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To Sara, Heather, and my mother



The trouble with this world is there are too many metaphysicians that don’t
know how to tangibilitate. Father Divine

Preface

For many years it has been customary for all graduate students in physics at
the University of Tennessee to take a one-year course in quantum mechanics.

As it is now taught, the third quarter of this course is devoted to relativistic

_ . No textbook seemed suitable for a one-
quarter course in field theory for students of diverse interest, few of whom
planned to become theoretical physicists. I therefore prepared my own notes
for the course. These changed from year to year, but ultimately settled down
enough so that they could be typed and distributed to the students. It then
occurred to me that others confronted with the problem of introducing
students to field theory in a brief period of time could find these notes useful.
With this in mind the notes were expanded and rewritten in book form.

In rewriting the notes I found it advisable to add an introductory chapter
on the formalism of quantum mechanics. This contains material that I
present in the first quarter of our quantum mechanics course. The well
prepared student may find it sufficient to skim through this chapter to acquaint
himself with the language and notation that is used. It should serve to
introduce the less well prepared student to certain concepts used throughout
the book. It is not intended to be an adequate introduction to quantum
mechanics for the student with no previous acquaintance with the subject.

It seemed to me to be pedagogically sound to introduce difficult concepts
gradually and to apply the theory to physically interesting problems at an
early stage of the development of the theory. Therefore in Chapters 2 and 3
we quantize the transverse part of the electromagnetic field, define an inter-
action Hamiltonian with nonrelativistic charged particles, and apply the theory
to some elementary processes in which photons interact with matter. In
o > 1 includ . Glanher's_l T t states of the

field. Because it is relatively new it does not appear in the standard textbooks
on quantum electrodynamics. I include it because of its simplicity and because

vii



viii Preface

it clarifies the relation between the classical and quantum-mechanical theories
of the field. One of the applications treated in Chapter 2 is the quantum
theory of Cerenkov radiation. This phenomenon is interesting and important,
and it is also quite simple, since it is a first order process and involves only
free particle states. Cerenkov radiation is treated again in Chapter 6. The
notian that a particle moving faster than a some wave can emit the wave has
important applications in such fields as superfluidity and plasma physics;
it therefore seemed desirable to introduce it early in the book.

Having seen how photons emerge from the quantization of the electro-
magnetic field, the student is prepared to consider the idea that every particle
is the quanta of some field. This idea is explored in Chapter 4 where the non-
relativistic Schrodinger equation is quantized. There it is shown that the
familiar elementary quantum mechanics is contained in this quantized field
theory, but there is more to it than that; there is the possibility of the creation
and destruction of particles by the interaction of fields. In Chapter 5 I
discuss the interaction of quantized particle fields with the quantized electro-
magnetic field. Nonrelativistic bremsstrahlung is treated as an example.
Finally, in Chapter 6 I discuss quantum electrodynamics in all of its glory. In
accordance with the modest aims of this book this discussion is necessarily
brief and incomplete. Some tedious calculations have been relegated to an
appendix or omitted entirely. All the discussion of infinities and renormaliz-
ation has been postponed until Chapter 10.

After quantum electrodynamics, the most successful application of quan-
tum field theory has been the theory of beta decay. This theory is briefly
discussed in Chapter 7 as an interesting and important application of the
ideas of the preceding sections.

In recent years guantum field theary has found important applicationsdn
Ahecms_ouhc.snhd.sm_p]asma.s_a.nuqnm_h:hum An introduction to

these applications is given in Chapters 8 and 9.

For all of its many successes quantum field theory contains grave diffi-
culties connected with the divergent integrals that appear in many calculations.
I scrupulously avoid these until Chapter 10, where they are finally discussed.
I try to give the reader some idea of how the infinite quantities are disposed
of in quantum electrodynamics by absorbing them into the mass and charge
of the particle—a process known as renormalization. In calculating the Lamb
shift and the anomalous magnetic moment of the electron I follow the non-
relativistic theory of Bethe rather than the more exact relativistic theory.
This avoids some computational difficulties but serves to introduce the ideas
of renormalization.

To make the book self-contained, an appendix on relativistic wave
equations is added. All references and some notes concerning these are
collected at the end of the book.



Preface ix

The final form of the book contains considerably more material than the
lecture notes with which I started. I tried to include a variety of topics in
order to give the instructor and students some freedom of choice.

A number of problems are scattered throughout the text. These are intended
to supplement the material in the text and to give the student an opportunity
to test his understanding. The difficulty of these problems ranges from fairly
trivial to fairly difficult. Answers and some solutions are given in an appendix.

I am grateful to Dr. Alvin H. Nielsen, Dean of Liberal Arts, and Dr.
William M. Bugg, Head of the Department of Physics, for their very real
encouragement in the form of a reduced teaching load which made the writing
of this book possible. Many of my colleagues have encouraged me by their
interest and suggestions. I am particularly grateful to my quantum mechanics
students of this and previous years who have cheerfully endured my experi-
ments in presenting this subject. I also thank Mrs. Patty Martin, Mrs.
Wylene Quinn, Mrs. Janice Hemsley, and Miss Jane Pearson for typing the
manuscript. Finally, I owe a real debt of gratitude to my wife and daughter
for their patience and understanding during the writing of this book.

EDWARD G. HARRIS

Knoxville, Tennessee
QOctober 1971
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A Pedestrian Approach
to Quantum Field Theory



1

The Formalism of Quantum Mechanics

It is not an easy task to state the “rules’” of quantum mechanics. Many
textbooks do not even try and yet succeed in conveying to the reader a
working knowledge of the subject. In this book the rules of quantum
mechanics and some elementary results are collected in one place for ease
of reference. In the sections that follow we give a brief account of the founda-
tions of quantum mechanics. A more detailed discussion of the subject can
be found in von Neumann® and in the more recent book by Jauch.® We
begin by discussing the mathematical structure known as a Hilbert space
and then give the rules for describing the real world in terms of this mathe-
matical structure.

HILBERT SPACE

A Hilbert space & is an abstract set of elements called vectors |a), |b),
|c), and so on, having the following set of properties:

1. The space $) is a linear vector space over the field of complex numbers
such as 4, and u. It has three properties. (a) For each pair of vectors
there is determined a vector called the sum such that

la) + |b) = |b) + |a) commutative (1-1)
(lay + 16)) + [¢) = |a) + (|b6) + |¢)) associative (1-2)
(b) One vector |0) is called the null vector.
la) + |0) = |a) (1-3)
(¢) For each vector |a) in $ there is a vector |—a) such that
la) + |—a) = |0) (1-4)

1



2 The Formalism of Quantum Mechanics

For any complex numbers 4 and u

Ala) + b)) = 4la) + 2 b) (1-5)
(2 + p)la) = Ala) + pla) (1-6)
A |a) = Au |a)) (1-7)

la) = la) (1-8)

2. There is defined a scalar product in $ denoted by (|a), |b)) or {(a | b).
This 1s a complex number such that

(la), 216Q= A(la), b)) (1-9)
(1a), 16) + |¢)) = (la), 16)) + (@), |c)) , (1-10)
(1a), 16)) = (16), la)* (1-11)
or in the other notation
(a| by = (b|a)* " (1-12)
It follows that
A1) 18) = 2*(11), 1g) = A*(f| & (1-13)
(fo+ 181N = ile) + (o] (1-14)
We define the norm of a vector by
norm of | /) = 1/ = V(f]/) (1-15)
The following inequality, known as Schwarz’s inequality, can be proved:
IO~ g X 1K &) (1-16)

The equality sign holds only when |f) = Z4g).

3. The space $ is “‘separable.”” This means that there exists a sequence
| f») In H with the property that it is dense in § in the following sense: for
any |f) in $ and any & > 0 there exists at least one element |f,) of the
sequence such that

) = 1/l < e (1-17)

4. The space is “‘complete.” This means that any sequence |f,) with the
property '
lim [ £,y — | fl =0 (1-18)

, Mm—oC

(called a Cauchy sequence) defines a unique limit | /) which is in § such that
lim [} f) = /2 =0 (1-19)

If the vector space has a finite number of dimensions, Axioms III and IV
are superfluous, since they follow from Axioms I and II. However, they are
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necessary for the infinite dimensional spaces which are usual in quantum
mechanics.

Now we give some definitions. Two vectors |f) and |g) are said to be
“orthogonal™ if (f|g) =0. A set {|f,)} is said to be an “orthonormal
system’ if

(fn |fm> = aﬂm (1'20)

It is said to be a “complete orthonormal system” of § if for every |f) in §
we have

|f> = z e 2 Ifu) (1'21)
where the «,’s are complex numbers. Then
S| ) = Zoulfu| f) = tm (1-22)
and i
1) =21 {ful ) (1-23)

The complex numbers (f, | f) are called the representatives of |f). If an
infinite number of terms is required in the sum in Eq. 1-21, then $ is “infinite
dimensional.” This is the usual case in quantum mechanics.

OPERATORS IN HILBERT SPACE

A linear operator A4 is defined as a mapping of § onto itself (or a subset
of $) such that

Al |f) + Blg) =ad|f) + B4 g (1-24)
It is said to be bounded if :
4150 < CHOI (1-25)

with C constant for all | f) in $. A bounded linear operator A4 is continuous
in the sense that if | f,,) — |f) then 4 |f,) — 4 |f). We say that 4 = B if

A|f) = B|f)forall |f)in H.

We define
identity operator 1: 11Y=1f) (1-26a)
null operator 0: 0]f)=10) (1-26b)
sum of 4 and B: (A+B)|f)=,i|f)+B[f) (1-26¢)
product of 4 and B: AB|f)= A(B|f)) (1-26d)

for all [f) in . In general AB % BA. We call [4, Bl = AB — BA the
commutator of 4 and B.
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The “adjoint”” A* of a bounded linear operator 4 is defined to be a bounded
linear operator such that

(Ig) A1f) = (A%1g)1f) (1-27a)

for all |f) and |g) in $. This may also be written as
glAf) = {147 |9)* (1-27b)

The adjoint has the properties

()t = a*A+ (1-28a)
(A4 + B)* = A+ + B+ (1-28b)
(AB)* = BTA* (1-28c).
(Atyr = A (1-28d)

An operator A is said to be “Hermitian” if 4 = A*. Note that this implies
that
SIALf) = f1AT 1> =Lf14[)* = real (1-29)

EIGENVECTORS AND EIGENVALUES

If A is an operator and there exists a vector |4") 5 |0) such that
. A|A"Y = A" |4") (1-30)

where 4’ is a complex number, then we say that |4’) is an “eigenvector”
of A corresponding to the “eigenvalue” A4’. Hermitian operators have the
following properties:

1. The eigenvalues of a Hermitian operator are real.

2. If |4") and |4") are two eigenvectors of a Hermitian operator 4, and
A' # A", then (4' | A") = 0.

3. The eigenvectors of a bounded Hermitian operator after normalization
form a denumerably complete orthonormal system. Consequently, its
eigenvalues form a discrete set (discrete spectrum).

It follows that an arbitrary vector |y) may be written as
v) =3 1474 | ) (1-31)
&
with
(A" | A") = 844 (1-32)

The scalar product of two vectors is given by

@ |y = ;<¢'|A’><A* | (1-33)
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A useful trick for remembering this is to write the unit operator as

1= .? |A") (A’ (1-34)
Then
9y = Llp) = 3[4’ | ) (1-35)
and
(@ | y) =(@| LIy = 5@ | 4'y(A" | p) (1-36)

Now, every quadratically summable function (4’ | ) represents a vector
in a Hilbert space. The abstract Hilbert space therefore is mapped onto the
space of quadratically summable functions on the spectrum of 4. We call
this the “A4-representation.”” The action of an operator B on |y) is represented
by

(14, B ly) = (4’| Bly) = 3 (4’| BlA")(A" | p) (1-37)
A
In the A-representation a vector |p) is represented by the set of complex
numbers (4’ | ) which may be arranged into a column vector. The operator
B is represented by the set of complex numbers (4’| B |4") which may be
arranged into a matrix. For brevity we sometimes write

) 4y | 9)]
or = | (4s| )
(A.r I w) i (1-383)
(Aq |9
B o [l B4y (4| Bldy) - --]

or =

N BIA" | (4ol BIAy) (4] B |4
(4'| B|A") <2|.|1) .2|‘|2> (1-38b)

Note that in the 4-representation the operator A is diagonal; that is,
(A'| A A"y = A'd 44~ (1-39)
It is sometimes convenient to write an operator in the form
B=1B1= g; |A"Y(A’| B|A")(A"| (1-40)
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The choice of representation constitutes effectively a choice of coordinate
system in Hilbert space. One transforms from the A-representation to the B-
representation by using the so-called transformation functions (4" | B’). An
easy way to remember how to do this is to use the unit operator in the forms

1=3|ANA'| =2 |BXB... (1-41)
A’ B’

Then
(B'| p) = (B'| 1 |y) = 3 (B'| A')(A' | ) (1-42a)

A
(A" | 9) = (A'| 1 |y = S (4’| B')(B'| v) (1-42b)
<

(B'|C|B"y=(B|1C1|B"y=3 3 (B'| A)(4'| C|4")(4" | B") (1-42c)

A" 4

Note that the product of two operators has the matrix element
(A4'| BC|A") = (A'|B1C|A") = 3 (A'| B|A")(A"| C|A") " (1-43)
4

This is just the rule for multiplying matrices.

Problem 1-1. Show that the trace of an operator is independent of represen-
tation, that is,

TrC=3(|Cl4)=3(B|C|B)=3C (1-44)
4 B ¢’

Problem 1-2. Show that
EE I(A’| C |A"® = Tr CC* (1-45)
Ai AI’!

In quantum mechanics we sometimes must consider representations
corresponding to operators that have continuous rather than discrete
eigenvalues. This causes some difficulties, since there are no proper eigen-
vectors corresponding to the continuous spectrum. However, we can formally
proceed using improper eigenvectors and replacing sums by integrals. Thus

v = [l '] ) s (1-46)
replaces Eq. 1-35. The orthonormality condition, Eq. 1-32, is replaced by
(A" | A"y = 8(4" — A") (1-47)

The Dirac d-function replaces the Kronecker-o.

In the case of continuous spectra we often write (A4’ | y) as p(A") which
we may call the “wave function” in A’-space. The scalar product of two
vectors becomes

(p | ®) = j (p] A') (A" | D) dA" = f PHAYD(AY dA' (148)
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Some operators have mixed spectra. The Hamiltonian for the hydrogen
atom is an example. Its eigenvalues are discrete for bound states and con-
tinuous for unbound states. In such cases we write

) = I |9 + [14)A | ) da (1-49)
We can make our notation more compact if we agree to let either » ,. or
f dA’ denote a sum over the discrete part of the spectrum (if any) and an
integral over the continuous part (if any).

Functions of operators can be defined in terms of the power series for the
function if one exists; that is, if

f@) =3 C,a" (1-508)
then .
f(4) = % c,A" (1-50b)

defines the function f(A4) of the operator A4. In this way we may define e,
sin A, and so on.

Another way of defining f(4) is by means of the eigenvalues. If 4 |[4") =
A'|4") then f(4) |4') = f(4') |4').

Problem 1-3. Show that
(B'| f(4) |B") = ; (B'| A"Yf(A')A" | B" (1-51)

Problem 1-4. Let o, be the 2 X 2 matrix

b 1-52
O'z_(l O) (')

Show by the power series method and also by using Eq. 1-51 that

Soision. [cos B2 isin 5/2] 14558
isin B2 cos f]2

The inverse of an operator can be defined by
A LAY == |4) (1-54)

Then A4 = AA~* = 1. The inverse does not exist if any 4" vanishes.
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UNITARY TRANSFORMATIONS

An operator U is called unitary if U=* = U*. Consider a so-called unitary
transformation in which vectors are transformed as

IA")new =U [A’>old (1'553)
and operators are transformed as
Apew = UAg1qUT (1-55b)

Then
new<B’ l At}new = old(B'I u+tu ‘A’>old e old(B' I A,>old (1'56)

so that scalar products are invariant under a unitary transformation. Also

Anew IA')new = UAold U+U |A'>old = A’ |A’>new (1“57)
so that the eigenvalues 4, are the same as those of 4,,. Furthermore, if
Cora = 4o1aBoa (1-57a)
and .
Dga = Aoa + Boa (1-57b)
then it is easy to show that
Chew = Aneme;:w (1-570)
and
Dyew = Anew + Brew (1-57d)

It is straightforward to generalize this to show that all algebraic relations are
preserved by unitary transformations.

DIRECT PRODUCT SPACE

It is sometimes desirable to expand the Hilbert space by a process known as
the direct product. This is most easily made clear by an example.

A nucleon may be either a proton or a neutron. It is convenient to consider
these as two states of the same particle which may be represented by vectors
in charge (or isotopic spin) space. We let

l (1) ) (O) (1-58)
N s n, = -
i 0 charge 1 charge

These vectors span the two-dimensional charge space. Now, a nucleon can
have its spin up or down. We let

1) ; : 1-59
T - (O)Sl’in, |l> B (l)apin ( ) )
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be the two vectors that span the spin space of the nucleon. The direct product

space is the four-dimensional space spanned by the vectors:

1

pT) = (1) x(l) ] © (1-60a)
0 charge 0 spin 0
0
0

lpl) = (I) x(o) = i (1-60b)
0 charge 1 spin 0
0
0

InT) = (O) X (1) = . (1-60c)
] charge 0 spin 1
0
0

nl) = (0) x(o) ~(° (1-60d)
1 charge 1 spin 0
1

This direct product space is large enough to accommodate both the spin and
the charge attributes of the nucleon. If one desires to accommodate still
other attributes, the space must be expanded.

THE AXIOMS OF QUANTUM MECHANICS

We assume the following correspondence between physical quantities and
the mathematical objects defined in earlier sections:

1. The state of a physical system corresponds to a ray vector in a Hilbert
space 9. This means that |y) and 4 |p) represent the same state. We shall
generally assume the state vectors to be normalized to unity.

2. The dynamical observables of a physical system correspond to “ob-
servable operators’ in . By observable operator we mean a Hermitian
operator whose eigenvectors form a basis in which any vector of § can be
expanded.
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We now state some basic physical axioms.

AXIOM 1.

Axiom IL.

Axiom III.

The result of any measurement of an observable can only be
one of the eigenvalues of the corresponding operator. As a
result of the measurement the system finds itself in the state
represented by the corresponding eigenvector.

If a system is known to be in the state |4"y, then the probability
that a measurement of B yields the value B’ is

W(A', B') = [(A' | B')? (1-61a)

If B has a continuous spectrum, then
(4" | B")|* dB’ (1-61b)
is the probability of B having a value in the range B" to B’ + dB".

The operators 4 and B corresponding to the classical dynamical
variables 4 and B satisfy the following commutation relation:

[4, Bl = AB — BA = ih{A, B},, (1-62)

where {4, B},, is the operator corresponding to the classical
Poisson bracket

{4, B} = 2

i

0q,0p;  0p; 9q;
and g, and p; are the classical coordinates and momenta of the
system. One easily finds from this that

[9::9;) = [pisp] =0 (1-64a)
[, p;) = ih 6,1 (1-64b)

Problem 1-5. The orbital angular momentum is given by
L = x x p. Show that

{3/1 0B 0A aB} (1-63)

[Le, L,) = ihL, (1-65a)
This can be generalized to
L x L = iAL (1-65b)

One consequence of this axiom deserves mention before we
proceed. If we define the expectation value of an observable by

(A) =yl 4 |y) (1-66)
and the uncertainty by

AA = (A — 1{A)2)% (1-67)
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then it can be shown that
(A4®%)(AB)* > —1/4([4, B])? (1-68)

Applying this to Eq. 1-64b gives the Heisenberg uncertainty
relations

ApiAg, > f B (1-69)

So far we have been concerned with vectors and observables at
one instant of time. The dynamics of a system can be described
in several equivalent ways. We discuss first the “Schrédinger-
picture” (or representation) in which the state vector is a function
of time and the observable operators are time independent.

Let the state of the system at the time ¢, be |y, ) and the state of
the system at time ¢ be |y,), then the two states are related by
the unitary transformation

lwy = U(t — 1) |py,) (1-70)
where

Ut — 1,) = grEl=%) (1-71)
and A is the Hamiltonian operator of the system. Letting
! —ty=dt, |9 a) — l¥,,) = d|y) and

U(dt) = 1 — i/hH dt (1-72)
we find
_ 22\ = By (1-73)
i ot

This is the Schrodinger equation. (Nofe: in writing Egs. 1-70
and 1-71 we have assumed that /A is independent of time. This
is sufficiently general for the purposes of this book. Equation
1-73 is valid even when H is time dependent.)

An equivalent way. of describing the dynamics is by the
‘“Heisenberg-picture’ (or representation). To accomplish this
we let U = U(t — t,) and consider the unitary transformation

lvoa = U yds = UV Iy )s = lvg)s (1-74)
and '
Ap(t) = U 45U, (1-75)
The subscripts S and H stand for Schrodinger-picture and
Heisenberg-picture. The operator |y, g = |y, )s is a fixed
vector. The operator

AH(I) = eiMH{ t—!o)ASe —i/RH (t—tp) ( 1-'76)



12 The Formalism of Quantum Mechanics

is time dependent. Differentiating we find that 45(¢) obeys the
equation
h 0
= Ag = AgH — HAy = [Ay, H] (1-77)
i
This is the Heisenberg equation of motion for the operator A.
It may be compared with the classical equation of motion of a
dynamical variable in Poisson bracket form
dA
~ ={4,H 1-78
= (a.m) (1-78)
We see immediately from Eq. 1-77 that an operator that com-
mutes with the Hamiltonian is a constant of the motion.

A USEFUL THEOREM

Consider two operators 4 and B which commute; that is,

AB = BA (1-79)
Let
A4y = A" |4 (1-80)

and consider the vector B |4”). Operating on B |4") with 4 and using Eq. 1-79
we find
AB|A') = BA|A') = A'B|A") (1-81)

We conclude that B |4") is an eigenvector of A corresponding to the eigen-
value A". If A" is nondegenerate, then B |4’) can only differ from |4") by a
constant. Let us call the constant B’, then

B|4A")y = B"|A") (1-82)

and we see that |4") is simultaneously an eigenvector of both 4 and B with
eigenvalues A" and B’, respectively. We can write it as [4', B).

In the case of degeneracy this argument must be modified. Suppose that
there are a number of vectors |4', o) with ¢ = 1,2, ..., n, all of which
satisfy _

A|A',a) = A"|A", &) (1-83)

Then from Eq. 1-81 we can only conclude that B |4") is some linear combina-
tion of the vectors |4’, o). Often it is desirable to choose the vectors [A', «)
so that they are eigenvectors of B. The hydrogen atom problem is an example.
There the Hamiltonian H, the square of the orbital angular momentum L2,
and the z-component of the orbital angular momentum L, all commute with
one another. The hydrogen atom wave functions are usually chosen to be
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eigenfunctions of all three operators although, because of the degeneracy,
they need not be.

We now illustrate the general theory of the preceding sections with some
simple examples.

SPIN { PARTICLE IN A MAGNETIC FIELD

We ignore all of the attributes of the particle except its spin and the
magnetic moment associated with it. The angular momentum of a spin }
particle is given by

j=1
2

Op = . c, = ' o, = (1-85)
1 0 i 0 0 -1

are called the Pauli matrices. The energy of a magnetic moment, @&, in a
magnetic field B is given by —u - B. We take B to be in the z-direction and
@ proportional to J. Then with the proper choice of the proportionality
constant we can write

o (1-84)

where

H = hwo, (1-86)

for the Hamiltonian operator. The constant « has the dimensions of a
frequency. The state vectors of this system are vectors in a two-dimensional
Hilbert space. This makes the system a particularly simple one to discuss.

First we note that the.components of J do not commute with one another.
However, J, and H do commute, so we can find vectors that are simul-
‘taneously eigenvectors of J, and H. They are readily found to be

- {1 0
IT,2) = (0) and [l,2) = (1) (1-87)
For these vectors
J 12 = g 11, 2) (1-88a)
J L2 = — g 11,2 (1-88b)
H|t,z) = ho |1, 2) (1-88¢)
H|l,2) = —hw|l, 2) (1-88d)

Now let us consider the operator
Jy=Jn (1-89a)
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here n is a unit vector

n=e,sinfcos¢ + e, sinfsing + e, cosb (1-89b)
We find
Kl cos@  sin Ge
Jo == | (1-90)
2\sin fe™*® —cos 6

This is the operator for angular momentum about an axis in the direction of
n. The eigenvalue problem

Jo o) = I )

is readily solved. The eigenvalues are found to be 4-//2. The eigenvectors are

IT, m) = ( s ) - (1-91a)
sin 6/2¢™

1], n) = (Sin & 2e_£¢) (1-91b)
—cos 0/2

As 6 — 0 these reduce to [T, z) and |], z) as expected.

Let us suppose that we measure the angular momentum in the direction of
n. Axiom I tells us that we must find one of the eigenvalues of J,, namely
+h[2 or —h/2. Let us suppose that it is +/%/2. Then immediately after the
measurement we know the state of the system is |1, n). Suppose that we now
measure J, while the system is in this state. Axiom II tells us that the proba-
bility of finding +4/2 is

(T, 2| 1, m)|® = cos? 6/2 (1-92a)
and the probability of finding —#/2 is
|, 2| T, m)[? = sin? 6/2 (1-92b)

These probabilities add up to unity as they should and have the expected
behavior in the limits 6 — 0 and 6 — 7. .
Next we discuss the dynamics of the system. We write the state vector as

(1)
v = ( ) (1-93)
_ _ po(1)
Equations 1-73 and 1-86 give

da[% (1 0\ (v
alo) ==l 20 a0

wl(o)e—:‘mf
lp) = (y} (0)e+imt) (1-95)

from which
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where y,(0) and ,(0) are the initial values of y,(¢) and y,(f). Suppose that at
t = 0 we measure the angular momentum of the system and find that it is
+/[2 aligned along z-axis. We then know that the initial state of the system

IS
uﬁ)
z) = 1-96
7, 2) (1/J§ (1-96)

(This is obtained from Eq. 1-91a by letting § = /2 and ¢ = 0). This tells us

that ,(0) = y,(0) = 1/4/2 and

1 e—iwt
Iy = \75(3“@‘) (1-97)

Suppose that we now ask for the probability of finding the angular momentum
to be //2 aligned along the z-axis at time 7. By Axiom II this is

T, @ | )2 = cos? wt (1-98a)
Similar calculations give
L, 2 [ w)I* = sin® wt (1-98b)
T, ¥ | It = cos? (wr + ﬁ) (1-98¢)
KL, ¥ | woI® = sin® (mt + "—;) (1-98d)

Problem 1-6. Supply the missing steps leading to Egs. 1-98a, b, and c.

Classically, a spinning rigid body with a magnetic moment would precess
about the direction of the magnetic field. One detects a similarity to the
classical behavior in Eqgs. 1-98.

THE FREE PARTICLE

We begin by considering a free particle moving in one dimension and then
later generalize to three dimensions. The dynamical variables are the co-
ordinate z, the momentum p, and the Hamiltonian p?/2m. We can write the
eigenvalue equations

z &) = 2’ |2) (1-99)
and

plp’y =p'lp" (1-100)

We assume that the particle can have any position; thus we assume that z’
varies continuously between —co and +co. We make a similar assumption
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about p'. The normalization of the eigenvectors is

(' | 2"y = o(z' — z") (1-101)

PPy =8 —p") (1-102)
The commutation relation

[z, p] = xp — px = ihl (1-103)

is sufficient to determine the matrix elements of p in the z-representation.
Taking matrix elements of Eq. 1-103 gives

(z'| zp — pz |2") = («'| z1p — plx |2")
=fdxm{<xr| x Ixr:r)@ml p |xrf> —=- <xf| p Ixm) (Im] x |xﬂ'>}

= ih o(z" — 2" (1-104)
In deriving Eq. 1-104 we have used

i f dz" |2y (z"| (1-105)
Next we use
@' z|2") =2 6(z' — 2") (1-106)
to obtain
(" — 2")'| pla”) = ih 6(x" — x") (1-107) .

Using the Dirac d-function identity

oo Bty s )
dz
we obtain

' " h
(-’rlplx)—l—

aﬁ- o(z" — 2") (1-108)
Problem 1-7. By a similar calculation show that

(p'lz|p) = — be "a_' (p" — p") (1-109)

By taking a matrix product we can find (z’| p? |2"). Thus

(2’| p* |2") = («'| p1p |2")

=fd3xm<xf| p ‘xm> (xml p Ixu)

(f‘ ai) 5z — ) (1-110)
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[n general
" h a & "
(x'| p" |2") = (—,——) oz — 2") (1-111a)
i 0z’
(p'l =" |2") = (__5.__8 ) o(z' — ") (1-111b)
idp’

Next we consider the momentum eigenvalue problem in a coordinate
representation. We write

pip) =p"1p" 5
" r " " r h r r
@ pIp) =jdx @ play@ | py =2 = (' | p)
idx
= p'(z' | p") (1-112)
from which
I ] ] 1 i/hp'z’
= w., = 1-113
(' | p') = py(2') i (1-113)
The constant of integration is chosen so that
@' | 2) = [drp3 ) = 80 ~ 8 (1-114)

Before discussing the dynamics of a free particle we generalize the result
to three dimensions. Since by Eq. 1-64a the coordinates z, y, z commute
with one another, we can find a vector |z’, ¥, ') which for brevity we denote
by |x’) which is simultaneously an eigenvector of z, ¥, and z with eigenvalues
z',y', 2', respectively. For brevity we write

, x|x') =x" [x) _ (1-115a)
and _
X" |[x) =0(x' —x") =08z — )y —y)d(z—2) (1-115b)

Similarly, p,, p,, and p, commute so we can find a vector [p’) such that

plp)=p1p" (1-116a)
and ‘
(®"|p) =00 —p" (1-116b)
We can repeat the argument that led to Eq. 1-108 for p,, p,, and p, obtaining
' " h a ' | "
(X'| pg IX") = = — o(x" — x") (1-117)
i 0z

and two similar relations for the matrix elements of p, and p,. These can be
condensed into the equation

, h 0
lplx)=+-—
i 0x

8(x' — x") (1-118a)
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A derivation like that which led to Eq. 1-109 yields
’ " ﬁ a r "
@lx[p") = — <5590 —p) (1-118b)
i Op

The generalization of Eq. 1-113 gives the momentum eigenfunctions in
three dimensions

e (X P = (X)) = e (1-119)

(2mh)*

The Hamiltonian operator in the z-representation and the p-representation
is easily found to be

o
& Hx" = — 2= V26’ — x) (1-120)
2m

and
I " 1 ! ' "
(p'| Hp"y =—p?( — p") (1-121)
2m

We can use Egs. 1-70 and 1-71 to find (2, #) = (x' | %,) in terms of
p(x’, t5). Thus

[y = e REITI) g, ) (1-122a)
y)(xr’ I) — (x:l e—i/ﬁH(t—fo)]wtu>

= [ oot e mw x| 9,

_ f B2 G, 1| X", 1) p(X", 1) (1-122b)
where
G, t| &, 1) = {x'] ANl 131 (1-122¢)

is called the propagator. It may be found by operations that by now should
be familiar. We write

GO, 1] X", 10) = f f | p)dp’ - (p'| HECT |p7) @ (pT | x7) (1-123)
and use :

(P’l e—ﬁhH(i—io) Ipn> o e—li!h)(r'zmm)(t—!o) 6(]}’ - prr) (1_12'4)
and Eq. 1-119 to obtain

d3p’ i 2
G(xr { l xn t ) — e:/).:[n (x'=x7)—(p""/2m)(1—1p)] (1_125)
’ 0 (2wh)®
This integration can be carried out with the result

¥ . itk
G(x', 1 l X', 1y) = ( m ) Pl /EMLx'=x7)"/ (t—10)] (1-126)
2mwih(t — 1)
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We conclude this section with the remark that we can include spin as an
attribute of the free particle by taking the direct product of a vector |x), [p),
or |y) with a spin vector that we denote by |o). For a particle of spin §, [o)
could be either of the vectors of Eq. 1-87. Thus we could write

lp, 0) = |v) o) (1-127)

WL(X))

Pa(x)
A particle of spin } would be represented by a two-component wave function.

and

x|y, 0) = p(x) |o) = ( (1-128)

THE ONE-DIMENSIONAL HARMONIC OSCILLATOR

As will be seen in the chapters that follow the harmonic oscillator plays
an important role in field theory. Its Hamiltonian may be written as

Hz, p) = — p* + 2 (1-129)
2m 2
We would like to solve the energy eigenvalue problem
H|E) = E |E) (1-130)

We can do this, in several different ways. First, we can use the results of the
preceding section to write

(| H |2"y = H(x -_’fa—a;) 8z — 2 (1-131a)
i 0z
where
_ h a) s O mw® .
Hig',=-—) = —h — +—2 1-131b
(x i 0’ oxz"* + 2 ¢ /
Equation 1-130 gives
-~ 7 ﬁ a ° ] s
@I H1E) = (2,2 L) ye(ar) = Epte) (1-132)

It is shown in almost all books on quantum mechanics that this differential
equation has acceptable solutions only when E has the values

E, = ho(n + }), pus@. T 2 .o, ® (1-133)
These solutions are
%.
gy (@) 1 g (e (1-134a)
7h) \[2"n!
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where

= |7 (1-134b)
and the H,’s are Hermite polynomials.

The same problem can also be solved in the p-representation.

r " h a r r "
@' H |p"y = H(—-I_—ap, ,p) 5 — ) (1-135a)
where
h 0 1 mw’h® 0°
g(___, ) e it & 1-135b
i dp’ E 2m E 2 op*® ( )
Equation 1-130 gives
BEd ; ,
a(-1 P ) va(') = Eva(p) (1-136)

This equation can be made identical to Eq. 1-132 by an appropriate change
of variables.

The probability of finding the particle in the range z’ to ' + dz’ when its
energy is known to be E,, is

(&' | Ep)? de’ = |ypg, ()] dz’ (1-137)
according to Axiom II. Similarly
Kp' | EDI2 dp’ = lyg,(p))I* dp’ (1-138)

is the probability of finding the momentum in the range p’ to p’ + dp’.
The coordinate space and momentum space wave functions are related by

] _— & ' ’ ’ ' ___ dp’ i/hp’ -z’ r
@ | B = pa@) = [are | )00 | B = [ ey )
(1-139a)
Similarly
' dx’' —i/hp’-x’ '
¥E,(P') = Qi P () (1-139b),

Finally, we can solve Eq. 1-130 algebraically without introducing either
the z- or p-representations. This will turn out to be the most useful form of
the solution for the purposes of this book. We introduce the operators

maw ip
a= |[—«=x e 1-140a
2h £ J2mhw ( )

mw ip
AT = |[—z — —]/—— 1-140b
2h \/2miiw ( )
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Then
i mw p* i 1
a=—zx'4+—— 4+ —(zp—pa)=—H — } 1-141
¢ 2h 2mﬁw+2!i(p p) hw - ( )
so that
H = ho(a*a + §) = ho(N + 3) (1-142)

where N = ata. We also find

(@, a*] = 5 {ilp, =] — ifz pl} = L (1-143)
Denote the eigenvectors of N by |n).
N |n) = n |n) (1-144)
Now, consider the vector [b) defined by
a|n) = |b) (1-145)

Operating on |b) with N we obtain
N |b) = ataa |n) = (aat — a|n) = (n — 1)a |n)
= (n—1)[b) (1-146)

We see that [b) is an eigenvector of N with eigenvalue (n — 1). It can only
differ from |n — 1) by a constant. We write

by =aln) = C,|n — 1) (1-147)

The constant C, can be evaluated by taking the scalar product of |b) with
itself

(@aln),aln)) = (Cyln — 1), Cy |In — 1)) = (n|a*a|n)

=|C,2(n—1|n—1)=n=|C,]? (1-148)
Setting an irrelevant phase factor equal to unity, we find C, = Jn, and so
alny =+/nin —1) (1-149)

A similar calculation shows that
at|ny=~/n+1ln+1) (1-150)

Problem 1-8. Prove Eq. 1-150.

Next we prove that n > 0. Taking the scalar product of Eq. 1-144 with
|n) gives

(n| ata|n) = n(n | n) = (a|n), a|n)) = n(|n), |n)) (1-151)
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so that

la |n))? >0 (1-152)
Il {ny)*

Starting with the vector |n) we can generate the sequence |n — 1), [n — 2),
|n — 3), and so on, by operating with a. It would seem that the eigenvalue
would ultimately become negative which is forbidden. However, if n is an
integer the sequence will terminate with |0). We conclude that the eigenvalues
of N are the positive integers. It follows that the eigenvalues of H are
ho(n + 3).

It is useful to have the matrix elements of z and p. Solving Eqgs. 1-140 for
z and p gives

n =

&= \/—ﬁ— (a* + a) - (1-153a)
2mw
p= i\/ m;w (@ — a) (1-153b)

By using Egs. 1-149 and 1-150 we immediately find

h e
(ny] @ [ny) =\/ o {(Vng + 18, np41 + N2 0py e} (1-154a)

. mbw , ——
(my| pIng) = i -"155’ (UM F 1 8py nars — /M2 Onymps}  (1-154b)

Problem 1-9. Calculate (n,| x2 |n,) and (n,| p* |n,) and use this to show that
(m| H |ny) = hw(ny + 3) anl.ﬂz'

PERTURBATION THEORY

A problem that is often encountered in quantum mechanics is that of
finding approximate solutions of
hd ,
=35 W=l + H)ly) (1-155)
when the solutions of
Hﬂlq)n) — E'n ’(Dn> (1'156)

are known and H' may in some sense be considered as a small perturbation.
If we let

lp) = 3 C (e "E D) (1-157)
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and use Eq. 1-156, then Eq. 1-155 reduces to the set of coupled differential
equations for the coefficients

£ Cult) = — Eiz (D,,| H' |© YA Ea—EaliC (1) (1-158)

dt
By integrating from O to ¢ this may be converted to the jntegral equation

Colt) = C(0) — f;i Ltd"@ml H' |®,)e ™M En—EEC (1) (1-159)

At this point we introduce an approximation. We assume that at the time
t = 0 the system is in the state |®,) so that C,(0) = §,,. We assume that

Jbecause A’ is so small none of the C.’s depart appreciably from their initial
values. Also we assume that /" is independent of time. Then for f # i we find

j ¢
C(t) = — é(Q,I H' i(D:‘)J. dt' ¢t!/MEr—Eat
' 0

(1-160)

. i/l Er—Ei)t __
= — @) d

i/ﬁ(Ef — E)

The probability of finding the system in the state [®,) at time ¢ is |C,(2)[>.
From Eq. 1-160 this is found to be
4 : sin® (w,t/2
ICAOF = % 1@ B (ot T2l (1-161a)
where .

w, = (E, — E)[h (1-161b)

Now, regarded as a function of w. the function sin? (wz/2)/w? becomes

very sharply peaked about w = 0 when ¢ becomes large. Most of the area
under a graph of the function is under the central peak. Also

+o - sin®(wtf2)  wt

dw == 1-162
N e 5 (1-162)
Therefore, we can say that
. 2
ol e O £ 7 (1-163)
W t+0 )

Using this in Eq. 1-161 gives

. i
(Cf(r)l i z_;rl(q))'l H’ I(D;>12 6(Ef i E‘) (1-164)
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This may be interpreted as the transition probability per unit time for a
transition from an initial state |®,) to a final state |®,). This result is known

as “Fermi’s golden rule.” Since Eq. 1-164 contains a Dirac d-function, it is
clear that it is meaningful only if an integration over a continuum of final
enex:gLes or initial energies is ultimately carried out,

igher-order approximations can be -
Of times. The calculations are tedious and will not be carried out here.
However, the results are simple and will be quoted without proof. The
transition probability per unit time for the transition i — f'is given by

(tran-s pwb) =2 M, &(E, - E) el
time Ji-r A

where M,,;, the matrix element for the transition, is given by

(fI H' |D){I| H' |i)
By Ep ity

SIH' DA H I AT H' |i)
& ;g(g — E; + in)(E; — Epy + in)

In this equation we have simplified the notation by using (f| H'|i) for
(®,| H' |®,), and so on. The states |I), |IT), and so on, are intermediate

states through which the transition can occur. The quantity n is a _positive

infinitesimal. It is needed to prescribe how the singularities in the expression
for M, are to be treated.

M, = (f| H' |i) +IZ

+ -0 (1-166)
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Quantum Theory of the Free
Electromagnetic Field

As is well known the electric field E and magnetic field B can be derived from
a scalar potential ¢ and vector potential A by the formulas

e o o (2-1a)

B=VxA (2-1b)

(We use Gaussian units throughout this book.) If there are no sources of the
field it is always possible to choose a gauge (called the Coulomb gauge) in
which

p=0 (2-2a)

and '
V-A=0 (2-2b)

Now, consider Maxwell’s equations for a field without sources.
V-B=0 ’ (2-3a)
V-E=0 (2-3b)
VxE=—la—B- (2-3c)
c ot
vxB=1% (2-3d)
c ot

The first three of these equations are satisfied identically when E and B are
given in terms of the potentials by Eqs 2-1, and ¢ and A satisfy Eqgs. 2-2.
Equation 2-3d gives

VA — = — = (2-4)

25
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In gxglgpmg a quantum theory of the electromagnetic field it is convenient

variables. To this end we make a

Fourier analysis of the field in a large cubical box of volume ) = I3 and
take the Fourier coefficients as the field variables, The most convenient

~choice of boundary conditions is to require A to be periodic on the walls of
the box. Thus we require

A(Ls Y, =, f) - A(O, Y, =, t) (2-53.)
Az, L,z,t) = A(z,0,z,1) (2-5b)
A(z,y,L,1) = Az, y,0,1) (2-5¢)

We write A as the Fourier series

2 % ;
Az, t) = g: 212(2;;:)c ) U, {ay,(e™™ + ap (e %=} (2-6)
o=1, k
k>0

The factor (2175&2/51(0,,)’/'5 is a normalization factor chosen for later conven-

_ence. The vectors u,, and u,, are two unit polarization vectors; in order

that Eq. 2-2b be satisfied they must be chosen perpendicular to k. In order

for Eqs. 2-5 to be satisfied the wave vectors k must have the components
(ng, ny, n;)2m|L where the n, are integers. We have written A as a complex
antlt lus i X ’ t s it _should

_be. Since both &** and e~ are included in each term -

restrict the summation to one-half of K space; hence the restriction to k> 0
Substituting Eq. 2-6 into Eq. 2-4 gives

d2

d 2

where w, = kc. This has the solution

axe + wk ay, = 0 (2-7)

Gy (1) = al(0)e™ ¥ + aB(0)etier (2-8)

SO We can write

A(x, f) s 2 (277[?(.'-) u, tl}(o)etﬂc X—awgt)

ko \ @,
k>0

+ a:‘ld) (O)e——ttl\ x—w)t) + 0(21(0)et(k X+wpt) + a(2) (0)6—:(1& X401 ) (2 9)

We can get rid of the restriction k, > 0 and simplify this formula by defining
a,,(0) = a)(0) for k, >0 (2-10a)

ay.(0) = a5,(0)  for k, <0 (2-10b)
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Equation 2-9 now becomes

2\ . .
A 0 =3 (25 ufan0e + a0 ] @112
ko \ Qo
where
aio(t) = Ay (0)e™™ ™ (2-11b)
so that
d :
— Qg = — iWxAg, (2-11c)
dt

Equations 2-11c for all k and o may be regarded as the equations of motion

of the field. MMW&MMM_HMW

value is the total energy of the field.
Theenergy in the electromagnetic field is

- BE X J' d3x(E? + BY)
87 Jo

: S ' : 3—“‘ + [V x Al"‘} (2-12)
37r
Using Eq. 2-11 we find
2
J.d-'!x_l B_A_
Q 8mc?| ot

2
(2—n-hc )(wkwk,)% j d*z[a,e*™ — af, e

=225 0
@ law, e — at e @13

Now we use
J‘d3xea’(k—k)-x = Qak.k‘ (2_14)
Q
to get rid of the integral over d% and the sum over k. We use
Uyo * Ukg = 60‘.6' (2'15)
to get rid of the sum over ¢’. We are left with
2
f d*x 1 |0A
a 8mc*| ot

= &kE ﬁwk{(akaa:o + alraakcr) — (akaa—kc + ay, —kcr)} (2 16)

When we calculate the contribution of the |V x A|? term to H.,q we find a
result that differs from Eq. 2-11 only in the sign of the (ay,a_y, + ay.a*..)
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term. When the two contributions are added, these terms cancel and the
result is

Hrad = % Z hwk(akcal:r + ak‘:raka) (2'173)
ko
Hepq = 3 hoyat,ax, (2-17b)
ko

In calculating H,,q we have been careful to maintain the order of the
factor in products such as a,.ay, although at this stage we regard them as
classical quantities. Later we shall interpret g,, and ay, as noncommuting
operators and the last step in Eq. 2-17 is questionable. That is the reason
for the question mark. This question will be discussed later.

Comparing Eq. 2-17 with Eq. 1-142 we see that H,,4 resembles the Hamil-
tonian for_g collection of harmonic oscillators. We can treat the radiation
field quantum mechanically by interpreting a,, as an operator and aj,,
which we henceforth denote by aj,, as its adjoint. We assume that the vari-
ables referring to different oscillators commute, so in analogy with Eq. 1-143

W€ assume

[akes O¥0'] = Ok k' Oa,0 (2-18)
Assuming
Hra.d = Zﬁwkaz—aaka (2'19)
k,o
The Heisenberg equations of motion
~E2 g, = (0 H] (2-20)
[ 0t

yield Eqg. 2-11c.

There is a question whether we should have retained the zero-point energy
of the oscillators and written

Hrad = z ﬁwk(a:oakc + J2L) (2"21)
k.o

If we do, the zero-point energy of the radiation field
> hw,[2 (2-22)
ko

is infinite because there are an infinite number of field oscillators. For most
purposes this infinite energy of the vacuum cancels out when any physically
meaningful quantity is calculated, so we shall generally assume that H,,, is
given by Eq. 2-19.

We can write the state vectors for the electromagnetic field as the direct
product of the state vectors for each of the field oscillators. Thus

Mg g ) =) dmg) e Img (2423)
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where
Ay Ayy |Nig) = Ny |Niq) (2-24)
and n,, = 0,1,2,3,---, co. In analogy with Egs. 1-149 and 1-150 we find
aka|"'”ka"'>=\/"_|wl"'”ka—1"') (2-25)
Gl Mg Y=+ 1], + 1) (2-26)

These relations are a consequence of Eq. 2-18.
The state vectors of Eq. 2-23 are eigenvectors of H,q with eigenvalues

k.o
It may be shown that the momentum operator of the field, namely
P= f P EXR (2-28a)
Q 4mc
is given by
P = > hkay,ay, (2-28b)
k.o

Therefore the state vectors of Eq. 2-23 are also eigenvectors of P with
eigenvalues

P’ = hkn,, (2-28¢)
k,o

On the basis of the preceding discussion it is natural to suppose that the
electromagnetic field consist of photons each of which has the energy /Aw,
and momentum #k; n,, is the number of photons with momentum 7k and
polarization given by the vector u,. Since, when the operator a,, operates
on a state vector, it decreases the number of photons by one, it is called an
“annihilation” or “destruction’’ operator. Similarly, 4y, is called a ““creation”’
operator since it increases #n,, by one when it operates on a state vector.

COHERENT STATES OF THE RADIATION FIELD

Let us consider the electric field due to one term in the expression for A
given in Eq. 2-11.
_loA _ _i(m)”
c ot Q
where subscripts that are irrelevant have been dropped. When there are n
photons in this mode of the field the expectation value of E is

(n|E|n) =0 (2-30)

E(x, t) = ufae™* — ate%*] (2-29)
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since
(nla|n) = (nl a*|n) =0 (2-31)

On the other hand, the expectation value of the energy density is
E* - hw |
== = — 2-32
(n| e |n) ) (n+3) (2-32)

Equations 2-30 and 2-32 are what we would expect if there wer& n photons
in the field, but their phases were random so that when we averaged over the
phases the average value of E vanished.

Glauber™ has introduced a state of the field in which E behaves more like
a classical field. It is necessary to introduce some uncertainty into the number
of photons present in order to more precisely define the phase. Let ¢ be a
complex number and define the state |c) by

le) = 2 by In) (2-33a)
where "=
n —%Icl
b, =2 (2-33b)

|b,l* = (2-34)
is the probability of finding n photons in the field. The sum of these probabil-
ities 1s unity since
S bt = emlel 3 1T i _ (2-35)
n=0 n=0 n!
In this state the expectation value of a is

(c]alc) = 2 zb*b Jnim|n —1)

m=0 n=0

= zﬁb;:‘—':lbﬂ\/H
_ -—|c|2 (C*)n—lcn _

Zo/(n — 1)! \/E‘/"

g @© |c|2n
— = (2-36)

n=0 n!

= ce !

where we have used Eq. 2-25. In a similar manner we can show that
{c| at |e) = c* (2-37)
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[t follows that the expectation value of E is
41
(c| E|c) = —i(-z—%‘@) ufce™* — c*e %] (2-38)

This is the form we expect for a classical electromagnetic wave. The amplitude
of the wave is determined by the modulus of ¢ and the phase is determined
by the phase of c. This is the same form as Eq. 2-29 but the operators a and
a* have been replaced by the complex numbers ¢ and c™.

Brief calculations like that of Eq. 2-36 show that

(clatalc) = |c|* = (n) (2-39a)
(claat|c)=|c)2+1=@)+ 1 (2-39b)
(c| ataa*a|c) = [c|* + |c]* = (n®) (2-39¢)
{c] a® |¢) = c® (2-39d)

(c| a* |e) = c*t (2-39e)

Problem 2-1. Prove Egs. 2-39a through 2-39c.
We may define the uncertainty of the number of photons in the state

lc) in analogy with Eq. 1-67 by
An = (c| (n — (n))* |c)*®
= ((c| n? |c) — (n)?)* (2-40)
= ((n*) — (W) = (m)*
The relative uncertainty is
An 1
(m) ()
This becomes very small when the expectation value of the number of photons

in this mode becomes very large.
The point of all this is that if there are a large number of photons in the

same mode of the field, then the relative uncertainty of that number can be
very small, and the expectation value of E behaves like a classical field.

Problem 2-2. Show that

(2-41)

. 2mh
(el E*1¢) — (e E |&)] =%—‘9 (2-42)

This vanishes in the classical limit (4 — 0).
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Interaction of Radiation and Matter

Let us consider a collection of particles of masses m, and charges e; that

which includes the Coulomb forces between the particles. For simplicity of

notation we refer to this system as an atom although it may be a molecule,
a nucleus, or other system. The Hamiltonian of this system may be written
as

1
Hapom = 22_ pa‘2 +V (3'1)

L i

Now, we let this system interact with the electromagnetic field discussed in
Chapter 2. There is a simple prescription for modifying a Hamiltonian to
include the interaction with an electromagnetic field derivable from a vector
potential A. The prescription is to replace p; by p, — e;,,A(x,). If we do this
in Eq. 3-1 and add on the Hamiltonian of the radiation field we get the

Hamiltonian for the combined system:

1 €; 1
H= 25;1- |ps — - AP+ V + - fd"‘x(Ez + B%

= Ha.tom e Hra.d + HI (3'2)

where H,., is given by Eq. 3-1, H 4 is given by Egs. 2-12 and 2-19, and H;
is the Hamiltonian for the interaction of the field and the atom. It is given by

To simplify the notation we drop the subscript i and let H; be the interaction
Hamiltonian for only one of the particles with the field. The summation is

easily reintroduced whenever it is needed.
!

32
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We write
H =H + H" (3-4)

where H' is the part proportional to 4 and H" is the part proportional to
A2 Using Eq. 2.11 we find

2\
H = — i z (thc) Pis uka[akaefk'x -+ arae—ik.x] (3"5&)
mck.o \ Qw,
H" = e’ (Zwkcz) U, * Uy yr
2mC2k_crk‘c’ (wkwl’;)/ﬁ

X {akdakfd*e‘(k-’-k )x + akaa;a’ez(k—k )x
+ i (—k+k’)-x + o+ il—k—k’)-
+ aap et + ag.ag e “} (3-5b)

The H; will be treated as a perturbation. The unperturbed Hamiltonian,
Hy, = H,,,, + H 4 has the eigenvectors

|atom + radiation) = |@)atom | * - kg * * “rad (3-6)

where we have let a stand for the quantum numbers of the atom. The H [

—induces trapsitions between these states whose transition probability per
unit time is_given by Eq. 1-165.

It is clear from inspection of Eq. 3-8 that in first order perturbation
theory H' induces transitions in which the number of photons changes by

In the sections that follow we discuss some examples.

EMISSION OF LIGHT BY AN EXCITED ATOM

Con51der an atom uutxally in state (@)atom decaymg to state [6)atom With the
Wc write the

initial and final states of H, as
ll) == |a>atom | B TR '>ra.d (3'73')
L7 = 1D)atom | =+ * g + 1 = * “)raq (3-7b)

Only H' connects these states in the first order contribution to M, We find

2mhc?
Quw,

where Eq. 2-26a has been used. Note that of the terms in Eq. 3-5a none of
the destruction operators and only one of the creation operators contribute

SIH iy = — "“‘( ) (bl P uo™ ™ |@atom * VMo + 1 (3-8)
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to this matrix element. The energy diﬂ“erenee between final and initial states is
E, — E, ={&)— E, - + i) (3-9)

According to Eq. 1-165 the trapsition probability per unit time given by
first order perturbation theory is

(trans prob
time

)emiss= gﬁz |<f| o |f>|2 é(E! - Ei)

2 o :
- 2—’—"(—"—) (2""’“ )(n.w + 1) (] p - wge= % [a)?
h \mc/ \ Qu,

X 0(E, — E, + hw,) (3-10)
Note the factor n,. + 1. The term in Eq. 3-10 proportional to n,., the

lermtteda is called stimulated emission, The term that remains when n,. = 0
s called spontaneous emission We consider spontaneous emission first.

Stimulated emission may be treated together with absorption.

—To calculate the lifetime of the excited state of an atom against spontaneous
emission of a photon, we set n,_ = 0 and sum Eq. 3-10 over all of the k’s
and ¢’s that the emitted photon can have. That is,

1 4?7262 —ik-x 2,
(‘) S E—I<b|p U, e % [a)|2- 8(E, — E, + Awy) (3-11)

T 2Q k.o W
Now we Jet the volume of the box in which the electromagnetic field is

quantized become infinite. A very useful formula is
3 = L f a*k (3-12)
o e (2a)%

Problem 3-1. Prove Eq. 3-12. Hint: _use k;, = 27n /L where n; 1s an mteger

to show that the number of states wi A A

Ak, is L3/(2m)% Ak, Ak Ak,. In the limit that Q = L®— oo show that

F,q_"l-IZ results
In doing the sum over polarizations we choose u,, and %, as shown in

Fig. 3-1.
Then
> 1(b] p - ue” ™ |a)|® = [(b| pe=™** |a)|® sin® 6 (3-13)
o=],2
r wavelengths of light which ar hat atomic di 10ns it

is a good approximation to write
| e =] —kex + 3K-X)P2....... (3-14)
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Upa P

) k

U1 (out of paper) - Figure 3-1

and keep only the first few terms. Mumﬁ;a.mmm
is called the electric dipole approximation for reasons that will soon become
apparent. The higher terms give electric quadrupole, magnetic dipole, and
soon. Making the electric dipole approximation and using Egs, 3-12 and
_3-13 give

2 _
(-1') = dak — ](bl P |a)|2 sin® @ - 5(Eb — E, 4+ hAw,) (3-15)
T/a=b 2mwm*

Next we WWLMWEMM
along the direction of (5| p |a). Then

d*k = k* dk sin 6 d6 d®

e dw,

=21T

sin 6 d6 (3-16)

C

Carrying out the integrations in Eq. 3-15 gives

2
(), =55 @a (61 o) (-17)

T 3Im3ch

where w,, = (E, — E))[h is the freguencg of the emitted photon,

Equation 3-17 can be expresscd in another form by using the Heisenberg
equations of motion, Eq. 1-77, to write

dx
(b| p la) = (b| = |a)
_ —.%?(b[;'cH—HxM)
= ‘-i-;’l (E, — E,Xb| x |a) = imwy(bl x|a) ' (3-18)

Equation 3-17 can then be written as

1 4e wab 2 ;
2 - 3-19
(1_)M S ielxiaf (3-19)
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his form it is clear that 4 5 g babili i -
tional to the square of the matrix element of the dipole moment ex of the
fatine of

Using the Heisenberg equations of motion to write

I’x,
(bl —5 1@}l = wg' [(b] x |a)[? (3-20)
dr?
Equation 3-19 can be written in the form
haw,, 4e* dx .,
— ) =—Kbl—la 3-21
( : )m 615 1o (3-21)

it . ;
Qﬂmﬂhﬁﬂéﬁm@%@%ﬂ! ;

energy  2¢° 2

&x
dr®

3-22
time 3c® i

Problem 3-2. Show that the selection rules for electric dipole transitions
are Al = +1 and Am = +1, 0, where / and m are the angular momentum
quantum numbers of the electron.

Problem 3-3. The ls, 25, and 2p wave functions of hydrogen are

1
p(ls) = —= ¢ (3-23a)
was
1
(2s) = (2 — rla)e® (3-23b)
4N 27a®
; [ sin fe*¢ m =1
»(2p) = - g e [Tcos§  m=0 (3-23¢)
3
8N ma lsin Ge~ ¢ m= —1

where a = /i?/me? is the Bohr radius. Calculate 7 for the 2p — ls transition.

Problem 3-4. Show that the 2s state of hydrogen cannot decay to the 1s
state through the p - A interaction with the emission of one photon by showing
that

(25| uy, » pe=** |1s) = 0

VProblem 3-5. Because of its magnetic moment, an electron has an inter-
action with the electromagnetic field in addition to the interactions H' ~ p - A
and H" ~ A% The magnetic moment of the electron is @ = (ehi/2mc)o
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where the components of ¢ are given in Eq. 1-85. Find the interaction
Hamiltonian for this spin dependent part of the interaction.

VProblem 3- -6. The magnetic interaction between the spin of the electron

these statcg has a wavelength of 21 cm. It has never been observed in the

laboratory butis well known to radio astronomers. Use the results of Problem

3.5 to calculate the lifetime for this transition.

Problem 3-7. Use the results of Problem 3-5 to calculate the lifetime of
the 2s state of hydrogen assuming it decays to the ground state through the
spin dependent interaction with the emission of one photon. As will be seen

in Problem 3-10, the two photon decay process is much more rapid thapn this.

ABSORPTION OF LIGHT

We take the initial and final states to be
[1) = [6)atom | * * * ke * * “Draa (3-24a)
1f) = |@atom | ** "1 — 1 draa (3-24b)
Usi/ng,Etﬁéﬁ?»’ve find by a calculation similar to that of the last section that

i

(trans prob) 2-:1'( ) (Z—n-hc @
i time o abs ﬁ ka o

S~ _/,./,/ .
—= X [(al p+ u,e™* [B)|* O(E, + Ao, — E,) (3-25)
Since by Eq. 1-27

(al p- ukdeik-x |b) = (b| p - ukde—ik-x |a>=k (3-26)
we see by comparing Eq. 3-25 with Eq, 3-10 that the transition probabilit

'-\-o-ﬂ-""‘.“' 2 P
e e 4 ) ”
R “'M?.,g i flux = @T'ﬁ' E-&'\\w]:‘-;':t (3-27)

Dividing Eq. 3-25 by the incident flux gives the cross section for the absorp-

' fa t Ak _and

makes a transition from [b) to |a); it 1S

2

Op— a(k’ G)

l(alp uy e ""‘|b>l2 O(E, + hion, — E,) (3-28)

m’w,c

T . W6y secn & ﬁ'\f “"W""\"f‘ — R WA R,

M -.}tl vl “J"‘K_J_v-' 'I..\lf. (V\-L'r""/ Mart,  AuEw PY M vl \et'hl\!u)
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This will be meaningful only if the incident radiation has a contmuous
spectrum so that Eq. 3-28 will be integrated over fr c

energy absorbed from an incident beam of radiation. Actually, of course,
spectral lines are not infinitely sharp as is implied by the §-function in o,_,.
The line is broadened by a variety of processes, one of which is discussed in
a later section.

Problem 3-8. Consider the photoelectric emission of an electron from the
ground state of a hydrogen atom. Assume that the incident photon is suf-
ficiently energetic for the wave function of the ejected electron to be ap-
proximated by a plane wave. Assume that the photons momentum is along
the z-axis, and its polarization vector is along the z-axis. Make the dipole
approximation. Calculate the differential cross section for ejection of an
electron into the element of solid angle dQ).

b
BLACK BODY SPECTRUM

Suppose that we have_a _collection of atoms in thermal equilibrium. Let

N, be the number in state |b) and N, be the number in state |@). Transitions
will occur between these states as the atoms emit and absorb photons from
the radiation field. We can write

(trans prob) +N, (trans prob
abs

: - ) (3-29a)
time {ime emiss

{5 A=

d N, = —N, (tran.s prob) + N, (tran's prob) (3-29b)
dt time emiss time /abs

In equilibrium we must have

d d

—~N,=—N,= i

ENn=2 (3-30)
and

N, _ e_fg,,_Ea)x}aT (3-31)

N

a

It follows that

&1{3 _ ehwkﬂtT . (trans prOb/timc)emiss - Nyo . 1

; (3-32)
N, (trans prob/time), s Ny,
Solving for n,, gives
1
Meo = Zomr _ 1 (3-33)
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which is the Planck distribution. From this we may obtain the energy per
unit volume with k in ¢®k as

h d*k
g by (3-34)
N (27)°
If we write u(w) dw as the energy per unit volume with w in dw, then from
Eq. 3-33 we find
3

w 1 .
holkT _ | (3-35)

h
u(w) = 2

¢ e

- SCATTERING OF LIGHT BY A FREE ELECTRON

If we let ¥ = 0 in Eq. 3-1, then the Hamiltonian p%/2m for a free electron
has the eigenvector |q) where

1 s Y
X = X) = — %% 3-36
1 0) = 9y = 7. (3-36)
These are normalized so that

| Pavi@ve = s0e (3-37)
Q

The energy eigenvalues are E, = h%q%[2m.
It is easily shown thati

. Therefore
processes involving H”. We shall consider the scattering of light In this
I 1 . It can be pictured

schematically by the Feynmann diagram of Fig. 3-2.

At the vertex an electron changes its state from |q;) to |q,) and a photon
with momentum #k, and polarization o; is destroyed and another with

k’"\gf q
/ f
k;, o'-/ \

L 3 qi

Figure 3-2
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momentum /K, and polarization o, is created. The initial and final states are
1) =18 " * * Bjo, ** * Piyo, * * “Draa (3-38a)
=19 "t Ao, — 13- oo, + 1, hraa (3-38b)

This transition from [i) to |f) can be produced by the term in Eq. 3-5b
containing @, , dy . - The transition probability per unit time is

(trans prob) _ 2_7?( e )2(27rhc2)2
time /scatt & \2mc®/ \ Q

|ll!-‘l.l |2 i(ki—Kky)-
x 2% ——L (q,] &' 7 |q))?
;W |
2
<t + 0 0 o+ B g, BE) 39)
2m 2m

We have simplified the notation somewhat by replacing the subscripts k;,

by iand kfcr, by f. The factors n, and (n, + 1) come from the matrix elements
of a; and aj when Egs. 2-25 are used. The factor 22 comes from using both
the second and third terms in Eq. 3-5b. The matrix element in Eq. 3-39 is

it BB iy
(g, e RS Ee(q'+k'_w R Qi-+ki, a7 +ks (3-40)

This shows that the transition probability vanishes unless the initial momen-

tum /i(q, + k,) is equal to'the final momentum /(q, + k,). The term in#n,
shows that it is possible to have “‘stimulated’” scattering: that is_the scattering
Js.enhanced if there are phatons present in the final state. For our present
purposes we assume that this is not the case and set n, = 0.

The Kronecker-6 in Eq. 3-39 show that both momentum and epergy are
conserved in the scattering pracess This is enough to derive the frequency

shift of the scattered photon. To do it properly one should replace the
nonrelativistic energies A%g%/2m by the relativistic energies Vgt 4+ m2ct,

Problem 3-9. Use the nonrelativistic conservation laws to show that when
the shift in wavelength is small it is given by

Ay — Ay = AL = (h|mc)(1 — cos 0) (3-41)

where cos 0 = k, - k,/k;k,. Assume that the initial velocity of the electron
1S zero.

The total scattering cross section can be obtained by summing Eq. 3-39
over the final states of both photon and electron and equating the result
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tathe product of the cross section and the incident flux given by Eq. 3-27.
Thus ~

n.c 27:-( e’ )2(27rhc2)2 ~u?
o) =7 4 n, o,
T(Q ) h \2mc® Q k%. qz,, ww, Qi+ks . Qr+ky

2.2 2.2
ﬁzq“ — hw, — ﬁzqf} (3-42)
m m

X (5|:ﬁcu3- +

Using the Kronecker-d to get rid of the sum over q, and using Eq. 3-12 we
obtain

2
op = LB 5 (o, 10 ol
m C or w; U)f
ﬁ2 " 52 5
X 0| he(k; — ky) + om T o lq; + k; — k,|*|  (3-43)

As may be seen from Eq. 3-41 the wavelength shift is a quantum-mechanical
effect. If it is neglected, then the dJ-function in Eq. 3-43 is approximately

Slhc(k; — k)] = i 5k, — k,) (3-44)

and o, becomes
eZ 2 5
oy = (—2) s (dQ, u;- u,| (3-45)
mc ar

where dQ, is the element of solid angle into which the photon is scattered.
We may interpret

2 42
% - ( ¢ 2) lu, - u, 2. (3-46)
" mc

as the differential cross section for scattering a photon polarized in the
direction u; into 42, with polarization u,.

We may get the cross section for scattering of unpolarized light by averaging
Eq. 3-45 over initial polarizations. Using

3 2 Z [u; - u,|* = }(1 + cos®0) (3-47)
we carry out the integration over angles and obtain
8w e\ 8= 2.
op = — =—r, 3-48
d 3 (mc ) 3 S

| This is the Thompson Cross sectlon Wthh may be obtained classically. The

uantity 7. = e2/mc? i
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oblem 3-10. Calculate the lifetime of the 2s state of hydrogen assuming
that it decays by two-photon emission. Note that it is necessary to combirfe
the second order matrix element of H' ~ p- A with the first order matrix
element of H" ~ A% Do not try to do the problem exactly but obtain an
order of magnitude estimate of the lifetime.

CERENKOV RADIATION

As we have stated previously, a free electron moving in a vacuum cannot
emit or absorb a photon and still conserve momentum and energy. However

a particle moving through a dgelgg; ic medium can have a velocity ereater

than the velocity of

1s characterized by its dielectric constant ¢(w), and its index of refraction is

given by n(w) = Je(w). We assume that these are frequency-dependent
quantities. The relation between frequency and wave number is

C c

T @) Jo@)

The calculation of the energy of the electromagnetic field given in Chapter 2
is still valid but this energy is not the total energy associated with the wave.
The particles of the medium move in response to the wave and their energy
must be properly included in the total energy. Landau and Lifschitz!® have
shown that in such a dielectric medium the energy is

k (3-49)

U= f &z -1—{|E|2i we(w) + |BI? (3-50)
8w ow
Since

V x E = — _1_'_8_13

c ot
w2y (3-51)

C
2 212
B = < |k x E[* = —" E* = ¢ |EJ*
w

Eq. 3-50 becomes

u=f = |E|2[a%ws+s]

=fd3:r: T L (3-52)
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12 ) (3-53)

when it moves in a medium of dielectric constant e(w). We want the total
energy rather than just the electromagnetic field energy to have the form of
Eq. 2-19, so that it can be interpreted as the sum of the energies of harmonic
oscillators. In order to accomplish this we must modify the normalization
factor in Eq. 2-6 so that when the energy of each oscillator is corrected by
the factor of Eq. 3-62 it becomes hw,ay,a,,. This is accomplished if we
choose the normalization factor in Eq. 2-6 to be

2 4
{ 2mhc : } (3-54)
Q[(1/2w)(0/dw)("€) ],

Equation 2-11a becomes

_ 217562 - ik-x + L, =ikex i
A% _é{Q[(ljzw)(afaw)(w%)]m] [aee™ + ai,e™]  (3-59)

The interaction Hamiltonian A’ in Eq. 3-5a is unchanged except for the

change in the normalization factor.
Now, we calculate the transition probability per unit time for a free

electron of momentum fiq to emit a photon of momentum 4k thereby changing
its momentum to /i(q — k). We find

(t&%)w_f 2_.:("ni)z[Q[(uch)q(rgic;w)ws]wj

X |(q — k| p - w,e ™|
2.2 2
: X a[ﬁ o b i — ﬁw,,] (3-56)
m

The matrix element in Eq. 3-56 is just equal to Aq - u,. Letting 6 be the
angle between q and k and letting v = /iq/m be the particles velocity we find

(trans prob) _ At h® lq-u,? 5[005 o_ S _ hwn:l
time Jawa—k  m*QAvk[(1[2w)(0/0w)we],,

Note that the photon is emitted at an angle to the path of the electron given
by

cos 6 = —C—|:1 £ ﬁ‘”":} (3-58)

nv " 2mec
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If the energy of the photon 4w is much less than the rest mass of the electron

mc? then this is approximately cos 6 = ¢/nv which gives the classical Cerenkov
angle. This can only be satisfied if the velocity of the particle is greater than
¢/n the velocity of the wave. In a vacuum where n = 1, v can never exceed ¢
and so emission cannot occur.

A quantity of physical interest is the loss of energy per unit length of path
of the electron. It is given by

aw _1 aw _1 % s (tran.s prob) (3-59)
dz v dt Vk.o time a—a—k
Using
2.9
S 1q- u,l* = ¢*(1 — cos® 0) = “ (1 — cos?6) (3-60)

and Eq. 3-12 and introducing spherical coordinates in k-space we find

dzr ef g d"f dicos gy =208 ) dleos 6 — (efnt) — (fium/2mes)]

[(1/20)(3)90) €] e
w)wtdo [} ¢ hwn®\? _
[}(0/0w)e’] [1 n2v2(1 ¥ 2mcz):| (3-61)

It is clear from this derivation that the integration over w is only over
those frequencies for which Eq. 3-58 can be satisfied. Since

the range of integration does not extend to infinity and the integral is con-
vergent.

Problem 3-11. Show that if relativistic expressions for the particle energies
are used rather than nonrelativistic expressions, the Cerenkov angle is given
by

(n? — V1 — v¥c } (3-63)

nv 2mc®

cosG——-—[l 4

rather than Eq. 3-58.

NATURAL LINE WIDTH

When an atom emits light, the emitted wave train is of finite duration.
When this wave train of finite length is Fourier analyzed one finds a spectral
line of finite width. However, when we calculated the emission and absorption
of light earlier in this chapter we found infinitely sharp spectral lines. This
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is indicated by the presence of 6(E, — E, — hw,) in formulas such as Egs.
3-10 and 3-28. The fault may be traced back to the assumptions made in
the perturbation theory of Chapter 1. A simple modification in the perturba-
tion theory will correct this and lead to a finite line width.®

We reconsider the emission of light by an atom. We assume that the atom
is initially in state |a), and, for simplicity we assume that there is only one
other state |b) into which it can decay. We assume no photons in the initial
state and one photon in the final state. The initial and final states are then

|i) = |a) [no photons) (3-64a)
1f)=16)1 L") (3-64b)

In Eq. 1-158 we derived differential equations for the amplitudes of states.
We denote the amplitudes of |i) and | f) C,, an C,,,. In deriving Eq. 1-160
we assumed that the amplitude of the initial state did not depart appreciably
from unity. It is this assumption which must be modified. We write the
differential equations for the amplitudes as

L]

i Coo = — 21‘2 {a, o| H' |b, ko)e!/MEa=Er— 0n)iC, (3-65a)
d%c,,k, = i(b, k, o| H' |a, o)e /M Ea—Erv-har)tc (3-65b)

In Eq. 3-74a we retained on the right-hand side all of the states of the
radiation field into which the initial state could decay. In Eq. 3-65b we
retained only the term proportional to C,, on the assumption that all other
amplitudes remdined negligibly small. Now let us assume that the decay of
the initial state is exponential so

Gy = €T (3-66)
where y is still to be determined. Using this in Eq. 3-65b and integrating
from time zero to time ¢ gives

—i/R[(Eq—Ep— mx}—s’y:&]t = 1

Cyko(t) = (b, ko| H' |a, 0) (E. — E, — hp) — i7)2] (3-67)

After a lapse of a long period of time (more precisely y¢ >> 1), we find that

1
(wk - wab)2 o y2/4

This is the probability of finding a photon of frequency w, in the radiation
field, hence it gives the intensity distribution in the emitted line. The line

[P == -;— Kb, kol H' |a, o)[* (3-68)
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is seen to have a Lorentz shape centered on w,, = (E, — E,)/h with a half-

width of y/2.
We must choose y so that Eq. 3-65a is satisfied. Substituting Eqs. 3-66
and 3-67 into 3-65a gives

1 — gt/ Ea—Eo—hax)—iy/2]t
(Ea = Joy— hwk) = 1y/2
If we neglect y on the right-hand side of Eq. 3-78 we may write

—ihy

== kz (b, ko|¥H' |a, 0)|* [ :l (3-69)

§ ei(mab-—mk]fz 1 — cos (wy, — W)t — sin (wg — Wt
(wgp — @y) (g — @y) (005 — )

Now, for large times sin wt/w is a function of w which is very sharply peaked
about w = 0; the area under the curve is 7, so we may say that

(3-70)

sin wt

—> 7 (W — W) (3-71)
w t=rc0

Using this in Eq. 3-78 gives the real part of y as
Rey = 2?“ S (b, ko| H' |a, 0)[? 8(E, — E, — hasy) (3-72)
k,o

This is just the total transition probability per unit time. We previously
called it 1/7 where 7 is the lifetime of the state |a). Hence

y = (3-73)

N I

which is what we expect.

There is also an imaginary part of p which comes from the real part of
Eq. 3-70. This implies a shift in the frequency of the spectral line due to an
interaction with the radiation field. Indeed, there is such a shift. We discuss
it in the last chapter where a more careful treatment can be given.
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Second Quantization

In the preceding chapters we have seen how the classical radiation field
assumed characteristics describable in particle language when the electro-
magnetic field was quantized. This suggests the possibility that all of the
particles found in nature may be considered as the quanta of some field.
But what field? A natural choice is the wave function w(x, ¢) which describes
the particle. We begin with the nonrelativistic Schrédinger equation
2
LI S @
i ot 2m
for a particle in the presence of a potential ¥(x). This is the equation that we
quantize in this chapter. In a later chapter we discuss the quantization of the
Dirac equatfon.
Let y,(x) be the solution of

2
(=55 + V) va = Eur. (42
2m
and write
TP(X, t) = z bﬂ(t)wn(x) (4'3)
From Eq. 4-1 we find \
e Uy (4-4)
dt h

We would like to find a Hamiltonian that yields Eq. 4-4 as the equation of

motion. A_patural guessis

H = [ @y 0] - Loy V] w0 (4-5)

47
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since this is the expectation value of the energy. Substituting Eq. 4-3 and using
Eq. 4-2 and the orthonormality of the v,’s we obtain

H =3 E,b}b, . (4-6)

This looks like the Hamiltonian for a collection of harmonic oscillators
with frequencies E, /. If we interpret b, as an operator, and by, which we
now call b}, as its adjoint and assume the commutation relations

[b,, bl = [b7, bl =0 " (4Ta)
[bm b::-']- = ann‘ (4'7b)
then the Heisenberg equations of motion
| i d
— =—b,, = [b,, H]_ 4-8
22 by = [by, H] (“-8)

give Eq. 4-4. Just as in Chapter 2, we arrive at a theory of quanta of the field
that obey Bose-Einstein statistics. The operator b}b, has the eigenvalues
N,=0,1,2,3,..., oo, indicating that any integral number of particles
may occupy the state whose wave fuxllction is y,. The eigenvalues of H are

E=YE,N, "(4-9)

This is not entirely satisfactory, of course, since some of the particles
found in nature obey Fermi-Dirac rather than Bose-Einstein statistics. We
must look for some way of modifying the formalism so as to obtain a theory
which describes Fermions. We wish to keep

H = Y E,bib, (4-10)

as the Hamiltonian, and we want the Heisenberg equations of motion,
Eq. 4-8, to yield Eq. 4-4. A little experimentation shows that Eq. 4-7 is not
the only choice leading from Eq. 4-8 to Eq. 4-4. We could also assume

[bs br)e = [b7, b3:], =0 (4-11a)
[brs b7t = O (4-11b)

where the anticommutator brackets are defined by
(A, B]l, = AB + BA (4-12)

(in anticipation of the introduction of anticommutator brackets we have put
a minus as subscript on the commutator brackets in Eqgs. 4-7 and 4-8.)
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Using Eqgs. 4-11 in Eq. 4-8 gives

e ﬁéi — z Em{bnb;bm — b;bmbn}

= 2 Em{anmbm - b;bnbm - b;bmbn}

= E,b, (4-13)
In agreement with Eq. 4-4.
Let us now find the eigenvalues of b;;b,. Note that
(b76,)(b3b,) = bi(1 — b3b,)b,
= btb, — btbth,b,

= btb, (4-14)

If 2 is an eigenvalue of b,b,, then
byb, |2y = A|A) (4-15a)
btb,bib, |4y = A% |A) = A () (4-15b)

so A* = 2. Thisis satisfied only for A = O and 4 = 1; thus these are the eigen-
values of the number operator hih .. We see that at most ane particle can
] T : : = .=

We need the matrix elements of b, and b}. Write
b3ba IN,) = N, IN,) - (4-16)
where &, = 0, 1. Consider the vector &; |N,). Operating with b}b, gives
btb,bh IN,) = bi(1 — b%b,) IN,) = (1 — N,)b% |N,) (4-17)

We see that b, |N,) is an eigenvector of b, with the elgenvalue 1 —N,,so
we can write

bjz- |Nﬂ> = Cn II - Nﬂ) (4"18)

The normalization constant can be found by taking the scalar product with
(N,| b, to obtain

<Nn| bnb:; |Nn> == (an 1— b:z-bn [Nn> == (1 e Nn == C:Cn (4-19)
from which

C,= 6.1 —N, (4-20)
where 6, is a phase factor of modulus unity. A similar calculation gives

b IN,) = 0, N, |1 — N,) (4-21)
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where the phase factor can be chosen to be the same as in Eq. 4-20. The
Fermion states can be written as

fooe Ngwes By oy o hea s [N+ (W= (823)
just as we did for the Boson states in Eq. 2-23.

It is convenient at this point to summarize and compare the following
relations for Bosons and Fermions:

1. For Bosons:

by I+ Ny y =Ny b+ s Ny= 1,7+ (4-232)

bl Np )y =vNp+ 1], Nyt 1, (4-23b)
2. For Fermions:

bl Nyw ) = O/ Ny |, 1= Ny ) (4-24)

bl Ny o) =0,1—=Ngy|---,1 =N, -~  (4-24b)

In both cases b, is a destruction operator since it decreases the number of
particles by one; b;, is a creation operator in both cases. In the case of Bosons
it was possible to choose the phase factors to be unity. The case of Fermions
is somewhat more complicated. We want to choose the 6,’s so that .

bnbn' + bﬂ'bn
and

bbi. + bib:

give zero when these operators operate on any state vector. It may be shown
that this is accomplished if the N,’s in Eq. 4-22 are ordered in some arbitrary
way and then

0, = (—1)E=N (4-25)

For almost all applications in this book the 6,’s will play no role since only
|6,,|2 = 1 will enter the formulas.

There is a very general theorem due to Pauli that particles of integral spin
obey Bose-Einstein statistics and particles of half-integral spin obey Fermi-
Dirac statistics. The quantum numbers 7 in the wave function v, for Ferm-
ions must be assumed to include the spin quantum numbers.

THE CONNECTION WITH ELEMENTARY QUANTUM MECHANICS

It might be thought that the process of second quantization applied to a
quantum-mechanical equation such as Eq. 4-1 would endow the particles
with properties of a quantum-mechanical nature which they did not
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previously possess. This is not the case. As we show in this section the
elementary theory is contained in the second quantized theory. However,
the second quantized theory possesses a flexibility that allows it to be extended
to processes such as f-decay in which particles are destroyed and created.

According to Eq. 4-3, p(x, ¢) is a linear combination of the destruction
operators b,. We may interpret it as an operator which destroys a particle at
the position x at the time ¢. Similarly, p*(x, ¢) is a linear combination of the
creation operators b,. We may interpret it as an operator which creates a
particle at the position x at the time ¢. The commutation relations for ¥ and
y* may be found from those for b, and b;. Thus

[w(x’ t)! y"+(x” r)]i . z z, [bm b:']t’l’n(x)'f’:(x’)
= 2 P.(X)p,(x) = d(x — x') (4-26)

where Eqs. 4-7 and 4-11 and the completeness relation for the set of functions
y, has been used. In a similar manner we can show that

['{’(X, t)s Tp(xfs r)]i: = [1P+(X, t)s w—l‘.(x!’ t)]_—i_—, =0 (4'27)
We may use these relations to show that the Heisenberg equations of

motion

- '}‘ia% p(x', 1) = [p(x', 1), HL (4-28)

give the time-dependent Schrédinger equation, Eq. 4-1, when the Hamil-
tonian operator is taken to be

H= f Papt(x, :)[— 5’% V2 4+ V:| Wz, 1) (4-29)

Problem 4-1. Show that Eq. 4-1 follows from Eq. 4-28.
We may interpret

n(x, ) = y*(x, Hp(x, 1) (4-30)

as the number density operator and

N(t) = f dPzyt(x, Hy(x, t) (4-31)
as the total number operator.

Problem 4-2. Show that
dN 1

2
dt h
so the theory conserves particles.

[N.H].=0 (4-32)
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We shall let |0) denote the vacuum state, that is, the state with no particles
present. (It should not be confused with the null vector for which we have
previously used the same symbol |0).) Using Eqgs. 4-3 and 4-23a or 4-24a we
see that

p(x,1)]0) =0 (4-33)

Now, if our interpretation is correct y*(x, t) |0) should be a state in which
there is one particle at x. If we operate on this state with n(x’, r) we find

n(x’, yt(x, 1) 10) = p*(x’, )p(xX’, Hyp*(x, 1) |0)
= pH(x’, )[o(x — x') £ pH(x, DHp(x’, 1] |0)
= 0(x — x')ypt(x, 1) |0) (4-34)

We see that this state is an eigenstate of the number density operator n(x’, 1)
with an eigenvalue which is zero except at X" = x where it is infinite. We also
find

Ny*(x, 1) |0) = 9*(x, 1) |0) (4-35)

so the state is an eigenstate of N with eigenvalue unity. This confirms our
interpretation of the state y*(x, 7) |0).

In a similar way yp*(x,, £)p*(X,, £) |0) will be a two-particle state with one
particle at x; and one at x,. We can continue and construct states with any
number of particles.

Now consider the one-particle state

IC,, 1) = f P Cy ()t (x, 1) |0) (4-36)
where C,(x) is an ordinary function of x (not an operator), By the usual rules

of quantum mechanics the coefficient of u*(x,7)|0) is the probability
amplitude for finding the system in the state p*(x, ) |0). Therefore, we

interpret
|C;(X0)|* d°x

as the probability of finding a particle in d®x; |C,(x)|* plays the same role
here that |y(x, 7)|* plays in elementary quantum mechanics. Let us try to
choose C,(x) so that |Cy, 7) is an eigenvector of H with the eigenvalue E.
That is

H|Cy, 1) = E|Cy, 1) (4-37)
or

Jdaxw'*(x, r)[— 5% V: 4 Vj| (X, t)fd%'C,(x’)w*(x', 1) |0)

—E f P2 C(x )y (X', 1) [0)  (4-38)
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We take w(x, t) inside the z’-integral on the left-hand side and use

p(x, p*(x’, 0)[0) = [0(x — x) £ p*(X', yp(x, N]0) = d(x — x) |0)
(4-39)

The left-hand side becomes
ﬁ2
fdsxfcisx'w+(x, r)[.— 2— V2 4 Vj| o(x — x")Cy(x") |0)
m
2
- f —— ,)[_ 2L V.ot V(x):| Ci(x)[0)  (4-40)
m

Combining this with the right-hand side of Eq. 4-38 gives

f dy*(x, r)[[— vzt V(x)} Ci(x) — Ecltx)} 0)  (4-41)

It follows that C;(x) satisfies
[~ oG, V:| Cu(x) = ECy(%) (4-42)

2m

This, together with the interpretation of |C,|* as the probability density leads
us to identify C;(x) with the single particle wave function of elementary
quantum mechanics.

We can construct an n-particle state

1C,s 1) = f dzy - - f A2, Co(Xy * X )YT(X, 1) - pH (X 1) [0)  (4-43)
We interpret
|Gy *» = x)1* By o+ d*z,

as the probability of finding particle 1 in d°z,, particle 2 in d°z,, and so on.
The requirement that C,(x; - * - X,,) be chosen so that

H|C,,t)y=E|C,, 1) (4-44)

leads by a straightforward but slightly tedious calculation to the n-particle
Schrodinger equation .

s [— k] V(xa] Coxy -+ x) = ECa(ky - X;)  (4-45)
i=1 m

We see that there is contained within the second quantization formalism
the elementary quantum mechanics of an arbitrary number of noninteracting
particles.
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Interaction of Quantized Fields

One can add together the Hamiltonians for several free particle fields and
introduce appropriate interaction terms to get a theory of interacting fields,
or, equivalently, interacting systems of particles. The interaction we know
most about, of course, is the interaction of photons with charged particles.
We consider this first, taking the particle field to be described by the Hamil-
tonian of Eq. 4-29, and the electromagnetic field to be described by the
Hamiltonian of Eq. 2-12. The interaction is obtained by the prescription

g ty_ 2% (5-1)
C

I 1

Making this replacement in Eq. 4-29 and adding the Hamiltonians give the
total Hamiltonian

2
H =fd3x1,u+(x, r)[-—l— | P o B [ ke V]y)(x, ) +fd3xi(52 + BY)
2m| i c 87

=H;;+ Hrad+HI (5-2)
where
hE
H, =Jd3xw+[— — V2 4+ V:| v=> Ebib, (5-3)
2m n
1s the particle Hamiltonian,
Hepg = f &z (B + BY) = 3 hoat,ay, (5-4)
87‘." k.o
i1s the Hamiltonian of the radiation field, and
3 eh 62 2
H1=fdx1,u+[——A-V+ A:|1p (5-5)
imc 2mc?

54



Interaction of Quantized Fields 55

is the interaction Hamiltonian. As before, we can divide H; into a part H’
proportional to 4 and a part H" proportional to 4%. Expanding A and y in

terms of a,, and b, gives
H =H + H" (5-6a)

H =3 {M(k,o,n,n")bkb,a, + M(—k, o, n, n")blb,al,} (5-6b)

k.o n n'

+
H" = z Z Z Z bnbn'{M(kh 01, kza Og, N, n')ahnakga;

kigy k202 n n'
! +
+ M(k,, 0y, —ks, 03, n, n')ay,,, k0,
[ 3

+
+ M(—=Kk,, 0, ky, 03, 1, n’)ak1a1akgcz

+ M(—k,, 01, —ks, 05, n, n')ag, ,,av,0.} (5-6¢)
where
B | % ~
MK, o, m, ) = (2225 | e tan V] Ve (56d)
Quw, imc
and

M(k,, oy, k,, 05, n, n")

27?562) 1 I: e’ ; f
— : dBzw* Uy, * Uy gtk1tke) x:l . (5-6e
( Q ((u,clwh)’é f Pa T ¥a (5-6¢)

The part of the Hamiltonian H, + H,,q may be considered the un-
perturbed part with eigenvectors

oo eNpe v o)y |+ * Mig® * *Deaa (5-7a)
and eigenvalues
> E,N, + > hwgn,, (5-7b)
n ko

The interaction Hamiltonian induces transitions between these states. For
instance the term b3b,a,, in H' destroys a photon of momentum Ak and
polarization o, destroys a particle in state |n’), and creates a particle in state
[n). Such a process can be represented by a diagram like that in Fig. 5-1. In
this figure we also draw the diagram that represents the term b}b,.a,.

I\In> In>\ y
/
7N S

Figure 5-1
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The terms in H” induce transitions in which a particle in state |n’) is
destroyed, a particle in state |n) is created, and two photons are destroyed,
or one is destroyed and another created, or two are created.

Problem 5-1. Draw diagrams corresponding to the terms in H”.

Problem 5-2. By relabeling indices show that H' and H” can be put into
the manifestly Hermitian forms

H =335 {Mk, o, n,n)bib,a, + HC} (5-8a)

ko n n'

2 =kz kzz 2. {M(ky, 03, Ky, 03, 1, n')b7b, 810, 0xa,
& M(kla 01, _kza 02, 1, n’)b:bn'aklﬂ‘la:gaz + HC} (5'8b)

where HC denotes the Hermitian conjugate of the terms which precede it.

This new formalism has not added any new physics to that which was
covered in Chapter 3. Only the way of looking at things is new. For instance,
compare the first term in Eq. 5-6b with the first term of Eq. 3-5a. Both terms
destroy a photon of momentum /k and polarization o. In calculating a
transition probability using Eq. 3-5a the operator p - u,, will appear in a
scalar product between two atomic states. The same operator occurs between
¥y and y,. in Eq. 5-6d. One readily checks that the transition probabilities
calculated in either formalism are the same.

Problem 5-3. Repeat enough of the calculations of Chapter 3 using the
formalism of the present chapter to convince yourself that the results are the
same.

NONRELATIVISTIC BREMSSTRAHLUNG

We have reserved one problem, which could have been treated by the
methods of Chapter 3, in order to illustrate the application of the second
quantization formalism—the problem of bremsstrahlung.

Classically, an accelerated charged particle radiates. In a collision between
two charged particles the particles are accelerated and hence radiate. It is
this process of radiation during a collision that we now wish to discuss
quantum mechanically. We discuss the collision between an electron and a
nucleus, which because of its large mass may be considered fixed. For the
purpose of this calculation it is convenient to take the potential ¥ in Eq. 5-2
to be the potential of this scattering nucleus and to treat it as a perturbation.
We let

H" = f PrytVy (5-9)
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The states |n) are now the free particle states which we now denote by
|q), where

P(X) = (x| @) = —= &~ (5-10)

JQ

and /q is the momentum of a particle. Writing
p(x, £) = 2 bayy(x) (5-11)
Q

we find that Eq. 5-3 takes the form

Z b+b (5-12)
The H” becomes )
H™ = ;; bib. V(q — q) (5-13a)
where
la - a) = [ e (5-13b)

is the Fourier transform of V(x).
The integrals in Eqs. 5-6d and 5-6e are easily evaluated. For instance, Eq.
5-6d becomes

2\ Y4
M(k, ag, q, q') — (277;56 ) (__ —) kc)f :(Q'+k—q)°x

Quw,
2mhe\% A

= ( E C) ("" f_) (q- “ka)aqq+k (5-14)
Quw, mc

The H' becomes

20
; (2526) q - U {baubadi, + bibonai,}  (5-15)
k

We can consider Bremsstrahlung as a second-order process in which both
H' and H" are treated as perturbations. The second-order term in Eq. 1-166
must be used in this calculation. In our present notation this is

<f| Hr + Hmlf)<II H! + Hmli>
Mﬁ=2 E :
1 i — Er+in

(5-16)

We can describe the process by the diagrams of Fig. 5-2. We have indicated
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q3 q3
\ / k, o \
70
_Tq2=Q3+k 02'=Q1“kT
O
Vv
aQ a
(a) (b)
Figure 5-2

the action of H” by the dotted line and V. The initial and final states are

|i) = |one electron with q,), |[no photons),,q (5-17a)

| /) = |one electron with g5), |one photon with k, 0);sa  (5-17b)

The transition from [i) to |f) can take place through either of the inter-
mediate states

|7;) = |one electron with q,), [no photons);.q (5-18a)

|7,) = |one electron with q,), |one photon with k, 6),,3  (5-18b)

These two ways of reaching |f) from |i) are shown in Figs. 5-2a and 5-2b.
Conservation of momentum at the vertex where the photon is emitted gives

g =q; + k (5-19a)
and

0 =q —k (5-19b)
Equation 5-16 becomes

_ YIH LI H” |1 " ST H™ 1) T| H i)

M,, 5-20
’ E; — Ep, E,— Ey, el
(The infinitesimal 7 is not needed here.)
For the Coulomb potential
—Zé*
V(z) = (5-21a)
r
Equation 5-13b gives
4 2
Plq) = — 2 (5-21b)

Qq®
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The matrix elements and energies which enter Eq. 5-20 are

477Ze*
(LI H” [iy = (fl| H" |I;) = — (5-22a)
1 : Qlq — q; — kf?
eh (2mhic?\*
I H Ly = — ——( i — (5-22b)
me\ Qw,
I/.g »
(L) H' [i) = — i"i(z"""ic _— (5-220)
mc\ Qu,
2. -2
E, = 14i (5-22d)
2m
52
E;,=—|qs + k[* (5-22¢)
2m
52
E;, =—|q — Kk|* + o, (5-22f)
2m
The final energy is
52
E, = Z_r; qs° + how, (5-23)

\
By conservation of energy this must equal E;. This may be used to simplify
the energy denominators in Eq. 5-20:

(E; — E;) = Iia)k(l . L W ) (5-24a)
ke 2mc
(E;— E;) = —hwk(l o S g ’”‘) (5-24b)
ke 2mc

where we have introduced the velocities v, = /ig,/m and v, = /iqs/m.
Equation 5-20 becomes

4rZe® ) ( 2me® )I"f
hQw,®

’ Qlq, — q; — k|?

X u - ( Ys - L ) (5-25)
1 — k- (vo/ke) — (hk]2mc) 1 — k - (vy/ke) + (hk/2mc)

If we make the approximation that the electrons are nonrelativistic so that
v/c « 1 and assume that the momentum of the photon %k is much less than
the particles momentum, then Eq. 5-25 simplifies to

252 2 \14
M, = ( 4nZe’h ) (21re ) - (5-26)
Qm? |Av|]?) \hQw?®
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where Av = v; — v,;, and we have dropped the subscripts on w, and uy,.
To calculate the total cross section for the process we must sum the
transition probability over all final states and equate the result to the product
of the cross section and the flux of electrons which is v/Q.
Thus

v Q2 4 J. 2ar ﬁ2q 2 }izq 2
—)o = dqgs dSQ, kgdde—Mizé[ 2 — 1] 5-27
(Q) 27)° f‘?a ds kT M m m ( )
where we have used Eq. 3-12 once for the final state of the electron and
again for the final state of the photon. We have let dQ2, be the element of solid
angle into which the electron is scattered and d€2, be the element of solid
angle into which the photon is scattered. Using Eq. 5-26 for M, and |Av| =

2v sin 6/2 we find
2 4 . 2
_ ( mZe )( )JdQ fdQ if Ll (5-28)
m? |Av|*/ \4#n*c*h w sin® 6/2

We may interpret

3 726 2 g - Avl?

d’o =( 2:'-e4 )(e |1;3vl) (5-29)
dQ, dQ, dw m*v® sin® 0/2/ \ 47°c’hw

as the cross section for scattering an electron through the angle 6 into the
element of solid angle d2, with the emission of a photon with frequency w
in the range dw and polarization u into the solid angle dQ,.

The first factor in Eq. 5-29 will be recognized as the Rutherford cross
section for electron scattering. The second factor gives the probability that a
photon of frequency w and polarization u is emitted into dw d€2,.
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Quantum Electrodynamics

To arrive at a more satisfactory theory of charged particles, photons, and
their interaction, two modifications must be made in the formalism developed
in the preceding chapters. First, the electrons should be treated by the Dirac
equation rather than the nonrelativistic Schrodinger equation. Second, the
entire electromagnetic field, rather than just the transverse part, should be
treated quantum mechanically.

The first of these objectives is accomplished by replacing the particle
Hamiltonian of Eq. 5-3 by

H, =fd3xw+ (&: a-V + ﬁmc2) ) (6-1)
i
where
= =
Y1
P2 - + ot ot T
p = and  y" = [y7, ¥3, v5, ¥il (6-2)
Y3
L ¥4l

and a« and f are the Dirac matrices given in Eq. A-25 of the Appendix. The
components of v and p* are now considered to be operators. We assume
that

[wi(x, ), ve(X', O] = [w](x, 1), yr (X', D] =0
[%(x, t)’ W:(X', I)]+ = 6:'#: a(x - X’)
in analogy with Egs. 4-26 and 4-27. We have chosen the anticommutation
relations, since we are developing a theory of particles that obey Fermi-

Dirac statistics. It is straightforward to show that the Heisenberg equations
' 61

(6-3)
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of motion

S — [1}), Hp]— (6"4)

—
—

lead to the Dirac equation

—§@=(ﬁ—.‘:a-v+ﬁm02)w (6-5)
i ot 1
As shown in the Appendix, the Dirac Hamiltonian has the eigenfunctions
et‘p-x
¥o.a = Up.2 :/T_l (6-6)
where A = 1, 2, 3, 4. The energy eigenvalues are
E,, = £V + mich (6-7)

where the plus sign is to be taken for 4 = 1, 2 and the minus sign is to be
taken for 4 = 3, 4. One choice of the four component Dirac spinors u, ; is
given in Eq. A-55.

In analogy with our procedure in Chapter 4, we expand y and y* as

p(x, 1) = E by, 1(1) (%) (6-8)
and
Pix, 1) = 5 by (1) 5,2(X) (6-9)
Substitution into Eq. 6-5 gives '
-‘% by, = — ; Ey by (6-10)
Equation 6-1 becomes
H, = :%Ena.b:abni (6-11)

It is easily shown that the Heisenberg equations of motion

= Thi bpz = [bpa Hy - (6-12)
i dt
yield Eq. 6-10 when H, is given by Eq. 6-11.
The interaction of the particles and the electromagnetic field is obtained
by the usual prescription of replacing p by p — eA/c. If we do this in Eq. 6-1
we find the interaction Hamiltonian

H; = —efdamp*u . Ay (6-13)
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p+k N\
k’ a p} h
‘ \
k)
P, A a p+k \
(a) (b)
Figure 6-1

Expanding v, y*, and A gives

= o33 5 () (tias - o dbiinibastae + HOY (614
o Wy

where HC stands for the Hermitian conjugate of the preceding term. The

terms in H; may be represented by the Feynman diagrams of Fig. 6-1.

In Fig. 6-la the operator b,, destroys an electron of momentum #/p, the
operator g, destroys a photon of momentum /k, and the operator by ;-
creates an electron of momentum Z(p + k). (Momentum conservation came
from the spatial integration just as it did in the derivation of Eq. 5-15.) The
Hermitian conjugate of by, ;. b,,ay, is the operator ai b;;b, 4 2> Which is
represented by the diagram of Fig. 6-1b. It should be noted that the quantum
number 4 can change when a photon is emitted or absorbed. This indicates
that the spin and the sign of the energy can be changed in the process.

Next we consider the second modification that must be made in the
theory: the inclusion of the entire electromagnetic field in the formalism
rather than just its transverse part. In working in the Coulomb gauge, the
part of the electromagnetic field that gives the Coulomb interaction between
particles (i.e., such terms as e.e;/r,; in the Hamiltonian) was not derivable
from the vector potential A. We can remedy this defect and at the same time
make the theory manifestly covariant by replacing the three-vector A by the
four-vector potential which we denote by A,. The fourth component of 4,
is the scalar potential ¢, and the electric and magnetic fields are given by
Egs. 2-1. Equation 2-11a must be changed to

i, = ZE (2wﬁc

k o=1 k

) Upgu{ae™™ + af,e ™} (6-15)

The polarization vectors u,, have been replaced by four-vectors u,,. Also,
the index o now takes on the values o = 1, 2, 3, 4 instead of only 0 = 1, 2.
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This allows for the possibility of “longitudinal” photons (polarized along
the direction of k) and “time-like”” photons (with their polarization vector
along the time axis).

These exotic photons are needed to describe the part of the electro-
magnetic field previously omitted from our treatment. In this formalism the
Coulomb interaction between two charged particles can be described as the
emission of a photon by one of the particles and its absorption by the other.
The longitudinal and time-liKe photons never exist as free particles. (How-
ever, in a plasma it is possible to have free longitudinal photons. These are
called plasmons and are the quanta of the electrostatic oscillations of the
plasma.)

Equation 6-13 for the interaction Hamiltonian must be modified to take
into account the change of A to a 4-vector. This is accomplished if it is
recalled that p*ay is the three-vector part of a 4-vector whose fourth com-
ponent is yty. If we define

v, = —ifa, fori=1,2,3 (6-16a)
and

Ya=Pp (6-16b)
and let

P =iy*p (6-17)

then 9y, is a 4-vector. The interaction Hamiltonian can be written as

H;= —efdax@ypy)Aﬂ (6-18)

The integrand is the scalar product of two 4-vectors, hence is relativistically
invariant. Equation 6-18 reduces to Eq. 6-13 in the Coulomb gauge. Equation
6-14 becomes

Hy=—e>>>

kopi A’

2mhe\% . _
( ;;w ) {(un+k.l’y.uuka,uun.J.)b:+k,1'bpiaka + HC} (6'19)
k

In the applications that we discuss we do not need this more general
formalism which includes Jongitudinal and time-line photons. It is always
possible to choose the Coulomb gauge. For our purposes this is the most
convenient choice.

DIRAC’S HOLE THEORY

The relativistic theory encounters a difficulty that was not present in the
nonrelativistic theory. This is the problem of the negative energy states. One
cannot just exclude such states as could be done in a classical theory. With-
out the negative energy states the eigenfunctions of the Dirac Hamiltonian
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would not form a complete set. Furthermore, as will be seen when Compton
scattering is discussed, the negative energy states are essential in getting the
right answer for this well known effect. However, it would appear that elec-
trons in positive energy states would all make radiative transitions into
negative energy states and in reality this certainly does not occur.

Dirac overcame this difficulty by making the following two assumptions:

[. In the normal state of the vacuum all negative energy states are oc-
cupied and all positive energy states are empty. That is,

ND.I == Np.2 _— 0 (6'20&)
Nys= Ny, =1 (6-20b)

where N, ; is the eigenvalue of b;;b,,. Since the negative energy states are
full, the exclusion principle forbids transitions into these states. This gets rid
of the difficulty just mentioned.

2. This infinite sea of negative energy electrons produces no observable
effect.

Now, the eigenvalues of H, are
E — Z)‘EDJ-N]’A- (6-21)
P

so that the energy of the vacuum is negatively infinite. This is an additive
constant to the energy and will cancel out when energy differences are taken.
Therefore it may be disregarded just as the zero-point energy of the radiation
field was in Chapter 2.

Now, consider the term b, ;-b,,ax, in Eq. 6-14 and suppose that 4 = 3
or 4 and 2" = | or 2. The operator a,, destroys a photon, the operator b,
destroys a particle of momentum /p in the sea of negative energy electrons,
and the operator by, ;- creates a positive energy electron of momentum
hi(p + k). This positive energy electron is observable. Also, the destruction
of the negative energy electron has decreased the charge of the universe by
—e, has decreased the momentum by /p, and has decreased the angular
momentum by the spin of the particle that was destroyed. This change in
the universe should be observable. It may be thought of as a “hole” in the
infinite sea of negative energy electrons. It is equivalent to the creation of a
particle of charge +e, momentum —/p, and angular momentum opposite
to that of the particle destroyed. The process just described should appear as
the absorption of a photon together with the production of an electron-
position pair. An operator like b, 3 which destroys a negative energy electron
of momentum /p and spin of +//2 along the z-axis may also be considered

to be the creation operator of a positron of momentum —/p and spin
—hf2.
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It is amusing to read papers on the quantum theory of radiation (Fermi’s
paper in Reviews of Modern Physics*® is recommended) written between the
discovery of the Dirac equation of 1928 and Anderson’s experimental
discovery of the positron in 1933. Attempts were made to identify the “hole”
with the proton. Reasons were found for believing that the mass of the hole
should be greater than the electron mass predicted by the theory. However,
it should be possible for an electron and a hole to annihilate with the emission
of two photons. When the probability of this process was calculated by
Oppenheimer,® Dirac,** and Tamm?® it was found that matter would be
destroyed in a very short time. When the positron was discovered, what had
previously been a major shortcoming of the theory became its greatest
triumph. The prediction of the existence of this previously unobserved
particle must be regarded as one of the greatest successes of theoretical
physics.

CERENKOV RADIATION BY A DIRAC ELECTRON

Since Cerenkov radiation is a first order process involving free particles it
is a particularly simple application of the theory to discuss. Just as in Chapter
3, the interaction Hamiltonian for photons and electrons in a dispersive
medium is obtained by replacing w, in Eq. 6-14 by

12

where ¢(w) is the dielectric function of the medium.

We consider the process in which an electron of momentum A(p + k)
emits a photon of momentum /k and polarization o. Using Eq. 6-14 and
first order perturbation theory gives the transition probability per unit time

(trans prob)
time p+k,A'—=p, i

2ar 2mhct
= ez|: :\ lu:+k,i.'u . “kaupﬁ.lz

h Q1(0/0w)w’e
x O\ B |p + K|® + mic* — VA%p? + mPc* — hw]  (6-22)

A little algebra shows that the angle between p and k is given by Eq. 3-72.

We may proceed to calculate the energy loss per unit length as we did in
Eq. 3-59. There is one modification that we wish to make in this calculation.
The sum over final states must include a sum over the final spin states of the
electron 4 = 1, 2. Also we shall average over the initial spin states; thus what
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we want 1s
dw 11 & 2 2 trans prob
—_— == o, | ———— 6-23
z v2 .121 ,é:l g k( time ) ( )
We must evaluate
1 2 2 5
‘2' .1'21 lzl(”wk.r“ . “ka”w)(“:aa * Uygllpiy ar) (6-24)

If the reader will try to evaluate this straightforwardly he will soon become
convinced that there must be some easier way, and indeed there is. The first

step is to extend the sums over A" and 1 to include all four values. We can do
this by noting that

H°+|E"|u l_{um fori=1,2
2y, =

2 |E,| 0 - ford=3,4 (E23)

where
H, = ca-p + fmc? (6-26)
We can use this with a similar relation involving u, ;- to write Eq. 6-24 as

1 4 4
= X E [ugik, @« we,(Hy + |Ep|)up,)

2 =1 21=1 ;
1
X [uga » U (Hpi + |EppicDtpinc 2] ———— (6-27)
_ 4 |Ey| | Epsudl
Now consider
4
Z upa.ujj.
A==l

By the completeness relation this is just the 4 X 4 unit matrix. Therefore,
Eq. 6-27 becomes

. 1
Egl[u;ﬁrk.z’“ s, (Hy + |EjDe - uy(Hypix + |Eppi)tpin ] m

1
- m Tr'[e - g, (Hy + |Ep))a < upy(Hpix + |Epiil)]  (6-28)

This trace can be evaluated without great difficulty. First we note that
Tra,=Trf=0 (6-29)

Also, it is easily shown that the trace of a product of any odd number of the
matrices «,, «,, o, and g is zero. We may use the identity

(¢-a)(ax+b) =2(a-b)l — (a-b)(ax-a) (6-30)
where a and b are arbitrary vectors, and

Tr AB = Tr BA (6-31)
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to show that
Tr(a-a)(aa-b)=4a-b (6-32)
Also, we can show that
Tr (a-a)f(a-b)f = —4(a-b) (6-33)
and
Tr (e - a)(e - b)(e - ¢)(ex - d)
= 4(a-b)(c-d) —4(a-c)(b-d) 4+ 4(a-d)(b-c) (6-34)

for any four vectors a, b, ¢, d. These relations are very useful in many cal-
culations in quantum electrodynamics.

Problem 6-1. Use Eqs. A-24 to prove Eq. 6-30 and then prove Egs. 6-32,
6-33, and 6-34.
Using these trace formulas, Eq. 6-28 can be evaluated. We find

1{1 . m®c* 2(uy, - V1)2 ViV
2 |Ep) |Epyxl c? c*

(6-35)

where we have used v = ¢?p/E and have let v, and v, be the velocities before
and after the emission of the photon. The sum over polarizations can be
carried out as was done in Eq. 3-69. The result is that Eq. 6-24 summed over
polarizations is

itV

- , (6-36)

v # 2 1

:]5 (1 — cos™6) + 5{1 - \/(I - 1’12/02)(1 - 922/02) - P
where again 0 is the angle between p and k and is given by Eq. 3-72. We have
used

a9

O . .
J1 — v?/c?

to obtain Eq. 6-36 from Eq. 6-35. The second term in Eq. 6-36 is a small
correction to the result we found in Chapter 3. If the momentum of the
photon is negligible in comparison with the momentum of the electron then
v; =~ v, and the term in braces vanishes. This will be true in both the classical
limit (& — 0) and the extreme relativistic limit (v — ¢). We neglect this term
in the remainder of the calculation. The rest of the calculation parallels that
in Chapter 3. The only difference is that Eq. 3-72 must be used for cos 6
instead of Eq. 3-67. The result is

7 2 2 2 2
2 5 | A gl —5(1 4 et — VT | (639

dz  ¢*J }(0/dw)w’e n*p* 2mc®

E (6-37)
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COMPTON SCATTERING

In Chapter 3 we discussed the scattering of a photon by a nonrelativistic
electron. We wish to reconsider the problem now using the relativistic theory.
In the previous theory the scattering was produced in first order by the 42
term in the interaction Hamiltonian. There is no 4% term in Eq. 6-13, so that
it is clear that in the relativistic theory scattering must be a second order
process. We can picture the scattering process as occurring as shown in the
Feynman diagrams of Fig. 6-2. If Fig. 6-2a the electron first absorbs a photon
of momentum /k; and polarization o; and then emits a photon of momentum
/ik, and polarization o,. If Fig. 6-2b the time order of these events is reversed.
The initial and final states are

|£> = |q:’a /1-:'>e |' O My * Ve, 0 * ')ra.d. (6'393)

‘f) == lqp ;"f)g |" e nkia‘- =2 l, il nk,a_, + 1, e ')rad (6-39b)
where

x| @A) = Yeu(®) = sty o= (6-40)

Jo

The process occurs through the intermediate states

B = (@i A, v+ P, — 1y =+ By =+ Yena (6-412)
]I2> == |q2= Az>s |' *tPpgsctt ”}c,cr‘, +1.. '>rad (6'4“3)
q, A
kfof \ / ff Qs Ay
q=q+k; k;a?\ kio;
/a;" \ qi, A;
qi. Aj
(a) (b)

Figure 6-2
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Conservation of momentum at the vertices gives

q,=q;,+k =q,+k, (6-42a)
9:=9q —k =q,—k; (6-42b)
the transition probability per unit time for the process is given by
(=) - 2
X 6[\/ Kc*q? + mi* — V h°c*q,? + m*c* + hck, — hck,]
(6-43

where M,, is given by the second term in Eq. 1-166:

M, =S (fI Hy 1) {I,| Hy |i) +3 (fI Hy [T5){To| Hy [7) (6-44)
Al Ef — EI1 Az E‘l — 'EI!Z
the intermediate energies are
E; = £k |q; + K,|* + m2c? (6-45a)
E;, = £/Rc?|q; — K| + m2ct + hick, + hck, (6-45b)
Using Eq. 6-14 we find that the necessary matrix elements are
. 2mhe®\*
(LI Hy i) = _'e( gwc ) (u:;ha i u:'uq,'jl..') (6-46a)
2mhc?\:
SIHL) = —e( T2 ) e - mpts) (6-46b)
b
2\ 4
l Hy 1) = —e(2229) i - ) (6-46¢)
Quw,
2 h 2\ U
1 H1 11 = —e(F2E) i wain) (6-46d)

Equation 6-44 contains summations over 4, and Z,, the spins and signs of
the energies of the intermediate states.
Before proceeding to the general case let us consider the nonrelativistic

limit. In this limit

1 0
0 ]

Uy = ol Ug o = o (6-47a)
0 0
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0 0
0 0
Uy3 = L Uga = 5 (6-47b)
0 |
Now, since
[0 0 u, u_ d
0 c-u
0 0 wu. —u,
a-u= 0 = (6-48)
u, wu_. 0 0
c-u
u, —u, O 0 K

where v, = u, £ iu,, we see that the operator couples positive energy states
to negative energy states only. The intermediate states must be states of
negative energy for the scattering of photons by positive energy electrons.
Let us suppose that the initial and final states of the electron both have spin
up. Then they are described by u,, of Eq. 6-47a. In the sum over 4, in Eq.
6-44 only the terms with A, = 3, 4 have nonvanishing matrix elements, and
E; is the same for both of these. A little algebra shows that
,11;:5.4(u;}1a Uy YU Willgy) = U, g (6-49)
A similar result is obtained from the second term in Eq. 6-44. The matrix
element becomes

27hc®\ u; - u
e
’ Q W;w;
s 1
Vv kgt + m®® + hck; + Ve |q, + k,|* + m*c*
% : | 50

v Kc*q + mPc* + Ve |q; — k,|* — hck; — hck,
In the nonrelativistic limit this becomes

Q

This is the same matrix element which appears in Eq. 3-39 of our previous
calculation of scattering by nonrelativistic electrons, so that the two theories
agree, as they should, in the nonrelativistic limit. It is noteworthy that
negative energy states must occur as intermediate states in order to get this
agreement. This shows that negative energy states are essential for the theory.

(6-51)

— 2
M, =e ( =
\/wiw, mc
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One feature of the calculation seems to be inconsistent with our previous
assertions. We have allowed transitions to occur to negative energy states
which we have assumed to be filled. It would appear that such transitions
should be forbidden by the exclusion principle. The intermediate states with
electrons of negative energy as we have drawn them in Fig. 6-2 cannot, in
fact, exist. However, there are two other intermediate states that we have
ignored which make the same contribution to M,; as the two improper
states which we have incorrectly included. To see this consider the diagram
in Fig. 6-3.

In this process an unobservable negative energy electron of momentum
hq, emits the final photon at the first vertex becoming the final electron of
momentum Aq,. There is left behind a hole which to an observer would
appear as a positron of momentum —#Aq,. We have drawn the unobservable
negative energy electron as a dotted line and the observable hole as a solid
line directed downward toward the first vertex. At the second vertex the
primary electron of momentum /q; absorbs the primary photon and jumps
into the hole thereby filling the negative energy state of momentum /q,. The
matrix elements are the same as those for Fig. 6-2a, since the vertices are the
same, but they occur in the opposite order. The initial and final energies are
the same, namely

E, = E, + ho, (6-51a)

E, = E, + hw, (6-51b)
The intermediate energy in Fig. 6-2a is

E; = —|E, | . (6-51c)
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since the electron in the intermediate state is assumed to have negative
energy. Then

- E‘- o EI = qu, + hwi + Iqul (6'51d)
the intermediate state in Fig. 6-3 has the energy |

E; = E, + |E,| + hw, + hw, + E,, (6-52a)

since there is overall conservation of energy, E; = E, and

E,— E,=E, — E{ = —E, — ho, — |E,| (6-52b)
I 4 I ai

qi

which is just the negative of Eq. 6-51d. Now, the final state in Fig. 6-3 is not
quite the same as the final state in Fig. 6-2a. In Fig. 6-3 there has been an
exchange of the primary electron with one of the negative energy electrons.
The exchange of fermions gives a factor of —1 which just compensates for
the change in sign of the energy denominator. (This is one of the cases when
the phase factors in Eq. 4-24 must be taken into account.) The result in
that the allowed process of Fig. 6-3 makes the same contribution to M,, as
the not allowed process of Fig. 6-2a. Note that when the dotted lines are
omitted Fig. 6-3 can be obtained from Fig. 6-2a by rotating the arrow repre-
senting the intermediate state around until it points in the negative time
direction. This is illustrated in Fig. 6-4. A positron may be thought of as an
electron propagating backward in time.

Problem 6-2. Draw the diagram which is equivalent to Fig. 6-25 in the
~ same sense that Fig. 6-3 is equivalent to Fig. 6-2a.

It seems to be usually true, that we obtain the same results by allowing
negative energy particles as intermediate states, as we do by using hole
theory, but this should be checked in each case.

The matrix element M, can be evaluated without making the nonrelativistic
approximation. Its square is then used in the Fermi golden rule and the
- scattering cross section is obtained. These calculations involve some of the
tricks developed in the preceding section. They are fairly tedious and have
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been relegated to the appendix. The result is the well known Klein-Nishina3®

formula

do ( e’ )2 k, [ 1k, 1k

= = 2 (6-53)
dQ mc?/ k}? 2 + 4 k, u 4 k,

the relation between the initial and final wave numbers is

1 1 h
— —==—(1—cosf 6-54
Kk mc( ) (6-54)

t

in the classical limit (4 — 0) and in the long wavelength limit, k; ~ k,, the
last three terms in Eq. 6-53 cancel and the equation agrees with the Thompson
scattering cross section of Eq- 3-46.

PAIR PRODUCTION

It is not possible for a photon in free space to create an electron-positron
pair because in doing so it would violate the conservation laws for momen-
tum and energy. However, in the presence of a third body which can carry off
some momentum this pair production process can occur. It is analogous to
the inverse of the bremsstrahlung process discussed in Chapter 5. We may
picture the process as occurring as shown in the Feynman diagram of Fig. 6-5.
In this process one of the unobservable negative energy electrons represented
by a dotted line collides with the third body, which we assume to be a heavy
nucleus representable by a potential V. In this collision the electrons momen-
tum is changed from kq,, to hq, and Z changes from 3 or 4 to 1 or 2. Since its
energy is positive after the collision, the electron is observable so we represent
it by a solid line. Also the hole left behind is observable as a positron, so we
have denoted it by a solid line directed toward the first vertex. At the second
vertex the electron absorbs the photon changing its momentum from #gq,
to hq; = h(q, + k). The net result is that a photon is absorbed and an
electron-positron pair is created. Note that when the dotted line is omitted

=" qu Figure 6-5
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the diagram looks just like that for inverse bremstrahlung except that posi-
tron line is directed downward in time.

The calculation of the cross section for this process is very similar to that
for bremsstrahlung treated in Chapter 5. Of course, one must use Eq. 6-14 in
calculating the photon absorption. Equation 5-13 must involve the Dirac
spinors. The calculation is somewhat more tedious than that of relativistic
bremsstrahlung and we shall not give the details.

ELECTRON-POSITRON ANNIHILATION

Electrons and positrons can annihilate by the inverse of the process shown
in Fig. 6-5. An electron emits a photon and jumps into the empty negative
energy state. The presence of a third body is necessary to conserve energy and
momentum. This process sometimes occurs when a positron collides with an
electron bound in an atom.

Free electrons and positrons can also annihilate by a second order process
in which two photons are emitted. The process may be pictured as occurring
as shown in the Feynman diagram of Fig. 6-6. Initially, there is present an
electron of momentum 4q, and a positron of momentum —Aq,. This really
indicates that a negative energy electron of momentum kgq, is missing from
the negative energy sea. At the first vertex the electron emits a photon. At the
second vertex it emits a second photon and jumps into the negative energy
state of momentum hq, which was previously vacant. As usual we have
shown observable particles as solid lines and unobservable particles as dotted
lines. Note that the diagram looks very much like the diagram for Compton
scattering except that the positron line is directed in the negative time
direction.

The calculation proceeds very much as the Compton scattering cal-
culation. We shall simplify things a little by working in the center of mass
system where q, = q,. Then from momentum conservation k, = —k;.

Figure 6-6
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Conservation of energy gives

E, =E, (6-552)
2/ it + mict = 2hck, (6-55b)

from which '
ky = Ng. + (mc|h)? (6-56)

We suppose that the electron and positron are moving very slowly so that
g, =~ 0. We can write the lifetime of the positron as

}_ - S Z\MPE - E)

final states

0 2 . { ( \/ (mc)z)
= —_ k2dk, dQ, |IM|* — 6|k, — £ —_—
Qn)® h ZJ 1 1 x M| 2 he 1 9" + 5

B (22)3 2?# 2—;;[%2 0 (ﬂhg)j Zf 40, M1 o=

In this formula M is the matrix element for the transition and d{2, is the solid
angle into which the photon of momentum £k, is emitted. The other photon
goes in the opposite direction. The summation in the final formula is over
polarizations. We have used Eq. 3-12 to replace a sum by an integral. The
matrix element may be written

M = ez(%ﬁcz) z(fl Hy \I){I Hj i)
Qw / 1 E,— E,;
where we have denoted the part of Eq. 6-14 without the factor e(27/c?/Qw)1/2
by H,. The sum is over the quantum numbers 4 which the electron can have
in the intermediate state and also the other time order in which the electron
can emit the photons.
Since g¢; =~ 0, the momentum of the electron in the intermediate state must

be Ak, = mc; this makes its energy V/2me?. Then

(6-58)

E; = 2mc? (6-59a)
E; = \2me? + me? + hick, = N2me? + 2me? (6-59b)
E; — E; = \2me* (6-59¢)

The matrix elements in Eq. 6-58 involve only the Dirac matrices and spinors,
so they must be of order unity. Therefore, as an order of magnitude estimate

of M we may take
2mhe?\? 1
M=) o fa0
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using this in Eq. 6-57 and replacing the integration over solid angle by 4
we obtain the order of magnitude estimate

2 \2
- lr_c(_f.__) - ¢ ® (6-61)

This result agrees with an exact calculation.

It may seem strange at first sight to find Q, the volume of the box in which
the system was quantized in the final formula, but it must be remembered
that there is only one electron in the box. The electron density is then n =
1/Q2, and the formula should read

3 =

= 7r,nc (6-62)

Taking n =~ 10* cm™ and r, =~ 107 cm gives =~ 10~ sec as the lifetime
of a positron in a solid.

A positron and electron can also form a bound state of the hydrogen-like
atom positronium before it decays. In the first approximation the levels and
wave functions of positronium are those of a hydrogen atom with the Bohr
radius replaced by @ = 2a, = 2h*/me?® because of the reduced mass. Equation
6-62 can be used to estimate the lifetime of a positronium atom if we take

2 1
n =y, O =—; (6-63)
ma
this gives 7 =~ 1071% sec. However, the positronium atom can only annihilate
by two-photon emission when the spins are antiparallel (the S state). If the
atom is in the S state it must annihilate by three-photon emission. The
lifetime for this mode of annihilation is longer by about a factor of 370.
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The Theory of Beta Decay

The success of quantum field theory in describing processes in which photons,
electrons, and positrons are created and destroyed suggest that the theory
could be extended to similar processes in nuclear and high energy physics.
There are two difficulties in making such an extension. First, we do not have
a classical theory to guide us, as we did in the case of the electromagnetic
field. In order for a field to behave clasically, it must be possible to put a
large number of quanta in the same state. Consequently, the fields describing
fermions can never behave classically. In principle the field that describes
mesons could have a classical limit, but because of the short lifetime of these
particles it is impractical to put a large number of mesons in the same state.

The second difficulty has to do with the strength of the interaction. The
interaction of photons and electrons is in a sense weak, and perturbation
theory gives excellent results. In quantum electrodynamics, perturbation
theory may be regarded as an expansion in the fine structure constant
e*/hc = v+ which is a small number. The corresponding expansion
parameter for the so-called strong interaction responsible for nuclear forces
1s much larger than this; as a result, perturbation theory is almost useless.
The weak interaction which is responsible for beta decay is characterized by
an expansion parameter which is much smaller than e?/Ac.

Consequently, perturbation theory is applicable to the weak interaction.
The theory of beta decay which has been developed in analogy with quantum
electrodynamics is remarkably successful. It is the subject of this chapter.

The first theory of beta decay was proposed by Enrico Fermi in 1933, At
this time a very puzzling feature of beta decay was well known and was the
subject of much discussion. This was the fact that the electron emitted in the
decay emerged with a continuous energy spectrum. One would expect that
the electron would have an energy equal to the difference of the energies of
the parent and daughter nuclei. Instead, it was found that the maximum
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energy of the electron was equal to this difference, but that the energy
spectrum extended continuously down to zero energy. Pauli had made (but
not published) the suggestion that this could be accounted for if another
particle (which 1s now called the neutrino) was emitted at the same time as
the electron. The available energy would be shared between the electron and
neutrino. To conserve charge the neutrino must be assumed to be neutral.
This would make its detection difficult and explain why it had escaped
detection. Indeed, it continued to escape detection for another twenty years.

It was also difficult to explain how electrons could be bound in orbits of
nuclear dimensions. The kinetic energies of electrons in such small orbits
would be much greater than the observed energies of escaping electrons.
Today there is even greater evidence based on spin and statistics that elec-
trons cannot be present in the nucleus.

Fermi disposed of these difficulties by assuming that in the decay process
an electron and a neutrino (actually, it is preferable to regard it as an anti-
neutrino) are created, as a neutron changes to a proton. This basic process
can be represented by the diagram of Fig. 7-1. We have denoted the neutron
by n. proton by p, electron by e, and antineutrino by #. To produce such a
process the interaction Hamiltonian must be somewhat like

H; = gfdsw"};%w;*w;-“ + HC (7-1)

That is, the integrand must contain as factors operators which destroy a
neutron and create a proton, an electron, and an antineutrino. The constant
g is a measure of the strength of the interaction. The Hermitian conjugate
term (HC) would destroy a proton, an electron, and an antineutrino and
create a neutron. If the electron which was destroyed was an unobservable
negative energy electron, then this would be equivalent to creation of a
positron, and the HC term could describe positron emission.

All four of the particles involved in this process are Fermions, so in a
correct relativistic theory v, ¥,, ¥,, and y, should all be Dirac spinors. In
choosing the way in which they should be combined, Fermi was guided by
considerations of relativistic invariance and analogy with quantum electro-
dynamics. In Eq. 6-18 we wrote the integrand of the electron-photon inter-
action Hamiltonian as the scalar product of two 4-vectors. One of these was

//Y,—: ]
7 / Figure 7-1
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the potential 4, of the photon field; the other was the electron current
vector —e,py,p. We may call this a vector interaction. In constructing an
interaction Hamiltonian for beta decay we have four Fermion operators
available to us. These may be used in pairs to construct 4-vectors; then the
scalar product of these four vectors is the integrand of H;. In this way we
obtain

Hy =g f PP, 9 )F 0. + HC (7-2)

(The operator », in Eq. 7-2 can destroy a negative energy neutrino; this is
equivalent to creating an antineutrino.) This is not the only plausible form
for H;; we discuss other forms and what is believed to be the correct form

later in this chapter.
For a first calculation we use Eq. 7-1. This is useful in showing how much

can be accomplished with very little theory. We expand »; and %, in the
states ¢,, and ¢,, which may be bound states of the proton and neutron in a
nucleus. Thus

Yp(2) = 2 Apgdpa(X) (7-3a)
'Pu(x) = gAan,)nb(x) (7'3b)

Where 4, is a creation operation for a proton in state |a),, and 4,, is an
annihilation operator for a neutron in state |5),. We shall expand y; and y;
in plane wave functions; thus

QX

Vi) = 345 (7-42)
wix) =3 4 “’;ﬁ (7-4b)
q, N

Where A and Ag, are creation operators for electrons and antineutrinos of
momentum /Aq, and /q; respectively. Equation 7-1 becomes

H=%,S g ? ,,Z Mo A, A, AL A + HC (7-5)
where
My, = f B2t (7-6)

In calculating the transition probabilities per unit time we use the relativistic
expressions for the energies of the electron and the neutrino. We assume that
the mass of the neutrino is zero, so that its energy is /icq;. To get the lifetime
for the decay we sum over the final states of the electron and antineutrino
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and use Eq. 3-12 to convert the sums,to integrals. We obtain

1 trans Prob
=22

a, ar time
2 2
ey ﬁ’“g—'fdaqudsq,.
Q2m)°® A QF
X |Mg)? O[Eny — Epa — N B2%%q,2 + m¥*c* — heq;]  (1-7)

Now, let us examine Eq. 7-6. The wavelengths of electrons and neutrinos
emitted in beta decays are usually much larger than nuclear dimensions.
Therefore, it is usually a good approximation to replace the exponential in
the integrand by unity; thus

IVIMJ:‘r dsxqb:a nb (7'8)

This is independent of q, and ¢;, so that it can be removed from the integral.
. The integration over solid angles and over ¢; can be carried out and there
remains

1 2|M,,|? §
s [dg.q ! (Euae — ELF (7-9)
T 2w hc
where E .. = E,, — E,, 1s maximum energy the electron can have, and
E, =+ h%*c%q,2 + m?c*. We can write this as

1

= = |dpI(p,) (7-10a)
T »
where
81 M| » 2
I(p,)dp,=———— D, [Emax = E, 7-10b
(p.) dp S spigs P [ ] ( )

is the probability of decay with emission of an electron with momentum
between p, and p, + dp,.

The theory may be checked by plotting [/(p,)/p,2]** versus E,. The result
should be a straight line which intersects the axis at £ = E_,.. This is called
a Kurie plot. Also, the integration in Eq. 7-9 can be cargried out. The result
is a function of E,,,. Actually, the theory given here is cruder than it needs
to be. One should use the Coulomb wave functions for the electron rather
than the free particle wave functions. The integral will then be a function of
the atomic number Z as well as of E,,,.. We denote this by f(Z, Ey.,). Then

L gl My
o Zs Eas) 27°h'c®
Thus the product of 7/ (Z, E,x) may be used as a measure of |g| | M,/

(7-11)
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Now, let us return to the Fermi theory with H; given by Eq. 7-2. Recalling
that y, = (—ifa, f) and y = iy*f we can write

(Pou ) Pervuy) = (Whaw,) « (wiay,) — (Wiv)(wiv,)  (7-12)

It is a good approximation to treat the nucleons nonrelativistically so that

o] o
0 1
™~ or 7-13a
{7 0 0 ( )
0] 0]
and
w*,, ~[1,0,0 0] or [0,1,0,0] (7-13b)
Since
0 o ( )
o = 7-14
c 0
it follows that
yyay, =0 (7-15)

Then in the approximation that the nucleons can be treated nonrelativisti-
cally, the interaction Hamiltonian simplifies to

T f oy vy, (7-16)

We also see from Eq. 7-13 that ] v, will vanish unless the spins of the proton
and neutron are the same.

Now, we expand just as we did in Egs. 7-3 and 7-4 but use the Dirac wave
functions for electrons and neutrinos. The matrix element for the transition
1s

. g
SHHLI) = M gytiy, 3 pyz, (7-17)

It differs from the previous result by the product of the Dirac spinors for the
electron and the neutrino.

Since the spins of the electrons and neutrinos emitted in beta decays are
usually not measured, we would like to sum the square of Eq. 7-17 over the
spins of the electron and the neutrino. Thus the appropriate square matrix
element is :

lg|*

IMI2='§

|M{¢:u.-|2'1 Z Z ”:.Ae“p,,.i,,”:,.x,,“pd, (7"18)

e=1,2 2,=3,4
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In evaluating this we can use some of the tricks developed in the preceding
chapter. We use

(H G IEl) Uy, = =Up). A=1, 2} (7-19a)
2 |E| 0 A=3,4
and <
(H _ |EI) Uy, = {0 ). = 1; 2} (7-19'3)
—2 |E| up, A=3,4
To write
it = Sl 5 5 (e, — 1B Dty 1 50,y + 1En i)
Q4 |E,,| |E,, | dema iz 0 v AR
(7-20)
Now using
4
2 tp,alp,1, = 1 (7-21)
iy=1
we can reduce Eq. 7-20 to
|81* | M |*
M| = —=——=_Tr(|E,| — H,X(|E,| — H, 7-22)
|M]| Q% |E,| |E.| (IE,| NIE.] ) (
where we have dropped some superfluous subscripts. Now
TrH,=TrH,=0 (7-23)

Since H, and H, contain a and f linearly, and the « and 8 matrices have zero
trace

Tr |Eel IEvl =4 IEel [Evl (7'24)
and
Tr H,H, = c* Tr (a - p,)(a - p,) = 4¢’p, * P, (7-25)
where Eq. 6-23 has been used. Then, using v = c?p/|E| gives
2 Ig|2 |“"4'.~::b|2 Ve ' V, _
IM|" = o 1 — o (7-26)

This is the appropriate square matrix element to use in calculating the life-
time. It differs from the previous result only by the factor (1 — v, - v,/c?).
When used in Eq. 7-7 the term in v, - v, vanishes when the neutrino momen-
tum is integrated over, so that our previous result for the lifetime is unchanged.

Experimentally, it is found that the values of values of 7f(Z, Enp,x) fall in
groups that are separated by one and more orders of magnitude. The decays
with the smallest 7f values have A = 0 (no change in the nuclear spin /).
This is in agreement with the Fermi form of the interaction, since, as we have
seen, this interaction does not change the spin of the nucleon. Also, M,, as
given by Eq. 7-8 will vanish if ¢,, and ¢,, have different orbital angular
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momenta. These decays with A7 = 0 have energy spectra which fit the Kurie
plots very well. There are other decays which have Al 3 0 and 7f values
which are greater by several orders of magnitude. The energy spectra of these
decays do not fit Kurie plots. These may be explained on the basis of the
Fermi interaction by considering the terms which were neglected when Eq.
7-6 was approximated by Eq. 7-8. Expanding the exponential in Eq 7-6, we
may write

db = d3.1:95 "?Snb”l = i(qe + qv) = ((qe g q\r) ' X)2 s o ] (7'27)

The first term couples only states of the same angular momentum; the second
term couples states that differ by one unit of angular momentum; the third
term couples states that differ by two units of angular momentum; and so on.
These higher order terms account for the decays with A/ = 1, 2, and so on.
The higher order terms should give smaller values of M,,, hence larger
values of 7f. Also, the terms with Al 0 should have different energy
spectra because of the additional factors of (q, + q,) in M,,. Therefore, it is
not surprising that the Kurie plot is not fitted by the spectra of these decays.

There are exceptions to the scheme that we have just described. For

example, the decay
JHe — fLi 4 e~ 4 ¥ (7-28)

has AI = 1 but about the same 7f value as those decays for which Al = 0.
This suggests that the Fermi interaction is not completely correct and there
are other terms in the interaction that change the spin of the nucleon. Only
about two years after the publication of Fermi’s paper, Gamow and Teller
suggested other forms of the interaction which permit spin changes.

There are other relativistically invariant combinations of ¥,, v,, %,, and
vy, than those of Eq. 7-2. We can form the scalar 9,%,, and multiply it by the
scalar y,p, to get the scalar interaction

Hy = f 425, 0,)(Fy) (7-29a)

Or we can multiply the pseudoscalar 9,5y, by the pseudoscalar ¢,y;p, to
get the pseudoscalar interaction

HF = f e ,759.) (7-29b)
The vector interaction

HY = f P PPy s) (7-29¢)
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is the one proposed by Fermi and has already been discussed. There is also
the axial vector interaction

H = d* (P, Vs Y )PV uVs¥) . (7-29d)
and the tensor interaction i
A
H/ = J A*2(P 30, 9) (B0 ) (7-29)
where
[
Ouy = E(ygyv = yvyy) (7'30)

In constructing these forms of H the aim has been to make the integrand
a scalar using only ¥,, v,, %,, and , and the y matrices. This exhausts the
possible scalar combinations (unless one introduces gradients, for instance)
and at one time it was thought that H; probably had the form

H; = CsH/® + CpH," + CpH,” + C,H* + CoH,Y  (7-31)

The five coefficients Cg - - - C,» would have to be determined by experiment.

The problem of experimentally determining the five coefficients in Eq. 7-31
may seem bad enough, but then in 1956 Yang and Lee examined the evidence
for the widespread assumption that parity was conserved in all interactions
and concluded that in the case of the weak interactions there was no con-
vincing experimental evidence for such an assumption. They suggested
experiments to test parity conservation. These experiments were done and it
was found that indeed parity was not conserved in beta decay. This indicated
that there must be terms in A; which behaved as pseudoscalars (i.e., changed
sign under inversion) rather than scalars. For instance (9,ysy,)(%,p,) is
invariant under rotation and Lorentz transformation but changes sign under
inversion. A term

Il

o =J A TR CTRTN (7-32)

would predict beta decays which violated parity conservation. The same
applies for the other four couplings in Eq. 7-29. These should all be added to
Eq. 7-31 with coefficients Cg, Cp, Cy,, C4, and Crp. This gives ten coefficients
to be determined by experiments.

We shall not recount the experimental and theoretical struggle which led
to what is now believed to be the correct form of the beta interaction but
shall just quote the result. The correct form is now believed to be

Hy =g f d*x(,y,a0,) P,y .av,) (7-33a)
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where

a = 31 + iys) (7-33b)
and

g = 6.2 x 107 MeV cm?® (7-33c)

This differs from the Fermi form of the interaction only in having a included
in each factor. This form of H; has been very successful in accurately de-
scribing beta decays over an enormous range of lifetimes and decay energies.
The term (9,y,7s¥,) gives the Gamow-Teller part of the interaction in which
the spin of the nucleon is changed.

Problem 7-1. Show that in the nonrelativistic approximation
PpOuPn M, =123 (7-34)
0 u =4

It 1s now believed that there is a universal weak interaction of the form

";’pi)’u‘}’s’ﬂn — {

H;,=g¢g f d’xl.J, (7-35a)
with '

Jy = (Pyyuayn) + (P,y,ay,) + (other terms) (7-35b)
The other terms in the current include terms responsible for the decay of
muons and strange particles. It is the cross product term between (9,7,av,)
and (y,y,ay,) that causes the nuclear beta decays which we have just
discussed.

Problem 7-2. The X° hyperon decays to the A hyperon with the emission
of a y-ray. Since both particles are uncharged, presumably the interaction
with the electromagnetic field is through a magnetic moment. A reasonable
guess as to the interaction Hamiltonian is

eh
Hy=g—706:.(Vx A
SR .
where M is of the order of the mass of the Z° or the A, g is of order of unity,

and 7 is an operator that converts the 2° into a A leaving the spin unchanged.
Estimate the mean lifetime in seconds.
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Particles that Interact Among Themselves

In Chapter 4 we developed a formalism for describing an arbitrary number of
noninteracting nonrelativistic particles moving in an external potential V(x).
We can modify this formalism so as to take into account two body inter-
actions among the particles by a simple addition of a term to the Hamil-
tonian of Eq. 4-5. The new Hamiltonian is

H =fd3xw+(x, r)l:-— 2% L7A T S V(x):l w(x, t)
+Jd3x f B2yt (x, Dt (x, D(x, X)), DpX, 1) (8-1)

where v(x, X’) is the potential energy of interaction between a particle at x
and another at x". If we define an n-particle state vector by Eq. 4-43 and re-
quire that it be an eigenvector of H, then by steps similar to those that led to
Eq. 4-45 we find that C,(z, - - - #,) must be a solution of

[—i Eos i Sv)+433 u(x,-’x,):| C,=EC,  (82)
i 2m i ik

which is the time independent Schrédinger equation for n interacting
particles.
Now let us suppose that ¥(x) =0 and v(x, x") = v(x — x'). We will

expand v in free particle functions. Thus
:k D <

w(x, 1) = Z b)) == 7o (8-3)

Using this in Eq. 8-1 gives
27, 2
H =733 bibi, %‘”— L2 jx L 3555 b b bug b

k; k; m ki k2 kg kg

d*x . ,
f ‘&(ks—kl)‘xet(kl—kl)-x v(x e x!) (8"4)
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\“27@1”
\

ko ky Figure 8-1

After making a change of variable in the last term and using Eq. 2-14, this
can be put into the form

hk?
Z — b+b|.: o i Z Z z v(q)bkl-i-qbk-:—qbkgbk; (8-5a)

where
5(q) = J. % v(x)e" " (8-5b)

1s the Fourier transform of the interaction potential.

The interaction term in H can be represented by the diagram of Fig. 8-1.
At the vertex particles or momenta 7k, and /k, are destroyed by the de-
struction operators b, and b, , and particles of momenta A(k, — q) and
h(k, — q) are created by the creation operators 4y, ,, and & .. The net
result is a scattering of particles with an exchange of momentum /q. Momen-
tum is conserved in the process. The amplitude for the scattering is #(q).

THE BOLTZMANN EQUATION FOR QUANTUM GASES
BOSE-EINSTEIN AND FERMI-DIRAC DISTRIBUTIONS

Let us consider particles that interact through the potential v(x). Let N(k)
be the number of particles of momentum kk. This number will change
because of collisions among the particles. An equation for the rate of change
of N(k) may be written schematically as

kK K k—q k+gq
) N A X
= N(k e 8-6
ot = uzé A K A (8-6)
k+q Kk —gq X k

We have added all of the processes that leave a particle with momentum Ak
and subtracted all of the processes that remove a particle from the state with
momentum /K. To get a mathematical equation from this we replace each
diagram by the corresponding transition probability per unit time calcu-
lated by applying first order perturbation theory to the interaction term in
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Eq. 8-4. Using Eqs. 4-23 and 4-24 we find

0
2 N = ZZ—IL(q)I a[

X {N(k + @N(k' — @[l = N(K)][1 £ N(k')]
— NONEK)[L £ Nk + @IL £ N — @]} (8-7)

where the plus sign is to be used if the particles are Bosons, and the minus
sign is to be used if the particles are Fermions. Note that when a particle is
created at a vertex one gets a factor of 1 + N(k) in the square of the matrix
element. If the state with momentum k is already occupied, then this factor is
zero, so transitions of Fermions into occupied states is forbidden. On the
other hand transitions of Bosons into occupied states is enhanced. Equation
8-7 is the quantum-mechanical generalization of the classical Boltzmann
equation. Note that the scattering probability is proportional to |5(q)?
which is the Born approximation result.
It can be seen almost by inspection that

q* + [k — qf? —kz—kﬂ

‘?—fyag—k) =0 (8-8)
when
1
N(k) = CeE®IT 4 | (8-9)

where E(k) = h%?[2m, and T is an energy and may be identified with the

temperature of the system in energy units. The C is a normalization constant
determined by

Nz =3 N@) = Q J' N E)

s 3 i
Q‘J.d k Py k/2mT +1 (8-10)

where N is the total number of particles in the system. The plus sign is to be
used in Eq. 8-9 if the particles are Fermions. The negative sign is to be used
if they are Bosons. These distribution functions are called the Fermi-Dirac
and Bose-Einstein distribution functions.

Problem 8-1. Show that Eq. 8-9 is an equilibrium solution of Eq. 8-7.

It is possible to prove an H-theorem using Eq. 8-7. For this purpose we
need an expression for the entropy of a quantum gas. Landau and Lifschitz®
give the entropy as

S= +K g {[1 £ NX)]log [1 + N(k)] + N(k)log N(k)} (8-11)
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where K is Boltzmann’s constant. The upper sign applies to Bosons and the
lower sign applies to Fermions. One can show that

5 0 (8-12)
dt

is a consequence of Eq. 8-7. We outline the proof for Bosons; the proof for
Fermions is similar. Differentiating Eq. 8-11 and then using 8-7 give

AR

27 o N2 Lz 2 ' al® 12 2
= k333X jq) a[zm (k+qP+ 1K —q —k*—k )]
x {N + QN — g1 + NI + NK)] — NE)N(K)

X [1 + Nk + @1 + N(k' — q)]}{log [N(k) + 1] — log N(k)}
(8-13)

Next, one rewrites this equation making the change of variable ¢ — —q and
then letting k — k + q and k" — k" — q; we call this our second equation.
We do not write it down. Then, one gets a third equation by making the
change of variable k<> k', ¢ — —q in Eq. 8-13. Further, one gets a fourth
equation by making the change of variable k<> k’, ¢ — —q in the second
equation. Finally, using |6(—q)| = |9(q)| and adding all four equations one
obtains

aN(k) {log [N(k) + 1] — log N(k)}

dt

4—— = EZE—| 5q)[? [fm(lk 4 4K — g — K — k'z)}

X {N(k + Q)NK’' — @[1 + NK)][1 + N(k)]

— NN + N(k + @][1 + N’ — @]}

x {log N(k + @)N(k' — q)[1 + N(k)][1 + N(k")]

— log N(K)N(K)[1 + N(k + @)][1 + Nk — )]} (8-14)
The product of the last two factors is of the form

{x — yH{logz — log y}

which 1s positive when z > y and also when # < y; it vanishes when z = y.
We conclude that Eq. 8-12 is true and that the equality sign holds only when
Eq. 8-8 is true. This shows that the entropy increases monotonically and
reaches its maximum value when the system attains its equilibrium dis-
tribution as given by Eq. 8-9.

The classical Boltzmann equation can be obtained from Eq. 8-7 by taking
the classical limit 7 — 0. At the same time we let 2 — co. Also we assume
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that the gas is far from degeneracy so that | + N(k) =~ |. We define a
velocity distribution f(v) by

S NK) — Q f BVf (V) (8-15a)
and use ) ’
Ak — mv (8-15b)
hiq — mu (8-15c¢)
v .afdd. G0 J du (8-15d)
; Qm)® B2

In this limit Eq. 8-7 becomes

0 fof 25,

2

mu

(ﬁ)'
2 222 gl 2__’_7?' 2__”_2 2

6[2|v+u[+2|v ul®. 2v 20]

X {f(v+u)f(v —u) —fWf()} (8-16)

Problem 8-2. Show that an equilibrium solution of Eq. 8-16 is

f@) = Ce™ 2T (8-17)

Problem 8-3. Show that when a quantum gas is far from degeneracy, Eq.
8-11 reduces to

S = —K ¥ N(k) log N(k) (8-18)
k

which is the classical definition of entropy.

Problem 8-4. Using the classical definition of entropy prove an H-theorem
for Eq. 8-16.

THE DEGENERATE NEARLY PERFECT BOSE-EINSTEIN GAS

Let us examine Eq. 8-10 for the Bose-Einstein gas. Let

2,2
E(k) = ke = Tz (8-19)
2m
and
C = ¢* (8-20)
Then

Np (Hh% © 2% dz
%QT”“(E) = /(=) =L gwote — 1 (8-21)
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We can evaluate f(z,) by a series expansion of the integrand and obtain

© e——ﬂ-zo
fl@) =T 2 —5¢ (8-22)
This is a monotonically decreasing function of z,. For a sufficiently low value
of T there is no value of z, for which Eq. 8-21 is satisfied. If one substitutes
for Np/€2 the density of liquid helium, one finds that the critical temperature
is T, =~ 3.2°K. Below this value Eq. 8-21 cannot be satisfied.
The trouble lies in our replacement of the sum by the integral in Eq. 8-10.
If we treat the zero energy state separately and write

_ 1 3 1
Ny= % — 1 + Qfd k o EotBNT _ (8-23)

where E, = z,7 then it can be shown that this has a solution for z, for every
choice of Np/€2 and T,. As the temperature goes to zero more and more of
the particles go into the zero energy state; finally, at 7" = 0 all of the particles
are in the same state.

We saw in Chapter 2 that when a large number of particles were in the
same state the field of which the particles are the quanta behaves classically. In
Chapter 2 the particles were photons, but this conclusion should be true for
any particles obeying Bose-Einstein statistics. Let us now consider a system
of Bosons at 7" = 0 which is “slightly imperfect™; that is, we retain the inter-
action term in Eq. 8-5. In order to get a solvable model we treat #(q) as a
constant that can be removed from the summation.

Now, the commutator

bobg — bgb, = 1
of the operators of the k = 0 state is very small in comparison with ¥, the
eigenvalue of bgb,, so in a sense these operators almost commute. This

suggest that we treat b, and by as C-numbers approximately equal to JN.
In the interaction term of Eq. 8-5 there will be a zero order term

b bibobe = byt =~ N* (8-24)

There are no first order terms containing one factor of b, or ;" since these
would not conserve momentum. The second order terms are

be’ Y (bibty + beb_q + 4b7b,) (8-25)

q#0
To second order accuracy in Eq. 8-25 we can use b,> = N but we need to do
better in Eq. 8-24. We must use
bo> + > byb, = N (8-26)

q#0
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so that

by' = N2 — 2N 3 b}b, (8-27)

q#0

As a result the Hamiltonian of Eq. 8-5 correct to second order in the “small”
operators b, and b;" is

2
H=S% pip + N% + N% S (bibh + beby + 2biby) (8-28)

k 2m K#0 4

We have reduced the Hamiltonian to a sufficiently simple form that now
we can make a canonical transformation to new operators g, and @, which
puts the Hamiltonian into the form

H = N% + > e(k)ayay (8-29)
k
The appropriate transformation has the form

by + Ly biy

= 8-30
ay m ( a)
+
ar = M (8-30b)

=

v1-—-L2
where L, is a real number whose value is still to be determined. It is readily
checked that '

[ax, af]- = O (8-31a)
[ay, ap]- = [af;, agl- = 0 (8-31b)

follows from the commutation relations for b, and by, whatever the value of
L,. The inverse transformation of Eq. 8-30 is

ay — Lkai}‘

b ek (8-322)
K ;—1 — L
+ —
bt e Ek_..{’kﬂ (8-32b)

J1i— L2
When these are used in Eq. 8-28, it is found that H reduces to the form of Eq.
8-29 if L, is chosen to be
h°k®
L, o bl e e DN 8-33
“ T 2N» { A= } e
where

= 27,2 2
e(k) = \/ 2”“:: £ & (ﬁ—k?’)2 (8-34)

2m
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A2%2
.

m2

~ Cshik
Ak Figure 8-2

Equation 8-29 describes a system of quanta of momentum Ak whose
energies are given by (k). The operators a; and g, create and destroy these
quanta. Note that for small k,

I
e(k) =~ k\/ OV e CBR (8-35)
m

where C, = v 20N[m is a velocity. It may be interpreted as the velocity of
sound in the degenerate gas. These long wavelength excitations are called
phonons. In the short wavelength (high momentum) limit, Eq. 8-34 becomes
27,2
(k) ~ 2.5 (8-36)
2m
This is the energy-momentum relation with which we started. In this limit
the excitations behave like noninteracting particles. The energy-momentum
relation is sketched in Fig. 8-2.
The phonon is a good example of a ““quasi particle.” In a certain approxi-
mation the interacting particles of the gas behave like a gas of different
particles, the quasi particles, which do not interact.

SUPERFLUIDITY

Consider an impurity atom moving through a zero temperature fluid with
an energy-momentum relation such as that shown in Fig. 8-2. The only way
the impurity atom can lose energy is for it to create an excitation in the fluid.
(At nonzero temperature there will already be excitations present in the fluid
which can scatter on the impurity atom and exchange energy with it, but at
zero temperature there will be no excitations present.) If we suppose that the
impurity atom initially has momentum /iq and emits an excitation of momen-
tum 4k then conservation of momentum and energy gives

—4 = —|q — k| k 8-37
2m qu "+ 8k) ( )
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Rotons

Long vortex
Phonons/ / J_ines

ga—
—
__,_....--""
—
e

ik
Figure 8-3

from which

- e/hk " hk[2m
v v

cos (8-38)
where 0 is the angle between ¢ and k& and v = /ig/m is the initial velocity of.
the impurity atom. For phonons ¢/ik > C, so that v must be greater than
C, for a phonon to be emitted. Impurity atoms moving with a velocity less
than a critical velocity (which in this case is C,) can not lose energy to the
fluid.

We can also look at this in a frame of reference in which the impurity
atom is stationary and the fluid flows past it. There will be no frictional force
unless the critical velocity is exceeded. This result should also be true if the
impurity atom is replaced by a rough place on the wall of the tube through
which the fluid flows.

In liquid helium the critical velocity is much less than the velocity of
sound. It is suspected that the energy-momentum relation must be like that of
Fig. 8-3. The critical velocity is determined by the slope of the dotted line
shown. The large momentum excitations responsible for the critical velocity
may be long vortex lines.

Problem 8-5. Do the following experiment. Fill the kitchen sink with
water. Now, move some thin object such as a knife blade through the water,
slowly at first, and then increase the speed a little more each time you do it.
Note that at low speeds there is laminar flow about the object. Above a
critical speed the character of the flow changes. Why?
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Quasi Particles in Plasmas and Metals

In the preceding chapter it was seen how a system of interacting particles
could behave, in a certain approximation, as a system of noninteracting
quasi particles. We discuss two other quasi particles in this chapter. We
suppose that the system under consideration consists of a collection of
electrons and ions that has an overall electrical neutrality. Such a system is
called a plasma. It is assumed to be isotropic and homogeneous. In some
respects this is not a bad approximation to a metal, but of course, properties
related to the periodicity of a true solid are missing from this model.

From the beginning we make the self-consistent field approximation.
That is, we assume that the particles interact with an electrostatic potential
#(x, t) which in turn is to be calculated from the “average” charge density
in the plasma. Just how this average is to be calculated will be made clear
presently. The Hamiltonian for the system may be written as

-

2
H =3[yt V4 e |po = Ho + Hy ©o-1)
where s ranges over the species of particles in the plasma (usually, electrons
and ions) and H; contains the terms involving ¢. We expand y, and y in
free particle wave functions; thus

1Q-x

e
= 3 b= 9-2
ws qz q .\/gz ( )
In the usual way H, becomes
h-2 2
Hy=3 3 - bib,, (9-3)
s q 2??15
The interaction Hamiltonian becomes
Hy=e€2333 bi,be $(a: — Q1) (9-4a)
s 4y qg

96
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Where
) dsx ilaz—a1)-x
‘5(‘13 - q) = Q e ¢(x) (9-4b)

is the Fourier transform of ¢(x).

The Heisenberg equations of motion may be used to calculate the rate of
change of any operator constructed from b, and bj,. We are particularly
concerned with the operator bJ.b . For it we find

h
- a% btby =(Ho + Hy), birbil_ 9-5)

The equations of motion are found to be the same whether we use the com-

mutation relations, Eq. 4-23, for Bosons or Eq. 4-24 for Fermions. In either
case we get

0 i
a_t b;;l’bsq =+ E(Esq' i Esll)b;;l‘bsﬂ

& ;z ($(0 — Dblbw — & — DbSbG}  (9-6)

We now define a function F,(q’, q, ¢) which we call the distribution function
for particles of species s; it is defined as

F(q', 4, 1) = 2 Pla| bigbex|) -7

Where the states of the system are the |«)’s and P, is the probability of
finding the system in the state |«x). The equation of motion for F, is found
from Eq. 9-6 to be

bl i
= F(q,q,t) == (Eny — EQFJ(q, q, ¢
at(QQ)h(q JF(d’, q,1)

T %; {#(p — OF(q’, p, 1) — ¢(q' — P)F(p, ¢, )} (9-8)

We digress briefly to discuss the meaning and the usefulness of the quantum
mechanical operator we have just defined. In Chapter 4 we defined a number
density operator by n = y*y. If we average this by the averaging process of
Eq. 9-7 we obtain

(ny(x, 1)) = X Pola| p3(x, )py(x, 1) |a) (5-9)
Using Eq. 9-2, this may be written as

% 0) = 33 Bbiosa) "’5—

iq-X

Q

e

=>>F(p.p+q1) (9-10)
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This suggests that we define a coordinate and momentum space distribution
function by

QX

dmxmo=§nmp+m022 (9-11)
for then
(ny(x, ) = 3 F(%, P, 1) (0-12)
Furthermore,
(ny(p, 1)) = f PzF,(x, p, 1) = (bhbe) (9-13)

is the momentum distribution function for species s. Equations 9-12 and
9-13 are the properties we would expect of a distribution function. If F, were
a classical function then we could interpret F,(x, p, t)d*r d®p as the probable
number of particles with coordinates in d®x and momentum in d*p. Such a
description is not possible in quantum mechanics; still the quantum-
mechanical distribution function is in many ways analogous to a classical
distribution function.

Equation 9-10 can be used to calculate the charge density in the plasma.
This is then used in Poisson’s equation to obtain

V2 = — dme,n(x, 1)
--33 z%‘*—‘ Fp,p + g, )e'd* (9-14)

In this way the potential is made “self-consistent.” It is clear that an approxi-
mation has been made in replacing the true charge density with the average
charge density. This 1s known as the Hartree approximation in the theory of
atomic structure. The coupled equations Eqgs. 9-8 and 9-14 are the quantum-
mechanical analogs of the Vlasov equations which are well known to plasma
physicists.

Next, we look for small oscillations about an equilibrium in which the
charge density and the potential, ¢, vanish. We write

F(q', q,1) = Fy(q) aq.q' + Fa(q', q)e_iwt (9-15)
and treat F,; and ¢ as small quantities whose products may be neglected.
Equation 9-8 becomes

[Fso(q) — Fso(q)]

Pl =3 i — == (9-162)

where

v{(q', @) = (Ese — Ey)/h (9-16b)
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This may be used in Eq. 9-14 to obtain

v QS z z Z 4778 (5 _ ) { so(P) s{l(p + q)} eia-x (9_17)

o == s(p’ P+ Q)
Writing
$(x) = 3 $(—q)e ™ (9-18)
we see that ¢(—q) must satisfy )
&(q, )$(—q) =0 (9-19)
where

4me Fo(p) — Fyo(p — q)
. = 1
(9, @) +§§q %Q w — v(p,p — 9

1s called the dielectric function of the plasma.
From Eq. 9-19 it is seen that either ¢(q) = O or

e, w) = 0 (9-21)

(9-20)

This equation may be solved for w to obtain the one or more frequencies with
which a wave of wave number q can propagate. Before discussing the
solution of this equation it is convenient to replace Fj,(p) by the correspond-
ing velocity distribution function f,,(v) where v = ip/m. Also we let the
volume of the system become infinite and use

>-a J' &% (9-22)

to obtain

(9-23)

g =1+ 3% f o T = fuolv — ha/m,)

hq® ® — q-v + hg®[2m,
The classical dielectric function of a plasma may be obtained by taking the
h — 0 limit; it is

Ec(‘l} w) =1+ Z (9'24)

s msq

4rre,? [ 3 o0V

D —q-V

There is a little difficulty about ¢ as we have derived it which must be
removed before we can proceed. There is a value of v for which the de-
nominator of the integrand in &(q, ) vanishes; the integrals are improper.
This difficulty and its interpretation has given rise to a considerable body of
literature. Landau®? first called attention to this problem and showed how
it could be resolved by treating the problem as an initial value problem and
using Laplace transforms. In Landau’s treatment the frequency w is replaced
by the Laplace transform parameter which has a positive imaginary part.
This removes the singularity from the real axis and makes the integrals
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proper. Values of £(q, w) for other values of w are then found by analytic
continuation. We shall follow Landau’s prescription to the extent of replacing
w by w + in. Then we obtain &(q, w) for real w by taking the limit n — 0+-.

We may divide ¢ into a real and an imaginary part (for real w) by using
the Plemelj formula

L PA_ndm) (9-25)
x + iy r}—>0+ x

where P indicates that a principal part is to be taken in subsequent integra-
tions. We obtain

(g, w) = &(q, w) + iexq, w) (9-26a)
amet . Fa) = fiolv = 29)
&(q, w) =1+ Z =2, Pfd L (9-26b)
m.q” ©—q-v+ rq°
2m

2

(g, ) = —3 3% f ol o) = folv = hafm)] 8 — q-v + "’—qj
s sq 2ms

(9-26¢)

Generally, the roots of £(q, w) = 0 are complex indicating that the waves
decay or grow exponentially. It may be shown that if f4(v) is a monotonically
decreasing function of » = |v|, then the roots have a negative imaginary
part indicating that the waves are damped. This is always the case in thermal
equilibrium. If the plasma is far from thermal equilibrium, it is possible to
have roots with a positive imaginary part. Such a wave would grow ex-
ponentially; the plasma is said to be unstable.

There is a very useful formula for finding the imaginary part of w when
this imaginary part is small and is due to &,. Let us write

w=Q + iy (9-27)

and assume that both y and ¢, are small quantities whose product is negligible.
Then writing

e(q, Q + iy) = 0=~ &(q, Q) + iy ae,%ﬂ) + ie)(q, Q)  (9-28)
and equating real and imaginary parts to zero gives
£(q, Q) =0 (9-29a)
and
y (9, ©2) (9-29b)

 (36,/0Q)(q, Q)
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The real part of w is given by the first of these equations, and the imaginary
part is given by the second. If the roots of Eq. 9-29a are complex instead of
real then this method fails.

PLASMONS AND PHONONS

In order to simplify the calculations of this section we neglect the quantum
corrections to the frequency and use the classical dielectric function, Eq. 9-24.
We assume that the distribution functions for ions and electrons are degener-
ate Fermi-Dirac distributions; thus

3n
folo) = {am2 TS (9-30)
0 v > U
where v, is the Fermi velocity of particles of species s; it is given by
Ups ™= i(it)/é (9-31)

where n is the particle density and is assumed to be the same for electrons
and ions.
Note that

47v fsa

q- Lo _ u( 0 ) 5(v — vy,) (9-32)

This makes the integrals rather easy to do. We find

4rre,? - 3f.0l0
fqw)=1+3 :32 fdsv e

N’} w—q-v+in
2
=1+ zé Dyps {2 — z,log 1+2 + iwzsu(zs)] (9-33)
s 240 1 — 2
where we have let
g, = —- (9-34a)
qUys
‘ w,s = (4mne’[m)* (9-34b)
and
1 Izl < 1
u(z) = X
() {0 2 > 1 (9-34c)

In searching for roots of &(q, w) = 0, let us first assume that z, 3> 1 for
both electrons and ions. (If it is true for electrons then it is necessarily true



102 Quasi Particles in Plasmas and Metals

for ions since v,; = v,,(m,/m;).) Using

1+z2 21 21
2—zlo ~—== - == 9-35
gl1= 2 328 52 ( )
we obtain
2 2 2 3 3\ .2
s(q’ w): 1 _'wﬂ(l +m£) — éwﬂe Use (1 + m, /mi )q (9'36)
w? m, 5 w*
Setting this equal to zero and solving approximately for w gives
2 2 m, 3, 2.2
e i (1 + —-) + 305, 9 (9-37)
m

These oscillations are plasma oscillations. Their quanta are called plasmons.
Their frequency is nearly equal to the electron plasma frequency w,,, but the
motion of the ions modifies this by the factor (1 + m,/m;). There is also a
thermal correction given by the term v,,%g*. These waves are undamped since
&,(q, ) vanishes for z, > 1 according to Eq. 9-33.

There is also a solution of &(q, w) = 0 with z, > 1 but 2, K 1. (This is
possible since z,/z; = m,[/m,). We make the approximations

1+ 2 2
2 —z1lo o — = 9-38
. 1—z 33, B8
% — £ 168 i + 2 (9-38b)
— ze
Equation 9-33 becomes
o — g T 39 B (9-39)
q,w)=1— — — 22— !
3 w* q"vs," 2 g%’

Treating the last term as a small quantity and solving approximately for w
gives

. 2
w = Q(l _ IQ (wpe/qv)’s) ) (9_40)
2qv,, 1 + 3w,.%/q%,,”
where
9 it (9-41)

\/1 T me/q2vfez
For very long wavelengths the frequency is given by

Vo f gy v,, (m,\%
~ Q = A(J) = _Ii(_e) q 9-42
N ‘\/g Wpe : \*’f§ m ( )

i
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This is the frequency-wave number relation expected for a sound wave with
velocity

2 = e () (9-43)
q s/ 3\m,

Actually, the velocity of sound given by Eq. 9-43 is in rather good agreement

with the velocity of longitudinal sound waves observed in metals. The

agreement is within 209, for the alkali metals. The quanta of these low

frequency waves are called phonons. In the long wavelength limit Eq. 9-40

gives

. 1

W=~ Q(l - L_(ﬁ)é) (9-44
3./3\m,

indicating a weak damping of the phonons.

In concluding this section we will remark that the results are not changed
much if the degenerate Fermi-Dirac distributions are replaced by Max-
wellian distributions. The Fermi velocity v, is replaced by the thermal
velocity v,, = (27/m,)*¥ and some numerical coefficients of order unity are
changed slightly. The biggest change is in the damping of the waves. This is
discussed further in the next section.

Problem 9-1. Use the dielectric function given in Eq. 9-33 to calculate the
electrostatic potential about a stationary charge Q immersed in the plasma.

Problem 9-2. Assume the particles have Maxwellian distributions and use
Eq. 9-24 to calculate the classical dielectric function.

LANDAU DAMPING IN PLASMAS AND CHARACTERISTIC
ENERGY LOSSES IN SOLIDS

We now examine more carefully the damping of waves in a plasma. For
that purpose it is useful to return to Eq. 9-20, replace w by w + in, and use
Eq. 9-25 to obtain the imaginary part of ¢(q, w) in the form

ex(q, w) = 3 ¥ 4m’e[Fo(p) — Fo(p — @)]- 6[hw — Ey, + Eg o] (9-45)

¢ P AL :
Multiplying numeratdr and denominator of Eq. 9-29b by |E|[*(w/4) gives

P
= s 9-46
y=+ e (9-46)
where

P=|¢I2WZs§

weg’

Q

[Fso(p) — Foo(p — @] - 8(iw — Ep, + Epo)  (9-472)
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and

= = (@8(q, @))oma (9-470)
87 Ow .

Now, W may be interpreted as the energy_density of a longitudinal wave
with electric field E = —iq¢, since by Eq. 3-50 it is corrected by just the
right factor to take into account the energy of the oscillating particles of
the plasma. Since the energy of a wave is proportional to the square of the
amplitude, we expect W to decay as e**’!. Also, we can equate dW/dt to
the rate of transfer of energy per unit volume from the particles of the plasma
to the wave which we shall call P. Thus we get

1dw_, P 0-49)

W dt w
as in Eq. 3-39. Now, P is just the rate of energy transfer per unit volume
calculated by using the Fermi golden rule and Eq. 9-4. This rate is the dif-
ference between the rate of emission of quasi particles and absorption of

quasi particles.
We can put the theory of plasmons and phonons on a more formal basis

if we quantize the longitudinal field in a plasma in much the same way as we
did the transverse field in Chapter 2. Let us write

¢(x’ I) s z 47?th§632 %{akaei(k°x—nka.t) 4 a:;e—i(k-x)—ﬂkat)}
ko ka(i wal)
ow o
(9-49)

where ), , are the roots of ¢,(k, @) = 0. There may be more than one root
for each wave vector k so that we must distinguish between them by the
subscript 0. We now calculate the energy in the electric field

1 3y /2
- f &% (E¥(x, 1)) (9-50)

where the angle brackets indicate a time average over a period which is much
longer than a period of oscillation. We find

hQ
ke a:dakd (9-51)

UsS—ke
)
dw ey,

Now, correcting each term by the factor

2
dw oy,
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to take into account the energy of the particles gives for the total energy

H = Y hQy,a(,a, (9-52)
ke

This may be taken to be the Hamiltonian of the system of quasi particles.
We interpret a,* and a,, as creation and annihilation operators of quasi
particles of type ¢, momentum /K, and energy A€, ,.

The interaction Hamiltonian may be obtained from the term containing

¢ in Eq. 9-1. Thus
Hy =3 e[ dzyisy, (9-53)

Substituting the expansions Egs. 9-2 and 9-42 and carrying out the integration
give

dme*hQy, s

Qk® (i cuel)
dw Oy,

{b:l-:l+kbsllaka + bs-:bm+ka:d} (9“54)

The terms in Eq. 9-47 may be represented by the diagrams of Fig. 9-1.

We can use H; in the Fermi golden rule to calculate the rate of change of
N, (k) the number of quasi particles of type o of momentum /k. Schematically,
we write

k,o 5,9 s, q+k
0 N i
— N,k) = 9-55
af ( ) qz,s T /7{ \ ( )
s,q+k s,q ko
We have added all of the processes in which a particle emits a quasi particle

of type o and momentum /k and subtracted all of those processes in which
these quasi particles are absorbed. Substituting the transition probabilities

S,q+k ) k’o» Sq

NS
4O\

s, q+k
Figure 9-1
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per unit time for the diagrams gives

0 2 dme*hQy,
— N (K) =¥ — : O[Egqix — Es — A,]
at q.s h 2 a
Qk*| — we,
dw .

X {Fo(q + K)[1 £ Fo(Q][No(k) + 1]
— Fo(@I1 £ Fe(q + K)IN,(K)}

= 2yN, (k) + S,(k) (9-56a)
where
[ 47 2Qy, ]
y=3|— =t | [Fo(@ + K) — Fu(@)]
07 (—-— ws,)
L w Qiq
X O[E; qix — Esq — AX,] (9-56b)
[ 8722, |
S,k) =3 | — St |Fu@ + B[ & Fo(@)
5 Qk? (— coel)
L aw Qg

X 6[E3,Q+k - Esq - tha] (9'560)

We have let F,(k) be the occupation numbers of the particle states. The plus
sign is to be used if the particles are Bosons, and the minus sign is to be used
if they are Fermions. The damping constant y is seen to agree with Eq. 9-46,
if the change of variable p — q + k is made. The term S, (k) in Eq. 9-56a is
due to the spontaneous emission of quasi particles.

The plasma frequency in metals is usually sufficiently high that Aw,, is of
the order of 10 eV. It is possible to experimentally observe discrete energy
losses of high energy electrons shot through thin metal films. These discrete
energy losses may be interpreted as the emission of one or more plasmons
by the electron.

Problem 9-3. As particles emit and absorb quasi particles their distribution
function must change. Derive an equation for the rate of change of F,,(p) by
a method analogous to that of Eqs. 9-55 and 9-56. The resulting coupled
equations for N,(k) and F(p) are called the quasi-linear equations.
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The Problem of Infinities in
Quantum Electrodynamics

One of the most distressing features of quantum electrodynamics is that
when one uses perturbation theory to calculate some quantities that are
presumed to be small, they turn out in fact to be infinite. In the preceding
chapters we have either circumvented or cavalierly dismissed these infinite
quantities. Now we must face up to them.

ATTRACTION OF PARALLEL CONDUCTORS DUE TO QUANTUM
FLUCTUATIONS OF THE FIELD

We have already encountered one of the infinities to be discussed in this
chapter. This is the zero point energy

W=1> ho, = (10-1)

of the electromagnetic field in a vacuum. In Chapter 2 we dismissed this
infinite energy with the remark that it cancels out when energy differences
are taken. It is often said that the absolute value of an energy is of no sig-
nificance and an arbitrary constant can be added or subtracted. This is not
always true. In general relativity the absolute value of the energy is a physi-
cally significant quantity; it determines the curvature of space.

It is not completely clear that there is a zero point energy term in the
Hamiltonian. It may be that the correct Hamiltonian is

Hrad = z hwkal;{; Agg (10'2)

k.o
107
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If one works backward from this to find what the electromagnetic field
energy is in terms of E and B one finds

mm=i4?4m+Bﬁk—i?mmvxm—@uBym}amm

8 v -V

where the operator 1 /\/ —V2 is defined by

L e = 2 e (10-3b)
=V k
If the operator nature of E and B could be ignored then the last term in
Eq. 10-3a vanishes and H,,4 reduces to the classical field energy with which
we began in Chapter 2. It is possible that classical theory has not been a
reliable guide and that Eq. 10-3a rather than Eq. 2-12 is the correct form
of the energy. If this is so then the zero point energy of the field vanishes.
There is an argument due to Casimir®® suggesting that the zero point
energy exists, and has observable consequences. This argument has been
elaborated on by Lifschitz.3 We give the argument here in its simplest form.
In Chapter 2 we quantized the electromagnetic field in a cubical box of
volume Q = L% Let us now modify this by putting conducting planes at
z = 0 and z = R as shown in Fig. 10-1. We let L become infinite but keep
R finite. We denote by W the energy in the box when the conducting plane
at x = R is absent. When the conducting plane is present the energy in the
box .can be divided into two parts; Wpg, the energy between # = 0 and
z = R, and W, _g, the part between # = R and z = L. Each of these

L

x
Figure 10-1
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energies is divergent. Using w = ck and letting L — oo, we find

W, = -‘Z—" 23 k= dk, dk, dk Ik + K + K (10-da)
_ hel? 2
W 5 Lt ——= (L — R) ||| dk, dk, dk Nk + k* + k, (10-4b)
w, = FeL +°° f f dk, dk \/ k2 + k2 + (2’”‘) (10-4c)
B 0 S R

In Egs. 10-4a and 10-4b we have let L — oo and replaced sums by integrals
in the usual way. In Eq. 10-4c we have kept R finite so that the sum over
k, = 27n/R must be retained as a sum. Although each of these energies is
divergent, the difference between the energy with the conducting plane at
x = R, Wg + Wy_g, and the energy without this conducting plane, W _p
is finite. Thus

L
ﬁ“'L J‘fdk dk{ k2 + k.2 +(2;")

+00
- J. dk k2 + k2 + k;} (10-5)
Letting
dk, dk, = 2k, dk, (10-6a)
2
k2=k?4 k2= ‘;—2 7 (10-6b)
2
ke=" o (10-6¢)
gives

AW = 2”:"‘”52 f { Y o4 n ‘J‘:d‘”‘/’*’ Y wz} 107y

n=—a

The difference of the two infinite quantities in Eq. 10-6 can be evaluated
with the result

ficm*?
= T20%° W
this gives a force per unit area of
Jd (AW hca®
aR( ) ~ 7 240R¢ el

It is noteworthy that this attractive force between conducting surfaces
depends only on the separation R and on the universal constants /4 and c.
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It does not depend on e which is a measure of the coupling of the electro-
magnetic field to matter. This force is of a purely quantum-electrodynamic
origin. It vanishes as # — 0. Lifschitz® has extended this theory to describe
the attraction of dielectric bodies and to include finite temperature effects.
Experimental observations of this force have been reported.®®

SELF ENERGY OF THE VACUUM

There are infinite corrections to the energy of the vacuum when the
coupling between the radiation field and the electron-positron field is taken
into account. To show this we will use the Hamiltonian of Chapter 6.

H = H, + H; (10-10a)
Hy, = Z En,zbfzbn.z 2 2 hwkalfaaka (10-10b)
H;= —12 ; {(“n+k P “ka“m)bwk abp 20k, + HC} (10-10c)
o P.
where
E,;, = +Hcp? + m%t (10-10d)

where the plus sign is to be taken for 2 = 1, 2 and the minus sign is to be
taken for 4 = 3, 4. We denote the vacuum state by |0) and recall that it is
the state with no photons, with no positive energy electrons, and with all of
the negative energy states full (hence no positrons). This vacuum state is an
eigenstate of H, with the eigenvalue
Ele= ¥ EBpj=— (10-11)
p,A=3,4
If we do not worry about general relativity where the absolute value of the
energy is meaningful, then we can define this infinity away by defining a
new zero order Hamiltonian as Hy; = H, — E”. The vacuum state has the
energy eigenvalue of zero for this new zero order Hamiltonian.
Next, we use perturbation theory to calculate the corrections to the
energy of the vacuum due to H;. The first order correction to E,* is given by

EM = (0] H;|0) =0 (10-12)

This vanishes, since the creation and annihilation operators in H; have no
diagonal elements. The second order corrections give

E® =S (O] H; |I){I |Hy |0)
0 < E‘()m _ E(Io)

Now, in H; there are terms that create an electron, create a positron (by
destroying a negative energy electron), and Cret€ a photon. So we get
&ﬁuﬁf"
P

i

(10-13)
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Figure 10-2

contributions to Ey* which can be represented by the diagram of Fig. 10-2.
We find

E® = o J'd:;kfdgp |(Ugik, 17 * Ukatip2)[?
AX 0 (27)° hike + < B2 p* + m2c* + /B2 |p + k|® + mict
(10-14)
But this integral is clearly divergent so Eg* = co. One would find other

infinite corrections to the energy of the vacuum in higher orders of perturba-
tion theory.

Although it is disconcerting to discover these infinities it may be argued
that they are unobservable, since they always drop out whenever one cal-
culates an observable quantity. Dirac’® has argued that infinities of this
kind, which he calls “deadwood,” are of a purely mathematical nature and
can be avoided if one always works in the Heisenberg representation rather
than the Schrodinger representation.

RENORMALIZATION OF THE MASS OF THE ELECTRON

We now suppose that there is one electron present and consider its energy.
Even in classical physics an electron of radius a has an energy of e*/a due
to the electric field that surrounds it. This energy is infinite for a point
electron. In quantum theory there is an additional energy due to the trans-
verse electromagnetic field. It is this transverse energy that is of interest to
us in this section.

To do things properly we should use the relativistic theory. However, in
the interest of simplicity we use the nonrelativistic interaction Hamiltonian

e2

HI=—ip'A+

A® 10-15
mc 2mc® ( )
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P Figure 10-3

The first order correction to the energy of an electron of momentum 7p is

e2

E) = (| 4% |p) - (10-16)

2mc?
where |p) denotes a state with one electron of momentum %p and no photons.
There is no contribution from the p - A term in first order, since this term
connects states that differ by one photon. The 42 term contains operators

that can create and destroy the same photon. Equation 10-16 can be rep-
resented by the diagram of Fig. 10-3. Using Eq. 3-5b we find

2 27he®\ uy, - u 2e* [
EM — £ ( ) ke %o — =" | kdk= © 10-17
5 2mc? g Q ke T mc Jo ( )

This gives an infinite contribution to the energy of a free electron. It is
independent of p, so it is the same for all electrons. It will cancel out whenever
energy differences occur.

A more interesting infinite energy comes from the p+ A term in second
order. This is

o _ € s @ AIDUIp-AlD

m®c® 7 E, — E;

(10-18)

Since A is linear in the creation and annihilation operators for photons, the
intermediate states must contain one photon. The terms in Eq. 10-18 can be

k,o
/ Figure 10-4
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represented by the diagram of Fig. 10-4. Using Eq. 3-5a we find

e’ (21?562) |Aip - wy,
Qkc ] B*p*2m — (K*[2m |p — k|* + hkc)

In evaluating this we make the dipole approximation k& « p. Also, we use

|2

E® = (10-19)

mc® e

kk
2lprul*=p- (Z ukauka) p=p- (1 —k—g) «p = p*(1 — cos*0)

(10-20)
We obtain
E® _ _ e’ (Znhcz) Q [ d®k (hp)*(1 — cos® )
d m2c:\ Qc (277)3J k tike
b 3% meg;g (ﬁp)gj; dk = o (10-21)

Again we find an infinite result, but now E* is proportional to p% We can
combine it with the zero order energy to write

En: E;O) + E::m
2 -]
2m

37 me® Jo

=1 () (10-22)

2Mgys
Now, we can adopt the following point of view. The mass m in the formula
E,” = h?p?%2m is the mass of a “bare” electron which does not interact
with the electromagnetic field. It is fictitious, since the interaction cannot
be turned off. The experimental mass of the electron must include the ever-
present interaction with the field. To lowest order in the interaction it is

given by
2 o]
s 1(1 5 e—f dk) (10-23)
0

Mexpy M 3m-mc*

which must be a finite quantity whatever the fictitious mass may be. This
shift of the mass of the electron from its bare value of m to its observed
value of mgy, is called “renormalization’ of the mass.

THE LAMB SHIFT

According to the Dirac theory, the 2s and 2p,, levels of the hydrogen
atom should coincide. However, in some very beautiful experiments Lamb
and Retherford®? showed that there was a small energy difference between
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In>
s /

ko

In> Figure 10-5

these levels corresponding to a frequency of about 1000 megacycles. This is
known as the Lamb shift. It was suspected that this shift was due to the
interaction with the electromagnetic field, but when calculations were made
of the shift it turned out to be infinite. Bethe® showed that this difficulty
could be overcome by the renormalization of the mass.

We shall follow Bethe in making a nonrelativistic calculation. The terms
responsible for the shift in the energy of the state |n) of the hydrogen atom
can be represented by the diagram of Fig. 10-5. This diagram is analogous
to Fig. 10-4, the only difference being that the states of the electron are
bound states rather than free states. The correction to the energy is

2 2 ’ . 2
E;Z} — eTz (Z#hc ) |<n I po “ka |n>| (10_24)
m?c* 7w ke \ Qkc / E, — E,. — hkc

(We have used p, = (%/i) d/0x to avoid confusion with the wave vector p
which was used in the preceding section. We have made the dipole approxima-
tion in Eq. 10-24.) Using Eq. 10-20 we can simplify Eq. 10-24 to obtain

o2y f * e die — L po ImI? (10-25)

37w mPc % Jo E, — E, — hkc
Equation 10-25 is divergent just as Eq. 10-19 was. However, Bethe reasoned
as follows. For a free electron p, has only diagonal matrix elements and Eq.
10-25 reduces to Eq. 10-21 which we interpreted as the change in the kinetic
energy due to the fact that electromagnetic mass is added to the mass of
the electron. For a bound electron the square of the momentum in Eq. 10-21
should be replaced by its expectation value (n| py* [n). By the completeness
relation

(n] po* In) = 2 |(n'| po Im)|* (10-26)
Thus the correction to the kinetic energy due to electromagnetic mass is
2 ¢ J'°° ('] po Im)|?
—— e k dk . 10-27
37 mc g 0 hkc ( )
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This should be subtracted from Eq. 10-25 to obtain the observable energy
level shift of

2 & [ 1 1
AEY = = — J k dk |{n’ . l: -+ } 10-28
%S ey '] 2o [ E, — E, — hkc = hke ( )

This integral is still divergent, but now only logarithmically. Bethe reasoned
(his reasons will be discussed presently) that in a relativistic theory the
integral should be convergent. This convergence can be simulated in the
nonrelativistic theory by cutting off the integral when the energy of
the photon /ick becomes comparable to mc?, the rest energy of the elec-
tron. Replacing the upper limit of the integral by mc/A and carrying out
the integration gives

2 e

AE® = = ' *(E,,—E,) lo
n 3whcam2§|<nlpln>l( ) - log "

where E,. — E, has been neglected compared with mc?. In evaluating Eq.
10-24 it is a good approximation to replace (E,. — E,) in the argument of
the logarithm by an appropriately chosen average value since the argument
is large and the logarithm is a slowly varying function. Then the logarithm
may be removed from the sum. The sum that remains can be evaluated as
follows.

(] B I (B — E) = 3 (nl p In') ('] p In)}En — E)
=3 (nl B(Hy — E,) [0y (| B In)
= (nl p(Ho — E,) - p In)

2
mc

(10-29)

n’ T

/

= (n| p - (Hop — PHo) [n) (10-30)
where H, is the Hamiltonian of the hydrogen atom. We may use
Hop —pHo = — 227 (1031)
i 0x

where V' = Ze?[r to write Eq. 10-30 as
(nl - (Hop = PHo) Im) = 1 [ 2V (VW) d*

= f 92 V2V d

2
+ EiZ_ 4#292J[wﬂ|2 i(r) d*x

= +2nZe*h® |p,(0)? (10-32)
Finally we get

2

mc
(En' == En)cw

eth
23 [9.(0)] *log

(10-33)

AE® = 47
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The v,,(0) vanishes for states with nonzero angular momentum. For s states

3
[9.0)* = l(g) : (10-34)
T \ha

where 7 is the principal quantum number and a is the Bohr radius.

Bethe calculated numerically (£,. — E,),.. When he applied his results to
the Lamb shift he found a value of 1040 megacycles which is in good agree-
ment (considering the approximations made) with the experimental value
of 1057 megacycles.

The problem of the self energy of the electron is not as bad in the relativistic
theory as it is in the nonrelativistic theory for the following reason. If one
tries to construct a wave packet to represent a positive energy electron using
relativistic wave functions then the negative energy states are not available
for use, since they are already full. As a result there is a limit to how small
the wave packet can be made. It is as if the electron had a finite size about
equal to its Compton wavelength. It turns out that this does not completely
cure the divergence but makes it only logarithmically divergent instead of
the linear divergence of Eq. 10-2]1. Bethe argued that when the subtraction
was made in the relativistic theory to obtain the equivalent of our Eq. 10-28
a convergent result would be obtained. When the relativistic calculation was
done by Kroll and Lamb®® this was found to be the case. The agreement
between experiment and the relativistic theory is now extremely good.

It is now realized that all of the infinities in quantum electrodynamics
are essentially unobservable, since they must be embodied in the finite
values of the observed mass and charge of the particles. This favorable
circumstance has made quantum electrodynamics an extremely successful
theory in spite of the infinities that detract from its esthetic appeal.

ANOMALOUS MAGNETIC MOMENT OF THE ELECTRON

The Dirac equation predicts a magnetic moment of the electron of
—eh/2me. When the coupling of the electromagnetic field is taken into
account there is a shift in this value. We give a very simplified theory of this
effect and then qualitatively discuss the more rigorous theory.

Consider an electron fixed at the origin of the coordinate system. Let
there be a uniform magnetic field B in the z-direction. The zeroth order
Hamiltonian is

Hy=—-—p-B=—o9o,=g—o0, (10-35)
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where g = 2 and w, = eB/2mec. The eigenvalues of H, are

E"” = mghw (10-36a)
where

m= +} (10-36b)

Associated with the radiation field there will be a magnetic field given by

(Zwﬁcz 1

v
VxA=iY ) (k x u,)[ag,e™™ — ag,e™™*  (10-37)

Wy

This also interacts with the magnetic moment of the electron to give the
energy

Hy= —p-(V x A)
ek 3 (2;;!%2
Wy

2mece ke

l

'
) [ - (k x wJllag,e™™ — ai,e™™]  (10-38)

(The o when set in boldface or with subscripts z, ¥, or z denotes Pauli
matrices; there should be no confusion with the subscript o denoting
polarization.)

Just as in the preceding section, Hy can give a second order correction to
the energy of

m| H, |I){I| H1 |m)
E® — E,

EX = 2< (10-39)
1
This correction can be represented by the diagram of Fig. 10-6. We have
denoted by |m) the state in which the electron has the quantum number m
and there are no photons. In the intermediate state the electron has changed
its quantum number to m’ and there is a photon present. By the artifice of
fixing the electron at the origin we have restricted the electron to two possible
states. This simplifies the problem but at the expense of making it somewhat

/

Im > Figure 10-6
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artificial. Using Eq. 10-38 in Eq. 10-39 gives

EP =SS e’ h’ (z'ﬁicz) [(m'| & - k x u,, [m)|*
" W ke 4m®c\ Qu, / ghwy(m — m') — hke
R &k (] & -k x uy, [m)[?

22 (10-40)

T 16rtmie s <) Tk ghwy(m — m') — hke

We can carry out the sum over polarizations and show that
2lm'| ok x w, [m)|* = k*[(m'| & [m)[* — [(m| k- & [m)|*  (10-41)

If we choose m = +1% then this is

k%*(1 — cos? 6) (10-42a)
for m" = 4% and

k%*(1 + cos? 6) (10-42b)

for m" = —4. Here cos 6 = k,/k. The angular integrations can be carried
out with the result

2;,22 oo 1 2
E? = e_f K dk[— -4 —} (10-43)
6mm?c* Jo k  gwelc — k

This is infinite, of course. Furthermore, it is infinite even when B (which is
contained in w,) vanishes. We should subtract this energy which remains
when B = 0, for it cannot be interpreted as an energy of interaction of a
magnetic moment with a magnetic field. Subtracting a term with the brace
replaced by —3/k and calling the difference AE, we obtain

AE(m _ e2h2gwo fw k2 dk
- 0 gwejc — k

(10-44)

T 3am??
The integral is still divergent, so we shall cut off the integral at the upper
limit of kK = mc/h as we did in the Lamb shift calculation. The result is

AE, = —g @( e )ll + (——2ghw°) + (2-—-’—35‘”0)2 log | "= 8l }

2 \3whe mc* mc* ghw,
(10-45)
If we keep only the term that is linear in B we obtain
AE® = g @’( ¢ ) | (10-46)
" 2 \3whe

A correct relativistic treatment gives the factor in Eq. 10-46 as (e*/2whc)
rather than (e?/37/ic). Our crude approximate treatment has led to a result
that is only off by a factor of . We could have gotten the right answer if we
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had chosen the cut off to be \/% (mc/h). The answer is much more sensitive
to the cutoff than it was in the case of the Lamb shift.
The terms in Eq. 10-45 which are nonlinear in B can be interpreted as a
magnetic polarizability of the electron. They are too small to be measurable.
We conclude by describing how a correct calculation would go. First, one
must use the solutions of the Dirac equation in a uniform magnetic field

[ca . (1i . AU) + ﬁmc2:| v, = E, v, (10-47)
c

l

These solutions are well known.®! (The n stands for the four quantum
numbers that characterize a sotution.) In the usual way we expand

v=2 by,

and find for the unperturbed Hamiltonian

B, f dsxw“'[éa- (5 ¥ e i) £ ﬁmcz}p . f P(E? + BY)
i CAo 8’1!-

= > E,btb, + kz hwal ay, (10-48)

The interaction with the radiation field gives the term

Hy

—efd:"zy:"'q - Ay

=—e> > {bﬁbn.ak,fd%ipf:a e, p,e®* + HC}  (10-49)

k.oan.n’

The electrostatic interaction cannot be neglected. The methods of Chapter 8
may be used to write it as

B J‘ P g L OV PP
2 [x — x|

2 + H(x' g
=B % ata it f P gy VOO (Y () pr(X') (10-50)
nn' il |x — x'|
It might be thought that since only one electron is involved the Coulomb
interaction would not enter. However, it must be kept in mind that in
relativistic quantum electrodynamics there is no such thing as a one body
problem. There is always present the infinite sea of negative energy electrons.

One chooses a state of H, in which there is one electron in state » and no
photons. Perturbation theory is used to calculate the shift in the energy of
this state. The H, gives a correction to the energy proportional to e® in first
order and H; gives an e? correction in second order. When the part of the
energy that remains when B = 0 is subtracted, both contributions are
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convergent. The H, contributes

ﬁ 2
mThAC
and H; contributes
2
mhe
so that the net result is
2
AE = —g ﬁ‘?(ﬁ) (10-53)

This correction can be considered to be a correction to the g-factor of
2

= 0.001161 (10-54)

Ao =
g 2mhe

Further contributions to the magnetic moment of the electron arise from
corrections of order e*, e® and so on. The e* correction has been worked out
with the result 5

2\2
_ & 2_9_7.(‘-’_) = 0.001145 (10-55)

2mhe a* \Fc
This result is in excellent agreement with experiment.

Problem 10-1. A calculation of the Lamb shift. due to Welton is very
instructive in that it makes it clear that the origin of the shift is the zero point
fluctuations of the electromagnetic field. It proceeds as follows. Solve the
classical equations of motion for a particle in an oscillating electric field.
Calculate the mean square displacement of the electron assuming that it is
acted on by a superposition of electromagnetic waves and assigning to each
mode of this radiation field the energy Zw/2. Show that the mean square

displacement is 0 B B[ di
e
' (|Ax[*) = = -—(—)f = 10-56
1Ax[ 7 h*\mc/ Jo k ( )
This is infinite, of course. It must be made finite by a suitable choice of cutoffs
at the upper and lower limits of integration. Next, show that the change in
potential energy of the electron due to fluctuations in the electrons position is

. V(x 4+ Ax) = [1 +A8x-V + }(Ax - V) + - - -]V(x) (10-57)
an

(V(x + Bx)) = [1 i -§<|Ax|2>v2] V(x) (10-58)

Treat this second term as a perturbation and use perturbation theory to
show that the shift in energy of a level in the hydrogen atom is

2 ¥ s
AE i ﬁe_(__ﬁ_) lOg 1MAX |"P(0)|2

3 he\mc A



Appendix A

Relativistic Wave Equations

In discussions of relativistic invariance two notations are in common use.
In one of these we denote the space-time coordinates by

g o= By, Y=dy E2==0 IIt=9 (A-1)
In this notation the interval between two neighboring events is
(ds)? = dx, dx, = (dx,)* + (dy)* + (dz)? — c*? (A-2)
In the other notation
By =0C1; =% =Y H=3% (A-3)
and the interval between neighboring events is
(ds)? = g;, dx, dx, = —c2t? 4 (dz)? + (dy)* + (d2)? (A-4)
where g;,, =0, A# pu
oo = —1
g1 = g2 = g33 = |

We are using the summation convention; a repeated index is to be summed
over. For simplicity we refer to these notations as the z, notation and the z,
notation.

Under a Lorentz transformation the coordinates transform as

T, = a,;%, (A-5)

where the elements of a,, are restricted by the requirement that (ds)* be an
invariant. For the z, notation this requirement is a,;a,y = 0,,; for the
Zy-notation the requirement is g,,2,,8,5 = Zap-

It is a postulate of the special theory of relativity that physical laws are
invariant under Lorentz transformations; that is, they take the same form

121
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in a reference system with space-time coordinates z as they do in a system
with space-time coordinates x,. This is easily accomplished if the physical
laws are written as relations among tensors of the same rank, since then all
of the terms in the equation transform in the same way under the Lorentz
transformation, Eq. A-5. This postulate of relativistic invariance is one of
the guiding principles to be followed in constructing relativistic wave equa-
tions.

The other guiding principle is that the frequency of the wave must be
related to the energy of the corresponding particle by the Einstein relation,
and the wave vector of the wave must be related to the momentum of the
corresponding particle by the De Broglie relation; that is

E = how (Einstein)

p=/k  (De Broglie) el
If one constructs a wave packet of the form
w(x’ I) =fd3kc(k)ei(k-x—m(klt} (A-?)

and uses E = E(p) to infer the functional form of w = w(k), then it follows
that the centroid of the wave packet moves with the velocity of the cor-
responding classical particle. This follows from

OE(p) _ dw(k)
op ok

The left-hand side of Eq. A-8 is the particle velocity given by Hamilton’s
equations and the right-hand side is the group velocity of a wave packet.
The equation satisfied by p(x, ) may be obtained by writing

[E — E(p)lp(x,1) =0 (A-9)
and replacing E by —A/i(6/0r) and p by h/i(9/0x), for then

~23- 5 Yees

=fd3k(C(k)[hw(k) — E(hk)]e**o®1 = 0 (A-10)

(A-8)

If one chooses the nonrelativistic relation between energy and momentum

=i (A-11)
2m

then one obtains the nonrelativistic Schrédinger equation

T =V (A-12)
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If one chooses the relativistic relation

E—\/cp + m?! (A-13)
one obtains
ho
= 51';” = VROV + mic (A-14)

which is rather troublesome to interpret. Actually, the right-hand side can
be interpreted as a nonlocal operator, but the prevailing view of the theorist
is that nonlocal operators should be avoided if at all possible. A better
solution is to square both sides of Eq. A-13 and then replace £ and p by the
corresponding operators to obtain

2

i aa:* — RSV + micty (A-15)

which may also be written

2
ot = (29) (A-16)
where
g 1 0° 0° 9*

B=Ve=== or e A-17
o 9z, 0x, S5 0z, 0z, =10}

is called the D’Alembentian operator. It is easily shown that [J* is a scalar
operator.

Problem A-1. Use a,;a,, = 6;, (z, notation) to show that the transforma-
tion inverse to Eq. A-5 is

L= a,;%, (A-18)
Use z,x, = z,x, to show that a,;a5; = J,5. Show that
L - (A-19)
0z, oz}
and that
2 2
4 g (A-20)

oz, 0z, - Oz, 0z, .

If w(z,) is a scalar then Eq. A-16 is a relativistically invariant equation;
it is called the Klein-Gordon equation, although it was originally proposed
by Schrodinger in 1926. Equation A-16 will be relativistically invariant if
w(z,) is a tensor of any rank. If » is a 4-vector, we write it as y,(z,) and the
resulting equation is called the Proca equation. In the special case that the
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rest mass of the particle vanishes, the equation
O2%p, =0 (A-21)

is just the equation obeyed by the vector potential for the electromagnetic
field.

We could go on to consider second rank tensors v,,, third rank tensors
Y,y and so on. The subscripts on » may be considered as additional co-
ordinates of the particle. For instance, the particle described by the 4-vector
wave function y,(z,) has, in addition to the space-time coordinates z,, the
coordinate » which can only take on the discrete values » = 1, 2, 3, 4. It may
be shown that these additional coordinates are related to the spin of the
particle. A scalar wave function describes a spin-zero particle; a 4-vector
wave function describes a spin-one particle; a second rank tensor wave
function describes a spin-two particle; and so on.

As a single particle equation, Eq. A-16 has some undesirable features
which are connected with the fact that it is a second order equation in the
time. As a result it was in disrepute for about seven years after it was proposed.
Then in 1934 Pauli and Weiskopf reestablished the validity of the equation
by reinterpreting it as a field equation which was to be quantized as the
electromagnetic field equations were. It is now believed to be the equation
that describes mesons.

It may appear that by considering tensors of all ranks as choices for ¥
we have exhausted all of the possibilities for relativistically invariant wave
equations. However, as Edington phrased it, ““something has slipped through
the net.” Dirac reasoned that if a relativistic equation is to be first order in
time then in order for space and time to be treated symmetrically it must be
first order in space as well. Let us try to extract the square root in Eq. A-13
by writing

E = c(yp, + %p, + agp.) + pmc? (A-22)
Replacing E by —#/i 00t and p, by h/i 9]0z, and letting each side operate on
p gives an equation which is first order in both space and time derivatives.
If the right-hand side of Eq. A-22 is indeed the square root of ¢?p* 4+ m?2c?
then we must have

C2P2 + }??26'4 — 02('112P;-2 + a22py2 _'_ m32pz2)
+ B2m2ct + 2c2(ey2p + p04)p,p, + 0 (A-23)
This cannot be accomplished if «;, «,, a3, and f are numbers, but it is
possible if they are noncommuting matrices which satisfy
MP= gt == =]
o0 + o, = 0 for i##j (A-24)
a,f + Ba; =0 for all i
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It can be shown that the lowest order matrices which satisfy these relations
are 4 x 4. A convenient choice for the 4 x 4 matrices is

0 o l 0 e
ah(ol 0) ﬁ—(o —1) —_y

where a = («, oy, ;), and we have written the 4 X 4 matrices as 2 X 2
matrices of 2 X 2 matrices. We have denoted by o = (0,, 0y, 03) the Pauli

matrices
0 l) 0 —i | 0) (A-26)
gy = g = O == -
S C *\i o A |
also )
0 O 1 O
0= 1 = (A-27)
0 O 0 1
The wave equation becomes
h
_T%=Hw=+-ﬁ—jga-Vgu+ﬁmczw (A-28)
i i

Since a and f are 4 X 4 matrices, ¥ must have four components for this
equation to make sense. Equation A-28 is called the Dirac equation. It may
be put in a more symmetrical form by multiplying through by g and using
p* = 1. We then obtain

; h 0
imey = y,p ¥ =< Yu7 ¥ (A-29)
i o0z,
where we use the z, notation and y; = —ifle, fori = 1,2, 3, y, = B.

Next we investigate the relativistic invariance of Eq. A-29. If Eq. A-29 is
to be relativistically invariant then in the new coordinate system the equation

(yip, — ime)y'(z,) =0 (A-30)
must be true. Here the prime denotes the variables in the transformed

coordinate system. We assume that since the elements of the matrices.are
pure number they remain unchanged. Let

¥'(2) = Sp(2,) (A-31)
where § is some matrix still to be determined. It follows from Eq. A-19 that
P;; = QuaDi (A-32)

so that Eq. A-30 can be written as
(Yuau1p; — ime)Sy — 0 (A-33)
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Multiplying from the left with S~ gives

(S_lypSan;_p;_ — I'mC)Tp =0 ' (A'34)
Comparing this with Eq. A-29 shows that the two equations are the same if
S7yuSay, = v, (A-35)

which can also be written as
S-19,8 = a,,y; (A-36)

This gives a nonlinear equation for the determination of the elements of S.

The Dirac wavefunctions do not transform as tensors of any rank; instead
they are what are called spinors. Certain bilinear combinations of %’s do
transform as tensors. Let us write

'9”1_]
'Pa + * * * *
p= .y = [yl vEs vy, vl (A-37)
Y3
| ¥4
and
P =19y, (A-38)
and similarly for some other spinor ¢. Then it can be shown that
24 (A-39)
is a scalar,
Pysd (A-40)
is a pseudoscalar (ys = y; V2 Y3 Va)>
Prud
is a 4-vector,
PY2VsVaP. PYsV1VaPs PY1VeVad (A-41)

and §y,y,ys¢ are the components of an axial 4-vector, and

PYoVsb, PYsy1, V1Y

PY1YaPs PY2VaPs PV3Vadb Gl
are the six components of a antisymmetric tensor.
Problem A-2. Consider the infinitesimal Lorentz transformation
Ay = Oyy + &4
where ¢,, is infinitesimal. Show from a,,a,, = ¢,, that ¢;, = —e¢,;. Write

S = 1 + T where T is of order ¢,,. Use Eq. A-36 to show that
S=14+teppy=1+T (A-43)
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This may be used to find S for infinitesimal transformations and then by
iteration S can be found for finite transformations. For example consider
the infinitesimal rotation about the z-axis:

Py = Wy g == Wy 2, = % + €%y, xy = xy — €2, (A-44)
Show that
; -
14+ -¢ 0 0 0
2
0 1—=¢ O 0
& 2
Se=1+2 772 = : (A-45)
0 0 14 —¢ 0
2
0 0 0 1—-=¢
- 2 _
By.iteration show that for a finite rotation through an angle ¢
[ gito/2) 0 0 0 |
0 e—z‘(du’m 0 0
S¢ = 0 0 i(#/2) 0 (A-46)
L 0 0 0 e—i(¢/2l
Note that for ¢ = 27, 9’ = —. This would be unsatisfactory if y itself were
an observable. However, p always enters quadratically into any observable

quantity.
As another example consider the infinitesimal Lorentz transformation:

z, = x, — &tc = x, + iex,

Xy = Ty — I€Z,

2 = 5y (A-47)
Ty = Ty
Show that
e £
Ss=1—5}’1}’4=1+£¢1
and that for a finite Lorentz transformation
1 41— g 1 —+/1-pt
S,g —_ /\/ + o A-48
2J1 — Bt 2/1 — B kil

where f = v/c.
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Problem A-3. Show that for the space reflection transformation z; = —z,
(i=1,2,3),z; = z, the transformation matrix is

Sref =Y = ﬁ (A'49)

Our next task is to solve the Dirac equation for a free particle. We take
the equation in the form given in Eq. A-28. It is natural to look for a plane
wave solution

,w(x’ f) — ueiz’ﬁtp-x—Et) (A-SO)

where u is a 4-component spinor. Equation A-28 becomes
(H— E)u= [co.-p + fmc® — Elu=0 (A-51)

Equation A-51 is four linear homogeneous equations for u. The condition
that a nontrivial solution exist is that the determinant of the coefficients
vanish. It is easily shown that this gives

E = +/c*p? + mect (A-52)

With these values for E the set of equations can be solved for the components
of u. Four column vectors are obtained. Two correspond to the positive sign
of E, and two correspond to the negative sign of E. The solutions for u is
a little complicated because of this degeneracy. A simple shortcut for finding
the solutions is the following. We note that

(H—E)YH+E)=H*—E2=0 - (A-53)

since H? = c%* + m** by Eq. A-23 and E is given by Eq. A-52. Now
H + E is the matrix b

[E + mc? 0 cp, cp_
0 E + mc? cp. —ep,
(H+ E)= (A-54)
cp. cp_ E — mc? 0
| ep, —cp, 0 E — mc?]

where p, =p, £ ip,.

From Eq. A-53 we see that each column of H + E will give zero when
operated onby (H — E). Therefore, the columns of A + E are the solutions we
are looking for. We then multiply each column by a factor which normalizes
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it properly. In this way we find the four solutions

— —

1

L, — R+ mc? 0
2R | cp./(R + mc?)

L epy /(R + mc?) ]

i 0 i

W® = [R+ mc* 1
2R cp_/(R 4+ mc®)

| —cp./(R + mc?) |

- S (A-55)
—cp,/(R + mc)

u® = \/R + mc?| —cP+/(R + mc®)
2R 1

L 0 i

| —cp_[(R + mc?)

u® = [R+ mc? ep/(R + mc?)
2R 0
! 1 ]

We have let R = |E| = ++/ c*p* + m*c*. The normalization is chosen so that

4
g

(A-56)

uv

The solutions #™ and u‘® correspond to £ = +R, and the solutions «‘® and
u®) correspond to E = —R.

It may be shown (see Problem A-4) that the Dirac equation describes
particles of spin —3. Solutions «‘*) and u‘® correspond to the orientation
of this spin along the +z-axis while u®’ and u'® correspond to its orientation
along the —z-axis.

Problem A-4. Show that the orbital angular momentum operator

L=xxp (A-57)
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does not commute with the Dirac Hamiltonian H = ca - p + fmc?, but that

J=L+S (A-58)
where

S = g(%“aa Ug0ly, 0100) (A-59)
1

does commute with H. S may be interpreted as the spin operator. Show that
the eigenvalues of any component of S are +/#4/2. Show that the eigenvalues
of S? are 34?%/4.

Problem A-5. Write the 4-component Dirac spinor as

¥ = [ﬂ (A-60)
p 4

where ¢ and y are 2-component spinors. Show that ¢ and y obey the coupled

equations

hog

| Ot
24
ot

c(éV — gA) » oy + (ed + mc*)¢
i ¢

(A-61)

I =

: c(th—EA)-agb+(eCD—mc2)7;
i i c -
in the presence of an electromagnetic field described by the potentials A and
®. Show that in the nonrelativistic limit ¥ can be eliminated and ¢ satisfies

the equation

2
- =-1—(§v _ E’A)¢ + (D + mAd — L B.os  (A-62)
i 0t 2m\i c 2me
This shows that the Dirac electron has a magnetic moment of
i 2 (A-63)
2me

Problem A-6. A 2-component theory of the neutrino has been proposed by
Yang and Lee. The Hamiltonian is taken to be

H= —co- P (A-64)

(a) Find the eigenvalues and eigenfunctions of H.
(b) Show that L does not commute with A but that

J=L+ga (A-65)

does commute.
(c) Show that a positive energy neutrino has its spin antiparallel to its
momentum.
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Details of the Calculation
of the Klein-Nishina Cross Section

Our purpose here is to calculate M;; of Eq. 6-44 and use it in the calculation
of the cross section for Compton scattering. The necessary matrix elements
are given in Eq. 6-46. We can simplify the notation somewhat by denoting
the Dirac spinors u,,, and 4, ;, by u, and u,. Also we shall denote a - u; and
a-u, by «; and «;. Then Eq. 6-44 may be written as

e (217&(:2) Z {(u;{.‘oc,ul)(ufoc,-u,-) & (u;'“iuz)(ug“f“f)] (B-1)
Jara\ @ )50 E—£n ' E-Eg

The sum over 4 is a sum over the spins and signs of the energies of the inter-
mediate states. We write

Mf‘!:=

Mfi

e (Zwkcz
\/CU,‘.: t wf Q
In evaluating My, it is convenient to choose units so that # = ¢ = 1. The

original units are easily restored by noting that M;; has units of (energy).
In these units

) M, (B-2)

E,=m+k, (B-3a)
Ep=+Vk?+ m? + k,+ k, = Ey + k; + k, (B-3¢)

We have let g, = 0, so the electron is initially at rest. We have denoted the
energies of the electron in the intermediate states by E; and E,. The My, is
given by

M;'i - z {(ﬁ“r%)(uﬁf”f) 4 (ujaiuz)(u;aruf)} (B-4)
131
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We cannot remove the denominators from the sum because both signs of
E; and E, occur in the sum over 4. However, if we multiply numerator and
denominator of the first term by m + k, + E, and the numerator and
denominator of the second term by m — k, + E, then the denominators can
be extracted and we obtain

1
M, = (m + k; + Ey))(u ouy)(uyou,)
: 4 ( +k)2_E22 1)(ff1(
1
+
(m — k,)* — E;?

This can be simplified by noting that

z (m — k; + E)(u,o; * us)(usou;) (B-5)

(m + k;)? — E, = 2mk; (B-6a)
(m — k,)? — E;* = —2mk, (B-6b)
We use
Eu, = Hyu, = (k; - o + mBu, (B-7a)
and
Eyu, = Hyuy, = (—k, - o + mfu, (B-7b)

Just as in the section on Cerenkov radiation, we can use the completeness
relation to obtain

4 4
2 wuy =2 uguy =1 (B-8)
A=1 /=1
where 1 is the 4 X 4 matrix. In this way we obtain

M;; = 2— (u;Qu;) (B-9a)

where

1
Q=E°‘f(m + k; + & k; + fm)a,
— ﬁ-*onz-(m — k; —a-k, + fm)a, (B-9b)
f

Now, o, = —o.f and fo, = —o,f, so that the f§ can be moved to the right
in Q. Then

pu; = u, (B-10)
since q; = 0, and the terms containing fm cancel the terms containing m in
Q. Next, we use Eq. 6-30 to obtain

05;95;‘ + O‘iaf - 2(“t " u)r)l (B'll)
and obtain

Q =2u;-u, + iﬂ ICRR M ;I” (e - K)ot (B-12)
o i
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The differential cross section is proportional to the square of M;;. We are
not interested in the spin of the electron in the initial or final states; so we
sum |My;[® over final spin states and average over initial spin states. The
quantity we want is

1 & < + +N+
= u(u;0 B-13
2 Z: 1 ir=14m® 2 li=1 =14 Qui)(u; f) ( )
We can extend the sums over 4; and 4, by using
Ht--[-lEt-[u __{u;- Ai=1,2
21E] o 1,=3,4 (B-14e)
H, + |E,| {u,. =12
—_— U, = s
2 |E,| 5 Fo=34 (Bl
H; = Bm, E;=m (B-14c)

Equation B-13 becomes

1 . _—
2m’ |E, |, 2;1 1,2_ (WfQ(H, + |Eu)w;Q (H, + |E,)u,)

1
~ 32m*|E,| |E,|

From this point on some tedious algebra is unavoidable. It can be reduced
to a minimum by simplifying the notation and using the properties of the
Dirac matrices. Let

Tr Q(H, + |ENQ"(H, + |E/) (B-15)

k, k,
U =, Uy = —

k; k, (B-16)
% = U &, Xy = Uy * &

Equation B-12 becomes
0 = 2(u; - uy) + a0, + o0, (B-17)

Equation B-15 becomes

1
i 7
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Now it is easily proven that
Trow -+ o, =0 (B-19)

when there are an odd number of the «’s in the product. Similarly, the trace
of such a product vanishes when there are an odd number of f’s among the
factors. When there is an even number of §’s, one may use o;f = —fx; to
move the f’s together and then use f? = 1. In this way many of the terms in
Eq. B-18 may be shown to be zero. What remains may be reduced by using

o0 + o000 = 2(u;-u)l =0 (B-20a)
%o, + o0 = 2(upcu,)l =0 (B-20b)
=l =a2=o0’=1 (B-20c¢)

Equation B-18 reduces to

1
32m* |E,| |E,|

Tr {8m*(u; - u,)® + m(k; — k,)

X [—2(u; » w0000 + op0ty0000,) + 2
+ oo o0000, + o oano00,])  (B-21)
We now use
Tr (o900 + poyot,0) = 8(u, » uy)(uy - wy) — 8(u, - uy)(u; - u,) (B-22a)
Tr (o 0,000,000 + 0 0,0,0,0000,) = 16(u; - u,)*(uy - u,)
—16(u; - u,)(uy - up)(u, - u,)

and
u-u—cos@-—l—-m(l—-l) (B-23¢)
il h\k, Kk
to obtain
1 1. 1k 3}k
B13) = ——lwewy -1 2E 2 g
G = EE ™™ Tt

When this is used in the Fermi golden rule to calculate the cross section,
The Klein-Nishina formula, Eq. 6-53, is obtained.
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Answers and Solutions to the Problems

CHAPTER 1

Problem 1-1. Write

TrC =3 (4| Cl4) = Tr1Cl

Il
tJrJl\/’l WM &M “M '"*M

> (4| BY(B'| C[B")(B"| 4)
B

> (B"| A')(A'| B)Y(B'|C|B")
B”

(B"| B')(B'| C |B")

=
i
13
. (B

1 C|B")

where Egs. 1-41 and 1- 32 have been used.

Problem 1-2. Write
22 A ClA* =3 T (A ClA") (4’| ClA"*
A" 4" 4’ 4"
— 22(‘4" CIA."')(A.”I C+ |A!>
A 4"
= 3 (4’| CC* |4’y = Tr CC*
A’

where Egs. 1-27 and 1-43 have been used.
Problem 1-3. Write

(B'|f(4) 1By = 3 3 (B' | A')(A'| f(4) |[4")(4" | B")

4’, 4
=2 2 (B'| A)f(A)d4 44" | B')
by
=Z< | AV f(A')A" | B)
where Eqs. 1-41 and f(4) [4") = f(A4") |A") have been used.

135
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Problem 1-4. Use the power series for the exponential to write

oliBosl2) _ i i(f)” o"
n=0pn!\2 *
Note that 0,2 = 1. It follows that

fl g _l_(f)n-{— Oa 2, “l'(inB)ﬂ

neven n!\2 neven p!

Recognizing the series for cos #/2 and sin /2 we see that

; 2 3 .
e = 1 cos-ﬁ + io, sin g

which is the same as Eq. 1-53. This problem can also be solved by using
Eq. 1-51. It is convenient to define the vectors

o ()
|z, +1) = and |z, —1) =
0 1

(Actually, these are the eigenvectors of o, given by Eq. 1-85.) Then

(2, ] o | '—< )
3 & 1™
i| o, |2, J) ;

Solving the eigenvalue problem
o, |z, A) = Alz, 7)

we find that 2 = +1 and the normalized eigenvectors are

7, +1) = - (l) 2, —1) = - ( 1)
x, = - " z, —1) = —

J2\1 2N =1
Then Eq. 1-51 gives

@, i| e |z, )y = 3 (2,1 | z, APz, 1 | 2, j)
A=xl

This gives Eq. 1-53. For instance setting i = j = 1 gives
%e{ﬁm + %e—iﬁm — COSg
P
which is the i = 1, j = 1 element of the matrix in Eq. 1-53.
Problem 1-5. Writing L, = yp, — 2p, and L, = 2p, — zp, we find

[L., L,] = (yp, — 2p,)(zps — %Pp,) — (2P — 2P, NYP. — 2D,)
= yp(p,z — 2p,) + xp,(2p, — P,?)
= ih(zp, — yYp,) = 1AL,
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Problem 1-6. We get the vector

o)

from Eq. 1-91a by setting # = 7/2 and ¢ = 0. Then

e-—imt
(T, J17| vy = (1, 1)(8-{-50}:)
= COS wt
The other relations are obtained in the same way.

Problem 1-7. Write

137

(p'| p — pz |p") = f d"p{(p’l = [p")<p"| p [P") — (P'l P IP")P"| % |p")}

= ihd(p" — p")
= (0" = p)p'l = [p")

Equation 1-109 follows from this just as Eq. 1-108 followed from Eq. 1-107.

Problem 1-8. Let

le) = at |a)
Then
nlc) = ataa* |a) =-at(ata+ 1) |n) = (n + 1) |¢)

It follows that
lc) = D, |n+ 1)

The normalization constant is found to be \/ n + 1 times an arbitrary phase

factor.

Problem 1-9. Use Eq. 1-154a to write

(n,| z® )

= E (ny| z [n)(n| = [ny)

A R e S —
s z {\/n + 1 5?11.73-{-1 + \/n2 am.n—-l}{\/n + 1 an.ng+1 + -\/”2 an.ng—-l}

2mow n

h _— —— — —
= ;‘n—w {2ny + 1)0,,.n, + \/nl \/nz + b0, ppi2 + \/nl +1 \/nz '

A similar calculation using Eq. 1-154b gives

(ny| p* |ny)

h N
- M {(2?‘!1 + I)am.'nz - nl\J| n2 + 1 6n1.n3+2 i \/nl + 1 \/"_2 611;.11;—2}

2
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It follows that

1 2
= (ny] P In) + — (my| @* |ng) = hew(n + 3)
2m 2

CHAPTER 2

Problem 2-1. Write

{c| ata|c) = z Zb*b (m| a*a |n)

m==0 n=0

— Z z b;bnnan.m

m=0 n=0
2
o Icln e—-lcl
w GELE
n=0 n!

=] n—1
cl? —|c| |C[
= lel go (n — D!

= Jg*
Equations 2-39b to e can be derived in a similar manner.

Problem 2-2. Using Eq. 2-29 we find

{(Cl ata o aa™ |C> s (C| az |C>e+:‘2k.x_ (Cl at? |c>e-€2k-x}

The necessary expectation values are given in Eq. 2-39. Equation 2-38 gives
|{c| E |c)|%. The difference gives Eq. 2-42.

CHAPTER 3

Problem 3-1. We can construct a three-dimensional space with coordinate
axes n,, n,, and n,. Since there is a mode of the electromagnetic field with a
given polarnzatlon for each triplet of integers (nx, ,» 1), there must be
An, An, An, modes with n_ in the range An,, n_ in the range An,, and n, in
the range An,. Since An; = L Ak,;[2m we can say that

Ll!
(2m)°

Ak, Ak, Ak,



Answers and Solutions to the Problems 139

is the number of modes with &k, in Ak, and so on. Taking the limit as L — o
and Ak, — 0 gives
i - d’k
(2m)

for the number of modes in an infinitely large box with k in d%.

Problem 3-2. The atomic wave functions are of the form

wnlm(x) ~— Rnl(r) Ylm(a, ?S)

where Y,™(0, ¢) is a spherical harmonic. We can write

z = rsin 0 cos ¢ = r(a,¥;' + b, Y1)
y = rsin 6 cos ¢ = r(a,¥;' + b, Y1)
z=rcosf = ra,Y,’

where a,, b;, a,, and so on, are constants. Now

YRV =AY 4+ BY®Y  and YOV = CYD+ DY,

I+1

where 4, B, C, and D are constants. We see immediately that the matrix
elements of x and y vanish unless A/ = 41 and Am = 41, and the matrix
elements of z vanish unless A/ = 4+1 and Am = 0.

Problem 3-3. The matrix element for the transition from the 2p state with
m = 0 to the 2s state is

2p, 0| x |1s) = (2p, 0] z |1s)e

- - 1 - fd"x L o%riay /3 cos? 6
Ta

a
— 42 a3y
This may be used in Eq. 3-19 together with
w_AE_3¢
c hc 8a
to obtain
2 4
T = (§) (%9) 2= 1.6 x 10~ sec
3/ \e*/ ¢

The lifetime for the 2p states with m = +1 and —1 is the same. For these
states the matrix elements of both = and y contribute.
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Problem 3-4. Choose k to be in the direction of the z-axis. Then

(25| u-pe ™ *|1s) = E fdsxwzse“k’u il Yis
i ox

h u-x —ikz
e daxv)%wls &

ia r
Now u is perpendicular to k, so it lies in the z-y plane. Since y,.y,;, has
spherical symmetry the integration over z and y gives zero. Note that this
result does not depend of the dipole approximation. It holds in any order

of the expansion of the exponential.

Problem 3-5. The interaction energy of a magnetic dipole, w, with a mag-
netic field B is

H.m - _l.'. . B
Using B = V x A and Eq. 2-11 gives
- 2 %
B = = 22 5 (PTE o e x wfayee™™ — agse ]
2me ks \ Qw,

Problem 3-6. The initial and final states can be taken to be
|i> = |Is>e |T>e IT)n II'!O ph0t0n5>rad
1
lf) = I15>e\—/"§(IT)g W — e | T2 b © g™ Nt

The lifetime is given by

1= 3 2T H D MAE — ek

final states h
Q0 (eh )2(27rhc2) 27
27)*\2me Q ] rc?

d3k +  —tkexs\|2
xS f X ke — )11 o (k X wdadye i)

where AE = hck, is the energy difference of the levels and ko = 27/2] cm™.
Making the dipole approximation e*** ~ 1. The matrix element is found

to be

1 .
= _5 [(k X uka):!: + I(k X uka)zr] =M
We can show that

»
SIMPP =13 [k x w,), + (k x w,),’] = $k*(1 + cos® 6)
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(To see this, rotate the pair of polarization vectors about k as an axis until
one of them lies in the z-y plane.) Carrying out the integrations gives

1 é%h
3 m%?

ke

I_
-
from which + = 2 x 10 sec.

Problem 3-7. The lifetime is given by
1 Q ( eh )2(21?56‘2) 27
r  (2#n)*\2mc Q JKe

X gf d—kk d(ky — k) [(1s]] o« (k x u,) |2sT)[?

2 3
K f 4K 121+ cos? 0) 8(ky — k) [(Ls| &% |25)|2

T 8mmi? ) k
2 %k
3 mic
If we expand the exponential we find that the matrix element of the first
two terms in the expansion vanishes and

ko® [(Ls] e |25)[®

=K 2
(1s] e™*0*[2s) ~ 71 (15| (kg » X)?|25) ~ — Eé’- (15| r? |2s)

1 1 ek
== ko' [(Ls] r* |2s)[?
— = ke (sl 72 29)
Approximating the matrix element of r* by a2, this becomes
1 1 é
-=— ko’(koa)*
T 54 m®c* o (kod)

Using e*/hic = 13+ this may be written as
S
r  54\a/ \8/ (137)*°

=2 X 107 sec

from which

Problem 3-8. The transition probability per unit time is

2 e (22ke ) Kl 2+ e 157 0( 2L — B, — )
h \mc/ \ Qu, 2m
where
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is the wave function of the ejected electron and

—rla

N |
Y1(x) = (x| Is) = Wi e

is the wave function of the electron in the ground state of hydrogen. When the
transition probability per unit time is summed over all final states of the
ejected electron, the result is equal to the total cross section times the flux

mc/€2. In this way we obtain
2 2
[L e 'Els — hw}
2m

2
('.'.l‘='9 i fq2dqu

2
27 mw;c

and

do Q q
0. T }:a-?l(tll cos 0 [1s)]

We can use

o 41
4n3 3 Ban) V0, HNn0')
where 0, ¢ and 6, ¢ are the angles of q and x respectively. Also

cos 0 = (f—) Yiol0's 6)

We find
(q| cos 6 |1s) = $ari 8o5/ mJr-2 drj,(qr)e™* = 4m’\/£— cos 6f(ga)
where
* : » 2qa
= 2 d S R . AP
1(aa) = | "#* daj(gan)e T

This gives

do 2 2 q

— =238 cos® 6= f2

o~ (hc) i 4

where /g is the momentum and 6 is the direction of the ejected electron.

Problem 3-9. Assuming ¢; = 0, the conservation laws become

2.2
hek; = hck, + gt
2m

k, =k, + q,
Eliminate ¢, and solve for 4, — A; with the approximation that 1, ~ 2,.
Equation 3-41 results.
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Problem 3-10. Write

1 = z -2-—73 |ﬂ/[|2 a(‘5‘23 - Els § 8 HCk]_ — thg)

T finol states

QF 2 3
e ay o2
ko
11s > \\lls> kooa

M=/\,f”ﬂkw2 . E{ T//H ko1

123> lls> k]_O']_ /12¢S>
\T;’-_:_f:-,_ﬂ,;, koao
'l‘/

12s

Vv

The matrix element for the process can be written as

e (21-rﬁc2) 1 M
2me*\ Q /e Jkik,

where

M’ = u, - uy(ls| e *tkd*|9g)
+2 s {<18l P-Umnlp-u(2)  (sip-uw(n)n|p-u|2s)
man E23 — Eﬂ T hckl E2$ — Eﬂ. =) thg
Note that in the sum over intermediate states it is necessary to include both
of the time orders in which the photons are emitted. We get

1 rle d*k, [ d*k

to Dt s> SB[ Ln

T 4(277) o1 02 . kl k2
Since M’ is dimensionless an order of magnitude estimate can be obtained
by assuming that

IM'[* 8(ko — ky — k)

‘?_; %: IM[*= 1
The integrals can now be done and one obtains
T NP
r 127
Using k, = %(1—2;7);1 we find
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This problem has attracted considerable attention from theorist beginning
with M. Géppert Mayer®® in 1931. The lastest calculation by Shapiro and

Breit® in 1959 gives
L - 8.226Z° sec™*

=
Problem 3-11. Write the conservation of energy as

\/hzczqa + mict = \/ﬁzcz lq — k[2 s mict + EEE

n

Solving for cos § = q - k/gk gives Eq. 3-63.

CHAPTER 4
Problem 4-1. Write

ot ) 1 = [ | i, 0 0] - Loy V] wex.
— v 0] = 2V 4 Vi, v, )

Now use Egs. 4-26 to write p(x', H)y+(x, 1) = 6(x — X) + pH(x, Dy(x', 1).
Note that p(x’, ) can be moved to the right of [—(42%/2m) V2 4 V] since V2
operates on the unprimed variables. Next use Eq. 4-27 to write

‘C,U(X', f)‘P(Xa t) = :F’P(Xs f)‘%”(x', r)
We are left with

[v(x', 1), H]_ = f d*z O(x — x*)[_ -

2
V2 + V] p(x, 1)
2m
h2
= [-— — V.2 + V(x’)} p(x', 1)
2m
Problem 4-2. Write

[N, H]_ =fd3xfd3x'[w+(x, Hy(x, Dy (X', r)[— :'Z&:_': V.2 + V:, p(x', 1)
2
— r)[— Eogay V} WX, DY, Dylx, :)}
2m

Use Egs. 4-26 and 4-27 to move the operator y*(x, )p(x, 7) in the first term
through the operators which stand on its right. Then cancel the resulting
expression with the last term. In doing this you pick up a 6(x — x') when
(X, 1) is moved through y*(x’, r) and a — 6(x — x’) when y*(z, t) is moved
through y(x’, 1), so that these terms cancel.
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CHAPTER 5

Problem 5-1

\ e >
k]ﬂ'l k!O’l

k10'1
in >
> ko, > kza'z
In" > \ kooa

Problem 5-2. In Eq. 5-6b interchange n and »” and note that

koo

M(—k,o,n',n) = M*(Kk, o,n, n)

Similar manipulations lead to Eq. 5-8b.

Problem 5-3. No answer necessary.

CHAPTER 6
Problem 6-1. Write

(a-a)(a+b) + (a:b)(a-2) = 2a,b02+ 2a,b,0? + 2a,b,x.?
+ ab (e, + a,2,) + <

Using Eq. A-24, Eq. 6-30 follows. Next

Tr(ee-a)(ee+b) + Tr (- b)(a-a) =2 Tr (a-a)(a-b)
=2(a-b)Trl1 =8a-b

from which Eq. 6-32 follows. Note that since § anticommutes with «; for all 7,

(x-a)f(e-b)f = —(a-2)f*(e-b) = —(a-2a)(x-b)
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from which Eq. 6-33 follows. To prove Eq. 6-34 use Eq. 6-30 to move the
factor (a - &) to the left; thus
Tr(a-a)(a-b)(x-c)(a-d) = 2(c-d) Tr (e-a)(e-b)
—2(b-d) Tr (- a)(a-c)
+ 2(a-d) Tr (@ -b)(x-c)
— Tr (e -d)(ec - a)(ex - b)(ex - ©)

Now, when Eqgs. 6-31 and 6-32 are used, Eq. 6-34 is obtained.
Problem 6-2

A a2
|
ky N |
I
\ qi,}\;'
—q2
Y > aM
A
I
|
|
ko | a2
CHAPTER 7

Problem 7-1. Using the definitions y5 = ,%,V3Ve, Yu = —ifo,, and y, = f

we find
S
Vs =
-1 0

0 o
fori=123
o, 0

7

‘ ‘(1 0)
iy, = i
o =1

1y
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Then

_'O'i 0
vy = fori=1,2,3

_ 0 1
WaVs = {0

All matrices are written as 2 X 2 matrices of 2 X 2 matrices. In the non-
relativistic approximation
u?’l
Yo = 0

1 0
Pp = iy’ = i(u3, 0)(0 1) = i(u3, 0)

and

where u, and u, are 2-component spinors. Equation 7-34 follows.

Problem 7-2. This problem is analogous to Problems 3-5 and 3-6. We
may write

;j‘ji kz (2;;:)62) TG - (k X uka)[akae‘k.x = al-l-a'e_‘k.x]
g k

Assume that the initial and final states are

|i) = |3° 1) Ino photons)
)= 18,122 1g =)

I= —

Then

ety = 25
(f| Hy |i) Mo

2mhic®\%
SCDZ) (k X ukcr)z

The lifetime is given by
2 2 3
1. 8> (eﬁg ) (Z”ﬁc )2—-” f K (1 x )2 OAE — hick]
r (2#7)*°c \2Mc Q / k) ke
By comparison with Problem 3-6 we find

-1-'-.»-'--...' egﬁ k3

&) 0
r  M**?

with
1 1 2 2
ko-’-“"AE = —'[MEC s MAC]
hic hic
_AMc
h
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Now My = 1192 MeV/c? and M, = 1115 MeV/c?, so that

AM = 77 MeV/c?
We find 7 ~ 10718 sec.

CHAPTER 8

Problem 8-1. When Eq. 8-9 is substituted into Eq. 8-7 it is found that
the quantity in braces vanishes whenever the argument of the é-function

vanishes.

Problem 8-2. The proof is almost identical to that of Problem 8-1.

Problem 8-3. When a gas is far from degeneracy, N(k) « 1 and Eq. &-11
reduces to Eq. 8-18.

Problem 8-4. The proof of the classical H-theorem parallels almost exactly
the proof outlined in the text for bosons.

Problem 8-5. The critical speed (about 23 cm/sec) is the velocity of propaga-
tion of surface waves on the water. Above this, velocity waves propagate
away from the moving object. From a quantum-mechanical viewpoint we
may say that the moving object can emit hydrons (this is what Synge®® calls
them) and conserve momentum and energy when its velocity exceeds the
velocity of propagation of the wave. This is another example of a very general
phenomena that have applications to Cerenkov radiation, superfluidity, the
wake of a ship, sonic booms, characteristic energy losses of electrons in
solids, and Landau damping of plasma oscillations.

CHAPTER 9

Problem 9-1. In the absence of a plasma the potential would be Q/r. The
Fourier transform of this is

__47Q
¢(q) = g

In the presence of a plasma this must be divided by the dielectric function
evaluated at zero frequency (since Q is stationary) to obtain

__ 40
$(q) = Od%(q.0)
where
&g, 0) = 1 + o

q222
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and

(&)

1
223

inverting the Fourier transform gives

80 == f g b(q)e*

Q —r/i

= =28
r

The field is shielded out in a distance about equal to A. A similar result is
obtained when the particles have a Maxwellian distribution. In this case

T A

is the Debye length.
Problem 9-2. Let

N 2.8
fo(v) ==z e
m o

o= {—
m
is the thermal velocity. Forget about the sum over species in Eq. 9-24 for

the time being. It can be reintroduced later. Take q along the z-axis and
perform the integrations over v, and v, to obtain

where

2 +0 _szaz
i 8 s 1 — 8mne® 1 f i, qu.e

mq® o\ /m ® — qu,

B 2. %
P la
= 1 4 (Sﬂ'ne )_1_ _ (817119) J dv,
ma?® | ¢* N w — qu,
1 l ([w W
=14 = ——(2)z(=
* A%q® 22 2(qm) (qoc)

maa 4 T %
P EY
8wne’ 4mne’

2
—%

e

where

and

+o0
Z(2) = dz -

—0 ARl

is the Fried-Conte function.®® It has been tabulated.
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Problem 9-3. Write

P p-l-ks
Fale) 2 \/
-I-ks /\ P, s

P,

Replacing the diagrams by the corresponding transition probabilities per unit
times gives

m —_ 2 2_?7 47TeszﬁQ]_‘6
ot ko A ng( 0 )
— W&
Qko

ow
{O[Espsx — Eop — B )(Foo(p + K)[1 & Fo(p)]
[N,(k) + 1] — F(p)[1 £ Fyo(p + K)IN,(K))
+ O[Epx — Eop + BN (Foo(p — K1 £ Foo(p)]
N (k) — Fyo(p)[1 £ Fyo(p — K)I[N,(k) + 1]}

The quasi-linear equations were first derived classically by Drummond and
Pines®” and by Vedenov, Velikov, and Sagdeev.®® The quantum-mechanical
derivation is due to Pines and Schrieffer.®

CHAPTER 10

Problem 10-1. Solving

2
iA}(=-—E
dr® m

on the assumption the E oscillates with frequency w gives

e

Ax = — E

maw®

and
e2

m2w*

|Ax|® = E?
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Now, we let E be one of the modes of the radiation field and obtain

18 e’ L 2
<|AX| ) = T 2_4 Eka
m k.o wk
We use

and obtain

2mh h e 1
(AxP) =2 3 =
k,dwk

Q m?
_ 2mh e® Q ZJ‘dsk 1
Q m*(Q2n)® (kc)®

_zé(QIfﬂ
a fic \mc k

When the sum over field modes is made the term Ax - V and the off-diagonal
terms in $(Az « V)? vanish. One is left with Eq. 10-58. Letting

V=%
r
we find
1 N VI — 2'”'3 2 _‘_1_3_(__ (kmax)
YAz V2V < () 30 = 1 ) og (1222) 49

This gives an energy shift of

4 ¢ ( k )2 (kmu) 5
AE = = =—(—)log (—=2=) | (0
3 2o \one) OB P [%(0)]

Which agrees with Eq. 10-33 if the cutoffs kp,y and knin are properly chosen.
The reader is referred to Welton’s paper for the arguments justifying the
choice of kp,x and Kyin.

APPENDIX A

Problem A-1. Multiply Eq. A-5 by a,, to obtain
By = Qy@ya %y = 0y3%; = T,
Now use Eq. A-18 twice in 2,2, = z,, to obtain

'
p.,.aux :53 = :t: :Uu
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If this is to be true for all z, it follows that a,;as; = d,5. By the chain rule
of differentiation

Similarly
32 62 6 32 82
9z, 0z, O "oxj0x, ' Oxj0x, 0x}0z]
Problem A-2. Write

apva,u;. = (6,uv + Spv)(aua + e_uv)
=S 6‘,‘1 ‘+‘ 8;_‘, + 8‘,2 + 6‘“\,8#;_ = 6;“1_
Since ¢,, is infinitesimal the term &,,¢,, is negligible and it follows that
&,, = —&,,. Equation A-36 becomes

(1 =120+ T) = Az + €72

from which
YuT — Tyu = &u¥a
This is easily seen to be satisfied by

T = ia,u v uVv

when vy, + ¥y¥u = 20,, is used.
The Lorentz transformation corresponding to a rotation through an angle

¢ about the z-axis is given by

z{ = x, COS ¢ + , sin ¢

xp = —z, sin ¢ + z, cos ¢
T3 = Ty
Ty = 24

from which

A3z = gy = 1

ay = @y = Cos ¢

@y = —ay = +sin ¢
and all others are zero. For a rotation through an infinitesimal angle ¢ we
have

E1p = —&y = +¢
SO

Se =1+ tepyiys + teayys
£
e
> Y12
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We can find S for a rotation through a finite angle ¢ by iterating this the
proper number of times. That is

P dle
Se = (1 £ iylyz)

In the limit ¢ — 0 this becomes

— @21y
Sy =c¢e

By direct calculation one finds

and so Sy is given by Eq. A-46.

For the next part of the problem it is useful to consider the finite Lorentz
transformation as a rotation in the z, — z,-plane through an imaginary
angle ¢ such that

N T .
fl_ﬁz’ fl_ﬁa

where f = v/c. If ¢ — & where 0 is infinitesimal, then

cos ¢ =

Sé=1+a?’1}’4—1+'1,f°‘1
Then
i \¢
S¢= (1 _[_léa) _e:(¢f2)=1
2
=] 1 iqﬁ" .
";on!(z)“l
¢ ¢

—lcos—+oclsm-
2

_1/1+cos¢ \/1-—(:0395
2

=1J1+J1—ﬁ2 Ji—p
2J1 - 2\/752
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Problem A-3. For the space reflection transformation
Ay = Qg = Agg = —1 and ag = +1

Equation A-36 gives

S7'S = —y
57,8 = —,
S7'y3S = —y,
S48 = +y,

These equations are clearly satisfied by S = y,, since

Ya¥Vi = —ViVa fori= 1: 23 3
and
v =1
Problem A-4. Consider
L, = zp, — yYP,
The lack of commutativity must come from the terms in H containing p,
and p,. We find

h
[Lza pz]—-— _— = : Py
)71
[Lzs py]—— = + '1_ Pz
SO
hc hc
[Lzs H]— = = % zPy + T %yPa
Now consider
h
Sz = %y
Tha
We find
[Sm a:c]— = — T«
1
[Sa o] = 2 2,
l
[st az] =0
SO

[S., H) = —hca,p, + hco,p, = —[L,, H]

When L, and S, are added to obtain J,, their sum commutes with H. A similar
proof holds for the other components.
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g 0
s=2s 3
2\0 o

It follows that the eigenvalues of the components of S are //2 and the
eigenvalues of S? are 3/4%/4.

One can show that

Problem A-5. Using Eq. A-25 for @ and f§ and making the usual replacement
p—p — e/cAand E — E — e® it is straightforward to derive Egs. A-61. In
the nonrelativistic limit we have y « ¢ for a positive energy electron.

Furthermore,
¢ .
]: ~ ¢—iMEt
X

and E ~ mc?, so that Eq. A-61b gives

x:-1—(£V—EA) b

i c

Next we can show that
(a-o)(b-c)=a-b+ic-(axbh)

when a and b are noncommuting operators. Applying this to

a=b=(§V—gA)

i c
‘(—éV—gA) ‘o
i &

Equation A-62 results.
Problem A-6. Write

z P-
Hiyp = _C[P jl(%) _ E("Pl)
P+ —P:1\Ye Y2

Where as usual p,. = p, + ip,. Equating the determinant of the coefficients
to zero and solving for E gives

gives

2 2
- (?V—EA)—@(W Ao
c

I c

E? — czpf _ c2p+p__ = B2 Czpz =8
from which E = +cp. The properly normalized eigenfunctions are

1 \/p'_' P: i
2p
_ P+

L /2p(p — p.)

Y+ =
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and

- P+
L /2p(p + p.)d

The proof of part (b) is almost identical to that of Problem A-4. Writing

p-c
g =
p
For the spin operator in the direction of the momentum gives
= —Eo,

It is obvious that H and o, have the same eigenfunctions. The eigenfunction
corresponding to the eigenvalue E = +cp of H has the eigenvalue —1 of
o0, and the eigenvalue —#/2 of (4/2)a,.
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Quantum mechanics began with two quite different mathematical formula-
tions: the differential equation of Schrédinger! and the matrix algebra of
Heisenberg.? These two points of view were ultimately synthesized in the
transformation theory of Dirac.® A third formulation, the space-time
approach of Feynman,® has played an important role in quantum-field
theory, but it'is not used in this book. The theory of Hilbert space was
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the foundations of quantum mechanics is the book of Jauch.® In writing this
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CHAPTERS 2 AND 3

A collection of some of the fundamental papers in quantum electrodynam-
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the emission and absorption of radiation quantum mechanically. The
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method we followed in Chapters 2 and 3 is essentially that in Fermi’s very
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CHAPTER 6

There is a large literature on quantum electrodynamics. I have already
mentioned the collection of original papers by Schwinger,® the review by
Fermi,'® and the book by Power.?> Some modern textbooks on the subject
are those of Heitler,2! Jauch and Rohrlich,?®? Achieser and Berestetski,??
Bjorken and Drell, and Thirring,*® The books of Wentzel,? Schweber,?’
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CHAPTER 7
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