory, In Chapter 16 we will 
discuss how it can be shown that this procedure works to all orders. 
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Fig. 11.13 
LO order e3.  

The Feynman diagrams which contribute to the renormalization of the electric charge 

To gain a better understanding of how this works out in perturbation theory, 
' [  is amusing to look at the diagrams which can contribute to the electric charge to 
order e3. There are seven such diagrams as shown in Fig. 11.13. These contribute 
the following terms: 

In this expression e R  is the renormalized charge and eo the bare charge, and the 
following remarks apply: 

0 The electron self-energy, - iC(p ) ,  the photon self-energy, -q211(q2), and 
vertex correction, Ap (P ,  q). have all been included. 

Mass counter terms (ibrn), not previously discussed, have been introduced. 
These terms are represented by diagrams ( 5 )  and (6) and are denoted by a 
small black circle. They will be discussed shortly. 



11.9 CHARGE RENORMALIZATION 361 

The contributions from diagrams (2) - (6) are multiplied by because only 
3 of these contributions are identified with the charge under study (the other 
half go with other charges not under consideration). 

These factors of f are the perturbative equivalent of the square root encountered 
in Secs. 1 1.2 and 1 1.5 and in Eq. ( 1  1.130) above. In the discussion of self-energies 
presented in these sections, we summed contributions to all orders in perturbation 
theory. For the vacuum polarization discussed in Sec. 11.5, the self-energy, as 
q2 -+ 0 where the renormalization is defined, had the form II 4 q2(Z;' - l ) ,  so 
the infinite sum of powers of the self-energy multiplied by the propagator given 
in Eq. (1 1.71 ) becomes 

( 1  1.132) 

Since 
is 

is associated with each charge, the relevant expansion for each charge 

which explains the factor of 3 for the second order term. Note that these arguments 
make use of the fact that Z;' - 1 is of leading order e2 and is considered small, 
even though the integral which defines it is divergent. A similar argument holds 
for the electron self-energies. 

However, a significant difference between the electron self-eayrgy terms and 
the vacuum polarization is that the electron mass is shifted by the self-energy. The 
infinite electron sum analogous to (1  1.132), as p2 -+ iii', becomes 

(11.134) 

Since m # 5, the pole at p2 = 5' is not canceled as p 2  -+ iii2. However, 
this change in mass is clearly unphysical, because, to each order in perturbation 
theory, the mass is to beJired to the observed electron mass. Thus we must add 
a counterterm to cancel this mass shift; this is easily done by subtracting the term 
6m = iii - m from C. Then the sum ( 1  1.134) is changed to 

(1 1.135) m- # -+zz - =z2 , 
n=O n1- # 

giving only the renormalization factor Z,. The mass counterterm therefore keeps 
track of the mass shift and cancels out, order-by-order, any shift which the calcu- 
lation produces. This explains our last Feynman rule: 
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Rule 9: for each particle with a mass which could be shifted by self- 
interactions, a mass counterterm i6m is added to remove the mass shift. 

Making these substitutions, recalling the definition of 21, Eq. (11.128), and 
canceling the mass shifts as above give the following reduction of Eq. (11.131) 

eo - y ~  + f (1 - z;’) -,p + - y @ f  (1 - 2;’) 

- 3 - y P  (2i1 - 1) + yp (2;’ - 1)} 

{ -eRy” = - 

= - eoyp (1 + (1 - 2;’) + f (1 - 2;’) + (2;’ - I )}  

1 + (2F1 - 1) 
[l - (1 - 2;7] [l - (1 - 23’)] 112 

+ - eoyP 

(1 1.136) 

where the next to the last step is suggested by Eq. (1  1.130), which indicates what 
happens if 2 2  and 2 3  terms are treated to higher order. Our argument shows the 
role of the mass counterterms and how the renormalization works to second order. 

We now ask a crucial question: if the bare charge is universal, does it remain 
so after renormalization? Specifically, does the renormalized charge depend on 
the fermion mass? It could depend on it through the factors 22 and 21, which do 
depend on the fermion mass. We shall now show that gauge invariance insures 
P.at 21 = 22, so that there can be no mass dependence. 

The Ward-Takahashi identity 

We will first prove that the vertex correction, A, and the electron self-energy, C, 
satisfy the following relationship: 

(11.137) 

This is the infinitesimal form of the Ward-Takahashi identity [Wa 50, Ta 571. 
Recall 

d 4 k  1 1 1 2/m y y  m- #‘ + $ -it. ” m- # + # -it. yv A2 - k 2  - it 
A”(P, q )  = ie 

and Eq. ( 1  1.36), 
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where a photon mass term X2 has been added to C ( p ) .  Next, note that 

1 1 1 - 1 

Hence we see immediately that 

This is the finite difference form of the Ward-Takahashi identity and it turns out 
that this relation between Afi in C holds to all orders in e. As p’ -+ p ,  q’ -+ 0, 

gives the relation ( 11.137). 

constants, 
Now, near p 2  = m2, A’ and C can be expressed in terms of renormalization 

A’(p,O) = (2;’ - 1) 7’ 

C ( p )  = 6rn + (m- p )  (2;l - 1) . 

z1 = 2 2  (1 1.139) 

which was to be proved. We conclude that the full charge renormalization reduces 
to 

nd therefore 

and this is the reason why only the constant 2 3  need be studied in order to draw 
the conclusions we did from Eq. (1 1.75). 

11.10 BREMSSTRAHLUNG AND RADIATIVE CORRECTIONS 

As a final example of the treatment of loops and renormalization, we calculate 
the cross section for the radiation of soft photons from external particles in any 
physical scattering process. For definiteness, think of soft photons radiating from 
the electron in electron-proton scattering. The two bremsstrahlung diagrams are 
shown in Fig. 11.14. 
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+ 

Fig. 11.14 Feynman diagrams for the bremsstrahlung process. 

Denoting the on-shell ep scattering amplitude by ii(P,)Mu(Pi), the Feynman 
diagrams for these two processes are 

(1 1.141) 

We are most interested in this process when Ik( = ko -+ 0, the soft photon limit. 
In this limit we may ignore the # in the numerator of the propagators, and using 

obtain the result 

M ( p j i p i - k )  pa - - - - M ( ~ f + l r , p i ) ]  . € *  p f .  €* u(Pl) . P i ' k  ~ j ' k  
(11.143) 

Note that this diverges in the limit as k --+ 0. This poses no problems if we 
measure the outgoing photon, because then its energy is known and is not zero. 
However, the application we have in mind is elastic scatrering, where the soft 
photons are not observed. In this case, in the limit as k + 0, the bremsstrahlung 
amplitude gives a divergent contribution which multiplies the elastic amplitude: 

+ (small terms finite as k -, 0) . (11.144) 
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true elastic scattering bremsstrahlung 

Fig. 11.15 
bremsstrahlung. 

Placement of detectors in a measurement of elastic scattering will also "measure" 

Ignoring the small terms which are finite as k --+ 0, the bremsstrahlung ampli- 
tude appears to be infinite, and it does not seem possible to distinguish it from 
elastic scattering. Every time we measure elastic scattering, we also measure 
bremsstrahlung (see Fig. 11.15), and the latter appears to be larger. How can we 
measure elastic scattering? 

We will now see how the injinity arising from the bremsstrahlung amplitude 
is actually canceled in QED. This cancellation leaves Jinite corrections to elastic 
scattering which arise from soft photon processes and which cannot be distin- 
guished from elastic scattering. These corrections are referred to as radiative 
corrections and must be removed before true elastic data can be extracted from 
my experimental measurement. It is interesting and important to see how they 
can be calculated from QED. 

Since the bremsstrahlung process is a final state distinct from elastic scat- 
tering, the cross sections add incoherently. The bremsstrahlung part is therefore 
just 

(1 1.145) 
where the overall S4-function is removed from doelastic and is replaced with the 
bremsstrahlung one. Again, if k -+ 0, we can drop the k in the b4-function and 
get 

= doelasticIC12 2 ( 1  1.146) 

where the range of the d3k integral in the multiplicative factor lClz is determined 
by the experimental conditions, to be discussed shortly. 
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To evaluate JCI2, first sum over the polarization states of the photon. This is 
done by noting that 

where 

J P = - - -  PY p'; . (11.148) 
P , . k  P f  .k 

However, k ,  J" = 0, and hence JO = J z ,  and we may write 

J ,  J ,  + Jv Jy = J ,  J ,  + Jy Jy + J ,  Jz - Jo Jo 
=-J,J" . (1 1.149) 

Hence 
d 3 k  e2 m2 m2 - - ~ _ _ _ _  

''I2 = 1 2k ( 2 ~ ) ~  [ (pi  + k)2 ( p f  . k ) 2  + ( p ,  . k ) ( p f  . I c )  

where 

1 

(1 1.150) 

does not depend on Ikl = k ,  and the range of integration, R, is to be determined. 
Note that x depends strongly on the direction ofk,  particularly if the electrons are 
ultrarelativistic so that pi - Ei and the denominators are sharply peaked in the 
forward direction. 

Radiative Corrections 
Now we focus on the s, d k / k ,  which diverges both at short wavelengths (ultra- 
violet) and long wavelengths (infrared). 

What sets limits on the value of k? The upper limit is fixed by the angular 
and energy resolution of the experimental equipment and the energy resolution of 
the incident beam, which together define the energy resolution of the detection 
system. If this energy resolution is AE, and the angular resolution is AO, then 
the detector will count all electrons between energies E + i A E  and E - i A E  
and with scattering angles between 0 + $A0 and O - $AO, where the kinematics 
of elastic scattering fixes the relationship between E and O that is expected (see 
Fig. 1 1.16). Now, for purposes of this discussion, we may assume forward peaking, 
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E 

\ scattered 
electron 

detector 
E ~ ~ A E  

JOB Y 
(nor seen) 

Fig. 11.16 Soft, forward going photons will always be present in the detector. 

in which case k I( p ,  since this is where the cross section is largest. Hence, k 
cannot be bigger than AE; if it were, it would change the energy of the electron 
so much that it would either not be seen by the detector at all or it would be 
recognized as not coming from elastic scattering. (For example, if k were 2AE, 
and the detector were set to measure scattered electrons of energy E and angle 8, 
the scattered electron would have to have an energy, before emitting the photon, 
of at least E + ZAE, and such an electron would be traveling at the wrong angle 
to be confused with an elastically scattered electron.) 

One of the central problems in the computation of radiative corrections is 
that there is no lower limit on the bremsstrahlung photon energy, k ,  so that the 
integral diverges at the lower limit. If we choose an arbitrary lower limit, kmin, 

the measured cross section becomes 

2cr 
(11.152) 

radiative correction factor 

As k,in -+ 0, the correction factor becomes infinite. How does QED control this 
effect and give jnire radiative corrections? 

To get finite results, we need to treat corrections to elastic electron scattering 
of order e4. It turns out that the interference of such corrections with the lowest 
order process (of order e2) is of order e6 (the same order as bremssuahlung) 
and give injnities which precisely cancel those which arise from bremsstrahlung. 
Diagrammatically, the situation is shown in Fig. 11.17. 

There are three types of terms: A (order e 2 )  and B (order e4) are contributions 
to elastic e p  scattering which can interfere and C (order e3)  are bremsstrahlung 
contributions which are added incoherently. Hence, the differential cross section 
has the form 

du 
- 2 e4lAl2 + 2e6 Re (AB') + e61CI2 
dR 

+ IC12 } . (1  1.153) 
v 

loweat order lnterferencc bremsstrahlung 
el..tlc ela.t,c 
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2 

Fig. 11.17 
bemsstrahlung processes. 

We will show that the infinities in the Re (AB')  and IC(' terms cancel. 
Since large k2 contributions are finite, we will track only those terms which 

diverge as k -+ 0. Since we integrate over k in the bremsstrahlung contributions, 
it does not matter that we also integrate over k in the vertex and self-energy 
corrections. 

The infinite terms at small k arise from the photon pole. Recall Eq. (1 1.116) 
for the vertex correction, AP [ $ ( p f  + pi), q] ,  

Radiative corrections arise both from internal self-energy corrections and from external. 

where, with X2 = 0, the demoninator D can be written in a factored form which 
displays its dependence on the virtual photon energy, ko, 
D=(k - ko - i ~ ) ( k  + ko - i€)(Ep,-k - E j  + ko - if) 

--\ + / 

(1) ( 2 )  (3) 

x ( E p , - k  + E f  - ko - i t ) ( E p , - k  - Ei + ko - i~)(Ep,-k + Ei - ko - 2 ~ ) .  

* d-b .. 
(4 )  ( 5 )  (6) 

\ I 

(1 1.154) 
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k 0 complex plane 

2 . 3 . 5  .. . 
. .  

1 4 .6  

Fig. 11.18 Location of the singularities arising from the zeros of the denominator (11.154). 

When we do the ko integration in the complex ko plane, the demoninator has six 
poles, located as shown schematically in Fig. 1 1.18. 

If we close the contour in the lower half plane, only pole (1) will be singular 
as k + 0. [Poles (4) and (6) always remain at least a distance 2m from the 
singularities in the upper half plane, and hence are finite.] This term gives 

- --Ikc e2 k J ~  dk dS, ycl(m+ $f)Y’(m+ $ i h v  

drvergsnt p s r t  47r2 km,, 47r 4(Ef - pf . I)@, - p ,  . I) ’ 
(1 1.155) 

where we have used the fact that the square of the photon four-momentum is zero 
under the integral (because we are at the photon pole), and in the second step we 
introduced a cutoff k, with a value kmin << k, << p f  or p , ,  so that we can regard 
k as small everywhere under the integral. Thus, only the terms which are singular 
as k + 0 need be retained in the second step. The cutoff k,  can eventually be 
eliminated by calculating the large k terms correctly (including renormalization). 
Next, exploiting the fact that A will eventually be sandwiched between mass shell 
electron spinors permits us to simplify the numerator, 

y”(m+ $f)r”(m+ $i)rv = 4 ~ f .  pi 7’ (1  1.156) 

The interference of this term with the leading term therefore contributes a correc- 
tion factor of 

Vertex interference) = -.,? lkC / Pi ‘Pf ( term kmzn 47~ ( E f  - p f .  I)(& - pi * I) ’ 

( 1  1.157) 
Note that this has the same structure as part of the bremsstrahlung result. 
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Next, turn to the contributions from the electron self-energy terms. Recall 
that the self-energy is 

Hence 

From the discussion of Eq. ( 1  1.13 l ) ,  we recall that the contribution of the self- 
energy of each electron is only + of the full result, and hence 

(1 1.159) 

But near $,= m, 

= (1 - 2;’) + infrared singularities . (11.160) 

The (1 -2;’) term is associated with the ultra-violet divergence of the self-energy 
integral and is absorbed in the charge renormalization, as we have previously dis- 
cussed. The infrared divergences, which we have not yet discussed, are radiative 
corrections. These infrared singularities can be obtained from the photon pole 
contributions to aE /a  $, just as they were for A”. Assuming k is small under 
the integral, as we did in Eq. ( 1  1.155) for A”, we reduce aE/a  $ at $= m as 
follows: 

d3k Y ( m +  ?U2-Y” - e 2  

photon ze e2 Jm ( 2 p .  k ) 2  - J (2:;:2k (2:mi)2 

_ -  - a  J k c  $ J G  
Hence the two self-energy interference terms contribute: 

m2 
7r k,,, 47r ( E p - p 4 ) 2  . 

(11.161) 

m2 m2 + dfl  1 
Self-energy 

terms (Ef - p j  . k ) Z  (E ,  - p ,  . L ) 2  

(1 1.162) 
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Combining (1 1.162) and (1 1.157), we get 

e41A12 + 2e6 Re (AB’ )  = { 1 - z x ( q )  In (L) } , (11.163) 
7r b i n  dR lowest 

order 

where x was defined in Eq. (11.151). 
Adding the interference corrections to the bremsstrahlung cross section gives 

*I = * I  dR Iowcat { 1 + s x ( q )  7r pn-- k i n  A E  In “1 k i n  } 
order measured 

finite correction 

(1 1.164) 

I I 

We see that the unknown cutoff kmin is canceled (so that we may let kmin + 

0 now), and the result of combining bremsstrahlung and radiative corrections 
is finite and well defined. The upper limit AE is experimentally determined, 
while the lower limit k, is theoretically determined. The precise treatment of kc 
requires calculation of the finite differences between 21 and 2 2  when they are 
first calculated with a finite photon mass and then with a zero photon mass. 

PROBLEMS 

11.1 

11.2 

11.3 

Prove the Gordon decomposition, Eq. (1 1.11 9). Specifically, if p 2  = p’2 = 
m2, show that 

where q = p’ - p .  

Using the techniques developed in Sec. 11.6, explain why the fermion self- 
energy term A does not enter into Eq. (1 1.53) if the undressed fermion mass 
is zero. Discuss the significance of this result. Under what circumstances 
can an interaction produce a mass even when there would be none without 
the interaction (this is referred to as sponraneous generation of mass)? What 
is the correct equation in this case? If mass is spontaneously generated, is 
it still correct to ignore the self-energy term A? 

Photon-photon scattering in QED. 

(a) Write down the amplitude for the Feynman electron box diagram shown 
in Fig. 11.19, which contributes to photon-photon scattering. (Let p ,  and ei 
be the momentum and polarization of photon i.) 
(b) Speaking naively (i.e., just counting powers of momentum in the nu- 
merator and denominator), is the above diagram finite or infinite? 
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Fig. 11.19 
photon scattering (Prob. 11.3). 

Feynman diagram for photon- 

(c) Draw all the distinct diagrams that can contribute to y + y + y + y in 
the lowest non-vanishing order of perturbation theory. 



CHAPTER 12 

BOUND STATES AND UNITARITY 

In the previous chapters it has been implicitly assumed that perturbation theory is 
adequate and that we can obtain a reasonable estimate of the scattering amplitude 
by calculating a few Feynman diagrams of lowest order. However, there are many 
problems for which the calculation of a few Feynman diagrams is inadequate. The 
study of bound states is one of these problems. A bound state produces a pole 
in the scattering matrix in the channel in which it appears. If the bound state is 
truly composite, no such pole exists in any Feynman diagram (or any finite sum); 
a pole can only be generated by an infinite sum. The same observations apply 
to the description of low energy elastic scattering; an exact treatment of unitary 
requires an infinite number of diagrams. 

Ideally, we would like to sum all Feynman diagrams which describe the reac- 
tion; if we could do this, we assume we would have the correct answer. However, 
this is not possible in general, and we must settle for an infinite sum of a particular 
class of diagrams we believe to be particularly important physically. This is done 
by finding an integral equation, the solution of which can be interpreted as the 
sum of the class of diagrams under consideration. The equation used depends on 
the physics of the problem. 

The only problems which will be discussed in this chapter are those in which 
long range peripheral interactions are expected to be important. We consider 
systems of two heavy particles interacting through the exchange of light mesons, 
and further assume that self-energy diagrams and vertex corrections can be ignored 
or treated phenomenologically. Systems which may be approximated in such a 
way include atomic, nuclear, and heavy quark bound states and low energy elastic 
scattering (below particle production thresholds). 

We will first consider the ladder and crossed ladder sums of Feynman dia- 
grams, which leads to a discussion of the Bethe-Salpeter equation [SB 511, and 
then to other relativistic two-body equations. All of these equations can be shown 
to produce bound states and to satisfy elastic unitary. We conclude this chapter 
with a brief discussion of the application of dispersion theory to bound states, 
which requires an understanding of anomalous thresholds. 
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Fig. 12.1 
m l ,  the heavy line has mass m2, and the dashed line is the light boson with mass p .  

The fourth order diagrams in d3 theory. The light solid line is the particle with mass 

12.1 THE LADDER DIAGRAMS 

For definiteness, we return to the 43 theory first introduced in Chapter 9 and 
consider the scattering of two heavy particles (1 and 2) through the exchange 
Jf a light neutral particle. This problem was already solved to lowest order in 
perturbation theory in Sec. 9.3; the only Feynman diagram which contributes to 
the M matrix in lowest (second) order in the OBE (one-boson exchange) diagram 
shown in Fig. 9.3. 

Now consider the diagrams which contribute to fourth order (there are no 
third order diagrams which contribute to elastic scattering; why?). Using the 
experience obtained from the study of loops and higher order processes in Chap- 
ter 11, we see that there will be nine diagrams, shown in Fig. 12.1. The 
first of these, 12.1A, is referred to as the box diagram, and it is the only di- 
agram which contributes to the ladder sum. In higher order, the ladder di- 
agrams are those which replicate the structure of the OBE and box diagram 
(like the rungs of a ladder) as shown in Fig. 12.2. Our task in this section is 

I I I + ... 
I I 1 

+- I I 
I I 

+ I 
I 
I 

Fig. 12.2 The ladder diagrams to sixth order. 
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p - P  P - k  P - p ’  

k - P  c 
I 
I 

4 p ’ - k  
I 
I 

I I 
1 Fig. 12.3 The box diagram show- 
1 

ing how the momenta are labeled. P k P ‘  

to show that when the physics is controlled by long range peripheral interactions, 
these diagrams give the largest contribution in  each order, and it is therefore 
reasonable to assume that the summation of all the diagrams in this class will give 
a good description of such problems. 

First, assume the coupling constants (XI and A,) are very small, so that all 
of the higher order diagrams can be assumed, a priori, to be quite small. Then 
if the scattering takes place very near threshold (at low energies), we will show 
that the ladder diagrams are exceptionally large, and hence it is justified to single 
them out for special consideration. 

Using the Feynman rules for d3 theory, the box diagram (labeled in Fig. 12.3) 
is 

(12.1) 

where the denominators are 

2 2 D1 = m; - ( P  - k )  - zc  = Ef - (W - ko)  - if 

D2 = m; - k2  - if = E i  - k i  - ic 

Do = p2 - ( k  - p )  - i f  = w2 - (ko - &(p)) ’  - if 

~ t ,  = p2 - (k - p ) - if = w” - (ko - ~ z ( p ’ ) )  - 26 , 

2 (12.2) 

‘ 2  2 

where ml < m2 are the masses of the two heavy particles being scattered, p << 
ml is the mass of the light meson being exchanged between them, and 

EL = dm? + k2  

~ , ( p )  = Jm:+-pZ 
w = dp2 + (k - P ) ~  

W’ = d p 2  + (k - P ’ ) ~  

Here we assume the external particles are on-shell, so that if the diagram is 
evaluated in the center of mass frame, W = E l ( p )  + & ( p )  = El($) + Ez(p’ ) .  
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k, complex plane 

Fig. 12.4 The location of the singularities of the box diagram in the complex ko plane, when Ikl 
is small. As Ikl increases, the singularities in the lower half plane move to the right and those in the 
upper half plane move to the left. 

To estimate this diagram near threshold (where p and p’ are small) it is 
helpful to examine its singularity structure in the complex ko plane, as we did in 
Sec. 11.7 when discussing the structure of the vertex function. There are eight 
poles, as shown in Fig. 12.4. These are found from the zeros of the denominators 
in (12.2) which can be factored into eight factors, 

D1 = ( E l  - W + ko - if (El + W - ko - if) d- 5 4 

D2 = (,Ez + ‘50 - i:) (E2 - ko - if) - 
8 1 

Do = (W - & ( p )  + ko - if) (W + E2(p) - ko - 26) -- 
6 2 

DA = (w’ - Ez(p’) + ko - ig (w’ + Ez(p’) - ko - ic) , 
\ “ \ .. 

7 3 

(12.3) 

where the numbering of the factors in (12.3) corresponds to the numbering of 
the corresponding poles in Fig. 12.4. If we evaluate the box diagram by closing 
the contour in the lower half k~ ‘complex plane, we see that the pole at E2 will 
dominate, because it is very close to the singularity at ko = W - El in the upper 
half plane. Keeping this term only, the box diagram reduces to 

(12.4) 
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where we have approximated EZ - m2 and El + W - E2 - 2m1 in terms where 
the weak k-dependence is not critical. The only term where the k-dependence of 
El and E2 is critical is the factor El + EZ - W, which has a zero in the region 
of integration, giving the scattering amplitude (12.4) an imaginary part associated 
with the elastic scattering. Later we will study this singularity in much greater 
detail (see Sec. 12.8). For now we complete our estimate by considering the 
case when ml  and m2 are both very large andp = p ’  (scattering in the forward 
direction). Then the integral in (12.4) is cut off by the meson energies w = w’, 
and k = IkJ N p. Hence it is permissible to expand the energies in the integrand, 
so that El N m1 + &-, etc., and the integral may be approximated by 

(12.5) 

where m is the reduced mass and the integral was evaluated in the last step by 
extending the k integration to -cc and using the calculus of residues. 

Comparing (12.5) with the OBE amplitude, also evaluated for forward scat- 
tering, shows that they are comparable when 

(12.6) 

Recalling that the effective dimensionless coupling strength for the $3 Yukawa 
interaction is [from Eq. (9.76)l 

the condition (1 2.6) becomes 

(12.7) 

(12.8) 

When this condition is satisfied, the fourth order box diagram is comparable to 
the second order OBE term. 

The condition (12.8) may also be analytically continued below threshold by 
letting p + 26, where, if the binding energy is E ,  = ml + m2 - W, then 
6 = @-. This leads to the following conjecture. 
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Conjecture: Even if the effective G3 coupling constant g$ is much 
less than unity, so that the use of perturbation theory would normally 
be justified, there may still exist a bound state. This can occur if the 
exchange meson mass p and the wave number 6 are small enough to 
guarantee that all of the diagrams in the ladder sum are of comparable 
magnitude, so that the sum of an infinite number of ladder diagrams will 
diverge, reflecting the appearance of a pole in the scattering matrix M .  
A sufficient condition for this to occur is that 

(12.9) 

Our argument is not sufficiently polished or complete to constitute a "proof" of the 
above conjecture; in particular, we have not demonstrated that (1 2.9) is sufficient 
to insure that the sixth and higher order ladder diagrams are of comparable size 
to the fourth order diagram we just estimated [Gr 691. But we will see below that 
relativistic bound state equations have solutions when condition ( 12.9) is satisfied, 
and our main purpose here is to provide a physical understanding of why this is 

Note that (12.9) tells us that a potential with a$nire range ( p  # 0) will have 
so. 

a bound state (6 2 0) only when 

( 12.10) 

It also tells us that a potential with an injinite range ( p  = 0, as in the Coulomb 
potential) will always have a bound state. In this case, (12.9) tells us that the 
ground state energy, which we can estimate from -b2/2m, will be of the order 
of 

(12.11) 

Recalling that the ground state of a Coulomb potential has a binding energy of 
EO = -ma2/2,  we see that this is consistent with (12.11). 

The condition (12.9) for a finite range potential can also be understood non- 
relativistically. Consider a particle of mass m bound by a Hulthtn potential 
(introduced in Sec. 3.5) 

(12.12) 

Then the (exact) solution of the S-state Schrodinger equation has the form 

e-6r 
$( r )  = N (1 - e-p") - , 

r 
(12.13) 



12.1 THE LADDER DIAGRAMS 379 

where the eigenvalue condition for the parameter 6 is 

Rewriting this condition gives 

g e f f = L ,  2 + 26 
4n m 

(12.14) 

(12.15) 

in precise agreement with (12.9). 

Relativistic Corrections 

We have been led to the conclusion that the leading contribution from the sum 
of ladder diagrams can produce a bound state, but so far our discussion has been 
limited to the nonrelativistic limit. While it is extremely important and gratifying 
to see how a two-body Schrodinger equation emerges from field theory, it is even 
more interesting to find a relativistic generalization of the two-body Schrodinger 
equation. To prepare the way for this, we look at the relativistic corrections to the 
leading terms we have just discussed. 

There are relativistic corrections to the approximations we made leading up 
to Eq. (12.4), and beyond, and these will be discussed later. For now we focus 
on the contribution from the meson pole terms, corresponding to poles 2 and 3 
shown in Fig. 12.4 (we focus on poles 2 and 3 instead of 6 and 7 because we 
have decided to close the ko contour in the lower half plane). These contributions 
will be estimated by assuming, as before, that ml and m2 are much greater than 
4 and assuming that p2/m: or p2/mi are much less than unity. In this case it is 
convenient to rewrite the box diagram in the following form: 

, (12.16) 
i X f X i  J d4k’ 1 1 -- Mbox -~ 

4m1mz ( 2 ~ ) ~  D (wz - kAz - if) ( w ’ ~  - kAz - if) 

where ko of Eq. (12.3) has been replaced by kb + E z ( p ) ,  and 

(12.17) 

The meson pole contributions come from the two poles at kb = w - ze and 
kb = w’ - 26. A convenient way to obtain these contributions and reduce (12.16) 
quickly is to use Eq. (C.2) to combine the two denominators in ( 1  2.16) as follows: 

(12.18) 
1 1 

d x  [pz + k2 + p2 - kh2 - 2k .  (p f p ’ ( 1  - 5)) ] ‘ 
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Anticipating the fact that the value of IC; fixed by the double pole in (12.18) 
is much larger than the ( p 2  - k2)/2m, terms in (12.17), we may approximate 
D N k z  and complete the square in (12.18) by shifting k + k +px +p’(l - x), 
obtaining 

(12.19) 

where q2 = (p - P ’ ) ~  is the three-momentum transferred by the scattering. Do 
not forget that the “pole” at IC; = 0 is to be ignored, so that only the double pole 
at 

k; = Jp2 + k2 + q2x(  1 - X) 

is evaluated in going from the first to second line of Eq. (12.19). 

butions to the leading pole contribution (12.5), with p = i6, is 
If q2 = 0 (forward scattering) we see that the ratio of the meson pole contri- 

(12.20) 

If the meson pole terms are regarded as a correction to the leading contribution, 
and if the mass of the exchanged meson is very small (or zero), then the correction 
is of order 

(12.21) 

where 21 is the typical velocity of the bound constituents. This is a significant 
relativistic correction, and we conclude that the meson poles terms cannot be 
ignored, unless they are canceled by some other contribution. 

It turns out that the contribution from the crossed ladder diagram, Fig. 12.1 B, 
is of the same size as the meson pole contribution (1 2.19), and hence the crossed 
ladder diagram must be included in order to obtain an accurate relativistic de- 
scription of bound states. In fact, for the 43 example under discussion, and for 
a large class of other theories, the contribution from the crossed ladder diagram 
cancels the meson pole contribution. Before we show this, it is instructive to 
recast (1 2.19) in a dispersion, or spectral, form. 

Since the meson pole contributions to M are real and local (i.e., depend on 
q2 only), it is appropriate to regard them as a candidate for a new contribution to 
the meson exchange potential between particles 1 and 2. Recall that the potential 
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in the d3 theory example we are considering is obtained from the M-matrix by 
dividing by 4mlm2, as in Eq. (9.72), so that 

(12.22) 
where the integral in (12.19) was transformed by the substitution 5 = i ( 1  + y). 
Introducing z2 = 4p2/(1 - y2) gives 

(12.23) 

In coordinate space, this representation shows that the potential V2, is a superpo- 
sition of Yukawa shapes, with masses z 2 2p, 

(12.24) 

The potential has a maximum range of (2p)-’, which identifies i t  as a force 
associated with the exchange of two quanta of mass p, and it may be referred to 
as a two-boson exchange (TBE) potential. The form (12.24) is sometimes called 
a specrrul form because it displays the “spectrum” of mass exchanges associated 
v ith the potential. 

The relatively long range of this TBE contribution is not unrelated to its 
importance as a relativistic correction. To see the connection, it is sufficient to 
consider a weakly bound state in the nonrelativistic limit. In this case, using the 
asymptotic bound state wave function, the expectation value of an exponential 
potential of range 0-l is 

1 
u + 26 

< e-ur >Iv - . 

The contribution of any potential derived from fourth order graphs compared to 
the OBE potential is therefore 

where the bound state condition (12.9) has been used to relate the effective cou- 
pling constant to the masses. We see that the longer the range, the more significant 
the contribution; Eq. ( 1  2.25) is consistent with the estimate (1 2.20) only because 
the effective range of the TBE potential is - (2p)-l - p-l. 
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p - P  P - k  P - p '  

\ /  
A 

/ \  
/ \  

/ \ 
/ \ 

- - - 
P p+p'-k P '  

Fig. 12.5 The crossed box di- 

agram showing how the momenta 
are labeled. 

12.2 T H E  ROLE OF CROSSED LADDERS 

We have just seen that the important corrections to weakly bound systems will 
come from the long range peripheral interactions. The only other fourth order 
diagram which describes such a long range (two-boson exchange) interaction is 
the crossed box, and it is for this reason that it is singled out for discussion. In 
this section we will show that the leading contribution from the crossed box is 
comparable to the TBE contribution which arises from the box and that, for a class 
of theories including the r # ~ ~  theory we have been discussing, the two contributions 
cancel. Then we will show that these terms cancel to all orders in perturbation 
theory. This will prepare us for the subsequent discussion of relativistic two-body 
Gquations. 

The crossed box diagram is labeled in Fig. 12.5 in such a way that only the 
internal propagator for particle 2 has a different momentum, so that 

(12.26)  

where D I ,  Do, and Db are identical to (12.2), but 

where 

E; = ,/- 
There are still eight poles in the complex ko plane, but two of the poles, 1 and 8,, 
are in different locations, as shown in Fig. 12.6. Ignoring poles 8 and 8 x ,  which 
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k, complex plane 

7 6  5 1, .. *. .. 
2 3  

* .  
4 8, 

Fig. 12.6 The location of the singularities of the crossed box diagram in the complex Icg plane. 

Compare with Fig. 12.4 and note that the only difference is that ploe 1 is replaced by 1 , and pole 8 

is replaced by 8 , . 

are negligible, the major difference between the box and crossed box is that pole 
1, which dominated the box, has moved from the lower halfplane to the upper 
halfplane. These two poles are located at: 

k 2  
27132 

pole 1 : ko = E2 - it m2 + - - it 

pole 1,: 

(12 .28 )  

+it . p2 (p +p‘ - q2 ko = 2 E 2 ( p )  - E,X 2 m2 + - - 
m2 2m2 

\valuating the crossed box by closing the contour in the lower half plane (as we 
did before) leads us to the following observations: 

0 The contribution which dominated the box (pole l), is no longer present in 
the lower half plane, and hence this leading contribution is missing from the 
crossed box. (The curious reader may wonder how this argument would be 
affected if we were to close the contour in the upper half plane. In this case 
the two poles 5 and 1 , would cancel, giving a similar result.) We conclude 
immediately that the crossed box is smaller than the box by the ratio (12.20). 

0 The meson poles dominate the crossed box, and the only difference between 
their contribution to the crossed box and the box is the denominator D2. 

Introducing ko = kh + E2(p),  as we did in our discussion of the meson pole 
contribution to the box, these two denominators become 

- 
1 

box: - 
D2 

1 
crossed box: - 

02” 
- 

1 

2m2 (w - k & )  
1 

( 1 2 . 2 9 )  



384 BOUND STATES AND UNlTARlTY 

PI k P I '  PI P I '  

I / I 
I I \ / 

\ 
\ / 

91 + P I - P I ' L c  
I 
I 
I 

Fig. 12.7 
cancellation theorem. 

The box and crossed box diagrams with a new labeling of momenta used to prove the 

If m2 is very large, the terms in (12.29) proportional to m i 1  may be neglected 
compared to Ic; (which is equal to w or w' at the meson poles), and we see that 

(12.30) 

Hence, in this approximation the dominant contributions from the crossed box are 
equal to the meson pole contributions from the box but have the opposite sign, so 
that their sum (box plus crossed box) cancels. The role of the crossed box is to 
czncel the meson pole contribution from the box. 

This cancellation is quite general, and we will now prove the following 
theorem: 

Cancellation theorem: In a theory in which a spin zero particle of 
mass ml interacts with a heavy particle of mass m2 (which has no 
charge states) by exchanging a spin zero meson of mass p, the meson 
pole contributions from the ladder diagram are canceled by meson pole 
contributions from crossed ladder diagrams, and this cancellation is exact 
in the limit as m2 -+ 00. 

We will prove the theorem by mathematical induction. First we will prove it 
in fourth order, and then we will show that if it is true in (2n)th order, it is also 
true in (272 + 2)th order. 

The proof in fourth order is essentially as given above, but it is instructive to 
repeat it using the notation we will use for the general proof. We will neglect the 
negative energy poles of the heavy particle (which can be proved to be small by 
a different argument) and assume that all integrals over internal three-momenta 
converge, so that the m2 -+ 00 limit can be taken under the integral. We label 
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Fig. 12.8 
the large rnz limit. The cross means that the particle is on its positive energy mass shell. 

Diagrammatic representation of the cancellation between the box and crossed box in 

the momenta for the box and crossed box as shown in Fig. 12.7. In this notation, 
with the above approximations, the sum of these two diagrams is 

where l ( q l )  is the product of the two meson propagators and the propagator for 
particle 1, identical for the two diagrams, and K is a constant, also identical for 
the two diagrams. The approximation for the two heavy particle propagators in 
(12.31) is essentially the same as (12.29), with the k2/2m2 terms discarded. Using 
the familiar relation 

M(4) becomes 

(12.32) 

(12.33) 

Cquation ( 1  2.33) tells us that the full fourth order result comes only from the pole 
at 410, which corresponds to the contribution from the positive energy pole of 
particle 2. This result is represented symbolically in Fig. 12.8, where the cross 
on an internal line will mean the contribution from the positive energy pole. 
Operationally, one closes the contour in whichever half plane has the positive 
energy pole in question and evaluates the contribution from that pole using the 
calculus of residues, discarding all other terms [as we did in our calculation of 
the dominant contribution (12.4)]. 

Now we consider a typical (2n)th order diagram, shown in Fig. 12.9. To 
this diagram we add another exchange, fixed to particle 1, but with all possible 
“corrections” to particle 2, as shown in Fig. 12.10. The diagrams in 12.10 are 

1 
(410 + 420 + . . + + qno - 26) * (410 + qno - 2 ~ )  (qno - 26) 

1 + 

M(2n+2) = 

(410 + qzo + . . . + qno - i t ) .  . . (410 + qno - it) (410 - it) 

(12.34) 

1 +...+ 
(-qno - it). . . (q20 + qio - i f )  (qio - i t )  
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Fig. 12.9 A typical (2n)th order diagram with the momenta labeled. 

where Jn is a shorthand for all of the n loop integrals and all of the propagators, 
excluding the heavy particle propagators. Now the terms in (12.34) can be added 
together successively. For example, the first two terms are combined as follows: 

In this way the denominators with sums containing qno are eliminated, giving 
finally 

4no - if -qno - if 
x -  “ +  

2ni 6 (qno) 
= J, (410 + 420 + . * . + q(n-1) 0 - 26) . . . (q20 + 410 - ie) (410 - ic) 

(12.36) 
Since this argument is independent of how the original n mesons were ordered 
along the heavy particle line, we conclude that the addition of a new meson in all 
possible ways to any (2n)th order diagram is equivalent to adding a new “rung” 
with the heavy particle on-shell, as illustrated diagrammatically in Fig. 12.1 1. 
Hence, if the theorem were true for the (2n)th order diagrams, we have shown how 
it may be extended to (272 + 2)th order diagrams, and the proof by mathematical 
induction is complete. 
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Fig. 12.10 The first and last two of the series of n + 1 diagrams which give all the contributions 
to the ladders and crossed ladders which arise for the addition of another meson exchange to the 
particular (2n)th order diagram shown in Fig. 12.9. 

The final result is that the sum of all ladder and crossed ladders is obtained 
from the single ladder diagram with rhe heavy particle on-shell in each rung: 

This result is illustrated symbolically in Fig. 12.12. 
A word of caution is in order, and the following remarks should be noted: 

0 The simple result (12.36) holds only in the limit as m2 approaches infinity. 
For finite m2, there are corrections of order my’. 

0 The result does not hold when the exchanged meson carries some “charge” 
(not necessarily electric) which affects the weight of the ladder and crossed 
ladder diagrams differently. For example, in the exchange of pions between 
nucleons, the coupling has an isospin factor ~i and the factor for the box is 

- I \  1 1 

I-.\ ’ I 1  
I / I \ . .  -1. I I 

additional meson 

\ . V .  

Fig. 12.11 Diagrammatic representation of the derivation of Eq. (12.36). 
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M (pip'; P )  = V ( p , p ‘ ;  P )  + V (pl k; P )  G ( k ,  P ) M  ( k , p ’ ;  P )  J, 

all ladders 

(12.40) 

Fig. 12.12 Diagrammatic representation of the result Eq. (1 2.37). 

while for the crossed box we have 

‘T1i72j‘TijT2i = 3 + 271 ‘ 7 2  = -3 $- 41(1 f 1) . (12.39) 

In these expressions I is the total isospin. Hence, for I = 0 states, the box 
and crossed box have additional factors of 9 and -3, while for I = 1 states the 
factors are 1 and 5 .  

0 If the heavy particle has no charge states, the factors must be identical, re- 
gardless of the charges of the other particles. This is the case for which the 
theorem holds. 

We are now ready to discuss relativistic two-body equations. 

12.3 RELATIVIST I C TWO- B 0 DY EQ U AT I 0 N S 

Using the previous discussion as motivation, we seek integral equations with a solu- 
tion which can be interpreted as the sum of all ladder (and perhaps crossed ladder) 
diagrams. In this section we will discuss the general features of such equations and 
postpone the discussion of specific equations until the next section. 

The equations we will study have the general form 

where M is the scattering amplitude, G is the two-body propagator, V is the kernel of 
the equation, and s, is the integration over the internal momenta. The specific forms 
of sk and G will be given later when we discuss specific equations. Equation (12.40) 
is illustrated diagrammatically in Fig. 12.13. 

If the kernel is “small,” so that perturbation theory converges, the solution of 
(12.40) can be obtained by iteration. This generates a two-body Born series of the 
form 

M = V + / V G V + / / V G V G U +  . . .+ VG v+  ... . (12.41) (/ 1” 
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Fig. 12.13 Diagrammatic representation of the integral equation ( 1  2.40). 

This series is shown diagrammatically in Fig. 12.14. Typically, each of the 
terms in the series is identified with a Feynman diagram (or a part of a Feynman 
diagram), so that the sum (12.41) is indeed a sum of Feynman diagrams (or parts 
of Feynman diagrams). Note that the successive terms represent products of the 
kernel V connected by the propagator G. Any Feynman diagram which can be 
written in such a form, i.e., 

M R =  J M ~ G M ~ ,  (12.42) 

is said to be reducible with respect to the propagator G, and clearly such a diagram 
cannot be part of the kernel. The kernel must be built up onlyfrom irreducible 
diagrams. We will return to a discussion of how V is chosen later. 

If we replace the integrals in (12.41) by sums over a finite set of discrete 
points in momentum space, so that V and M are matrices and G is a diagonal 
matrix, then the series (1  2.41) is a geometric series which can be formally summed, 
giving 

M = V + VGV + VGVGV + . . . + (VG)"V + . . . 
= ( l - V G ) - ' V  . (12.43) 

For cases when the Born series (12.43) does not converge, the solution of 
Eq. (12.40) may still exist and can be regarded as the analytic continuation of 
the sum (12.43) from a region where it converges to a region where it does not 
converge. This situation is familiar from the theory of complex functions; for 
example, the complex function 

(12.44) 

Fig. 12.14 
(12.40). 

Diagrammatic representation of the Born series generated by the integral equation 
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Fig. 12.15 Diagrammatic representation of the bound state integral equation. 

is the unique analytic continuation of the series 

(12.45) 

from the region inside the unit circle ( z I  < 1 to the region outside, IzI 2 1. 
Note that there is a pole at z = 1. If z is a matrix, the generalization of the 
condition z = 1 is that z has an eigenvalue equal to 1, so that if the corresponding 
eigenvector is a, then the condition for a pole can be written 

a = z a .  (12.46) 

The corresponding condition for the existence of a pole in M is 

(12.47) 

This is the integral equation for a bound state, and the function I? is referred to 
as the verrexfinction. The equation is illustrated in Fig. 12.15. 

We have shown that the bound state Eq. (12.47) is a sufficient condition for a 
bound state. It is also a necessary condition. To see this, assume that a bound state 
exists, and study the consequences. The presence of a bound state is associated 
with a pole in the M-matrix below threshold, so the M-matrix would have the 
form 

represented diagrammatically in Fig. 12.16. In (12.48) R is a remainder term 
which has no pole at P2 = M i .  The vertex function for P2 # M s  is not 
uniquely defined, because the separation into a pole term and a non-pole term is 
not unique away from the pole. However, this will not be a problem because we 
will need the vertex function only at the pole. 
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Fig. 
Eq. (12.48). 

12.16 Diagrammatic representation of the scattering matrix with a bound state pole, 

An equation for can be derived by assuming that Eq. (12.40) holds every- 
where, even at the pole. Substituting Eq. (12.48) into Eq. (12.40), multiplying by 
M i  - P2, and then taking the limit as P2 ---* M i  eliminate all terms not singular 
at P2 = M i .  Dropping the term 7 (p ' ,  P )  from both sides gives Eq. (12.47). 
Note that, strictly speaking, r ( p ,  P )  is uniquely defined only at the bound state 
pole, where P2 = M i .  Alternatively, we may say that Eq. (12.47) does not hold 
except when P2 = M i ,  and hence it is an eigenvalue equation. 

The relativistic bound state wave function is defined to be 

d J ( P ,  P )  = NG(P,  p)r(P,  P )  Y (12.49) 

where N is a normalization constant, to be defined later. [Note that the normal- 
ization of I' is defined by (12.48).] 

12.4 NORMALIZATION OF BOUND STATES 

The normalization condition for the bound state wave function can be obtained 
directly from Eq. (12.40) and the assumed form of the M-matrix, Eq. (12.48). To 
this end, note that (12.40) can also be written 

M = V +  M G V ,  (12.50) 

where, for compactness, we will suppress all arguments of M ,  G, and V .  The 
equivalent of (12.40) and (12.50) follows from the fact that they generate the 
same Born series. In general, V will be real but G will be complex because of 
the singularities associated with the zeros in its denominator. Hence (12.50) may 
also be written 

M = V +  M G V ,  (12.51) 

where the bar represents the adjoint, which includes complex conjugation and any 
additional operations (such as multiplication by 70 as in the Dirac theory). Writing 
(12.51) as 

V=M- M G V  (12.52) 

J 

J- 

J- 

- 
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and substituting this expression for V under the 
eauation: 

in (12.40) give the following 

M = V +  M G M -  MGVGM . J -  J J -  (12.53) 

Note, for later use, that substituting V obtained from (12.40) into Eq. (12.51) gives 
a similar equation for M, 

- 
M = v + J J E M  - J J M C V G M  . (12.54) 

Only one of these equations is needed now, and it will be used below threshold (in 
the neighborhood of the bound state pole) where M and G are real. Substituting 
Eq. (12.48), written in shorthand as 

1 -  M = -r r + R ,  
M 2  - P 2  

into (12.53) or (12.54) gives terms with a double pole at M i  = P2, a single pole, 
and no pole. The double pole terms occur only on the right-hand side (RHS) of 
the equation and are 

1 
M i  - P2 

double poles = ( ) { r / (FGr) - I- / 1 (TGVGr) r} . 
(12.55) 

The coefficient of the double pole term must be zero at P 2  = M i .  Dropping the 
initial factor of l? and the final factor r gives 

because of the bound state Eq. (12.47). [Alternatively, Eq. (12.56) is another way 
to obtain the bound state Eq. (1 2.47).] 

Next, look at the single poles. This is more complicated. There are terms 
from the single poles and terms from the expansion of the coefficient of the double 
poles near P2 = M i ,  the residue of the double poles. 

First look at the terms involving R. These do not contribute because 

R terms = - M i  - P2 {I?/ [r - I r V ]  G R  + I R G  [r - VGr] .> 
=o . (12.57) 

The expansion of the coefficient of the double pole terms near P2 = M i  will 
generate terms proportional to dT/8P2 and 8 r / d P 2 .  By an argument similar to 
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the one above, the bound state wave equation guarantees that these are also zero. 
Finally, the only new result comes from the balancing of the single pole on the left- 
hand side with derivatives of G and GVG on the right-hand side. To find this result, 
introduce the expansion 

(12.58) 

where l o  means that the quantity to the left of the vertical bar (usually a derivative) 
is evaluated at P2 = M i ,  and we obtain 

This can be simplified. Dropping the common factor of rr and using the bound 
state equation when possible give 

~~ ~ ~~~ ~~ ~~ 

The derivation of this formula did not depend on any of the details, but only on 
the structure of the equation. It can be used to obtain the normalization condition 
for any relativistic bound state wave function. For cases when U is independent of 
energy, the condition reduces to 

(12.61) 

12.5 THE BETHE-SALPETER EQUATION 

We are now fully prepared to discuss two-body relativistic wave equations. the 
Bethe-Salpeter (BS) equation was the first relativistic two-body equation, introduced 
in 195 1 [SB 5 I]. For the 4 1 ~  example we have been discussing, this equation is defined 
bv' 

(12.62) 1 

[mf - ( P  - k)' - i,] (m; - k 2  - ZC] 
G(k,P)  = ' 

L J 

*The use offree propagators in Eq. (12.62) is equivalent to ignoring all self energy contributions to the 

propagation of particles 1 and 2, sufficient for our purposes. Self energy contributions are included by 
dressing the single particle propagators used in G. (Thanks to David Owen for calling attention to this 
omission). 
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/ /  \ \  i I 

I 
! ! 

reducible 

/ 2. 
/ / .  

irreducible 

Fig. 12.17 
into two parts by a line which “cuts” only the two heavy particles. 

Examples of reducible and irreducible diagrams. Reducible diagrams can be separated 

Note that essential features of the equation are that the integration is over all four 
components of the internal momentum (and hence it is sometimes referred to as 
a “four-dimensional” equation in the literature) and that both of the particles are 
off-shell. Any equation of the general form (12.40) with the choices (12.62) is 
properly referred to as a Bethe-Salpeter equation. 

The choice of the kernel V defines the approximation in which the BS equa- 
tion is being employed. In principle, V can include any Feynman diagram which 
is two-particle irreducible [recall the discussion surrounding Eq. (12.42)]. Ex- 
amples of reducible and irreducible diagrams for the BS equation are shown in 
Fig. 12.17. If the kernel is the sum of all two-particle irreducible diagrams, then 
the conventional view is that the solution of the BS equation should give the exact 
result for the scattering amplitude. In this case the equation can be viewed as pro- 
ducing and summing all diagrams which have a two-particle cut (are two-particle 
reducible) by combining diagrams which have no such cut. However, because the 
Infinite sum of two-particle irreducible graphs is probably as difficult to calculate 
as the amplitude M itself, and since the kernel V exists order-by-order in per- 
turbation theory, the kernel is usually approximated by the first few terms of its 
perturbation expansion. In theories where boson exchange is believed to describe 
the important physics, such as photon exchange in atomic physics, gluon exchange 
in perturbative quantum chromodynamics (QCD), and meson (in particular pion) 
exchange in low energy nuclear physics, V is often approximated by the lowest 
order one-boson exchange diagram. In this approximation, the solution to the BS 
equation can be regarded as the exuct sum of the ladder diagrams. For the 43 
example we have been discussing, this gives 

(12.63) 

Note that this kernel is independent of P2, and hence the bound state normalization 
condition for the BS wave function assumes the simpler form (12.61). 

If it is desired to sum the ladder and crossed ladder diagrams, then the kernel 
V must include all irreducible crossed ladder diagrams. These diagrams to sixth 
order are shown in Fig. 12.18. Since the number of irreducible crossed ladder 

A1 A2 V (PIP’; P )  = - 2 
p2 - ( p  - p’)  - i€ 
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Fig. 12.18 Irreducible ladder and crossed ladder diagrams to sixth order. 

diagrams grows rapidly with the order n, it is clear that the BS equation is not an 
efficient way to sum all ladders and crossed ladders. 

Solutions to the BS equation can be obtained by rotating the ko contour to the 
imaginary axis (referred to as a Wick rotation [Wi 541). This converts the equation 
to a Euclidean form and avoids the singularities always associated with Minkowski 
space. A disadvantage of this method is that it gives the solution for M (or I?) 
along the ICo imaginary axis, where it is unphysical. Nevertheless, using this 
technique, exact solutions for spinless particles interacting through the exchange 
of a massless scalar particle (in ladder approximation) have been obtained [Wi 54, 
Cu 541 by exploiting the SU(4) symmetry of such a system. One finds additional 
bound states which do not exist in the nonrelativistic limit; these states may be 
associated with the inadequacy of the ladder description. The BS equation has 
also been applied to the description of nucleon-nucleon scattering, where it has 
been solved numerically [FT 751. 

12.6 T H E  SPECTATOR EQUATION 

One alternative to the BS equation is the spectator equarion (sometimes referred 
to as the Gross equation [Gr 691). When applied to the 43 theory we have been 
discussing, it is defined by 

( 1 2.64) 
1 - 

2 
- 

1 
G ( k ,  P )  = ’ 

m; - ( P  - k ) Z  - i€ E: - (W - Ez) - 

where k is a four-vector which satisfies the mass-shell constraint k 2  = m;. Note 
that this equation is covariant, even though one of the components of the four- 
momentum (the energy ko) is given in terms of the other three. This is because 
the constraint itself is covariant. Since only the three spatial components of the 
momentum are independent, the equation is referred to as a three-dimensional 
equation, or as a quasipotential equation. In all amplitudes and kernels, p = 
(E2(P)r PI. 
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Once again, the physical content of this equation depends on the approxima- 
tion one makes for the kernel U (6, fi’; P). In the OBE approximation, the kernel 
is 

X1X2 

2 
us ( f i ,$’;  P )  = - 

(112 - (6 - 5’) - 26) 

(12.65) 

This is the same as (12.63), but with the important difference that fi2 = fi’2 = m;. 
In the large m2 limit, the kernel (12.65) reduces to a form in coordinate space 
which is an instantaneous, local potential. Specifically, using the definition (12.49) 
for the bound state wave function, which for this equation is 

- - X l X Z  - 
P2 + 0, - P Y  - (Ez(?J) - EZ(P’)Y . 

(1 2.66) 

the bound state equation becomes 

In the m2 -+ 0 limit, and taking P = (W,O) with W = m2 + E, this equation 
reduces to 

d3k 
(mt + P 2  - E 2 )  @ ( P ,  P )  = - 2 m 1 1  ( zK)~VS (p - k) $ ( k ,  P )  , (12.68) 

where the effective potential is 

(12.69) 

with geff defined as in Eq. (12.7). Equation (12.68) is a Klein-Gordon equation 
for a particle of mass ml and energy E in an instantaneous scalar potential. In 
coordinate space it is simply 

(m: - v: + 2m&(r)) $ ( r )  = E2$(.) (12.70) 

with 
gzR e-pr 

4n2 r Vs(r) = -- - , (12.71) 

which is precisely Eq. (4.7) with U ( T )  = 2mlVs(r) and $(x) = $ ( ~ ) e - ~ ~ ~ .  
We see that the spectator equation has the property that it reduces to a one-body 
equation in the limit when the mass of the on-shell particle approaches injinity. 
We will refer to this property as a one-body limit [Gr 821. 
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Fig. 12.19 
meson line means that the particle is on its positive energy mass shell. 

Diagrammatic representation of the spectator equation. Recall that the cross on a 

The reason why the spectator equation has a one-body limit and the BS equa- 
tion does not can be understood from our discussion of the role of crossed ladders 
in Sec. 15.2. In the OBE approximation, the spectator equation sums the leading 
terms from all ladders and crossed ladders, as illustrated in Fig. 12.12. That this 
is the case is obvious from the diagrammatic representation of the equation given 
in Fig. 12.19 and from its definition. Another way to understand this result is to 
examine the contributions which ladders and crossed ladders make to the kernel of 
the spectator equation. These are shown, to sixth order, in Fig. 12.20. The open 
circle on the heavy particle line refers to all contributions from the loop in which 
the circle is found except the contribution from the positive energy pole of the 
particle with the circle. The reason the positive energy pole is excluded is that this 
part of the diagram is reducible, in the sense of the spectator equation. Now, from 

m=m-m 

Fig. 12.20 
(in the sense of the spectator equation) ladder and crossed ladder diagrams to sixth order. 

(A) Definition of the open circle, which is the complement of the cross. (B) Irreducible 
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the discussion in Sec. 15.2, we know that the meson pole contributions from 
ladders and crossed ladders cancel as m2 --+ 00, and since these contributions 
dominate all of the higher order kernels shown in Fig. 12.20, they will all approach 
zero as m2 -+ 00, leaving only the OBE term, which therefore gives the exact 
result for the sum of all ladders and crossed ladders in this limit. 

In a similar fashion, it may be shown that the spectator equation for a Dirac 
particle of mass rnl and a scalar particle of mass m2 exchanging a scalar meson 
of mass p reduces, in the m2 -+ 00 limit, to a Dirac equation. This is left as an 
exercise (see Prob. 15.1). 

In the m2 -+ 00 limit, the relativistic wave function (12.49) for a bound state 
in the spectator formalism is 

(12.72) 

where Eo is the bound state energy of particle 1. If the vertex function r is a 
constant, the coordinate space form of this wave function is 

d 3 p  e‘*’+(p, P )  = N r  I (12.73) 

which is the familiar asymptotic S-state wave function. Hence the propagator 
factor in (12.72) gives the asymptotic part of the wave function, while the vertex 
function r contains all of the dynamical information contained in the intermediate 
and short-range part of the wave function. 

Next, note that the normalization condition (12.61) for the wave function 
(12.72) becomes [don’t forget the minus sign associated with the integral in 
(1 2.64)] 

where we have chosen N = ( 2 ~ ) - ~ / ~ .  In coordinate space this becomes 

H 

1 = / d 3 r 2 E 0 1 c , 2 ( ~ )  = / d 3 r + * ( z ) i g ! ( z )  a , 

(12.74) 

( 12.75) 

where, as before, $(s) = +(r )  ec iEot .  Note that we have recovered the precise 
form of the Klein-Gordon normalization, Eq. (4.14). 

The spectator equation has been used as the foundation for the calculation 
of higher order QED corrections in simple atomic systems [EK 911 and for the 
relativistic treatment of nucleon-nucleon scattering [GV 921. 
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12.7 EQUIVALENCE OF TWO-BODY EQUATIONS 

The two different relativistic equations we have discussed so far correspond to two 
different ways of calculating the scattering matrix, and it is usually assumed that 
the exact answer could be obtained from either equation if the kernel included all 
irreducible diagrams. However, since the kernel is always approximated by a few 
irreducible diagrams, an approximate calculation of M using one equation will 
differ from an approximate calculation using another, and it is important to know 
how to compare the two approximations. Alternatively, by carefully choosing 
the kernels, it is possible to obtain the same solution for M from two dzfSerent 
equations. In this sense different equations are equivalent. We will discuss this 
now. 

We assume that the same solution for M has emerged from two different 
equations, and ask how their kernels must be related by this fact. Specifically, 
assume that 

s (12.76) 
M = V 1  + V I G I M  = V1 + / M G I V l  

M = VZ + 1 VzGzM = V2 + 1 M GzVz . 

Discretizing the integrals, so that V G and M become matrices, these equations 
imply 

M = (1 - V1G1)-l V1 = V2 (1 - G2V2)-l (12.77) 

and hence 
V2 = V1 + Vl (GI  - G2) V2 (12.78) 

As an illustration of the content of this equation, suppose that equation 1 is 
the BS equation and V1 is the OBE approximation. Then Eq. (12.78) tells us that 
the kernel V2 of the spectator equation which exactly sums the ladder diagrams 
(since Vl does this) is given by the solution of the equation 

- 2 ~ Z 6 +  (mE-k2)  V z ( k , p ’ ; P )  1 1 

(12.79) 

Iterating this equation and then setting p = 6 generate the infinite series of dia- 
grams shown in Fig. 12.21. The difference of the propagators G1 - Gz is equiv- 
alent diagrammatically to the open circle on the heavy particle line, as shown in 
Fig. 12.20. We conclude that the use of the spectator equation to sum the ladder 
diagrams is extremely inefficient. The kernel for this operation is an infinite series 
of terms, and evaluating it by solving (12.79) is just as difficult as solving the 
original BS equation in ladder approximation. 
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Fig. 12.21 
will give the exact ladder sum. 

The infinite series of diagrams which defines a kernel for the spectator equation which 

Alternatively, suppose equation 1 is the spectator equation and V I  is the 
OBE approximation to it. The spectator kernel can be extrapolated off-shell using 
(12.79) and the Feynman rules. The BS kernel equivalent to the spectator OBE 
kernel is shown diagrammatically in Fig. 12.22. Note that the new Vz is an infinite 
series of terms, very similar to those in Fig. 12.21, except that each term in this 
series has all external particles off-shell, and the even terms in the series have the 
opposite signs. We conclude that the use of the BS equation to sum the series of 
terms shown in Fig. 12.12 is inefficient. 

The anulysis we have just completed can be used to compare any other 
relativistic equations we might wish to consider, including the Blankenbecler- 
Sugar [BS 661 equation to be discussed below. It shows that each equation is 
efficient in summing a particular class of diagrams and inefficient in summing 
others. The choice of equation depends on which physical processes we wish to 
slim and how efficiently they can be summed by that equation (see Prob. 15.2). 

12.8 UNlTARlTY 

We now return to the box diagram and look at its structure from a different point 
of view. Recall our discussion of the singularities of the box diagram in the com- 
plex k~ plane, shown in Fig. 12.4. Now we want to prove that the imaginary 
part of the box comes only from a “pinching” of the poles 1 and 5 and that all 
the other pole contributions [2, 3 and 41 never come opposite any of the poles 

Fig. 12.22 
give the leading contributions to the sum of all ladder and crossed ladder diagrams. 

The infinite series of diagrams which defines a kernel for the BS equation which will 
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in the upper half plane, and hence can never contribute to the imaginary part of 
M. The proof will be carried out for physical values of W only. These are real 
values of W 2 ml + m2. 

To prove these statements, we will prove that the poles are ordered in the 
following sequence along the real k,-, axis: 

8 < (7,6) < ( 5 , l )  < ( 2 ’ 3 )  < 4 , (12.80)  

where the ordering of the pairs (7,6), (5,1), and (2,3) is indeterminate. Using 
W = El@) + E2(p) ,  these inequalities become 

8 < (7,6) * -El < E2(p)  - - w  

(7,6) < 5 ==+ -El (p)  - w < -El 
(7,6) < 1 * E2(p) - w < E2 

5 < ( 2 , 3 )  ==+ Ei(p) - E l  < w 

1 < ( 2 ’ 3 )  * E2 < w + E2(p) 

( 2 , 3 )  < 4 ==+ w < Ei(p) + Ei , 

(12.81)  

where inequalities involving p’ are similar to those involving p and need not be 
considered explicitly. The only inequality which requires any demonstration is 

IEl (P) - El I < w (12.82)  

and a similar one for E2. To prove this we square both sides giving the requirement 

2m: + p z  + k2 - 2 \ / m ; ’ + p 2 J m z f k z  < p2 + p 2  + k2 - 2 p .  k . 

The minimum value of w2 occurs when p . k = p k ,  and rearranging terms and 
squaring again give the requirement 

(2mt + 2pk - p 2 )  < 4 (mt + mf ( p 2  + k 2 )  + p 2 k 2 )  . 

Expanding out these terms shows that this equality is always satisfied, even if p 
is very small, because p 2  + k2 2 2pk. 

Hence the exact result for the imaginary part of Mbox can be obtained from 
the pinching of poles 1 and 5 ,  which from Eq. (12.4) gives 

( 12.83) 
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where 

[wz - (m1+ m2)2] [WZ - (m1- m2)2] 

4w2 
I d  (12.84) 

is the two-body phase space factor introduced in Sec. 9.2. A diagrammatic in- 
terpretation of (12.84) is given in Fig. 12.23. The imaginary part of the box 
in the physical region is the product of two OBE amplitudes, with all of their 
external particles on-shell, integrated over all directions of the intermediate three- 
momentum k and multiplied by the two-body phase space factor. 

This result anticipates the uniturity relation satisfied by a physical scattering 
amplitude. Recall, from a study of nonrelativistic scattering, that the scattering 
amplitude for the t th  partial wave has the following general form: 

p -  p2 (W; 7721712.2) = - - - 
87r2 W 87r2 W 

(12.85) 

where 5 is the phase shift and K is a constant, usually equal to unity in nonrel- 
ativistic theory. The scattering amplitude (1  2.85) satisfies the unitarity relation, 
which for (12.85) is 

(12.86) 

The relativistic counterpart of this relation can be obtained from Eq. (12.53) 

P 
I m f t  = Ti? lfd2 . 

and (12.54). Subtracting these two equations gives 

(12.87) 

This is the most general form of the unitary relation. 
For the spectator equation in I # J ~  theory, M = M’ because it is a complex 

number (and not a matrix) and hence the left-hand side of (12.87) is the imaginary 
part of M .  Recalling the defining relations (12.64) and (12.87) renders 
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Fig. 12.23 
unitarity cut, for the box diagram. 

Diagrammatic representation of the imaginary part. sometimes referred to as the 

where z = p lj’, and use the orthogonality and addition theorem for Legendre 
polynomials, 

then (12.88) reduces to 

ImMe(W)  = - rp2 (W;mim2) IMe(W)I2 . (12.91) 

This is the relativistic generalization of (12.86), and from it we have the identifi- 
cation 

I ( 12.92) 
ei6t sin Se Mo(W) = -8rW 

P 
which shows how the phase shift is related to the relativistic scattering amplitude. 
Note that, as a consequence of this relation, 

lim IMe(W)I 5 1 6 ~  . ( 12.93) 
W+m 

The amplitude for the Lth partial wave is bounded as the total energy W approaches 
infinity, and and by an extension of this argument it can be shown that the total 
amplitude is also bounded by a less that linear growth with energy. This limit 
is referred to as the unitarity bound. If a calculation (or theory) produces an 
amplitude which violates this limit, we know that the calculation (or theory) is 
incorrect. Early models of the weak interactions suffered from this disease, which 
is cured by the Standard Model (see Sec. 15.5). 

The unitarity relation is a requirement which the exact scattering amplitude 
must satisfy. Yet nofinite sum of Feynman diagrams can satisfy the relation. To 
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Fig. 12.24 
diagram. 

Representation of the n - 1 elastic unitarity cuts contained in the (2n)th order ladder 

see why this is so, consider the (2n)th order diagram, and use Fig. 12.23 to see 
that the imaginary part of this diagram is composed of n - 1 terms, as shown 
in Fig. 12.24. Using this figure, we see that the imaginary part of the (2n)th 
order diagram is built up of products of diagrams less than (2n)th order, and 
hence consistency can be achieved only if n + 00. The integral equation gives a 
unitary amplitude precisely because it sums an infinite number of diagrams. When 
the constraints imposed by unitarity are important, the use of integral equations is 
required. 

12.9 T H E  BLANKENBECLER-SUGAR EQUATION 

A relativistic two-body equation motivated by the unitarity relation was introduced 
by Blankenbecler and Sugar (BBS) in 1966 [BS 661. In the 4~~ theory, this equation 
is defined by 

( 12 -94) 
6+ (m: - (ij - k)l) 6+ (772% - k2) 

GBBS = ?rJds 
s - P2 - ic 1 

is the total four-momentum of the two particles if 
they are both on their mass shell. The imaginary part of GBBS, which can be 
obtained directly from the dispersion integral representation (1 2.94), is equal to 
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The imaginary part of this propagator therefore restricts the intermediate particles 
to their mass shell, and in this way generates the correct two-body unitary cuts 
shown in  Fig. 12.24. It is also a three-dimensional equation. Carrying out the 
integration over s gives, in the rest frame, 

(12.96) 
(E l  + E2) 6 (E2 - ko)  

I '  GBBS = IT 
E l E 2  [ (E l  + E z ) ~  - W 2  - zc 

showing that the relative energy is no longer an independent variable. 
The two-body BBS equation was designed to preserve two-body unitarity, 

but, in fact, this is a feature it shares in common with the other two equations 
we have discussed previously. To compare the BBS propagator with the spectator 
propagator we must first remove the factor of 7r/E2 contained in the spectator 
integral operator (12.64) and factor the denominator, 

E2 (E l  + E2) 6 (E2 - ko) 
El [El + E2 - W - ZC] [El + E2 + W ]  

' GEES = -GBBS = n- 
In the same form, the spectator propagator is 

Note that these two propagators are identical along the unitarity cut (when W = 
El + E2) and differ only in how they describe the physics away from the unitarity 
cut. 

One of the significant features of the BBS equation is that it treats the two 
particles symmetrically [this is most easily seen from the original form (12.94)], 
and hence it is easy to use the BBS equation for the description identical particles. 
Purthermore, the onfy singularities of the BBS propagator are those associated 
with 'he unitarity cut. The spectator equation shares neither of these features. It 
ha; additional singularities and can only be used to describe identical particles if 
it is explicitly symmetrized (or anti-symmetrized) by including channels in which 
either particle 1 or particle 2 is on-shell [GV 921. 

The construction of relativistic two-body equations and the comparison be- 
tween different methods are active areas of current research, and we will leave 
the subject at this point. 

12.10 DISPERSION RELATIONS AND ANOMALOUS THRESHOLDS 

We saw in Sec. 11.7 that the vacuum polarization diagram 1 1.10 satisfied a dis- 
persion relation 

(12.97) 

This relation follows from the observation that II(q2) is a real analyticfunction of 
its argument [i.e., II*(q2)  = II (q2*)] ,  with a cut which lies along the real q2 > 4m2 
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Fig. 12.25 Contours in the complex plane. C can be deformed into C’. 

axis extending over the values of q2 for which real production of electron-positron 
pairs is possible (m is the electron mass). Actually, the dispersion relation (12.97) 
is subtracted once in order to improve the convergence at q2 -, 00, which goes 
like log q2 for the simple diagram 11.10. It can be derived, as we did in Sec. 11.7, 
by considering the function 

(12.98) 

which approaches zero as q2 -+ 00, and which, because of the subtraction, has no 
pole at q2 = 0. Then, by Cauchy’s theorem, 

(12.99) 

where q2 is some reference point far from the cut, and C is a small contour circling 
q2 in a clockwise sense. By opening up the contour to a larger contour C’, as 
shown in Fig. 12.25, and using the fact that f($) + 0 at infinity, we obtain 

( 12.100) 

Substituting (12.98) into (12.100) gives the result (12.97). 
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Fig. 12.26 Feynman diagram 
for estimating the relativistic wave 

function. The vertical dashed line 
is the two-body cut used in the dis- 

persion relation. 

- p+ P 

'4.C 
I '  
I 

As this argument shows, scattering amplitudes and vertex functions gerlerally 
satisfy dispersion relations. Even though they are initially defined only along the 
real axis, they can usually be analytically continued to the complex plane, and 
since they are real over some interval of the real axis, the analytic continuation 
must satisfy the real analytic property 

everywhere. When dispersion relations are combined with generalized unitarity, 
which specifies the imaginary part as the product of the initial and final state 
scattering amplitudes (or vertex functions), as discussed in Sec. 12.8 above, they 
can be an important tool for understanding the properties of matrix elements. 

It is our purpose in this section to show how these ideas can be used to gain 
i .sight into the structure of bound states. In so doing, we point out that care must 
oe exercised in  applying dispersion theory to amplitudes involving bound states, 
because of the existence of anomalous thresholds. 

As an example, consider the spectator vertex function for a bound state in 
the $3 theory, introduced in Eq. (12.66). As we have previously indicated, this 
vertex function can depend on only two independent four-vectors (the third is 
fixed by four-momentum conservation) and must be a scalar function of these two 
four-vectors. Only three scalar variables can be formed from the two four-vectors 
(they are p 2 ,  P 2 ,  and p . P), and if we take the heavy particle to be on-shell 
(along with the bound state), there is only one scalar variable remaining, which 
we will choose to be the mass (squared) of the light off-mass-shell particle. In 
the notation of Fig. 12.26, this variable is u = ( P  + l j ) 2 ,  and the vertex function 
will be regarded as a complex function of this variable, 

To use dispersion theory to study this amplitude, we must know the location of its 
singularities in the complex u plane, and these are found (typically) by examining 
one of the simplest Feynman diagrams which contributes to the vertex. Such a 
diagram is shown in Fig. 12.26. 
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This diagram gives the following amplitude: 

d4k -i fo h X 2  

= / (27r)4 (m: - k2 - 26) (mi - ( P  - k)2 - k) p2 - ( P  + 6 - k ) ’ )  ’ 
(12.102) 

( 
where p and P are the four-momenta of the initial heavy particle and bound state, 
respectively, and the masses are the same as the ones we introduced earlier in 
the chapter. Note that we have “turned the heavy particle around,” so that the 
amplitude we are considering is actually the virtual process 

m 2 + M ~ - + m 1 ,  (12.103) 

where mz is the antiparticle associated with particle 2, instead of the original 
process 

M B - + m i + m 2  . ( 12.104) 

This new amplitude is an analytic continuation of the original amplitude and is 
more convenient to use with the dispersion relation. 

The utility of the dispersion relation is evident if we use it to evaluate 
(12.102). As suggested by Fig. 12.26, we would expect the unitarity cut to begin 
at u = (ml + p )  , the threshold for the production of a real intermediate state 
consisting of two particles of mass ml and p, and hence the dispersion integral 
should have the form 

2 

( 12.105) 

where Im f(u’) is evaluated from the generalized unitarity relation. Taking the 
general form of the unitarity relation from Eq. (12.83), we have 

where p2 is the two-body phase space factor and k is the four-momentum of the 
intermediate on-shell particle 1. A quick estimate of the function for negative 
values of u can be obtained by approximating f(u) by a single pole at mass uo 
which would give 

( 12.107) 

Since the cut in (12.105) begins at u = (ml + P ) ~ ,  we expect uo 2 (ml + p)  . 
Now, evaluating u in the frame in which the bound state is at rest and assuming 
the state is weakly bound so that M B  2~ ml + m2 and c B  = ml + m2 - M B  is 

NO f(u) - . 
uo - u 

2 



12.10 DISPERSION RELATIONS AND ANOMALOUS THRESHOLDS 409 

small, give 

u = ( P  - $1 = M; + m i  - 2MB&(p) 

(1 2.108) 

where p2 is the square of the three-momentum of either of the bound particles in 
the rest system of the bound state. Inserting this into (12.107) gives 

r ( ~ g - m 2 ) ' - - p  M B  z g ( M B - m 2 )  2 - p 2 ,  
m2 

(12.109) 

where 6' = 2m1cB = 2ml(ml + m2 - MB) and all terms of order p4 have been 
discarded. If this estimate is to agree with the HulthCn model we discussed in 
Sec. 12.1, then we require 

uo - m i  + 6' 2 ( p  + 6)' . (12.1 10) 

However, if uo 2 (ml + p)', this would imply that ml  N 6, which is clearly not 
satisfied for a loosely bound state where 6 << ml.  Our estimate does not work! 

The resolution of this problem lies in the fact that the dispersion integral has 
an anomalous threshold which lies far below the normal threshold at (ml + p)'. 
It can be shown (Prob. 12.3) that if M i  > m: + m i  +pml,  which is certainly the 
case for the loosely bound system we are considering here, then the exact location 
of the threshold is not at uo = (ml + p ) 2  but is instead,at 

(12.1 11) 
where A(a,  b, c) = 2a2b2 + 2a2c2 + 2b2c2 - a4 - b4 - c4. In the limit m2 -, 00, 

the above expression becomes 

uo = m: + p2 + 2p6 , (12.1 12) 

which agrees precisely with the requirement (12.1 10). The dispersion estimate, 
including the anomulous threshold, is in beautiful agreement with the estimate 
derived from the wave function. 

To understand the origin of the anomalous threshold [Cu 611, it is helpful 
to regard the dispersion integral (12.105) as a function of the complex variable 
M i  and to analytically continue this function from small values of M i  (where 
there are only normal thresholds) to large values (where the anomalous thresholds 
will appear). To carry out the analytic continuation it is convenient to write the 
imaginary part, Eq. (12.106), in the following form: 

(12.113) 
- uo P(u") du"- . 1 

U mi - ( P  - i)' - - 
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Fig. 12.27 The complex u plane showing motion of u0, the end point of the contour C2, as 
M B  increases. The contour C1 begins at the fixed point (ml + p)2 and m i;t be deformed in order 
to avoid the moving singularity. 

This displays the imaginary part as a dispersion integral with singularities along 
the real axis from a to uo. The upper limit, uo, will turn out to be the same 
u g  which appears in (12.105), but the lower limit (which, in this application, is 
actually three numbers describing two disconnected line segments) will play no 
role in the subsequent discussion. The locus of singularities, and hence the value 
of u g ,  can be found from the zeros of the denominator, which is a function of 
both u and M i  

2 

m; - ( P -  i) = m; - ( M i  +m: -2EBE1 +2pkz) , (12.1 14) 

where z is the cosine of the scattering angle, EB and El arc the energies of the 
bound state and the on-shell intermediate particle 1 in the rest system of the final 
virtual particle 1, and p and k are the magnitudes of the respective three-momenta. 
',xpressing these momenta and energies in terms of the energy ,,h, one can find 
uo, which is the largest value of u at which the denominator (12.114) is zero 
(which occurrs at the end point z = 1 of the angular integrationj. (This is a 
straightforward but tedious calculation; see Prob. 12.3.) 

Now examine (Prob. 12.3) the behavior of this upper limit 210 as afunction 
of the bound slate mass M g .  Observe that u g  < (ml + p)2  for small M g ,  but 
that as M i  increases, uo increases to a maximum value of (ml + p)2  and then 
decreases. The critical value of M i  at which uo is equal to this maximum is 
easily found by differentiating uo with respect to M i  and is 

M,2,it = m: +mi + pm1 . (12.115) 

Furthermore, if we give M i  a small imaginary part (in order to deiine the singular 
denominators) we can show that uo moves in such a way that it circles above the 
point (ml + P ) ~ .  Specifically, when M i  = M& f if, 

Reacrit = (mi + p12 + o(f2) . (12.116) 

The significant fact here is that Re uc,it > (rnl + p) * ,  even if only by an in- 
finitesimal amount. Therefore, the moving upper limit of the integral (12.113) 
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anomalous region exchanged particle on-shell 

Fig. 12.28 
as in the spectator equation. 

The discontinuity in the anomalous region has the exchanged particle on-mass-shell. 

follows the path CZ shown in Fig. 12.27. If C1 is the cut from (ml + p)’ 
to 00 which defines the original dispersion integral (12.105), and if the overall 
dispersion integral (12.105) is to be a single analytic function for all values of 
A4& then this cut must be deformed into the complex plane in order to avoid the 
moving singularity at the end of the contour Cz as M i  increases beyond M$,. 
The contour Cl then surrounds the path of integration CZ. This deformation 
is illustrated in Fig. 12.27. As the bound state mass increases, the protruding 
branch cut continues to move to the left toward smaller values of U O ,  moving the 
anomalous threshold further and further toward m:, as suggested in the figure. 
This is the mathematical origin of the anomalous threshold; the physical origin 
has already been discussed. 

Finally, observe that the integrand of the new dispersion integral obtained 
from Eq. (12.105) in the anomalous region is the discontinuity (or imaginary 
part) of the dispersion integral for the exchanged particle pole, Eq. (12.104). But 
this integral is only singular when the exchanged denominator is singular, which 
means that the exchanged particle is on-shell. We see that the contribution in the 
anomalous region, which is closest to the physical region when u - m:, arises 
from the condition that the internal particle 2 be on-shell. In this way we recover 
the spectator equation, as illustrated in Fig. 12.28. Another way to describe 
the spectator equation is to observe that it sums up the anomalous contributions 
exactly. 

We now turn to the study of gauge symmetries and gauge field theories, 
which will occupy our attention for the remainder of this book. 

PROBLEMS 

12.1 Write down the spectator equation for a Dirac particle of mass m and a scalar 
particle of mass mz, exchanging a scalar meson of mass p ,  and show that it 
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Fig. 12.29 Ladder and ladder-vertex diagrams up to sixth order (see Prob. 12.2). 

reduces to a Dirac equation as m2 -.+ 00. Find the precise form of the Dirac 
potential corresponding to the OBE approximation for the kernel. 

12.2 Construct an equation which sums the ladder and ladder vertex correction 
diagrams shown in Fig. 12.29. Prove that your equation works by iterating 
it to eighth order and showing that all diagrams to this order are included, 
with the correct weight. 

12.3 Study of the anomalous threshold. 

(a) Show that the upper limit uo of the dispersion integral Eq. (1 2.11 3) is 
given correctly by Eq. (12.11 1). 

(b) Show that uo increases as M i  increases if M i  < rn: + rn; + pml, 
but if M i  > m: + mi + pml, uo decreases as Mg increases. Give M$ 
a small negative imaginary part and show that the movement of uo in the 
complex plane is as described in Sec. 12~10. 

(c) Using the techniques developed in Sec. 11.6, combine the denominators 
of the amplitude (12.102) into a single term, and do the integration over 
d4k. Study the zeros of the denominator (which locate the singularities of 
the amplitude) as a function of the Feynman parameters xi. Show that it 
has zeros for u < (ml + ~ 1 ) ~  only if M i  > m: + mi + pml. Locate the 
branch point and confirm that it is the same uo given in Eq. (12.11 1). 
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CHAPTER 13 

SYMMETRIES I I  

The remainder of this book is devoted to the study of dynamical symmetries and 
gauge field theories. We use the term “dynamical symmetry” to refer to any 
symmetry which is so restrictive that it completely determines the structure of the 
Lagrangian. The discovery that such symmetries exist, and that they actually seem 
to correctly describe the physical world, is one of the most remarkable, exciting, 
and successful of the recent developments in modern physics. 

The most striking example of such symmetries are the local, non-Abelian 
gauge symmetries. Quantum Chromodynamics, or QCD, is a theory based on the 
SU(3)  gauge group. This is the modern theory of the strong interactions, which 
has the remarkable property that the coupling constant approaches zero as the 
momentum flowing through the interaction vertex approaches infinity, a property 
r:ferred to as asymptotic freedom (which will be discussed in Chapter 17). Largely 
because of this, QCD has led to a plethora of successful predictions at high 
energies, which give us great faith in the theory even though predictions at low 
energies are hard to make. Another local gauge symmetry, based on the product 
of two groups, S U ( 2 )  x U(l),  leads to the unification of the electromagnetic and 
weak interactions into a single electroweak theory, referred to as the Standard 
Model. Here a new feature is added; the gauge symmetry is “hidden” because 
the ground state of the theory, the vacuum, spontaneously breaks the symmetry. 
The breaking is said to be “spontaneous” because the mathematical form of the 
Lagrangian forces the vacuum to break the symmetry; no additional assumption 
is needed. In spite of its modest name, the Standard Model has also been a major 
success, but because there are variations of this model, based on larger gauge 
goups with more parameters, which are also consistent with the data, it is less 
clear that the Standard Model will survive into the next century without changes. 

Both QCD and the Standard Model are formulated directly in terms of the 
elementary constituents of nature: the quarks and leptons. This makes it hard 
to extract predictions for the observed hadrons, which are complex composites 
of quarks. In this respect a third symmetry, c h i d  symmetry, which is only 
an approximate symmetry, has been very successful because it gives effective 
Lagrangians which can be expressed directly in terms of the observed hadrons. 
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The most successful version of chiral symmetry is also spontaneously broken. 
In this chapter we will discuss gauge theories, chiral symmetry, and spon- 

taneous symmetry breaking. The quantization of gauge fields will be the topic 
of Chapters 14 and 15. Discussion of the standard electroweak theory is also 
postponed until Chapter 15. Finally, we return to a more detailed discussion 
of renormalization in Chapter 16 and a derivation and discussion of asymptotic 
freedom in Chapter 17. 

We begin this chapter by showing how the familiar gauge invariance of QED 
can be understood to be a consequence of a local V (  1 )  gauge symmetry. The V (  1)  
symmetry group is Abelian. and as a result QED has a rather simple structure, and 
the incredible power of the idea of local gauge invariance is not clearly illustrated 
by QED alone. Only when we consider non-Abefian gauge groups does the rich 
structure of such theories become apparent, and we discuss these theories in the 
middle sections of this chapter. The chapter concludes with a study of chiral 
symmetry and how this symmetry can be spontaneously broken. 

13.1 ABELIAN GAUGE INVARIANCE 

We introduced gauge transformations very briefly in Eq. (8.10). There are two 
types of Abelian gauge transformations depending on whether or not 6 is a function 
of 2: 

0 = constant 

e = qX) (local gauge transformation) . 

(global gauge transformation) 
(13.1) 

Consider global gauge transformations first. 
If the Lagrangian is invariant under the gauge transformation, Noether’s the- 

orem tells us that there is a conserved quantity associated with this invariance. 
Gauge transformations always leave the space-time coordinates unchanged, and 
hence the Pi of Eq. (8.20) is always zero, and the conserved quantity associated 
with the gauge transformation, always referred to as a current, has the form 

(13.2) 

Note that, by convention, the sign of the current is opposite to the sign of 0’’ in 
Eq. (8.20). 

Now, a global Abelian gauge transformation is defined by 

(13.3) 
Alp‘(x) = Ap(z )  real fields, 
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where q can be a different number for each complex field (later, q will be associated 
with the charge). Note that there is only one infinitesimal parameter and that the 
group consists of multiplying complex fields by a complex number with unit 
modulus, which is the unitary group of one dimension, U(1). The infinitesimal 
form of the transformations are 

and hence R, = - iq&(x) ,  0, = iqGa(x) ,  and the conserved quantity associated 
with this V (  1) symmetry is 

In order for L to be invariant under the global gauge transformation, it is sufficient 
that it be bilinear in ?I, and $, or for scalar fields, dt and 4. 

For a free spinor theory, where 

the conserved quantity is -1 (13.6) 

which we recognize as the EM current, Eq. (10.2), provided we identify 

q = e .  (13.7) 

Hence we see that conservation of charge can be “understood” as a consequence 
of a global gauge symmetry of the theory. 

Local Gauge lnvariance 

We now generalize the gauge transformation, permitting the phase 8 to depend on 
the local space-time point, i.e., 8 = 8(x) .  This means that a gauge transformation 
can be carried out in one region of space-time without “knowing” what is taking 
place elsewhere. If it were the case that the value of the gauge phase angle had 
any physical significance, it would be essential that the gauge transformation be 
local, in order to allow time for information about any changes in the phase angle 
to propagate from one locality to another. However, the phase angle probably 
contains no information, in which case the requirement of local gauge invariance 
is merely the (very powerful) requirement that this phase angle can be completely 
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arbitrary from point to point, except for the requirement that it be a smooth, 
differentiable function. 

The Lagrangian will no longer be invariant under the local gauge transfor- 
mation unless it has a particular form. Consider the free fermion part first. We 
have 

where ape = 6 8 ( z ) / a d ‘ .  To eliminate the extra term and make C invariant, we 
need a vector field A ,  which interacts with the current and transforms in a special 
way. To find this special transformation law for the vector field, add an interaction 
of the form J,A’”: 

(13.9) 
e 

4 
C = C F - - - J ’ A ,  . 

Then, since J’ = J ,  

Hence C’ = C if 

(13.11) 

From now on we will take q / e  = 1, so that the gauge trdnsformation of the vector 
field is precisely what we wrote down for electrornag?etism in Sec. 2.2 [Eq. (2.15) 
with B = -Ac]. 

Next, consider the Lagrangian for the fields A,. A general form for the 
Lagrangian is 

where m7 is a possible mass term for the gauge fields and G,, is a possible 
symmetric combination of fields and derivatives, 

which, together with the antisymmetric combination F,,,, insures that the hypo- 
thetical Lagrangian (1 3.12) contains any combination of the independent terms 
a,A,d”A” and a,A,a”A”. Now the gauge transformation leaves FPy invariant, 
but 

G;,, = G,, + 2a,a,e ( 13.14) 
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and 
A’PA:, = A P A ,  + 2 ~ ~ q , e  + [ape] [awl . (13.15) 

Hence neither of these terms is gauge invariant, and = Lfi& requires that 
both m: = 0 and A2 = 0. The vector field must be massless and have a free 
Lagrangian of the familiar form A1 FP,FP”. where A1 = -4 corresponds to 
the conventional normalization used for the E M  field. We conclude that the 
requirement of local gauge invariance dictates the form of QED. 

13.2 NON-ABELIAN GAUGE INVARIANCE 

Next, we discuss how the concept of gauge invariance can be extended to non- 
Abelian groups. Ass::. 2 the “charged” fields have several components, such as 
isospin or color, describin; some internal degree of freedom, and consider a unitary 
transformation which transforms them into each other. This gauge transformation 
can be writtcn 

1c1’(5) = U@(z) 1 ( 13.16) 

where, for n degrees of freedom, U is an n x n matrix which is unitary. The group 
of such matrices can always be written as a product of the U(1) group (which 
in n dimensions is the product of a complex number with unit modulus and the 
n x n unit matrix) and the SU(n)  group of unitary matrices with unit determinant 
(a condition which fixes the phase). In this section we will limit discussion to the 
SU(n) group, so that we may assume det U = 1, and when a detailed example 
is needed, we will use the familiar S U ( 2 )  group. For SU(2)  the U matrix is 

u = e--lg37*C*(4 ( 13.17) 

where irz are the familiar Pauli matrices ( x i ) ,  the generators of S U ( 2 ) ,  g is the 
coupling constant, and c, (5) are three independent rotation “angles.” To simplify 
the formulas. we will use the notation 

E(z) = + T l € l ( X )  , (13.18) 

where E(z) is now a 2 x 2 matrix. 
If the Lagrangian is independent of the internal degree of freedom (which, 

for example, could be isospin or color), the free Lagrangian will be a sum over 
the Lagrangians for each component of the internal degree of freedom (denoted 
by the subscript l ) ,  and 

where, in the second expression, a unit matrix in n-dimensional space is implied. 
If the gauge transformation is global (c i  = const), the free Fermi Lagrangian is 
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invariant under the gauge transformation as it stands (because U is unitary), and 
the conserved current follows from the observation that the A and R of Noether's 
theorem are 

so that the conserved current (1 3.2) is 

or I 

(13.20) 

(13.21) 

If the SU(2)  space is isospin, this is the conserved isospin current. 
If the symmetry is to be a focal one, CF is no longer invariant. By analogy 

with the the discussion of local Abelian symmetry, we expect to have to add some 
vector gauge fields to make the Lagrangian invariant. First note that 

(13.22) 

dut ,  U'U = 1 implies that 

(a$+) u + Ut (a$) = 0 (13.23) 

and hence the two terms can be combined to yield 

el, = C F  + ?j iyp Ut (aJ) 1c, . (13.24) 

Since Ut (a,U) is a 2 x 2 matrix, the generalized gauge fields added to the 
Lagrangian must also be a 2 x 2 matrix, and there must be one gauge field for 
each generator of the group: 

I I A,(s) = i ~ i A t ( z )  1 (13.25) 

so that for SU(n) ,  there are n2 - 1 gauge fields. Adding such a gauge field 
interaction to the Lagrangian and demanding gauge invariance give 

(13.26) 
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Hence, the required transformation law for the gauge field is 

i 
9 

A,,(z) = UtA',(z)U - -Ut (a,,U) , 

which can be rewritten 

(13.27) 

This is the transformation of A,, under a jni te  gauge transformation. For an 
injnitesirnal transformation, we expand U, 

u = 1 - ig &(s) , (13.28) 

and retain only first order terms, giving 

q 4  = A p ( 4  + a p w  + i g  [ A , ( z ) , W l  * (13.29) 

Using the operator form of A,, and the group commutation relations 

[ L T .  2 1 1 2  17.1 3 = i f . .  r j k f r k  1 (13.30) 

1. here the Ez3k are structure constants of the SU(2)  group [and would be replaced 
oy the appropriate structure consrunrs in the SU(n) case], Eq. (13.29) can be 
written 

1 I 

Note the presence of the new term in this gauge transformation which arises 
because the structure constants of the group are not zero. Also, note that A; must 
transform non-trivially even if et(z) = constant. This is associated with the fact 
that A; now transforms as a vector under the gauge group as well as a Lorentz 
four-vector. 

It is convenient at this point to introduce covariant derivatives which have 
nice properties under the gauge transformation. We define 

(13.32) 
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Then, under a local non-Abelian gauge transformation, 

(13.33) 

These relations follow from a straightforward calculation: 

Using this notation it is almost trivial to see that 

(13.35) 

is gauge invariant. 
To complete the construction of the full gauge invariant Lagrangian, we must 

find the Lagrangian of the gauge fields themselves. This must be separately gauge 
invariant under the gauge transformations (1 3.27) of the gauge fields. One idea is 
to construct this Lagrangian by simply summing electromagnetic type Lagrangians 
over the n2 - 1 gauge fields. This would give 

Equation (13.36) will eventually work, but only if the definition of F;, is suitably 
generalized. Before finding the correct definition, note that if we define an F,, 
matrix by 

F,,(x) = +iF;,(X) (13.37) 

we can rewrite the field Lagrangian in a very convenient form, 

( 13.38) 

(13.39) 

This form shows that a sufficient condition for the gauge invariance of iCfield is 
that 1 FLU = UF,,Ut (13.40) 
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since the trace is invariant under unitary transformations. 
It can be readily seen that the simple definition 

F,, = a,A, - a,A, (13.41) 

does not work. It turns out that the generalized definition with covariant deriva- 
tives, 

I 1 

~~ ~ 

does work, and this will be shown now. Consider 

F' = D' A' - D' A' 
CtV P V  V P  

= D; (uA,u~) - D; (uA,u~) + L D ;  (a,u) ut - !D; (a,q ut . 
9 9 

(13.43) 
The original discussion of the covariant derivative assures us that 

DLUA, = UD,A, ( 13.44) 

so that the first terms can be quickly reduced, giving 

FLU = UF,,Ut + R (13.45) 

where the remainder term, R, consists of the action of the partial derivatives in 
*,ie first two terms of (13.43) on Ut [all that remain after using (13.44)] plus the 
last two terms of (1 3.43). Simplifying R gives 

i 
9 9 

9 

R = UA, (apu+) - UA, (a,ut> + I D ;  (a,u) ut - -D; (a,u) ut 

= UA, (a,ut> - UA, (a,ut> + t ap  [(a,u) ut] - j a w  [(a,u) ut] 
i 
!I 

UA,U~ + - (a,u) ut) (a,u) ut 

+ I ((a,a,u) ut + (a,u) (a,ut> - (a,a,u) ut - (a,u) (a,ut>> 
9 

- UA,Ut (&U) Ut +UA,Ut (8,lJ) Ut - - 
-ua,u+ -ua,u+ 

(13.46) 

-ua,u+ -ua,u+ 
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This proves that F,, defined with covariant derivatives has the desired transfor- 
mation properties. Writing this out gives 

F,, = a,A, - &A, + ig [A,, A,] . (13.47) 

Using the commutation relations, the individual field components become 

(13.48) 

Note the presence of the extra term which depends on g. Triis gives a theory 
with very different properties from electromagnetism. Such a theory is called L 
Yang-Mills theory. 

13.3 YANG-MILLS THEORIES 

The discussion of invariance under the local gauge group S U ( 2 )  can be extended 
to larger groups SU(n) .  A theory which is invariant under the local gauge group 
SU(n)  is referred to as a Yang-Mills theory. Quantum Chromodynamics (QCD) 
is a Yang-Mills theory with the gauge group SU(3) .  

To describe the Yang-Mills theory corresponding to the gauge group SU(n) ,  
:moduce the SU(n)  gauge transformation U, 

where ;Aa are the generators of the group, with a running from 1 to n2 - 1. If 
the generators are defined by 

(13.50) 

where fabc are the structure constants of the group (they are antisymmetric in all 
three indices), then all the discussion given in the previous section can be carried 
over with minor modifications. If we define 
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H 1 
C = $(x) [ ; y p D p  - m] Q(z) - tr [ F p u ( x ) F p ” ( z ) ]  , 

the full Yang-Mills Lagrangian can be written 

(13.52) 

where the fermion part of the Lagrangian is explicitly 

and the gauge field tensor has components 

F,”, = apA: - &A; - g fabcALAi . (13.54) 

These expressions are generalizations of Eqs. (1 3 . 3 3 ,  ( 1  3.39). and (1 3.48). 

Yang-Mills theories have a number of special properties: 

0 For the SU(n)  gauge group, each fermion (f)  has n internal degrees of 
freedom, and is coupled to n2 - 1 vector gauge fields (9). From (13.53) the 
coupling of the gauge fields to the fermions has the form 

(13.55) I I ffg coupling Cff, = -9 $7” 4 X a  Q A; . 
I I 

0 The part of the Lagrangian which describes the gauge fields (the Fi,Fipu 
piece) includes self-couplings of these fields, and, by itself, is a non-trivial 
theory (sometimes referred to as a pure Yang-Mills theory). Expanding out 
the gauge field part gives 

.Cfield = -$apAa” (apAz - d,A;)  + CJ + C4 , (13.56) 

where the two types of self-couplings are 

QED is an Abelian theory, and hence there are no self-couplings. The ex- 
istence of the gauge self-couplings is a unique consequence of non-Abelian 
gauge invariance. 
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0 the operator 

- i g  yp ;Aa  

Fig. 13.la at each vertex where a gluon with po- 
larization p and color a is emitted from 
or absorbed by a quark. 

0 the operator 

at each 3g vertex, where all momenta 
flow into the vertex and the momenta, 
spin polarizations, and colors are as 
shown in Fig. 13.lb. 

Fig. 13.lb 

0 the operator 

Fig. 13 .1~  

for each 4g vertex, where the spin polarizations and colors are as 
shown in Fig. 13.1~.  

Fig. 13.1 
Appendix B. 

Three of the Feynman rules for QCD. These, and the others, are summarized in 
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0 There is only one coupling constant, which enters into the ffg coupling, 
the 39 coupling, and the 49 coupling. These theories will not be gauge 
invariant if these three couplings take on arbitrary values. 

Quantum Chromodynamics 

As previously noted, QCD can be defined as the Yang-Mills theory with S U ( 3 )  
local gauge invariance. The fermions are called quarks, and each Jlavor or type 
of quark has three internal degrees of freedom called color. There are n2 - 1 = 8 
vector gauge fields called gluons. 

The interactions between the quarks and gluons in QCD are a special example 
of those alreadv given in Eqs. (13.55) and (13.57) and suggest the additions to 
Feynman Rule 1 shown in Fig. 13.1. While these rules are some of the interactions 
which arise in QCD, i t  turns out that a complete discussion of the quantization of 
QCD will lead to several additional Feynman rules, which we are not equipped 
to introduce now. We will return to this topic in Chapter 15, where a systematic 
discussion and derivation of the Feynman rules for QCD will be given. 

13.4 CHIRAL SYMMETRY 

The last of the continuous symmetries which will be discussed in this chapter is 
chiral symmetry. Unlike the gauge symmetries discussed so far, chiral symmetry 
is believed to be only an approximate symmetry of the strong interactions (but a 
very good approximate symmetry). A simple model which displays this symmetry, 
,he sigma model, will be discussed in the next section. Using this model, we will 
also discuss spontaneous symmetry breaking, a mechanism of great importance 
in physics. It turns out that a combination of gauge symmetry with spontaneous 
symmetry breaking is the basis for our present understanding of the electroweak 
forces. 

We begin by considering the following transformations (referred to as chiral 
transformations) of a fermion field with two internal degrees of freedom (different 
from color): 

= e - i g 5 7 5 + , c , q ,  . (13.58) 

This looks like an S U ( 2 )  gauge transformation but is quite different because of 
the presence of the y5. The y5 operates on the Dirac components of I), while the 
T~ operates on the additional two-dimensional space corresponding to two internal 
degrees of freedom of the fermion, which could be isospin but more generally is 
referred to as aflavor space. In applications, the flavor space is usually isospin, 
which can be 

(:) for nucleons or (1) for quarks 
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We will denote the chiral transformation matrix by 

Note that U5 is unitary, but because {yp1y5}  = 0, 

yfiu5=uly'l . (13.60) 

[This can be proved by expanding U5 in a power series, and noting that 
(y5)"yp = (-l)nyp (y5)", and resuming the power series.] Hence $ and 6 
transform in the same way, 

(13.61) 

so that under a global transformation, the kinetic energy term is invariant under a 
chiral transformation 

but the mass term is not. 

Therefore, in constructing a Lagrangian which is invariant under chiral transfor- 
mations, one usually begins by assuming that the fermion masses are zero. The 
presence of a small fermion mass term provides a mechanism for breaking chiral 
symmetry. 

In discussing chiral symmetry, it is customary to also include the usual 
(global) SU(2)  gauge symmetry, which is also a symmetry once we have $ fields 
with two internal degrees of freedom (two flavors). Hence the overall symmetry 
is designated SU(2)  x SU(2); one SU(2)  with a y5 in the generator and the other 
without a y5. Alternatively, these combined transformations are equivalent to the 
transformations 

1 (13.64) uL uR = e - i g ~ p -  4 7 , ~ ~ ~  e - w R p +  j l , ~ , ~  

where the operators P+ in the exponents are projection operators, 

(13.65) 

and the infinitesimal parameters E& and c R  are independent. This group is des- 
ignated s U ( 2 ) ~  x su(2)R, with one Scr(2) group containing the "left-handed" 
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projection operator P- and the other the "right-handed" operator P+ (recall the 
discussion of right- and left-handed spinors in Sec. 5.11). 

An understanding of the physical meaning of chiral symmetry follows from 
the combined form (13.64). Chiral invariance says that an SU(2)  gauge symmetry 
can be independently realized on the two spaces projected out by the P* oper- 
ators; i.e., the gauge transformations on these two subspaces can have different 
parameters c R  and e, as written in Eq. (13.64). For this to be true, the helicity 
of any particle must be conserved by all interactions, and sufJicient conditions 
for this to be true are (1) the fermions are massless, so that their helicity can- 
not be changed by bringing them to rest and reversing their direction of motion, 
and (2) the interactions do not explicitly flip the spin. We see immediately that 
helicity conservation places strong restrictions on the interactions. However, in 
Sec. 13.6 we will show that interactions can be constructed in which the M S S  of 
the fermions is non-zero. 

The conserved current associated with chiral symmetry is found from the 
infinitesimal transformations, for which 

P i  = 0 

R,i = -2g547i (7%)) a 
aaa = -2g5 (475)>, 371 . 

( 13.66) 

I 

Hence the conserved current is 

For massless fields the fermion Lagrangian is 

and the conserved current is an arid current: 

(1 3.68) 

The ordinary S U ( 2 )  gauge symmetry gave a conserved vector current [recall 
Eq. (13.21)] 

J" = g $T'~T,$ 

so that together we have conserved vector and axial vector currents. 
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13.5 THE LINEAR SIGMA MODEL 

We saw in the last section that chiral symmetry seems to imply that the fermions 
of the theory must be massless. However, this restriction can be eliminated by 
the construction of a theory in which the fermion mass arises as part of the 
interaction. There are many ways to do this. One way is to construct a theory 
in which the fermions start off as massless and then to generate fermion mass 
through spontaneous symmetry breaking. This is the route we will follow in 
the next two sections. In this section we will construct the linear sigma model, 
which is a theory of massless “nucleons” interacting with mesons, and then, in the 
next section, discuss the mechanism of spontaneous symmetry breaking and show 
how this mechanism can generate nucleon mass. Another way to build a chirally 
invariant theory with massive fermions is to construct the interaction in such a 
way that mass is included from the start. An example of such a model is the 
non-linear sigma model, which will be discussed in Sec. 13.7. Both the linear and 
the non-linear sigma models are very useful in understanding the interactions of 
nucleons with light mesons and in understanding the pion, which plays a special 
role in the description of the strong interactions at low energies. 

We therefore begin by considering the interactions of the Fermi fields with 
mesons, particularly the pion. To be slightly more general, assume the mesons 
are self-conjugate scalar or pseudoscalar mesons. The interaction is therefore of 
the form 

Lint = -4M11, , (13.69) 

where M is a superposition of scalar and pseudoscalar meson submatrices 
IGL 601: 

M = 9uou + igny50,  I (13.70) 

where gu and gA are real constants, o0 and are 2 x 2 Hermitian matrix fields 
in the flavor space, and the i multiplying the on term comes from the fact that 
hermiticity implies 

C!n, = -ll,tMtro.$ = -GM+ (13.71) 

so that 
yoMtyo = M . (13.72) 

It is the fact that M depends linearly on the meson fields which is the origin of 
the term linear sigma model. 

Next, we determine the transformation laws of the meson field matrix from 
the requirement that S U ( 2 )  x SU(2)  be a good symmetry of the interaction. The 
transformations in the S U ( 2 )  gauge group will be denoted U and can be written 
[recall Eq. (13.17)] 

where in this section we adopt a new convention E = T ~ C ~ .  Symmetry under the 
gauge group implies that 

M’ = UMUt , (13.73) 

u = e - t g + + , € ,  = e-w+E 
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which gives 
0; = UQUU+ 0; = U@,U+ . (13.74) 

Hence Ou and 0, can be expanded in terms of 1 and the SU(2)  generators. It 
turns out to be sufficient to choose $a to be pure isoscalar and 0, to be pure 
isovector, so that 

= 1 d u  , 0, =7i@, * (13.75) 

[This is the reason for the names (T and 7r. It is also possible to make the 
Dirac scalar interaction pure isovector and the Dirac pseudoscalar interaction pure 
isoscalar, but this will not be discussed here. ] 

Now, examine the implications of chiral symmetry. Require 

Lint = -$'MI$' = -4 UsM'Us$ = -$M$ = Lint . (13.76) 

Hence, under the chiral transformation U5 we require 

M'=USMUL . (13.77) 

= m, & = E/ltl, and 0 = ; g g ( ~ I ,  
2 

Using (y5) = 1, E2 = Q E ~ ,  and denoting 
we can obtain a compact form for Us, 

US = 1 - i y 5  3 9 5 ~  - fr ( i g . 5 ~ )  2 + i iy5 ( i 9 5 ~ )  3 + . . . 
= cos e - iy5E sin 8 . (13.78) 

Hence, the transformation law (1 3.77) can be written 

g a 4 L  + 2g,y50i = (case + iy5E sine) (godu + ig ,y50 , )  (cose + iy5E sine) 

=gu& [cos 28 + iy5E sin 281 

+ ig,y5 [q,, cos2 e - E @,E sin2 81 - 9, 3 sin 28 {El $,} . 
(13.79) 

Using 

where 4, = (dIl &, 4:) is the three-vector in isospin space (not to be confused 
with the matrix 0), gives 

&On& = 2 (4, . i) E - 0, , 

go$& + igry5$; =gU& cos 28 - g, (+, . i) sin26 

+ i y5  [gudu E sin 28 + g&, - 29, (4, . i) E sin2 e] . 
(13.80) 

Substituting 2 sin2 0 = 1 - cos 28 into the last term gives finally 

4; = du cos 26 - ( E) (4, . ;) sin 20 

4; = [d; - t i ]  

(13.81) 
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The transformation is therefore a rotation in four-dimensional space through angle 
28 in the plane defined by Cpu and <. The components of +s perpendicular to < 
are unchanged. 

The transformation above looks very complicated but is much simpler when 
written out to first order in E. It becomes 

4: = 4 u  - g5 (”) ( 4 ; 4  

4:: = 4; + Q5 (k) du € 1  

9.3 infinitesimal. (13.82) 

Note that the chiral rotation mixes the c7 and one of the T components of the four- 
dimensional field vector (&,d;), and hence, in the linear sigma model, both 
fields must be present in order to have chiral invariance. 

Now, examine the kinetic energy part of the Lagrangian for the T and CJ 

fields. Since these fields are self-conjugate, the KE term must have the form 

C K E  = & ~ a % ,  + ga,d;av; . (13.83) 

This is clearly invariant under the gauge group SU(2) .  Invariance under an 
infinitesimal chirsl transformation requires 

I t  , I t  
CLE = a p,4:a”4: +a,@$ 4=] 

= cKE + g5 [ 9. (a,4;> a, (4u 6 , )  - 97. (a,du) a, (4; 4 . (13.84) 
Qs 90 

Jince E ,  is a constant, the terms proportional to g5 have the same structure and 

(13.85) 

Hence these will cancel, and CKE will be invariant if go = gs. Furthermore, as 
we did in our discussion of gauge invariance, we will take g5 = g x ,  so that there 
is only one coupling, 

Qu = g5 = Qrr . (13.86) 

The meson matrix can therefore be written M = ga 0, where the new, simplified 
meson matrix is 

$ = 4 u  + i Y 5 7 4  ( 13.87) 

The trace of $$+ in flavor space can be used to define a chirally invariant length 
I$L 

(13.88) 
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and also leads to a compact notation for the KE term, 

L K E  = a tr (ap$ PQ+)  , (13.89) 

which makes it obvious that this term is invariant under chiral transformations 

~k~ = tr (ap$/ P+") 
= a t r  (a. (u:@J:) a. (U5@tU5)) 

= a t r  (u! a p @ a p $ +  ~ 5 )  = L K E  (13.90) 

because U5 is independent of 2. Using this notation, we can write the chirally 
invariant Lagrangian for the linear sigma model in a very compact form: 

where m is the meson mass and V is some "potential" function which describes 
the meson-meson self-interactions in a chirally invariant way. A simple choice 
for the self-interaction potential is 

v (ioi2) = - ; ~ ~ i $ i ~  (13.92) 

Nhere X2 > 0 in order to have a stable vacuum (see the next section). 
Using the simplification (13.86), we summarize the results. We have found 

that SU(2)  x SU(2)  symmetry leads to a Lagrangian of the form Eq. (13.91) with 
the meson matrix Eq. (13.87). This Lagrangian contains three parameters: one 
fermion-meson coupling constant g", a meson mass m, and a 44 type meson- 
meson interaction strength X2. The meson matrix @ can be expanded in terms of 
four real fields and satisfies the following global transformation laws: 

( 13.93) 

In terms of the four real fields, the explicit form of the finite chiral U5 transfor- 
mation is 
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JS” = g x  1Ly95*7*dJ - gT (a”P0) 4; + ga ( W r )  40 7 

and of the infinitesimal chiral transformation is 

I 1 

(13.96) 

(13.95) 

The conserved axial vector current associated with this Lagrangian now in- 
cludes two additional terms from the meson fields: 

R T l  = -gn& for 40 
= +gx406,3 for d4 . 

We now turn to a discussion of spontaneous symmetry breaking. 

(13.97) 

13.6 SPONTANEOUS SYMMETRY BREAKING 

If the linear sigma model is to be applied to the study of nucleons, as is the 
intention, it is necessary to find some way to produce a significant fermion mass. 
This can be done by a mechanism called spontaneous symmetry breaking [Go 61, 
NJ 611, in which the symmetry is broken by the vacuum and not by the Lagrangian. 
i’his will produce a fermion mass. This mechanism is of great importance in 
modern physics; in particular, it is the mechanism by which gauge bosons W* 
and ZO acquire mass, and this discussion therefore has quite wide validity. 

First, look at the classical limit of the meson Hamiltonian obtained from the 
linear sigma model. In the long wave length limit, when aP4 21 0, the minimum 
energy for the mesons will occur when 

is a minimum. (Note that Xz must be positive in order that H+ have a well defined 
minimum, and this is the reason for the requirement X2 > 0 alluded to in the last 
section.) The H+ surface is a quartic with a minimum at 

(13.99) 

If the meson masses are physical, so that m2 2 0, this equation has only one 
solution, and the minimum is at 101 = 0 [see Fig. 13.2Al. Recalling that 
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Fig. 13.2 The Hamiltonian H b  as a function of 4 for two signs of the mass term. 

the requirement that 141 = 0 automatically implies that the value of all the classical 
fields in the minimum energy state (the vacuum) is zero: 

g5c = 4,, = 0 (for the vacuum) . ( 13.100) 

This is in agreement with our intuition that the vacuum should have no ~7 or T 

particles present. 
Consider now the interesting case when m2 < 0, so that -m2 > 0. This 

appears to correspond to choosing an unphysical meson mass, but as we shall soon 
see, this is not really the case. In this case, the H+ curve now has a minimum for 
a finite value of 141 = v, determined from the solution to Eq. (13.99): 

(13.101) 

This case is illustrated in Fig. 13.2B. The Lagrangian is still mathematically in- 
variant under chiral transformations, but the vacuum no longer is. This is because 
@I = v implies that at least one of the four fields (do, 4;) must be non-zero, 
and hence, in general, we cannot treat all four components of 4 in a symmet- 
ric way. The choice m2 < 0 forces the vacuum to break the chiral symmetry 
spontaneously, and this is the origin of the term spontaneous symmetry breaking. 

We choose do to be non-zero and introduce a new field which is 

s = & - v .  (13.102) 
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Note that s = 0 for the vacuum state, corresponding to the intuitive notion that 
the vacuum contains no s particles. Hence s, and not @,,, is the appropriate field 
to use if we want the Lagrangian to describe the interactions of physical particles, 
which are not present in the vacuum. Since u is constant, the Lagrangian (13.91), 
expressed in terms of the field s, becomes 

1 
2 

- g,qi [ s  + iy5.r. 4J 11, + - [a,saPs + ap&a”&] 

- - [s2 + $3 - X2vs [s2 + &] - X2v2s2 + constant . (13.103) A2 2 

4 

Note that mass terms for  the fermion fields and for the s field (with the correct 
sign) have been generated but that the pion mass term vanishes. Introducing the 
parameters 

Ad = gnu rn? = 2 ~ ~ 2 1 ~  (13.104) 

and dropping the constant term, which contains no physics, give a new Lagrangian 
with physically interesting parameters: 

g,mo 2 2  (s2 + 4;)2 - 
[s2 + 4 3  2 ivl 

-- 
8 M 2  ( 13.105) 

Remarks 

(i) This Lagrangian is still chirally invariant (only the vacuum breaks the sym- 
metry). Note that the mass of the pion is zero. There turns out to be a deep 
reason for this. Whenever a symmetry is spontaneously broken, a massless boson 
is always left behind. These are referred to as Goldstone bosom [Go 611. The 
fact that the pion mass is so small is often believed to reflect the fact that chiral 
symmetry is “almost” an exact symmetry. 

(ii) The above Lagrangian has many desirable features for nuclear physics. It has 
a nucleon mass and a reasonable x N N  coupling. The pion mass can be made 
non-zero by breaking the symmetry slightly. The principal problem is that it has 
a sigma meson, which is not observed in nature. But this problem can also be 
solved by defining a new pion field. We turn to these issues now. 
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13.7 THE NON-LINEAR SIGMA MODEL 

The linear sigma model requires both a pion and a scalar (sigma) field in order 
to maintain chiral symmetry. The presence of the scalar field makes the model 
less than satisfactory for low energy applications, becausz, at low energy, scalar 
particles exist only as very broad resonances with masses in the neighborhood of 
1 GeV, very much larger that the pion mass. It does not seem natural for such 
particles to play the fundamental role suggested by the linear sigma model, and 
in this section we will discuss how the sigma model can be reformulated so that 
it contains no sigma mesons. 

The most obvious idea on how to eliminate the sigma meson is to let the 0 

mass become infinite (since it is a free parameter); we would then hope that all 
contributions from 0 exchange forces would be vanishingly small. For example, 
the Lagrangian ( 1  3.105) predicts a 0 exchange force in N N scattering which goes 
like 

M N N  N -~ ’* -0  ( a s m $ + m )  . (13.106) 

However, this idea does not work because the sigma does not decouple from the 
pion. This is because the 7rrs (or a) coupling also is proportional to mz, so the 
0 exchange force between pions cannot be ignored: 

2 

m2 - 2 u 4  

2 2  

==+ Qnma 03 (as,,,$ + m) . (13.107) 
1 

4M2 

Cince the sigma couples to the pion, and the pion to the nucleon, it cannot be 
eliminated from the Lagrangian (1 3.105). 

We can eliminate the sigma, however, if we are willing to consider a meson 
matrix @ which is non-linear in the pion fields. This approach was developed by 
Weinberg in the late 1960’s [We 681. The idea is to exploit the fact that the length 

is invariant under chiral rotations, and hence if we set it equal to a consrant 
(which is denoted fT), we still preserve chiral symmetry, but & is no longer an 
independent field but is related to CpT by 

(13.108) 

With this constraint, we can construct a Lagrangian which depends on the pion 
field only, but the replacement of & by a function of dn will give a meson matrix 
non-linear in the pion field. The non-linearities are quite severe; the Lagrangian 
will include all powers of the pion field. 

Theories based on a non-linear Lagrangian of the type discussed in this sec- 
tion cannot be quantized using the methods we have discussed in the preceding 
chapters and require the techniques we will discuss in Chapter 14. Generally, these 
Lagrangians give simple reliable results when used in tree approximation, but the 
calculation of loops with such a Lagrangian leads to many infinities which can 
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only be removed by introducing many renormalization constants. Recently a sys- 
tematic method for absorbing these renormalization constants into undetermined 
parameters (known as chiral perrurbarion rheory [DW 691) has been developed. 
It can be used to calculate the interactions of very low energy pions and nucleons 
with considerable reliability. 

Once the idea of a non-linear Lagrangian is accepted, we have great freedom, 
and a new pion field A can be chosen so as to give a convenient form for the 
Lagrangian. Using the notation 

7 . A  
y=-  = r a y  , 

2f* 

two forms which appear frequently in the literature are 

( 13.109) 

(13.110) 

where y2 = y . y  = y2. Both of these forms satisfy the constraint (13.108) and, 
up to second order in the pion field, are equal to 

(13.1 11) 

in agreement with Eq. (13.87) and the constraint (13.108) if we identify $n 2 A. 

Hence the two fields & and R differ only in higher order. 
Starting from the linear sigma model Lagrangian (13.91), we consider the 

Lagrangian 

(13.1 12) 

Note that this Lagrangian is identical to (13.91) except that terms involving 1 $ 2 1 2  
have been dropped because lo2 l2 = f," is a constant and is no longer a dynamical 
variable and cannot be used to construct the Lagrangian. 

Next we simplify this Lagrangian by reducing the meson kinetic energy term. 
Note that 

-y2 + iy5 y 
@ z = f * + 2 f n  ( 1 + Y 2  ) 

(13.1 13) 
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Hence, recalling that tr(y8,y) = 2y . ad,  we have 

With this simplification, the Lagrangian (13.1 12) can be written 

115) 
where, as for the linear sigma model with spontaneous symmetry breaking, 

M = g s f n  . (13.1 16) 

The chirally symmetric Lagrangian (1 3.1 15) has massive fermions right from 
the start. However, the pion mass is zero. In some respects this is a reasonable 
anproximation for low energy interactions, because the mass of the pion is so 
m c h  smaller that the masses of any other srrongly interacting particle. In many 
other respects, however, the pion mass should not be neglected, and we will see in 
the next section how a pion mass term may be added and discuss the consequences 
of adding such a term. It turns out that, because = constant, we cannot add 
a pion mass term without breaking chiral symmetry. 

At low energies it is a good approximation to neglect the higher order terms 
in the Lagrangian. Keeping terms up to order y2 M r2 only, the Lagrangian 
becomes 

The inclusion of the g ; r 2 $ 4 / 2 M  term in this Lagrangian corrects some of the 
bad features of the elementary y5-type r N N  coupling (see Prob. 13.3). It is what 
remains of the contributions from the original meson, and gives rise to a new 
“contact” interaction which contributes to T-N scattering (see Fig. 13.3). When 
this new contact interaction is added to the direct and exchange nucleon pole terms 
(Prob. 10.8) chiral symmetry is restored and a good description of low energy 
T-N scattering obtained. 
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Fig. 13.3 Additional Feynman diagram 
corresponding to the m N N  contact term. 

We conclude this section by finding the form taken by the infinitesimal chiral 
transformation, Eq. (1 3.93, when applied to the non-linear sigma model, and 
the form of the conserved axial vector current. To find the infinitesimal chiral 
transformation, apply (1 3.95) to the meson matrix 02, giving 

gx (”) 1 - y’2 - 1 - y2 
1 + y’2 1 + y2 1 +y2  

2y’ 1 - Y  2 y‘i 

1 + y’2 1 + y2 

(13.118) 

- +gx  (G) €1 . 

These two relations are consistent with each other. To find the transformation of 
y implied by them. note that the first relation can be simplified, 

1 1 

and substituting this into the second gives 

Replacing y’ by y in the term of order E gives the following infinitesimal trans- 
formation of w: 

I I 

It is an easy matter to recover both of the Eqs. (13.118) from this transformation 
law. 

The conserved axial vector current implied by the Lagrangian (1 3.115) can 
be determined from the infinitesimal transformation (13.1 19) of the jth component 
of the pion field, 

Gji = g x f r  [bji(l - Y’) + 2yJyi] 9 (13.120) 

and is composed of the same ferrnion term as before together with a new meson 
term, 
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If we expand the new meson current in powers of T’, keep the lowest order term 
only, and compare it with the hadronic axial vector isospin current 7+&f~~$r ,Q 

(i.e., remove the overall factor of g,, which gives a strength appropriate for the 
strong interactions only), we obtain 

which is precisely the current used for the calculation of the weak decay of the 
pion in Sec. 9.10 (the field 4 in Sec. 9.10 is the same as x). Our discussion here 
provides the justification needed for the use of the current (9.132). 

We turn now to a discussion of the explicit breaking of chiral symmetry and 
the origin of the pion mass. 

13.8 CHIRAL SYMMETRY BREAKING AND PCAC 

Chiral symmetry can be broken in two ways: (i) spontaneously, through the emer- 
gence of a vacuum state which is not chirally invariant, and (ii) explicitly, through 
the presence of a small term in the Lagrangian which is not chirally invariant. 
Spontaneous symmetry breaking was discussed in detail in Sec. 13.6, and in the 
preceding section we saw that the consequences of spontaneous symmetry break- 
ing, namely the generation of fermion mass and the emergence of a massless 
Goldstone boson (the pion), could also be obtained directly from a non-linear La- 
grangian which is exactly symmetric and for which the vacuum is also symmetric. 
So spontaneous symmetry breaking does not really remove the symmetry from 
the theory. In particular, there still exists a conserved axial vector current. In 
,his section we discuss explicit chiral symmetry breaking. When a symmetry is 
explicitly broken, the current is no longer conserved. Another consequence of 
breaking chiral symmetry explicitly is the possibility of having both fermions and 
a pion with finite mass. 

Since the breaking of chiral symmetry is “small” (in a sense to be precisely 
defined shortly), the axial vector current is “almost” conserved, or “partially” 
conserved. This is referred to as PCAC, for partially conserved axial-vector 
current, and the precise statement of PCAC amounts to a specific statement about 
the extent to which the conservation of the axial-vector current is broken. This 
relation takes the form 

aPJLP = rn:& , (13.122) 

where 4i is proportional to the pion field and m, is the pion mass. Note that the 
current is conserved if the pion mass is zero, and that if the pion mass can be 
regarded as a small quantity, the current can be thought of as “almost” conserved. 
The consequences of the PCAC relation (13.122), initially put forward as a hy- 
pothesis, were among the earliest observations which led to an interest in chiral 
symmetry. 

In this section we will see how the PCAC relation emerges from both the 
linear and non-linear sigma models. 
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PCAC in the Linear Sigma Model 
To prepare for a discussion of explicit symmetry breaking in the linear sigma 
model, we first prove, from the equations of motion for the fields, that the axial 
vector current (1 3.96) is conserved. The equations of motion for the fields in the 
linear sigma model can be quickly found from the Euler-Lagrange equations and 
are 

i B + =  gr@111 

i G 8  = - gnG@ 
c 

( 13.123) 

where V’ = d V / d l d l .  Using these equations, 

’ 2 -  5 1  
= vT+ Y 2 7 4  + + h5 

+ ga  [m24,4; - 2 ~ ‘ 4 , G  + g r G + 4 i ]  
- gn [m24;4, - 2~’$ ;4 ,  + ig,4r5.r1$4,] 

[r5714u + i4:] + + g,G [ g r 4 1  - ig,r57,4,] @ = 0 .  (13.124) 

Now consider the effect of adding an explicit chiral symmetry breaking term 
of the form 

lbreaking = -c$u (13.125) 

tr, the linear Lagrangian. Then the axial vector current will no longer be conserved. 
The new term only affects the equation for &, which becomes 

= 

C b  + m24, - W4, + g T 4 +  = -c , (13.126) 

and this new equation, when used in the calculation of Eq. (13.124), adds an extra 
term to 8, Jib,  giving 

8, Ji’ = gr c& . (13.127) 

The non-conservation is seen to be proportional to the pion field. 
To determine c (in particular, to show that it is proportional to m:), consider 

the effect of this new term on the spontaneous symmetry breaking described in 
Sec. 13.6. Break the symmetry of the vacuum by choosing 4; = 0 and 4, # 0 
as before. Then the new vacuum value of the sigma field is determined from the 
minimum of the sigma part of the meson Hamiltonian: 

H+o = fm2& + iX242 + c&, 

- d H  = m  2 q 5 , + P & + c = O  . 

(13.128) 

with a minimum at 

(13.129) 
d4L7 
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Fig. 13.4 
[compare with Fig. 13.21. 

The Hamiltonian with a chiral symmetry breaking term. Now there is only one minimum 

The energy curve is now asymmetric, as shown in Fig. 13.4. Assuming c is small, 
we can solve for the minimum perturbatively by dividing ( 1  3.129) by &, and, in 
the small term, setting &, = v, its unperturbed value. We then obtain the new 
vacuum value of &, which we will denote by v’, from the equation 

C 

U 
m2 +A’@: + - = o , 

which has the solution 

( 13.130) 

This solution is correct to first order in c. As Fig. 13.4 shows, c and u must have 
opposite signs. 

The physical Lagrangian is now obtained by subtracting u‘ (instead of v) 
from h, 

(13.131) 

and the new Lagrangian, expressed in terms of s instead of do, becomes 

C 
s = & - 21’ = & - .l)- - 

2m2 ’ 
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Note that the pion mass is now non-zero (because of the symmetry breaking) and 
c is proportional to m:, 

( 13.133) 
X2vc c 

m2 V 
mi = m2 + ~ ’ v ‘ 2  cu - - - - - _  > o .  

The new 0 mass is m: = 2 X 2 d 2  + ni:, so that now 

x 2 v 1 2 - 1  - ?(rn:-m:) . (13.134) 

Generalizing the definition of the nucleon mass to M = g , d ,  the new Lagrangian 
becomes 

I 1 

I I 

(13.135) 
This Lagrangian is correct to first order in m:. 

The statement of PCAC given in Eq. (13.127) can now be made explicit by 
substituting for c: - 
This displays the fact that the current is conserved if m: = 0. 

PCAC in the Non-Linear Sigma Model 

Now look at the PCAC relation in the context of the non-linear sigma model. The 
equations of motion for the non-linear sigma model fields are 

( 13.137) 

From these equations we can demonstrate that the axial vector current (13.121) is 
conserved, but in this case the demonstration requires some work. 
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First note that the divergence of the axial vector current is 

+ (2a ,  [ ( 1  :;2)2] - [&I) 
= - g n M $  [ -- 1yi2 iT1y5 (*)I 11, 

1 + y 2  

(13.138) 

This will be zero if 

(13.139) 
At first glance, this equation does not appear to be consistent with the field equation 
for the .rr field, the last of equations (13.137). However, it is possible to transform 
the field equation into the relation (13.139). To do this, consider an operator of 
the form OZJ = ablJ + b yfyJ and require that 

1 
0 , , $ ( 2 ~ ~ + i y ~  [ 2 ~ ~ ~ . ~ - ~ , ( 1 + ~ ~ ) ] ) 1 1 , = 7 J [ 2 ~ ~ - 2 7 ~ ~ ~ ( 1  -y2), l$.  

1 +y2 
(13.140) 

This relation will be satisfied if 

(13.141) 

which can be satisfied if a = 1 - y2 and b = 2. With this observation the current 
is conserved if we can show that 

The proof of (13.142) is straightforward and is left as an exercise. 

Lagrangian (13.1 15). The new Lagrangian will be 
Now, we consider the effect of adding a pion mass term to the non-linear 

c 2 B  = LZ - +m:.rr2f(y2) , (13.143) 

where f is any smooth function of y2, for example f(y2)  = 1 / ( 1  + y2). This 
pion mass term changes the equation of the pion field to 

( 13.144) 
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and gives the following specific form for the PCAC relation: 

~~ ~ ~~ ~~ 

Note that, once again, the non-zero value of the pion mass is responsible for 
breaking chiral symmetry. 

This concludes our discussion of symmetries. In the next chapter we discuss 
the path integral formulation of quantum mechanics and prepare the way for a 
discussion of the quantization of QCD. 

PROBLEMS 

13.1 Charged scalar theory. 

(a) Find the current which is conserved as a consequence of global gauge 
invariance for a charged scalar field theory. 
(b) If J” is the current found in part (a), show that the interaction -J,A” 
is not sufficient to insure that the total Lagrangian is invariant under local 
U( 1) gauge transformations. An extra interaction term of the form 

A#J+ (MW, (z)AP 

is needed. Show that with this extra term the Lagrangian is locally gauge 
invariant provided the constant X takes a particular value. Find A. 

13.2 Consider the scattering of photons from a r+ meson, y + 7r+ --+ y + r+ 
(this is Compton scattering with the pion replacing the electron). 

(a) Using the Feynman rules for “scalar QED” given in Appendix B, draw 
all Feynman graphs which contribute to order e2. Label all momenta and 
write the correct M-matrix corresponding to each diagram. Do not simplify 
your results at this stage. 

(b) If M = MPucf;*cY, where c f  and ci are the four-polarization vectors of 
the final and initial photons, show that M,, conserves current. In particular, 
prove that 

kFM,, = 0 = krM,, , 
where kf and k, are the four-momentum vectors of the final and initial 
photons, respectively. 

13.3 Redo Prob. 10.8(a) including the new diagram drawn in Fig. 13.3 (consult 
Appendix B for the Feynman rules for this case, if you need to). How do the 
results change? Discuss the significance of this calculation. What important 
physical principle does this problem illustrate? 
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13.4 Consider a classical field theory of massive neutral scalar mesons, 4, and 
massless fermions, $J, described by the Lagrangian density 

where X > 0. 

(a) Find the Hamiltonian density for this theory. 

(b) Consider the classical, near static case when a&(z) N 0 and @(z) N 0. 
Find the value of the field 4 which minimizes the energy for m2 > 0 and 
for m2 < 0. 

(c) Define a new scalar field s(z) = 4(z) - (4), where (4) is the value at 
the minimum found in part (b), and rewrite the Lagrangian in terms of this 
field. What are the masses of the scalar and F e d  particles? Discuss and 
interpret your result. 



CHAPTER 14 

PATH INTEGRALS 

In this chapter an alternative formulation of quantum mechanics and field theory, 
based on path integrals, is presented. The great advantage of this formulation is 
that it allows us to quantize a theory using only c-number fields, without the need 
to turn the fields into operators. Other advantages of this approach to quantum 
mechanics are: 

0 It provides the simplest, most direct way to obtain the Feynman rules for 
any field theory. In particular, we can obtain the Feynman rules for QCD 
(some of which were introduced in Chapter 13) using this method. 

0 It provides a method for obtaining exact, numerical solutions of strongly 
interacting field theories (where the perturbation expansion does not work). 
These methods, referred to as lattice gauge calculations, will not be discussed 
in this book. 

0 It provides a connection between field theory and statistical mechanics, 
which gives insight into the nature of both subjects. 

0 It provides a general theoretical framework of a systematic discussion of 
a number of advanced topics in field theory. Among these is the study of 
renormalization and the appearance of anomalies. Using path integrals one 
can prove general theorems about renormalization in a comparatively easy 
way, and anomalies, not discussed in this book, are most easily understood 
using these techniques. 

Because of these many advantages, the path integral approach to quantum me- 
chanics is an essential part of a modern study of field theory.* 

In this chapter we introduce the idea of a path integral from a consideration 
of the propagator and then show how the S-matrix can be expressed as a path 
integral. To show the power of this approach and to acquire needed experience, 

*The use of path integrals for practical calculations was first proposed by Feynman [Fe 481. For 
further reading, see Feynman and Hibbs (1965). Negele and Orland (1988). and the "new" books 
listed in the References. 
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we then obtain the Feynman rules for 4~~ theory. In the following chapter we use 
this approach to obtain the Feynman rules for QED and QCD. Obtaining the rules 
for QED serves as another example of how the method works, but the quantization 
of QCD requires the power of path integrals. Several of the topics developed in 
subsequent chapters will depend on path integrals for their development. 

14.1 THE WAVE FUNCTION AND T H E  PROPAGATOR 

In this chapter we will work in the Heisenberg representation. In this representa- 
tion the states are independent of time, while the operators depend on time. The 
operator which will be the center of attention is the generalized coordinate oper- 
ator, denoted by Q = &(t) .  In this section this operator represents the position 
of a particle, but in subsequent sections the discussion will be extended to fields, 
which are also generalized coordinates. Since this operator depends on time, its 
eigenfunctions, denoted by 14, t ) ,  must also depend on time. Hence the coordinate 
space wave function for the state n is 

@n(qr t )  = ( 4 ,  tin), 1 (14.1) 

where the subscript H reminds us that the matrix element is in the Heisenberg 
representation. The corresponding Schrodinger states are equal to the Heisenberg 
states at some time t = t o  [recall Eq. (1.31)], so that 

In, t ) s  = V ( t ,  t o ) l n ) i f  1 (14.2) 

where U is the familiar time translation operator equal to unity at t = to. De- 
manding that the wave function be the same for either picture, 

@n(q, t )  = ( 4 ,  tin), = (qlni t ) s  9 (14.3) 

gives us the following relation between the eigenfunctions of the operator Q in 
the two pictures: 

14)s = U ( t ,  t O ) l Q ,  t ) H  = U+(to,  t)l% t ) H  . (14.4) 

This relation, which will be used shortly, is identical to Eq. (14.2), but it looks 
different because the time dependence of the eigenfunctions of the coordinate 
operator is opposite to the usual rule that Heisenberg states are independent of 
time and Schrodinger states depend on time. From now on the subscript H will 
be implied but not written as we work in the Heisenberg representation unless 
explicitly stated to the contrary. 

Using the completeness of the states, the wave function at a different position 
and later time can be written 

$ n ( q , , t j )  = (qfttfln) = J d q i  ( q f r t f l q i , t i )  (qi,tiln) 
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Fig. 14.1 Diagram illustrating the superposition property of the propagator. The path of the 
particle from the initial to the final space-time point is a superposition of paths through any intermediate 

space-time point. 

The quantity ( q f ,  t f l q t ,  ti) = K ( q f ,  t j ;  qil t o )  is referred to as the propagator and 
is the basis of the path integral formulation of quantum mechanics. 

From the preceding discussion, it follows that the propagator has the follow- 
ing superposition property: 

(14.6) 

If the propagator represents the motion of a particle from some initial point qo at 
time t ,  to a fixed point qf at time t f ,  then the above equation can be represented 
diagrammatically as shown in Fig. 14.1. Equation (14.6) and the figure show 
that the total propagator is obtained by summing over all possible paths from qt 
through any point q at time t to the final point q f  at t f .  Only one possible path is 
shown in the figure. The treatment of a particle passing through a double slit is a 
practical example of this method. In that case there are only two possible paths, 
one through each slit. If the slit is removed, there are an infinite number of such 
paths. 

The superposition principle can be generalized. Divide the interval into n 
time intervals and label the initial time to  and the final time t,. Then 

n-1 n-1 

K(qn,tn;Qo,to) = J n dqz n K(qo+l , t ,+ l ;q t , t t )  . 
1=1 a=O 

(14.7) 

This integral is represented in Fig. 14.2, which displays the total propagator as 
the superposition of all paths through all possible points qr at times t, where 
1 5 i 5 n - 1. Note that, as required by causality, we do not allow the paths to 
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Fig. 14.2 Repeated application of the superposition principle means that the propagator can be 
written as an integral over all possible paths through intermediate points in space-time, as illustrated 
above. 

propagate backward in time. Now let the number n -+ 00, so that the time interval 
between successive slabs tt+l - t ,  = c I 0. Then the matrix element connecting 
neighboring slabs can be estimated by assuming the Hamiltonian is constant over 
the small time interval E ,  and using Eq. (14.4) which connects Heisenberg states 
lql t) with Schrodinger states Iq) gives 

(14.9) 
where P and Q are the momentum and position operators and (for now) we use 
the H appropriate to the nonrelativistic motion of a single particle. If p and q are 
eigenfunctions of P and Q, the first factor in the second term becomes 

(14.11) 



452 PATH INTEGRALS 

Note that the operator on the left-hand side has been replaced by an ordinary 
c-number on the right-hand side. This is an essential feature of this formalism. 
Next, thz second factor in the second term of Eq. (14.9) is 

and hence, to first order in c, 

(14.13) 

(14. 

If c is small, 
2 go (14. 4i+l - 4i 

c 

and substituting p - p ,  gives 

(14.16) 

The quantity pi is the independent momentum associated with each q,. Then, the 
original expression Eq. (14.7) can be cast into the following form: 

or, in a shorthand notation, 

This is the path integral expression for the propagator. 
The path integral is an integral over all smooth paths in phase space which 

connect the initial andjnal  points q o ( t 0 )  and qn( tn) ,  each path expressible in the 
parametric form ( q ( t ) , p ( t ) }  and weighted by the phase factor 

etjPq-H(P,q)l . 
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Note that the original operator H(P,Q)  has been replaced by its equivalent c- 
number H ( p ,  q). Because the path integral is an integral over ull functions q ( t )  
[and p ( t ) ] ,  it is referred to as afunctional integral, and this whole approach is 
sometimes referred to as a functional method for handling quantum mechanics 
and field theory. 

In deriving the path integral for the propagator, we used the Schriidinger 
equation when we took the infinitesimal time translation operator to be exp(-iHc). 
However, it is informative to prove directly that the wave function (14.5) satisfies 
the Schrtidinger equation. Substituting our final answer (14.18) into (14.5) and 
differentiating with respect to the last time, t,, gives 

dq,- - dpn-1 1, qn- l e i b n -  1 (qn-qn-  1 )-eH(pn - 1 tqn - 1 )I = J  2n 

x JdqoK(qn-1,tn-l; qO,to)~(qo,to) (14.19) 

where the derivative with respect to tn  does not bring down the pn-lqn-l term 
from the exponential because is independent of time. The integral over 
pn-l can be replaced by reversing the steps which led up to (14.14): 

and hence we obtain 

where the completeness relation was used in the third step. Hence the path integral 
(14.18) is fully equivalent to the Schrijdinger equation, and we have an alternative 
way to describe quantum mechanics. 
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If the Hamiltonian is quadratic in the generalized momentum, the path integral 
(14.18) can be further reduced by doing the p integrations explicitly. To this end, 
complete the p 2  square, giving 

(14.22) 

The Gaussian integral and constants can be lumped together into an overall mul- 
tiplicative factor, which is 

or, in terms of the Lagrangian, 

(14.24) 

I. his is the form originally introduced by Feynman and is strictly equivalent to 
our starting expression (14.18) only for systems quadratic in the generalized mo- 
mentum, i.e., with a Hamiltonian of the form H = cp2 t- V ( q ) .  

14.2 THE S-MATRIX 

In this section we show how the S-matrix for a particle moving under the influence 
of a potential is described in this formalism. (The extensions to field theory will 
be developed in subsequent sections.) We saw in Sec. 3.1, Eq. (3.28), that the 
S-matrix was 

(PlUI(CQ1 - C Q ) l 4  

(0lUI(ool -W)lO) 
s,, = 

= lim N(@lUl(tn,to)la) , (14.25) 
tn-m 

t o - - m  

where N is a constant. The key quantity in this expression is (PlUI(tn,to)la). 
the matrix element of the interaction time translation operator for the finite time 
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spa = N' 1 dqn dqo @;(qn, tn)K(qni tn; qoi t O ) @ a ( q O i  t o )  i 

interval [t,, to]. Because this differs from the S-matrix only by the limiting process 
and by a constant, as shown in Eq. (14.25). we will study the quantity 

(14.29) 

Substituting the perturbation expansion for U I ,  Eq. (3.24), gives 

= (%I)o + (Spa)? + ( S p a ) ,  + . . . , f (14.27) 

where 

(14.28) 

We will now show that the S-matrix can be obtained from the path integral 
by using the relation 

is the free coordinate space wave function for the state 01 (to be defined shortly, 
and not to be confused with &). As in Eq. (14.25), the S-matrix is then obtained 
from (14.29) by taking the limits t ,  + 00 and to -+ -00. The significance of this 
result is that the path integral gives a closed form for the exact S-marrix, which 
can, in principle at least, be numerically evaluated. 

To prove Eq. (14.29), return to path integral (14.18), and think of the Hamil- 
tonian as decomposed of a free term, Ho, and an interacting term, H I ,  which we 
assume (for now) is a function of q only. Then the full propagator, K, and the 
corresponding free propagator, KO, are 
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The free wave function which enters into Eq. (14.29) is the evolution of the state 
Q under the free Hamiltonian Ho,  given by 

(14.31) 

where the free propagator is Ko(qZl t 2 ;q1 ,  t l )  = o ( q 2 ,  t21q1,tl),. These states can 
be regarded as plane wave states (although they could be atomic states, or some 
other basis of exact solutions of Ho). 

We will now prove Eq. (14.29) by demonstrating that it gives the same pertur- 
bation expansion for S as the previously derived expansion given in Eqs. (14.27) 
and (14.28). We will be satisfied to show this for the first three terms in the ex- 
pansion. Using perturbation theory, the exact propagator (14.30) can be expanded 
in a power series in H I ,  

K = KO + K1+ K2 + .  . .  , (14.32) 

where Kn is proportional to ( H I ) " ,  and KO is just the free propagator. Hence, 
we must prove 

(SO,)n =N'Sdqndqo$i(nn,1n)K,(qn,tn;qo,to)0,(qo,to). (14.33) 

The first term in this series is 

(s f io )o  = N' J dqn dqo dz(qn ,  tn)Ko(qnr tn; 40, to)$n(qo,  t o )  

= N' 1 dqn d;(qnr tn)4a(qntn)  = ~ ' 6 4 ~  , (14.34) 

where the free propagation of the wave function, as described in Eq. (14.3 I) ,  was 
used in the last step. This will agree with the first term in Eq. (14.28) if we choose 
N' = 1. 

To evaluate the second term, we must first find K1.  Expanding the exact 
propagator to first order in H I  proceeds in two steps: 
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Note that the first order term is obtained by retaining the first order contribution 
from exp(-icHI) to only one time “slice” (if H I  contributes to two time slices, 
the result is already second order) and summing (integrating) over all possible 
times at which HI can contribute. The time summation is converted to a time 
integral using c - dt. Now, inserting this into the expression for S 1  and using 
N‘ = 1 give 

(14.36) 

However, since H I  = H I ( q )  = O(q,tlH,(Q(t))lq’,  t),b(q - q’),  with the operator 
Q in the interaction representation (in agreement with the formalism of Chapter 3), 
this equation can be written 

= - i / d t ( P l H r ( Q ( t ) ) l a )  (14.37) 

where, in the last step, the completeness of the position eigenfunctions at any 
time / dQ l Q 7  t l o  o(Qr tl = 1 (14.38) 

las been used to remove the integrations over q and q’. Note that this result agrees 
with (14.28), proving the equality to first order in HI.  Note also that in this form 
H I  is now an operator, depending on the generalized coordinates Q. 

Similarly, K2 can be obtained by using the above expansion at two different 
times, 
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where t is associated with the slab at time t j  and t’ at time t]!. The second order 
contributions from a single time slab are ignored because they are negligibly small 
compared to the contributions from two different times. To see this, note that there 
are n - 1 contributions from a single slab, but (n - l ) (n  - 2)/2 contributions from 
two slabs, so that the error in neglecting the single slab contributions goes like 
N 2/n ---f 0 as n ---f 00. Note that the time-ordered structure of (14.39) emerges 
automatically in an almost trivial fashion; it comes from the fact that one of the 
HI’S  must necessarily follow the other. Now to find the second order S-matrix 
element implied by Kz, exploit the fact that KO is the free propagator to carry 
out the following reduction: 

Using the definition of KO and the completeness of the position eigenstates gives 

Jto J t o  

(14.41) 

Again recognize the familiar second order result, Eq. (3.25). The structure of the 
other terms in the series is now apparent and leads to the suggestive diagrammatic 
representation shown in Fig. 14.3. 

In preparation for application of these ideas to field theory, we next discuss 
time-ordered products and the generating function. 
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Fig. 14.3 Diagrammatic representation of the perturbation series for the S-matrix. 

14.3 TIME-ORDERED PRODUCTS 

In applications to field theory, one is interested in the expectation values of time- 
ordered products of fields. Since the fields play the role of generalized coordinates, 
the analogous quantities in nonrelativistic quantum mechanics are quantities such 
as 

where, from now on, the initial coordinate and time will be denoted by q2 and t ,  
(instead of qo and t o )  and the final coordinate and time by q f  and tf (instead of 
qn and t,), and the times t,, j = 1 to n, all lie between t ,  and t f ,  the initial and 
final times. 

These matrix elements are readily obtained by generalizing the discussion at 
t'ie end of the previous section. For example, note that 

(qf,tfIT(Q(tl)Q(tz) . . .  Q(tn))  l q z i t z )  ! 

q i ( t i ) 6 ( q i  - q i )  - 
(qf, tjlQ(ti)lq,, t d  = /- dqi dq: (qf, tflqi, ti) (41, tilQ(ti)lqll ti) (4, tilqtl t z )  

(14.42) 

Similarly, if tl > t 2  and both are in the interval [tf,  ti], then 

(sr,trlQ(ti)Q(tz)lqi, ti) 
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The condition that the paths do not double back on themselves was implicit in 
our construction of the path integral, and this constraint is implemented through 
the requirement that the propagator for backward propagation in time be zero, 

(q , t lq ’ , t ’ )  = 0 if t < t’ . (14.44) 

Therefore, the right-hand side of (14.43) is equal to (41, t,l&(t2)Q(tl)lqZ, t l )  
if t 2  > t l ,  and hence, in general, (14.43) is the time-ordered product of two 
operators, 

(14.46) 

It is convenient to introduce a generating function from which an arbitrary 
time-ordered product can be determined. To this end, introduce the function 

J Be careful not to confuse (qf l  t f l q I l  t l )  with (q f l  t ,lql, t l ) ;  they are very different 
objects, but 

Z P I  = h f l  t . r l q 2 1  t t ) O  = (qf ,  t f lq t ,  t t )  (14.48) 

is the propagator over the finite time interval [ t f ,  t l ] .  If thefuncrional derivative 
is defined by the relation 

then 

It follows immediately that 

(14.50) 

(14.51) 

Any time-ordered product can be obtained from a functional derivative of z with 
respect to J .  
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complex t plane 

Fig. 14.4 The complex t plane showing the rotated time integration path. 

Ground State Expectation Values 

We conclude this preparatory discussion by considering the expectation values of 
the time-ordered products of the Q's in the ground state. The ground state is the 
one with minimum energy EO < En, where En are the energies of the excited 
states enumerated by their quantum numbers n. For free systems, the ground state 
is the vacuum, and EO = 0. This ground state is described by the wave function 
[recall Eq. (14. l)] 

(14.52) 

Assume that the J( t )q ( t )  term [which can be interpreted physically as a source 
(or sink) for the dynamical variables q (later to be identified as fields)] is switched 
on at the time ti in the past and switched off at time t f  in the future. This is not a 
serious limitation, because t i  and t f  can be made as large as we like, but it does 
allow us to define all integrals precisely. Then, in the time intervals Tf > tf and 
t i  > Ti, the states propagate as if J = 0, and the matrix elements are 

n=O n=O 
(14.53) 

Now, the ground state contribution to this sum is the one which oscillates 
less rapidly as Ti -+ -00. This behavior can be converted into a practical method 
for extracting the ground state if we rotate the time axis into the complex plane, 
as shown in Fig. 14.4. Then the time varies along the line t(1 - if), so that it 
has an imaginary part which approaches --oo as t -+ 00 and +00 as t -+ -00. 

While it is sufficient to rotate the time axis through a small angle as suggested 
by the figure, for numerical calculations it is best to rotate the time axis all the 
way to the imaginary axis, where the most rapid convergence is achieved. In 
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this case Minkowski space-time is transformed to Euclidean space-time. Or, 
instead of rotating the time axis, the identical effect is obtained if all energies 
are multiplied by the factor 1 - k.  In either case the oscillating factors are 
converted to exponentials, which approach zero as T, + -00, with the ground 
state approaching zero least rapidly. Multiplying by exp(-iEoT,) enables us  to 
extract the ground state matrix element from (14.53): 

because all other terms in the sum are damped by the exponential factor 
ec(En-Eo)Ti, which approaches zero for Ti < 0 and En > Eo. 

This, then, provides a way to project out the ground state matrix element, 
even if we do not know the ground state wave function $o(q) explicitly. Start 
with the matrix element (q’, Tf Jq, Ti)J, and insert a complete set of states, 

(qliTfIq,Ti)J = J d q f d q i  (q1,TfIqj,tf)O (qf , t f lqir t i )J  (qi,tilq,Tijo 

n’n 

X J d q j d q i $ L t ( q f , t , )  ( Q f , t f 1 4 i , t i } J $ n ( q i , t i ) .  (14.55) 

Then, using Eq. (14.54) and the analogous relation for the final state gives 

T j  -+a( 1 - i e )  

where Nz(q’, q) is a function of proportionality which insures that the product on 
the right-hand side is independent of q and ql. The ground state expectation value 
is therefore proportional to the original functional r [ J ] ,  provided we let Tf and 
-Ti --$ 00 along a line which passes from the second to the fourth quadrant, as 
shown in Fig. 14.4. 

As discussed above, an alternative way to insure convergence is to give the 
energy a small negative imaginary part, E -+ E(l -k) .  With applications to field 
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theory in mind, where the non-interacting Hamiltonian has the form of a simple 
harmonic oscillator, it is sufficient to approximate the energy by iq', where q2 is 
the square of the coordinate. This is a simple positive definite quantity which is 
a minimum for the ground state. This is the procedure which we will follow, and 
hence the ground state expectation values will all be obtained from 

where 2 differs from E only in the limits of the time integration and in the small 
negative real part (proportional to q2 to insure convergence in q as well as t and 
coming from the negative imaginary part given to the energy). 

The ground state expectation values are proportional to derivatives of the 
generating functional Z [ J ] .  How are we to determine the unknown constant hr,? 
From Eq. (14.57) this appears to be a very difficult task, and indeed it would be 
if it was necessary. However, all the physics can be extracted from Z [ J ]  wirhout 
knowing the proportionality consfanf. This is because the vacuum state must be 
normalized to unity, and if J = 0, Eq. (14.57) tells us that 

(010) = 1 = Nz z[O] . (14.59) 

Hence the vacuum expectation values are obtained from the normalized generating 
function Z. 

(14.60) 

This gives 7[0]  = 1, as required. From now on we will freely ignore any mul- 
tiplicative constants which may emerge in the computation of Z [ J ] ,  anticipating 
the fact that the physics comes finally from z[J], where all constants cancel. 

14.4 PATH INTEGRALS FOR SCALAR FIELD THEORIES * 

We now apply the previous ideas to field theory. For simplicity we first treat the 
symmetric 43 theory introduced in Sec. 9.1. The results will be extended to spinor 
fields in Sec. 14.6 and to gauge theories in the next chapter. 

The central idea in extending the path integral formalism to field theory is to 
replace the generalized coordinates Q of the previous discussion by the fields 4, 
which will be the new generalized coordinates. However, two problems prevent us 
from carrying this over directly. The first problem is that the 4's themselves have 
an uncountable number of degrees of freedom (the values of 4 at each space-time 

*I thank Michael Frank for helpful conversations on the definition of path integrals in field theory. 
See [Fr 911. 
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point), but this is easily handled by dividing up space into N 3  non-overlapping 
cells, centered at the points a = (za, g,, zo). We then average the fields over 
each small cell (with volume V,) centered at a :  

(14.61) 

The averaged quantities &(t )  are now a countable number of independent coor- 
dinates which are also better behaved than the original fields (recall Prob. 1.5). 

The second problem is more serious and requires some discussion. The key 
to the development of the path integral is the introduction of eigenstates of the 
operators which correspond to the generalized coordinates, but the quantum field 
operators have no eigenstates. However, the coherent states, which we introduced 
briefly in Sec. 1.7, are eigenstates of the annihilation operators Ai (in this chapter, 
these operators will be denoted by capital letters in order to distinguish them from 
their eigenvalues, a,) ,  

where the product is 

These states will be denoted la), where 

(14.62) 

over all frequencies i, ni is the number of quanta with 
frequency i, and the state is described by the numbers a = { a * } .  These states are 
not normalized; their norm is 

As we saw in Sec. 1.7, 

(14.63) 

(14.64) 

Note that these relations are consistent with the commutation relations (A*, A:] = 
6,j, and if we make the identification 

A f  -+ Qi 

- iA, -+ P, , 
(14.65) 

the operators Q, and Pi can be regarded as canonical coordinates, because they 
fully describe the degrees of freedom of the field and satisfy the required com- 
mutation relations [Q,,  P3] = z&. 
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Because these coordinates have eigenfunctions (the coherent states) with 
eigenvalues a and a*, we will first express the path integral in terms of the c- 
numbers a and a* and then replace the integrations over a and a* with integrations 
over the c-number fields ~5~ and 7ra. 

To prepare the way for the construction of the path integral, first observe 
that the matrix element of an operator built from normal-ordered products of the 
annihilation and creation operators is 

= o(a : ,a : )  ea*.a' , (14.66) 

where it is understood that a = {a,} and a' = {a:}. Next, we show that the 
completeness relation for the coherent states takes the following form: 

(14.67) 

The presence of the exponential factor is related to the norm (14.63) of the states. 

Proof: We will first show that (14.67) commutes with all creation and annihila- 
tion operators, which establishes that it must be a multiple of the identity. Then 
we will show that the constant of proportionality is unity. 

Using Eq. (14.64), the commutator is 

where we integrated by parts in the last step, flipping the a: derivative over onto 
the exponential where it gives a factor which cancels a,. Taking the Hermitian 
conjugate shows that the right-hand side of (14.67) also commutes with the cre- 
ation operators, and since the annihilation and creation operators are a complete 
set, (14.67) must be a multiple of the identity. To evaluate this multiple, compute 
its vacuum expectation value 

If we introduce a, = r eie, then da,  daf = 2ir dr do,  and 
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and hence the quantity (14.69) is unity. I 

We are now ready to find the path integral for the “coherent state represen- 
tation” of the time translation operator in field theory. We begin by introducing 
the field theory equivalent to the wave function (14.1). Since the annihilation 
operators depend on time, the coherent states will also depend on time, and by 
analogy with (14. l), the coherent state wave function for the state Is) is therefore 

&(a*,t)  = (a,tls) (14.70) 

Note that the wave function depends on a*, and not a. Using the completeness 
relation (14.67), the time evolution of the wave function for the state Is) can be 
written 

and the integration volumes are 

(14.72) 

(14.73) 

Note the similarity between the definition of the time translation operator in field 
theory, Eq. (14.71), and the single particle time translation operator, which is the 
propagator given in Eq. (14.5). The principal difference is that now we have an 
infinite number of coordinates {a:} instead of a sing!e coordinate q. There will 
be a close similarity between most of the following steps and the discussion in 
Sec. 14.1. 

Next we divide the interval [tnl to] into n intervals and use the complete- 
ness of the coherent states to obtain the following general formula for the time 
translation operator: 

n- 1 

U(a;,tn;ai,to) = /E[h;] n[daj]e-a;’aJ (aj+l,tj+llaj,tj) . (14.74) 
j = O  
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If the number of intervals n --t 00, so that t,+l - t, = E + 0, then we may 
estimate the overlap between the coherent states at neighboring times tJ+l and t ,  
by expressing this in terms of coherent states in the Schrodinger representation 
(as we did in Sec. 14.1), and using Eq. (14.66) 

b,+1!  t j f l b , ,  t,) = b j + 1  (W,+l, to)U+(t,,to)l UJ) 

(a j+ l  lexp{-icH (At ,  A) 1 a 3 )  
2 bJ+lbJ) - i+,+1lH ( A t 3 A )  la]) 

~ ~ J + , ' Q J  [I - ~ E H  (a* J + 1 1 4 1  

e [ a ; + l ' a J - l c H ( a ; + ~ , a J ) ]  . (14.75) 

Inserting this into (14.74) gives the following expression for the time translation 
operator: 

(14.76) 
Replacing a by i p  and a' by q, as suggested by Eq. (14.63, gives 

where now 

The expression (14.77) is identical to its counterpart (14.17) if each q and p in 
(14.17) is replaced by the set q = {q , }  and p = { p , } .  

To complete the derivation, we must replace the q1 and p a  in (14.77) by the 
field functions and n. 
The connection between these averaged fields and the q2 and p ,  is 

1 

and ra, the c-number equivalents of the operators 

4a( t )  = c - { b ( t )  fa,1 + q l ( t )  f&> l & G  

r o ( t )  = 1 { p a ( t )  f a , ,  + zqz(t) f:,i> 
(14.78) 

i 

1 

where the sum is over all energies i and f a , *  is a plane wave averaged over the 
small volume centered at a, 

( 14.79) 
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The f ' s  satisfy the following completeness and orthogonality relations (see 
Prob. 14.1): 

a (14.80) 

1 

The relations (14.78) can be regarded as a canonical transformation of the coor- 
dinates { q i , p , }  --+ {Gal  x a } .  The details are saved for Prob. 14.1. We obtain 

Note that, as in the one-particle case, all operators have been replaced by c- 
numbers. 

For the 43 theory under discussion, the interaction terms do not involve 
any derivatives, and hence the xa may be integrated out, and the ra(a&/at)  - 
'Fl(&,n,) may be replaced immediately by the Lagrangian. Adding a conver- 
gence factor and a source term, as we did before, gives the following generating 
function: 

where the normalization constants (or factors) N which are encountered when 
integrating over the q5a [recall Eq. (14.23)] are dropped because the overall nor- 
malization is not important in determining the vacuum expectation values (as we 
showed in the last section). It is somewhat more elegant (but perhaps less precise) 
to replace the sum over a by an integral over d3r, giving the following generating 
function, which is taken as our starting point: 

(14.83) 

where, for the symmetric theory introduced in Chapter 9, 

x 
3! 

Lint = ---43(4 . 

We will now discuss the computation of propagators and scattering amplitudes 
from this generating function. 
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Generating Function for Free Fields 

Begin by ignoring the interaction Lagrangian Lint. Then the generating function 

(14.85) 

It is convenient to express the 
using 

d 4 x  integral in terms of momentum space fields 

(14.86) 

We will reduce the integral for the general case of a complex field, where 

(14.87) 

If the field is real (which is the case in the symmetric 43 theory), $* (p) = 4( - p ) .  
Also, if the field is complex, 

J d 4 x  ( J ( Z ) * ~ ( X )  + ~ * ( X ) J ( X ) )  

4 4  

( J * ( P l ) d ( P Z )  + 4 * ( P l ) J ( P Z ) )  = / A /  d P l  d P2 e - - i ( p 1 + p 2 ) . x  

(27r)4 

= 1 d4P [ J*  ( P ) 4 ( P )  + 4* ( P ) J ( P ) l  . (14.88) 

If the field is real, then J * ( p )  = J ( - p )  and only one of these terms is present, 
or alternatively, the two terms in (14.88) must be multiplied by i. Hence, for the 
symmetric 43 theory, with real field 4, the phase 0 of the exponential in Zo[J] is 

e = d 4 x  {co s 
= 1 2 J d4P { 4* (P) [PZ 

This can be diagonalized by introducing 

(14.90) 
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Then 

The exponential is now a product of a term depending only on J and one depending 
only on 4. Since we are only interested in derivatives with respect to J ,  normalized 
to the amplitude when J = 0, the first term, which does not involve J ,  will play 
no role, and the normalized generating function z from which the physics emerges 
is 

(14.92) 

In using this with the symmetric theory, remember that J ' ( p )  = J ( - p ) ,  so that 
J' and J are not independent, as they would be for a charged theory. 

Calculation of Tree Diagrams 

As our first example of how to use this generating function, we find the free 
propagator. This is the vacuum expectation value of the time-ordered product of 
field operators, and hence 

(14.93) 

To find the derivative, re-express ZO,  

and therefore (remembering that J ( z )  and J ( y )  should be treated as identical) 

which is precisely the result obtained in Eq. (8.31). Note that the matrix element 
of field operators has been obtained from an expression involving c-number fields 
only. This is the familiar feature of the path integral formalism. 

Now we include interactions. The functional derivative method may be used 
to express Lint as an operator. For example, 

(14.96) 
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Putting this in the exponential gives 

(14.97) 

To obtain results in momentum space, we will re-express Lint using the following 
reduction: 

(14.98) 
Now, as a second example of the use of path integrals, we calculate the M- 

matrix for the elastic scattering of two particles. We will only obtain the result 
to second order in the couplings, but many of the steps, including the method for 
extracting the M-matrix from the path integral, are quite general. Recall that the 
second order result for this case was already obtained in Sec. 9.7, Eq. (9.90). 

From the discussion in Sec. 14.2, we know that the S-matrix is proportional to 
the path integral, but in field theory a single Lagrangian describes many different 
interactions, so we must develop a way to project out the particular channel in 
which we are interested. Recall that the initial and final states are constructed from 
the vacuum by the action of creation operators and that these creation operators 
C I ~  be obtained from the field operators by projecting out the coefficient of the 
positive frequency part of the field. The form of this projection depends on the 
properties of the field. For scalar fields we use the orthogonality of the Klein- 
Gordon wave functions, and continuum normalization, to obtain 

a(.) = P ( t , p ) ' P . ( x )  . (14.99) 
d3r  

a + ( p )  = -i 

We will also need to express this projection operator in terms of momentum space 
variables, which can obtained by substituting the momentum space form of @ into 
the above expression, giving 

(14.100) 
where, in the last expression, it is understood that the projection operator P ( t l p )  
involves an integration over the virtual energy po on which the operator @ ( p )  
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depends and somehow projects in onto the physical energy of the particle, which 
is w ( p )  (the details of how this works out will be given shortly). Note also that 
the projection is carried out at a particular time t. 

Using the position space projection operator (14.99), the S-matrix, in the 
notation of Fig. 9.7, is 

where the particles have momenta p l  + p~ -+ p', + p; ,  and Ptotal is the product 
of the four individual projection operators which project the S-matrix from the 
vacuum expectation vaiue in (14.101). The time ordering symbol is added for 
free because all of the fields internal to Ur are already time ordered and are at 
times between foo ,  and the projections of the initial and final fields commute, 
so their time order does not matter. Now, as we discussed in Sec. 14.3, this 
vacuum expectation value of a time-ordered product can be calculated from the 
normalized generating function z[J]. Hence, casting this time-ordered product 
into momentum space and using the momentum form of the projection operators 
(14.1Oo), we obtain the following expression for the S-matrix which describes 
elastic scattering: 

I I 

The projection operator Ptotal is now the product of four momentum space projec- 
tion operators with the form given in (14.100) and is not the same as the operator 
given in Eq. (14.101). Also, in the process of going from the initial expres- 
sion (14.101) to our final expression (14.102), all operators are replaced by their 
c-number equivalents, as has been discussed in detail in the previous sections. 

Equation (14.102) is a specific example of the general formula for the scat- 
tering matrix in the path integral formalism. In the general case, there is one 
derivative with respect to J for each particle in the initial state and one with 
respect to J' for each particle in the final state and projection operators for each 
external particle. We will discuss the form of the projection operator for fermions 
later. 

We specialize to non-forward scattering, where p', # p l  and p i  # p2 .  This 
means that, whm computing the above derivatives, we must involve the interaction 
terms, because the free generating function only contains products of the form 
J*(p)J(p), in which both initial and final momenta are necessarily equal. The 
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second order generating function, which we denote by 2(2!, is 

where ZO is the free generating function (14.92), which contains the product 
J * ( p ) J ( p )  = J (  - p ) J ( p ) .  The second order elastic scattering amplitude therefore 
results from 6 “internal” differentiations from Eq. (14.103) and 4 “external” dif- 
ferentiations from Eq. (14.102), for a total of 6 + 4 = 10 differentiations of J on 
20, after which all J’s are set equal to zero. Because zo - exp(J2), each differ- 
entiation by J brings down a factor of J ,  which must be eliminated eventually if 
the final result is to be non-zero when J + 0. Therefore, 5 of the 10 derivatives 
must act directly on ZO, bringing down 5 powers of J ,  which are then eliminated 
by the 5 remaining derivatives. Hence, all the derivatives must be “paired” so that 
the factor of J brought down by one is eliminated by the other. When two deriva- 
tives are “paired,” their momenta must sum to zero because they act on a single 
J ( - p ) J ( p )  term. Therefore the external derivatives cannot be paired with each 
other because the scattering is in the non-forward direction, requiring p l  # p i ,  
etc. Hence each external derivative must pair with one internal derivative, leaving 
two internal derivatives to pair with each other. However, only internal deriva- 
tives from diflerent interaction terms can pair; any terms which might arise from 
a pairing of derivatives within the same interaction are zero. To see this, note that 
;L ‘  the derivatives with respect to J ( k 1 )  and J ( k 2 )  act on the same J ( - p ) J ( p )  
term, for example, they will force k l  + k2 = 0 and the delta function will then 
force k3 = 0. Since one of the external four-momenta must pair with k3, it will 
be therefore also be zero, which is impossible. Now, since all the derivatives are 
identical (i.e., the J’s are identical even if their arguments are not), there are many 
ways to obtain the final answer. As we have just shown, the only restriction on 
how the derivatives are evaluated is that one derivative from each interaction must 
pair, and there are therefore 3 x 3 = 9 identical possibilities. Therefore the action 
of the 6 internal derivatives gives 

Z(’) [ J ]  

- 

= 
J d4kl  d4k2 d4k3 d4k{ d4k;  d4k$ 

6 ( k l  + k2 + k3)b4(k;  + ki + k$) 
8 (2r)4 
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where, by convention, the 9 identical terms have been expressed as a factor of 9 
times the term with k3 and k$ paired and the factor Z o [ J ]  has been set to unity in 
the last step, anticipating the fact that none of the 4 external derivatives will act on 
it, and it will become unity when J t 0 in the final step. Note also that 2(2) [O] = 
0, showing that this factor does not contribute to the overall normalization factor 
Z[O], justifying the use of Zo[O] (instead of ZO[J ] /Z[O] )  in the above equation. 
Next, differentiating this four times, as required by Eq. (14.102), gives 4!=24 
terms, which can be organized into three different terms, each multiplied by 8. 
Because the two final momenta are fixed by differentiations with respect to J ( - p i )  
and J (  -pa), and the initial momenta by differentiations with respect to J (p1 )  and 
J ( p z ) ,  the argument of the delta function becomes pl +pa -p i  - p ;  regardless of 
how the derivatives act, and the different terms are distinguished only by different 
values of the quantity A = f ( k 1 - t  k2 - k{ - k&)2.  Only three different values of 
A are possible, arising as follows: 

Hence, after the four external derivatives are computed, and the remaining J’s are 
set to zero, we have 

s4 (P1 + P2 - P i  - P’,) 

1 1 

1 + 

1 

1 
X 

Finally, the S-matrix is obtained by application of the projection operator Ptotal. 
First, replace the energy conserving 6 function by its integral representation 

and, holding T fixed, consider a typical initial time t much earlier than -T, so 
that -T > t --+ -m. The integral over plo (for example) then becomes 

(14.104) 
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where, anticipating four-momentum conservation, any dependence of the function 
f (the remaining factors in the integral) on the momentum pl  has been expressed 
in terms of the other momenta, {pi}. Note that the contour must be closed in the 
lower half plane because t+T is always negative, and the integrand is damped only 
when plo has a negative imaginary part. Similarly, for the final state projections 
chose an initial time t’ later than T, so that T < t’ --$ +w and 

because t‘ + T will always be positive, again forcing the contour to be closed 
in the lower half plane. Hence, the action of each projection operator puts an 
external particle on-mass-shell and turns the corresponding external propagator 
into a factor of im. The emergence of these mass shell poles, which are 
the lowest energy states for the external particles, is a practical application of the 
discussion leading up to Fig. 14.4. Now, let T + 00 and reconstruct the delta 
function, giving 

1 (14.105) + Pz - Pi - P’Z) M s = -i 
(242J- 

where 

I .  -A2 - A2 - A2 + + 
p2 - (p1 - p i ) 2  - i c  p2 - (pl  - - ic p2 - (p1 + ~ 2 ) ~  - zc 

M = [  

(14.106) 
In (14.106), each of the external four-momenta is on-muss-shell (as we just dis- 
cmsed), and hence Eq. (14.106) is identical to Eq. (9.90). illustrating that the path 
integral formalism and the operator formalism are equivalent. We have recovered 
the Feynman rules for 43 “tree” diagrams. 

Next, we will see how the Feynman rules for “loops” emerge from the path 
integral, Again, we confine our discussion to the symmetric 43 theory. In the next 
section we calculate the self-energy of the scalar particle, which was previously 
obtained using the operator formalism in Sec. 11.7. A study of this simple case 
also leads naturally to a discussion of disconnected diagrams and vacuum bubbles. 
The discussion will illustrate the similarities and differences between the method 
of path integrals and the operator formalism. 

14.5 LOOP DIAGRAMS IN 93 THEORY 

In this section we calculate the propagator for a neutral, self-conjugate particle to 
order X2. The result for the free propagator was already given in Eq. (14.99, and 
now we will obtain the first loop contribution to the self-energy. 

As before, the propagator is 
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but now the generating function includes interactions in contrast to the free gen- 
erating function ZO used in Eq. (14.93). 

The first non-zero contribution which depends on the coupling strength X 
occurs in second order and can be computed from Eq. (14.103), except that in this 
case it will be necessary to normalize the generator by dividing by Z[O] (it was 
sufficient to divide by Zo[O] for the scattering problem we treated above but is no 
longer sufficient here). The term which is first order in X does not contribute to 
the propagator, because when it is inserted into Eq. (14.107), it contains an odd 
number of J derivatives, leaving at least one factor of J after differentiation and 
hence insuring that it is zero when J = 0. 

Now we carry out the six “internal” J derivatives in (14.103). Our analysis 
is similar to the steps following Eq. (14.103), except that only terms with two 
factors of J brought down from the exponential in 20 or no factors of J will 
survive the final action of the two “external” J derivatives in (14.107). Since 
there are six internal derivatives to be evaluated, the terms with two factors of J 
require that four of the internal derivatives be paired [as defined in the discussion 
following Eq. (14.103)], and those with no factors of J require that all of the 
internal derivatives be paired. 

Consider the terms with no factors of J first. These require three pairings, 
and since all of the derivatives are identical, there are only two distinct ways in 
which these pairings can be made. We may pair momenta from one interaction 
with momenta from the other, for example 

ki H k: kz H kh k3 H kh , 

nr we may pair momenta within a single interaction, for example 

kl c) kz ki H k: k3 * kh . 
There are 3! = 6 ways to make the first pairing and 3 x 3 = 9 ways to make the 
second, giving the following result: 

d4 k1 d4 kz d4 k3 d4 ki d4 kk d4 kk 
2, [ J ]  = - - (2) 6 (ki + kz + k3)fi4 (k: + k; + k;) 

- i x 2  J (2n)4 ZPl 

(14.108) 
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where A(0) is an (infinite) constant obtained from the A(z - y) given in 
Eq. (14.95) by setting its argument to zero, 

( 14.109) 

and B is the integral 

. (14.110) B = E /  d4k l  d4k2 d4k3 b4(k1 + k2 + k 3 )  
6 ( 2 ~ ) ~  [p' - kf - if] [p2 - kz - if] [p' - kz - if] 

We will discuss these quantities after we have completed the calculation. 
Now we compute the terms with two factors of J .  Now there are three 

distinct types of terms which occur. There are 6 x 3 = 18 terms corresponding 
to the first pairing given above (with the 5' term associated with any one of 
the pairings), 9 x 1 = 9 terms corresponding to the second pairing with the 5' 
term associated with momenta in different interactions, and 9 x 2 = 18 terms 
corresponding to the second paring with the J 2  term associated with the momenta 
in the same interaction. Thus we have 

, (14.112) 
1 

[p' - kf - if] [p2 - ( k l  + k ) 2  - if] 

Note that this quantity is the second order self-energy previously encountered in 
Sec. 11.7. Combining these terms with those with no factors of J computed 
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Fig. 14.5 
A Z ( O ) / ~ ~ .  (B) The term proportional to B. 

Vacuum bubble diagrams which contribute to Z@).  (A) The term proportional to 

in Eq. (14.1 10) above gives the result 

We now examine the various terms. 

Cancellation of Vacuum Bubbles 
Note that the terms proportional to S4(0) on the right-hand side of the above 

xpression are those which do not depend on J .  They have the general structure 

(14.114) 

where C is a c-number constant. Hence these terms are also present in Z[O], and 
when added to the lowest order term, Zo[O], we get 

Hence they are canceled by the renormalization of Z [ J ] ,  and the generality of this 
argument shows that such terms are canceled to all orders and thus need never to 
be considered in any calculation. These terms are examples of vacuum bubbles, 
first discussed in Sec. 11.4. They describe the excitation, or fluctuation, of the 
vacuum. Using the experience acquired in Chapter 11, the interested student can 
be convinced that the term proportional to A2(0)/p2 corresponds to the Feynman 
diagram shown in Fig. 14.5A, while the term proportional to B is shown in Fig. 
14.5B (see Prob. 14.2). Diagrams of the type shown in Fig. 14.5A are referred 
to as “tadpole” diagrams; they consist of closed loops with only one interaction. 
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Such diagrams do not occur if the Hamiltonian is normal ordered, as was the case 
in Chapter 11. but they do occur in the path integral formalism, and this is one 
of the interesting technical differences between the two formalisms. In this case 
they cancel, but in later applications they will make important contributions. 

With this cancellation, we may replace the constant Z[O] with Zo[O], drop 
the J-independent terms, and consider 

(14.116) 

Now compute the propagator. Anticipating the fact that the Zo[J ]  factor will 
eventually approach unity [after the action of the final two J derivatives in (14.107) 
followed by the J + 0 limit], we drop this factor and replace the J 's  by their 
configuration space representations: 

(27r)'A2(0) J d 4 s J ( z )  J d4yJ(y) -- 
8P4 (2.)2 * 

+ x2 ( 14.1 17) 

;'he second order contribution to the propagator is then 

In momentum space this becomes 

The first term is non-zero only when p = 0 and will be dropped for now (it will 
be discussed shortly). Introducing the quantity 

X2A[O] 
iC&) = i q p 2 )  + - , 

2P2 
(14.120) 

the combined effect of the free propagator plus the second order contributions 
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P + k  

P 9. 
Fig. 14.6 
Chapter I 1  and (B) the tadpole diagram. 

Feynman diagrams for the self-energy. (A) The pair production diagram discussed in 

become 

- a  

p2 - p 2  + C , ( p )  - i f  ' 
- - (14.121) 

ihere we assumed that the first two terms are the beginning of a geometric 
series which can be summed as we did previously for the electron propagator in 
Sec. 11.3 and the photon propagator in Sec. 1 1.5. Note that the self-energy & ( p )  
will change the location of the pole of the propagator, and hence the mass p of 
the particle. 

Now examine the self-energy C T ( ~ ) .  The two contributions can be con- 
structed from the two Feynman diagrams shown in Fig. 14.6: 

. ( - i X ) 2  d4k -i -i 
c T ( p )  = '2 / (2n)4 [ (p2 - k2  - i f ) ]  [ p2 - ( p  + k ) 2  - i f  

1 '  +i2 ( - i A ) 2  [s] /- d4k [ --2 

( 2 7 ~ ) ~  (p2  - k 2  - i c )  
( 14.122) 

Note the symmetry factors of f associated with each term. The first term is the 
C ( p 2 )  of Eq. (14.112) which was previously encountered in Sec. 11.7, but the 
second term, shown in Fig. 14.6B, is new. Both diagrams are loop diagrams, 
where the four-momentum, k ,  is unfied by the constraints of energy-momentum 
conservation. We see that the Feynman rules for these loops are identical to those 
encountered in Chapter 1 I .  
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The new diagram, Fig. 

k 
Fig. 14.7 The elementary tact- 

pole diagram 

14.6B, is another example of a “tadpole” diagram. 
The simplest example of such a diagram, and the one which originally suggested 
the name “tadpole,” is the diagram shown in Fig. 14.7, which is proportional to 

(14.123) 

In general, a diagram is referred to as a tadpole diagram if it contains a factor of 
A(O), which corresponds to a loop which couples to an external particle in only 
one place. Such a loop arises from a factor of 

where both 4’s come from the same interaction term in the Hamiltonian. In a 
theory in which the Hamiltonian is normal ordered, as in the operator formalism 
developed in Chapter 11, such terms cannot appear, but in the path integral for- 
-,ialism they arise naturally; this is one difference between the two formalisms. In 
some sense, the path integral formalism does not permit normal ordering of the 
fields, which seems intuitive once one realizes that fields behave like c-numbers 
in the path integral formalism, and as such their order must be the same as mul- 
tiplication by c-numbers. 

We see that the operator formalism of Chapter 11 and the path integral for- 
malism give diflerent results for the self-energy of a neutral particle; the difference 
is the tadpole term shown in Fig. 14.6B. However, this lack of uniqueness has no 
physical consequences, because the tadpole 14.6B is a constant and will therefore 
be absorbed into the renormalization constants which are ultimately fixed by the 
physical charge and mass of the particles. The finite parts which remain after the 
renormalization is completed are identical. 

Now, we return to the first term in iA(2)(p)  given in Eq. (14.119) and pre- 
viously ignored. This term corresponds to a disconnected diagram for the propa- 
gator; specifically, it gives the diagram shown in Fig. 14.8. This explains why it 
contributes only at zero momenta. 

As we noted previously in Sec. 11.2, diagrams which are disconnected are a 
product of two (or more) independent lower order processes. In some cases these 
processes are unphysical and therefore do not contribute to the S-matrix. The 
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Fig. 14.8 The disconnected tadpole contribution to the propagator. 

diagrams in Figs. 11.1 and 14.8 are examples of such processes. The disconnected 
tadpole, Fig. 14.8, when considered in isolation, corresponds to the simultaneous 
absorption and emission of a scalar particle by the vacuum, each of which is an 
unphysical process. In cases where each of the separate parts of a disconnected 
diagram are physical, they are more properly regarded as the simultaneous occur- 
rence of more that one process, and not a proper contribution to a description of 
a single physical process. For all of these reasons, disconnected diagrams should 
be removed from the theory, and they can be removed systematically by working 
with the generating function W [ J ]  instead of Z [ J ] ,  where 

Z [ J ]  = ew[Jl (14.124) 

or 
W [ J ]  = lnZ[J] . (14.125) 

We leave it as an exercise (Rob. 14.3) to show that the disconnected term in 
A(2)(p) is canceled when A(')(p) is calculated from W, but that the connected 
term is unchanged. 

14.6 FERMIONS 

The extension of path integral techniques to fermions poses a special problem. An 
essential aspect to the description of Dirac fields is their anticommuting nature, and 
in the path integral formalism fields are c-numbers! What we need is a formalism 
or mathematics of anticommuting c-numbers. As it turns out, such a mathematics 
was developed by Grassmann in the latter half of the 19th century; the algebra of 
such anticommuting numbers is referred to as a Grassmann algebra. 

The Grassmann numbers are constructed from real (or complex) numbers 
and generators. The generators are denoted C,, where i = 1 to N and N may be 
infinite. The generators satisfy 

(Ci,Cj} = 0 . (14.126) 

Note that C: = 0. In applications, we are interested in functions of products of 71 
and fl, where 

(14.127) 
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and II, and 
tively) and 
77 and one 

4 = $+yo are Dirac c-number spinors and conjugate spinors (respec- 
. Ci and C, are independent Grassmann generators. If there is only one 
15, then the most general function of fjq is simply 

Differentiation will be defined to correspond to the removal of one power 
of a Grassmann variable, but the derivative anticommutes with other Grassmann 
variables, so we have 

The rules for the integration of Grassmann numbers will be given shortly. 
We now show how the anticommuting property of Grassmann numbers makes 

it possible to extend the path integral formalism to fermions. The first step is to 
find coherent states of the fermion annihilation operator, which we will denote 
by B, (where i is the frequency of energy of the particle). This requires we find 
states with the following property: 

Bilb) = bilb) . (14.130) 

At first it seems that it must be impossible to find a solution to this equation, 
because we know that fermion states can have at most one particle in any quantum 
state, and the coherent states (14.62) required a sum over states with an arbitrarily 
large number of particles in each quantum state. However, if the eigenvalue bi is 
assumed to commute with the state Ib), 

then the anticommutation relations satisfied by the annihilation operators B, im- 
ply that the eigenvalues bi must be complex Grassmann numbers and that the 
eigenvalues and annihilation operators also anticommute, 

(see Prob. 14.4). Hence, if we define 

(14.131) 
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then 

(14.132) 

where the property b: = 0 was used in the last step. These coherent states have 
a norm which is very similar to their Bose counterparts, 

(blb) = (01 n (1 - Bitb;,) n (1 - biBf) 10) 
i’ i 

= (01 n (1 + b t b i )  (0) 

= e  p : b l  , 
i 

(14.133) 

where it is convenient to introduce an exponential in the last step because of the 
property ez eY = ez+Y. Note the form of (bl, which is dictated by the requirement 
(blBf = (blbf.  

The form of (14.133) suggests defining definite integrals of Grassmann num- 
bers over the interval (--oo,oo) so that the resolution of unity assumes the familiar 
form 

1 =  / n d b ; d b i e - x i b : L i  Ib)(bl , (14.134) 
i 

where, by convention, the factors of 27ri are omitted for fermions. First, consider 
the implications of this equation for the case of only onefrequency. We have 

db; dbi e-brbs 1 - biBf lO)(O( (1 - Bib;) . (14.135) 0 
Expanding both sides of this equation gives 

(14.136) 
The equality of the first and last lines implies that 

dbi = 0 = dbf = 0 I 1  (14.137) 
dbi b, = 1 = dbf b; , J J 
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We leave it as an exercise to show that these conditions are also sufficient to prove 
(14.134). 

Note that these conditions also preserve the translational invariance of Grass- 
mann integrals, which is essential for the reduction of path integrals. Translational 
invariance implies that 

(14.138) 

This identity can be proved by expanding out the function f and using J dq = 0, 
which gives 

Note also that the anticommutation relations require that 

whereas 

J dis is 11 = 11 

( 14.139) 

( 14.140) 

(14.141) 

Now, consider a space spanned by two independent Grassmann generators. 
The Grassmann numbers in this space can be represented by a two-dimensional 
I omplex vector 

( 14.142) 

where q1 and q 2  are complex numbers which multiply the independent Grassmann 
generators C1 and CZ (in applications, these numbers q1 and qz will also have a 
four-dimensional Dirac vector structure which has nothing to do with the Grass- 
mann space), and 41 and fj2 are their complex conjugates (and Dirac conjugates). 
Our rules of integration imply that 
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Now, suppose we generalize the quadratic form ijq to ijAq, which can be written 

7,477 = f j iA. .  $3773 . . ( 14.144) 

Then, the integral (14.143) generalizes to 

= - d e t A  , 
or, if an i is inserted in the exponent, 

[dij dq] e-iijAq = -(i)" det A , ( 14.145) 

I I 

where n is the dimension of the matrix A.  The result, which can be generalized 
to arbitrarily large matrices, will be very useful in the following sections. Note 
that this result for Grassmann integrals is very different from what would have 
been obtained from ordinary numbers: 

(14.146) 

h e  Dirac Fields 
Since we have successfully defined coherent states for Dirac annihilation operators 
and obtained a form for the resolution of unity which is identical to the one for 
scalar fields, the rest of the discussion for scalar fields may be carried over directly 
to Dirac fields. The generator for free Dirac fields is then 

where 4 ( x ) ,  $(x).  q (x)  and f j (x)  are all four-component Dirac vectors, which 
are also infinite-dimensional Grassmann variables, with 

$ J ( x )  $(xi) = $iCi . (14.148) 

We reduce 20 using the same steps carried out for the scalar field d in 
Sec. 14.4. In particular, transform the integrals to momentum space using 
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Integrating by parts, 

487 

14.150) 

and substituting the Fourier transforms, we obtain 

zo [ f j ,  71 = J [dlj/ d@~] e lJ  d4~{d(~)(~-m+1r)~(~)+-il(~)~(~)+rJl(p)(~)}. (14.151) 

Next, make the substitution 

(14.152) 
@(PI = @ O ( P )  - ($ -m + 4 - l  rib) 

l j / (p)  = ~ O ( P )  - f j ( ~ )  ($ -m + i 0 - l  

and use the translational invariance of the integrals to obtain 

zo ii i ,  71 = J [d40 d+o] ei J d 4 p ( ~ 0 ( ~ ) ( ~ - m + t c ) ~ o ( p ) - - i l ( p ) ( ~ - - m + a e ) - 1 1 7 ( p ) }  . 

(14.153) 
We have again separated 20 into a part independent of 7 and f j  and a part which 
depends on 7 and f j  only. Dividing by Zo(O), we have 

(14.154) 

The free propagator is the vacuum expectation value of the time-ordered 
product of field operators. In this case it is 

where the extra minus sign arises from the 67 differentiation, using 

6 -  -@q = -4 
67 

Applied to the above form for ‘ZO, this gives 

(14.156) 

(14.157) 

in precise agreement with Eq. (11.21b). 
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Fermion Loops 

We close this discussion by considering fermion loops in a theory with a scalar 
meson coupled to a fermion. This is similar to the d3 case previously discussed, 
except that now there are two different kinds of particles. The interaction term is 

& = - g i W  . (14.158) 

Replacing &!~d by derivatives, using Eq. (14.156), gives 

The sign in the exponent depends on the order in which the 77 and fj derivatives 
are written; for the order given in the above expression the sign is the same as 
for the generating function Z [ J ]  of 43 theory. 

To illustrate the difference between closed fermion and boson loops and ob- 
tain the factor of -1 for closed fermion loops found previously in Sec. 11.5, we 
calculate the self-energy of a scalar particle which arises from a closed fermion 
loop, similar to that drawn in Fig. 14.6A (the drawing for the two cases is iden- 
tical, but the meaning of the lines and vertices is different). The calculation is 
sufficiently different from that given in Sec. 14.5 that a new calculation is neces- 
sary. In order to track the difference between a charged scalar loop and a fermion 
loop, we will keep track of sign changes which arise from the interchange of the 
Grassmann numbers by multiplying by a factor of E = -1 for each interchange. 
Then, after the calculation is complete, we can recover the result for a charged 
scalar loop by changing E + 1 (and making other changes which we will discuss 
below). 

Drawing on our experience with the previous calculation, the second order 
contribution to the scalar particle self-energy comes from the term 

( 14.1 60) 

where the momenta of the $ fields are denoted by p l  and p2, the momenta of the 
111 fields are denoted by p i  and p i ,  and momenta of both scalar fields are outgoing, 
so that their source terms are J ( k ) .  Now, since the source terms occur only in the 
combinations i j(p)q(p) and J ( k )  J ( - k ) ,  the only non-zero, connecfed t e r n  come 
from the pairing of p z  with p i ,  pl with p i ,  and kl and k2 with the external 
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momenta k. Hence the terms we need are 

(14.161) 

where the extra factor of < = -1 arose in the second step when we needed to 
pass the 6/6r], derivative through 7, to act on 776. [Two minus signs (E2 )  also 
arose in the first step, but these do not change the overall sign.] The selfenergy 
C introduced in the last step is 

Note that the final form of z(2) given in Eq. (14.161) has the same structure as 
Eq. (14.116), permitting us to identify i C ( k )  as the loop contribution to the self- 
energy of the scalar particle, which we are seeking. Equation (14.162) exhibits 
features of fermion loops which were previously encountered in Sec. 11.5: 

0 a trace must be taken over the product of Dirac propagators. 
0 there is an additional factor of -1 which arises from the closed 

fermion loop. 

The result for a loop involving charged scalar particles is easily obtained 
from (14.162). The calculation is the same except < = 1, and scalar propagators 
must be substituted for Dirac propagators. We obtain the result 
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Note that there is no symmetry factor of 
This concludes our introductory discussion of the use of path integrals to 

quantize field theories. Note that the formalism allows us to use c-number fields 
(but Dirac fields must be described by anticommuting Grassmann numbers) and 
that the results are equivalent to the operator formalism we presented in Chapters 
9-1 1. In the next chapter we use the techniques developed here to quantize QED 
and QCD, and we will discuss the Standard Model. 

if the scalar particles are charged. 

PROBLEMS 

14.1 Obtain the path integral given in Eq. (14.81) from the path integral 
Eq. (14.77) by transforming from the coordinates { q i , p i }  to the coordi- 
nates { c $ ~ , ? T ~ }  using the transformations given in Eq. (14.78). This can be 
accomplished by working through the following steps: 

(a) From the relations 

eih:3-r’) 
i = 6 3 ( T -  T ’ )  , 

prove the completeness and orthogonality relations given in Eq. (14.80). 

(b) Prove that the volume integration is invariant by showing that, for each 
time “slice,” 

d9i dPi d4a dra  J ~ T = Q J ~ T  i 9 

where (qI2 = 1 and can be ignored. 

(c) The first term in the exponential in Eq. (14.77) may be symmetrized by 
integrating half of the expression by parts, 

Show that 

14.2 Using the Feynman rules worked out in Chapter 11 or given in Appendix B, 
obtain the correct integrals corresponding to the two diagrams in Fig. 14.5. 
(Don’t overlook the symmetry factors). Can the same results be obtained 
from Eq. (14.113)? (It is an interesting exercise to use the Feynman rules 
to construct these diagrams, but do not forget that all such diagrams can be 
negiected because they cancel when the generating function is renormalized.) 
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14.3 Using the generating function W[J] ,  defined in Eq. (14.125), calculate the 
propagator for a neutral scalar meson to second order in the coupling constant 
A, and show that it contains no disconnected pieces. Compare your answer 
with the result given in Eq. (14.122). 

14.4 From the eigenvalue condition (14.130) and the anticommutation relations 
{Bi ,  B j }  = S i j ,  prove that the eigenvalues of the coherent states, bj,  must 
be Grassmann numbers and that the Grassmann numbers also anticommute 
with the annihilation operators. 



CHAPTER 15 

QUANTUM CHROMODYNAMICS 
AND THE STANDARD MODEL 

In this chapter we apply the path integral formalism developed in the previous 
chapter to the quantization of gauge theories. The simple case of an Abelian 
theory (QED) is treated first, and then we discuss the quantization of non-Abelian 
gauge theories and obtain the new Feynman rules for ghost lines and vertices in 
QCD. Ghosts are particles which violate the connection between spin and statistics 
(in this case they are scalar particles which obey Fermi statistics), and hence they 
cannot exist in initial or final states but only appear as virtual particles inside of 
loop diagrams (hence the name “ghost”). We will show that one of their roles in 
QCD is to maintain unitarity. We conclude the chapter with a discussion of the 
current theory of the electroweak interactions, referred to as the Standard Model. 

15.1 QUANTIZATION OF GAUGE THEORIES 

The path integral formalism will now be used to quantize gauge field theories. 
The general results we obtain will first be applied to QED at the end of this section 
and to QCD in the next section. 

We begin the discussion by considering the following generating function for 
the free electromagnetic field with source j,: 

(15.1) 

Note that the source term is identical to a current interaction term, giving us the 
familiar identification of currents as sources of the electromagnetic field. 

Recall from our discussion in Sec. 2.2 that quantization of the EM field 
presented a problem because aAo/& was not contained in the Lagrangian, and 
hence A0 was not a dynamical variable. This problem was “solved” by choosing 
a gauge (the Coulomb gauge) in which A0 could be easily eliminated and the 
fields quantized. One constraint remained, the Coulomb gauge condition: 

V * A = Q .  (15.2) 

492 

Relatiwstic Quantum Mechanics and Field Beory 
FRANZ GROSS 

Copyright@ 2004 WILEY-VCH Verlag GmbH 



15.1 QUANTIZATION OF GAUGE THEORIES 493 

We have a similar problem with the generating function (15.1). The action is 
invariant under the gauge transformation A& = A,, + 8,,A (we assume the source 
current is conserved; 8,j” = 0). This means that the field can be separated into 
two parts: 

A,  = WWr A,”)  1 (15.3) 

where A,,, are the “gauge” components which leave the action invariant and A,, 
are the “dynamical” components upon which the action depends. Since the action 
is independent of the gauge components, they cannot be determined from the 
variational principle which gives the field equations and must be integrated out. 
One of the nice features of the path integral is that it is possible to express the 
integration over the gauge components as an overall factor which is independent 
of fhe  dynamical Components A D M .  This factor is infinite but has no effect on the 
dynamics because it is an overall multiplicative factor which can be absorbed into 
the normalization constant which is divided out when we evaluate propagators, S 
matrix elements, and other physical observables. 

Before the gauge degrees of freedom can be separated from the dynamical 
degrees of freedom, we must define how the separation is to be made. This is done 
by imposing a constraint on the fields. The constraint, or gauge condition, defines 
the dynamical fields; all fields which satisfy the constraint are dynamical. The 
constraint is chosen so that fields which do not satisfy it differ from those which 
do by a gauge transformation which leaves the action invariant and therefore these 
additional fields are redundant. These fields which do not satisfy the constraint 
are gauge fields which must be integrated out. 

An example, taken from Cheng and Li (1 984), will illustrate this discussion. 
‘,uppose we have a complex field, $ = r e f e ,  and an action A($*$) which 
depends on $*$ = r2 only. The action is therefore invariant under the gauge 
transformation 

11‘ = e i@+ . (15.4) 

The path integral which determines the dynamics of this system is 

(15.5) 

where in the last expression we have integrated out the “gauge dependent” degrees 
of freedom by integrating over the redundant variable 0 and dropped this factor 
because it is a constant. While elimination of the redundant degrees of freedom 
was trivial in this case, it is good to have a systematic method for carrying out 
the separation in the general case, and one method is to insert unity, written in the 
following form: 

1 = J d w v - m )  (15.6) 
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into the original integral. This gives 

where the integral over 4 can be separated out because 26 does not depend on 
4 (gauge invariance). This method separates the integral into a “dynamical” part, 
in which the fields are specified by the “gauge condition” 8 = 4, and a “gauge” 
part which includes the redundant dependence on the gauge angle 4. The gauge 
group in this example is the group V (  1) of multiplications by a complex phase, 
and the integral over 4 is an integral over all elements of the gauge group. 

To prepare the way for application of these ideas to gauge theories, we will 
generalize the above example. A constraint which is more complicated that 8 = 4 
might be chosen to define the dynamical fields. Such a constraint can be written 
in the form 

F ( r , e )  = o . (15.8) 

Then, in place of Eq. (15.6) we have a more general result, 

A-’(T, 8) = d 4 6  [F ( r ,  8 - 4)] (15.9) 1 
where A can be evaluated directly, 

( 15.10) 

It can also be shown that A is gauge invariant, which for this example means that 
it is independent of 0: 

A-’(r ,  8 + 4‘) = d46  [ F ( r ,  8 + 4’ - 4)] s 
= s 4 4  - 4’) 6 [F( r ,  6 + 4’ - 4)] 

= A-’(r,8) . (15.11) 

The crucial step in this “proof“ is the invariance of the measure for the group 
integration, referred to as a Hurwitz measure, which is expressed mathematically 
as J~c#J  = J d ( 4  - 4’). This is trivially true in this example. 

Using these results, the path integral for the general constraint (15.8) can be 
written 

d8rdr A(r ,  8)s [F ( r ,  8 - 4)] eid(r2) = / dd 2, 

(15.12) 
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where 

2, = 1 d8 r d r  A(r,  8)b  [F(r,  8 - 4)] e iA(r2) (1 5.13) 

This new path integral includes the constraint and yet is still gauge invariant. To 
prove the latter, use the invariance of the group measure, of A, and of the action 

Z+t = d 8 r d r  A(r,  8)s [F( r ,  8 - 4')] eiA(r2)  J 
= / do' r d r  A(r,  8')s [F(r ,  8' - @)] eiA(r2) = 2 4 -  (15.14) 

The path integral will now undergo one more transformation before it is in 
its final form. It is convenient to generalize the gauge fixing condition (15.8) by 
the more general constraint 

~ ( r , e )  = G , (15.15) 

and then average over all values of G using the following integral: 

(15.16) 

where a is a constant referred to as the gauge firing parameter (to be discussed 
below). Since G is independent of all the other variables, A will be unchanged 
by this substitution, and discarding the unimportant constant in Eq. (15.16) the 
path integral ( 15.13) can be replaced by 

Z + = J d G / d B r ~ r A ( r , 8 ) 6 [ F ( r , B - 4 ) - G ]  e i ( A(ra)-&Ga) 

(15.17) 

This is the form we will employ in our discussion of gauge theories. Note the 
following features 

0 The gauge degrees of freedom have been removed from the field integration. 

0 The new integral includes the gauge constraint in two places: the effective 
action includes a gauge fixing factor of F2,  and the integration measure 
includes the factor A. In spite of these factors, the overall expression is 
gauge invariant. 

In the example we have been discussing, the initial gauge constraint was 
4 = 8, which is equivalent to the function F = 8. In this simple case, A = 1, 
and the gauge fixing term reduces to a constant, 

J d8 e - ' k g a  = constant , 
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which can be dropped, showing that (1 5.17) reduces to (1  5.7). 

gauge condition will be written in the following general form: 
We now return to our discussion of gauge theories. As discussed above, the 

F ( A )  = 0 , (15.18) 

where F is some function or operator which depends on the components of A, = 
$X,AE (where ;Aa are the generators of the gauge transformation). Familiar 
choices are 

V . A = 0 

a,AP = 0 

Coulomb gauge 

Lorentz gauge . 
A, = 0 axial gauge (15.19) 

In this chapter we will choose the Lorentz gauge because it is manifestly covariant. 
The example presented above outlined how the path integral is to be con- 

structed, but because of the greater complexity of the realistic problem, we will 
review the steps again here. This way of treating the gauge condition was in- 
vented by Faddeev and Popov [FP 671 and is referred to as the Faddeev-Popov 
trick. This trick is not required for the quantization of QED, but is useful in the 
quantization of QCD. The argument begins by considering the quantity 

A-’(A)  = / d U  6 [F(AN)] , ( 15.20) 

where dU is an invariant integration over the elements U of the gauge group, 
defined in general by the transformation 

a 

9 
A& = A: = UA,U+ + - (a,u) U+ (15.21) 

[recall Eq. (13.27)]. For an Abelian gauge group, A, = A,, 

u = e-a9A(z) (15.22) 

and we recover the familiar A: = A, + a,A(z). The invariant group integration 
(the Hurwitz measure) is defined by the requirement 

1 dU = / d (u’u) (15.23) 

for any fixed element U’ in the group. The idea behind this statement is that the 
sum (integral) over all elements U of a finite (continuous) group is the same as 
the sum (integral) over all elements U’U, because multiplication by U’ maps the 
group into itself. For an Abelian gauge transformation we may take 

(15.24) 
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This definition satisfies the requirement (15.23) 

because, at each point xi  (or more properly, in each volume a), A(.,) = A, is 
integrated from -00 to 00, and hence, if the integral exists, 

Returning to Eq. (15.20), note that A - ' ( A )  is gauge invariant because 

A-l  (A"') = J d u 6  [ F  (A"'")] = / d ( U ' U ) 6  [ F  (A"'")] 

= / d U " 6 [ F ( A " " ) ]  = A - ' ( A )  , (15.27) 

Now A ( A )  can be explicitly evaluated using fields defined in coordinate 
space, but it is more straightforward if the fields are treated in momentum space. 
Hence a p A p ( z )  -+ - i k p A p ( k ) ,  and all the gauge conditions we have mentioned 
so far can be written 

F ( A )  = - in ,Ap(k )  = 0 ,  (15.28) 

where 
n p  = k p  Lorentz gauge 

n p  = (O,O,  0,1) axial gauge (15.29) 

n p  = ( 0 , i )  Coulomb gauge. 

Now A ( A )  will be evaluated for the general case of a non-Abelian gauge trans- 
formation because it will be needed later. Working with the infinitesimal transfor- 
mations given in Eq. (13.31), the gauge transformations are 

where the transformations have been written in momentum space, the indices a, 
b, c are color indices, and fabc are the structure constants of the group. Dividing 
space up into discrete cells, so that AE(k,) = A f ,  the gauge transformation can 
be written 

(A") E, = A;% + E; , (15.31) 

where the gauge transformation matrix is 

(15.32) 
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Later, when we want to restore the continuum, we will use 

(A’): (k) = A”,k) + d4k’M,”‘(k, k ’ ) f C ( k ’ )  
(15.33) ’ f Q b c ~ : ( k  - k’) . M,”“(k, k’) = -ikp64(k - k’)bQC - - 

J 
(27T)2 

(15.34) 

and hence the explicit form for A(A) is 

Now, if we work “around” a field configuration AEl which satisfies the gauge 
condition, then npAEl = 0, and we have 

This has the general form 

I = / y ds16((3*,x,) 

= det-’(0) I 

Hence, finally we obtain the desired explicit form for A: 

( 15.37) 

1 . 1  
A(A) = det (-inpM,”tj (15.38) 

For an Abelian gauge group, A(A) = A(A) = A, independent of A, and 
since all constant terms do not matter in the definition of the generating function, A 
can be discarded. This is true for QED, but is not true for QCD, where A depends 
on A and cannot be ignored. We will continue to include A in our discussion of 
QED, in order to be better prepared to include it later in our discussion of QCD. 

Now we are almost ready to incorporate the constraint and implement the 
Faddeev-Popov trick. Before doing so, we generalize the gauge condition to 

F(A)  - C(Z) = 0 , (15.39) 
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1 = A ( A ) N ( a ) / D ( G ) / d U 6  [ F ( A “ )  - G]  e-’ktrG2,  

where G = iXaGa is an arbitrary Hermitian, traceless matrix in the gauge space. 
Then consider the more general relation 

(15.43) 

A,’(A) = dU6 F(A’ )  - G(z)] I [  (15.40) 

This quantity is still gauge invariant. Furthermore, working around the new field 
AG which satisfies the new gauge condition 

-inpAcp = G , (15.41) 

we can show that A ( A )  is independent of G.  To demonstrate this, return to 
Eq. (15.35) and generalize it to include G :  

(15.42) 

because A G ~  satisfies the new gauge condition. 

constraint imposed by the gauge condition in the form 
Finally, following the discussion leading to Eq. (15.17), we may insert the 

I I 

where N ( Q )  is the (infinite) constant 

( 15.44) 
This constant normalizes the integrals over each G4 and approaches infinity as 
the number of cells n, into which the spatial integrals are divided, approaches 
infinity. However, since it is a constant, it may be discarded leading to the 
following generating function for gauge theories: 

ZO[.i] - = /D[A,G]dU A(A)  6 [F(A’ )  - G] 

x e  i J d 4 2 t r  { - ~ F U , F ~ ” - $ G 2 + 2 j  p .  A”} (15.45) 

Next, we simplify this by letting A, + A p - l ) .  Then, everything in the integral 
is explicitly gauge invariant except the S[F(A’) - G], and we get 

& [ j ]  = / d U / D  [ A p - ’ ) G ]  A ( A ( ’ - ’ ) )  6 [ F ( A )  - G ] e  l A ( U - 1 )  

- - [dU [D[A,G]A(A)  6 [ F ( A )  - GI erd . (15.46) 
J 
\ ! 

7 

integral over gauge integral over degrees of 
degrees of freedom freedom fixed by the gauge 
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This result accomplishes what we set out to do; it separates the integral into 
two parts: (i) an integration over the gauge degrees of freedom (now an infinite 
constant explicitly independent of A) and (ii) an integration over all field variables 
constrained by the gauge condition F(A)  = G. The infinite J dU integration can 
now be dropped, and the integration wer  G carried out, removing the &functions 
and giving 

Discussion 

(i) The new term -h t r  [F(A)I2 in the effective Lagrangian is the gauge fixing 
term we first discussed in Sec. 2 .2 .  This one has a different structure and depends 
on a parameter a.  

(ii) In QED, where the gauge transformation does not depend on A, A(A) is a 
constant and can be ignored. In this case we recover thz same generating function 
we would have had if we had simply inserted the 6-function (and averaged over 
GI. 

(iii) Let us write out the effective Lagrarlgian (15.47) for QED in the generalized 
Lorentz gauge. In this case, the Lagrangian density in momentum space becomes 

(15.48) 
2 

1 1 
4 2 a  

--FM,FPu - - (a,AP)’ + 

The propagator is proportional to the inverse of the kinetic energy term. Hence, 
if A,, is the propagator, then it must satisfy the equation 

From Lorentz invariance we know that the propagator must have the general form 

APu = A, gPu -I- A2 k P k v  , (15.50) 

where A, and A, are functions of k 2 .  Substituting (15.50) into (15.49) gives the 
following equations for A, and A2: 

(15.51) 
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Hence the propagator is 

There are two common choices for the (arbitrary) gauge parameter CY: 

Q = 1 Feynman gauge 

Q = 0 Landau gauge . 
(15.53) 

Note that CY = 0 corresponds to a limiting case where G = 0. The Feynman gauge 
is the one used in Chapters 10 and 11 and is used for many QED calculations. 

(iv) The choice CY = 00, which would eliminate the gauge fixing term, gives a 
singular propagator. A finite Q is necessary and hence a gauge fixing term is 
necessary. 

(v) In QED where current conservation takes on the simple form k , , j p  = 0 (for 
on-shell particles) the second term in  the propagator vanishes and all results are 
independent of Q explicitly. Gauge invariance (independence of Q) and current 
conservation are again the same constraint. 

We now turn to a discussion of the quantization of QCD. 

15.2 GHOSTS AND THE FEYNMAN RULES FOR QCD 

The final application of path integrals will be to the determination of the Feynman 
rules for QCD. We already have the basic ones, given in Fig. 13.1. Our focus 
here will be on gauge fixing and the appearance of ghosts in loop diagrams. 

We have already done the bulk of the work necessary to obtain the Feyn- 
man rules for QCD. The candidate generating function is just the one given in 
Eq. (15.47). The principal differences are that: 

F,,,Fp” now contains the covariant derivatives, which include A,, terms. 
When expanded out, they generate a kinetic energy term of the same form as 
in QED, plus three-gluon ( A 3 )  and four-gluon ( A 4 )  interaction terms. These 
generate the 39 and 49 couplings given in Eq. (13.57). 

A(A) is now dependent on A. This means that it can no longer be dis- 
carded, as we did in QED. This Faddeev-Popov term generates new interac- 
tions which we want to discuss now. 

A general result for the A(A) term was given in Eq. (15.38). In the gener- 
alized Lorentz gauges it is 

(15.54) 
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This determinant will make the volume integration over D[A] dependent on A and 
will influence the path densities in a non-uniform manner. Any such influence is 
an effective interaction which must be taken into account in all calculations. This 
can be done by writing the factor A as an exponential. Since A multiplies the 
rest of the path integral, its phase must be added to the other terms in the action, 
and these new terms will describe new interactions which can be calculated in the 
usual fashion. Fortunately, the technique for doing this has already been given in 
Eq. (14.145). 

To convert the determinant into an exponential, we introduce TWO new anri- 
commuting, colored, scalar$elds, denoted by C and c .  Since such particles violate 
the connection between spin and statistics, they are referred to as ghosts, and we 
expect them to appear only in loops and not to exist outside the region of inter- 
actions. Using the identity relating a determinant to an integral over Grassmann 
variables, Eq. (14.143, we write 

(15.56) 

From the form of this expression, we deduce that ghost fields behave like massless 
scalar fields, with a propagator of the conventional form 

i6ab i A , = -  . 
p 2  + i t  

(15.58) 

Furthermore, ghosts interact with the gluon fields with a 43 type interaction. Since 
the interaction with C is different than with c, the ghost lines should be oriented, 
and we have the following addition to Feynman Rule 1: 
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0 the operator 

k, p, b > g f a b c  (P + k)' 
at each gluon ghost vertex, where the 
outgoing ghost (dotted in the diagram) 
has momentum p + k and color a, 
the incoming gluon has polarization p, 
color b. and momentum k ,  and the in- 
coming ghost has momentum p and 
color c. 

Fig. 15.1 

The sign of this term follows from the observation that the term in the Feynman 
rules is -i'Flint = X i n t .  The momentum of the E field (outgoing) is eiP'.s so that 
a,, + ip; ,  giving 

- 2  i d p  Sfabc  = d ' g f a b c  

and precisely the above result when p' = p + k is substituted. The dot in the 
diagram of Fig. 15.1 tells which line has the momentum attached to it. 

In constructing closed loops, E must pair with c, and since the momentum is 
associated with E ,  we have the rule: 

0 a ghost line cannot be dotted at both ends. 

Finally, since ghosts anticommute: 

0 a factor of (- 1) multiplies each ghost loop. 

The full set of Feynman rules for QCD is given in Appendix B [MP 781. Any 
QCD diagram can be calculated from these rules, and they will be used in the 
next section and in Chapter 17. 

Fig. 15.2 
at only one end. 

The ghost loop contribution to the gluon self-energy showing that ghost lines are dotted 
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As an illustration of the use of the Feynman rules for ghost loops, the second 
order ghost contribution to the gluon self-energy, given by the Feynman diagram 
shown in Fig. 15.2, is 

(15.59) 

This diagram, and others which contribute to the gluon self-energy in second order, 
will be evaluated in Chapter 17, where it will be shown that the effective QCD 
coupling constant g approaches zero at high energies, a property referred to as 
asymptotic freedom. 

The appearance of ghosts in QCD may appear a bit mysterious. In the next 
section it is shown that ghosts are necessary in order to preserve unitarity. 

15.3 GHOSTS AND UNITARITY 

Even though ghosts never appear in external states, ghost loops play an important 
role in QCD. Since they are a consequence of the quantization of a field with 
a gauge symmetry, it is expected that they will be needed in order to maintain 
gauge invariance, but it is perhaps less obvious that they are also needed to main- 
t .in unitarity. In this section we will look at a simple example which illustrates 
now ghosts help to maintain both gauge invariance and unitarity. [See also the 
discussions in Cheng and Li (1984) and Aitchison and Hey (1982).] 

First, consider the annihilation of a quark-antiquark pair into two gluons. To 
second order in g 2  there are three diagrams which describe this process, as shown 
in Fig. 15.3. Omitting the polarization vectors of the final state gluons, these three 
diagrams are 

(15.60) 

Note that the sum of these three diagrams is symmetric under interchange of the 
two final state gluons. 
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Fig. 15.3 
the annihilation of a quark-antiquark pair. 

The three Feynman diagrams which contribute to the production of  two gluons from 

Now, the physical scattering amplitudes are obtained from the expressions 
( 15.60) by contracting them with the polarization vectors of the outgoing gluons, 
which will be denoted by E P  (these vectors also carry a color index, which will 
be suppressed for simplicity). As we saw in Secs. 2.5 and 9.10, a massive spin 
one field has three independent polarization states defined by the requirement 

p . E = o  , (15.61) 

where p is the four-momentum of the particle [recall Eq. (2.44)]. If the particle 
is massless, p 2  = 0, and this condition does not uniquely specify the polarization 
states. In particular, for a massless particle traveling in the 2 direction, the helicity 
,fates 

(15.62) 
1 

E*P = T7(0,1,*2,0) 
d 2  

satisfy condition (15.61), but so does any vector of the form 

€ ! * =  f + a p  1 (15.63) 

where o is an arbitrary parameter. To uniquely define two transverse states of a 
massless particle, we must impose an additional condition which determines a. 
This condition is equivalent to fixing the gauge. In our discussion of the E M  field 
in Part I, we chose the Coulomb gauge, which is equivalent to the requirement 
that n E = 0, where, for a particle moving in the 2-direction, TIP = ( O , O , O ,  1). 
Returning to the problem under consideration, the requirement that the physics be 
independent of the gauge translates into the requirement that the amplitudes M 
give the same result for any polarization vector of the form (15.63). Hence the 
necessary and sufficient condition for a gauge invariant result is that the sum of the 
three diagrams in Fig. 15.3 satisfy the conditions kYM,, = 0 and kgMPu = 0. 
Because of the symmetry, it is only necessary to look at one of these relations; 
the other can be obtained by interchanging kl ++ k2 and a ++ b. 
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The first two diagrams give 

= g 2 f  [Aa? A b ]  V(P2r s2)Yyu(P1, s1) 

= $ f a b c i h  V(p2, %)?’yu(P1, 91) 9 (15.64) 

where we used the Dirac equation to simplify the result. Note that this would be 
zero if the commutator vanished, which shows that, in QED (where diagram C 
does not exist), the two diagrams A and B are gauge invariant. 

h p M g a b  = (g) f n b c i  Ac g(pzl%) [ # I  ( K  + h)” - 7” ( K  i- h) . h 

The contribution from diagram C is 

where I is defined by this equation. Note that I is symmetric under interchange 
of the two gluons and that therefore kZVMZ[ = k f 7 .  Now, because of the 
condition (15.61), the result (15.66) is zero when contracted with the polarization 
vector €2. Hence we conclude that the physical scattering amplitude is gauge 
invariant and that the gluon self-interaction diagram, C, is essential to this result. 
However, if some other vector, iC1 for example, is contracted into (15.66), the 
result is not zero, and this has implications for the unitarity relation, which will 
be examined now. 

As we discussed in Sec. 12.8, the unitarity relation tells us that the imaginary 
part of a scattering amplitude must be equal to the integral over the product of 
the amplitudes which describe scattering from the initial state to an intermediate 
state and from the intermediate state to the final state. Symbolically, 
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I I 

Fig. 15.4 Feynman diagrams (A-E) describe quark-antiquark scattering with a two-gluon inter- 
mediate state, and diagram (F) is the ghost loop contribution. All of these diagrams have a two-body 
cut indicated by the vertical dashed line. 

where the integral is over all degrees of freedom of the intermediate state, which 
must be a physical state with both particles on the mass-shell. The J, includes the 
two-body phase space factors discussed in Sec. 12.8 (the specific form of which 
are not needed in the subsequent discussion). This unitarity relation is a profound 
restriction on any theory and is directly related to the conservation of probability. 

Let us see how this restriction applies to the elastic scattering of a q7j pair 
through a two-gluon intermediate state, described by the six diagrams shown in 
Fig. 15.4. Unitarity tells us that the imaginary part of these diagrams must be equal 
(with suitable factors) to the “square” of the q + + 29 annihilation amplitudes 
which we have just studied, and in the remainder of this section we will show that 
this is true, but only because of the presence of rhe ghost loop diagram, F, which 
is needed to cancel unwanted contributions from the first five diagrams A-E. 

In preparation for this demonstration, we note that the metric tensor can be 
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decomposed as follows 

i = 1 , 2  
(1 5.68) 

where ci are transverse polarization states with zero time cpmponents and i 1  and 
k z  are “unit” vectors in the direction of k l  and k2; i.e., k y  = k ~ / k o ,  where ko 
is the energy of either gluon in the overall center of mass frame (see Prob. 15.1). 
This decomposition is very convenient for the present problem. 

Using this result, and drawing on the discussion in Sec. 12.8, the imaginary 
part of the diagrams A-E is 

(15.69) 

where the symmetry factor of 3 arises because the two gluons are identical and 
the factors of g,,,tgwu~ are from the gluon propagators (in the Feynman gauge). 
In computing the imaginary part of the diagrams, the two intermediate gluons are 
fixed on their mass-shell, so that if iC1 and kz are their four-momenta, we have k: = 
0 and k i  = 0, just as for the original annihilation diagrams. The only difference 
between (15.69) and the correct unitarity relation is that the g p p ~ g u u ~  term from the 
propagators includes the contribution from the longitudinal polarization states, the 
& term in (15.68). Unitarity requires that the sum be over physical, transverse 
states only, and hence we require 

( 15.70) 

The difference between (15.70) and (15.69) is the extent to which the imaginary 
parts of diagrams A-E violate unitarity and is 

6 Im M = Im M $ E ~ ~ ~  - ~m M~~~~ scattering 

Note that each of the terms in this difference involves at least one factor of gL, 
which in turn would be zero if the annihilation amplitudes were gauge invariant. 
Because k: = k i  = 0, it follows from Eq. (15.66) that 

k1pkzUM:[ =kip&ME: =~‘;,kz,,M$’ = 0 , (15.72) 
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Fig. 15.5 The ghost production diagram 
used to calculate the imaginary part of dia- 
grim 15.4F. 

and the only non-zero terms which contribute to (15.71) are 

k&,,M:[ = & . k z  7 = 2 7  = kzpkzvM:[ , (1 5.73) 

where 7 was defined in Eq. (15.66). Using these results, 6 Im M can be quickly 
reduced to 

=+ (15.74) 

Now the ghost loop diagram 15.4F. which we have ignored until now, will also 
contribute to the imaginary part of the q?j scattering amplitude. The imaginary part 
of this diagram can be computed from the square of the ghost production diagram 
shown in Fig. 15.5, even though this production diagram does not contribute to 
the annihilation amplitude (because no ghosts may be in initial or final states). 
','his diagram is 

Recalling that ghost loops must always be multiplied by a minus sign and that 
there is no symmetry factor of 3 in this case, the imaginary part of diagram 15.4F 
is 

77 . ( 15.76) 

Note that this contribution cancels the unitarity violating part given in Eq. (15.74). 
The scattering amplitude satisfies unitarity because the imaginary part of the ghost 
loop cancels unphysical contributions from longitudinal polarization degrees of 
freedom in intermediate states. 

This cancellation seems miraculous, and if we had not shown that the Lorentz 
gauges which we are using require ghosts which satisfy the Feynman rules given 
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in the previous section, it would seem to be an accident. As it is, the unitarity 
requirement is one way to see why such gauges require ghosts, and their presence 
was anticipated well before their quantization rules were known. Having the rules, 
we can regard this demonstration of unitarity as a confirmation that the rules are 
correct and that the theory is physical. 

15.4 T H E  STANDARD ELECTROWEAK MODEL 

Building on what has been learned, the standard Electroweak model, usually just 
referred to as the Standard Model, will be described next. This model was de- 
veloped by Weinberg and Salam in the late 1960’s [We 67, Sa 681 and is the 
first example of the modern unification of forces. In this model, the weak and 
electromagnetic forces are unified into a single force. 

We will only describe one generation of the lepton sector of the Standard 
Model, but the other generations and the quark sectors are all very similar (for an 
elementary account, see [AL 73, La 811). Briefly, the Standard Model can be de- 
scribed as a theory which has a local S U ( 2 )  x U (  1) gauge symmetry spontaneously 
broken by the vacuum. Hence it combines features of the SU(2)  gauge group stud- 
ied in Sec. 13.2 with spontaneous symmetry breaking studied in Secs. 13.6-13.8. 
There are two Lagrangians to be discussed. The first is the unbroken Lagrangian 
in which the gauge symmetry is manifest, and the second is the transformed La- 
grangian expressed in terms of physical fields. The particles contained in each of 
these Lagrangians are summarized in Table 15.1, and they will be described in 
detail as we proceed. 

We begin with the unbroken Lagrangian, which will be denoted by C. It is 
constructed from a left-handed doublet of Fermi particles, a right-handed fermi 
singlet, a doublet of complex scalars, and four gauge bosons: three, Ah, associated 
with the S U ( 2 )  symmetry, and one, B,, associated with the U(1) symmetry. 
All particles but the scalars are massless. The left-handed particles include the 
i (1 - r5) projection operator, and we use the notation 

(15.77) 

where v and e are neutrino and electron fields. The right-handed singlet has the 
form 

$ R  = $en = $ (1 + r5) $e . (15.78) 

Under the gauge group, the lepton and scalar doublets transform as in Eq. (1 3.16): 

(15.79) 

(15.80) 
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Table 15.1 Fields and particles in one generation of the Standard Model. 

Mass 

0 

0 

finite 

0 

0 

- 
Spin IW Y 

f -1 

0 -2 

+ 1 

1 0  

0 1  

# of 
States 

Field 

V L  

e 

rl0 

Y 

W* 

Z0 

Spin 
- 

1 
2 

1 
2 

0 

1 

1 

1 

CEW 

Mass 

0 

finite 

finite 

0 

finite 

finite 
- 

Charge 

0 

-1 

0 

0 

f l  

0 

# of 
States 

where a(s) = ~ * a ~ ( z ) ,  and ~i are Pauli matrices which are the generators of weak 
isospin, I w ,  and Y is the hypercharge operator, which has the values shown in 
Table 15.1 for each particle. There are two coupling constants: 

g SU(2) gauge group 

9‘ 
(15.81) 

V (  1) gauge group . 

Similarly, the right-handed singlet transforms as 

*’ R -  - , - ts’@(z)Y * R  = ,zs’B(z)*R (15.82) 

because +R has a hypercharge assignment of -2. 
The unbroken Lagrangian consists of four parts: 

c = Llepton + cfield + cscalar -k Lint i (15.83) 

where 
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In these expressions, 
A,, = D,A, - DuA, 

B,” = a,& - a,B, , 
( 1 5.85) 

where A, = $.,A;, as in Eq. (13.25), and the D, are covariant derivatives, 
defined with the following properties: 

where DI is the gauge transformed version of D,. With these defining properties, 
the covariant derivatives have a form analogous to (13.32). including terms for 
both the U(2) and U(  1) groups, when indicated. For example, 

- 
iD,(L)$L = p, - gA,(s) + ;g’B,(z)] $JL , ( 1 5.87) 

where the positive sign in the B, term follows from the assignment Y = -1 to 
L.  The gauge transformations for the gauge fields are 

A; = U2A,Uh + - i (8,Uz) U, t 

(15.88) 9 
i BL = B, + - (a,U,) U i  = B, + Y ~ , P ( X )  . 

With all these definitions, the gauge invariance of the Lagrangian (15.83) follows 
almost trivially. The only term requiring a demonstration is the interaction term, 
where the invariance under S U ( 2 )  is again obvious, but invariance under U(1) is 
a consequence of compatible hypercharge assignments, 

9’ 

Lint = -Geqk (4”q;) + h.c. 
- - -Ge , - 1 g ‘ o ( T )  , + i g ’ t a ( z )  ,+*9’+4(S)  $JR (4tqjL) + h.c. --- 

R 4’ L 

= Lint . (15.89) 

We now arrange for this gauge symmetry to be spontaneously broken by 
making m2 negative, as we did in Sec. 13.6. Then the energy density is a minimum 
when 

(15.90) 

where 21 is the same constant first introduced in  Sec. 13.6. We will choose the real 
part of the neutral component of @ to be the one which breaks the symmetry, and 
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introduce fields which are small in the neighborhood of this point. Since the fields 
are now constrained, the gauge invariance is spontaneously broken, and the way 
in which the fields are defined is equivalent to “choosing a gauge”. One choice 
of gauges, referred to as RE gauges, is to introduce fields ti and q‘, where 

(15.91) 

This choice is convenient for higher order calculations [see Cheng and Li (1984). 
for example], but here we will use the unitary, or U gauge, which gives a simple 
direct description of the particle content of the Standard Model. In this gauge (p 
is parameterized as follows: 

(15.92) 

where E = &r1. The replacement of (p by the four real fields tl and 77 is not 
dissimilar to the introduction of 7r in the non-linear sigma model discussed in 
Sec. 13.7, except that in this case we will be able to linearize the new Lagrangian. 

We now transform the Lagrangian to its new form. Using the representation 
( 1  5.92), we do a final gauge transformation to new fields defined as follows 

i 
B; = B, + - (8,U)Ut . 

9’ 

Because of the original gauge invariance of the Lagrangian, this transformation 
leaves the Lagrangian invariant in form, and the practical result of the gauge 
transformation (15.93) is to replace 4 by $0. Accordingly, we will drop the 
primes on the new fields. 

After the transformation (15.93), the new Lagrangian is no longer gauge in- 
variant, because &, breaks the gauge. This is a consequence of our decision to 
choose a particular gauge (the U gauge, as mentioned above) for the electroweak 
theory. However, there is still a gauge symmetry remaining, which was not spon- 
taneously broken by the vacuum. These are the transformations which leave $0 
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invariant. Neither of the original S U ( 2 )  nor U(1) groups leave 40 invariant, but 
bearing in mind that Y = 1 for the scalar fields, the generator 

(15.94) 

does leave the vacuum value 40 unchanged, and hence it defines a gauge trans- 
formation which is unbroken by the vacuum field. We will call this the charge 
operator and write the new local gauge transformation in the following way: 

uQ = e - i e d z ) Q  1 (15.95) 

where e is the electric charge and the charge assignment for individual particles 
is e Q ,  where 

Q = 37-3 + i Y  . (15.96) 

Because this transformation is a combination of the "old" SU(2)  and U(1) trans- 
formations, there is a new connection between these independent groups; there is 
a mixing, or unification of the two original groups. This unification shows up in 
the new gauge field, which must be a linear combination of the gauge fields A: 
and B,. We introduce new$elds A ,  and Z,, 

sinew cosew) (f) (:I) = ( cos*w -sinew 1 (15.97) 

and determine the mixing angle Ow (referred to as the Weinberg angle) by choosing 
.4, to be the new gauge field, and therefore require that 2, be unaffected by the 
gauge transformation. 

Now, the transformation of the two original fields under the new gauge trans- 
formation can be found by substituting (15.94) into (15.88) (noting that Y = 0 
for A3 and T~ = 0 for B), 

( 15.98) 

because the subgroup generated by T~ is Abelian. Hence, the requirements that 

( 1 5.99) 

give immediately 
e e 
9 9' 
e e 

9 9' 

1 = -sinew + - cosOw 

0 = - c o d w  - -sinew 
(15.100) 
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which give the relations 

9' tanow = - 
9 

e =  d& = g s i n ~ w  . 
(15.101) 

Hence the Weinberg angle and the electric charge are given by the two original 
coupling constants g and 9'. Since these were both undetermined before, we have 
no prediction as of yet. 

The final task is to express the original Lagrangian L in terms of 40 (v and 
q) and the new gauge fields A, (the photon) and Z, (the neutral vector boson). 
To make contact with the old phenomenology, we also define the charged vector 
boson field by 

1 
W - - (A' - iA:)  , , - \ /z (15.102) 

Hence 

where 
7+ = 3 ( 7 1  f 272) ( 15.104) 

are the weak isospin raising and lowering operators. From Eqs. (15.77) and (15.84) 
we see that the operator T* connects neutrino and electron fields as follows: 

and hence describes the creation of one unit of charge through processes like 

- 
e + w e  ij,+e+ O - - + e + + w ,  e - + i i , + O .  

Hence the identification of W, with positively charged bosons is confirmed, in 
agreement with our discussion in Sec. 9.10. The fields A: and B, will be replaced 
by A,, and Z,, where 

9 ' 4  + gz, 

d G 7  A; = sin Ow A,  + cos OW Z, = 

(15.106) 
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Hence, the lepton term in the original Lagrangian (15.84) becomes 

+qVL [i T-hgw 4 $ v L - g w  cosew [ 4 e ~ ~ ( 1 - m V ~ ;  fh.c.1 

(15.107) 
where, for convenience, a new combination of coupling constants has been intro- 
duced, 

(15.108) 

We will regard e and as the independent parameters and introduce gw for 
convenience only. Note that the Lagrangian density (15.107) includes the new 
interactions shown in Fig. 15.6. 

Next, look at the Lagrangian for the scalars. Reducing the covariant deriva- 
tive gives 

e - - 9 
guJ = 2 ~ z  cosew s i n 2 ~ w  

1 Dpdo = (ap + igA, + - d B ,  2 
i 

do 

(15.109) ) .  
=1( %W,(7) + u )  

a,7) - & Z p ( V  + u )  

1 g2 1 g2 ~ ~ $ b )  ( D P ~ ~ )  = -ap7)ap7) + - w; wp (7)  + .)2 + - 

Jz 
Recalling that 7) and 2, are real fields, we see that 

2, 2, (7)  + v ) 2  . 
\ 2 4 2 4 cos2 %w 

(15.110) 
We have the proper kinetic energy term for a scalar, called the Higgs, and interac- 
tions of the scalar with the gauge bosons. However, more significantly, we have 
mass termsfor the bosons. The squares of these masses are the coefficients of the 
WjW” term and the f2,Z” terms. Hence 

2 
2 - 9  2 M ~ - - u  

4 

M i  = g2 u2 . 
4 cos2 ew 

Hence the mass ratio is completely determined by the Weinberg angle, 

Mz - I 
iww cosew , 

(15.111) 

(15.112) 

These masses have been measured in colliding beam experiments. Recent values 
are M w  = 80.22 f 0.26 GeV and M z  = 91.173 f 0.020 GeV. The average value 
of sin2 Ow extracted from many experiments is 0.2325f 0.0008 [RP 921. 
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the operator 

at each vertex where a 2' weak boson 
with polarization p is emitted from or 
absorbed by an electron. 

Fig. 15.6a 

the operator 

v r v  

-isw y'l (1 - ? 5 )  

Jz 

Fig. 15.6b at each vertex where a 2' weak boson 
with polarization p is emitted from or 
absorbed by a neutrino. 

the operator 

-ig, cosew yp (1 - y5) 

at each vertex where a W+ weak boson 
with polarization p is emitted from or 
a W -  boson is absorbed by a neutrino, 
converting it to an electron. Electron 
to neutrino conversion is described by 
the same factor. 

Fig. 15 .6~  

Fig. 15.6 Interactions and Feynman rules for the lepton sector of the Standard Model. 
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I I 

Fig. 15.7 Interactions and Feynman rules for the Higgs sector of the Standard Model. 

The interactions of the Higgs particle come from the kinetic term (15.110), 
the scalar potential, and the interaction term. Expanding out the scalar potential 
Fives 

m2 A2 

2 4 
V’ = --(7) + v)2 - - (7) + v)4 

A2 

4 
= m2q2 - x2vq3 - -q4 + constants 

1 1 1 
3! 4! 

--m2 H V  2 -  -(6x2v)v3 - -6x2q4 + constants. (15.113) - - 

where 
m$ = -2m 2 (15.114) 

Hence the Higgs has a mass of the correct sign (remember that m2 < 0), and 
is independent of the other parameters in the lepton sector. The coupling of the 
Higgs to the electron and the electron mass come from the interaction term, which 
reduces to 

(15.115) 

The electron mass is an independent parameter which fixes Ge.  and once Ge 
has been fixed, the coupling of the Higgs to the electron is also fixed and is 
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proportional to the electron mass. The Feynman rules for all Higgs couplings are 
summarized in Fig. 15.7. 

Finally, we expand the gauge field part of the Lagrangian. This generates 
many couplings of the photon, W* and Z and will ultimately confirm our charge 
assignments. First, consider the terms involving the square of 8,AL - 8.A; and 
the B,, term. Since the transformation connecting A, and 2, to A: and B, is 
orthogonal, and because t r  (T+T-) = 1, we have immediately 

where F,,, is the usual EM field term, and 

z,, = a,z, - a,z, 
w,, = a,w, - a,w, . 

(15.1 17) 

Note the WJ,WP” term is twice as large, as required of a complex vector field 
with two real components (recall Prob. 7.3). 

Next, we calculate the four-gauge coupling terms. To reduce these, use 

1 
- (clvALA3, - irz,ALA3,) = 

Hence the four-gauge couplings are 

iW, [sinBwA, +cosBwZ,] - (p * v) . 

(15.118) 
Jz 

= - fg’ [WJW,W”+WP - w;w”+W,w”] 

- g’WjWP [sin’BwA,A” + sin2BwA,Z’ + cos’ BwZ,Zu] 

+ g’ WJ W, [sin’ BwAPA” + sin 2Bw (A’ZP + APZ”) 

+ cos2 ewz~zu] . (15.119) 

Note that all of these couplings conserve charge and that all involve the charged 
bosons. Finally, the three-gauge couplings can also be found with the help of 
(15.118). We have 

( 15.120) 
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There are many terms, and it is helpful to separate out those which correspond to 
the expected electromagnetic couplings of the W,, field. Recalling that e = g sin 8, 
the terms proportional to e and e2 can be readily isolated from (15.120) and 
(15.119). These are also the terms proportional to A2 in (1 5.119) and A in 
(15.120). These terms give: 

(15.121) 

If these terms are combined with the kinetic terms for W ,  we have 

Lfiei,il = - $  [Wju - ie (A,WJ - A,WL)] 
W 

x [W”” + ie (ApW” - A”Wp)] . (15.122) 

This is precisely the result expected from minimal substitution; if 8, -+ 8,+ieA,, 
we would obtain (15.122) from the free W Lagrangian in (15.116). Furthermore, 
the sign identifies W as a field with plus charge e .  The electromagnetic couplings 
of the W+ boson are given in Fig. 15.8, and the self-couplings of the W’s and 
the Z are shown in Fig. 15.9. 

At this time, we collect together all of the transformed terms into a Lagrangian 
density with four terms: 

These terms are combinations of terms from different parts of the original La- 
grangian, collected together for convenience. The first term includes the original 
lepton part, (15.107), plus the electron mass term which came from the original 
interaction term. It is 

LE$n = G v L  (i T-fi~z,, a )  $uL - gw C O S ~ W  [ 4 e 7 ” ( 1  - 7’)$,vWL + h . ~ . ]  

(15.124) 
The field part contains the free field terms together with the electromagnetic in- 
teractions and the boson mass term: 

) 
1 + 4 e  (i T - m e  + e 4 +-gw a (11 - 4sin20wl- 7 5 )  $e . Jz 

= - ~ F , , ~ F P ~  - lz 4 P  ” z p U  + f ~ ;  z,z. + M& wjwp 
- 4 [Wi,, - ie (AfiWJ - A,W;)] [W”” + ie (AIW” - A”W”)] . 

(15.125) 
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0 the operator 

ie [ ( P  + P‘Ip s v x  

- (P’ + dU spx - ( P  - d x  s p u l  

Fig. 15.8a at each vertex where a photon with 
momentum q and polarization p is ab- 
sorbed by a positively charged spin one 
boson with incoming momentum p and 
polarization v and outgoing momentum 
p’ and polarization A. 

0 the operator 

-ie2 [2gpu9,p 

-spusup - sppsuul 

at each vertex where two photons with 
polarization p and Y are emitted from 
or absorbed by two weak charged 
bosons with polarizations (T and p. 

Fig. 15.8b 

Fig. 15.8 Quantum Electrodynamics of a spin one boson. 

The scalar part includes the Higgs kinetic energy piece and all Higgs interactions: 

(15.126) 

and finally the “interaction” part includes only the weak interactions of gauge 
bosons: 

EW -1 2 WtWtPw,Wv - wtwuw”tWr”] l i n t  -59 [ p IJ 

- g2 cos2 ew [ w J w ~ ~ ” . z ~  - wJwvzuz~] 
- egcosew [2W;WpAuZ” - WJW, (A’Zp + Z”Ap)] 

+ igcosew [wp+wvzpu + wJuzuwp - wp,zvwpt] . (15.127) 
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0 the operator 

W W 

Fig. 15.9a at each vertex where a Z boson with momentum 
q and polarization p is absorbed by a W boson 
with incoming momentum p and polarization u 
and outgoing momentum p’ and polarization u. 

0 the operator 
V 

W wx: 
wxp 
.x 

i g 2  l29pp9”a 

-9puSap - spagupl 

at each vertex where two W bosons enter with 
polarization /.L and p and leave with polarizations 
u and IS. 

0 the operator 

0 P 

Fig. 15.9b 
V 

- i g 2  cos2 ow [29,”9,, 

-9paSup - 9pp9vol  

Z 

d P 

at each vertex where W bosons enter and leave 
with polarizations p and v and Z bosons enter 
and leave with polarizations p and IS. 
0 the operator Fig. 15.9~ 

V 

-ieg c o s ~ w  [29,”9,, 

-9poswp - 9ppsvol 

at each vertex where a W boson enters with 
polarization p and leaves with polarization u and 
a 2 boson and a photon enter and leave with 
polarizations p and (T. 

P U 

Fig. 15.9d 

Fig. 15.9 Boson self-couplings in the Standard Model. 
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These Lagrangians account for the large number of interactions summarized in 
Figs. 15.6-15.9 and in Appendix B. 

The particle content of the transformed Lagrangian was summarized in Ta- 
ble 15.1. There are five independent parameters. After the U gauge transforma- 
tion, they are e, the absolute value of the electron charge, Bw, the Weinberg angle, 
me, the electron mass, Mw,  the mass of the charged boson, and mH, the Higgs 
mass. These are related to the original parameters through 

= y sin Bw 9 d  

m e =  

G,v 
fi 

771, = - ( 15.128) 

m H  = J-zmz . 

The parameter gw is only a shorthand for the combination (15.108). 
We now look at the high energy behavior of the electroweak interactions. 

15.5 UNlTARlTY IN THE STANDARD MODEL 

‘-4e close this chapter with a short calculation which illustrates how the Standard 
Model solves a longstanding problem associated with the weak interactions. This 
calculation will also illustrate the new Feynman rules given in Figs. 15.6 and 15.9. 

As discussed in Sec. 9.10, a massive vector particle (such as the LV* or the 
2)  has three polarization states, owing to the fact that it can always be brought to 
rest and polarized in any of the three independent directions in space (recall that 
this is not true for a massless particle). The four-vectors ~ l i ’  which describe these 
three states can be conveniently defined in the rest frame by the requirements 

(15.129) 

where po = (m,O,0,0) is the four-momentum of the particle at rest. These re- 
quirements are clearly satisfied by any three-space unit vector with a zero time 
component, and there are precisely three independent such vectors. The polariza- 
tion states of a moving particle can then be obtained by boosting the rest frame 
polarization vectors. This will preserve the requirements (15.129), which can then 
be used to construct the polarization vectors in an arbitrary frame. For exam- 
ple, if a vector particle has momentum p” = ( E ,  0, O , p ) ,  then three independent 
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w+ I V  W + H V  

V W- W- V 

Fig. 15.10 
neutrinos. 

Feynman diagrams which contribute to the lowest order production of W pairs by 

polarization states which satisfy these requirements are 

1 

Jz (15.130) 
1 
m 

E * C ’ =  ~ - ( O , l , f i l O )  

E3P = - ( p , O , O , E )  , 

where ck are the transverse states and f 3  is the longitudinal state. Note that the 
~dividual components of the longitudinal polarization vector approach infinity as 
the momentum of the particle approaches infinity, 

(15.131) P PP 
P-00 m m E3C’ - - ( l , O , O ,  1) + 13 ( p - 2 )  + - . 

Because of this divergent behavior, theories with massive vector bosons generally 
give infinite results at very high energy, and such behavior is unphysical. A limit 
on the high energy behavior of scattering amplitudes can be obtained from the 
unitarity relation. In Sec. 12.8 we showed that one consequence of unitarity is 
that partial wave scattering amplitudes are bounded by a constant as p -+ 00. The 
most general bound we can obtain from the unitarity relation is somewhat less 
restrictive, but a growth which is linear in the energy is ruled out. 

As an example of how the Standard Model controls the divergent behavior 
of longitudinal polarization states, consider the process v + ii -+ Wf + W -  (this 
is a simple theoretical example, even though it is almost impossible to study in 
the laboratory). To second order in the weak coupling, only the two Feynman di- 
agrams shown in Fig. 15.10 contribute. Suppose the two W bosons are produced 
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in longitudinal states. Then the first of these diagrams gives 

where, in the second step, (1 - y5)u = 2u and V ( l  + r5) = 2ij was used and 
we took the limit E + 00 (where E is the energy of the incoming neutrino 
and antineutrino) and, in the third step, terms involving g1 u(k1, s1) = 0 were 
added to facilitate the reduction. Note that the final result goes to infinity as 
E 2 .  Before the development of the Standard Model, only the charge changing 
weak interactions were known, and it was assumed that they were mediated by 
a massive charged boson. In such a “theory,” the production of W’s would be 
described only by diagram A, which violates the unitarity bound. A theory with 
only W’s has problems. 

In the Standard Model this problem is eliminated because there is a neutral 2 
which gives a second diagram, Fig. 15.10B, which exactly cancels the divergent 
part of diagram A. This diagram is 

(15.133) 

where, in the last step, we used K 2  = 2M& + 2p1 ’ p2 --+ 2p1 . p 2  as E 9 00. 

This term cancels the contribution from diagram A, eliminating all terms which 
go like E 2  at large E. The exact result is therefore finite as E --+ 03. 
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This good behavior at high energy was obtained only through a delicate can- 
cellation of diverging contributions from different terms. While this cancellation 
was obtained easily in this example, it presents a serious problem when these 
Feynman rules are used to calculate loop diagrams. Now the divergences due to 
the longitudinal polarization will show up in the bad high energy behavior of the 
spin one propagator; the p , p ” / M 2  term in the propagator (9.138) gives strong 
ultraviolet divergences, which must be canceled by diverging contributions from 
other terms. This is an unfortunate feature of the Feynman rules in the U gauge 
(which are the ones given in this chapter), but there are gauges (the RE gauges) 
in which the boson propagators do not diverge as p -+ 00 and in which all terms 
are individually well behaved at high momentum. The disadvantage of these RE 
gauges is that they produce (several) ghosts and many ghost interactions which 
greatly increase the number of interactions and diagrams which must be calcu- 
lated. However, it turns out that the advantage of the improved convergence for 
higher order loop corrections outweighs the disadvantage of having to use ghosts, 
and the Rc gauges are prtferred when loop calculations are to be carried out. For 
a discussion of the Feynman rules for the RE gauges, see Cheng and Li (1984). 

PROBLEMS 

15.1 Prove the relation (15.68). Show that it is true for k1 = i and k 2  = - 2  and 

15.2 Compute the electron-neutrino elastic scattering amplitude to second order 

then generalize the result. 

in the weak coupling constant g2. 



CHAPTER 16 

R E N 0 R M A L I Z AT I 0 N 

In this chapter we return to the subject of renormalization, or the removal of in- 
finities from field theories. An introductory discussion of this topic was presented 
in Chapter 11, but because this is a problem of central importance, we will now 
discuss it in somewhat greater depth. 

The principal goal of this chapter is to introduce some of the main issues 
and develop the language to the point where the interested student is equipped 
to pursue the literature. After defining the problem and studying 43 theory as 
an example, we discuss the renormalization of QED, emphasizing the role played 
by gauge invariance in the form of the Ward-Takahashi identities. The chapter 
concludes with a brief discussion of the renormalization of QCD. 

16.1 POWER COUNTING AND REGULARIZATION 

Before defining what is meant by a renormalizable theory, look at the ultraviolet 
behavior of a typical Feynman diagram which arises from the perturbative ex- 
pansion of the theory. Diverging diagrams will be evaluated using dimensional 
regularization, introduced in Chapter 11. For simplicity, we will first discuss the- 
ories with no derivatives in the interaction term; the discussion will be extended 
to derivative interactions later. Then a typical diagram will have 

e = the number of internal loops 

n B  = the number of internal spin zero boson lines 

n F  = the number of internal fermion lines 

(16.1) 

and it is easy to see that if the momenta in all of its loops become large at the 
same time, then the overall divergence of all the integrals is determined by the 
quantity 

D = ed - 2 n ~  - n~ (16.2) 

where d is the dimension of space-time. This quantity is sometimes referred to as 
the super-cial degree of divergence, or as the overall divergence of the diagram, 
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Fig. 16.1 
subgraphs, as discussed in the text. 

Two graphs for the self-energy in b3 theory. The shaded boxes surround divergent 

and is simply the number of powers of momenta in the numerator (counting each 
ddk,  as d )  minus the number of powers of momenta in the denominator. Clearly, 
if D 2 0, the diagram will diverge; if D = 0, it is superficially logarithmically 
divergent, and it would seem to converge if D < 0. However, since each loop 
momentum is an independent variable, a divergence can also occur if D, 2 0 
for any loop (or combination of loops) in the diagram (which will be referred to 
as a subdiagram and denoted by i), even if the overall divergence D < 0. For 
the diagram to be finite, both D and all Dz associated with any subdiagram must 
be less than zero. This theorem is sometimes referred to as Weinberg's theorem 
[We 601. 

To illustrate these ideas, consider the two loop diagrams for the self-energy 
in 43 theory, shown in Fig. 16.1. Both of these diagrams have a superficial 
ivergence D = 2d - 10, which is less than zero for d = 4 dimensions, but 

the self-energy insertion in Fig. 16.1A (contained in the shaded rectangle) has 
a superficial divergence D, = d - 4, showing that it diverges logarithmically in 
d = 4 dimensions. Diagram 16.1B has two overlapping vertex insertions, each 
with a superficial divergence D, = d - 6 ,  which converges in four dimensions. 
We will return to a more detailed discussion of these diagrams in Sec. 16.2 below. 

To study the removal of infinities from a theory, we must express the su- 
perficial divergences D and (0,) of each Feynman diagram directly in terms of 
the properties of the interaction Lagrangian 121. In order to keep the discussion 
general, consider an interaction of the form 

FI2 B Cr N (4w) 4 9 

where F is the number of Fermi fields and B the number of boson fields which 
interact at each point in space-time. If N B  and N F  are the total number of bosons 
and fermions external to a Feynman diagram (the sum of those in both the initial 
and final states), and if there are n vertices (for an nth order Feynman diagram), 
then, since each internal line couples to two vertices, 

N B  + 2 n ~  = nB 
N F  + 2 n ~  = n F  . (16.3) 
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Another constraint comes from momentum conservation. The number of loops I 
is the same as the number of momenta unfixed by momentum conservation, which 
is the total number of internal momenta (lines) minus the number of vertices (each 
of which contributes one constraint) plus one (for the overall energy-momentum 
constraint which does not limit internal momenta). Hence 

e = n B + n F - n + l .  (16.4) 

These three constraints enable us to re-express the superficial divergence in terms 
of the number of external lines (which depends only on the physical process under 
consideration), B and F (which depend only on the theory), and n, the order of 
the diagram. The result can be written 

D = nI + d - i ( d  - ~ ) N B  - i ( d  - l ) N F  , (16.5) 

where 
I = l ( d  2 - 2)B + i ( d  - 1)F - d (16.6) 

is the index of divergence of the interaction Lagrangian CI. 
Note that the index of divergence depends only on the theory, and not on 

any particular physical process, while the remaining quantities in (1 6.5) depend 
on the number and kind of the external particles (which are fixed for any physical 
process under consideration) and on the number of vertices n in the diagram. In 
four dimensions, (16.5) reduces to 

We will now distinguish three different classes of theories. 
The first class has index I > 0. In this case, D will eventually become greater 

than zero as n increases, regardless of the physical process under consideration 
(i.e., for any N B  and N F ) .  Furthermore, as n increases, D becomes larger and 
larger. We conclude that if I > 0, there are always (higher order) Feynman 
diagrams which diverge regardless of the physical process under consideration. 
Such theories are called non-renormalizable. 

Next, if I = 0, D is independent of n and in d = 4 dimensions is less than 
zero if Do = 4 - N B  - $ N F  < 0. For such theories, all but a finite number of 
elementary processes are superficially convergent. For example, in a theory with 
a &9$4 interaction, I = 0, and processes involving five external bosons, such 
as boson production in boson-boson scattering (B1 + B2 -+ B3 + B4 + Bs), or 
two external fermions and two bosons, such as boson-fermion elastic scattering 
(B + F + B + F) or ferrnion annihilation (F + F -+ B + B), and all other 
more complex processes have no overall divergence; divergences which contribute 
to these cases come from simpler processes which occur as insertions inside of 
the Feynman diagrams. For QED, which has an index equal to zero, the only 
quantities which diverge are the electron self-energy, with Do = -1, the vacuum 
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polarization, with Do = -2, and the yee vertex, with DO = 0. [The photon- 
photon scattering amplitude (y+y -+ y+y) also has DO = 0 but does not diverge 
because of gauge invariance.] We will refer to such theories as superficially 
renormalizable and save the word “renormalizable” (which is often used) for a 
different meaning given below. 

Finally, if the index I < 0, then only afinite number of diagrams associated 
with afinite number of physical processes will diverge. An example is 43 theory 
in four dimensions, which has I = -1. In this theory only one diagram (or 
subdiagram) diverges: the lowest order meson self-energy, with n = 2 and D = 0. 
All other diagrams, except those containing this lowest order self-energy insertion, 
will converge (and after this self-energy is regularized, all other diagrams will 
converge). Such theories are said to be super-renomalizable. 

Regularization Schemes 

The term regularization is used quite generally to describe the process of remov- 
ing infinities from any set of Feynman diagrams associated with any of the above 
classes of theory. These infinities are removed according to a definite procedure 
or prescription referred to as a renormalization scheme. Using this scheme, any 
Feynman diagram can be written as the sum of a finite and an infinite part, with 
the infinite part depending on a number of infinite constants, referred to as renor- 
malization constants. These constants cannot be determined by the theory and are 
regarded as free parameters to be fixed by experiment. For non-renormalizable 
theories, the total number of required renormalization constants grows with the 
order n, and an injnite number are needed to remove all infinities to all orders. 
For theories which are superficially renormalizable, the number of renormalization 
constants is finite and can be absorbed into a finite number of parameters, such 
as the charges and masses of the particles in the theory. This process of redefin- 
ing the theory by absorbing the renormalization constants into the parameters of 
the theory is referred to as renormalization, and the proof that this is possible is 
definitely non-trivial and is the subject of much of this chapter. 

Using the ideas introduced here and in Chapter 11, we will now describe 
in more detail how Feynman diagrams are regularized and how infinities are 
systematically removed. To keep the discussion general, but not too abstract, 
consider 43 theory in d dimensions. Its index is 

d 
2 

I43 = - - 3 (16.8) 

so that the theory is super-renormalizable in d = 4 dimensions, superficially 
renormalizable in d = 6 dimensions, and non-renormalizable in d = 8 dimensions. 

Consider the lowest order (n = 3) vertex correction shown in Fig. 16.2A. This 
scalar vertex correction depends only on the square of the three external momenta, 
A ( p ,  q )  = F ( q 2 ,  p 2 ,  p . q ) ,  and is divergent in d 2 6 dimensions. The infinite part, 
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Fig. 16.2 
diagram generated by the corresponding counterterm A0 is shown in (B). 

The lowest order vertex correction in @3 theory i s  shown in (A), and the Feynman 

which we will denote by Ao, can be removed by subtracting it from the diagram. 
Detailed examples of how these infinite parts are defined and subtracted will be 
presented in the next section. The finite part which remains after the subtraction 
will depend on precisely how the infinite part is defined and how the subtraction 
is carried out, and this dependence generally appears as a dependence on some 
momentum scale, which will be denoted by p.  Hence, the renormalized vertex 
correction A, is written 

(16.9) 

where the dependence of A, on the momentum scale p, which inevitably arises 
in the subtraction, is shown explicitly. The infinite subtraction constant, Ao, can 
Fe treated in one of two equivalent ways. The first method, which we used in 
Chapter 11, is to absorb it into the lower order graphs (the coupling constant 
in this example), which are said to be renormalized by the subtraction. In this 
example, the three-point coupling to third order then becomes (recall that the 
coupling constant go must multiply the vertex correction to give the diagram in 
Fig. 16.2) 

g R r  90 + 90 + ' 0 )  

= g R  + goA, 
g R  + g R A R  1 (16.10) 

where r is the full vertex function, the renormalized coupling is g R  = go + 
go&, and gOAR g R A R  to third order in perturbation theory. Defining the 
renormalization constant 21 by 

A0 = 2,' - 1 (16.11) 

(as we did in Chapter 11) gives 

(16.12) 
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Fig. 16.3 Figure (A) shows the fourth order box diagram for scattering in d3 theory. In (B) the 
diagram has a divergent vertex insertion, which is renormalized by the box diagram with counterterm 
shown in (C). 

showing that vertex contributions renormalize the coupling constant by a fac- 
tor 21. In this method, the coupling constant is renormalized order-by-order in 
perturbation theory. 

The second method, which we will employ in this chapter, is to keep the 
coupling unchanged and to remove the singular term A0 by adding a counterterm 
to the Lagrangian. This is the method we used for handling mass renormalization 
in Chapter 11, and here we will extend it to the other renormalizations as well. 
For example, if the original 93 interaction term was 

(for the symmetric case discussed in Chapter 9), then the infinity can be removed 
by adding a counterterm 

c: = --gR$ 1 3 1  - -gR(zl - 1143 
3! 3! 

(16.14) 

Using (16.11). the counterterm can be written gR(Z1 - 1) = -gRZIAo. This 
counterterm gives a new third order Feynman diagram, shown in Fig. 16.2B, so 
that when the calculation is carried out to third order we obtain 

g R r  = gR + g R A  (PI q )  - gRz1AO 
= g R  +gRAR(PIqIp) I (1 6.15) 

because ZlAo 2 A0 to second order in perturbation theory. In this method the 
counterterm is a new interaction specifically added to cancel the singularity in 
diagram 16.2A. 

These two points of view are equivalent, but the introduction of counterterms 
is more general in that it allows us to discuss the removal of singularities from 
non-renormalizable theories. For example, consider the &#I scattering diagram 
shown in Fig. 16.3A. This diagram is finite in four and six dimensions but has 
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a logarithmic divergence in d = 8 dimensions. To remove this singularity, it is 
necessary to add a counterterm to the 43 Lagrangian of the form 

c4=--x04 1 4  , 
4! (16.16) 

where A0 is determined from the singular part of graph 16.3A (see Prob. 16.2). 
However, since a 44 term does not appear in the original Lagrangian, this countert- 
erm cannot be absorbed into one of the original parameters of the theory, and its 
appearance changes the structure of the theory. This need not be a disaster; in this 
example XO can be treated as a new parameter and determined from a measurement 
of 44 scattering at some fixed point, allowing us to predict the scattering at other 
points. But the appearance of a new counterterm certainly reduces the predictive 
power of the theory, and because the index I of this theory is positive (remember 
that d = 8), we can expect many new divergences to appear in higher order. This 
will introduce still more counterterms, further reducing the predictive power of 
the theory. In practice, non-renormalizable theories are useful only in cases where 
a good estimate can be obtained from the first few orders in perturbation the- 
ory. Chiral perturbation theory, based on the non-linear chiral models discussed 
in Chapter 13, is an example of a non-renormalizable theory which has enjoyed 
considerable success. For a discussion of effective Lagrangians, see Donoghue, 
Golowich, and Holstein ( 1992). We will not discuss non-renormalizable theories 
further. 

Our discussion up to now has focused on how the infinities are removed in 
“lowest order.” The central problem in the proof of renormalizability is to show 
that the addition of a finite number of counterterms is sufficient to remove all 
i-ifinities from the theory. For example, return to the diagrams shown in Fig. 16.3. 
In d = 6 dimensions, 16.3A is finite, but 16.3B is infinite because of the diverging 
vertex subdiagram. A counterterm added to the Lagrangian renders this vertex 
correction finite, as we have discussed, and the same counterterm inserted in the 
44 scattering box, shown in Fig. 16.3C, will also insure that the two diagrams 
16.3B and 16.3C are finite. To prove renormalizability, we must show that such 
a procedure works for all diagrams to all orders. 

The demonstration of the renormalizability of QED will be a major goal of 
this chapter. Before we discuss these problems further, it is helpful to consider a 
few more examples and to develop a technique for evaluating multi-loop diagrams. 

16.2 453 THEORY: A N  EXAMPLE 

To clarify some of the issues which will arise in the construction of a general 
proof of renormalizability, we look at d3 theory in six dimensions. As discussed 
above, this theory is superficially renormalizable (has an index equal to zero) and 
will provide a simple illustrative example. 

First, consider the dimensions of the coupling constant in 43 theory. The 
action is dimensionless, so in d dimensions, the Lagrangian density must have the 
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Fig. 16.4 The lowest order self-energy diagram in @3 theory with its corresponding counterterm. 

dimension LPd (where L is a length), and as the Lagrangian density contains the 
term 6’,r#d,4 - I,-’$’, each field function $(s) has dimension LlPd12 --+ pd lZ- ’  
(where p is a mass), so that the coupling constant must have dimension p3Pd/2. 
Therefore, the coupling constant is dimensionless only in d = 6 dimensions, pre- 
cisely the number of dimensions in which 4~~ theory is superficially renormalizable. 
In less than six dimensions, we will write 

g R  = g p c / 2  1 (16.17) 

where E = 6 - d, g is a dimensionless coupling constant, and p is an arbitrary 
mass scale. It is through equations like (16.17) that a mass scale associated with 
dimensional regularization enters the renormalization program. This subtle point 
was ignored in our less general treatment of Chapter 11.  

For our first real example, we calculate the self-energy shown in Fig. 16.4A. 
-.his graph gives 

where we used Eq. (C.2) from Appendix C to combine the denominator into a 
single term and the extra factor of 1. is the symmetry factor which accompa- 

denominator by shifting k + k’ + sq, and carry out the ddk’ integration using 
Eq. (C.12): 

nies bubble diagrams in symmetric $ 3 theory. Next, complete the square in the 

Next, we separate this into two parts, one proportional to q2 and one finite as 

w12) = m2A(q2) - q2B(q2) 1 (16.20) 
q2 - 0: 
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where 

The mass shift and wave function renormalization come from A ( q 2 )  and B(q2) ,  
as in Sec. 11.3. 

We are interested in the behavior of each of the functions near d = 6 di- 
mensions. Note that each is singular in the small parameter 6 = 6 - d as E ---f 0, 

It is convenient to separate A and B into two parts: a singular part, which will be 
denoted by A0 and Bo, and a finite part A ,  and B,. The separation between these 
two parts depends on the renormalization scheme, because the singular part can 
include any finite terms which it is desirable to include, and will also depend on 
the mass scale p which enters through the substitution g i  = g2pe of Eq. (16.17). 
To make the results well-defined and unique, we must define, as part of the 
renormalization scheme, what finite terms are to be included in A0 and Bo and 
which are to remain in A ,  and B,. In this chapter we will adopt the somewhat 
unconventional scheme of including in A0 and BO all finite terms which do not 
depend on momenta or on the scale parameter p2. With this choice, the finite 
t .rms emerge only from the expansion of the factor 

= 1 - -log 2 € 
(m2 - $( l -  x) ) (16.23) 

m2 - q%(l - .) 

so that we have uniquely 

g2 r ( i+ ; )  
A -  
O - ( 4 4 3 - 4 2  € (1 - ;) 

with corresponding finite terms 

( 16.24) 
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Note the explicit appearance of the scale parameter p2 in the finite terms. We will 
say no more about these finite pieces now. 

The infinite parts (16.24) can be expanded in a Laurent series in the small 
parameter E .  Using the expansion of the r-function, 

€ E r (1 + 2)  = 1 - zy + q E 2 )  , (16.26) 

where y = 0 .5772 . . .  is Euler’s constant, the terms which survive as E .-+ 0 are 

In the scheme which we will use in this chapter, these constants will become 
the counterterms discussed in the previous section. In some treatments, only the 
1 / ~  part of (16.27) are included in the counterterms, leaving the finite part to be 
combined with A, and B,. This is the minimal subrruction scheme [Ho 731, and 
in this scheme the counterterms are 

(16.28) 

where the subscript MS refers to “minimal subtraction.” Alternatively, the MS 
scheme [BB 781 includes the log(4n) and Euler’s constant y in the counterterms, 

Since this combination of 6, y, and log(4n) arising from the expansion of 
( 4 ~ ) ‘ / ~ r ( ~ / 2 )  occurs frequently, the scheme is quite popular in QCD. In 
this chapter we include all of the terms in (16.27). 

With this convention, our 43 Lagrangian becomes 

L = !j [ap@‘4 - 7 ~ 1 ~ 4 ~ 1  - ;Boap@’$ + $AOWZ’I#J~ (16.30) 

where the A0 and Bo of Eq. ( 1  6.27) are precisely the correct factors required 
to cancel the divergence arising from diagram 16.4A. These counterterms will 
generate the Feynman diagram shown in Fig. 16.4B, as discussed in the previous 
section. 
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Fig. 16.5 
and the corresponding diagram with counterterm. 

A box diagram with a diverging self-energy insextion in the line with momentum k, 

To illustrate the usefulness of this procedure, consider the 44 scattering di- 
agram shown in Fig. 16.5A. The skeleton of this graph (i.e., the graph which 
remains once all subgraphs have been removed) is convergent in d = 6 dimen- 
sions, but the self-energy insertion introduces a divergence. The graph 16.5A 
is 

where 

D (k, { p i ) >  = (rn2 - 1c2 - ic)' ( r n ~  - (k +pz)' - it) 

x (m' - (k + p z  + p3)' - i c )  (m' - (k -PI)' - i c )  . (16.32) 

This is divergent because the quantities A(lc2) and B(k2)  contain divergent factors, 
as we have seen. However, the companion diagram, Fig. 16.5B, contains the 
counterterms which must accompany 16.5A, and adding this diagram to GA gives 

The differences AR(k2)  = A(k') - AO and BR(k2)  = B(k2)  - Bo are finite as 
e -+ 0 and go like log k' at large k, and hence the integrand of (16.33) at large 
k2 goes (for d = 6) like 

which is convergent. The inclusion of the counterterms leads to a finite result for 
the two graphs in Fig. 16.5. 
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Fourth Order Self-Energy 
Finally, we return to the graphs for the fourth order self-energy shown in Fig. 16.1, 
which illustrate the problems which can arise in the proof of renormalizability. 
Both of these graphs are examples of a singular subdiagram inserted into a skeleton 
which is itself divergent. And in graph 16.1B, the divergent subgraphs overlap. 
Will the method of counterterms be sufficient to handle these cases? 

We will compute these graphs in detail, developing the skills necessary for 
the evaluation of the QED graphs of interest in Sec. 16.5. For simplicity, we will 
set the mass of the 4 field to zero, which will not change the high momentum 
structure of the theory, which is our principal interest. The graph 16. IA (multiplied 
by two in order to include the insertion on the other line) is 

i - g4 r(2-  i) B ( g  - 1,: - 1) 
2 (47T)d/2 

(16.34) 

where, in the last line, we have used the B ( a ,  P)-function. defined by 

Before we can evaluate this integral, we must extend our technique by introducing 
the following identity. 

Identity 

, p - 1  x2 a 2 - 1  . . .2y 
X 

[ A l x l  + A252 + . . + A , x n ] a 1 f " 2 + " ' f a n  
' 

(16.36) 
This is a generalization of the identitks ( I  1.79) introduced in Sec. 11.6. 

Proof: The proof begins with the integral representation for the r-function, 
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Changing variables gives 

Next, use the identity 

1 = Jom dt 6 ( t  - tl - t2) 

to get 

and then scale the integral by introducing tl = t z l ,  t2 = tz2. This gives 

This gives the desired result for two factors, and we see from the proof that the 
I result is readily extended to any number of factors. 

With the identity (16.36), the denominator in (16.34) can be combined and the 
integral carried out: 
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where the integral was evaluated by completing the square of the denominator 
by shifting k -+ k + zq and using (C.12). Note that CA N q2, showing that the 
massless condition will survive the final renormalization. Equation (16.37) can be 
written 

g4 I?( 1 + c)B (: - 1, : - 1) B (d - 4 , $  - 1) p2 
(7) ’ C A  = q2- 

2 ( 4 ~ ) ~  ( E  - l ) E  (€/2 - 1) E / 2  
(16.38) 

which displays a double pole at c = 0 and, what is more critical, a singular 
logarithmic term proportional to E - ’  log ( - q 2 / p 2 ) .  Keeping only these two terms, 
(16.38) becomes 

(16.39) 

The 1/c2 term (and other constant terms proportional to l / c )  can be removed by 
redefining the counterterms, but the 6-l  log ( -q2 /p2 )  term cannot be removed 
in this way, and the renormalization program would fail at this point if this term 
were not canceled by the counterterms (16.24). However, as we will now show, 
it is canceled. 

The contribution from the counterterm [which gives a Feynman integral iden- 
tical to Eq. (16.34) but with B ( k 2 )  replaced by -Bo] is 

which can be written 

2 g4 cz = -q - 
6 ( 4 ~ ) ~  

( $ ) € I 2  
2r2 (1  + 5 )  B ($ - 1 ,  - 1) 

(L 2 - 1 ) 2 E 2  

We expand this, keeping the 1/f2 and 6-l log ( -q2 /p2 )  terms only: 

C; 2 - q 2 _ _ _  g4 ($- ; log(-$) . . . )  1 
36 ( 4 ~ ) ~  

Adding this to C A ,  we find that the c - l  log ( - q 2 / p 2 )  term cancels 

C A  + C: = [constant] + finite 

(16.40) 

(16.41) 

(16.42) 

(16.43) 

The singular part of this is now of an acceptable form (Le., a constant times q 2 )  
to serve as a new addition to the counterterm of order g4. 
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4 
4- --a- 

Fig. 16.6 
is the corresponding skeleton diagram with counterterm. 

Figure (A) is the same diagram given in Fig. 16.1B. with the momenta labeled, and (B) 

Overlapping Divergences 
Next, look at the graph 16. IB, which contains overlapping divergences. This 
graph is redrawn in Fig. 16.6A, which shows the labeling of momenta which we 
will use. To evaluate this, first evaluate the vertex contribution shown in the 
shaded box on the right-hand side of the diagram. We have 

1: Y 

(16.44) = -2ig2, I' d z  11-" dy 1 fi 1 
(2.)d [ X 2  - ' 

where we will frequently use the notation 

A + ( k )  = - ( k  f iq)' A0 = - ( k - p )  2 . (16.45) 

In going from the first to the second line, Eq. (16.36) was used (with a1 = a:! = 
a3 = 1 and the Feynman parameters 2 and y associated with the denominators 
A+ and A- as indicated) and X 2  is found by completing the square in the 
denominator, which requires the shift k -+ k + p(1 - z - y) - $ q ( x  - y): 

X 2  = [p(l - 5 - 9 )  - $ q ( X  - y)] 2 2  - p (1  - 5 - y) - ;Iq 1 2  (X + y) . (16.46) 

It is convenient to map the 5, y integration into 6 = 5 + y and [Q = i ( x  - y)  as 
we did in Eq. (1 1.124). This gives a simpler expression for X2 

(16.47) 
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where Y ,  defined by this equation, will be used below. Carrying out the integral 
over k then gives 

In d = 6 dimensions, this is singular due to the pole in r ( ~ / 2 ) ,  where E = 6 - d 
as before. 

Following the renormalization scheme we a1.e using in this chapter, the coun- 
terterm implied by (16.48) is obtained by taking ( p / X ) '  --t 1, giving 

and the finite term is 

(16.49) 

(16.50) 

We now calculate the full diagram 16.6A. The Feynman integral is 

(16.51) 
It is convenient to improve the convergence of the dp integral by integrating over 
77 by parts, giving 

1 

1 1 1; d g A + ( ~ )  A - ( p )  ( Y z ) E / 2  [A+(p)]1+'/2A-(p) + A+(p)[A-(p)]1+c/2 

E i  2p.  q + 217q2 - +$ - _  
2 rldrlA+(p)A-(p) ( Y 2 ) 1 + E / 2  ' 

(16.52) 
} give equal contributions to (16.51) and integrate The first two terms in the { 

straightforwardly to 
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where in the second step we combined the denominators and shifted p --t p - 

This result displays the 1/c2 singularity. Neglecting all terms of the form 
q( 1 - 22). 

 constant]/^ and using 

Eq. (16.53) reduces quickly to 

(16.54) 

This result clearly has a structure similar to C A .  
We complete the calculation of C B  by evaluating the contributions from the 

second term in (16.52). In preparation for this evaluation, first obtain a more 
symmetrical form by shifting p -+ p - vq, so that 

(16.55) 
The only contribution of order l / c2  from this term comes from the singularity at 
5 = 1, but it is hard to see this without doing the p integration first. The first 
step is to combine denominators using the identity (16.36) with a1 = a2 = 1 and 
a3 = 1 + ~ / 2 .  We have 

I Y 
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where the Feynman parameters x and y are associated with the denominators as 
shown, which requires the shift p -, p - q [ $ (x - y) - q(x + y)], and 

(16.57) 62 

I - <  
= a z + - ,  

where az and 6 2  are defined by this expression. Completing the dp integration 
gives 

x 2q2 [I(x-Y)-li('+Y)+&] 1 (&)' . 
(16.58) 

Note that this has a 1 / ~  singularity from the I?(€) and the integrand also goes 
like (1 - [)'-', which generates another singularity as [ -, 1. Keeping only this 
singular term (the last term in the square bracket) and including additional factors 
of E from Eq. (16.55) we integrate by parts: 

+ t<(1-'/2)uz [(I - <) a z  + b Z ]  -(l+c) 

where az and bz were defined in (16.57). Now the second term in the { } goes 
only like l / e  and can be ignored. In the first term we will keep the 1 / c 2  terms 
only, which means we can take t -, 0 everywhere except in the ( -p2/q2)'  term. 
We get 

(16.59) 
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Fig. 16.7 
Fig. 16.1B (or 16.6A). This diagram is equal lo diagram 16.6B. 

The second counterterm required to renormalize the overlapping self energy diagram 

Inserting this into (16.55) gives 

2 - q  2 - g4 [$-;log(-pl) 1 +...I . 
12( 4 ~ ) ~  P2 

The leading result for diagram 16.1B is therefore 

(1 6.60) 

(16.61) 

Now we compute the effect of the counterterm, Fig. 16.6B. This integral is 

where the result for the second step follows from (16.21), with m2 = 0. Extracting 
:he l / c 2  term, we have 

2 g4 1 y t  B - q 2 - [ ; - z l o g ( - ~ ) + . . . ]  - 6 ( 4 ~ ) ~  . (16.63) 

Note that this term does not cancel the 6 - l  log(-q2/p2) term in (16.61); it is 
precisely 

The problem is that we have only included one vertex counterterm, 
Fig. 16.6B. There should be a second countertern, corresponding to subtraction at 
the left-hand vertex (shown in Fig. 16.7). This term is equal to (16.63), increasing 

the size needed for a cancellation. 
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Fig. 16.8 The three diagrams which contribute to the fourth order self-energy. with their diverging 
subdiagrams enclosed in a shaded box. Diagrams (A) and (B) have nested divergences, while (C) has  

overlapping divergences. 

the subtraction by a factor of two as needed, giving 

ct - 2Q - + -(constant) -+ . . c B + 2 c B - q  
6 ( 4 ~ ) ~  " t2  t 

(16.64) 

The troublesome t-' l o g ( - q 2 / p 2 )  term has been canceled, the infinite part is 
constant, and the renormalization program can be carried through. 

Review of the Fourth Order Calculation 

We conclude this section with a brief review of the fourth order self-energy cal- 
iulation which we have just completed. Evaluation of the self-energy requires 
the calculation of the diagrams shown in Fig. 16.8. The subdiagrams with diver- 
gences are enclosed by a shaded box, and in diagrams A and B these subdiagrams 
(with divergences arising from an internal self-energy) are nested within the over- 
all divergence of the skeleton diagram. Each of those subdivergences is removed 
by counterterms associated with them, drawn in Fig. 16.9A and B. The final 
sum of these four diagrams does not completely reduce the divergence to the 
strength of the original skeleton, which is N l / c ,  but it does cancel the serious 

Fig. 16.9 
in order to give a finite result. 

The graphs with counterterms which must be added to the graphs shown in Fig. 16.8 
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6 - l  l og ( -q2 /pz )  term, giving a new singular self-energy of the form 

with a new constant counterterm of the form 

(4) - c1 cz 3 1  B, - - + - + c  
€2  E 

where the ci are constants. 
The third diagram, Fig. 16.8C, has an overlapping structure; the subdiver- 

gences are enclosed by shaded boxes which overlap. There are two subdivergences 
associated with either p + 00, k finite, or k -+ 00, p finite (in the notation of 
Fig. 16.6). Because there are two subdivergences (even though there is only a 
single diagram), we must remove each of these subdivergences, which requires 
the TWO counterterms shown in Fig. 16.9C and D. It is the generation of mo (or 
more) counterterms by a single diagram associated with the presence of overlap- 
ping divergences which complicates the general proof of renormalizability. In the 
next section we discuss some features of the problem in the general case. After 
this, we turn to a discussion of QED. 

16.3 PROVING RENORMALIZABILITY 

We now return to the general discussion which was interrupted at the end of 
Sec. 16.1. As we observed there, the proof of renormalizability requires that 
we demonstrate, order-by-order in perturbation theory, that a finite number of 
counterterms can be introduced (one for each term in the original Lagrangian) 
which will render all Feynman diagrams of that order finite. If this procedure can 
be shown to work to all orders, we will have proved that a theory is renormalizable. 

The first step in a general proof is to identify those diagrams or subdiagrams 
which are divergent. For superficially renormalizable theories with a 43 structure 
(i.e., with an interaction Lagrangian which is a product of only three fields), the 
divergent diagrams are usually limited to the self-energy and vertex corrections, 
and the counterterms will be defined by these graphs. An explicit example of how 
these terms are defined was given for 43 theory in the last section. In fact, if the 
counterterms are to have the same structure as the original terms which occurred in 
the Lagrangian, they must be limited to self-energies [which generate counterterms 
associated with the kinetic energy and mass terms in the free Lagrangian; recall 
Eq. (16.30)] and vertex corrections [which generate counterterms associated with 
the d3 interaction term; recall Eq. (16.14)]. If there are b4-type terms, as there 
are in QCD, additional four-point counterterms can be expected to be present. 
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Fig. 16.10 Examples of graphs with insertions and their corresponding skeletons. 

The proof that a superficially renormalizable theory with a d3 structure is, in 
tact, renormalizable proceeds in two stages. First, we discuss all diagrams with 
three or more external particles (ie., diagrams which are not self-energies), and 
then we consider self-energies. Examples of nth order diagrams with three or 
more external particles are given in Fig. 16.10 and an example of a sixth order 
self-energy diagram is given in Fig. 16.11. From the previous discussion, we 
know that the divergences can only come from subdiagrams which contain vertex 
or selfenergy insertions or from the overall diagram if it is a vertex correction or 
self-energy. In both of these figures, these diverging parts are enclosed by a shaded 
box. For graphs with three or more external particles, the singularities from vertex 
insertions and self-energies do not overlap, and the graphs have a well-defined 
skeleton, which is the diagram with all self-energy or vertex insertions removed 
(or collapsed to a point). Examples of diagrams (A) and their skeletons (B) are 
shown in Fig. 16.10. The proof that such diagrams cannot have overlapping di- 
vergences (except for those contained inside of self-energy insertions) will not be 
given; its truth may seem evident from the examination of many examples, and a 
discussion can be found in Vol. 2 of Bjorken and Drell ( 1  964). However, as previ- 
ously emphasized, self-energy diagrams can have overlapping divergences. In the 
example shown in Fig. 16.11, there are four diverging subgraphs and several 
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Fig. 16.11 
which is divergent. and many boxes overlap. 

A graph with several overlapping divergences. Each shaded box encloses a subgraph 

overlaps. Overlapping divergences require special discussion, and it is for this 
reason that self-energies must be treated separately. 

Diagrams with No Overlapping Divergences 

All diagrams with no overlapping divergences (three or more external particles) 
can be written in the form 

G(r ,  A) = Gs (r', A') , (16.65) 

1 here G is the original graph with bare vertices r and bare propagators A and 
G s  is the skeleton with dressed vertices r' and dressed propagators A'. [The 
arguments of G and Gs can refer to each propagator and vertex function in- 
dividually or to all propagators and vertex functions collectively, in which case 
Gs(I", A') actually refers to a whole class of graphs, only one of which is shown 
in Fig. 16.10A.l Note that the use of Eq. (16.65) depends on the vertex and 
self-energy insertions being disjoint or nested as just discussed. If the insertions 
are overlapping, then the use of ( 1  6.65) would be ambiguous. 

With Eq. (16.63, applied to graphs G with disjoint or nested insertions only, 
we describe how the graph is made finite by the subtraction of the counterterms. 
First, for propagators (for simplicity, we will only give explicit formulae for spin 
zero particles, but all of this discussion can be extended to include Dirac particles 
and massless vector bosons) it is convenient to introduce the notation 

1 
m2 - p z  + C ( p 2 )  

A' = A(E) = (16.66) 

so that in our previous notation the bare propagator A = A(0). We will also use 
the notation 

C o ( p 2 )  = m2Ao - p2Bo , (16.67) 
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where A0 and Bo are the counterterms [calculated to lowest order in 43 theory in 
Eq. (16.24)]. Then, if the skeleton of G is not a vertex correction, the finite part 
of the graph G will be defined to be 

G,(r, A) = G~ (r' - To, A (C - c0)) . (16.68) 

In words: the finite part of a diagram with vertex or self-energy insertions is 
obtained by using renormalized vertex or self-energy insertions. The proof that 
G, is finite will be regarded as more or less self-evident: if the skeleton Gs is 
finite (which it is if Gs  is neither a vertex correction nor a self-energy), then it 
is permissible to take the limit E + 0 before doing the final integration, and the 
finiteness of G, follows from the finite behavior of r' - r0 and C - Co. 

However, if G s  is a vertex correction, G ,  as defined in (16.68) may require 
a new additional overall subtraction, and in this case the finite part will be defined 
to be 

(16.69) 

where Go is a new, higher order counterterm. The proof that this G, is finite for 
vertex functions is less obvious. It requires that we show that the infinite part of 
GS (I?' - ro, A (C - CO)) is a constant (independent of momenta) and hence is 
a legitimate counterterm. In view of the calculations carried out in Sec. 16.2 it 
may be useful to sketch a more general demonstration of this point. 

Consider the insertion of a self-energy bubble in an nth order single-loop 
diagram, as shown in Fig. 16.12A. The corresponding skeleton (with counterterm) 
is shown in Fig. 16.12B. In massless d3 theory, these two diagrams have the form 

G,(r, A) = G~ (r' - To, A (C - c0)) - G~ , 

[F ( f ) ' / 2 -  F] , (16.70) 
[-P21 "y)ln- '  

where E = 6 - d and f ( c )  can be read from Eq. (16.24) 

p is the four-momentum of the line with the insertion, and Jdy  is the Feynman 
parameterized integral over the other n - 1 internal lines. Using (16.36), we can 
write 
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Fig. 16.12 A graph for the n-point function with a self-energy insertion and the graph with 
the corresponding counterterm. [The lines for the external particles 5 to n - 1 are not drawn on the 

graphs.] 

where Y," is obtained by shifting p to complete the square of xA2(y) - p 2 (  1 - x) 
(which is the same for both terms). Now carrying out the p integration gives 

n-3+t/2 G = - / d y l  1 dx 
(4T)d/2 

Now note that if n > 3, the r-functions have no singularities, and the limit E + 0 
gives a finite result. However, if n = 3, the r-functions have a pole at E = 0, and 
the terms in the square bracket become 
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Note that the E log (Y: /p2 )  term cancels, insuring that the singular term, while 
of order 1/c2, is nevertheless a constant, and hence a legitimate counterterm. To 
complete the proof (which will not be done here) the argument must be extended 
to graphs with more than one loop. 

Overlapping Divergences 

Finally, we consider the self-energy graphs and the problem of overlapping di- 
vergences. A general method for subtracting the divergences from any Feynman 
graph, including those with overlapping divergences, was developed by Bogoli- 
ubov and Parasiuk [BP 57, 801, Hepp [He 661, and Zimmerman [Zi 69, 711 and 
is referred to as the BPHZ method. For a general discussion of these methods, 
see Muta (1987). Here we will illustrate the results for the diagram shown in 
Fig. 16.11. 

A good way to see how the BPHZ results are obtained is to begin with the 
Dyson equations for the self-energy. These equations are illustrated diagrammat- 
ically in Fig. 16.13. They are coupled, non-linear equations for the self-energy C 
and dressed vertex function I" expressed in terms of the dressed propagator A' 
(which depends on C) and the Bethe-Salpeter scattering amplitude, M ,  discussed 
in Chapter 12. However, this form of the equations is not convenient for the 
renormalization program because, for example, substitution of the renormalized 
vertex function into 16.13A would suggest only one subtraction of the counterterm 
Ao, which we know from our discussion in the previous section is incorrect. Two 
factors of A0 are needed. However, it is not necessary to write the equation for 
the self-energy in the form 16.13A; a completely equivalent form of this equation 
is shown diagrammatically in Fig. 16.14, where V is the kernel of the BS equation 
Nhich the scattering amplitude M satisfies. (Recall the discussion in Chapter 12.) 
It is not difficult to prove that 16.14 is equivalent to 16.13A if Eq. (12.50) is used, 
and this proof is left as an exercise (Prob. 16.3). 

(A) -@- = -p&- A' 

Fig. 16.13 Diagrammatic representation of the Dyson equations for the vertex function and the 
self-energy (included in the propagator). These equations permit the determination of C and r' if M 
is known. 
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Fig. 16.14 
for applications to renormalization. 

An alternative (and equivalent) equation for the self-energy which is more suitable 

Using Fig. 16.14, it is easy to see why the two subtraction terms shown in 
Fig. 16.9C and D are required in order to renormalize the fourth order self-energy. 
The kernel V must be at least of second order, and hence, to fourth order, 16.14B 
can only generate the overlapping diagram 16.8C (with a negative sign). However, 
Fig. 16.14A gives two of the overlapping diagrams 16.8C (one obtained from the 
product of the third order r in the left vertex and the first order I? in the right 
vertex and another with these contributions interchanged) so that the sum of the 
two contributions is correct. But the counterterms are already of third order, so 
they can come only from Fig. 16.14A, and there are thus two such terms. 

Next, note that the sixth order diagram in Fig. 16.11 arises, in the language of 
the Dyson equation, from three terms generated by Fig. 16.14A (two contributions 
of a fifth order I? denoted by 1'(5) and shown in Fig. 16.15, with a first order I?, and 
one product of two third order r's) minus two terms generated by Fig. 16.14B (the 
two possible products of a third order with a first order r). The counterterms 
iequired for graph 16.1 1 follow from a consideration of the renormalization of r('), 
as illustrated in Fig. 16.15. The full diagram 16.15A contains a subdivergence, 
which is regulated by the diagram with a counterterm shown in Fig 16.15B. These 
two diagrams then have an overall divergence, which requires the two subtractions 
illustrated in Figs. 16.15C and D (these two subtractions could be represented as a 

Fig. 16.15 The 5th order vertex (A)  with the graph containing the third order counter term (B). 
The counterterms generated by graphs (A) and (B) are shown in figures (C) and (D); the shaded box 

encloses the overall divergence. 
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- -a-a--+n)--+ 

Fig. 16.16 
order vertex correction shown in Fig. 16.11. 

Diagrammatic representation of the seven counterterms needed to renormalize the fifth 

single term). Inserting all of these terms, and the one which arises in third order, 
into Fig. 16.14 and keeping careful track of the cancellation between 16.14A 
and B give seven counterterm subtractions required to remove all subdivergences 
from graph 16.11 (see Prob. 16.4). These are illustrated in Fig. 16.16. After 
these have been taken into account, an overall subtraction, corresponding to a 
new counterterm $), is required in order to obtain a finite C(6) .  

The discussion of overlapping divergences, and hence the proof of renormal- 
izability, is in general a complicated business, and we will conclude our discussion 
of the general problem here. The aim of the last three sections has been to intro- 
chce some of the issues and to give the student a good starting point for further 
study. For additional discussion, see Muta (1987). 

We now turn to the specific case of QED. Fortunately, because of the Ward- 
Takahashi identities, the general problem of renormalization can be stated in terms 
of diagrams with no overlapping divergence, and the proof can be completed more 
easily. 

16.4 THE RENORMALIZATION OF QED 

This discussion will be limited to spinor QED, with one species of ferrnion, a 
massless quark, but most of the results are quite general. 

First, note that the index of divergence of QED in d = 4 dimensions is 
zero, and hence it is a superficially renormalizable theory, as defined in Sec. 16.1. 
The only interaction has a $33 structure, with Cr = -&J'$A,, and hence, from 
Eq. (16.6) 

I = B + $ F - 4 = 0 .  (16.71) 

The only graphs or subgraphs which diverge are the self-energies (the self-energy 
of the photon, or vacuum polarization, and the self-energy of the quark) and the 
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vertex corrections. In lowest order these are all regularized by counterterms deriv- 
able from the results given in Chapter 11. There is no mass counterterm, because 
massless QED is chirally symmetric, and no mass can be generated without spon- 
taneous symmetry breaking (which we assume does not happen here). Hence 
there are only three counterterms, related to 21, 2 2 ,  and 23, and the Lagrangian 
density can be written 

a -  1 
2 4 Pw 

+ 2 ( 2 2  - 1) @ 8 @ - 4 ( 2 3  - 1) Fp”F’” - eR ( 2 1  - 1) &Y4Ap 
i - H  Z3 
2 

C =-@ y$ - - F  FP” - eR$yP@AP 

a --H 1 

=-22 l l ,  9 $ - 4 F p u F P ”  - e ,Z l&yP@A,  . (16.72) 

In this expression, keep in mind that the counterterms are added to remove the 
infinities, and hence @, AP, and the renormalized charge eR are finite quantities. 
[This is why the vertex counterterm, with the form eR(Z1 - l),  is consistent 
with (1 1.128)]. Absorbing the infinities back into the fields, by defining the bare 
quantities 

@(O’ = 

A P )  = G A ,  
(16.73) 

gives 

leading to the identification of the bare charge, eo. as 

‘1 - e R  eo = R 
z 2 G - Z ’  

(16.75) 

in agreement with Eq. (1 1.130). 
Now, as we discussed in the last section, the proof of renormalizability is 

straightforward for diagrams which do not have overlapping divergences, which 
are all those except some self-energy diagrams, examples of which are given in 
Fig. 16.17. Both of these diagrams reduce to Fig. 16.1B in scalar d3 theory. 

(A) (B) 

Fig. 16.17 Diagrams in QED with overlapping divergences. 
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Fig. 16.18 
overlapping divergences. Note that the photon with index X does not couple 10 the antiquark. 

Diagrams which can be used to calculate the vacuum polarization 16.178 without 

However, because of the Ward-Takahashi identities, we do not need lo  consider 
self energy diagrams explicitly. The Ward-Takahashi identity for the quark self- 
energy relates it directly to the quark vertex, 

and hence, if we integrate the vertex A P ( p , p )  we can obtain the self-energy. Since 
the vertex contains no overlapping divergences, the proof of renormalizability for 
the vertex is straightforward, and once the vertex has been renormalized, the 
xlf-energy can be obtained from it. 

A similar argument can be used for the vacuum polarization if we introduce 
a new amplitude AP”‘ related to the vacuum polarization by [Wa 501 

d 
APuX(q ,q )  = - - W ’ ( q )  . 

8g.x 
(16.76) 

The two diagrams for AP”’ which enable us to calculate graph 16.17B are shown 
in Fig. 16.18. Note that the “third” photon (with polarization index A) couples 
only to the circulating fermion (nor the anti-fermion). The diagrams in which the 
third photon couples to the anti-fermion are of the opposite sign (because of the 
opposite charge of the anti-fermion), and when added to the two graphs shown in 
Fig. 16.18 would give zero, consistent with the general theorem (Furry’s theorem) 
that a vertex with an odd number of photons is zero. If we are careful to keep 
only those diagrams in Fig. 16.18, then we may use (16.76) and exploit the fact 
that the pseudovertex A””’ (pseudo because it includes only half of the possible 
couplings of the photon with polarization A) has no overlapping divergences (in 
common with other vertex functions) to complete the proof of renormalizability. 

The proof then proceeds as in the previous section. Consider any graph G in 
QED and its corresponding skeleton Gs.  Since G has no overlapping divergences 
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[self-energies need not be considered because of the Ward-Takahashi identities 
(1 1.137) and (16.76)], we may use a generalization of the relation (16.65). 

G (Y, D, S, eo) = GS (r@, D’, S’, eo) , (16.77) 

where D = D@’ and S are the lowest order photon and quark propagators and 
r@, D’ = DIM’’, and S’ are the dressed vertex function and photon and electron 
propagators. With the counterterms included, the finite parts of P, D’, and S’, 
denoted by f’@, D, and 3, are related to I?’, D’, and S‘ by the renormalization 
constants 

- 1  s =  -S’ 
2 2  

(16.78) 

- rp =z1v . 
These constants can then be absorbed into the charge (as we did in Chapter l l ) ,  
and if the graph G has NF external quark lines and NB external photon lines, 
then 

(16.79) 

This equation expresses G in terms of finite quantities and an overall multiplicative 
infinite renormalization constant. The finite part of G, G,, is then defined to be 

G (7@, D ,  s, eo) = ( 2 3 )  - N B / 2  ( Z 2 ) - N F / 2  Gs (F B , i ) , S , e R )  . 

G, (7@, D ,  s, eo) = ( 2 3 )  Ne12  ( ~ ~ ) ~ ~ l ~  G (7@, D, S, eo)  

= G~ (FP, D, S, e R )  . (16.80) 

This completes our proof that QED is renormalizable. Once it has been 
demonstrated that self-energy diagrams need not be explicitly considered and that 
therefore any diagram can be made finite by subtracting the infinities from its 
singular subdiagrams (self-energies or vertex parts which do not overlap) using 
counterterms defined in a lower order calculation, the proof is merely a matter of 
showing that the factors Z1, 2 2 ,  and 2 3  can always be absorbed into the charge, 
except for some remaining overall factor associated with the external lines. This 
redefinition of the charge was already discussed in Chapter 11. 

As an illustration of the usefulness of the Ward-Takahashi identity (16.76), in 
the next section we compute the vacuum polarization to fourth order. In addition 
to being an interesting example, the result is of practical importance. The final 
section of this chapter will discuss the renormalization of QCD. 

16.5 FOURTH ORDER VACUUM POLARIZATION 

As an illustration of the techniques we have developed, we will calculate the fourth 
order vacuum polarization in QED. There are three fourth order contributions, 
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Fig. 16.19 Graphs which contribute to the fourth order vacuum polarization in QED. 

shown in Fig. 16.19. The two diagrams A and B are equal, and diagram C has 
the familiar overlapping divergence. To avoid this overlapping divergence, we 
can use the Ward-Takahashi identity (16.76) to obtain the fourth order vacuum 
polarization from the six diagrams shown in Fig 16.20. In this case A = B, and 
D = F. All of these diagrams have the same skeleton, which will be labeled as 
shown in Fig 16.2 1. We will only calculate the parts of the diagrams which are 
singular, or which diverge as q2 + 00. These contributions will be referred to as 
the “leading” contributions. 

The vacuum polarization diagrams can be expressed in terms of a scalar 
function II (q2)  as was done in Eq. (1  1.69), 

r I P U ( q )  = (gP”q2 - q P q V )  H ( q 2 )  . (1 1.69) 

1: turns out that the leading terms can be calculated from the Ward-Takahashi 
identity (16.76) by ignoring the derivatives of II (q2)  (as we will see once we 

Fig. 16.20 
overlapping divergences. Note again that the third photon does not couple to the antiquark. 

Diagrams which can be used to calculate the fourth order vacuum polarization without 
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Fig. 16.21 The skeleton diagram for the fourth order calculation, with momenta labeled. 

have the answer), and hence 

ApuX(q) = (qpguX + q’gpx - 2qxgpu)  II(q2) . ( 1 6 . 8 1 )  

We will find II(q2) by calculating ApuX from the six diagrams in Fig 16.20. 
As a warm-up, we first redo the calculation of the lowest order vacuum 

polarization. This is obtained from the skeleton graph 16.21, which is (don’t 
forget the minus sign for a closed fermion loop) 

d d k  t r  { Y ~  ($ +$ d )  Y’ (# +a d )  7’ ($ - $  d ) }  
Ap”’(q) = i e i  - 2 s (2.)d [- ( k  + M2] [- ( k  - M2] 

( 1 6 . 8 2 )  
The trace is readily reduced. Let k* = k zk i q .  Then 

N = t r {  } = 2 k ~ t r { y ’ $ + y p # ~ } - k ~ ~ ~ { ~ ~  P A P  Y $- }  

= 8k:  [ k : k f  - g p u k +  9 k -  + k”:] - 4k: [g u X  k! - gpuk!  + g p A  k!]  

The denominator is combined into a single term, with the Feynman parameter 5 
associated with k i  and 1 - 2 with k! .  Then k is shifted, 

. 

k 4 k + i q ( 1 -  2 x )  , ( 1 6 . 8 3 )  

to complete the square in the denominator. Shifting k in the numerator, dropping 
the odd powers of k (which integrate to zero), and neglecting terms which go like 
q3 in the numerator (they are finite and cannot give rise to the leading terms we 
are keeping), the numerator reduces to 

N + 8 k X  ((q”k” + q p k ” )  ( 1  - 2 2 )  - g p u ( k .  q ) ( 1  - 2 2 ) ]  

+ 8 q X ( 1  - x) [2k”kp  - k2gp”]  + 4k2x [gYXqp - gupqX + g p X q ” ]  

- 8 k .  q ( l  - 5) [ g u X k p  + g p X k Y  - g”’kX] . 
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Next, the numerator can be simplified using Eq. (C.9) from Appendix C, which 
allows us to make the replacement kpk” -+ k2gp”/d: 

Hence the leading terms from (1 6.82) are 

Keeping the leading terms from the k integration gives 

8e2(d - 2 )  
( 4 ~ )  dI2d 

r ( 2  - g )  Ap”’(q) = 

(-$)”: (16.84) 
(qpg”’ + q v g p ’ x )  x - q x g y 2  - x)  

x l  xdx 2 - d f 2  
[ X U  - 41 

where E = 4 - d is a small quantity, and we have replaced 

Since we are keeping the leading terms only, we let 

(16.86) 

and let 6 -, 0 everywhere except in the q2 term, which will give the leading large 
q2 behavior. In this case, the r integrations give 

2 
1 1 ( 2  - x)xdx = - 

3 
1’ x2dx = 1 

3 

and II(q2) can be extracted from (16.84), giving (a = e2/4n) 

(16.87) 

Note that this result agrees with the results obtained in Sec. 11.6. 
Having demonstrated how the method works, we now calculate the fourth 

order self-energy. The calculation requires the second order quark self-energy and 
the third order vertex correction. In doing this calculation, we will keep only the 
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terms which diverge as c -+ 0, or which go like l o g ( - q 2 / p 2 )  at large q2. Our 
previous experience with dimensional regularization tells us there can be no terms 
which go linearly with q 2 ;  the leading terms must be of the form 

where n1 and 712 are integers. Hence the l og ( -q2 /p2)  terms 
automatically at the same time the singular terms are obtained. 

The second order quark self-energy is 

To reduce this, note that in d dimensions yaya  = d, and hence 

+ .. .  , (16.88) 

will be obtained 

(16.89) 

(16.90) 

and completing the calculation as we did in Sec. 16.2 gives 

with 

The second order vertex correction for finite q is A ” ( p ,  q). where p and q are 
defined in Fig. 16.22. [A similar labeling was used in Chapter 11; compare with 
Fig. 11 . I  1 .] If q = 0 (which is the case at the X vertex of A@vx),  then A” can 
be obtained from the Ward-Takahashi identity, 

(16.92) A x ( p , O )  = rXB(p2)  + 2 $ p X - B ( p 2 )  . 

For finite q, the vertex correction is obtained following the method used in 
Sec. 16.2 which led up to Eq. (16.48). Recalling that A” is defined with one 
factor of e R  omitted, the vertex correction is 

d 
dP’ 

(16.93) 

5 Y 
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Fig. 16.22 
rection, with momenta labeled. 

The lowest order vertex cor- 

where the A's in the denominator were introduced in Eq. (16.45). We combine the 
denominator into a single term, using the Feynman parameters indicated. These 
steps were already carried out in the work leading to Eq. ( 1  6.48); here the only 
additional work is the reduction of the numerator. Recalling that the shift in k 
was k - k + p (  1 - E )  - qcv, the numerator in (16.93) becomes (dropping terms 
proportional to two powers of q, which will not contribute to the leading terms, 
and terms odd in k ,  which integrate to zero) 

N 'YO c, YP e- Ya 

=?fa c YP e Y a  + YO tJ YP tJ Y a ( 1  - € I 2  
+ Yo 1 YP tJ Ya  (f - crl) (1 - €1 - YU tJ YP 1 Y a  ($  + ev) (1 - 0. 

(16.94) 
Jnly the first term diverges; terms proportional to p p  and p q  will give a finite 
contribution but must be retained for reasons which will be apparent soon. In the _ .  
first term we use (C.9) and (16.90) twice to obtain 

" Q O P  k2  
Y a  # YP c Y a  * -g Y Y YPYa = $2 - d)2Y'" 

Similarly, the second term in (1  6.94) becomes 

YQ tJ YP tJ Y a  = ( 2  - 4 [2 $PP -P2YP] . 

16.95) 

16.96) 

Hence the contributions of the first two terms in (16.94) to A" are then of the 
form 

(16.97) t,o(P? 4 )  = YPAl(PI 4 )  + 2PP j h ( P ,  4 )  I 

where A1 and A2 are 
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where Y was defined in Eq. (16.47). Carrying out the d k  integration gives 

(16.98) 

Note that A2 is finite as E -+ 0 and may therefore be simplified by setting E = 
0 in most places (i.e., everywhere except in  the (p2/Y2) ' / '  term, where the 
infinitesimal power gives extra convergence at large p 2  needed later for the d p  
integral) giving 

The expression for A1 is singular as E -+ 0 and must be evaluated very carefully. 
Keeping only p 2  and p . q terms in the numerator (because the q2 terms will not 
contribute to the leading term), the third term in the [ 1 of (16.98) can be further 
reduced by replacing p 2  -+ - Y 2  - 27p. q, giving 

The first two terms in the square bracket may be simplified by integrating over 77 
by parts [as we did in Eq. (16.52)]. In carrying out this integration, the second 
term proportional to 1 - 2E integrates to zero, and A, can be written as 

where B is the singular self-energy term given in  Eq. (16.91), and 
which is finite as c --t 0 and may therefore be simplified by setting 
where except in the ( p 2 / Y 2 ) r / 2  term (as we did for A2). giving 

7i1 is a term 
E = 0 every- 

(16.100) 
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The last two terms in ( 1  6.94) complete our description of Ap. These are also 
finite, and letting d = 4 in the numerator permits us to use Eq. (11.1 18) to reduce 
it to 

Nlast  two = { - ($7’ i )  (1 - ~ E V ] +  8 Y II (1 + 2Fn)J (1 - E )  . 

Hence, the vertex correction to third order is 

where was given in Eq. (16.100), A2 in Eq. (16.99). and using (A.13) A3 is 

(16.102) 
As a test of these results, note that A3(p ,  0) = ( p ,  0) = 0, and 

A2(p1O) = --g (i) (L)”2 ($) = G B ( p 2 )  d = B’(p2) (16.103) 
-P2 

and hence (16.101) is consistent with the Ward-Takahashi identity, Eq. (16.92). 

T,ieir combined contribution is 
We are now prepared to tackle a calculation of the six diagrams in Fig. 16.20. 

(16.104) 

where N u A p  = t r  (7’’ $+ yx $+ -,J’ #-} ,  A+ = -k$, and the (a) terms come 
from the yp contributions to the three vertex functions, the (b) terms are from 
the three electron self-energies, and the remaining terms are additional vertex 



16.5 FOURTH ORDER VACUUM POLARIZATION 565 

corrections. Note that the vertex for the outgoing photon with polarization v is 

Now, note that the singular B ( k 2 )  parts of the (a) and (b) terms cancel 
exacrfy, and hence only finite contributions to the integrand remain. This tells us 
immediately that the fourth order result will only go like l / ~  (there are no 1/c2 
terms as there were in q53 theory), so that the leading terms have the structure 
of Eq. (16.88) with n1 = 1. Hence the leading l og ( -q2 /p2)  terms are finite. 
Accordingly, we can evaluate these terms by letting E -+ 0 in all factors which 
multiply the 1 / ~  singularity, except for the ( -p2 /q2) ‘  term, which gives the log. 
The final result therefore comes from only four terms: the xl  terms, two Az 
terms, and the As terms. These will each be calculated in turn. 

terms first. From Eq. (16.100), 
we see that 

A ” ( k ,  - 4 ) .  

Consider the contribution from one of the 

and hence the integral will diverge in four dimensions only if multiplied by 
a term which goes like k 3 / k 6 .  Precisely such a term arises from the k3 term in 
N V X P  (which did not contribute to the second order calculation because it was 
odd in k), which now gives 

Combining the denominators into a single term, as we did in obtaining Eq. (16.56), 
will give a contribution of the form (remember that E = 0 except for the 
( p 2 / y Z ) +  term) 

( 16.106) 
ddk tr (7” $ 7’ #} k * q / @@ ( -k2  - 242)  4+c/2 

’ 

where 2, defined in Eq. (16.57), is the factor which emerged when the square of 
the denominator was completed (we will not need to know its precise form here). 
To complete the square in the denominator, we had to shift k -+ k + yq (where 
y depends on the parameters z, y. and q), but since four powers of k must be 
retained in the numerator in order to get the divergent result we are seeking, the 
numerator is unaffected by this shift. After carrying out the trace and averaging 
over the direction of k, the numerator will be proportional to k4 ,  and after the k 
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integral is done, we will obtain a factor of 

where the factor of Z-‘ can be set to unity, since departures of Z from unity 
make only a finite contribution. Hence there are no additional contributions from 
the Feynman parameters 2, g, [, and r ] ,  and the integrations over the Feynman 
parameter < (or r ] )  gives zero. Hence the divergent part of A, is zero. This 
conclusion holds for both of the terms proportional to TI. 

Next, calculate the terms proportional to 112. It will turn out that these are 
zero also. First, evaluate the last term proportional to A z ( k + ,  0). Doing the trace 
gives 

z 

(16.107) 
Combining the denominator and completing the square using the now familiar 
shift k -+ k + iq(l  - 2 x ) ,  Eq. (16.83), give 

d d k  k2  (PL2)€ A$ux = -i 4 a 2  (2n)d 
d x  [ - k 2  - q 2 x ( 1  - z)] 3+c/2 

x [ ( q v g u x  + q ’ g q  (1 - 2 2 )  - g p ” y q y 3  - dX)] 

( 16.108) 
where the kpk” terms were reduced to g p ” k 2 / 4  using (C.9). Doing the k integra- 
tion [setting E = 0 everywhere except in the ( - p 2 / q 2 )  factor] gives the following 
leading term: 

(16.109) 

Note that this does not have the gauge invariant form of Eq. (16.81), and hence 
it must be canceled. 

The cancellation comes from the other terms proportional to A2. Using 
k = 4 ( k +  + k - ) ,  the numerator for the first of these terms reduces to 

N1 = 2 k ” t r  {r’ P+ YX P+P $-}  
= kPk:  tr  (7’’ $+ yx $- }  + kpk!  tr (7’ $+ yx $+} 
= 2 k p k 2  t r  { y’ $+ yx $ } + O(q2) (16.110) 

where terms of O(q2) can be dropped because they are not of leading order. Since 
A 2 ( k , q )  = & ( k ,  -q ) ,  the second of these terms, which differs only by p - v, 
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may be added, and after the trace has been taken, the first two A2 terms become 

x 4kpk”kx + 3 ( k p k X q u  + kwkAqp  + 2kpkwqA) 

- (guAkp  + g p A k w )  ( k 2  + i q .  k )  . 

1 
1 

Now combine the denominators as we did leading to Eq. (16.56). shift k -, k t r q ,  
where y = -q - 4(x - y) + ~ ( x  + g), drop all terms odd in k ,  and keep only 
terms linear in q.  We obtain 

where 

N:”’=~Y k .  q k p k ” k x  + k2 [(4y + f )  (kpkxqu  + k”kxqp) + (47 + l ) k ~ ~ w q x ]  

- k 2 ( k .  4 )  [guXkp  + gpXk”]  (47 + f) - k 4 y  [gp‘q” + g”‘qp] . 

Reduce this numerator by averaging over k ,  using (C.9) from Appendix C ,  and a 
.iew identity (C .  10): 

ddk kflk‘kxk6 - [gpugA6 + gp’gu6 + gp6guX] k4 
( 2 7 ~ ) ~  D ( k 2 )  

- / m  D ( k 2 )  d ( d  + 2 )  

The proof of (C.10) is left as an exercise. Using these identities in four dimensions 
gives 

Doing the k integral and replacing the Z V c  factor by unity give 

(16.112) 

As advertised, this term cancels ( I  6.109), giving zero. 
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J q q 2 )  = - 2a - 1 + - a2 - 1 - (E - + ~ 2 ) 1 0 g ( - $ )  - + . . a .  

3n € 4n2 E 

The final term, and the only non-zero contribution to A.”’, comes from the 
A3 terms, which are already linear in q and therefore quite easy to reduce. To 
reduce them, recall that Y is unchanged if q -+ -q and q --+ -q, and hence 
Ag(k,  3) can be written in a form similar to Ak!(k, q)  provided q --* -q in the 
integral which defines it [recall Eq. (16.102)]. Hence, retaining terms linear in q 
only, the numerator of the Agux contributions can be combined as follows: 

x 
N3 = tr {YY #+ Y c+ [c rp d (1 - 25rl)- B 7 .  P (1 + 2 1 4  c - }  

- tr { [# rU d (1 + 207) -  8 YV c (1 - 2 4  #+ YX #+ Y p  c - }  
--+ (1 - 2 E M  [ t r  (r’ c Y A Y  1 C) + t r  ( 4  YUYX P rG c ) ]  

- (1  + 2trl )k2 [ tr (r’ # rX # B 7.) + tr (rU B $ rx P r”)] . 

Again, as above, we may use (C.9) and -yayp-ya = -27’’ immediately to get 

N3 -+ -4k4(1 - 2<q) [q”gxp + f g X V  - gXg’IV] + 4k4(1 + 2<q)qXg”. 

(16.114) 

Hence the A3 contributions are 

Combining denominators and doing the k integral gives 

(16.113) 

This is the final result for the fourth order self-energy, and combined with our 
previous results gives 

The result (16.114) shows how the renormalization constant 2 3  must be 
redefined in fourth order. The fact that the singular term is constant is another 
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example of the requirements of renormalizability. In addition, we have obtained 
the finite, high q2 part of the vacuum polarization correction to fourth order. Note 
that it adds to the second order corrections, further enhancing the effects already 
discussed in Chapter 11. In the next chapter we will show how this result may be 
used to calculate the QCD corrections to R, which were discussed in Sec. 10.4. 

The calculation of (16.114) is long, but note that none of the singular con- 
tributions arises from singularities in the integrals over the Feynman parameters, 
as they did in the 4 1 ~  example discussed in Sec. 16.2 above. This is because we 
calculated (16.114) from diagrams with no overlapping divergences. 

16.6 THE RENORMALIZATION OF QCD 

We conclude this chapter with a brief discussion of the renormalization of QCD. 
First, consider the four types of interactions which can occur in QCD (with quarks). 
There are three-gluon (39) and four-gluon (49) vertices, a quark-gluon vertex 
(gqq)), and the ghost-gluon vertex (gcc). Two of these vertices have derivative 
operators, which introduce an extra power of momentum into the vertex and add 
a single unit to the formula for the index of divergence (see Prob. 16.1). The new 
formula for the index is 

where ng is the number of derivatives at the vertex. Evaluating this formula in 
four dimensions for each vertex gives the following computations: 

3g: 

49: 

3 + ;(o) + 1 - 4 = 0 

4 + ;(o) + 0 - 4 = 0 

gqQ: 1 + : ( 2 ) + 0 - 4 = 0  
(16.115) 

gcc: 3 + Z(0) + 1 - 4 = 0 

In every case the index of divergence is zero. Note that ghosts are treated like 
bosons for this estimate, since their propagator goes like p V 2 .  Hence, by the 
definition given in Sec. 16.1, QCD is superficially renormalizable. 

In QCD, the divergent subgraphs are seven in number: the gluon, ghost and 
quark self-energies, renormalized by the constants Z3,  2 3 ,  and Zg, and the three- 
gluon coupling, with renormalization constant 21, the gcc coupling with constant 
2 1 ,  the gqQ coupling with constant 2[ ,  and the four-gluon vertex with constant 
2,. In addition, there is a mass shift for the quark, which we shall ignore. 

A central issue in QCD is to demonstrate that the SU(3)  local gauge invari- 
ance is preserved by renormalization. Since the freedom to choose a, the gauge 
parameter in the gluon propagator, is a consequence of this freedom, it should be 
true that this parameter is also unaffected by renormalization. We will discuss the 
implication of these remarks now. 



570 RENORMALIZATION 

Recall that the QCD Lagrangian, including ghost fields and gauge fixing 
terms, can be written (assuming, for simplicity, that the quarks are massless) 

where the "free" Lagrangians and interaction terms are 

(16.1 17) 

These were discussed in Chapters 13 and 15. As in our discussion of QED, the 
fields and coupling constant g R  are assumed to be finite, renormalized quantities. 

Counterterms must be added to the Lagrangian to cancel infinities which arise 
from the seven types of diverging graphs or subgraphs. Since the gauge fixing 
trrm, L j ,  is associated with the gluon propagator, and the gauge fixing parameter 
a is unchanged, counterterms are introduced as follows: 

J$LD = L ,  +cc . (16.1 19) 

Absorbing the infinite renormalization constants into the fields gives the following 
bare fields, denoted by a superscript (0): 

(16.120) 
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and we see that the bare coupling constant, go, depends on four different combi- 
nations of renormalization constants: 

(16.121) 

gcc * go = - 
j3GgR 

Clearly, each of these quantities must be identical if the SU(3)  gauge symmetry is 
to survive the renormalization. Hence, we must have generalizations of the Ward- 
Takahashi identity, referred to as the Slavnov-Taylor identities [Ta 71, S1 721: 

(16.122) 

For a further discussion of these identities, the reader is referred to the literature 
[La 81, MP 781. We will not pursue the discussion of the renormalizability of 
QCD further. 

In the next chapter we will assume that QCD is renormalizable and the 
identities (16.122) can be proved and show that QCD is an asymptotically free 
aeory. 

PROBLEMS 

16.1 Consider a theory with an interaction Lagrangian with no space-time deriva- 
tives. For example, pseudovector nN coupling has the form 

L~ = - ~ + Y ~ ~ ~ $ J ~ J J  

with ng = 1 space-time derivative. Using the methods worked out in 
Sec. 16.1, show that Eq. (16.5) is unchanged but that the index of divergence 
of the theory becomes 

I = i ( d - 2 ) B  + i ( d -  1)F +no - d  . 

Discuss the significance of this result. 

in Fig. 16.3A when calculated in d = 8 dimensions. 
16.2 Compute the counterterm A0 which arises from the four-point function shown 
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16.3 Using the BS equation [in particular, Eq. (12.50) may be helpful], prove 
that the Dyson equation illustrated in Fig. 16.13A is equivalent to the equa- 
tion illustrated in Fig. 16.14. (You will also need to use the equation in 
Fig. 16.13B.) 

16.4 Show that the counterterms needed to remove the subdivergences from the 
sixth order self-energy, graph 16.11, are as shown in Fig, 16.16. You may 
use Figs. 16.14 and 16.15 to construct your argument. (Hint: Don’t forget 
the contribution from l?) and its counterterms.) 



CHAPTER 17 

THE RENORMALIZATION GROUP 
AND ASYMPTOTIC FREEDOM 

We now exploit one of the most powerful consequences of renormalization: the 
fact that the final results for renormalized scattering amplitudes cannot depend 
on the choice of the renormalization scale p2. If it is really true that the choice 
of p2 does not change the final results, then there is a symmetry associated with 
this invariance, i.e., a group of transformations involving changes in p2 which 
leave all physical results unchanged. These transformations are referred to as the 
renormalization group. Following our discussion of the renormalization group, 
we will discuss asymptotic freedom and show that QCD is asymptotically free. 

17.1 THE RENORMALIZATION GROUP EQUATIONS 

Ne will use the notation of Chapter 16, where go denotes the unrenormalized 
coupling constant and gR the renormalized coupling constant. These two constants 
are related through renormalization, 

90 = Zgg, 7 (17.1) 

where 2, is a renormalization constant. In d dimensions, both of these coupling 
constants have the dimensions of 6 = 4-d, and the renormalized coupling constant 
gR is related to the dimensionless coupling constant g as in Eq. (16.17). 

where p is the (arbitrary) mass scale used in the dimensional regularization scheme 
discussed in Chapter 16. Now, the unrenormalized coupling constant go is the only 
one of these constants which is independent of the renormalization scale p (for 
the simple reason that the scale does not enter into its definition), and hence the 
dimensionless coupling constant g depends on the renormalization scale /I through 
a combination of Eqs. (17.1) and (16.17), 

(17.2) 
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The implication of this dependence of g on renormalization scale will be studied 
in this chapter. 

Now, as a specific example of how these ideas can be extended to scattering 
amplitudes, consider the unrenorrnalized scattering matrix for the interaction of n 
gluons (the n-point function). This amplitude depends on go and 6, but not on the 
mass scale p. Hence 

(17.3) 

where { p i }  are the external momenta upon which M depends and the dependence 
of M on 6 is shown explicitly. The validity of (17.3) is regarded as self-evident; 
M cannot depend on p since none of its arguments do. It is a mathematical 
statement of the physical fact that the physics must be independent of the renor- 
malization point p. 

Now, the renormalized n-point function is obtained from the unrenormalized 
n-point function by multiplying by a factor of Zi” for each external gluon, so 

where we have displayed the fact that M R  depends on p and will ignore any 
dependence of M on quark masses. The renormalized amplitude does depend on 
p through Z,””, an essentially “trivial” dependence which is associated with the 
dimension of the amplitude (see below). 

An equation describing the dependence of M R  on p can be readily obtained 
from (17.3). We have 

If we now express the total derivative on the left-hand side in terms of partial 
derivatives, we obtain the Callan-Symanzik equation [Ca 70, Sy 701 

where /? and y are taken to be functions of g and 

y ( g )  = 2- (logZ3) . 
2 dP 

(17.7) 

Equation (17.6) is an example of a renormalization group equation. It describes 
an arbitrariness in the behavior of M R which arises from the choice of the renor- 
malization mass p. If we choose a different p, M R  will still be finite, but it will 
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Fig. 
point 

17.1 
function. 

One-loop graph for the n- 

have a different value, and the behavior of M R  as p is varied is constrained by 
Eq. (17.6). 

At first glance, it may seem that the dependence of M R  on the renormaliza- 
tion mass scale p is an amusing fact of no physical importance. However, as we 
will now see, this dependence gives a powerful new way to study the behavior of 
scattering at large momenta. 

17.2 SCATTERING AT LARGE MOMENTA 

We can use Eq. (17.6), together with dimensional analysis, to deduce the behavior 
of M g )  as the momenta { p i }  --$ 00. We will continue to consider the simplest 
case in which there is no quark mass dependence. Then, from an analysis of the 
simplest Feynman graph which contributes to M("),  the one-loop graph with n 
39 couplings shown in Fig. 17.1, we can determine that the dimension of M(")  
is 

and that therefore M(")  can be rescaled as follows: 

(17.8) 

(17.9) 

where we have also replaced { p i }  by {Api},  where X is a dimensionless parameter 
which is convenient to introduce, and p is the mass scale which entered through 
the renormalization of M. Note that Eq. (17.9) tells us that the variation of M t' 
with respect to the momentum scale (as measured by the parameter A) is related 
to the variation of MF) with respect to the renormalization scale p, and hence 
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the renormalization group equations can be used to study the dependence of the 
scattering amplitudes on momentum scale. 

To develop this connection, begin with the Callan-Symanzik equation (17.6) 
for the amplitude (17.9), which is 

Because of Eq. (17.9), we know that, apart from a “trivial” factor derived from the 
overall dependence of M g )  on p4-“, the action of the partial derivative palap 

on M t ’  can be replaced by differentiation by -M/aX. Making this substitution 
gives 

(4- (17.11) 

This equation now relates the variation of M g )  on X (the momentum scale) to 
its variation on g and will permit us, under certain conditions, to estimate the 
behavior of M R  for large A (large momenta). 

We will now show that the solution to this equation can be written in the 
following form: 

‘(here S is an overall scaling factor 

(1 7.13) 

and gr (X ,g )  is the running coupling constant which depends on A and g and 
which is interpreted as the effective coupling constant for X 2 1. The running 
coupling constant is defined by the equations 

Before we show that (17.12) really does satisfy Eq. (17.11), note that it tells us 
that M at large momenta { X p i }  with X -+ 00 can be obtained from M at some 
fired momenta { p i } ,  provided we replace the coupling constant g by the running 
coupling constant gr and multiply by a scaling factor dependent on y. We see 
that knowledge of the running coupling constant is sufficient to determine much 
of the behavior of the scattering at high momenta. 



17.2 SCATTERING AT LARGE M O M E N T A  577 

To prove that (17.12) is a solution to Eq. (17.11), begin by noting that 
Eq. (17.14b) can be integrated if we regard g as a parameter independent of 
A. Then 

dgr  d A  -= -  
P b r )  A ' 

and using the condition (17.14a), we obtain the following integral equation for 
the running coupling constant: 

(17.15) 

This equation gives an implicit solution for the running coupling constant g r ( A , g )  
which will be discussed shortly. But first note that this equation can be used to 
show that the running coupling constant satisfies the following equation: 

(17.16) 

This can be readily demonstrated by differentiating (17.15) with respect to g ,  
which gives 

= o .  1 a g r  1 

9 r )  a g  P ( g )  
---- - 

f i  
From this we conclude that 

and comparing this with Eq. 17.14b) gives (17.16). 
The proof that (17.12) solves Eq. (17.11) can now be completed. Differenti- 

ating ( 17.12) gives 

where S is the scaling factor of Eq. (1 7.13). Combining these equations and using 
(17.16) give 
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Now we may use (17.16) again to carry out the integral over x giving 

= r(gr) - [Y(gr) - y(g)l = y b )  (17.19) 

and hence Eq. (17.11) is obtained. 
An understanding of scattering at large momenta is greatly facilitated by an 

understanding of how the running coupling constant behaves as X + co, and we 
will discuss this in the next section. 

Before turning to this discussion, rewrite the solution (17.12) for the case 
when ?(a, g) = ycu, is finite. In this case it is convenient to subtract the integral 
over y as follows: 

and write the solution in the following form: 

(17.22) 

Note that the integral over x now converges to a finite value as X + 00, so that 
*he dimension of M R  has changed from 4 - n to 4 - n - ny,. The quantity 
7, is referred to as the anomalous dimension of the field, since it indicates how 
the scaling behavior of M R  departs from that predicted by simple dimensional 
analysis. 

17.3 BEHAVIOR OF THE RUNNING COUPLING CONSTANT 

From the defining Eqs. (17.14), it is clear that the behavior of the running coupling 
constant gr depends on ,B(gr), and from the implicit solution, Eq. (17.15), it is 
clear that the zeros of P play a special role. As the upper limit of the integral in 
(17.15) approaches a value of g at which P(g) = 0, the integral will diverge, and 
hence X must either approach 00 or 0, the only two points at which logX also 
diverges. Clearly, the behavior of log X depends on whether or not the integral is 
positive or negative as the zero is approached. We are therefore led to distinguish 
the two possibilities shown in Fig. 17.2. In the first case, the zero will be denoted 
by g+, and such a zero is referred to as an ultravioletfixed point. In this case 

< O  i f g > g +  
> O  i f g < g +  . (17.23) 
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Fig. 17.2 
point. 

Behavior of the P-function near (A) an ulrraviolet fixed point and (B) an infrared fixed 

In the second case, the zero is denoted by g- and is referred to as an infrared 
f i e d  point. In this case 

> O  i f g > g -  
< O  i f g < g -  . (17.24) 

To understand the behavior of gr near these points, suppose that gr is less than g+ 
but close enough to g* so that the zero at g* is the only zero under consideration. 
Then, as gr -+ g* from below, the integral will diverge to + infinity at g+ and 
- infinity at g-, and hence X --$ 00 as g -+ g+ at X + 0 as gr + g-. The same 
conclusion is reached if gr > gh; in this case the sign of the integral is changed, 
but the sign of P is also changed, so the same argument holds. We conclude that 
‘ne two solutions gr(X,g) are 

g+ = gr(mr g) 
g- = gr(O, g) 

ultraviolet fixed point 
infrared fixed point . 

In such a case, g+ is the effective coupling constant at infinite momenta, and g -  
is the effective constant at low momenta. 

The function P will usually approach zero as some power of g when g + 0. 
The two ways it can approach zero are illustrated in Fig. 17.3. In the first case, 
p ( g )  is negative for small g ;  in the second case it is positive. From the previous 
discussion, we see that, in the first case, 

gr(oo, g) = 0 asymptotic freedom . 

This case is referred to as asymptotic freedom. The name comes from the fact 
that the effective coupling constant of the theory approaches zem as the momenta 
approach infinity. This means that the scattering amplitudes at large momenta 
can be calculated using perturbation theory, and all of the wonderful perturbative 
methods which we have described can be applied to high energy calculations, 
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Fig. 17.3 Behavior of the &function for small coupling. In (A) the theory is asymptotically free, 
but for a theory with a &function given by the dashed curve, the asymptotically free region cannot 
be physically realized if g > 92. 

even if the effective coupling constant at moderate energies is large. As we will 
show in the next section, this remarkable property is a feature of non-Abelian 
gauge theories and of QCD in particular. 

In order to prove that a theory is asympotically free, it is suflcient to demon- 
strate that P ( g )  < 0 as g -+ 0 in lowest order perturbation theory [GW 73, Po 731. 
This is because such a demonstration insures that gr is small at large momenta, 
and hence also justifies using perturbation theory to estimate P ( g ) .  However, such 
a demonstration does not guarantee that the theory as physically realized by nature 
is asymptotically free. For example, if the theory has a P-function with two other 
zeros at finite g (as shown by the dashed line in Fig. 17.3A), and if the physical 
value of g > g2, then the coupling will evolve to g2 as X + 00, and we will never 
*:ach the asymptotically free region. Alternatively, even if there are no other 
zeros, the coupling constant may run so slowly that it does not become small until 
the momenta are so large that they are inaccessible experimentally. For QCD, 
neither of these situations seems to hold, and it appears that the asymptotically 
free region of QCD is physical accessible. 

Anticipating the results we will obtain in the next section, we assume that in 
lowest order perturbation theory 

P ( g )  = -Dog3 > (17.25) 

where PO is a positive number. In this case we have an asymptotically free theory 
where g+ = 0, and the effective coupling constant at large X is obtained by solving 
Eq. (17.15). Substituting (17.25) into (17.15) gives 

from which we obtain 

(17.26) 

(17.27) 
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I 1  E m , ,  1 I ,., 1 

0 c? + lattice g. th. . J/”, Y decays 

r(ZO+had.) 

0 ZOev. shapes (O(az)) 

1 10 100 

Fig. 17.4 Value of the strong fine structure constant as extracted from a variety of experiments 
P’ different momentum scales Q. Note that the fine structure constant grows with decreasing Q as 
predicted by Eq. (17.28). The empirically determined value of A is between 150 and 250 MeV. 
(Courtesy ofS. Bethkp [Be 921.) 

where X has been replaced by Q/A, with A being the momentum scale at which 
the coupling has the initial value of g and Q being the momentum scale at which 
it is g,.. Letting Q >> A, we may write the running coupling constant in the 
following form: 

(17.28) 

Since PO can be calculated from perturbation theory, the above formula shows that 
the coupling constant at large momenta really depends on only one parameter, 
A. This prediction can be tested by extracting the effective coupling constant 
from a variety of experiments carried out over a range of momentum scales. 
Unfortunately, the expected log variation is slow, and it has not been until recently 
that enough evidence has been collected to convince a skeptic that the coupling 
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constant does indeed “run” according to Eq. (17.28). A recent determination of 
how the QCD coupling constant “runs” is shown in Fig. 17.4 [BP 921. From these 
results a value of A ‘v 150 - 250 MeV is obtained. 

Note that the running coupling constant (17.28) approaches zero very slowly 
as Q + 00, and hence the force between two quarks at very short distance does 
not really go to zero, as is sometimes assumed. 

17.4 DEMONSTRATION THAT QCD IS ASYMPTOTICALLY FREE 

We will now show that QCD is an asymptotically free theory. 
Eqs. (17.2) and (17.7), the demonstration requires that we compute 

Combining 

(17.29) 

where 2, is a renormalization constant defined in Eq. (16,121), which in lowest 
order perturbation theory has the form 

(17.30) 

where K is a constant to be determined below. Hence Eq. (17.29) has the following 
solution to third order in g: 

(17.31) 

which, in the limit E -+ 0, gives K = PO, where PO, defined in Eq. (17.25), 
determines how the coupling constant “runs”. If K is positive, the theory is 
asymptotically free. 

The key to the demonstration is therefore the calculation of 2,. From 
Eq. (16.121), there are three equivalent forms for 2,: 

Z1 zf 
(1 7.32) 

where we ignore the possibility of using 2 4  (why?). The diagrams which con- 
tribute to the six renormalization constants which enter (17.32) are shown in 
Fig. 17.5. We will choose the last combination in (17.32) which is comparatively 
simple to calculate. 

We begin with the lowest order calculation of 23, the renormalization constant 
for the ghost propagator, labeled in Fig. 17.6. Using the Feynman gauge (a  = 1) 
and the Feynman rules for QCD, summarized in Appendix B, we obtain 

(1  7.33) 
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1 

5, A z F I h 

23 

Fig. 17.5 Feynman graphs which contribute to the calculation of seven of the renormalization 
constants in QCD. Both ghost and quark lines are solid. but ghost lines have dots at one end, and 
gluons are corkscrews. 
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k-&, d 
2 

Fig. 17.6 Feynman graph for calcula- A 9. a 
tion of the renormalization constant 23. 1 a +  

k + I q ,  2 c 

2 
where, as in Chapter 16, A* = - ( k  f i q )  . Using the relation (proved in 
Appendix D) 

f a c d f b c d  = N 6 a b  (17.34) 

where N = 3 for the SU(3)  color group, we combine denominators, shift k ,  and 
carry out the integral using techniques developed in Chapter 16 and reviewed in  
Appendix C. The result is 

f i a b  = 4’ 6 a b  fi($) (17.35) 

where 

The renormalization constant 23 is related to the singular part of I?($) in the 
same way that the QED renormalization constant Z2 is related to the singular part 
of electron self energy C [recall Eq. (11.49)] and using MS renormalization (as 
discussed in Sec. 16.2), the counterterm obtained from f i ( q 2 )  is therefore 

g 2 N  1 z 3 - 1 = - - .  
(4n)2 € 

(17.37) 

Next, we calculate 2 3 .  This requires evaluating the four diagrams, drawn in 
detail in Fig. 17.7. Recalling the symmetry factor of 4 for a closed gluon loop, 
the gluon loop diagram A is 

x [ g p ”  (k2 + i q 2 )  + k p k v ( 2 d  - 3 )  - !qpq” ]  , (17.38) 

where (17.34) and gUxgux = d have been used and terms in the numerator which 
are odd in k have been dropped, because A+A-  is symmetric as k --f -k.  We will 



17.4 DEMONSTRATION THAT QCD IS ASYMPTOTICALLY FREE 585 

1 
k t - q ,  c 

2 

1 
k + p, C, ,I 

Fig. 17.7 The four Feynman graphs which are needed for a calculation of the renormalization 

constant 23 .  (A) The gluon loop graph, (B) the ghost loop, (C) the gluon tadpole. and (D) the quark 
loop contributions. 

postpone further reduction of this expression until the other gluonic contributions 
are included. The ghost loop diagram, with the factor of - 1 for a closed “fermion” 
loop, is 

(17.39) 

Finally, the contribution C from the gluon four-point vertex, with its factor of 3, 
is 

(1 7.40) 
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This integral can be shown to be zero in dimensional regularization (see 
Prob. 17.1), but we will find it convenient to transform it and add it to the other 
gluonic contributions. To this end, shift k + k + +q, and multiply and divide by 
A _ .  Then 

With this transformation. (17.40) may be added to the other purely gluonic con- 
tributions to II (from graphs A and B), giving 

x 2 qPq' - gcLuq2) + ( d  - 2 )  [gPu  ( k 2  + i q 2 )  - 2 k P k u ] } .  

(17.42) 
We now evaluate this by combining denominators and shifting k -+ k + 

( (  

i q ( 1  - 2 2 ) .  The new denominator becomes 

D = - k 2  - q2x(l - x) , (17.43) 

and using the replacement kpk' 4 k 2 g p u / d ,  we obtain 

IIfL (gluon) = - i g z  ~ 6 , ~  
( 2 7 ~ ) ~  D2 

x { ( @ q U  - g'1vq2) [ 2  - ($ - 1) (1 - 2 4 2 1  

+ g p u ( d  - 2 )  [ k 2  (1 - 4) + q2x(l - x)]} . 
(17.44) 

First look at the gauge violating gvu term. We can show that it is identically zero 
by direct integration: 
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Fig. 17.8 
constant 21. 

The two Feynman graphs which are needed for a calculation of the renormalization 

In a similar way the gauge invariant term can be integrated, giving 

n:;(gluon) = 6,b ( g P v q 2  - qPqv)  ngluon(q2)  (1 7.45) 

with singular part 

(17.46) 

Using the MS renormalization scheme and remembering that the general connec- 
tion between the renormalization constant constant 2 3  and the singular part of 
:I(q2) is similar to that for the photon, Eq. (11.73), we obtain 

Z3(gluon) - 1 = (17.47) 

This must be supplemented by the last diagram (D), the qij contribution to 

tr ( X a X b )  = 26,b (17.48) 

and the results for the photon vacuum polarization, Eq. (16.87), we have imme- 

the gluon vacuum polarization. Using 

diately 

ZB(quark) - 1 = (17.49) 

where N f  is the number of quarkflavors (u, d ,  s,  . . .), as reviewed in Appendix D. 
Combining (17.49) and (17.47) gives 

(17.50) 
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Finally, to complete the calculation, we must evaluate the gcc vertex correc- 
tions. These come from the two diagrams shown in Fig. 17.8. The first of these 
diagrams is 

g R A E b c ( A )  = - g i f a e f f c f d f b d e  

where A. = - ( p  - k ) 2 .  We need to calculate only the divergent part, which 
comes from the terms proportional to two powers of k in the numerator. The shift 
in k which we will eventually make will not change these terms, and using 

(which is proved in Appendix D), we obtain immediately 

. ,  

Using (17.52), the second diagram (B) gives 
(17.53) 

where we have again kept only the divergent part (terms proportional to two 
powers of k in the numerator). Adding diagrams A and B together gives 

(17.55) 

Now, combining the denominators and shifting k ,  as we did in the evaluation of 
Eqs. ( 16.44)-( 16.48), give 

gRA:bc  = i g R f a b c  (P + $ 4 ) ”  A 1 (17.56) 

where 
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In evaluating this, k p k v  was replaced by k 2 g p " / d ,  and Y z  was defined in 
Eq. ( 1  6.48). Recalling the analogous connection Eq. (1.128), the MS counterterm 
implied by (17.57) is 

Now, combining the final results (17.37), (17.50), and (17.58) gives 

(1  7.58) 

( 17.59) 

Noting that g R  - g in lowest order and comparing with (17.30), we see that 

is positive provided 

Po = A = 1 [ l l -  4 2 

33 
p N f  I 

(17.60) 

(17.61) 

which is easily satisfied by the Standard Model, which has only N f  = 6 flavors of 
quarks. Note that it is the factor of 11, coming from the non-Abelian color gauge 
group, which results in a positive PO and hence an asymptotically free theory. 
It has been shown that the only theories which exhibit asymptotic freedom are 
non-Abelian gauge theories. 

Substituting (17.60) into (17.28) gives our final result for the running coupling 
constant of QCD: 

(1 7.62) 

In deriving this, we assumed that the quark mass is small compared to the mo- 
mentum scale Q, and hence the value of N f  which should be used in (17.62) is 
the number of quarks with masses less that Q. The coupling also depends on the 
(unknown) scale parameter A, which can be determined experimentally, as shown 
in Fig. 17.4. 

17.5 QCD CORRECTIONS TO THE RATIO R 

We conclude this chapter with a calculation of the correction to the ratio of 
hadronic production in e+e- annihilation to p+p- production, the ratio R in- 
troduced and discussed in Sec. 10.4. This will serve as a simple application of 
some of the ideas we have developed in the last two chapters. 
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)>+< I 

I 

I 

Fig. 17.9 The square of the e+e- annihilation amplitude to second order in the strong cou- 
pling constant g consists of 5 contributions. The leading term, of order go, is the square of the 

e+ + e- -+ q + i j  amplitude and is shown in (A). The corrections of order gz come from the square 
of each e+ + e- + Q + i j  + g amplitude, diagrams (B) and (C), and the interference of the two 

mplitudes, diagrams (D) and (E). The vertical dashed line indicates that the intermediate particles are 
on their mass-shell in these diagrams. 

As we discussed in Chapter 10, the total hadronic e+e- cross section depends 
on the square of the matrix elements given in Figs. 10.7 and 10.8. The square of 
these matrix elements are shown in Fig. 17.9. In these figures the vertical dotted 
line which cuts the diagram means that all particles cut by this line are on their 
mass-shell, and from the general unitarity principle discussed in Sec. 11.7, we 
know that these contributions are just the imaginary parts of the corresponding 
diagrams with vacuum polarization insertions. In fact, because the external e+e- 

R =  1 + 

Fig. 17.10 
order self-energy to the imaginary part of the second order self-energy. 

The correction to the ratio R is equal to the ratio of the imaginary part of the fourth 
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I 

I I 

Fig. 17.11 
both Fig. 17.9D and E. Hence Fig. 17.10 is consistent with Fig. 17.9. 

The diagram with overlapping divergences has two cuts, giving the contributions of 

couplings are the same in all graphs, the ratio R is just the ratio of the imaginary 
parts of the vacuum polarization diagrams themselves, as illustrated in Fig. 17.10. 
Here there are only three fourth order graphs, while there are four contributions 
shown in Fig. 17.9, but the imaginary part of the overlapping diagram has hvo 
curs, as illustrated in Fig. 17.11, so the counting is correct. 

In Chapter 16 we calculated the leading fourth order contributions to the 
vacuum polarization. From Eq. (16.114), the finite part which dominates at high 
q2 is 

n(q2) = - (5 +$)log (-$) (17.63) 

This was a purely electromagnetic result but can be modified to apply to the 
problem under consideration if we multiply each fourth order graph by the correct 
color factors, which are simply 

tr ( 5 ~ ~  ;A,) = 4 . (17.64) 

The lowest order graph has a color factor of tr 1 = 3. Hence the result (17.63) is 
modified for QCD to 

(17.65) 

where as = gp/47r is the strong fine structure constant, which can be expected to 
run as shown in Eq. (17.62). The imaginary part of the log for large positive q2 
is simply 

Im log (-$) = T ,  (17.66) 

and hence for each flavor of quark the hadronic production cross section is pro- 
portional to 

Im n R ( q 2 )  = -a [ 1 + :] . (17.67) 
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Multiplying this by the square of the charge of each quark flavor, Q:, summing 
over all flavors produced, and dividing by the same factor for p+p-,  which is 
simply -a, give 

R = C Q ; [ l + ? ]  . ( 17.68) 
i 

We have obtained the QCD correction factor reported in Chapter 10. 
This calculation was very simple because the difficult work of obtaining 

Eq. (16.114) had already been carried out. The calculation illustrates how QED 
calculations may, in some cases, be extended to QCD. 

PROBLEM 

17.1 In Eq. (17.41) we transformed the integral 

ddk k 2  + i q 2  J$(+)=-J- ( 2 ~ ) ~  A+A-  ' 

Evaluate the right-hand side of this equation by combining denominators 
and shifting k, and thereby show that it is identically zero. Use the same 
method to prove that 

/&(+2) 2 = O  

[ In dimensional regularization, it is often assumed that 

for any (Y > 0. Can you find an argument to justify this? (See Muta (1987), 
Sec. 2.5.5.) ] 



APPENOIX A 

RE L AT IVI STI C N OTATl 0 N 

In this Appendix we summarize the notation for relativistic four-vectors and Dirac 
matrices and spinors. 

A . l  VECTORS AND TENSORS 

In the natural system of units, the speed of light, c, is equal to unity, so that the 
space-time four-vector is denoted 

where the Greek index ,u varies from 0 to 3 and the Roman indices on three-vectors 
~ a r y  from 1 to 3. Other frequently encountered four-vectors are 

energy-moment um: P p  = (J%P) 
a a. = (- at 9 -0) four-gradient : 

four-current : j p  = h j )  
four-vector potential: A" = (Ao,A)  = ( 4 , A )  

The invariant length of the four-vector is written 

where a sum over repeated indices is always assumed and grv = gp" is the metric 
tensor 
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The symbol p is used to denote either the energy-momentum four-vector or the 
magnitude of the momentum three-vector (they can be distinguished from each 
other by the context in which they are used). The four-divergence of a vector 
field is a 

a p v p = - v o + v . v .  at (A.3) 

In manipulating three-vectors and tensors, we use the Kronecker 6,) function 
and the antisymmetric symbol E , j k ,  which is antisymmetric in any pair of indices 
and normalized to €123 = 1. Useful identities are 

(A.4) 
€23 k c j  ka’ = 

f , ] k  61IJ’k = 6 2 ~ 1 6 3 3 )  - 623‘63‘‘ . 

When manipulating four-vectors and tensors we will sometimes need the four- 
dimensional antisymmetric symbol EpuX6, which, when all indices are down, is 
antisymmetric under the interchange of any pair of indices and normalized to 
60123 = 1. Useful identities are 

A.2 DIRAC MATRICES 

The Dirac matrices ~p satisfy the following anticommutation relations: 

{ yp, yU} = ypy” + y-yp  = 2gp’ . (A.6) 

The 4 x 4  representation of these matrices used in this book is 

where each element in the above expressions is a 2x2 matrix and the u are the 
Pauli matrices 
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Other matrices which are related to or constructed from the y-matrices, are B = yo, 

C = -ia2, and time inversion matrix T = Cy5. Their explicit 2x2 block form 
is 

a = 7’7, y5 = iy 0 1 2 3  y y y , up” = i[-yp,y”], the charge congugation matrix 

a= , . ,= (a  O a  o )  

0 ui 
uoi = ia, = i ( ~i o )  

7 5 = ( ;  ;) 
C = ( -iu2 -iy) (A.lO) 

2 where i j k  are in cyclic order. Note that C = -Ct = -C1, (r5) = 1, and that 

Using the notation 

fi=pp-Y, 1 

the following identities hold for the y-matrices: 

( A . l l )  

(A.12) 

In d dimensions, these identities generalize to 

yaya = d 
ra 4 7 a  = (2 - 4 # 

y a  ya = 4 a .  b - (4 - d )  #)i (A.13) 

-f #PI ra = -2 b## +(4 - 4 PPb 
= - ( 6 - d ) b # # + 2 ( 4 - d ) [ #  b . c - P  c . a + )  a - b ]  . 

Extending the definition of y5 to d # 4 dimensions poses special problems related 
to the existence of the chiral anomaly. This is not discussed in this book; for a 
recent modem treatment, see [KN 921. 
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Trace Theorems 

The trace of an odd number of ymatrices is zero. Other traces are 

tr {CP} = 4 a .  b 
tr { p f l { # }  = 4  ( a . b c . d - a . c b . d + a . d b . c )  

(A.14) 
tr {r5 Cli} = 0 

tr {r5 a${#} = 4ic,,xpa~b"cXdP . 

A.3 DIRAC SPINORS 

The four-component Dirac particle u and antiparticle v spinors are defined by the 
relations 

(A. 15) 

v(p ,s )  = JJqTGi 

where Ep = ,/- = Jm is the relativistic energy of the particle and 
the two-component spinors x are 

(A. 16) 

The antiparticle two-component spinor is sometimes denoted by q('), where 
v ( - ~ )  = -iu2x('). Hence 

. .  
(A.17) 

Note the sign (phase) of ~ ( + i ) .  This phase convention is introduced so that the 
spinors are charge conjugates of one another (see below). 

The adjoint Dirac spinors are 

21 @, s) = U t  @,s) yo 

a @ , s )  = v t @ , s )  y o  . 
(A.18) 
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With this definition, the spinors satisfy the following normalization and orthogo- 
nality relations: 

.ii @ , s ) u  (p,s’) = 2m6,,1 v (p , s )u (p , s ’ )  = o  
i~ (p, s) v (p, s’) = -2m bssl 

(A.19) 
7 i ( p , S ) V ( p l S ’ )  = o  . 

The completeness relations are expressed in terms of the positive and negative 
energy projection operators 

~ u ( p , ~ ) . i i ( p , s )  =$+m=2mh+(p) 
3 

o (p, s) 8 (p, s )  =$ -m = -2mA- ( p )  . 
3 

The u and v spinors are related by charge conjugation: 

C V T ( p l S )  = u ( p , s )  Cii‘(p,S) = v ( p , s )  

(A.20) 

(A.21) 



APPENDIX B 

FEYNMAN RULES 

In this Appendix we collect together all of the rules for the calculation of relativis- 
tic cross sections and decay rates. The rules fall into two parts. There are rules for 
the calculation of the cross section and decay rates from the relativistic scattering 
matrix, M ,  and then there are rules for calculating JV in a given theory. The 
former are quite general, but the latter, referred to as the Feynman rules, depend 
on the specific theory. 

B.l  DECAY RATES AND CROSS SECTIONS 

The rules for calculation of relativistic decay rates and cross sections were derived 
in Secs. 9.2 and 9.3. 

The differential n-body decay rate, dW,, for a particle with energy E is 
r btained from the following factors: 

0 a factor of ( 2 ~ ) ~ 6 ~ ( p f  -p i ) ,  where p f  is the total four-momentum 
of the n decay products and pi is the four-momentum of the de- 
caying particle, 

0 a factor of 
d3ki 

(2n)32Ek, 

for each particle in the final state, where k, and Eki are the mo- 
mentum and energy of the ith particle, 

0 a factor of 1/2E for the initial particle which is decaying, and 

0 the absolute square of the M-matrix. 

I 

The differential decay rate is then 

IM l2 
1 d3ki dW,, = ( 2 ~ ) ~ 6 * ( p f  - p i )  - n 

2E 1=l . ( 2 ~ ) ~ 2 E k ~  

598 
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The total decay rate is obtained by integrating Eq. (B.l) over all outgoing momenta 
and summing over all outgoing spins: 

spins 

The differential cross section for the production of n particles (elastic scat- 
tering occurs when n = 2 and the final particles are identical to the initial ones) 
is obtained from the following factors: 

0 a factor of ( 2 ~ ) ~ 6 ~ ( p f  - p i ) ,  where p f  is the total four-momentum 
of the n particles in the final state and pi is the total four- 
momentum of the two initial particles, 

0 a factor of 

for each particle in the jnal  state, where k, and Eki are the mo- 
mentum and energy of the ith particle, 

1 
0 a factor of 

- 
4EE' ' 

where E and E' are the energies of the two particles in the initial 
state, 

0 a factor of l /v ,  where v is the flux, or relative velocity of the two 
(colinear) colliding particles, equal to 

P P' u = - + -  
E E' ' 

where p and p' are the magnitudes of their momenta, and 

0 the absolute square of the M-matrix. 

The differential cross section is therefore 

The unpolarized cross section for scattering into some final state in the phase vol- 
ume AR is therefore obtained by integrating Eq. (B.3) over all outgoing momenta 
in AR, summing over all final spins, and averaging over initial spins: 
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where s and s’ are the spins of the initial particles. 
Finally, in calculating both decay rates and differential cross sections, for 

each set of rn identical particles in the final state, the integrals over momenta must 
either be divided by m! or limited to the restricted cone O1 < O2 < . . . < 8,. 

6.2 GENERAL RULES 

The Feynman rules for calculation of the M-matrix depend of the theory used to 
do the calculation. The basic rules are given first, and then the forms required for 
specific theories. Any diagram will either be a tree diagram (with no loops) or 
will have one or more closed loops. 

0 The diagrams consist of lines and vertices. 

0 Each internal line represents the propagation of a particular particle from 
one space-time point to another, and the vertices are the points in space- 
time where particles are created or destroyed, as described by the interaction 
Lagrangian of the theory. 

0 Label the momenta of each external particle, and use energy-momentum 
conservation to determine the four-momentum of each internal line. Tree 
diagrams have no closed loops, and each internal momentum can be fixed in 
terms of the external momenta. Loop diagrams have momenta which cannot 
be uniquely specified, and these must be integrated over. There will be one 
undetermined four-momentum for each loop. 

The Feynman rules tell how to associate a number with each Feynman diagram. 
There are several basic rules from which the number is constructed: 

Rule 0: a factor of i. 
Rule 1: an operator for each vertex, the precise form of which depends 
on the theory and the particular particles involved. 
Rule 2: a propagator for each internal line with four-momentum k ,  the 
precise form of which depends on the particle propagating. For spin 
zero bosons with isospin indices i, j ,  for fermions with Dirac indices 
a, 0, and for photons or massive vector bosons with polarization indices 
p ,  v, the forms are: 

i [gpu - k,ku/m2] 
iApu(k)  = m2 - k2 - ic 

spin zero 

spin $ 

photon or gluon 

vector boson. 
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Fig. B.l  Symmetry factors for bubbles with identical neutral bosons. 

In all cases, k is constrained by momentum conservation, and for the 
photon or gluon, a is the gauge parameter (which could be unity). 

Rule 3: for femions, assemble the incoming fermion spinors, vertex 
operators, propagators, and outgoing fermion spinors in order along each 
fermion line to make a well-formed matrix element. In particular: 

0 multiply from the left by fib-, s-) for each outgoing fermion 
with momentum p -  and spin s-.  

0 multiply from the right by u(k-, s-) for each incoming fermion 
with momentum k- and spin s-. 

0 multiply from the right by v (p+ , s+)  for each outgoing an- 
tifernion with momentum p +  and spin s+. 
0 multiply from the left by V(k+, s+) for each incoming antifermion 
with momentum k+ and spin s+. 

for photons and vector bosons, construct well-formed vector products 
by saturating any free vector polarization indices p on current operators 
-+’ by: 

0 multiplying by 6; for each outgoing particle with polarization 
index p. 

0 multiplying by ell for each incoming particle with polarization 
index p. 

Rule 4: 0 symmetrize between identical bosons in the initial or final 
state. 

0 antisymmetrize between identical fermions in the initial or final state. 

Rule 5: integrate over each internal four-momentum k not fixed by 
energy-momentum conservation with a weight 

/& .  
Rule 6: for each closed fermion loop, a minus sign. 

Rule 7: multilpy by the proper symmetry factor, which is f for bubbles 
with two identical neutral bosons of the type shown in Fig. B.1A and 
1/3! for bubbles with three identical neutral bosons of the type shown 
in Fig. B.lB. 
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Rule 8: renormalize with a factor of for each external fermion 
and fi for each external photon. (These factors are unity in all lowest 
order processes.) 
Rule 9: for each particle with a mass which could be shifted by self- 
interactions, a mass counterterm i6m is added to remove the mass shift. 
(This is zero to lowest order.) 

6.3 SPECIAL RULES 

The operators specified in Rule 1 which are associated with each vertex depend 
on the theory, and their form is derived from the interaction Hamiltonian. For the 
following theories, the operator at the right is to be substituted for every vertex 
of the form shown at the left: 

x 
Symmetric 43 theory: 3-lint(z) = - : 43(z): --.' 

3! 

- ix  
I 
I 

1 1 1  - 
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Spinor QED (positive charge): 

-ie yP t” 
Scalar QED (positive charge): 

QED for a vector boson (positive charge): 

(B.lO) 
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QCD: 

-ig -yp i~~ 

d 

9 
gw = 2Jzc0s0w 

Standard Model (lepton sector): 

9w -i- 7 p  (1 - 9) 
\/z 

-29, cosow rp (1 - r5) 

. v  l z v  

(B. l l )  

(B.12) 
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Standard Model (boson self-couplings and Higgs couplings in unitary gauge): 

- ig2  cos2 Ow [2gpugpo 

- spoQwP 

-ieg cos ew [2gpvgoo 
-Q/busvP 

d P 



APPENDIX C 

EVALUATION OF LOOP DIAGRAMS 

In this Appendix we collect together all of the formulae for the evaluation of 
Feynman loop diagrams. 

Using dimensional regularization (explained in Sec. 11.6), the general one- 
loop Feynman integral is of the following form: 

where d is the number of space-time dimensions (not necessarily integer) and 
the numbers cri are integers unless the above integral results from a multi-loop 
calculation in which some of the loops have already been evaluated (see Chapter 
.6). The calculation of this Feynman integral is carried out in two steps. 

0 The different denominators are combined into a single denominator and the 
combined denominator reduced to standard form by translating, or shifting, 
the internal momenta. 

0 The integral is then evaluated using an integral identity. 

The first step makes use of identities of the form 

The integration variables zi are referred to as Feynman parameters. A general- 
ization of these identities which will work for any case was proved in Chapter 16 
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[following Eq. (16.36)]: 

2Ql-12QZ-1.. . , p n - l  
1 2  X n 

[ A l ~ l  + + * + .  + An~n]Q1fQz+”’tQn ’ 

(C.3) 
where r ( a )  is the generalization of (a - l)! to non-integer numbers. It has the 
properties 

r(a + 1) = ar(a) 
(C.4) 

r ( 2 )  = r(i) = 1 
E 

where y = 0.5772 * . . is Euler’s constant and the last relation holds when E is 
infinitesimal. We will also have use for the B-function, defined as follows: 

To complete the reduction to standard form (the first step), note that the combined 
denominator D always has the form 

where k is the internal loop momentum and Q is a vector function of the external 
r-omenta and the Feynman parameters. Thus the square of the denominator can 
cilways be completed by shifting k = k’ - Q, which gives 

This shift must also be carried out in the numerator N, which assumes the general 
form 

where the N ,  are tensors which do not depend on k‘. Since the denominator is 
even in k’ (in fact, it depends on k f 2  only), ail of the odd terms reduce to zero 
and the even ones can be simplified using the following identities: 

and 

ddk kpk‘kAkd - [gp”gA6 + g  PA g u6 +gp6guA]  J ddk k4 J m  D(k2)  d ( d  + 2 )  ( 2 7 ~ ) ~  D ( k 2 )  ’ 
- 

(C.10) 
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where d is the number of space-time dimensions. If the integrals are finite, we 
may set d = 4 immediately. 

After the first step has been carried out, the integral will have the standard 
form 

where n is an 
form 

J& 

(C.11) 

integer. These integrals can be reduced to a sum of integrals of the 

This identity was proved in Sec. 11.6. A convenient combination of Eqs. (C.9) 
and (C.12) is 



APPENDIX 0 

QUARKS, LEPTONS, AND ALL THAT 

In this Appendix we summarize the current model of the fundamental forces and 
particles of nature and compute some color factors needed in Chapter 17. 

D.l FUNDAMENTAL PARTICLES AND FORCES 

There are three kinds of fundamental particles. These are the fermions, which 
have spin f ,  the gauge bosons, which have spin 1 and are the carriers of the 
fundamental forces, and a scalar particle called the Higgs. As of the spring of 
1993 (the time this book was finished), the fundamental forces were believed to 
be three in number: the strong forces mediated by gluons, the electroweak forces 
mediated by the photon and the three intermediate vector bosons (W*, and Z), 
.,nd gravity, which is not discussed at all in this book. (There are expectations 
that the strong and electroweak forces, and possibly gravity, are really a single 
unified force.) 

The fundamental particles are summarized in Table D.1. The only particles 
in this table which have not been observed to date are the Higgs and the top quark 
t. Discovery of these two particles is one of the missions of the Superconducting 
Super Collider (SSC). The Higgs is an essential part of the verification of the 
standard electroweak model, which predicts its existence (see Sec. 15.4). and the 
top quark is expected on the basis of recent measurements which suggest that 
there are only three generations (denoted by G in the table) of particles. 

The fermions can be classified according to which forces they experience. 
The leprons interact only through the electroweak (EW) forces described by the 
Standard Model, while the quarks also experience the strong forces described by 
QCD. The leptons in the Standard Model consist of the three neutral (and maybe 
massless) neurrinos and three charged leptons which include the electron, muon, 
and 7. All of these particles have distinct antiparticles, for a total of 2 x 6 = 12 
particles. Because these particles do not see the strong forces, which are sensitive 
to an intrinsic property referred to as color, they can be said to be colorless. The 
quarks are colored; each comes in three colors corresponding to the three degrees 
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U R  UG U B  
1 

d R  dG d B  

CR CG CB 

S R  , SG SB 

t R  tG t B  

bR bG bB 

2 

3 

Table D.l The fundamental particles of nature. 

0 Fermions: (spin 1/2, charge q) 

9 mass q mass 

213 -5MeV e -1 -0.5MeV 

-113 -7MeV ve 0 < 18eV 

213 N 1500 p -1 N 105MeV 

-113 N 200 vp 0 < 0.25MeV 

213 ? r -1 ~ 1 7 8 0 M e V  

-113 -4500 v, 0 < 35MeV 

I G I  quarks (QCD and EW) I leptons (EW only) I 

0 Gauge Bosons (spin 1) 

g - gluons (eight colors) - QCD 

7, W*, 2’ - photon and intermediate vector bosons - EW 

0 Scalar (spin 0) 

H - Higgs - EW 

of freedom of the SU(3)  gauge group. The quarks also experience the standard 
electroweak interactions, which (except for electromagnetic) are not described in 
this book [see Cheng and Li (1984)l. 

It has been found that the strong color “charge” goes to zero as the momentum 
flowing through the interaction vertex becomes very large (a property known as 
asymptotic freedom; see Chapter 17). This means that perturbation theory can 
be used to study high energy interactions. Conversely, at low momenta (large 
distances) the strong forces become very strong, and colored particles (quarks 
and gluons) are therefore confined to colorless clusters. All observed strongly 
interacting particles, or hadronr, are believed to be composites of quarks and 
gluons. 

There are two major types of hadrons: mesons, which are bosons with inte- 
gral spin and believed to be colorless composites of gluons and quark-antiquark 
pairs, and baryons, which are fennions with half-integral spin and are colorless 
composites of three quarks (one of each color, denoted by QR, qB, or QG for red, 
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green, or blue) in a sea of gluons and q6 pairs. To produce a colorless composite, 
the color wave function must be fully antisymmetric (the only scalar which can 
be formed from three vectors), so that the remaining part of their wave function 
must be symmetric (because quarks are fermions with a fully antisymmetric wave 
function). This explains the existence of states like the charged A++, which is a 
spin composite of three “up” (u) quarks and has a fully symmetric spatial and 
spin wave function. 

The structure and spectrum of composite hadrons, and the forces between 
them (“nuclear” forces), are yet to be understood in terms of the fundamental 
interactions between quarks and gluons. One of the missions of the Continuous 
Electron Beam Accelerator Facility (CEBAF) is to carry out the experimental 
studies which will be needed for such an understanding. 

0.2 COMPUTATION OF COLOR FACTORS 

In this section we will summarize the properties of the S U ( 3 )  color group and 
obtain the color factors needed in Chapter 17. S U ( 3 )  is the group of unitary 
transformations with unit determinant and is discussed in many references [see, 
for example, Carruthers (1966)l. The transformations of this continuous group, 
given in Sec. 13.3, are specified by a set of continuous real parameters E ,  where 

a?d the matrices $A, are the generators of the group. The transformations U will 
Je unitary only if the generators are Hermitian matrices, and the requirement that 
the detJUJ = 1 leads, from an examination of the infinitesimal transformations, to 
the requirement that the A, be traceless. There are precisely eight independent 
Hermitian 3 x 3 traceless matrices (9 - l), and hence the sum in (D.l) will run 
from 1 to 8. The standard choice for the eight independent A, are 

0 -i 0 

0 0 -i 

A7 = 0 0 -i (: Y :) 
1 0  
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Note that these matrices satisfy the relations 

16 
3 -  

cxaxa = - 
a 

(D.2b) 

The space of all traceless 3 x 3 Hermitian matrices, A, is an eight-dimensional 
linear vector space spanned by the eight matrices A,. A scalar product can be 
defined by A B = tr {A B}, in which case Eq. (D.2a) shows that the basis “vec- 
tors’’ X are orthogonal and normalized to 2. Since the commutator -i [a A a y  $ X b ]  

is also Hermitian and traceless, it can be expanded in terms of the complete set 
A,. The expansion is written 

d X b ]  = i f a b c  t x c  . 03.3) 

The fabc  are the structure consfunfs of the group and, from the above definition, are 
antisymmetric in the first two indices fabc  = - f b a c .  They are also antisymmetric 
in the last two indices (and hence are fully antisymmetric in all indices). This can 
be shown from the orthogonality property (D.2) and the commutation relations 
(D.3): 

4 i f a b e  = 22 tr { f a b c X c x e }  

= tr { X e x a X b  - X e X b x a }  

= tr { X b X e X a  - x b & X e }  = 4i f e a b  

= - 4 i f a e b  . 

‘l‘he explicit values of fabc can be found by direct computation: 

1 
f123  = 1 f246 = f f367 = - 3  

f147 = 3 f257 = f f458 = 4 2 

1 
f156 = -5  f345 = 4 f678 = 9 * 

The structure constants fabc can be used to construct another representation 
of SU(3) .  Define the 8 x 8 matrices 

These matrices are clearly Hermitian and traceless, and we will show that they 
satisfy the commutation relations 

Therefore, they have the correct algebraic properties to represent the group. This 
representation is referred to as the regular representation, and because it is eight 
dimensional, it is the correct representation for color transformations of the gluons. 
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To prove (DS), we use the Jacobi identy 

[Ab? Acll + [ A , ,  [ A c ,  Aa] ]  -k [ A C T  [A,, A b ] ]  = 0 I (D.6) 

which holds for any three matrices (write out the terms and see that they cancel 
identically). Applying the identity (D.6) to the A-matrices and using the commu- 
tation relations give 

(D.7) 
[A,, f b c e A e ]  -k [Ab ,  f c a e A e ]  + [A, ,  f a b e A e ]  = 0 

* f b c e f a e d  + f c a e f b e d  + f a b e f c e d  = 0 . 

This identity is easy to recall and use if we note that the indices e and d are fixed 
and that a , b , c  are cyclically permuted in the three terms. Multiplying by (-iI2 
and substituting (D.4) when possible give 

( F b ) c e ( F a ) e d  - ( F a ) c e ( F b ) e d  -k i f a b e ( F e ) c d  = 0 . 

But this is j u t  the (c ,  d )  element of the matrix equation (DS), proving that (D.5) 
is indeed satisfied. 

In Chapter 17, we will need the relations 

f a c d f b c d  = N 6 a b  

f a d e f b e f f c f d  = i N f a b c  I 

(D.8a) 

(D.8b) 

where N = 3. These relations can be proved with the help of the Jacobi identity. 
To prove (D.8a), begin by showing that the 8 x 8 matrix Fzd = t r  { F c F d }  

commutes with all matrices F a .  This is shown by direct evaluation of the com- 
r lutator 

[ F 2 ,  F a ] , d  = Fcgf F e f g F a e d  - F a c e F e f g F d g f  

= - F c g f  ( F g a e F f e d  + F a f e F g e d )  -k ( F c g e F a e f  -k F g a e F c e f ) F d g f  

= tr { - F c F d F a  + FcFaFd - F c F a F d  + F a F c F d }  = 0 , 

where the Jacobi identity was used in going to the second line and in the third 
line the sums were written as traces, making use of the antisymmetry of the f’s. 
Since F 2  commutes with all F a ,  it also commutes with all the S U ( 3 )  matrices, 
and by Schur’s Lemma it must be a multiple of the identity. Hence 

t r  { F a F b )  = N 6 a b  = - f a c d f b d c  

= facd fbcd  . 
This establishes the general structure of Eq. (D.8a); it remains only to find N .  
This is easily done using the explicit numbers for the f a b c .  Taking the trace of 
both sides of (D.8a) gives 
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which gives 
N = 3 .  

To evaluate the second identity (D.8b), we first prove that 

where the Jacobi identity was again used in the second step and in the last step 
we used (D.8a). Armed with this result it is an easy matter to prove (D.8b) by 
multiplying both sides of the commutation relation (D.5) by Fd and taking the 

= tr  (2FaFbFd - (FaFb + FbFa) Fd} 
= tr {2FaFbFd} 

= 2ifaeffbfgfdge . 
Dividing by 2 gives the result (D.8b). 

eraiized to higher dimensional representations. 
Because the Jacobi identity holds for all matrices, these results can be gen- 
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Adjoint: 

in KleinGordon theory, 104 

spinor, 153. 596a 

Analytic continuation, 233, 409 

Angular momentum, 52-53. 56p, 138, 164f, 

21 8-219 

and time inversion, 229-230 

conservation of, 278 

Annihilation and pair production, 296f, 317p 

mihilation operator, 15, 17,20, 189. 193, 195, 

Anomalous dimension, 578 

Anomalous magnetic moment, 161p. 295, 356- 

Anomalous threshold, 405f. 412p 

Anomaly, 448 

Anticommutation relations, 120 

199 
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canonical, 199 

for Fermi systems, 192-193, 199-200 

Antilinear operator, 2231 

Antiparticles, 195. 199. 203, 296 

antineutrino, 274 

antiquarks, 171, 610-611a 

equality of particle and antiparticle mass, 234 

Feynman rules for, 300-302 

Antisymmetrization, 191-193, 270. 302-303 

Antiunitary operator, 224 

Asymptotic freedom, 579, 582f. 610u 

Atomic decay, 69f 

Average over spins, see Spin, sums and averages 

Axial current, 429. 440-441 

Axial vector, 153 

Bag model, see MIT bag model 

Bare Lagrangian, 555, 570 

Baryons, 171, 610-611u 

&function, 574 

Bethe and Longmire, 85 

Bethe, H. A.. 73 

Bethe-Salpeter equation, 393-395, 552 

B-function, 538. 607a 

Bilinear covariants. 152f 

Binding energy, 83 

Blankenbecler-Sugar equation, 400,404-405 

Boost matrices: 

Dirac space, 149- 150 

space-time, 31. 145 

Born approximation, 257 

Bose-Einstein statistics, 194, 197 

Bound states, 58, 81, 116-117p, 178, 3731 

Boundary conditions, 4, 95-96, 99, 123. 189. 

Box diagram, 374f 

Box normalization, 43, 68, 77, 82, 95-96 

BPHZ renormalization. 552-554 

Branching fraction, 65 

Bremsstrahlung. 363f 
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Callan-Symanzik equation, 574 

Cancellation theorem, 384 

Canonical commutation relations (CCR’s), see 

Canonical coordinates, 12, 449f, 464f 

Canonical momenta, 12, 42 

Canonical quantization, see Dirac fields; Elec- 
tromagnetic field; Gauge fields; Quantiza- 

tion; Scalar fields 

Commutation relations, canonical 

Causality, 75 

Charge conjugation: 

Dirac equation, 126-1 27, 173 

Klein-Gordon equation, 105-106 

in field theory, 219f 

invariance, 220, 237p 

Charge conservation, 196. 212. 417 

Charge renormalization, 3581 

Chirality, 157-158 

Chiral perturbation theory, 438, 533 

Chiral symmetry. 4271 

Chiral symmetry breaking, 441 f 

in the linear sigma model, 442-444 

in the non-linear sigma model, 444-446 
Chiral transformation. 427-428, 433-434, 440 

Circular polarization, see Helicity 

Jassical limit of a quantum field. 18 

Clebsch-Gordon coefficients, 166- 167 

CM (center of mass), 82, 254 

c-number, 11, 64 

Coherent states, 20-22, 464 

Color, 306-307, 427. 609-61 la 

Color factors, 584f. 61 I-614a 

Commutation relations: 

anticommuting. see Grassmann numbers 

boson, 13, 190 

canonical (CCRs), 12, 26p, 47-48, 190. 

204p 

Completeness relation, 12-13, 190, 199. 259, 
285, 449. See also KleinGordon equa- 
tion; Dirac equation 

for coherent states, 465 

Compton scattering, 307f 
Confinement of quarks, 171-172, 183p, 6100 

Conjugate variables, 34. 46. 188, 194, 198 

Conservation of current, see Current, conserva- 
tion 

Conserved norm, see Normalization, conserva- 

tion of 
Continuity equation, 16 

Continuous Electron Beam Accelerator Facility 
(CEBAF), 6110 

Continuous group, 214 

Continuous symmetry. 206f 

Continuum limit. 4, 6, 11. 241, 245, 253 

Contractions of field operators, 308, 320f 

Contravariant vector, 29 

Coulomb barrier, 97f, I84p 

Coulomb gauge, see Gauge, Coulomb 

Coulomb interaction, 39, 286 

Coulomb potential, 3 1, 35 

Dirac equation, 129, 160p. 163 

Klein-Gordon equation, 108 

Dirac theory, 129f 

Klein-Gordon theory, 108f 

Coulomb’s law, 31, 35 

Counterterms. 532f. 571-572p 

Coulomb scattering 

mass, 360-362 

with overlapping divergence, 552-554 

Coupling constant, 239 

Covariant derivative, 421-423, 512 

Covariant vector, 29-30 

Creation operator, 15, 17, 21, 189, 193, 195, 

Crossed ladder diagrams, 382f 

Cross section, 65, 67f. 252f, 599-6000 

199 

bremsstrahlung, 371 
Compton scattering, 3 15 

Coulomb, see Coulomb scattering 

electron-pion, 3 16p 
electron-proton, see Electron-proton scatter- 

general formula for elastic scattering, 253 

ing 

in the CM, 254 
in the LAB, 256 

Mott, 131, 293 
normalization factors for. 69, 260 

pair annihilation and production, 304, 316p 
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Rosenbluth, 294 
Thomson, 315, 316p 

unpolarized, 130 

axial. see Axial current 

conservation, 33-34, 37, 41, 95, 122, 212, 

isospin. 420, 429 

transverse. 37 

weak, 273 

Current, 68. 416 

417. 429 

Current-current interaction, 277 

Cuts, see Unitarity cuts 

Darwin term, 138 

Decay of the pion, 273f 

Decay rate, 65f, 240f. 279, 280p. 317p, 598- 

Derivative coupling, 204 

Deuteron, 81 

Dimensional analysis, 25-26p 

Dimensional regularization. see Regularization 

Dipole approximation. 71, 76, 83, 85 

Dirac adjoint, 153 

Dirac equation, 73, 119f 

599a 

absence of classical theory for, 200 

hound state solutions. 171f, 177f, 183-184p 

completeness of states, 132- 133 

Coulomb scattering, 129f 

covariance, 121. 146f 

hole theory, 125, 128-129 

massless particles, 158-159 

negative energy states, 124-125. 131f, 164 

nonrelativistic limit, 134f 

parity transformation, 15 1, 165 
plane wave solutions. see Spinors 

projection operators, 155-157 

spinors, see Spinors 
Dirac (Fermi) fields, 198f 

canonical quantization, 199f 
coherent states for. 483-484 

path integral quantization, 482f 

Dirac form factor, 294, 356 
Dirac matrices: 

notation, 120- 12 I ,  594-595a 

trace theorems, 291-292, 596a 

Dirac sea, see Dirac equation, hole theory 
Disconnected diagrams, 329, 481-482 

Discrete symmetry, 206 

Dispersion relations, 349f. 405f 

Displacement, 4. 7 

Divergence, 78, See also Regularization; Renor- 

malization 

index of, 529 

infrared, 367 

overlapping, 528. 541f, 5521 

b3 theory, 533f 

power counting, 527f, 571p 

QED, 330f, 554f 

superficial degree of, 527 

ultraviolet, 366 

QCD. 569-57 I ,  582f 

Dyson equation for the self-energy, 552 

Effective coupling constant: 

in electroweak interactions. 273. 277 

in b3 interactions, 258. 377 

in QED, 342 

Eigenvalue conditions, 176. 180, 285 

Electric dipole approximation, see Dipole ap- 

Electromagnetic field: 

proximation 

canonical quantization, 46-48 

path integral quantization, 492f 

tensor, 32 

Electron-proton scattering, 286f. 3 17p 

Electron self-energy, 77f, 330f. 561 

Electroweak interactions, 44, 273f. 510f. 609- 
610a 

and unitarity, 5231 

Energy, see Hamiltonian 

Energy conservation, 66, 83 

Energy levels, see Hydrogen atom, energy levels 

Energy shift, see Electron self-energy; Fine 
structure; Lamb shift; Self-energy 

t t j k ,  32, 208, 594a 
C M v X 6 ,  144, 208. 594a 

Equal-time commutation relations, see Commu- 

tation relations, canonical 
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Euler-Lagrange equations, 6-7. 33 
Euler's constant, 536. 607a 

Exclusion principle, 128, 193 

Faddeev-Popov trick, 496f 

Fermi coupling constant, 277 

Fermi-Dirac statistics, 128, 134, 193-194 

Fermi fields, see Dirac fields 

Fermi golden rule. 67 

Fermion loop, see Loop diagrams,with fermions 

Feynman diagrams: 

annihilation and pair production, 297, 305. 

bound state vertex function, 407 

box, 375. 384 

bremsstrahlung. 364 

charge renormalization, 360 

Compton scattering, 312, 330 

correspondence with time-ordered diagrams, 

crossed box, 382, 384 

crossed ladders, 382f 

electron self-energy, 33 1-332, 555 
ep scattering, 290 

exchange diagram, 329 

ghost production, 509 

ghost self-energy, 584 
gluon n-point function, 575 

gluonquark vertex correction, 587 

gluon self-energy: 

ghost loop, 503, 585 

gluon loop, 585 

quark loop, 585 

ladders, 374f 

NN scattering. 281p 
uD -+ W+W-.524 

O3 theory, 248, 262-263. 374-375, 480, 528, 

329 

252 

531-532, 534. 537, 541, 545-546. 548- 
549. 55 I. 553-554 

photon-photon scattering, 372p 

x decay, 275 

TN scattering, 440 
proton form factor, 295 

pseudovertex. 556. 558-559 

QCD corrections to R, 590 
QCD renormalization, 583 

qij scattering, 507 

radiative corrections, 368 

symmetry factors, illustration of, 601a 

two-gluon annihilation, 505 

two-photon annihilation. 330 

vacuum bubble, 337 

vacuum polarization, 339,341,352,555,558 

vertex correction, 354, 359, 562 
Feynman gauge, see Gauge, Feynman 

Feynman integrals, see Loop integrals 

Feynman parameters, 343, 606-607a 
Feynman prescription. 115. 250 

Feynman, R. P.. 247, 448, 454 

Feynman rules, 600-60% 

derivation from path integrals 

fermions. 487-490 

b3 theory, 472-475 

for antiparticles, 300-302, 601a 

for ghosts, 503. 604a 

for identical particles, 261. 270, 301-303, 

for loops. 331, 338, 489, 601a 

for massive spin one particles, 277. 600a 

for non-Abelian gauge theories, 426, 503 

for n decay, 276-277 

for nN interactions, 270, 602a 
for QCD, 426, 503, 604a 

for QED, 603a 

charged scalar, 603a 

charged spin 1/2, 289, 299. 603a 

charged vector, 521. 603a 

602a 

311. 601a 

for renormalization constants, 336, 341. 362, 

for scalar O3 theories, 247-249, 602a 

for spinor particles, 270, 300, 311, 601a 

for the Standard Model. 517-518, 521-522, 
604-6051 

Field-particle duality, 18 

Fields, 4 

electromagnetic. see Electromagnetic field 
gauge, see Gauge fields 
scalar. see Scalar fields 
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spinor, see Dirac fields 

massive vector, 44 

Fine structure, 107, 138 

constant, 58, 79 

splitting, 74, 116p. 181 

First quantization, 96 

Fixed points, 578-580 

Flavors of quarks, 306, 427 

Flux factor, 69, 83. 253. 599a 
Fock states, 15. 25, 59, 64, 190 

Foldy-Wouthuysen transformation, 135f, 161p 

Form factor, 294-296, 356 

Four-current. 32, 39, 5930 

Four-divergence, 3 1, 594a 

Four-gradient, 30, 593a 

Four-vector, 28-29, 593a 

Functional derivative, 460 

Furry’s theorem, 556 

r-function, 344, 607a 

y5 matrix. 148, 153,5951 

7 matrices, 121, 291-292, 594-596a 

Gauge: 

axial, 496-497 

Coulomb, 34, 37. 45. 283. 496-497 

Feynman, 36, 501 

Landau, 36, 501 

Lorentz, 34, 496-497 

Rc, 513. 526 

U, 513 

Gauge boson, 609-6100 

Gauge fields, 420f 

ghost coupling, 502-503 

non-Abelian, 420 

path integral quantization, 492f 

propagator, 50 1 

self-couplings, 425-426, 522 
Gauge fixing, 34-36, 493f 

Gauge group, 419, 424. 510-511, 610a 

structure constants, see Structure constants 
Gauge invariance. 34, 201, 348. 416,493, 505f 

Gauge parameter. 36. 495 

Gauge transformation, 34, 209, 416 

Abelian, 416-419. 493-4% 

electroweak, 510f 

global, 416, 419-420 

local, 416f 

non-Abelian. 419f. 497-499 

Gaussian integrals, 345. 454 

Generating function Z [ J ] .  463, 468, 470, 487, 

500 

for connected diagrams, 482. 491p 

normalization of, 463, 470 

Generations, 158. 274, 306, 609-6100 

Generator. 26p. 143-144, 147-149 

of time translations, 22. 27p. 191, 213 

Ghosts, 501f 

and unitarity, 504f 

Gluons, 171, 304-305, 609-61Oa 

Goldstone boson. 436, 441 

Gordon decomposition, 356, 371p 

Grassmann numbers, 482f. 491p 

Gravity, 609a 

Gross equation, see Spectator equation 

Ground state, 14, 17, 25, 182 

Ground state expectation values. 461-463 

Group velocity, 99 

Gupta-Bleuler formalism, 36 

Gyromagnetic ratio, 139, 357 

Hadron, 171f, 183~ .  273, 304-306, 610-611a 

Hadronization. 305 

Hamiltonian. 4, 9, 11, 22. 26-27p 

Dirac, 138, 195-200 

electromagnetic, 42, 49-50, 57f, 282-284 

Klein-Gordon, 102-104, 119, 194 

Schrodinger, 189 

Hamilton’s equations, 10 

Heisenberg picture, 23-24, 449 

Halicity. 54-55, 217-218, 230, 505 

spinors, 158-159, 278 

conservation of, 279 

Higgs particle, 5 16f. 609-61 00 

Hilbert space, 14 

Hole theory, see Dirac equation, hole theory 

Hulthen model, 84-85, 378 

Hunvitz measure, 494,496 
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Hydrogen (or hydrogen-like) atom, 85p 
Dirac, 177f 

energy levels, 74. 181-182 

fine structure, see Fine structure 

hyperfine structure, 74 

Klein-Gordon, 116p 

Lamb shift, see Lamb shift 

Hypercharge (weak), 5 11 -51 2 

Identical particles, 191f, 2581, 300-303, 405 

convention for normalization of cross sec- 

tion, 260, 6M)a 

Improper transformation. 141 

Indistinguishability. 191. 319 

Infrared cutoff, 367 

Instantaneous Coulomb interaction, 39, 286, 

Interaction representation, 58-59 

Interactions, 201f, 205p, 231 -233. 236-237~. 

297 

238f 

current-current. 277 

derivative, 204 

electromagnetic, 39f. 283f 

electroweak. see Electroweak interactions 

gauge field, see Gauge fields, self-couplings 

local, 202 

meson-fermion, see Sigma model 

NN, see, Nucleon-nucleon interaction 

non-linear, 204 

non-local, 202 

peripheral, 373, 375 

b3, 283f 

b3 structure, 202, 204 

aN, see aN interaction 
scalar QED, 446p 

Standard Model, see Electroweak interac- 

strong, 304-305,609a, See also QCD, Gauge 

unrenormalizable. 277 

tions 

fields 

Intermediate state, 351 

Intrinsic parity. see Parity, intrinsic 
Irreducible diagram, 358-359. 389, 394-395, 

397 

Isospin. 264f, 387-388. See also Flavors of 
quarks 

invariance, 266-268, 420 

weak isospin, 51 1 

Jacobi identity, 613-614a 

Kinetic energy, 4, 9, 83 

Klein-Gordon equation, 92f 
completeness of states, 1 11 - 1 12 

covariance, 93-94 

negative energy states, 96. 105, llOf, 115, 

nonrelativistic limit, 106f 

two-component form, 102f, 117p. 126 

I95 

Klein-Gordon fields, see Scalar fields 

Klein-Nishina formula, 3 15 

K mesons, 235-236, 279p 

LAB (laboratory frame), 254f, 292-294 

Ladder diagrams, 3741 

Lagrangian, 4, 26p 

Dirac. 198 

electromagnetic, 33, 39-40. 418-419 

electroweak: 

spontaneously broken, 520-521 

unbroken, 5 11 

gauge field, 422-424, 500, 502 

Klein-Gordon, 194. 2O4-205p, 238-239 

linear sigma model, 433 

spontaneously broken, 436 

explicitly broken (PCAC), 444 

explicitly broken (PCAC), 445 

non-linear sigma model, 439 

Schriidinger. 188f 
Lamb and Retherford experiments, 73 

Lamb shift, 57, 73f, 139. 181. 342 

Landau gauge, see Gauge, Landau 
Lattice gauge calculations, 448 

Left-handed particle. 158-159, 274, 428, 510f 

Legendre polynomials, 403 

Leptons. 273. 510f, 609-6100 
Lifetime, 76. 86-87p. 243, See also Decay rate 

Linear sigma model, see Sigma model, linear 
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Local conservation law, 210f 

Longitudinal polarization, see Polarization, lon- 

Loop diagrams, 330f. 6000, 606-6080 

gitudinal 

in &3 theory, 4751 

with fermions, 338f. 488-490 

with ghosts. 503-504, 509, 585 

Loop integrals, 342f. 538f. 606-6080 

Lorentz condition, 34. 45. 505, 523 

Lorentz force, 41 

Lorentz gauge, see Gauge, Lorentz 

Lorentz group, 92, 139f 

complex, 142-143, 233 

generators for, 92. 143-144 

inhomogeneous, see Poincar6 group 

structure of, 141-142 

Lorentz invariance, 29, 5930 

Lorentz transformations, 28-31, 141. 208 

boost matrix, see Boost matrices 

rotation matrices, see Rotation matrices 

rotations, see Rotations 

in Dirac space, 147f 

infinitesimal, 143- 144 

LT. see LorentL transformations 

'dagnetic moment, 139 

Manifestly covariant dynamics, 92 
Mass renormalization, 77-79, 332f. 360-361 

Mass shell, 395 

Maxwell equations, 3 1-33 

Mesons, 171. 6100 

Metric tensor, 29, 104, 593a 

Microscopic causality, 48 

Minimal coupling, see Minimal substitution 

Minimal substitution, 93. 121 
Minkowski space, 346 

MIT bag model, 171f. I83p 
M-matrix. see Scattering matrix 
Momentum: 

conservation, 213. 238, 274 

operator. 17-18. 26p, 49. 71, 213, 23% 

Mott cross section. 13 1, 293 

p meson, 274, 609a 

Natural units, 9-10. 25p. 28, 593a 

Negative energy states, 250, See also Dirac 

equation, negative energy states; Klein- 

Gordon equation, negative energy states 

backward propagation in time, see Propaga- 
tion backward in time 

Neutrino, 158-159, 274f. 609-610a 
Neutron, 81 

Noether's theorem, 16, 206f. 416, 420 

Non-Abelian gauge transformation, see Gauge 
transformation, non-Abelian 

Non-linear sigma model, see Sigma model, non- 

Non-orthochronous transformation, 14 1 

Nonrelativistic limit, 106f. 134f. 257, 315 

Non-renormalizable theory. 529 

Normalization: 

linear 

conservation of, 94-95. 104. 122 

covariant, 94 

for identical particle states, 259-260 

negative, 96-98 

non-covariance of, 154-1 55 

of bag wave functions, 173 

of Dirac spinors, 155, 597a 

of relativistic two-body bound states, 391- 

393 

of the generating function, see Generating 
function, normalization of 

of plane waves in a box, 8. 43 

Normal modes, 7-8, 26p 

Normal ordered product, 11. 17. 197. 200, 214, 

Nuclear force, 2686 281p. 6110 

Nucleon-nucleon (NN) interaction, 268f. 28 lp. 

Number operator, 13, 15 

232, 320f. 465 

317p 

Observed mass, 78 
Off-mass-shell, 247, 351 
One boson exchange (OBE) potential, 374 

One pion exchange (OPE) potential, 271 

Orthochronous transformation. 14 1 

Orthogonality, 8, 196 
of Dirac spinors. 125, 5% 
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Oscillators, 3-6, 46 

Overlapping divergence. see Divergence. over- 
lapping 

Plane waves. 42f. 45, 82, 95, 123 

Poincart? group, 55 

Poisson bracket, 34 
Poisson’s equation, 35-36 

Polarization, 130 

circular, see Helicity 

four-vector, 45-46, 157, 275, 505f. 523f 
helicity, see Helicity 

linear, 44 

longitudinal. 45-46, 508-509, 524-526 

sums, see Spin, sums and averages 

transverse, 44 

vacuum. see Vacuum polarization 

vector, 44, 230 

bound state, 373, 378, 392 

of dressed propagators, 333, 336 

Poles: 

Positronium decay, 222f 

Potential: 

Coulomb, see Coulomb potential 

direct and exchange, 271 

from field theory, 257f 

meson exchange, 258 

nucleon-nucleon OPE, 268f 

with Dirac equation, 121, 160p. 163, 177f. 

with Klein-Gordon equation, 93 

Yukawa, see Yukawa potential 

183-I84p 

Potential energy, 4. 9 

Principal of least action, 5 
Principal value integral, 78 

Probability, 65, 69, 76, 96, 159p 

Proca equation, 45 

Projection operators 

energy (Dirac), 155-156. 597a 
spin (Dirac), 156-157 

with path integrals, 471-472 

Propagation backward in time, 114-115, 134. 

Propagator, 245, 249f, 280p, 449f 

246, 250-25 1 

ghost, 502 

gluon. 501 
massive spin one. 276 
path integral for. 452 

Pair production, see Annihilation and pair pro- 
duction 

Parity 
intrinsic, 216-217 

transformation, 141. 151-152, 165, 216f 

non-conservation. 236-237p 

Panial waves, 402 

Path integrals. 448f. 490p 

for fermions. 482f 

for gauge fields, 492f 

Pauli blocking, 128 

Pauli form factor, 294. 356 

Pauli matrices, 103. 121. 594a 

Pauli principle, see Exclusion principle 

PCAC. see Chiral symmetry breaking 

PCT theorem, 231f. 236p 

Periodic boundary conditions, see Boundary 

Perturbation theory: 

conditions 

for bound state energies, 73 

for the strong interactions, 304 

for the time translation operator, 62 

in field theory, 202-203, 326 

Phases, 216, 219, 227, 231, 233, 338 

Phase shift, 402 

Phase space, 243, 279, 280p. 402 

Phase velocity, 99 

b3 structure, see Interactions, 63 structure 

b3 theory, 238f. 349-351.4631, 533f 

Phonons, 14-15 
Photodisintegration. 8 1 f 
Photoelectric effect, 86p 

Photon-photon scattering, 371 -372p 
Photons, 50. 55, 609-61Oa 

requirement that they be massless, 419 

soft photons and radiative corrections, 3631 

K decay constant, 274 

K meson decay, 2731 
nN interaction, 2646 318p, 439-440. 446p 
Pionic atoms, I08 
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photon, 2886 325, 328. 501 

\Gala, 263, 325.470 

spin 1/2, 307f, 325, 487 

Propsr transformations, 141 

Proton, 81 

Pseudoscalar, 153- 154 I60p, 2 I8 

Pseudovector. see Axial vector 

Pseudovertex, 556 

dressed. 340 

dressed, 333 

QCD, 306, 424-427, 496f, 609-610a, See also 

Asymptotic freedom 

and unitarity. 504 

!ime translation operator to second order, 328 

QED. 81, 282f, 326f, 419, 425, 554f 

q-number. I 1  

Quanta, 15, 18, 20 

Quantization: 

canonical, 10 

Dirac field, see Dirac fields 

EM field, see Electromagnetic field 

gauge fieid, see Gauge fields 

Klein-Gordon field. see Scalar fields 

vibrational field (string). 10 

Juantum Chromodynamics, see QCD 

Quantum Electrodynamics, see QED 

Qzantum number k, 166-169. 181-182 

Quasipotential equation, 395 

Quarks, 171, 304-306, 609-611~ 

R (in ef e- annihilation), 305-306. 589-592 

Radiation gauge, see Gauge, Coulomb 

Radiative corrections, 365f 

Rapidity, 145 

Rationalized Gaussian units, 3 1 

Rea! analytic function, 405 

Rcducable diagram, 394. 397 
Reduced mass, 257 

Regularization, 344. 5271 

dimensional, 342f. 606a 

one-loop diagrams, 342f. 533f, 606a 

two-loop diagrams, 538f, 557f, 606a 

Sclativistic atoms, 284 

Relativistic Hamiltonian dynamics, 92 

Relativistic transformations, see Lorentz trans- 

Relativistic wave equations, see Klein-Gordon 

equation; Dirac equation; Proca equation 

Renormalization, 344 

formations 

BPHZ, 552-554 

charge, 358f 

mass, 77-79, 332f. 360-361 

of b3 theory, 5331 

of QCD, 569f 

of QED. 3321, 554f 

proof of, 547f 

scheme. see Renormalization scheme 

vertex, 531-533 
wave function, 3321 

Renormalization constants, 530 

QCD, 569, 582f 

QED. 

6m. 360 

21, 358, 531, 555 

22, 334.555 

23 ,  340, 555 

Renormalization group, 573f 

Renormalization scale, 534, 573 

Renormalization scheme, 530-533 

MS. 536, 584f 

MS. 536 
- 

Right-handed particle, 158- 159, 274, 429, 5 10- 

Rosenbluth cross section, 294 

Rotation matrices: 

513 

Dirac space, 150- I5 1 

space-time, 31, 51, 145 

Rotations. 50-52. 209 

connection with angular momentum, 52-53 

Running coupling constant, 576f 

Salam, A., 510 
Scalar (Klein-Gordon) fields, 194f 

canonical quantization, 195f 

path integral quantization, 463f 

Scalar particle. see Higgs particle; Sigma model 

Scalar potential, 32 
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Scattering, 2431 

annihilation, see Annihilation and pair pro- 

annihilation term (in elastic scatteringj, 263 

Coulomb, see Coulomb scattering 

direct and exchange terms, 262-263 

elastic, 260f 

electron-neutrino, 526p 

electron-proton, see Electron-proton scatter- 

identical particles, 261 
in the forward direction, 377 

UD 4 W+W-.524-526 

duction 

ing 

Scattering matrix (M-matrix): 

definition of, 241, 245 

Feynman rules, see Feynman rules 

unitarity. see Unitarity 

Schriidinger equation froni path integrals, 453 

Schriidinger picture, 23-24 

Schur's Lemma, 25, 34. 61 

Schwinger, J., 357 

Screening factor, 11 0 

Second quantization, 164, 187f 

Self-energy, 42, 58. 64, See also Electron self- 
energy; Vacuum polarization 

in 93 theory, 349-35 1. 533f 

Sigma meson, see Sigma model 

Sigma model: 

linear, 430f 

non-linear. 437f 

Simple harmonic oscillator, 8 

Singlet and triplet states, 222-223, 272 

Singularities of Feynman diagrams, 351-352 

box, 376 

crossed box, 383 

vertex function, 368-369 

Skeleton diagram, 548 

Slavnov-Taylor identities, 57 1 

S-matrix: 

cancellation of vacuum hobbles, 337-338, 

definition of, 63f. 454 
from path integrals, 455-459 

relation to the M- matrix, 241 

418-479 

Smearing of fields, 19, 27.0 

Soft phuons, see Photons 

Space t:imtlations, see Trans1h:ions 

Specidtar cquation. 395t, 411-412p 

Sphericxl Resstr fimctim, 1 i3-177 

SphcicA harmonics, 66f 

Spin 

Dirac: theory. 124-125. 128, 139, 150-151. 

helrcity, see Helicity 

spin one, 50. 53-56 

sum:; and averagss, 72, 83, 130, 290. 315, 

Spin .rnd statistics, connection between, 194. 

urr.:er a parity transformation, 217 

under charge conjugation, 127, 5970 

under time inversion, 229 

i56-159, 160p. 164-165 

C99-600a 

197, 200 

Spin-crbit interaction, 139 

Spinors, 124-126, 596-597a 

Spontaneous symmetry breaking, 335, 371p, 

415. 434f. 447p 

;I& clectroweak thcory, 512-513 

Standard Model, see Electroweak interactions 

State vector, I5 

Statistical factors, 260 

Stresi energy tensor, 212 

Strings, 171 

Strong interactions, see Interactions, strong 

!;hLcture constants, 121, 424, 497, 612a 

J r ( 7 ) ,  55. 265, 419f. 428f, 510f 

SL:!,3), 424-427, 610-614a 

emerators of, 611a 

SCJjn), 419. 424 

Summation convention, 7, 29. 5930 

Summation of infinite classes of Feynman dia- 
grams. 333, 340, 388f, 412p 

Superconducting Super Collider (SSC), 609a 

Superficially renormalizable theory, 530 

Superposition principle, 450 

Super-rcnormalizable theory, 530 

Syrmetries, 206f. 415f, See also Chiral sym- 
metry; Gauge transformations; Lorentz 
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group; Lorentz transformations; Time 
evolution; Translations 

Symmetry factor, 263, 350, 6010 

Tadpole diagrams, 480-482, 585, 592p 

Tensor operator, Slz. 27! 

Thomas precession, 139 

Thomson cross section. 3 15, 3 16p 

Time evolution, 22-25, 57f, 87p, 284-285, See 

exponentiation of vacuum bubble?. 337-338 

also Translations 

Time-ordered diagram, 252 

Time-ordered product, 62-63, 245, 324-326 

Time reversal or inversion, 141. ?23f. i37p, 

in path integral formalism, 459f 

239-240 

and angular momentum, 229-20  

Trace theorems, 291-292, 596a 

Transformations of states and optators. 2 14f 

under antiunitary transformations. 223 

Transition amplitude, see Scatte-ing matrix 

Transition rate, see Decay rate; Cross section 

Translations (in time and space), 207. 2!2f 

Transverse current. see Current, trvlsvcrse 

Transverse field, 39 

r'ransverse polarization, see P~.:wizntion. trans- 

verse 

Tree approximation, 437 

Tree diagrams, 319, 330. 470-475. 600a 

Two-body equations, 388f 

equivalence of, 399f 

Two-component theory, see 7%m-Gordon equa- 
tion, two-component i x m  

U ( l ) ,  416, 494. 5lOf 

Uehling tern). 342 

U gauge, see Gauge, U 
Ultraviolet divergence, 36.- 

Uncertainty relation, 19 

Unitarity. 400f 
and electroweak theory, 3 . 2  

and ghosts, 504f 
Unitarity bound, 403, ,724-j25 

Unitarity cuts, 351-352, ,:di-404. 590-591 

V - A coupling, 274 

Vacuum bubbles, 336-338, 478-479 

Vacuum expectation value, 17 
Vacuum polarization 

2nd order, 338f. 557-560 

4th order, 557f 

Vacuum state, see Ground state 

Vector boson, see W boson; Z boson 

Vector current, see Current 

Vector potential, 31 
Vertex: 

correction. 353f. 561-564 

functicil 5 r  bound states, 398, 407f 

renormalization. see Renormalization, vertex 

Virtual particle, 247 

Ward-Takahashi identity, 362-363. 556-558 

Wavc equation, 7 

Wave function, See also Plane waves 

for confined quarks in a bag, 174-175 

for hydrogen-like atoms, 178-179 

for scattering of KG particles from a high 

for the deuteron, 82-85 

for two-body relativistic bound state, 398 

with path integrals, 449f 

Coulomb barrier, 100 

Wave packet, 99 

Wave velocity, 5 

W boson, 44. 273f. 434. 515f. 609-61Oa 

Weak interaction, see Electroweak interaction 

Weinberg angle, 514 

Weinberg, S., 437, 510 

Weinberg's theorem, 528 

Wick's theorem, 32Of 

Wipner, E. P., 55-56 

Yang-itilis theory, 424 

Yukawa potential, 84, 258 

Z boson, 44,434, 514f. 609-6100 
Zeeman effect, 107, 1 1 6 ~ .  139 

Zero p i n t  energy, 11 

Zittert vegung, 138 




