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To Sara, Heather, and my mother 



The trouble with this world is there are too many metaphysicians that don't 
know how to tangibilitate. Fat her Divine 

Preface 

For many years it has been customary for all graduate students in physics at 
the University of Tennessee to take a one-year course in quantum mechanics. 

is devoted to re la t ivw . .  . 
As it  is now taught, & third Quarter of this course 
Have eand No textbook seemed suitable for a one- 
quarter course in field theory for students of diverse interest, few of whom 
planned to become theoretical physicists. I therefore prepared my own notes 
for the course. These changed from year to year, but ultimately settled down 
enough so that they could be typed and distributed to the students. It then 
occurred to me that others confronted with the problem of introducing 
students to field theory in a brief period of time could find these notes useful. 
With this in mind the notes were expanded and rewritten in book form. 

In rewriting the notes 1 found it advisable to add an introductory chapter 
on the formalism of quantum mechanics. This contains material that I 
present in the first quarter of our quantum mechanics course. The well 
prepared student may find it sufficient to skim through this chapter to acquaint 
himself with the language and notation that is used. It should serve to 
introduce the less well prepared student to certain concepts used throughout 
the book. It is not intended to be an adequate introduction to quantum 
mechanics for the student with no previous acquaintance with the subject. 

It seemed to me to be pedagogically sound to introduce difficult concepts 
gradually and to apply the theory to physically interesting problems at an 
early stage of the development of the theory. Therefore in Chapters 2 and 3 
we quantize the transverse part of the electromagnetic field, define an inter- 
action Hamiltonian with nonrelativistic charged particle~, and apply the theory 
to some elementary processes in which photons interact with matter. In 

T'P t 

fielrf. Because it is relatively new it does not appear in the standard textbooks 
on quantum electrodynamics, I include it because of its simplicity and because 
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it clarifies the relation between the classical and quantum-mechanical theories 
of the field. One of the applications treated in Chapter 2 is the quantum 
theory of brenkov radiation. This phenomenon is interesting and important, 
and it is also quite simple, since it is a first order process and involves only 
free particle states. brenkov radiation is treated again in Chapter 6. The 
notian that a particle moving faster than a some wave can emit the wave has 
important applications in such fields as superfluidity and plasma physics ; 
it therefore seemed desirable to introduce it early in the book. 

Having seen how photons emerge from the quantization of the electro- 
magnetic field, the student is prepared to consider the idea that every particle 
is the quanta of some field. This idea is explored in Chapter 4 where the non- 
relativistic Schrodinger equation is quantized. There it is shown that the 
familiar elementary quantum mechanics is contained in this quantized field 
theory, but there is more to it than that; there is the possibility of the creation 
and destruction of particles by the interaction of fields. In Chapter 5 I 
discuss the interaction of quantized particle fields with the quantized electro- 
magnetic field. Nonrelativistic bremsstrahlung is treated as an example. 
Finally, in Chapter 6 1 discuss quantum electrodynamics in all of its glory. In 
accordance with the modest aims of this book this discussion is necessarily 
brief and incomplete. Some tedious calculations have been relegated to an 
appendix or omitted entirely. All the discussion of infinities and renormaliz- 
ation has been postponed until Chapter 10. 

After quantum electrodynamics, the most successful application of quan- 
tum field theory has been the theory of beta decay. This theory is briefly 
discussed in Chapter 7 as an interesting and important application of the 
ideas of the preceding sections. . . In recent years ~ ~ y ~ t h e a r _ v _ h ~ f ~ f i n c  in 

. An introduction to 
these applications is given in Chapters 8 and 9. 

For all of its many successes quantum field theory contains grave diffi- 
cul ties connected with the divergent integrals that appear in many calculations. 
I scrupulously avoid these until Chapter 10, where they are finally discussed. 
I try to give the reader some idea of how the infinite quantities are disposed 
of in quantum electrodynamics by absorbing them into the mass and charge 
of the particle-a process known as renormalization. In calculating the Lamb 
shift and the anomalous magnetic moment of the electron I follow the non- 
relativistic theory of Bethe rather than the more exact relativistic theory. 
This avoids some computational diffculties but serves to introduce the ideas 
of renormalization. 

To make the book self-contained, an appendix on relativistic wave 
equations is added. All references and some notes concerning these are 
collected at the end of the book. 
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The final form of the book contains considerably more material than the 
lecture notes with which I started. I tried to include a variety of topics in 
order to give the instructor and students some freedom of choice. 

A number of problems are scattered throughout the text. These are in tended 
to supplement the material in the text and to give the student an opportunity 
to test his understanding, The difficulty of these problems ranges from fairly 
trivial to fairly difficult. Answers and some solutions are given in an an-. - 

I am grateful to Dr. Alvin H. NieIsen, Dean of Liberal Arts, and Dr. , 
WilIiam M. Bugg, Head of tne Department of Physics, for their very real 
encouragement in the form of a reduced teaching load which made the writing 
of this book possible. Many of my colleagues have encouraged me by their 
interest and suggestions. 1 am particularly grateful to my quantum mechanics 
students of this and previous years who have cheerfully endured my experi- 
ments in presenting this subject, I also thank Mrs. Patty Martin, Mrs. 
Wylene Quinn, Mrs. Janice Hemsley, and Miss Jane Pears'on for typjng the 
manuscript. Finally, I owe a real debt of gratitude to my wife and daughter 
for their patience and understanding during the writing of this book. 

Kmxoille, Tennessee 
October 1971 
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A Pedestrian Approach 
to Quantum Field Theory 



The Formalism of Quantum Mechanics 

It is not an easy task to state the "rules" of quantum mechanics. Many 
textbooks do not even try and yet succeed in conveying to the reader a 
working knowledge of the subject. In this book the rules o f  quantum 
mechanics and some elementary results are collected in one place for ease 
of reference. In the sections that follow we give a brief account of the founda- 
tions of quantum mechanics. A more detailed discussion of the subject can 
be found in von Neumann5 and in the more recent book by Jauch-Ve  
begin by discussing the mathematical structure known as a Hilbert space 
and then give the rules for describing the real world in terms of this mathe- 
matical stru-cture. 

HIT,BERT SPACE 

A Hilbert space 5 is an abstract set of elements called vectors la), lb), 
Ic), and so on, having the following set of properties : 

1. The space 5 is a linear vector space over the field of complex numbers 
such as I., and p. It has three properties. (a) For each pair of vectors 
there is determined a vector called the sum such that 

la} + Ib} = Ib) + la) commutative (1-1) 

- (la) + 16)) + Ic) = la) + (1 b )  + Ic)) associative (1-2) 

(b) One vector 10) is called the nu11 vector. 

la> + 10) = la> 

(c) For each vector la} in 5 there is a vector 1-a) such that 
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For any complex numbers 3L and p 

a(la> + Ib)) = 14 + lb3 (1-5) 
(a + PI la) = la) f P la) (1-6) 

AP la> = la)) (1-7) 

1 la> = IaS (1-8) 

2. There is defined a scalar product in 5 denoted by (la), ib)) or (a I b).  
This is a complex number such that 

(la>, 1 IbD= L(la), Ib)l (1-9) 

(la>, Ib) $- Ic)) = (la>, 16)) $. (la), Ic>) (1-10) 

or in the other notation 
(a  / b )  = (b 1 a)* ' (1-12) 

It follows that 
(1 1 . f ) .  Ig)) = A*(lf ), lg)) = n*(f 1 g) (1-13) 

(lfi) 4- IfiL Ig)) = (f~ I g) + (f2 I g)  (1-14) 

We define the norm of a vector by 

The following inequality, known as Schwarz's inequality, can be proved: 
L 

The equality sign holds only when 1 f) = Ig). 
3. The space 5 is "separable." This means that these exists a sequence 

If,) in 5 with the property that it is dense in $ in the folIowing sense: for 
any I f )  in 5 and any E > 0 there exists at least one element If,) of the 
sequence such that  

li If > - If,>Il < E (1 - 17) 

4. The space is "complete." This means that any sequence If,) with the 
property 

lim Il lfa> - I f,S I1 = 0 
n ,  m--a 

(called a Cauchy sequence) defines a unique limit If } which is in 5~ such that 

If  the vector space has a finite number of dimensions, Axioms 111 and IV 
are superfluous, since they follow from Axioms I and TI. However, they are 
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necessary for the infinite dimensional spaces which are usual in quantum 
mechanics. 

Now we give some definitions. Two vectors I f )  and Ig) are said to be 
"orthogonal" if (f I g)  = 0. A set (1 fn)} is said to be an "orthonormal 
system" if 

(fn Ifm) = Snm 11-20) 

It is said to be a "complete orthonorrnal system" of 5 if for every If) in 5 
we have 

If } = Z: a. If*} (1-21) 
'n 

where the an's are complex numbers. Then 

and 

The complex numbers {fa 1 f) are called the representatives of 1 f). If an 
infinite number of terms is required in the sum in Eq. 1-21, then 5 is "infinite 
dimensional." This is the usuaI case in quantum mechanics. 

OPERATORS IN HILBERT SPACE 

A linear operator A is defined as a mapping of 5 onto itself (or a subset 
of 5) such that 

A(a I f )  + B Ig)) = aA If) + PA Ig) (I  -24) 

It is said to be bounded if 

HA I f > l l  5 c lllf>ll 
with C constant for all 1 f) in 5. 'A bounded linear operator A is continuous 
in the sense that if If,) -+ I f )  then A 1 fa)-+ A If). We say that A = B if 
A1 f) = B l f )  for all 1 f) in 5. 

We define 

identity operator 1 : 1 I f )  = I f )  (1-26a) 

null operator 0 : 0 I f )  = 10) (1-26b) 

for all I f )  in 5, In general AB # BA, We call [ A ,  B] = AB - BA the 
commutator of A and B. 
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The "adjoint" A+ of.a bounded linear operator A is defined to be a bounded 
linear operator such that 

(k), A If )) = (A+ Ig), If (1-27a) 

for all 1 f) and ig) in 5. This may also -be written as 

(81 A I f )  = (f 1 A* Ig)" (1-27b) 

The adjoint has the properties 
(uA)+ = a*A+ 

( A  + B)+ = A* 4- B3. 
(AB)f  = BfA+ 
(A+)+ = A 

An operator A is said to be "Hermitian" if A = A+. Note that this implies 
that 

< f I  A I f )  = (f I A f  If )* = (fI A If >* = real (1 -29) 

ElGENVECTORS AND EIGENVALUES 

If A is an operator and there exists a vector IA') + 10) such that 

where A' is a complex number, then we say that IA') is an "eigenvector" 
of A corresponding to the "eigenvalue" A'. Hermitian operators have the 
following properties : 

1. The eigenvalues of a Hermitian operator are real. 
2. If ]A')  and I A") are two eigenvectors of a Hermitian operator A ,  and 

A' f A", then (A' 1 A") = 0. 
3. The eigenvectors of a bounded Hermitian operator after normalization 

form a denumerably complete orthonormal system. Consequently, its 
eigenvalues form a discrete set (discrete spectrum). 

It follows that an arbitrary vector Iy) may be written as 

with 

la) = 2 IA1)(A' I 8) 
A' 

(A' I A") = d,.,. 
The scalar product of two vectors is given by 
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A useful trick for remembering this is to write the unit operator as 

1 = 1 lA'}{AII (1-34) 
dl ' 

Then 
Iv) = 1 Iy) = 2 lA1)(A'  I Y) (1-35) 

dl ' 
and 

(0 I y )  = ( @ I  1 IY) = 2 (0 ( A ' W '  I W) (1-36) 
a' 

Now, every quadratically summable function (A' I y} represents a vector 
in a Hilbert space. The abstract'Hilbert space therefore is mapped onto the 
space of quadratically summable functions on the spectrum of A .  We call 
this the "A-representation." The action of  an operator B on iy) is represented 
by 

( lA1), B ly)) = (A'l IY) = 2 (A'l B JA'')(A" I Y} (1-37) 
A" 

In the A-representation a vector l p )  is represented by the set of complex 
numbers (A' / y) which may be arranged into a column vector. The operator 
B is represented by the set of complex numbers (A'[ B [A")  which may be 
arranged into a matrix. For brevity we sometimes write 

Note that in the A-representation the operator A is diagonal; that is, 

(A'] R [A") = A'dAuj, (1-39) 

It is sometimes convenient to write an operator in the form 

B = 1 B 1 = 2 2 IA1)(A'[ B IA")(A"I ( 1-40) 
9' A" 
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The choice of representation constitutes effectively a choice of coordinate 
system in Hilbert space. One transforms from the A-representation to the B- 
representation by using the so-called transformation functions (A' I B'). An 
easy way to remember how to do this is to use the unit operator in the forms 

Then 
(B' / yl) = (B'1 1 1 ~ )  = 2 (B' I Af)(A'  I W) (1 -42a) 

A' 

(A' 1 y) = {A'I 1 IT) = 2 (A' I 3'Mf I W) (1 4 2  b) 
n0 

(B'I C IB") = (B'I 1 C 1 IB") = 2 2 (B' I At)(A']  C IAW)(A" I B") (1-42~) 
A' a'' 

Note that the product of two operators has the matrix element 

(A'I BC IA") = (A'!  B 1 C IA") = 2 (A'] B !A") (Aff'I C I A") - (1-43) 
A" 

This is just the rule for multiplying matrices. 

Problem 1-1. Show that the trace of an operator is independent of represen- 
tation, that is, 

Problem 1-2. Show that 

In quantum mechanics we sometimes must consider representations 
corresponding to operators that have continuous rather than discrete 
eigenvalues. This causes some difficulties, since there are no proper eigen- 
vectors corresponding to the continuous spectrum. However, we can formally 
proceed using improper eigenvectots and replacing sums by integrals. Thus 

J 

replaces Eq, 1-35. The orthonormality condition, Eq. 1-32, is replaced by 

(A' I A") = d(A' - A") ( 1 -47) 

The Dirac S-function replaces the Kronecker-d. 
In the case of continuous spectra we often write (A' / y l )  as y(At)  which 

we may calI the "wave function" in At-space. The scalar product of two 
vectors becomes 
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Some operators have mixed spectra. The Hamiltonian for the hydrogen 
atom is an example. Its eigenvalues are discrete for bound states and con- 
tinuous for unbound states. In such cases we write 

We can make our notation more compact if we agree to let either 2,. or 
J dAf denote a sum over the discrete part of the spectrum (if any) and an 
integral over the continuous part (if any). 

Functions of operators can be defined in terms of the power series for the 
function if one exists; that is, if 

then 

defines the function f ( A )  of the operator A. In this way we may define &, 
sin A,  and so on. 

Another way of defining f ( A )  is by means of the eigenvatues. If A IA') = 
A' (A') then f ( A )  IA') = f (A') ]A').  

Problem 1-3. Show that 

(B'I f (A) i~" )  = ( B t  I A') f (A')(Af I B") 
A' 

Problem 1-4. Let G, be the 2 x 2 matrix 

Show by the power series method and also by using Eq. 1-51 that 

ei(fl/2)a= , cos 812 i sin 812 

i sin /3/2 cos 812 I 
The inverse of an operator can be defined by 

1 
A-I 1 A') = - [A'}  

A' 

Then AdlA = AA-I = 1. The inverse does not exist if any A' vanishes. 
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An operator U is called unitary if U-I = U+. Consider a so-called unitary 
transformation in which vectors are transformed as 

and operators are transformed as 

A,, = UAoldU+ (1-55b) 
Then 

new@' I Af)nsa = ola(BtI u+U IA')old = old I A')ald (1 -56) 

so that scalar products are invariant under a unitary transformation. Also 

Anew 1 A'),,, = UA,1, U+U lA'),ld = A' IA'),,, (1 -5 7) 

so that the eigenvalues A,,, are the same as those of A,,,. Furthermore, if 

Cola = Aod%la (I -57a) 
and 

Dola - A o ~ d  + Bold (I-57b) 
then it i s  easy to show that 

Gm = AnewBnk (1-57~) 
and 

Dnm = Anew 4- Bnew (1 -57d) 

It is straightforward to generalize this to show that all algebraic relations are 
preserved by unitary transformations. 

DIRECT PRODUCT SPACE 

It is sometimes desirable to expand the Hilbert space by a process known as 
the direct product. This is most easily made clear by an example. 

A nucleon nay be either a proton or a neutron. It is convenient to consider 
these as two states of the same particle which may be represented by vectors 
in charge (or isotopic spin) space. We let 

charge charge 

These vectors span the two-dimensional charge space. Now, a nucleon can 
have its spin up or down. We let 

apin spin 
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be the two vectors that span the spin space of the nucleon. The direct product 
space is the four-dimensional space spanned by the vectors: 

This direct product spare is large enough to accommodate both the spin and 
the charge attributes of the nucleon. If one desires to accommodate still 
other attributes, the space must be expanded. 

THE AXIOMS OF QUANTUM MECHANICS 

We assume the following correspondence between physical quantities and 
the mathematical objects defined in earlier sections: 

I. The state of a physical system corresponds to a ray vector in a Hilbect 
space 5. This means that jy) and A Jy) represent the same state. We shall 
generally assume the state vectors to be normalized to unity. 

2. The dynamical observables of a physical system correspond to "ob- 
servable operatars" in 5, By observable operator we mean a Hermitian 
operator whose eigenvectors form a basis in which any vector of 5 can be 
expanded. 
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We now state some basic physical axioms. 

AXIOM I. The result of any measurement of an observable can only be 
one of the eigenvalues of the corresponding operator. As a 
result of the measurement the system finds itself in the state 
represented by the corresponding eigenvector. 

AXOM 11. If a system is known to be in the state IAf), then the probability 
that a measurement of B yields the value B' is 

W(Af, B') = I(A' I B')12 (1-61a) 

If B has a continuous spectrum, then 

I(A' I B')12 dBf , (1-61 b) 

is the probability of B having a value in the range Bf to B' + dB'. 

AXIOM 111. The operators A and B corresponding to the classical dynamical 
variables A and B satisfy the following commutation relation: 

[A, B] = AB - BA = ih(A, B), ,  (1 -62) 

where ( A ,  B),, is the operator corresponding to the classical 
Poisson bracket 

and q, and p, are the classical coordinates and momenta of the 
system. One easily finds from this that 

I q i 7  q*J = t ~ i , ~ j I  = 0 (I -64a) 

[q i ,  pjJ = ih aijl (1 -64b) 

Problem 1-5. The orbital angular momentum is given by 
E = x x p. Show that 

[L, Lwl = ihLz (1 -65a) 

This can be generalized to 

L x L = ihL (I-65b) 

One consequence of this axiom deserves mention before we 
proceed. If we define the expectation value of an observable by 

and the uncertainty by 

AA = ( ( A  - I ( 1  -67) 
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then it can be shown that 

Applying this to Eq. 1-64b gives the Heisenberg uncertainty 
relations 

So far we have been concerned with vectors and observables at 
one instant of time. The dynamics of a system can be described 
in several equivalent ways. We discuss first the "Schrodinger- 
picture" (or representation) in which the state vector is a function 
of time and the observabIe operators are time independent. 

AXIOM IV. Let the state of the system at the time to be ly,*) and the state of 
the system at time t be [y,), then the two states are related by 
the unitary transformation 

I Y J  = U( t  - to) I v ~ )  (1 -70) 
where 

k;ifi~(t--t~) U(t  - to) = e (1-71) 

and H is the Harniltonian operator of the system. Letting 
- 10 = dr, IP,+~} - I V ~ )  = d IY) and 

U(dt )  = 1 - i /hH dt 
we find 

This is the Schradinger equation. (Note: in writing Eqs. 1-70 
and 1-71 we have assumed that H is independent of time. This 
is sufficiently general for the purposes of this book. Equation 
1-73 is valid even when H is time dependent.) 

An equivalent way. of describing the dynamics is by the 
"Heisenberg-picture" (or representation). To accomplish this 
we let U = U(t - to) and consider the unitary transformati~n 

lyt)a = U-' lytls = U-'U I~t,ls = Itut,)s (I -74) 
and 

A H ( t )  = Utl lAB Uf (1 -75) 

The subscripts S and H stand for Schrijdinger-picture and 
Heisenberg-picture. The operator ip,), = I Y , ~ ) ~  is a fimd 
vector. The operator 
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is time dependent. Differentiating we find that Aa(t) obeys the 
equation 

h a _ -- AH = A# - H A ,  = [A,, W ]  (1 -77) 
i at 

This is the Heisenberg equation of motion for the operator A H .  
It may be compared with the classical equation of motion of a 
dynamical variable in Poisson bracket form 

d A  - = {A, H )  
df 

We see immediately from Eq. 1-77 that an operator that com- 
mutes with the Harniltonian is a constant of the motion. 

A USEFUL THEOmM 

Consider two operators A and B which commute; that is, 

Let 

and consider the vector B 1 A'). Operating on B I A') with A and using Eq . 1-79 
we find 

AB tAf ) = BA IA'} = A'B I A') (1-81) 

We conclude that B IA') is an eigenvector of A corresponding to the eigen- 
value A'. If A' is nundegenerate, then B IA') can only differ from IA') by a 
constant. Let us call the constant B', then 

B IA') = B' I A') (1  -82) 

and we see that I A' )  is simultaneously an eigenvector of both A and B with 
eigenvalues A' and B', respectively. We can write it as IA' ? B'). 

In the case of degeneracy this argument must be modified. Suppose that 
there are a number of vectors / A f ,  or) with a = 1, 2, . . . , n, all of which 
satisfy 

A IA', a) = A' ]A' ,  a) (1 -83) 

Then from Eq. 1-81 we can only conclude that B I A')  is some linear combina- 
tion of the vectors l A t ,  a). Often it is desirable to choose the vectors IA ' ,  cr) 
so that they are eigenvectors of B. The hydrogen atom problem is an example. 
There the Harniltonian H ,  the square of the orbital angular momentum L2, 
and the z-component of the orbital angular momentum L, all commute with 
one another. The hydrogen atom wave functions are usually chosen to be 
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eigenfunctions of all three operators although, because of the degeneracy, 
they need not be. 

We now illustrate the general theory of the preceding sections with some 
simple examples. 

SPIN $ PARTICLE IN A MAGNETIC FlELD 

We ignore all of the attributes of the particle except its spin and the 
magnetic moment associated with it. The angular momentum of a spin 4 
particle is given by 

where 

are called the Pauli matrices. The energy of a magnetic moment, p,  in a 
magnetic field B is given by - p  B. We take B to be in the z-direction and 
p proportional to J. Then with the proper choice of the proportionality 
constant we can write 

H = hog, (1-86) 

for the Hamiltonian operator. The constant w has the dimensions of a 
frequency. The state vectors of this system are vectors in a two-dimensional 
Hilbert space. This makes the system a particularly simple one to discuss. 

First we note that thecomponents of J do not commute with one another. 
However, J,  and H do commute, so we can find vectors that are simul- 
taneously eigenvectors of J, and H. They are readily found to be 

For these vectors 
h 

J ,  It, z> = - lt,zS 
2 

Now let us consider the operator 
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here n is a unit vector 

n = e, sin 6 cos 4 + e, sin 0 sin + + e, cos 8 (1-89b) 
We find 

cos 8 sin 8eti4 

sin 8e+i# -cos 8 

This is the operator for angular momentum about an axis in the direction of 
n. The eigenvalue problem 

J ,  1 J$> = JL l J3 
is readily solved. The eigenvalues are found to be f Aj2. The eigenvectors are 

cos 812 
(1-91a) 

sin B/2ei4 

sin 0/2ehi4 

-cos 812 

As 8 + 0 these reduce to 1 T, z }  and 1 L, z )  as expected. 
Let us suppose that we measure the angular momentum in the direction of 

n. Axiom I tells us that we must find one of the eigenvalues of J,, namely 
+h/2 or -H/2. Let us suppose that it is +R/2. Then immediately after the 
measurement we know the state of the system is It, n). Suppose that we now 
measure J, while the system is in this state. Axiom I1 tells us that the proba- 
bility of finding +h/2  is 

I(?, I 1. n)I2 = case 012 (1  -92a) 

and the probability of finding -h /2  is 

These probabilities add up to unity as they should and have the expected 
behavior in the Jimits 8 + 0 and 8 .rr. 

Next we discuss the dynamics of the system. w e  write the state vector as 

I Y*, = (;:;:;) 
Equations 1-73 and 1-86 give 

from which 
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where y,(O) and y,(O) are the initiaI values of y,(t)  and ly,(t). Suppose that at 
t = 0 we measure the angular momentum of the system and find that it is 
+h/2  aligned alone V x-axis. We then know that the initial state of the system - 

(This is obtained from Eq. 1-91a by letting 0 = -12 and 4 = 0). This tells us 
that ~ ~ ( 0 )  = y,(O) = I /  Jz and 

Suppose that we now ask for the probability of finding the angular momentum 
to be fi12 aligned along the x-axis at time t. By Axiom I1 this is 

Similar calculations give 

Problem 1-6. SuppIy the missing steps leading to Eqs. 1-98a, b, and c. 
Classically, a spinning rigid body with a magnetic moment would precess 

about the direction of the magnetic field. One detects a similarity to the 
classical behavior in Eqs. 1-98, 

THE FREE PARTICLE 

We begin by considering a free particle moving in one dimension and then 
later generalize to three dimensions. The dynamical variables are the co- 
ordinate x ,  the momentum p,  and the HarniItonian p2/2rn. We can write the 
eigenvalue equations 

x [ x r )  = xr  12') 11-99) 
and 

p Ip') = p1 lpl) (1-100) 

We assume that the particle can have any position; thus we assume that x' 
varies continuously between - co and + a. We make a similar assumption 
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about pt.  The normalization of the eigenvectors is 

(xf  1 5") = S(xt  - 2") 

( p f  I p") = %p' - p") 

The commutation relation 

is sufficient to determine the matrix elements of p in the x-representation. 
Taking matrix elements of Eq. 1-103 pves 

(x ' l  x p  - px ( x " )  = (xt.l x l p  - plx  1s") 

=I dx"'{(x'l x lxW)@'''l p lx") - (z'l p lx"') (xt"l x Ix'')} 

= ik S(xt - x") (1-104) 

In deriving Eq. 1-104 we have used 

Next we use 
(2'1 X Ix")  = X' d ( x l  - x") 

to obtain 
(xl - x") (x lJp  1x") = ih d(xt - xn) (1-107) . 

Using the Dirac 6-function identity 

we obtain 
tt a 

{ X I  1 p 1 xtt) = - - 6(x '  - x") 
i ax t  

Problem 1-7. By a similar calculation show that 

By taking a matrix product we can find (x'l p2 Is"). Thus 

(2'1 p2 ]xl'} = {xll plp lxl') 
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In general 

(1-1 1 la) 

Next we consider the momentum eigenvalue problem in a coordinate 
representation. We write 

P Ipr) = P' IP') 
a 

( z f  p 1p') =jd.t'{.~ p I f )  { X  1 p'} = - - { 1 p.) 
i ax' 

= P'(x' I P') (1-112) 
from which 

A e i / f i ~ * z f  (x' I p') = ly..(x1) = 
( 2 7 4 %  

The constant of integration is chosen so that 

Before discussing the dynamics of a free particle we generalize the result 
to three dimensions. Since by Eq. 1-64a the coordinates x, y, z commute 
with one another, we can find a vector lxl, y' , x' > which for brevity we denote 
by lx') which is simultaneously an eigenvector of x, y, and z with eigenvalues 
x', y', z', respectively. For brevity we write 

x IxJ) = xf  Ix') (1-1 l5a) 
and 

(x" I x') = 6 ( x f  - x") = 6 ( x  - x f )  d(y - y') 6(2 - 2') (1-1 15b) 

Similarly, p,, p,, and p ,  commute so we can find a vector 1 p' ) such that 

P IP') = pf lpf) (1-1 16a) 
and 

(P" I P') = J(P' - P") (1-1 16b) 

We can repeat the argument that led to Eq. 1-108 for p,, p,, and p, obtaining 

and two similar relations for the matrix elements ofp, and p,, These can be 
condensed into the equation 

a 
( x f  1 p jx") = + - - S(xt - x") 

i axt 
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A derivation like that which led to Eq. 1-109 yields 

The generalization of Eq. 1-1 13 gives the momentum eigenfunctions in 
three dimensions 

The Hamiltonian operator in the x-representation and the p-representation 
is easily found to be 

and 
I 

(p' 1 H Jp") = - pa b(p' - p") 
2m 

We can use Eqs. 1-70 and 1-71 to find y(xt ,  t )  = (x' 1 y,) in terms of 
y(xr ,  to). Thus 

I Wt) = h i h ~ ( f - i ~ )  1 ytll) (1 - 122a) 
' I Z ~ R ~  r t o )  py(xt, t )  = (xfl e-' I wt0S 

d3x"G(x', t 1 xu, f,,)tp(~'~, to) (1-122b) 

where 
(?(st, t I x", to) = I r i /nR(t - to~ Ix"> (1 -122~) 

is called the propagator. It may be found by operations that by now should 
be familiar. We write 

G(x', t I x", to) = [((x' I p') dSp' - (p'l e-''m"'tO) I$"' d3p"(p" I x") (1-123) 
I J  

and use 

and Eq, 1-1 19 to obtain 

This integration can be carried out with the result 

nz e 
G(xl ,  r I x", to) = (inz/ZR)[(xt-X-1 / ( t - t o ) ]  (1-126) 

2 ~ i h ( i  - to )  
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We conclude this section with the remark that we can include spin as an 
attribute of the free particle by taking the direct product of a vector Ix}, lp), 
or ly) with a spin vector that we denote by la). For a particle of spin 6, 10) 
could be either of the vectors of  Eq. 1-87. Thus we could write 

Iy7 a> = I Y )  I d  
and 

A particle of spin 4 would be represented by a two-component wave function. 

THE ONE-DIMENSIONAL HARMONIC OSCILLATOR 

As will be seen in the chapters that follaw the harmonic osciEIatar plays 
an important role in field theory. Its HamiItonian may be written as 

We would like to solve the energy eigenvalue problem 

H I E )  = E 1E) (1-130) 

We can do this, in several different ways. First, we can use the results, of the 
preceding section to write 

where 

Equation 1-130 gives 

It is shown in almost all books on quantum mechanics that this differential 
equation has acceptable solutions only when E has the values 

These solutions are 
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where 

and the H,'s are Hermite polynomials. 
The same problem can also be solved in the p-representation. 

where 

Equation 1-1 30 gives 

This equation can be made identical to Eq. 1-1 32 by an appropriate change 
of variables. 

The probability of finding the particle in the range x' to x' + dx' when its 
energy is known to be E, is 

according to Axiom IT. Similarly 

is the probability of finding the momentum in the range p' to p' + dp'. 
The coordinate space and momentum space wave functions are related by 

(1-139a) 
Similarly 

Finally, we can solve Eq. 1 - 130 algebraically without introducing either 
the x- or p-representations. This will turn out to be the most useful form of 
the solution for the purposes of this book. We introduce the operators 
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Then 

-I- mw p2 i a a = -  x2 + - + - (xp - px) = - H - 4 (1-141) 
1 

24  2mhw 2h hm 
so that 

H = Aw(a+a + 4) = hw(N + 4) (1-142) 

where N = a+a. We also find 

Denote the eigenvectors of N by In}. 

N In} = n In} 

Now, consider the vector Ib) defined by 

a In) = IbS 

Operating on Ib) with iV we obtain 

iV lb) = a+aa In> = (aa+ - 1)a In) = (n - 1)u In} 

= (n - 1) ( b )  (1 - 146) 

We see that lb) is an eigenvector of N with eigenvalue (n - 1). It can only 
differ from (n - 1 ) by a constant. We write 

Ib) = a fn)  = C, In - 1) (1-147) 

The constant C, can be evaluated by taking the scalar product of ib) with 
itself 

Setting an irrelevant phase factor equal to unity, we find C, = Jn, and so 

A similar calcuIation shows that 

n + ~ n )  = Jn + 1 in + 1 )  (1-1 SO) 

Problem 1-8. Prove Eq. 1 - 1 50. 

Next we prove that n 2 0. Taking the scalar product of Eq. 1-144 with 
In) gives 
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so that 

Starting with the vector In) we can generate the sequence In - I), in - 2), 
In - 3), and so on, by operating with a. It would seem that the eigenvalue 
would ultimately become negative which is forbidden. However, if n is an 
integer the sequence will terminate with 10). We conclude that the eigenvalues 
of N are the positive integers. It follows that the eigenvalues of H are 
hw(n -k $). 

It is useful to have the matrix elements of x and p. Solving Eqs. 1-140 for 
x and p gives 

.- 

By using Eqs. 1-149 and 1-1 50 we immediately find 

Problem 1-9. Calculate (n,l x2 in,) and (n,l p2 In,) and use this to show that 
(n,l H 1%) = + +) 4+n2. 

PERTURBATION THEORY 

A problem that is often encountered in quantum mechanics is that of 
finding approximate solutions of 

when the solutions of 
Ho 1%) = E ,  10,) 

are known and H' may in some sense be considered as a small perturbation. 
If we let 

1 y) = 2 ~ , ( t ) e - ' " ~ ~ '  IQl,) (1-1 57) 
n 
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and use Eq. 1- 156, then Eq. 1- 155 reduces to the set of  coupled differential 
equations for the coefficients 

By integrating from 0 to t this may be converted to the jnteeral equation 

- 
At this point we introduce an approximation. We assume that at the time 

t = 0 the system is in the state loi) so that C,(O) = a,,. We assume that 
,because H' is so small none of the C,'s depart appreciably from their initial 
vaIues. &1So we - t-. - Then Thenfor f # i we find 

The probability of finding the system in the state I@,) at time t is I C,(t)le. 
From Eq. 1-160 this is found to be 

where 

m,i = (EI - E3/fi 
Now, regarded 9 z 2 

very sharply peaked about w = 0 when t becomes large. Most of the area 
under a graph of the function is under the central peak. Also 

Therefore, we can say that 

Using this in Eq. 1-261 gives 
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This may be interpreted as the transition probability per unit time for a 
transition from an initial state I@,) to a final state lof). This result is known 
as 'Termi's goIden r u l e . " y n a  . . 

,clear that it is meanindul only if an integration over a c- of h I  
energies or initial energies is ~Itirnatelv carrled out. 

Higher-order approximations - can be found bv - 1-159 anumber_ 
& ti-. The calcuIations are tedious and wi11 net  be carried out here. 
However, the results are simple and will be quoted without proof. The 
transition probability per unit time for the transition i + f is given by 

trans prob - - l ~ ~ ~ l ~  d(Ef - E*) 

where M f i ,  the matrix element for the transition, is given by 

In this equation we have simplified the notation by using (f[ H'li) for 
(Qf )  H' and so on. The states II), I II) ,  and so on, are intermediate 
states through which the transition can occur. The quantity w is a ~ositive 
infinitesimal. It is needed to prescribe how the singuIarjties in the expression 
for M,, are to be treated. 



Quantum Theory of the Free 
Electromagnetic Field 

As is well known the electric field E and magnetic field B can be derived from 
a scalar potential 4 and vector potential A by the formulas 

(2- la) 

(2-1 b) 

(We use Gaussian units throughout this book.) If there are no sources of the 
field it is always possible to choose a gauge (called the Coulomb gauge) in 
which 

+ = o  
and 

V * A = O  

Now, consider Maxwell's equations for a field without sources. 

The first three of these equations are satisfied identically when E and B are 
given in terms of the potentials by Eqs. 2-1, and # and A satisfy Eqs. 2-2. 
Equation 2-3d gives 
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Jn develo~ine a quantum theory of the electroma~netic field it is convenient 

Fourier analysis of the field in a large cubical box of voIume SZ = L G n d  
take the Fourier coefficients as the field v a h l e s .  The most convenient. 

/-choice of boundary conditions is to require A to  be periodic on the walls of 
the box. Thus we require 

We write A as the Fourier series 

The factor (2nEc2/nw.)" is a normalization factor chos- 
a. The vectors u,, and u,, are two unit polarization vectors; in order 
that Eq. 2-2b be satisfied they must be chosen perpendicular to k. In order 
for Eqs. 2-5 to be satisfied the wave vectors k must have the components 
(n,, n,, n,)2m/L where the n, are integers. We have written A as a complex 
auantitv ~ I u s  i t s  complex c o ~ c a t e  so as to make A real as it should 
be. Since both e'k'x and cikvX are included in each term of Eq, 2-6 we - " .  * f f i  k-* > fl 

Substituting Eq. 2-6 into Eq, 2-4 gives 

where m, = kc. This has the solution 

so we can write 

+ o ~ ~ ' ( o ) e - ~ k . ~ - ~ ~ t ~  (2) 0 en ' Ik .~+ok i )  (2)* 0 e - f ( k . ~ + ~ l ; l  + aka( 1 + a k ,  ( > 
We can get rid of the restriction k, > 0 and simplify this formula by defining 

(1) 0 a d o )  = Q ~ A  1 for k ,  > 0 (2-  1 Oa) 

a,,(O) = a!?L,(O) for k ,  < 0 (2-lob) 
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Equation 2-9 now becomes 

where 

so that 
a,,(t) = u , ~ ( O ) ~ - ' " ~ '  (2-1 lb) 

d - - iokak, - sku I (2-1 Ic) 
dt 

Equations 2-1 lc for all k and cr may be regarded as the equations of motion 
of the field. We show m a  c u  be derived fro-& 
value is the total energy of the field. 

The,:energ;y in the electroma~netic field is 

Using Eq. 2- 1 1 we find 

= - 2 2 L2 (F2) a* ks e - i k . ~  

k,a kt,=' ~ T C  
I 

I 
- az,,a,e4k''x] (2-13) 

Now we use 

(2-14) 

to get rid of the integral over d3x and the sum over k'. We use 

Uta Uko' = da,a' 

to get rid of the sum over 0'. We are left with 

When we calculate the contribution of the IV x GI2 term to Hrd we find a * * result that differs from Eq. 2-1 1 only in the sign of the + a,@-,,) 
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term. When the two contributions are added, these terms cancel and the 
result is 

In calculating H,, we have been careful to maintain the order of the 
factor in products such as ak,arf, although at this stage we regard them as 
classical quantities. Later we shall interpret a,, and as noncommuting 
operators and the last step in Eq. 2-1 7 is questionable. That is the reason 
for the question mark. This question will be discussed later. 

Comparing Eq. 2-1 7 with Eq. 1-1 42 we see that resembles the Hamil- 
tonian for2 collection of harmonic osciUatsrs. We can treat the radiation 
field quantum mechanically by interpreting ah, as an operator and azG, 
which we henceforth denote by a:=, as its adjoint. We assume that the vari- 
ables referring to different oscillatsrs commute, so in analogy with Eq. 1-143 
we assume 

The Weisenberg equations of motion 

yield EQ. 2- 1 1c. 
There is a question whether we should have retained the zero-~oint energy 

of the oscillators and written 

Hr,, = 2 f i w k l a z n a k ,  + 4-1 
k,o 

If we do, the zero-point energy of the radiation field 

is infinite because there are an infinite number of field oscillators. For most 
purposes this infinite energy of  the vacuum cancels out when any physically 
meaningful quantity is calculated, so we shall generally assume that H,,, is 
given by Eq. 2-1 9. 

We can write the state vectors for the electromagnetic field as the direct 
product of the state vectors for each of the field oscillators. Thus 
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where 

aEgaka Ink#) I1ko Ink=) 

and n,, = 0, 1,2,3, - . - , m. In analogy with Eqs. 1-149 and 1-150 we find 
- 

a,, 1. + - n,;. +) = Jn,, 1 . .  n,, - I . . . )  (2-25) 

a t [ - - .  n,, - .) = J-(a . n,, + 1 . . .) (2-26) 

These relations are a consequence of Eq. 2-18. 
The state vectors of Eq. 2-23,are eigenvectors of Hrad with eigenvalues 

It may be shown that the momentum operator of the field, namely 

E x B  P =//J' -&-- 
is given by 

P = ): hkazga,, 
k,u  

Therefore the state vectors of Eq. 2-23 are also eigenvectors of P with 
eigenvalues 

On the basis of the preceding discussion it is natural to suppose that the 
electromagnetic field consist of photons each of which has the energy Aw, 
and momentum hk; ra,, is the number of photons with momentum 7% and 
polarization given by the vector u,,. Since, when the operator a,, operates 
on a state vector, it decreases the number of photons by one, it is called an 
"annihilation" or "destruction" operator. Similarly, is called a "creation" 
operator since it increases n,, by one when it operates on a state vector. 

COHERENT STATES OF THE RADIATION FIELD 

Let us consider the electric field due to one term in the expression for A 
given in Eq. 2- 1 I .  

where subscripts that are irrelevant have been dropped. When there are n 
photons in this mode of the field the expectation vaIue of E is ' 
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since 
{a(  a In) = (n( a+ In) = 0 

On the other hand, the expectation value of the energy density is 

Equations 2-30 and 2-32 are what we would expect if there wert n photons 
in the field, but their phases were random so that when we averaged over the 
phases the average value of  E vanished. 

Glauber13 has introduced a state of the field in which E behaves more like 
a classical field. It is necessary to introduce some uncertainty into the number 
of photons present in order to more precisely define the phase. Let c be a 
complex number and define the state jc) by 

where 

By the usual rules of quantum mechanics 

is the probability of finding n photons in the field. The sum of these probabil- 
ities is unity since 

In this state the expectation value of a is 

where we have used Eq. 2-25, In a similar manner we can show that 
/ 
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It follows that the expectation value of E is 

This is the form we expect for a classical electromagnetic wave. The amplitude 
of the wave is determined by the modulus of c and the phase is determined 
by the phase of c. This is the same form as Eq. 2-29 but the operators o and 
a+ have been replaced by the complex numbers c and cf. 

Brief caIcuIations like that of Eq. 2-36 show that 

Problem 2-1. Prove Eqs. 2-39a through 2-39c. 
We may define the uncertainty of the number of photons in the state 

Ic) in analogy with Eq. 1-67 by 

The relative uncertainty is 

This becomes very small when the expectation value of the number of  photons 
in this mode becomes very large. 

The point of a11 this is that if there are a large number of photons in 
s* 
very small, and the ex~ectation value of E behaves like a c I a s s i c w .  

Problem 2-2. Show that 

This vanishes in the classical Eimit (li + 8). 



Interaction of Radiation and Matter 

Let us sonsider a collection of particles of masses m, and char~es e, that 

which includes the Coulomb forces between the ~articIes. - For simplicity of 
notation we refer to this system as an atom although it may be a molecule, 
a nucleus, or other system. The Hamiltonian of this system may be written 

Now, we let this system interact with the electromagnetic field discussed in 
Chapter 2. There is a simple prescription for modifying a Hamiltonian to 
include the interaction with an electromagnetic field derivable from a vector 
potential A. The prescription is to replace pi by p, - e,,,A(x,). If we do this 
in Eq. 3-1 and add on the Hamiltonian of the radiation field we get the 
Hamiltonian for the combined system : 

= H,om + H,,, + H I  (3-2) 
where ITa,, is given by Eq. 3-1, H,,, is given by Eqs. 2-12 and 2-19, and Hz 
is the Hamiltonian for the interaction of the field and the atom. It is given by 

To simplify the notation we drop the subscript i and let HI be the interaction 
Hamiltonian for only one of the particles with the field. The summation is 
easily reintroduced whenever it is needed. 

1 

32 
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We write 
H* = H' + H" 

where H' is the part proportional to A and H" is the part proportional to 
Aa, Using Eq. 2.1 1 we find 

The H ,  will be treated as a perturbation. The unperturbed Hamiltonian, 
5 

latorn + radiation) = ia),,, I - . - nko ')rad (3-6) 

where we have let a stand for the quantum numbers of the atom. The H, 
induces t r a n s i t i m a e n  u-9 w h o m o n  pLQhahJ~ t 

. . . * * 
It is clear from inspection of Eq. 3 - f  that .in first order perturbation 

,theory H' induces transitions in which the &er of nh~tpns 

rbed or o two are absa ne is cued and another is abs~r& 
In the sections that follow we discuss some exarnpIes. 

EMISSION OF LIGHT BY AN EXCITED ATOM 

Consider an atom initially in state la).,,, decaying to state lb),,, with the 
We write the 

initial and final states of H, as 

li) = Ia)atom I a • * . * -had (3-7a) 

I f )  = Ib)atom I . . 1 a * .)rad (3-7b) 

Only H' connects these states in th-~w to M,. We find 

where Eq. 2-26a has been used. Note that of the terms in Eq. 3-5a none of 
the destruction operators and only one of the creation operators contribute 
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to this matrix element. ,The energy difference between final and initial states is 
' y. 

=<&J- E* +$j (3-9) 

According to Eq. 1-1 65 the transltlon r o b u t v  ner urut_tlme_eiren 
. . . . . . 

first order perturbation theory is 

= 2" I(f  1 H' li)12 6(E,  - E,) 
~ m i s s  Ai 

Note the factor n,. + 1 .  The term in Eq. 3-10 proportional to nh, the 
pumber of ~ h o t o n s  a l r u  r - s s  
emitted. is called stimulated emission. The term that remains when nbm = 0 

. . Is We consider spontaneous emission first. 
Stimulated emission may be treated together with absorption. 

To 
. . f the excited state of an atom against spontaneous 

emission of a photon, we set n,, = 0 and sum Eq. 3-10 over all of the k's 
*and a's that the emitted photon can have. That is, 

Now we let the volume of the box in which the electromagnetic field is 
quantized become infinite. A very 

Problem 3-1. Prove Eq. 3-12. Hinr: use kd = 2mJL where n, is an integer 
in Ak-. k in Ak* and k. in to show that the number of states with k, 

k is L"lr27d3 Ak, Ak Ad,. 1j1 the limit that Q = L3 + show t b t  

In doing the sum over polarizations we choose u,, and u,, as shown in 
Fig. 3-1. 

Then 

For  wavelen~ths of light which are much larger that atomic dimensions it 
is a cood ap.proxlmatlan to u j t p .  



Emission of Light by an Excited Atom 35 

V u k ~  (out of paper) - Figure 3-1 

and keep only the first few terms. w t  hew is ret&ed. it 
1s called the electric d i ~ o l e  a~~roximat ion for reasons that will. soon become 
apparent. The hiaher terms give electric auadru~ole, - mametic dipole, and 

00. L _ d l D o l e ~  F F . ~ q  3-17 and 
3-1.3 ~ i v e  

Next  we introduce spherical coormtes  i n  k - s m A e  
alonp the direction of {bl p la). Then 

d3k = k2 dk sin 0 do dm 

w,Z dw, 
= 2-rr 

-3 
sin t9 d6 

L 

Carrying out the integrations in Eq. 3-1 5 gives 

where w,, = (Em - Eh)lfi is the frequencv of the 
Equation 3-1 7 can be expressed in another form by using the Heisenberg 

equations of motion, Eq. 1-77, to write 

- im 3 - - - (b[xH - Hx la) 
h 

irn 
= - (E,  - E,)(bl x la) = imw,,(bl x la} ' (3-18) 
. Ft 

Equation 3-17 can then be written as 
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Using the Meisenberg equations of motion to write 

Equation 3-19 can be written in the form 

Jn this form our reslrlt_b_ears a s- r- ta the f o r d  
. 

Problem 3-2. Show that the selection rules for electric dipole transitions 
are AZ = il and Am = f 1 ,  0, where I and rn are the angular momentum 
quantum numbers of the electron. 

Problem 3-3. The Is, 2, and 2p wave functions of hydrogen are 

sin Oei4 m = l  

y(2p)  = - - e (3-23c) 
8 Jna3 a Isin Be-'& m = - 1 

where a = h2/me2 is the Bohr radius. Calculate T for the 2p --+ 1s transition. 

Problem 3-4. Show that the 2s state of hydrogen cannot decay to the 1s 
state through the p A interaction with the emission of one photon by showing 
that 

(2s 1 Uko ' pe-ik-x ] Is) = 0 

hroblern  3-5. Because of its magnetic moment, an electron has an inter- 
action with the electromagnetic field in addition to the interactions N' -- p * A 
and H" - A2. $he magnetic moment of the electron is p = (eh/2mc)u 
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where the components of a are given in Eq. 1-85. Find the interaction 
Hamiltonian for this spin dependent part of the interaction. 

. . r/problem 3-6. ma~netlcnt~rdon between of the electron . . 
and *-of - +gLvesuse tn azrn-el . . 

drogen atom. Ib photon ermtted wh-etween 
,these states has a wavelength of 21 cm. I t  has never been observed in the 

hut i s  well hppwn tn Use the results of Problem 
3-5 to calculate the lifetime for this transition. 

Problem 3-7. Use the results of Problem 3-5 to calculate the lifetime of 
the 2s state of hydrogen assuming it decays to the ground state through the 
spin dependent interaction with the emission of one photon. As will be seen 
in Problem 3 - 1 0 & ~ ~ ~ g ~ ~ ~  

ABSORPTION O F  LIGHT 

We take the initial and final states to be 

findrby a calculation similar to that of  the last section that 

I 

i- // C; LO/ x l(a 1 p u,,et"*'" 1 b)12 S(Eb + liw, - E,) (3-25) 
Since by Eq. 1-27 

. . * 

we see by comparing Eq. 3-25 with Eq. 3-10 0 

Dividing Eq. 325 by the incident flux gives the cross section for the absorp- 
Zion of a photon of -hk and polaimtion o by an O m  w h d  
makes a transition from Ib) to la}; ~lt is 
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This will be meaningful only if the incident radiation has a continuous 
~pectxum so that Eq. 3-28 will be inte~rated over freauwv to obtain the 
energy absorbed from an  incident beam of radiation. Actually, of course, 
spectral lines are not infinitely sharp as is implied by the &function in a,,. 
The line is broadened by a variety of processes, one of which is discussed in 
a later section. 

Problem 3-8. Consider the photoelectric emission of an electron from the 
ground state of a hydrogen atom. Assume that the incident photon is suf- 
ficiently energetic far the wave function of the ejected electron to be ap- 
proximated by a plane wave. Assume that the photons momentum is dong 
the z-axis, and its polarization vector is along the z-axis. Make the dipole 
approximation. Calculate the differential cross section for ejection of an 

4 

electron into the element of solid angle dQ. 

3 
BLACK BODY SPECTRUM 

Suppose that we have a c o w o n  of atoms in thermal equilibrium. Let 
N, be the number in state ib) and Nd be the number in state la}. Transitions 
will occur between these states as the atoms emit and absorb photons from 
the radiation field. We can write 

trans prob trans prob 
(3-29a) 

In equiIibrium we must have 

and 

It follows that 

N b  ?&ruk/kT - - - (trans probltime) - n,. + 1 = e - - (3-32) 
AT, (trans probltime),,, nka 

Solving for n,, gives 
1 
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which is the Planck distribution. From this we may obtain the energy per 
unit volume with k in d3k as 

If we write u ( o )  c/o) as the energy per unit volume with w in dm, then from 
Eq. 3-33 we find 

- SCATTERING OF L I G m  BY A FREE ELECTRON 

If we Iet V = 0 in Eq. 3- 1 , then the Bamiltonian p2/2m for a free electron 
has the eigenvector Iq) where 

1 
(X 1 q) = y@) = - eia'x 

JG- 
(3-36) 

These are normalized so that 

The energy eigenvalues are E, = fi2q2/2m. 
It is easily shown t h a - f r e e q m  

". We shall c n n s l r l t - , r & ~ t t e r b ~  nf lipht Tn thic,  processes ~vooilvln~ N 
H. 
- 

~chematlcal l~ by the Fey-of Fig. 3-2. 
At the vertex an electron changes its state from Iq,) to [q,) and a photon 

with momentum hk, and pola&ation o, is destroyed aid another with 
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momentum hk, and polarization a, is created. The initial and final states are 

This transition from li) to I f )  can be produced by the term in Eq. 3-5b 
containing akd,ia&,. The transition probability per unit time is 

trans prob 

We have simplified the notation somewhat by replacing the subscripts ki ,  rri 
by i and k,a, by$ The factors n, and (nf + 1) come from the matrix elements 
of a* and a: when Eqs. 2-25 are used. The factor Z2 comes from using both 
the secund and third terms in Eq. 3-5b. The matrix element in Eq. 3-39 is 

This shows that fhe transition probability vanishes unless the initial momen- 
tum fi(q, + k,) is equal to'the final momentum A(Q, + k,). Th&xmin,+ 

4 4  - > 7 shows that it is ~ossible to b v e  -d ccatterig-est.tttt~ring 
f ~n t-e. For our present 

purposes we assume that this is not the case and set n, = 0. 
T T e n w  are 

sonswed u the st-- ~ r n r - ~ . ~  This is enough to derive the frequency 
shift of the scattered photon. To do it properly one should replace the 
nonrelativistic energies hZg2/2m by the relativistic energies J A ~ ~ Z C Z  + nt2c9. 

Problem 3-9. Use the nonrelativistic conservation laws to show that when 
the shift in wavelength is small it is given by 

If - Ri = AA = (h/mc)(l - cos 0) (3-41) 

where cos 0 = k, k,lk,k,. Assume that the initial velocity of the electron 
is zero, 

The total scattering cross section can be obtained by summing Eq. 3-39 
9 
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!Problem 3-10. Calculate the lifetime of the 2s state of hydrogen assuming 
that it decays by two-photon emission. Note that it is necessary to combide 
the second order matrix element of H' -- p A with the first order matrix 
element of H" - AZ. Do not try to do the problem exactly but obtain an 
order of magnitude estimate of the lifetime. 

~ERJ~NKov RADIATION 

As we have stated previously, a free electron moving in a vacuum cannot 
emit or absorb a photon and still conserve momentum and energy. However. 
a particle moving throuph a dielectric me-van a velo- 
@an the velocitv of  k h t  in . - 
as we show. it m b l e  for ~t tn e ~ t  or -. A dielectric 
is characterized by its dielectric constant ~ ( w ) ,  and its index of refraction is 

I- 

given by n ( ~ )  = J E ( w ) .  We assume that these are frequency-dependent 
quantities. The relation between frequency and wave number is 

C C w=-k=--k (3-49) 
n(to) &(o> 

The calculation of the energy of the electromagnetic field given in Chapter 2 
is still valid but this energy is not the total energy associated with the wave. 
The particles of the medium move in response to the wave and their energy 
must'be properly included in the total energy. Landau and Lifschitz15 have 
shown that in such a dielectric medium the energy is 

Since 

Eq. 3-50 becomes 
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wave w o w  have. v v  

v 

when i t  moves in a medium of dielectric constant E(w). We want the total 
energy rather than just the electromagnetic field energy to have the form of 
Eq. 2-1 9, so that it can be interpreted as the sum of the energies of harmonic 
oscillators. In order to accomplish this we must modify the normalization 
factor in Eq. 2-6 so that when the energy of each ascillator is corrected by 
the factor of Eq. 3-62 it becomes hw,almak,. This is accomplished if we 
choose the normalization factor in Eq, 2-6 to be 

Equation 2- 1 1 a becomes 

The interaction Hamiltonian H' in Eq. 3-5a is unchanged except for the 
change in the normalization factor. 

Now, we calculate the transition probability per unit time for a free 
electron of momentum hq to emit a photon of momentum fik thereby changing 
its momentum to ti(q - k). We find 

trans prob 2vhc2 1 

The matrix element in Eq. 3-56 is just equal to kq uj,.,.. Letting 8 be the 
angle between q and k and letting v = Aqlna be the particIes velocity we find 

trans prob 2 2  2 - - 4 r r e f i  ~ q ~ u , [ ~  d [ c o i ~ - - - - - I  c t i ~ l t  

( time m ' Q h u k [ ( 1 / 2 m ) ( ~ / ~ w ) ~ ; r ) ~ ] ~ ~  nu 2mcv 

Note that the photon is emitted at an angle to the path of the electron given 
by 

fiwn 
car B = I[I + yl 

nu 2mc 
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If the energy of the photon hw is much less than the rest mass of the electron 
mc2 then this is approximately cos 19 = clnu which gives the classical derenkov 
angle. This can only be satisfied if the velocity of the particle is greater than 
cln the velocity of the wave. In a vacuum where n = 1 ,  u can never exceed c 
and so emission cannot occur. 

A quantity of physical interest is the loss of energy per unit length of path 
of the electron. It is given by 

dW 1 d W  1 - ---  - -  - trans prob 
(3-59) 

d x  V dt Elk.= 

Using 

and Eq. 3-12 and introducing spherical coordinates in k-space we find 

It is clear from this derivation that the integration over w is only over 
those frequencies for which Eq. 3-58 can be satisfied. Since 

the range of integration does not extend to infinity and the integral is con- 
vergent. 

Problem 3-11. Show that if relativistic expressions for the particle energies 
are used rather than nonrelativistic expressions, the &en kov angle is given 

rather than Eq. 3-58. 

NATURAL LINE WIDTH 

When an atom emits light, the emitted wave train is of finite duration. 
When this wave train of finite length is Fourier analyzed one finds a spectral 
line of finite width. However, when we calculated the emission and absorption 
of light earlier in this chapter we found infinitely sharp spectral lines. This 
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is indicated by the presence of B(E, - E, - Ao,) in formulas such as Eqs. 
3-10 and 3-28. The fault may be traced back to the assumptions made in 
the perturbation theory of Chapter I .  A simple modification in the perturba- 
tion theory will correct this and lead to a finite line width,la 

We reconsider the emission of light by an atom. We assume that the atom 
is initially in state la), and, for simplicity we assume that there is only one 
other state 16) into which it can decay. We assume no photons in the initial 
state and one photon in the final state. The initial and final states are then 

li} = la} ]no photons) (3 -64a) 

In Eq. 1-158 we derived differential equations for the amplitudes of states. 
We denote the amplitudes of li) and 1 f )  C,, an C,,,. In deriving Eq. 1-160 
we assumed that the amplitude of the initial state did not depart appreciably 
from unity. It is this assumption which must be modified. We write the 
differential equations for the amplitudes as 

* 

In Eq. 3-74a we retained on the right-hand side all of the states of the 
radiation field into which the initial state could decay. In  Eq. 3-65b we 
retained only the term proportional to C,, on the assumption that all other 

li 
amplitudes remained negligibly small. Now let us assume that the decay of 
the initial state- is exponential so 

where y is still to be determined. Using this in Eq. 3-65b and integrating 
from time zero to time t gives 

After a lapse of a long period of time (more precisely y t  >> l), we find that 

This is the probability of finding a photon of frequency o, in the radiation 
field, hence it gives the intensity distribution in the emitted Iine. The Iine 



is seen to have a Lorentz shape centered on a,, = (E, - E,)/h with a half- 
width of y /2 .  

We must choose y so that Eq. 3-65a is satisfied. Substituting Eqs. 3-66 
and 3-67 into 3-65a gives 

- ihy 1 - e+ilh[(E.-;eb-hn)-ty/21t -- 
2 

- 2 I@, kol fl' la, 412 
k.a - E,  - hm,) - iy/2 ] (3-69) 

If we neglect y on the right-hand side of Eq. 3-78 we may write 

1 - eb(oaa-ruk)I - - 1 - cos (w,, - wk)t - i sin (a,, - w,)t 
(3 -70) 

(%b - ~ k )  (% - 4 (%b - ~ k )  

Now, for large times sin ot lw is a function of w which is very sharply peaked 
about LE) = 0 ;  the area under the curve is T, so we may say that 

sin wt - - 0,) 
0 '303 

Using this in Eq. 3-78 gives the real part of y as 

2~ Re y = - 2 l{b, kol H' la, o)12 6(E, - E, - hw,) (3 -72) 
f t  k . ~  

This is just the total transition probabiIity per unit time. We previously 
called it 1 /T where T is the lifetime of the state la). Hence 

I 
Y = -  (3-73) 

7 

which is what we expect. 
There is also an imaginary part of y which comes from the real part of 

Eq. 3-70. This implies a shift in the frequency of the spectral line due to an 
interaction with the radiation field. Indeed, there is such a shift. We discuss 
it in the last chapter where a more careful treatment can be given. 



Second Quantization 

In the preceding chapters we have seen how the classical radiation field 
assumed characteristics describable in particle language when the electro- 
magnetic field was quantized. This suggests the possibility that all of the 
particles found in nature may be considered as the quanta of some field. 
But what field? A natural choice is the wave function ~ ( x ,  t )  which describes 
the partide. We begin with the nunrelativistic Schtodinger equation 

for a particle in the presence of a potentid V(x) .  This is the equation that we 
quantize in this chapter. In a later chapter we discuss the quantization of the 
Dirac equatton. 

Let y,(x) be the solution of 

and write 

w(x, i) = E b*(t)y*(x) 
7a 

From Eq. 4-1 we find 
\ 

We would like to find a Hamiltonian that yields Eq. 4-4 as the equation of 
r n o t i o n . 4 ~  is 
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since this is the expectation value of the energy. Substituting Eq. 4-3 and using 
Eq. 4-2 and the orthonormality of the y,'s we obtain 

This looks like the Hamiltonian for a collection of harmonic oscillators 
with frequencies EJh. If we interpret b, as an operator, and b:, which we 
now call b;, as its adjoint and assume the commutation relations 

[b,, bd]- = [b;, b:*]- = 0 (4-7a) 

fb,, b:a]- = a,,. (4-7 b) 
t 

then the Heisenberg equations of motion 

h d --- b, = [b,, HI- 
i dt 

give Eq. 4-4. Just as in Chapter 2 ,  we arrive at a theory of quanta of the field 
that obey Bose-Einstein statistics. The operator b:b, has the eigenvalues 
N, = 0, 1,2, 3, . . . , oo, indicating that any integral number' of particles 
may occupy the state whose wave function is y,. The eigenvalues of H are 

h 

This is not entirely satisfactory, of course, since some of the particles 
found in nature obey Fermi-Dirac rather than Bose-Einstein statistics. We 
must look for some way of modifying the formalism so as to obtain a theory 
which describes Fermions. We wish to keep 

as the Harniltonian, and we want the Heisenberg equations of motion, 
Eq. 4-8, to yield Eq. 4-4. A little experimentation shows that Eq. 4-7 is not 
the only choice leading from Eq. 4-8 to Eq. 4-4. We could also assume 

[b,,  b,,]+ = [b:, b;l+ = 0 

[b, ,  bZ.1, = 6,,n* 

where the anticommutator brackets are defined by 

[ A ,  BJ, = AB + BA (4- 1 2) 

(in anticipation of the introduction of anticommutator brackets we have put 
a minus as subscript on the commutator brackets in Eqs. 4-7 and 4-8.) 
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Using Eqs. 4- 1 1 in Eq. 4-8 gives 

In agreement with Eq. 4-4. 
Let us now find the eigenvalues of b,fb,. Note that 

(b:b,)(b:b,) = b:(l - b:b,)b, 
+b+b b = b:bn - bn n n n 

= bZb, 

If 1 is an eigenvaIue of b:b,, then 

so A2 = 1, T b  is s-v for R - - -- + v- o p t h e J o n e r a t o r .  Wf! eL- 
I T h s p  

We need the matrix elements of b, and b:. Write 

bzb, IN,) = N ,  jhm) (4-16) 

where N, = 0, 1 .  Consider the vector b: IN,). Operating with b:b, gives 

b:b,b: IN,} = b:(l - b:bn) INn} = (1 - NJb;  IN,) (4717) 

We see that b: IN,) is an eigenvector of b:b, with the eigenvalue 1 - N,, so 
we can write 

b: IN,) = C ,  11 - N,) (4-18) 

The normalization constant can be found by taking the scalar product with 
(N,J b, to obtain 

{N,I b,bf;IN.)=(N,I  1 - b:b ,IN,)=(1  - N , ) = C : C ,  (4-19) 

from which 

c, = e,Jl - N,, (4-20) 

where 19, is a phase factor of modulus unity. A similar calculation gives 
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where the phase factor can be chosen to be the same as in Eq. 4-20. The 
Fermion states can be written as 

1 . .  . N , . .  . N , , .  . .) = I .  - ) .  . .  IN,) .  . . I N , , ) .  . . (4-22) 

just as we did for the Boson states in.Eq. 2-23. 
It is convenient at this point to summarize and compare the following 

relations for Bosons and Fermions : 

1. For Bosons : 
- 

b, 1 . -  - N ;  - -) = JN, I - .  . , N ,  - 1, (4-23 a) 

~ : I . . . N ; . - )  = JN,+ I I . . . , N , +  I;--) 14-23 b) 

2. For Fermions: 

In both cases b, is a destruction operator since it decreases the number of 
particles by one; b: is a creation operator in both cases. In the case of Bosons 
it was possible to choose the phase factors to be unity. The case of Fermions 
is somewhat more complicated. We want to choose the 0,'s so that 

and 

give zero when these operators operate on any state vector. It may be shown 
that this is accomplished if the N,'s in Eq. 4-22 are ordered in some arbitrary 
way and then 

en = ( - 1 )  z::;(Kj) 14-25) 

For almost all applications in this book the 0,'s will playno role since only 
= 1 will enter the formulas. 

There is a very general theorem due to Pauli that particles of integral spin 
obey Bose-Einstein statistics and particles of half-integral spin obey Ferrni- 
Dirac statistics. The quantum numbers n in the wave function v, for Ferm- 
ions must be assumed to include the spin quantum numbers. 

THE CONNECTlON WITH ELEMENTARY QUANTUM MECHANICS 

It might be thought that the process of second quantization applied to a 
quantum-mechanical equation such as Eq. 4- 1 would endow the particles 
with properties of a quantum-mechanical nature which they did not 
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previously possess. This is not the case. As we show in this section the 
elementary theory is contained in the second quantized theory. However, 
the second quantized theory possesses a flexibility that allows it to be extended 
to processes such as /?-decay in which particles are destroyed and created. 

According to Eq. 4-3, y(x, t )  is a linear combination of the destruction 
operators b,. We may interpret it as an operator which destroys a particle at 
the position x at the time t .  Similarly, y+(x, t) is a linear combination of the 
creation operators b:. We may interpret it as an operator which creates a 
particle at the position x at the time t. The commutation relations for y and 
yrt. may be found from those for b, and b:. Thus 

= ): yn(x)y,l(x') = S(X - x') (4-26) 
n 

where Eqs. 4-7 and 4-1 1 and the completeness relation for the set of functions 
y, has been used. In a simiIar manner we can show that 

We may use these relations to show that the Heisenberg equations of 
motion 

h a --- y(x', t )  = [&X'S t ) ,  HI- 
i at 

give the time-dependent Schrijdinger equation, Eq. 4-1, when the Hamil- 
tonian operator is taken to be 

Problem 4-1. Show that Eq. 4-1 follows from Eq. 4-28. 
We may interpret 

n(x ,  t )  = y+(x, t)y(x, t )  

as the number density operator and 

as the total number operator. 

Problem 4-2. Show that 
dN i - = - .- [ N ,  HI, = 0 
dt h 

so the theory conserves particles. 
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We shall let 10) denote the vacuum state, that is, the state with no particles 
present. (It should not be confused with the null vector for which we have 
previously used the same symbol lo).) Using Eqs. 4-3 and 4-23a or 4-24a we 
see that 

y(x9 t )  10) = Q (4-33) 

Now, if our interpretation is correct y+(x, t) 10) should be a state in which 
there is one particle at x. If we operate on this state with n ( x t ,  t )  we find 

We see that this state is an eigenstate of the number density operator n ( x t ,  t )  
with an eigenvalue which is zero except at xr  = x where it is infinite. We also 
find 

Nv+(x3 t )  10) = v"(x, f) 10) (4-35) 

so the state is an eigenstate of N with eigenvalue unity. This confirms our 
interpretation of the state y'-(x, t )  10). 

In n similar way y+(x,, t)y+(x,, 1 )  10) will be a two-particle state with one 
particle at x, and one at x2. We can continue and construct states with any 
numbex of particles. 

Now consider the one-particle state 

I G, = /d'X~~(x)v'(x, f )  10) (4-36) 

where C,(x) is an ordinan function of x (not u e r a t o s l .  By the usual rules 
of quantum mechanics the coeficient of y+(x, t )  10) is the probability 
amplitude for finding the system in the state y+(x, t )  10). Therefore, we 
interpret 

IC,(x)t2 d3x 

as the probability of finding a particle in d3x; IC,(x)I2 plays the same role 
here that ly(x, r)I2 plays in elementary quantum mechanics. Let us try to 
choose C,(x) so that IC,, r )  is an eigenvector of H with the eigenvalue E, 
That is 

H ICl, I $  = E IC,, (4-3 7 )  
or 
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We take y(x, t )  inside the $'-integral on the left-hand side and use 

y ( x ,  t)yf (x', 1 )  lQ> = [d(x - x') f yr'(xf, t)y(x, 03 10) = J(x - x') 10) 
(4-39) 

The left-hand side becomes 

Combining this with the right-hand side of Eq. 4-38 gives 

[d3xvi(x, t)(  [- 2m V: + v@)] c,(x) - EC,(K)] 0 )  (4-40 

It follows that C,(x) satisfies 

This, together with the interpretation of [CIIP as the probability density leads 
us to identify C,(x) with the single particle wave function of elementary 
quantum mechanics. 

We can construct an n-particle state 

We interpret 
IC,(x, * . - x,)I2 d3x1 . d3x, 

as the probability of finding particle 1 in d3x,, particle 2 in d3x,, and so on. 
The requirement that Cm(x, - - x,) be chosen so that 

leads by a straightforward but slightly tedious calculation to the n-particle 
Schrijdinger equation . 

We see that there is contained within the second quantization formalism 
the elementary quantum mechanics of an arbitrary number of noninteracting 
particles. 



Interaction of Quantized Fields 

One can add together the Hamiltonians for several free particle fields and 
introduce appropriate interaction terms to get a theory of interacting fields, 
or, equivalently, interacting systems of particIes. The interaction we know 
most about, of course, is the interaction of photons with charged particles. 
We consider this first, taking the particle field to be described by the Hamil- 
tonian of Eq. 4-29, and the electromagnetic field to be described by the 
Hamiltonian of Eq. 2-12. The interaction i s  obtained by the prescription 

Making this replacement in Eq, 4-29 and adding the Hamiltonians give the 
totaI Harniltonian 

' H p  -t- Hrad + 
where 

is the particle Hamiltonian, 

is the Hamiltonian of the radiation field, and 



Interaction of Quantized Fields 55 

is the interaction Hamiltonian. As before, we can divide HI into a part H' 
proportional to A and a part H" proportional to Aa. Expanding A and y in 
terms of a,, and 6, gives 

HI = H' + H" (5-6a) 

+ M(-k,, GI? 4 2 ,  g2, n, n')a$,az2,,) 
where 

M(k, a, n, n') = ( ~ ~ ~ ~ d 3 T W ~ [ - l i e i k ' x u k ~ a ~ ] y m .  - imc (5-6d) 

and 

The part of the Hamiltonian If9 + Hrad may be considered the un- 
perturbed part with eigenvectors 

I* -N,* 1. ' ')rad 

and eigenvalues 

2 EnN, + 2 h ~ k n k m  (5-7 b) 
n k= 

The interaction ~amilto'nian induces transitions between these states. For 
instance the term b;b,.a,, in H' destroys a photon of momentum fik and 
polarization cr, destroys a particle in state In'), and creates a particle in state 
In). Such a process can be represented by a diagram like that in Fig. 5- 1 .  In 
this figure we also draw the diagram that represents the term bzb,.a,f,. 

Figure 5-1 
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The terms in H" induce transitions in which a particle in state in') is 
destroyed, a particle in state In) is created, and two photons are destroyed, 
or one is destroyed and another created, or two are created. 

Problem 5-1. Draw diagrams corresponding to the terms in H". 

Problem 5-2. By relabeling indices show that H' and H" can be put into 
the manifestly Hermitian forms 

H' = 2 2 2 {M(k, o, n, n1)b:b,.ak, + HC) 

+ M ( ~ I ,  01, -k,, ff2, n, n')b:b,.a,,,,at,, + HCJ (5-8b) 

where HC denotes the Hermitian conjugate of the terms which precede it. 
This new formalism has not added any new physics to that which was 

covered in Chapter 3. Only the way of looking at things is new. Far instance, 
compare the first term in Eq. 5-6b with the first term of Eq. 3-5a. Both terms 
destroy a photon of momentum Ak and polarization 5. In calculating a 
transjtion probability using Eq. 3-5a the operator p + u,, will appear in a 
scalar product between two atomic states. The same operator occurs between 
y: and y,. in Eq. 5-6d. One readily checks that the transition probabilities 
calculated in either formalism are the same. 

Problem 5-3. Repeat enough of the calculations of Chapter 3 using the 
formalism of the present chapter to convince yourself that the results are the 
same. 

NONRELATIVISTIC BREMSSTRAHLUNG 

We have reserved one problem, which could have been treated by the 
methods of Chapter 3, in order to illustrate the application of the second 
quantization formalism-the problem of bremsstrahlung. 

Classically, an accelerated charged particle radiates. In a colIision between 
two charged particles the particles are accelerated and hence radiate. It is 
this process of radiation during a collision that we now wish to discuss 
quantum mechanically. We discuss the collision between an electron and a 
nucleus, which because of its large mass may be considered fixed. For the 
purpose of this calculation it is convenient to take the potential V in Eq. 5-2 
to be the potential of this scattering nucleus and to treat it as a 
We let 

H m  = / d 3 x v + ~ y  (5-9) 
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The states In) are now the free particle states which we now denote by 
Iq), where 

and hq is the momentum of a particle. Writing 

we find that Eq. 5-3 takes the form 

The H" becomes 

H"' = 2 b:br Y(q - q') 
q 

where 

is the Fourier transform of V(x). 
The integrals in Eqs. 5-6d and 5-6e are easily evaluated. For instance, Eq. 

5-6d becomes 

The H' becomes 

We can consider Bremsstrahlung as a second-order process in which both 
X' and H"' are treated as perturbations. The second-order term in Eq. 1-1 66 
must be used in this calculation. h our present notation this is 

\ We can describe the process by the diagrams of Fig. 5-2. W e  have indicated 
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Figure 5-2 

the action of H" by the dotted line and V. The initial and final states are 

li) = lone electron with q,), Ino  photon^),^ (5- 1 7a) 

The transition f r ~ m  1 i) to 1 f) can take place through either of the inter- 
mediate states 

11,) = lone electron with q,), ]no photonshad (5- 1 8a) 

11,) = lone electron with qi), lone photon with k,  cx),, (5-1 8b) 

These two ways of reaching 1 f) from ti) are shown in Figs. 5-2a and 5-2b. 
Conservation of momentum at the vertex where the photon is emitted gives 

g2 = q3 + 
and 

4 = q, - k 
Equation 5- 1 6 becomes 

(The infinitesimal 7 is not needed here.) 
For the Coulomb potentiaI 

- 2e2 
V ( x )  = - 

r 
Equation 5- 1 3 b gives 
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The matrix elements and energies which enter Eq. 5-20 are 

(Ill H"' [ i )  = ( f l  H" 11,) = - 4r2e2 
(5-22a) 

Q 1 %  - q, - kI2 

h2 
EI ,  = Iql - kl" h ~ ,  (5-22f) 

2m 
The final energy is 

By conservation of energy this must equal E,. This may be used to simplify 
the energy denominators in Eq. 5-20 : 

(E ,  - Ef,) = -Am, 
2mc 

where we have introduced the velocities v, = fiq,/m and v, = fqJm. 
Equation 5-20 becomes 

If we make the approximation that the electrons are nonrelativistic so that 
vlc << 1 and assume that the momentum of the photon hk is much less than 
the particles momentum, then Eq. 5-25 simplifies to 
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where AY = v, - v,, and we have dropped the subscripts on w, and u,,. 
To calculate the total cross section for the process we must sum the 

transition probability over all final states and equate the result to the product 
of the cross section and the flux of electrons which is u/R. 

Thus 

where we have used Eq. 3-12 once for the final state of the electron and 
again for the final state of the photon. We have let dQ, be the element of solid 
angle into which the electron is scattered and dQ, be the element of solid 
angle into which the photon is scattered. Using Eq. 5-26 for Mfi and lAvl = 
2v sin 812 we find 

We may interpret 

as the cross section for scattering an electron through the angle 0 into the 
element of solid angle dn, with the emission of a photon with frequency o 
in the range dm and polarization u into the solid angle dl&. 

The first factor in Eq. 5-29 will be recognized as the Rutherford cross 
section for electron scattering. The second factor gives the probability that a 
photon of frequency w and polarization u is emitted into dw dQ,. 
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To arrive at a more satisfactory theory of charged particles, photons, and 
their interaction, two modifications must be made in the formalism developed 
in the preceding chapters. First, the electrons should be treated by the Dirac 
equation rat her t ban the nunrelativistic Schrijdinger equation. Second, the 
entire electromagnetic field, rather than just the transverse part, should be 
treated quantum mechanically. 

The first of these objectives is accomplished by replacing the particle 
Hamiltonian of Eq. 5-3 by 

where 

and a and /3 are the Dirac matrices given in Eq. A-25 of the Appendix. The 
components of ly and y+ are now considered to be operators. We assume 
that 

in analogy with Eqs, 4-26 and 4-27. We have chosen the anticommutation 
relations, since we are developing a theory of particles that obey Fermi- 
Dirac statistics. It is straightforward to show that the Heisenberg equations 

61 
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of motion 

lead to the Dirac equation 

As shown in the Appendix, the Dirac Hamiltonian has the eigenfunctions 

where = f , 2 ,  3,  4. The energy eigenvalues are 

where the plus sign is to be taken for A = 1, 2 and the minus sign is to be 
taken for A = 3, 4. One choice of the four component Dirac spinors u, is 
given in Eq, A-55. 

In analogy with our procedure in Chapter 4, we expand ly and y+ as 

d x ,  t )  = 2 b.**(f)v..A(x) 
P.I. 

and 
ly+(x, t )  = C b:L(o~;A(x) 

,.A 
Substitution into Eg. 6-5 gives 

d i 
- bPrA = - + EDAb,,; 
dt h 

Equation 6- 1 becomes 

H P  = C E,lb:Ab,A 
P I  

It is easily shown that the Heisenberg equations of motion 

yield Eq. 6- 10 when H, is given by Eq. 6-1 1. 
The interaction of the particles and the electromagnetic field is obtained 

by the usual prescription of replacing p by p - eA/c. If we do this in Eq. 6-1 
we find the interaction Hamiltonian 
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Figure 6-1 

Expanding y , y+, and A gives 

2nhc 
H ~ =  - ~ ~ ~ ~ ( ( - ~ ~ ~ ( ~ ~ + ~ , ~ ~ - u ~ . u . ~ b ~ ~ , ~ . b . ~ , ~ ,  pl A# ihk: + Hc) 
where HC stands for the Hermitian conjugate of the preceding term. The 
terms in & may be represented by the Feynman diagrams of Fig. 6-1, 

In Fig. 6-la the operator b,, destroys an electron of momentum hp, the 
operator a,, destroys a photon of momentum hk, and the operator b&,,,. 
creates an electron of momentum h(p + k). f Momentum conservation came 
from the spatial integration just as it did in the derivation of Eq. 5-15.) The 
Hermitian conjugate of bL, bnAak, is the operator ~~~b:'b,+,,,. which is 
represented by the diagram ok Fig. 6- 1 b. It should be noted that the quantum 
number 1 can change when a photon is emitted or absorbed, This indicates 
that the spin and the sign of the energy can be changed in the process. 

Next we consider the second modification that must be made iin the 
theory: the inclusion of the entire electromagnetic field in the formalism 
rather than just i t s  transverse part. In working in the Coulomb gauge, the 
part of the electromagnetic field that gives the Coulomb interaction between 
particles (i.e., such terms as e,ej/r,, in the Hamiltonian) was not derivable 
from the vector potential A, We can remedy this defect and at the same time 
make the theory manifestly covariant by replacing the three-vector A by the 
four-vector potential which we denote by A,. The fourth component of A, 
is the scalar potential 4, and the electric and magnetic fields are given by 
Eqs. 2- 1 .  Equation 2- 1 I a must be changed to 

The polarization vectors u, have been replaced by four-vectors u,,. Also, 
the index a now takes on the values a = 1 ,  2, 3 ,  4 instead of only a = 1 ,  2. 
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This allows for the possibility of "longitudinal" photons (polarized along 
the direction of k) and "time-like" photons (with their polarization vector 
along the time axis). 

These exotic photons are needed to describe the part of the electro- 
magnetic field previously omitted from our treatment. In this formalism the 
Coulomb interaction between two charged particles can be described as the 
emission of a photon by one of the particles and its absorption by the other. 
The longitudinal and time-lik photons never exist as free particles. (How- 
ever, in a plasma it is possible to have free longitudinal photons. These are 
called plasmons and are the quanta of the electrostatic oscillations of the 
plasma.) 

Equation 6-13 for the interaction Hamiltonian must be modified to take 
into account the change of A to a 4-vector. This is accomplished if it is 
recalled that W+ay is the three-vector part of a Cvector whose fourth corn- 
ponent is y + ~ .  If we define 

and 
Y4 = B 

and let 
@ = i f l  

then yy,y is a bvector. The interaction Hamiltonian can be written as 

The integrand is the scalar product of two 4-vectors, hence is relativistically 
invariant. Equation 6-1 8 reduces to Eq. 6-13 in the Coulomb gauge. Equation 
6- 1 4 becomes 

In the applications that we discuss we do not need this more general 
formalism which includes longitudinal and time-line photons. It is always 
possible to choose the Coulomb gauge. For our purposes this is the most 
convenient choice. 

DIRAC'S HOLE THEORY 

The relativistic theory encounters a difficulty that  was not present in the 
nonrelativistic theory. This is the problem of the negative energy states. One 
cannot just exclude such states as could be done in a classical theory. With- 
out the negative energy states the eigenfunctions of the Dirac Harniltonian 
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would not form a complete set, Furthermore, as will be seen when Compton 
scattering is discussed, the negative energy states are essential in getting the 
right answer for this well known effect, However, it would appear that elec- 
trons in positive energy states would all make radiative transitions into 
negative energy states and in reality this certainly does not occur. 

Dirac overcame this difficulty by making the foliowing two assumptions: 

I .  In the normal state of the vacuum all negative energy states are oc- 
cupied and all positive energy states are empty. That is, 

where N,,, is the eigenvalue of b:Ab,,. Since the negative energy states are 
full, the exclusion principle forbids transitions into these states. This gets rid 
of the difficulty just mentioned. 

2. This infinite sea of negative energy electrons produces no observable 
effect. 

Now, the eigenvalues of H ,  are 

so that the energy of the vacuum is negatively infinite. This is an additive 
constant to the energy and will cancel out when energy differences are taken. 
Therefore it may be disregarded just as the zero-point energy of the radiation 
field was in Chapter 2. 

Now, consider the term b,,,,l.b,Aa,, in Eq. 6-14 and suppose that 2 = 3 
or 4 and A' = 1 or 2. The operator a,, destroys a photon, the operator bDl, 
destroys a particle of momentum lip in the sea of negative energy electrons, 
and the operator bk,,,. creates a positive energy electron of momentum 
ft(p + k). This positive energy electron is observable. Also, the destruction 
of the negative energy electron has decreased the charge of the universe by 
-e, has decreased the momentum by hp, and has decreased the angular 
momentum by the spin of the particle that was destroyed. This change in 
the universe should be observable. It may be thought of as a "hole" in the 
infinite sea of negative energy electrons. It is equivalent to the creation of a 
particle of charge f e ,  momentum -hp, and angular momentum opposite 
to that of the particle destroyed. The process just described should appear as 
the absorption of a photon together with the production of an electron- 
position pair. An operator like b,,, which destroys a negative energy electron 
of momentum Ap and spin of +h/2 along the z-axis may also be considered 
to be the creation operator of a positron of momentum -hp and spin 
-A/2. 
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I t  is amusing to read papers on the quantum theory of radiation (Fermi's 
paper in Reviews of Modern P h y s i ~ s ~ ~  is recommended) written between the 
discovery of the Dirac equation of 1928 and Anderson's experirnenta1 
discovery of the positron in 1933. Attempts were made to identify the "hole" 
with the proton. Reasons were found for believing that the mass of the hole 
should be greater than the electron mass predicted by the theory. However, 
it should be possible for an electron and a hole to annihilate with the emission 
of two photons. When the probability of this process was calculated by 
Op~enhei rner ,~~ D i r a ~ , ~ ~  and T a n ~ r n ~ ~  it was found that matter would be 
destroyed in a very short time. When the positron was discovered, what had 
previously been a major shortcoming of the theory became its greatest 
triumph. The prediction of the existence of this previously unobserved 
particle must be regarded as one of the greatest successes of theoretical 
physics. 

Since Cerenkov radiation is a first order process involving free particles it 
is a particularly simple application of the theory to discuss. Just as in Chapter 
3, the interaction Hamiltonian for photons and electrons in a dispersive 
medium is obtained by replacing co, in Eq. 6-24 by 

where E(O) is the dielectric function of the medium. 
We consider the process in which an electron of momentum h(p + k) 

emits a photon of momentum Ak and polarization a. Using Eq. 6-14 and 
first order perturbation theory gives the transition probability per unit time 

trans prob 
( time )D+-k,Aj4D,1- 

A little algebra shows that the angle between p and k is given by Eq. 3-72. 
We may proceed to calculate the energy loss per unit length as we did in 

Eq. 3-59. There is one modification that we wish to make in this calculation. 
The sum over final states must include a sum over the final spin states of the 
electron 3, = 1,2. Also we shall average over the initial spin states; thus what 
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we want is 
dW 1 1 2  - --- trans prob 
d x  v 2 A*-I  A=L kern time 

We must evaluate 

If the reader will try to evaluate this straightforwardly he will soon become 
convinced that there must be some easier way, and indeed there is, The first 
step is to extend the sums over 1' and 1 to include all four values. We can do 
this by noting that 

H,-klEpl - , f o r 1 = 1 , 2  
2 141 

u,** - 
(0 for A = 3,4 

(6-25) 

where 
HD = ca p + Bmc2 (6-26) 

We can use this with a similar relation involving z+~,,, to write Eq. 6-24 as 

1 
luzIa  . ukm(Hp+k + [ E ~ k I > u W k . ~ O l  (6-27) 

IEpl IEp+k[ 
Now consider 

By the completeness relation this is just the 4 x 4 unit matrix. Therefore, 
Eq. 6-27 becomes 

This trace can be evaluated without great difficulty. First we note that 

Also, it is easily shown that the trace of a product of any odd number of the 
matrices ol,, ol,, a,, and is zero. We may use the identity 

where a and b are arbitrary vectors, and 
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to show that 
Tr (a a)(a b) = 4a b 

Also, we can show that 

Tr (a a a)P(a b)/? = -4(a b) 
and 

for any four vectors a, b, c, d. These relations are very useful in many cal- 
culations in quantum electrodynamics. 

Problem 6-1. Use Eqs. A-24 to prove Eq. 6-30 and then prove Eqs. 6-32, 
6-33, and 6-34. 

Using these trace formulas, Eq. 6-28 can be evaluated. We find 

where we have used v = c2p/E and have let v, and v, be the velocities before 
and after the emission of the photon. The sum over polarizations can be 
carried out as was done in Eq. 3-69. The result is that Eq. 6-24 summed over 
polarizations is 

where again 0 is the angle between p and k and is given by Eq. 3-72. We have 
used 

n 

to obtain Eq. 6-36 from Eq. 6-35. The second term in Eq. 6-36 is a small 
correction to the result we found in Chapter 3. If the momentum of the 
photon is negligible in comparison with the momentum of the electron ihen 
v, N v2 and the term in braces vanishes. This will be true in both the classicaI 
limit ( A  - 0) and the extreme relativistic limit (v + c). We neglect this term 
in the remainder of the calculation. The rest of the calculation parallels that 
in Chapter 3. The only difference is that Eq. 3-72 must be used for cos 0 
instead of Eq. 3-67. The result is 
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COMPTON SCATTERING 

In Chapter 3 we discussed the scattering of a photon by a nonrelativistic 
electron. We wish to reconsider the problem now using the relativistic theory. 
In the previous theory the scattering was produced in first order by the A2 
term in the interaction Hamiltonian. There is no A2 term in Eq. 6-13, so that 
it  is clear that in the relativistic theory scattering must be a second order 
process. We can picture the scattering process as occurring as shown in the 
Feynman diagrams of Fig. 6-2. If Fig. 6-20 the electron first absorbs a photon 
of momentum hk, and polarization a, and then emits a photon of momentum 
hk, and polarization a,. If Fig. 6-26 the time order of these events is reversed. 
The initial and final states are 

If) = 1%. lf2,), I* nki, - 1, . . n,,,, + 1, *}.ad (6-39b) 

where 

&e.x 

(x I 431) = Y.A(x) = %A= 

JQ 
The process occurs through the intermediate states 

la)  
Figure 6-2 
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Conservation of momentum at the vertices gives 

the transition probability per unit time for the process is given by 

trans prob 2v ( ) = h l ~ f i l ~  

2 2  2 x S[JA c qi + m2c4 -  ti^^^^: + m2c4 + licki - kickl] 

(6-43 
where M f i  is given by the second term in Eq. 1-166 : 

the intermediate energies are 

Ell = f Jh2c2 lq, + k,le + m2fl (6-45a) 

E ~ ,  = Jh2c2 lqi - kf12 + m2c4 + hcki + hckf (6-45b) 

Using Eq. 6-14 we find that the necessary matrix elements are 

Equation 6-44 contains summations over i, and %,, the spins and signs of 
the energies of the intermediate states. 

Before proceeding to the general case let us consider the nonrelativistic 
limit. In this limit 
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NOW, since 

where u* = u, f iu,, we see that the operator couples positive energy states 
to negative energy states only. The intermediate states must be states of 
negative e n e r a  for the scattering of photons by positive energy electrons. 

Let us suppose that the initial and final states of the electron both have spin 
up. Then they are described by u,,, of Eq. 6-47a. In the sum over 1, in Eq. 
6-44 only the terms with 1, = 3,  4 have nonvanishing matrix elements, and 
EI1 is the same for both of these. A little algebra shows that 

Z: ( ~ Z f l  * u ~ u Q ~ I ~ ) ( u : ~ A ~ ~  ~ t ~ . i l )  = U, U, 
ll=3,4 

(6-49) 

A similar result is obtained from the second term in Eq. 6-44. The matrix 
element becomes 

In the nonrelativistic limit this becomes 

. - .  
This is the same matrix element which appears in Eq. 3-39 of our previous 
calculation of scattering by nonrelativistic electrons, so that the two theories 
agree, as they should, in the nonrelativistic limit. It is noteworthy that 
negative energy states must occur as intermediate states in order to get this 
agreement. This shows that negative energy states are essential for the theory. 
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Figure 6-3 

One feature of the calcuIation seems to be inconsistent with our previous 
assertions. We have allowed transitions to occur to negative energy states 
which we have assumed to be filled. It would appear that such transitions 
should be forbidden by the exclusion principle. The intermediate states with 
electrons of negative energy as we have drawn them in Fig. 6-2 cannot, in 
fact, exist. However, there are two other intermediate states that we have 
ignored which make the same contribution to M,, as the two improper 
states which we have incorrectly included. To see this consider the diagram 
in Fig. 6-3. 
In this process an unobservable negative energy electron of momentum 

hq, emits the final photon at the first vertex becoming the final electron of 
momentum hq,. There is left behind a hole which to an observer would 
appear as a positron of momentum -hq,. We have drawn the unobservable 
negative energy electron as a dotted line and the observable hole as a solid 
line directed downward toward the first vertex. At the second vertex the 
primary electron of momentum fiqi absorbs the primary photon and jumps 
into the hole thereby filling the negative energy state of momentum hq,. The 
matrix elements are the same as those for Fig. 6-2a, since the vertices are the 
same, but they occur in the opposite order. The initial and final energies are 
the same, namely 

Ef = E, + hw, (6-5 1 a) 

E, = Ea, + ftw, (6- 5 1 b) 

The intermediate energy in Fig. 6-2a is 
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Figure 6-4 

since the electron in the intermediate state is assumed to have negative 
energy. Then 

the intermediate state in Fig. 6-3 has the energy 

E; = E,, + IEq,I + Ami + kw, + E,, 

since there is overall conservation of energy, E, = E, and 

which is just the negative of Eq. 6-51d. Now, the final state in Fig. 6-3 is  not 
quite the same as the final state in Fig. 6-2a. In Fig. 6-3 there has been an 
exchange of the primary electron with one of the negative energy electrons. 
The exchange of fermions gives a factor of - 1 which just compensates for 
the change in sign of the energy denominator. (This is one of the cases when 
the phase factors in Eq. 4-24 must be taken into account.) The result in 
that the allowed process of Fig. 6-3 makes the same contribution to Mfi  as 
the not allowed process of Fig. 6-2a. Note that when the dotted lines are 
omitted Fig. 6-3 can be obtained from Fig. 6-2n by rotating the arrow repre- 
senting the intermediate state around until it points in the negative time 
direction. This is illustrated in Fig. 6-4. A positron may be thought of as an 
electron propagating backward in time. 

Problem 6-2. Draw the diagram which is equivalent to Fig. 6-26 in the 
same sense that Fig. 6-3 is equivalent to Fig. 6-2n. 

It seems to be usually true, that we obtain the same results by allowing 
negative energy particles as intermediate states, as we do by using hole 
theory, but this should be checked in each case. 

The matrix element Adf, can be evaluated without making the nonrelativistic 
approximation. Its square is then used in the Fermi golden rule and the 
scattering cross section is obtained. These caIcuIations involve some of the 
tricks developed in the preceding section. They are fairly tedious and have 
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been relegated to the appendix. The result is the well known Klein-Nishinaa* 
formula 

the relation between the initiaI and final wave numbers is 

1 1  h - - - = - (1 - cos 8) (6- 54) 
k,  ki rnc 

in the classical limit (h  + 0) and in the long wavelength limit, ki E k,, the 
last three terms in Eq. 6-53 cancel and the equation agrees with the Thompson 
scattering cross section of Eq: 3-46. 

It is not possible for a photon in free space to create an electron-positron 
pair because in doing so it would violate the conservation laws for momen- 
tum and energy. However, in the presence of a third body which can carry off 
some momentum this pair production process can occur. It is analogous to 
the inverse of the bremsstrahlung process discussed in Chapter 5. We may 
picture the process as occurring as shown in the Feynman diagram of Fig. 6-5. 
In this process one of the unobservable negative energy electrons represented 
by a dotted line collides with the third body, which we assume to be a heavy 
nucleus representable by a potential V.  In this collision the electrons momen- 
tum is changed from hq,, to hq, and 3, changes from 3 or 4 to 1 or 2. Since its 
energy is positive after the collision, the electron is observable so we represent 
it by a solid line. Also the hole left behind is observable as a positron, so we 
have denoted it by a solid Iine directed toward the first vertex. At the second 
vertex the electron absorbs the photon changing its momentum from hq, 
to hq, = h(q, + k). The net result is that a photon is absorbed and an 
electron-positron pair is created. Note that when the dotted Iine is omitted 

Figure 6-5 
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the diagram looks just like that for inverse brernstrahlung except that posi- 
tron line is directed downward in time. 

The calculation of the cross section for this process is very similar to that 
for brernsstrahlung treated in Chapter 5. Of course, one must use Eq. 6-14 in 
calculating the photon absorption, Equation 5- 13 rnust invoIve the Dirac 
spinors. The calculation is somewhat more tedious than that of relativistic 
bremsstrahlung and we shall not give the details. 

ELECTRON-POSITRON ANMrZlLATlON 

Electrons and positrons can annihilate by the inverse of the process shown 
in Fig. 6-5. An electron emits a photon and jumps into the empty negative 
energy state. The presence of a third body is necessary to conserve energy and 
momentum. This process sometimes occurs when a positron collides with an 
electron bound in an atom. 

Free electrons and positrons can also annihilate by a second order process 
in which two photons are emitted. The process may be pictured as occurring 
as shown in the Feynman diagram of Fig. 6-6. Initially, there is present an 
electron of momentum hq, and a positron of momentum -hq,. This really 
indicates that a negative energy electron of momentum hq, is missing from 
the negative energy sea. At the first vertex the electron emits a photon. At the 
second vertex it emits a second photon and jumps into the negative energy 
state of momentum hq, which was previous1y vacant. As usual we have 
shown observable particles as solid lines and unobservable particles as dotted 
lines. Note that the diagram looks very much like the diagram for Compton 
scattering except that the positron line is directed in the negative time 
direction. 

The calculation proceeds very much as the Compton scattering cal- 
culation. We shall simplify things a little by working in the center of mass 
system where q, = q,. Then from momentum conservation k, = -k,. 

Figure 6-6 
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Conservation of energy gives 
Ei = Er 

2Jli42q,9 + m2c" = 2Ack, 
from which 

We suppose that the electron and positron are moving very slowly so that 
-- 0. We can write the lifetime of the positron as 91 - 

1 2w - =  - I M I ~ ~ ( E ~ - E , )  
T final states f i  

In this formula M is the matrix element for the transition and dQk is the solid 
angle into which the photon of momentum hk, is emitted. The other photon 
goes in, the opposite direction. The summation in the final formula is over 
polarizations. We have used Eq. 3-12 to replace a sum by an integral. The 
matrix element may be written 

where 
by H; 
in the 

we have denoted the part of Eq. 6- 14 without the factor e(2xAc21!2w)1/P 
. The sum is over the quantum numbers 1 which the electron can have 
intermediate state and also the other time order in which the electron 

can emit the photons. 
Since q, T 0, the momentum of the electron in the intermediate state must 

be hk, = rnc; this makes its energy > h m t .  Then 

- 
E~ = J2mc2 + mc2 + lick, = J G c 2  + h c P  (6- 5 9 b) 

The matrix elements in Eq. 6-58 involve only the Dirac matrices and spinors, 
so they must be of order unity. Therefore, as an order of magnitude estimate 
of M we may take 
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using this in  Eq. 6-57 and replacing the integration over solid angle by 4 7 ~  
we obtain the order of magnitude estimate 

This result agrees with an exact calculation. 
It may seem strange at first sight to find a, the volume of the box in which 

the system was quantized in the final formula, but it must be remembered 
that there is only one electron in the box. The electron density is then n = 
1/Q,  and the formula should read 

Taking n N ~ r n - ~  and r,  N 10-13 crn gives T -- lo-$ sec as the lifetime 
of a positron in a solid. 

A positron and electron can also form a bound state of the hydrogen-like 
atom positroniurn before it decays. In  the first approximation the levels and 
wave functions of positronium are those of a hydrogen atom with the Bohr 
radius replaced by a = 2ao = 2k2jme2 because of the reduced mass. Equation 
6-62 can be used to estimate the lifetime of a positronium atom if we take 

this gives T 'U SCC. However, the positroniurn atom can only annihilate 
by two-photon emission when the spins are antiparallel (the 3 state). If the 
atom is in the 35 state it must annihilate by three-photon emission. The 
lifetime for this mode of annihilation is Ionger by about a factor of 370. 
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The success of quantum field theory in describing processes in which photons, 
electrons, and positrons are created and destroyed suggest that the theory 
could be extended to similar processes in nuclear and high energy physics. 
There are two difficulties in making such an extension. First, we do not have 
a classical theory to guide us, as we did in the case of the electromagnetic 
field. In order for a field to behave clasically, it must be possible to put a 
large number of quanta in the same state. Consequently, the fields describing 
fermions can never behave classically. In principle the field that describes 
mesons could have a c1assicaI limit, but because of the short lifetime of these 
particles it is impractical to put a large number of mesons in the same state. 

The second difficulty has to do with the strength of the interaction. The 
interaction of photons and electrons is in a sense weak, and perturbation 
theory gives excellent results. In quantum electrodynamics, perturbation 
theory may be regarded as an  expansion in the fine structure constant 
e2jhc = which is a small number. The corresponding expansion 
parameter for the so-called strong interaction responsible for nuclear forces 
is much larger than this; as a result, perturbation theory is almost useless. 
The weak interaction which is responsible for beta decay is characterized by 
an expansion parameter which is much smaller than e2/tZc. 

Consequently, perturbation theory is applicable to the weak interaction. 
The theory of beta decay which has been developed in analogy with quantum 
electrodynamics is remarkably successful. It is the subject of this chapter. 

The first theory of beta decay was proposed by Enrico Fermi in 1933. At 
this time a very puzzling feature of beta decay was well known and was the 
subject of much discussion. This was the fact that the electron emitted in the 
decay emerged with a continuous energy spectrum. One would expect that 
the electron would have an energy equal to the difference of the energies of 
the parent and daughter nuclei. Instead, it was found that the maximum 
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energy of the electron was equal to this difference, but that the energy 
spectrum extended continuousIy down to zero energy. PauIi had made (but 
not published) the suggestion that this couId be accounted for if another 
particle (which is now called the neutrino) was emitted at the same time as 
the electron. The available energy would be shared between the eiectron and 
neutrino. To conserve charge the neutrino must be assumed to be neutral. 
This would make its detection difficult and explain why it had escaped 
detection. Indeed, it continued to escape detection for another twenty years. 

It was also difficult to explain how electrons could be bound in orbits of 
nuclear dimensions. The kinetic energies of electrons in such small orbits 
would be much greater than the observed energies of escaping electrons. 
Today there is even greater evidence based on spin and statistics that elec- 
trons cannot be present in the nucIeus. 

Fermi disposed of these difficulties by assuming that in the decay process 
an electron and a neutrino (actually, it is preferable to regard it as an anti- 
neutrino) are created, as a neutron changes to a proton. This basic process 
can be represented by the diagram of Fig. 7-1. We have denoted the neutron 
by n. proton by p,  electron by e ,  and antineutrino by l i .  To produce such a 
process the interaction Hamiltonian must be somewhat like 

That is ,  the iategrand must contain as factors operators which destroy a 
neutron and create a proton, an electron, and an  antineutrino. The constant 
g is a measure of the strength of the interaction. The Hermitian conjugate 
term (HC) would destroy a proton, an electron, and an antineutrino and 
create a neutron. If the electron which was destroyed was ail unobsetvable 
negative energy electron, then this would be equivalent to creation of a 
positron, and the HC term could describe positron emission. 

All four of the particles invohed in this process are Fermions, so in a 
correct relativistic theory y,, y,, ye, and y, should all be Dirac spinors. In 
choosing the way in which they should be combined, Fermi was guided by 
considerations of relativistic invariance and analogy with quantum electro- 
dynamics. In Eq. 6-18 we wrote the integrand of the electron-photon inter- 
action HarniEtonian as the scalar product of two 4-vectors. One of these was 

n Figure 7-1 
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the potential A, of the photon field; the other was the electron current 
vector -e,qy,ly. We may call this a vector interaction. In constructing an 
interaction Hamiltonian for beta decay we have four Fermion operators 
available to us. These may be used in pairs to construct 4vectors; then the 
scalar product of these four vectors is the integrand of HI.  In this way we 
obtain 

HI = g d3x(%F,~,ry,)(!7.y,vv) + HC i (7-2) 

(The operator y, in Eq. 7-2 can destroy a negative energy neutrino; this is 
equivalent to creating an antineutrino.) This is not the only plausible form 
for HI;  we discuss other forms and what is believed to be the correct form 
later in this chapter. 

For a first calculation we use Eq. 7-1. This is useful in showing how much 
can be accomplished with very little theory. We expand yz and y, in the 
states and +,, which may be bound states of the proton and neutron in a 
nucleus. Thus 

Where A:a is a creation operation for a proton in state la},, and A,, is an 
annihilation operator for a neutron in state lb),. We shall expand vpz and & 
in plane wave functions; thus 

Where A: and A: are creation operators for electrons and antineutrinos of 
rnomen turn hq, and hq, respectively. Equation 7- 1 becomes 

where 

In calculating the transition probabilities per unit time we use the relativistic 
expressions for the energies of the electron and the neutrino. We assume that 
the mass of the neutrino is zero, so that its energy is hcq,. To get the lifetime 
for the decay we sum over the final states of the electron and antineutrino 
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and use Eq. 3-12 to convert the surns,to integrals. We obtain 

2 2  2 x IMa,12 d[Enb - E,, - J A  c q, + m2c4 - hcq,] 

Now, let us examine Eq. 7-6. The wavelengths of electrons and neutrinos 
emitted in beta decays are usually much larger than nuclear dimensions. 
Therefore, it is usually a good approximation to replace the exponential in 
the integrand by unity; thus 

* 

This is independent of qe and q;, so that it can be removed from the integral. 
, The integration over solid angles and over q; can be carried out and there 

remains 

where Em, = E,, - E,, is maximum energy the electron can have, and 
E, = J ~ z P ~ :  + m2c4. We can write this as 

where 

is the probability of decay with emission of an electron with momentum 
between p, and p, f dp,. 

The theory may be checked by plotting [ I ( ~ , ) / ~ . P ] %  versus E,. The result 
should be a straight fine which intersects the axis at E = Em,,. This is called 
a Kurie plot. Also, the integration in Eq. 7-9 can be cavied out. The result 
is a function of Em,,. Actually, the theory given here is cruder than it needs 
to be. One should use the Coulomb wave functions for the electron rather 
than the free particle wave functions. The integral will then be a function of 
the atomic number Z as well as of Em,,. We denote this by f (2, Em,,). Then 

- 
~f ( Z ,  Em,) 2r3h7c3 

Thus the product af T-(2, Em,,) may be used as a measure af Igj IMabl2- 
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Now, let us return to the Fermi theory with HI given by Eq. 7-2. Recalling 
that y, = (-$a, 18) and @ = iy+P we can write 

It is a good approximation to treat the nucteons nonreIativisticaly so that 

and 

Since 

it follows that 

Then in the approximation that the nucleons can be treated nonrelativisti- 
cally, the interaction Wamiltonian simplifies to 

We also see from Eq. 7-13 that ygy, will vanish unless the spins of the proton 
and neutron are the same. . 

Now, we expand just as we did in Eqs. 7-3 and 7-4 but use the Dirac wave 
functions for electrons and neutrinos. The matrix element for the transition 
is 

It differs from the previous result by the product of the Dirac spinors for the 
electron and the neutrino. 

Since the spins of the electrons and neutrinos emitted in beta decays are 
usually not measured, we would like to sum the square of Eq. 7-17 over the 
spins of the electron and the neutrino. Thus the appropriate square matrix 
element is 
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In evaluating this we can use some of the tricks developed in the preceding 
chapter. We use 

and 

("lIf;')Un~ = (O UP a R = 3 , 4  A =  l , 2  1 (7-19b) 

To write 

(7-20) 
Now using 

A v = l  

we can reduce Eq. 7-20 to 

where we have dropped some superiluous subscripts. Now 

Since H, and He contain a and B linearly, and the a and matrices have zero 
trace 

Tr I E s I  I E v I  = 4 IEeI I E v I  (7-24) 
and 

Tr HVHe = c2 Tr (a pv)(a p,) = 4c2p, p, (7-25) 

where Eq. 6-23 has been used. Then, using v = c2p/l El gives 

This is the appropriate square matrix element to use in calculating the life- 
time. It differs from the previous result only by the factor (1 - v, = v,lc2). 
When used in Eq. 7-7 the term in v, v, vanishes when the neutrino momen- 
tum is integrated over, so that our previous result for the lifetime is unchanged. 

Experimentally, it is found that the values of values of ~f (2, Em& fall in 
groups that are separated by one and more orders of magnitude. The decays 
with the smallest ~f values have A1 = 0 (no change in the nuclear spin I). 
This is in agreement with the Fermi form of the interaction, since, as we have 
seen, this interaction does not change the spin of the nucleon. Also, Ma, as 
given by Eq. 7-8 will vanish if 4,. and +,, have different orbital angular 
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momenta. These decays with A1 = 0 have energy spectra which fit the Kurie 
plots very well. There are other decays which have AI # 0 and rf values 
which are greater by several orders of magnitude. The energy spectra of these 
decays do not fit Kurie plots. These may be explained on the basis of the 
Fermi interaction by considering the terms which were neglected when Eq. 
7-6 was approximated by Eq. 7-8. Expanding the exponential in Eq. 7-6, we 
may write 

The first term couples only states of the same angular momentum; the second 
term couples states that differ by one unit of angular momentum; the third 
term couples states that differ by two units of angular momentum; and so on. 
These higher order terms account for the decays with AI = 1, 2, and so on. 
The higher order terms should give smaller values of Ma,, hence larger 
values of ~f. Also, the terms with A1 # 0 should have different energy 
spectra because of the additional factors of (g, + q,) in Ma,. Therefore, it is 
not surprising that the Kurie plot is not fitted by the spectra of these decays. 

There are exceptions to the scheme that we have just described. For 
example, the decay 

z W ~  36Li + e- + + (7-28) 

has AI = 1 but about the same ~f value as those decays for which A1 = 0. 
This suggests that the Fermi interaction is not completely correct and there 
are other terms in the interaction that change the spin of the nucleon. Only 
about two years after the publication of Fermi's paper, Gamow and Teller 
suggested other forms of the interaction which permit spin changes. 

There are other relativistically invariant combinations of $?,, y,, yl,, and 
y, than those of Eq. 7-2. We can form the scalar y,y, and multiply it by the 
scalar +,y, to get the scalar interaction 

Or we can multiply the pseudoscalar +,y,yr, by the pseudoscalar qey,y, to 
get the  pseudoscalar interaction 

J 
The vector interaction 
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is the one proposed by Fermi and has already been discussed. There is also 
the axial vector interaction 

J 4 
and the tensor interaction 

n 

J 

where 

In constructing these forms of H the aim has been to make the integrand 
a scalar using only q,, y,, +,, and yl, and the y matrices. This exhausts the 
possible scalar combinations (unless one introduces gradients, for instance) 
and at one time it was thought that H, probably had the form 

The five coefficients C, . would have to be determined by experiment. 
The problem of experimentally determining the five coefficients in Eq. 7-31 

may seem bad enough, but then in 1956 Yang and Lee examined the evidence 
for the widespread assumption that parity was conserved in all interactions 
and concluded that in the case of the weak interactions there was no con- 
vincing experimental evidence fa; such an assumption. They suggested 
experiments to test parity conservation. These experiments were done and it 
was found that indeed parity was not conserved in beta decay. This indicated 
that there must be terms in H; which behaved as pseudoscalars (i-e., changed 
sign under inversion) rather than scalars. For instance (+,y,y,)(+,y,) is 
invariant under rotation and Lorentz transformation but changes sign under 
inversion. A term 

A 

would predict beta decays which violated parity conservation. The same 
applies for the other four couplings in Eq. 7-29. These should all be added to 
Eq. 7-3 1 with coefficients Ck, CG, C i ,  Ci, and C&. This gives ten coefficients 
to be determined by experiments. 

We shall not recount the experimental and theoretical struggle which led 
to what is now believed to  be the correct form of the beta interaction but 
shall just quote the result. The correct form is now believed to be 
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where 

and 
a = *(I + iy5) 
g = 6.2 x loA4 MeV cmS 

This differs from the Fermi form of the interaction only in having a included 
in each factor. This form of H, has been very successful in accurately de- 
scribing beta decays over an enormous range of lifetimes and decay energies. 
The term (q,y,y,y,) gives the Gamow-Teller part of the interaction in which 
the spin of the nucleon i s  changed. 

Problem 7-1. Show that in the nonrelntivistic approximation 

It is now believed that there i s  a universal weak interaction of the form 

with 

The other terms in the current include terms responsible for the decay of 
muons and strange particles. It is the cross product term between ($?,y,o~,J 
and (qey,ay,) that causes the nuclear beta decays which we have just 
discussed, 

Problem 7-2. The C" hyperon decays to the A hyperon with the emission 
of a y-ray. Since both particles are uncharged, presumably the interaction 
with the electromagnetic field is through a magnetic moment, A reasonable 
guess as to the interaction Hamiltonian is 

where M is of the order of the mass of the C0 or the A, g is of order of unity, 
and T is an operator that converts the Z" into a A leaving the spin unchanged. 
Estimate the mean lifetime in seconds. 
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In Chapter 4 we 
noninteracting n 
We can modify 

developed a formalism for describing an arbitrary number of 
.onrelativistic particles moving in an external potential Vfx). 
this formalism so as to take into account two body inter- 

actions among the particles. by a simple addition of a term to the Hamil- 
tonian of Eq. 4-5. The new Hamiltonian is 

3 , +  " a x y (x, t )  y+(x , t)v(x, xl)dxx, t )y (x f ,  t )  (8-1) + r d  r 
J J 

where v ( x ,  x r )  is the potential energy of interaction between a particle at x 
and another at x'. If we define an n-particle state vector by Eq. 4-43 and re- 
quire that it be an eigenvector of H, then by steps similar to those that led to 
Eq. 4-45 we find that C,(x, . 23 must be a solution of 

which is the time independent Schrodinger equation for n interacting 
particles. 

Now let us suppose that V(x) = 0 and v(x,  x') = v(x - x'). We will 
expand y~ in free particle functions. Thus 

Using this in Eq. 8-1 gives 
1 
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After making a change of variable in the last term and using Eq. 2-14, this 
can be put into the form 

where 

is the Fourier transform of the interaction potential. 
The interaction term in W can be represented by the diagram of Fig. 8-1. 

At the vertex particles or momenta fik, and frk, are destroyed by the de- 
struction operators bk1 and bk,, and particles of momenta h(k, - q) and 
h(k, - q) are created by the creation operators b;,, and bc -,. The net 
result is a scattering of particles with an exchange of momentum Aq. Mornen- 
turn is conserved in the process. The amplitude for the scattering is fi(q). 

THE BOLTZMANN EQUATION FOR QUANTUM GASES 
BOSE-EINSTEIN AND FEW-DIRAC DISm'UTIONS 

Let us consider particfes that interact through the potential ~ ( x ) .  Let N(k) 
be the number of particles of momentum hk. This number will change 
because of collisions among the particles. An equation for the rate of change 
of N(k) may be written schematically as 

We have added all of the processes that leave a particle with momentum kk 
and subtracted all of the processes that remove a particle from the state with 
momentum hk. To get a mathematical equation from this we replace each 
diagram by the corresponding transition probability per unit time calcu- 
lated by applying first order perturbation theory to the interaction term in 
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Eq. 8-4. Using Eqs. 4-23 and 4-24 we find 

where the plus sign is to be used if the particles are Bosons, and the minus 
sign is to be used if the particles are Fermions. Note that when a particle is 
created at a vertex one gets a factor of 1 + N(k) in the square of the matrix 
element. If the state with momentum k is already occupied, then this factor is 
zero, so transitions of Fermions into occupied states is forbidden. On the 
other hand transitions of Bosons into occupied states is enhanced. Equation 
8-7 is the quantum-mechanical generalization of the classical Bol tzmann 
equation. Note that the scattering probability is proportional to 1 ti(q)12 
which is the Born approximation result. 

It can be seen almost by inspection that 

when 

where E(k) = hzk2/2m, and T is an energy and may be identified with the 
temperature of the system in energy units. The C is a normalization constant 
determined by 

fl 

where NT is the total number of particles in the system. The plus sign is to be 
used in Eq. 8-9 if the particles are Fermions. The negative sign is to be used 
if they are Bosons. These distribution functions are called the Fermi-Dirac 
and Bose-Einstein distribution functions. 

Problem 8-1. Show that Eq. 8-9 is an equilibrium solution of Eq. 8-7. 
It is possible to prove an H-theorem using Eq. 8-7. For this purpose we 

need an expression for the entropy of a quantum gas. Landau and Lifschitzsl 
give the entropy as 



90 Partide that Interact Among Themselves 

where K is Boltzmann's constant. The upper sign applies to Bosons and the 
lower sign applies to Ftrmions. One can show that 

is a consequence of Eq. 8-7. We outline the proof for Bosons; the proof for 
Fermions is similar. Differentiating Eq. 8-1 1 and then using 8-7 give 

dS 
- = K 2 {log [N(k) + 11 - log N(k)J 
dt at 

x 4- N(k + q)lP + N k '  - Ol){log [Nk)  + 11 - log N(k)J 
(8-13) 

Next, one rewrites this equation making the change of variable q + -q and 
then letting k 4 k + q and k' + k' - q; we call this our second equation. 
We do not write it down. Then, one gets a third equation by making the 
change of variable k t ,  k', q -*- -q in Eq. 8-13. Further, one gets a fourth 
equation by making the change of variable k tt kt, q -+ -q in the second 
equation. FinaIly, using I b(-q)l = Id(q)l and adding all four equations one 
obtains 

x (N(k + q)N(k' - q)[l + N(k)J[l + N(k')S 

- N(k)N(kr)[l + N(k + q)l[l + N(kl - q)]) 

x {log NCk + q)N(kl - q)[l + N(k)][l 3- N(kt)] 

- log N ( w V O t ) [ l  + N(k + ¶)It1 + N(k' -- q)]) (8-14) 

The product of the last two factors is of the form 

which is positive when x > y and also when x < y; it vanishes when x = y. 
We conclude that Eq. 8-12 is true and that the equality sign holds only when 
Eq. 8-8 is true. This shows that the entropy increases monotonically and 
reaches its maximum value when the system attain* its equilibrium dis- 
tribution as given by Eq. 8-9. 

The classical Boltzrnann equation can be obtained from Eq. 8-7 by taking 
the  classical limit h 4 0. At the same time we let 4 a. Also we assume 
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that the gas is far from degeneracy so that I f N(k)  rr 1. We define a 
velocity distribution f (r) by 

,- 

and use 

In this limit Eq. 8-7 becomes 

Problem 8-2. Show that an equilibrium solution of Eq. 8-16 is 

Problem 8-3. Show that when a quantum gas is far from degeneracy, Eq. 
8-1 1 reduces to 

s = -K 2 k N(k) log N(k) 

which is the classical definition of entropy. 

Problem &4. Using the classical definition of entropy prove an H-theorem 
for Eq. 8-16. 

THE DEGENERATE NEARLY PERFECT BOSE-EINSTEIN GAS 

Let us examine Eq. 8-10 for the Bose-Einstein gas. Let 

and 
C = eZo 

Then 
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We can evaluate f (x,) by a series expansion of the inkgrand and obtain 

This is a monotonically decreasing function of x,. For a sufficiently low value 
of T there is no value of x, for which Eq. 8-21 is satisfied. If one substitutes 
for h I i 2  the density of liquid helium, one finds that the critical temperature 
is T, ci 3.2"K. Below this value Eq. 8-21 cannot be satisfied. 

The trouble lies in our replacement of the sum by the integral in Eq. 8-10. 
If we treat the zero energy state separately and write 

where & = xoT then it can be shown that this has a solution for x, for every 
choice of NTIC! and To. As the temperature goes to zero more and moreof 
the particles go into the zero energy state; finaIly, at T = 0 all of the particles 
are in the same state. 

We saw in Chapter 2 that when a large number of particles were in the 
same state the field of which the particles are the quanta behaves classically. In 
Chapter 2 the particles were photons, but this conclusion should be true for 
any particles obeying Bose-Einstein statistics. Let us now consider a system 
of Bosons at T = 0 which is "slightly imperfect" ; that is, we retain the inter- 
action term in Eq. 8-5. In order to get a solvable model we treat a(g) as a 
constant that can be removed from the summation. 

Now, the commutator 
bob$ - b;bo = 1 

of the operators of the k = 0 state is very small in comparison with N ,  the 
eigenvalue of b:b,, so in a sense these operators almost commute. This 
suggest that we treat b, and b: as C-numbers approximately equal to &. 
In the interaction term of Eq. 8-5 there will be a zero order term 

btb:b,b, .̂ b,' cz N2 (8-24) 

There are no first order terms containing one factor of b, or b: since these 
would not conserve momentum. The second order terms are 

To second order accuracy in Eq. 8-25 we can use bop = N but we need to do 
better ig Eq. 8-24. We must use 
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so that 

As a result the Hamiltonian of Eq. 8-5 correct to second order in the "small" 
operators b, and b: is 

We have reduced the Hamiltonian to a sufficiently simple form that now 
we can make a canonical transformation to new operators a, and a: which 
puts the Harniltonian into the form 

The appropriate transformation has the form 

where L, is a real number whose value is still to be determined. It is readily 
checked that 

[ahr 43- = 8k.k' (8-3 la) 
3- -t [ak, = [ak, ak],  = 0 (8-3 1 b) 

follows from the commutation relations for 6, and b:, whatever the value of 
&. The inverse transformation of Eq. 8-30 is 

When these are used in Eq. 8-28, it is found that N reduces to the form of Eq. 
8-29 if L, is chosen to be 

where 
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Equation 8-29 describes a system of quanta of momentum hk whose 
energies are given by ~ ( k ) .  The operators a: and a, create and destroy these 
quanta. Note that for small k, 

7 

where C, = J ~ ~ ~ N I N I ~  is a velocity. It may be interpreted as the velocity of 
sound in the degenerate gas. These long wavelength excitations are called 
phonons. In the short wavelength (high momentum) limit, Eq. 8-34 becomes 

This is the energy-momentum relation with which we started. In this Iimit 
the excitations behave like nonin teracting particles. The energy-momentum 
relation is sketched in Fig. 8-2. 

The phonon is a good example of a "quasi particle.'' In a certain approxi- 
mation the interacting particles of the gas behave like a gas of different 
particles, the quasi particles, which do not interact. 

SUPERFLUIDITY 

Consider an impurity atom moving through a zero temperature Auid with 
an energy-momentum relation such as that shown in Fig. 8-2. The only way 
the impurity atom can lose energy is for it to create an excitation in the fluid. 
(At nonzero temperature there will already be excitations present in the fluid 
which can scatter on the impurity atom and exchange energy with it, but at 
zero temperature there will be no excitations present.) If we suppose that the 
impurity atom initially has momentum Aq and emits an excitation of momen- 
tum tik then conservation of mornenturn and energy gives 
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Rk 
Figure 8-3 

from which 
rlfik fik/2m 

COS 8 = - +- 
U V 

where 8 is the angle between q and k and v = hq/m is the initial velocity of, 
the impurity atom. For phonons ~ l h k  > C,, so that v must be greater than 
C, for a phonon to be emitted. Impurity atoms moving with a velocity less 
than a critical velocity (which in this case is C.J can not lose energy to the 
fluid. 

We can also look at this in a frame of reference in which the impurity 
atom is stationary and the fluid flows past it. There will be no frictional force 
unless the critical velocity is exceeded. This result should also be true if the 
impurity atom is replaced by a rough place on the wall of the tube through 
which the fluid flows. 

In liquid helium the critical velocity is much less than the velocity of 
sound. It is suspected that the energy-momentum relation must be like that of 
Fig. 8-3. The critical velocity is determined by the slope of the dotted line 
shown. The large momentum excitations responsible for the critical velocity 
may be long vortex lines. 

Problem 8-5. Do the following experiment. Fill the kitchen sink with 
water. Now, move some thin object such as a knife blade through the water, 
slowly at first, and then increase the speed a little more each time you do it. 
Note that at low speeds there is laminar flow about the object. Above a 
critical speed the character of the flow changes. Why? 
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In  the preceding chapter it was seen how a system of interacting particles 
could behave, in a certain approximation, as a system of noninteracting 
quasi panicles. We discuss two other quasi particles in this chapter. We 
suppose that the system under consideration consists of a collection of 
electrons and ions that has an overall electrical neutrality. Such a system is 
called a plasma. It is assumed to be isotropic and homogeneous. In some 
respects this is not a bad approximation to a metal, but of course, properties 
related to the periodicity of a true solid are missing from this model. 

From the beginning we make the self-consistent field approximation. 
That is, we assume that the particles interact with an electrostatic potential 
+(x, t)  which in turn is to be calculated from the "average" charge density 
in the plasma. Just how this average is to be calculated will be made clear 
presently. The Hamiltonian for the system may be written as 

where s ranges over the species of particles in the plasma (usually, electrons 
and ions) and HI contains the terms involving 4. We expand a and y: in 
free particle wave functions; thus 

In the usual way .Ho becomes 
Y 

The interaction Hamiltonian becomes 
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Where 

is the Fourier transform of +(x). 
The Heisenberg equations of motion may be used to calculate the rate of 

change of any operator constructed from b, and b:. We are particularly 
concerned with the operator bG.6,,. For it we find 

The equations of motion are found to be the same whether we use the com- 
mutation relations, Eq. 4-23, for Bosons or Eq. 4-24 for Fesmions. In either 
case we get 

a I 
- b21 b,, = + - (E,,. - E,,)b:.b,, 
at f i  

ie, + T 2 {&P - Q ) ~ ; P ~ S P  - &¶' - p)b:b,) (9-6) 

We now define a function F,(q', q, t) which we call the distribution function 
for particles of species s; it is defined as 

Where the states of the system art the 1 4 ' s  and Pa is the probability of 
finding the system in the state [a). The equation of motion for F, is found 
from Eq. 9-6 to be 

We digress briefly to discuss the meaning and the usefulness of the quantum 
mechanical operator we have just defined. In Chapter 4 we defined a number 
density operator by n = y+y. If we average this by the averaging process of 
Eq. 9-7 we obtain 

0)  = 2 P.@l V:(X~ t)ys(xY 0 la) 
a 

(9-9) 

Using Eq. 9-2, this may be written as 
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This suggests that we define a coordinate and momentum space distribution 
function by 

for then 

Furthermore, 

is the momentum distribution function for species s. Equations 9-12 and 
9-1 3 are the properties we would expect of a distribution function. If Fs were 
a classical function then we could interpret F,(x, p, t)d3x dSp as the probable 
number of particles with coordinates in d3x and momentum in d5p. Such a 
description is not possible in quantum mechanics; still the quantum- 
mechanical distribution function is in many ways analogous to a classical 
distribution function. 

Equation 9-10 can be used to calculate the charge density in the plasma. 
This is then used in Poisson's equation to obtain 

v2# = -2 4xe,(n(x, t ) )  
S 

In this way the potential is made "self-consistent." It is clear that an approxi- 
mation has been made in replacing the true charge density with the average 
charge density. This is known as the Hartree approximation in the theory of 
atomic structure. The coupled equations Eqs. 9-8 and 9-14 are the quantum- 
mechanical analogs of the VEasov equations which are well known to plasma 
physicists. 

Next, we look for small oscillations about an equilibrium in which the 
charge density and the potential, 4, vanish. We write 

and treat F,, and 4 as small quantities whose products may be neglected. 
Equation 9-8 becomes 

where 
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This may be used in Eq. 9-14 to obtain 

4ne; 4 

v2+ = 22E-  $(-¶I 
(F,*(P) - F,,(P + 9)) e".' (9- 17) 

s a p  hi2 w - PAP, P f ¶I 
Writing 

1 
we see that $(-q) must satisfy 

E(P, w)B(-q) = 0 
where 

is called the dielectric function of the plasma. 
From Eq. 9-19 it is seen that either $(q) = 0 or 

This equation may be solved for w to obtain the one or more frequencies with 
which a wave of wave number q can propagate. Before discussing the 
solution of this equation it is convenient to replace F.,@) by the correspond- 
ing velocity distribution function &(v) where v = hp/m. Also we let the 
volume of the system become infinite and use 

to obtain 

The classical dielectric function of a plasma may be obtained by taking the 
ti -+ 0 limit; it is 

There is a little difficulty about E as we have derived it which must be 
removed before we can proceed. There is a value of v for which the de- 
nominator of the integrand in ~ ( q ,  W )  vanishes; the integrals are improper. 
This difficulty and its interpretation has given rise to a considerable body of 
literature. Landau52 first called attention to this problem and showed how 
it could be resolved by treating the problem as an initial value problem and 
using Laplace transforms. In Landau's treatment the frequency w is replaced 
by the Laplace transform parameter which has a positive imaginary part. 
This removes the singularity from the real axis and makes the integrals 
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proper. Values of ~ ( q ,  u) for other values of w are then found by analytic 
continuation. We shall follow Landau's prescription to the extent of replacing 
w by o + ig. Then we obtain ~ ( q ,  w )  for real w by taking the limit 7 0+. 

We may divide E into a real and an imaginary part (for real o) by using 
the Plemelj formula 

where P indicates that a principal part is to be taken in subsequent integra- 
tions. We obtain 

Generally, the roots of ~ ( q ,  a) = 0 are complex indicating that the waves 
decay or grow exponentially. It may be shown that if f,(v) is a monotonically 
decreasing function of v = 1 vl , then the roots have a negative imaginary 
part indicating that the waves are damped. This is always the case in thermal 
equilibrium. If the plasma is far from thermal equilibrium, it is possible to 
have roots with a positive imaginary part. Such a wave would grow ex- 
ponentially; the plasma is said to be unstable. 

There is a very useful formula for finding the imaginary part of w when 
this imaginary part is small and is due to E,. Let us write 

and assume that both y and E,  are small quantities whose product is negligible. 
Then writing 

and equating real and imaginary parts to zero gives 

h(q,  Q) = 0 
and 
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The real part of w is given by the first of these equations, and the imaginary 
part is given by the second. If the roots of Eq. 9-29a are complex instead of 
real then this method fails. 

PLASMONS AND PHONONS 

In order to simplify the calculations of this section we neglect the quantum 
corrections to the frequency and use the classical dielectric function, Eq. 9-24. 
We assume that the distribution functions for ions and electrons are degener- 
ate Fermi-Dirac distributions ; thus 

where v,, is the Fermi velocity of particles of species s; it is given by 

where n is the particle density and is assumed to be the same for electrons 
and ions. 

Note that 

This makes the integrals rather easy to do. We find 

s afdlh 
3 ms4 co - q - v  + iq 

2 3 W,, = 1 +I-, 
5 2 qeu.fs 

where we have let 

and 

In searching for roots of ~ ( q ,  O) = 0, let US first assume that z, >> 1 for 
both electrons and ions, (If it is true for electrons then it is necessarily true 
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for ions since vfi  = vf,(m,/m,).) Using 

2 1  2 1  1 + z  ------- 2 - s log - 
11 -J-  3 2  S i 4  

we obtain 

Setting this equal to zero and solving approximately for w gives 

These oscillati,ons are plasma oscillations. Their quanta are called plasmons. 
Their frequency is nearly equal to the electron plasma frequency w,,, but the 
motion of the ions modifies this by the factor (1 + mJm,). There is also a 
thermal correction given by the term v,,2q2. These waves are undamped since 
s,(q, w) vanishes for z, > 1 according to Eq. 9-33. 

There is also a solution of ~ ( q ,  m) = 0 with xi >> 1 but z ,  << 1. (This is 
possible since z,/zi = m,/m,). We make the approximations 

-2 2 - 2, log - 
11-2.1 

Equation 9-33 becomes 

Treating the last term as a small quantity and solving approximately for o 
gives 

where 

For very long wavelengths the frequency is given by 
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This is the frequency-wave number relation expected for a sound wave with 
velocity 

Actually, the velocity of sound given by Eq. 9-43 is in rather good agreement 
with the velocity of 1ongitudinaI sound waves observed in metals. The 
agreement is within 20% for the alkali metals. The quanta of these Iow 
frequency waves are called phonons. In  the long wavelength limit Eq. 9-40 
gives 

indicating a weak damping of the phonons. 
In concluding this section we will remark that the results are not changed 

much if the degenerate Fermi-Dirac distributions are replaced by Max- 
wellian distributions. The Fermi velocity v,, is replaced by the thermal 
velocity v,, = (2~Im,)% and some numerical coefficients of order unity are 
changed slightly. The biggest change is in the damping of the waves. This is 
discussed further in the next section. 

Problem 9-1. Use the dielectric function given in Eq. 9-33 to calculate the 
electrostatic potential about a stationary charge Q immersed in the plasma. 

Problem 9-2, Assume the particles have Maxwellian distributi~ns and use 
Eq. 9-24 to calculate the classical dielectric function. 

LANDAU DAMPING IN PLASMAS AND CHARAC'IERISTIC 
ENERGY LOSSES IN SOLIDS 

We now examine more carefully the damping of waves in a plasma. For 
that purpose it is usefuI to return to Eq. 9-20, replace w by o + iq, and use 
Eq. 9-25 to obtain the imaginary part of ~ ( q ,  w )  in the form 

Multiplying numerat& and denominator of Eq. 9-29b by IE1 2(o/47r) gives 

where 
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and 

Now, W may be interpreted as the energy-density of a longitudinal wave 
with electric field E = -iq+, since by Eq. 3-50 it is corrected by just the 
right factor to  take into account the energy of the oscillating particles of 
the plasma. Since the energy of a wave is proportional to the square of the 
amplitude, we expect W to decay as e+2Yt. Also, we can equate d Wldt to 
the rate of transfer of energy per unit volume from the particles of the plasma 
to the wave which we shall call P. Thus we get 

as in Eq. 3-39. Now, P is just the rate of energy transfer per unit volume 
calculated by using the Fermi golden rule and Eq. 9-4. This rate is the dif- 
ference between the rate of emission of quasi particles and absorption of 
quasi particles. 

We can put the theory of plasmons and phonons on a more formal basis 
if we quantize the longitudinal field in a plasma in much the same way as we 
did the transverse field in Chapter 2. Let us write 

where SZ,, are the roots of O) = 0. There may be more than one root 
for each wave vector k so that we must distinguish between them by the 
subscript a. We now calculate the energy in. the electric field 

where the angle brackets indicate a time average over a period which is much 
longer than a period of osciIlation. We find 

Now, correcting each term by the factor 
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to take into account the energy of the particles gives for the total energy 

This may be taken to be the Hamiltonian of the system of quasi particles. 
We interpret a,,+ and a,, as creation and annihilation operators of quasi 
particles of type 6, momentum hk, and energy hi&,. 

The interaction Hamiltonian may be obtained from the term containing 
4 in Eq. 9-1. Thus 

Substituting the expansions Eqs. 9-2 and 9-42 and carrying out the integration 
give 

The terms in Eq. 9-47 may be represented by the diagrams of Fig. 9-1. 
We can use HI in the Fermi golden rule to calculate the rate of change of 

N,(k) the number of quasi partides of type G of momentum hk. SchematicaIly , 
we write 

We have added all of the processes in which a particle emits a quasi partide 
of type c and momentum hk and subtracted all of those processes in which 
these quasi particles are absorbed. Substituting the transition probabilities 

Figure 9-1 
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per unit time for the diagrams gives 

where 

X d[Es,g+k Esa h a k ~ l  (9-56~) 
We have let Fd(k) be the occupation numbers of the particle states. The plus 
sign is to be used if the particles are Bosons, and the minus sign is to be used 
if they are Fermions. The damping constant y is seen to agree with Fq. 9-46, 
if the change of variable p -t 4 + k is made. The term S,(k) in Eq. 9-56a is 
due to the spontaneous emission of quasi particles. 

The plasma frequency in metals is usually sufficiently high that hcu,, is of 
the order of 10 eV. It is possible to experimentally observe discrete energy 
losses of high energy electrons shot through thin metal films. These discrete 
energy losses may be interpreted as the emission of one or more plasmons 
by the electron. 

Problem 9-3. As particles emit and absorb quasi particles their distribution 
function must change. Derive an equation for the rate of change of Fs,lp) by 
a method analogous to that of Eqs. 9-55 and 9-56. The resulting coupled 
equations for nT,(k) and FF,,(p) are called the quasi-linear equations. 



The Problem of Infinities in 
Quantum Electrodynamics 

One of the most distressing features of quantum electrodynamics is that 
when one uses perturbation theory to calculate some quantities that are 
presumed to be small, they turn out in fact to be infinite. In the preceding 
chapters we have either circumvented or cavalierly dismissed these infinite 
quantities. Now we must face up to them. 

ATTRACTION OF PARALLEL CONDUCTORS DUlE TO QUANTUM 
FLUCTUATIONS OF THE FIELD 

We have already encountered one of the infinities to be discussed in this 
chapter. This is the zero point energy 

of the electromagnetic field in a vacuum. In Chapter 2 we dismissed this 
infinite energy with the remark that it cancels out when energy differences 
are taken. It is often said that the absolute value of an energy is of no sig- 
nificance and an arbitrary constant can be added or subtracted. This is not 
always true. In general relativity the absolute value of the energy is a physi- 
cally significant quantity; it determines the curvature of space. 

It is not completely clear that there is a zero point energy term in the 
Hamiltonian. It may be that the correct Hamiltonian is 
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If one works backward from this to find what the electromagnetic field 
energy is in terms of E and B one finds 

where the operator 1 /J - v2 is defined by 

If the operator nature of E and B could be ignored then the last term in 
Eq. 10-3a vanishes and Hrad reduces to the classical field energy with which 
we began in Chapter 2. It is possible that classical theory has not been a 
reliable guide and that Eq. 10-3a rather than Eq. 2-12 is the correct form 
of the energy. If this is so then the zero point energy of the field vanishes. 

There is an argument due to Casimirs3 suggesting that the zero point 
energy exists, and has observable consequences. This argument has been 
elaborated on by L i f s ~ h i t z . ~ ~  We give the argument here in its simplest form. 
In Chapter 2 we quantized the electromagnetic field in a cubical box of 
volume ll = L3. Let us now modify this by putting conducting planes at 
x = 0 and x = R as shown in Fig. 10-1. We let L become infinite but keep 
R finite. We denote by W, the energy in the box when the conducting plane 
at x = R is absent. When the conducting plane is present the energy in the 
box .can be divided into two parts; W,, the energy between x = 0 and 
x = R, and W,,, the part between s = R and x = L. Each of these 

5 

Figure 10-1 
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energies is divergent. Using w = ck and letting L - m, we find 

In Eqs. 10-4a and 10-4b we have let L -+ m and replaced sums by integrals 
in the usual way. In Eq. 10-4c we have kept R finite so that the sum over 
k, = 2mlR must be retained as a sum. Although each of these energies is 
divergent, the difference between the energy with the conducting plane at 
x = R, W, + W,,, and the energy without this conducting plane, W,, 
is finite. Thus 

- r i d 2  - - jJ-dk, dk,( y Jk,? + k,' + (y 
(W2 n=-a 

Letting 
dk, dk, = 2 ~ k ,  dk, (10-6a) 

gives 

The difference of the two infinite quantities in Eq. 10-6 can be evaluated 
with the result 

this gives a force per unit area of 

It is noteworthy that this attractive force between conducting surfaces 
depends only on the separation R and on the universal constants ti and c. 
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It  does not depend on e which is a measure of the coupling of the electro- 
magnetic field to matter. This force is of a purely quantum-electrodynamic 
origin. It vanishes as f2 -+ 0. LifschitzS4 has extended this theory to describe 
the attraction of dielectric bodies and to include finite temperature effects. 
Experimental observations of this force have been reported.55 

SELF ENERGY OF THE VACUUM 

There are infinite corrections to the energy of the vacuum when the 
coupling between the radiation field and the electron-positron field is taken 
into account. To show this we will use the Hamiltonian of Chapter 6. 

Ho = 2 E D , A ~ L A ~ D , A  + 2 Aw,aLah (10-lob) 
P,l k,fl 

H I  = -a 2 {(u:+,,,*ae ~ , , ~ , 3 b L k , , ~ b , * A a , +  HC) (10-10c) 
k.a P . A . ~ '  

where 

where the plus sign is to be taken for R = 1 ,2  and the minus sign is to be 
taken for il = 3,4,  We denote the vacuum state by 10) and recall that it is 
the state with no photons, with no positive energy electrons, and with all of 
the negative energy states full (hence no positrons). This vacuum state is an 
eigenstate of Ho with the eigenvalue 

If we do not worry about genera1 relativity where the absolute value of the 
energy is meaningful, then we can define this infinity away by defining a 
new zero order Hamiltonian as Hi = H, - E;'). The vacuum state has the 
energy eigenvalue of zero for this new zero order Hamiltonian. 

Next, we use perturbation theory to calculate the corrections to the 
energy of the vacuum due to HI.  The first order correction to E:" is given by 

This vanishes, since the creation and annihilation operators in HI have no 
diagonal elements. The second order corrections give 

Now, in HI there are terms that create an electron, create a positron (by 
a photon. So we get destroying a negative energy electron), and c 
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Figure 

contributions to E;'' which can be represented by the diagram of Fig. 10-2. 
We find 

But this integral is clearly divergent so E:~' = a. One would find other 
infinite corrections to the energy of the vacuum in higher orders of perturba- 
tion theory. 

Although it is disconcerting to discover these infinities it may be argued 
that they are unobservable, since they always drop out whenever one cal- 
culates an observable quantity. DiracS6 has argued that infinities of this 
kind, which he calls "deadwo~d," are of a pureIy mathematical nature and 
can be avoided if one always works in the Heisenberg representation rather 
than the Schrodinger representation. 

RENORMALIZATION OF MASS OF T m  ELECTRON 

We now suppose that there is one electron present and consider its energy. 
Even in classical physics an electron of radius a has an energy of e2/a due 
to the electric field that surrounds it. This energy is infinite for a point 
electron. In quantum theory there is an additional energy due to the trans- 
verse electromagnetic field. It is this transverse energy that is of interest to 
us in h s  section. 
To do things properly we should use the relativistic theory, However, in 

the interest of simplicity we use the nonselativistic interaction HamiItonian 
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The first order correction to the energy of an electron of momentum hp is 

where [p} denotes a state with one electron of momentum Ap and no photons. 
There is no contribution from the p A term in first order, since this term 
connects states that differ by one photon. The A2 term contains operators 
that can create and destroy the same photon. Equation 10-16 can be rep- 
resented by the diagram of Fig. 10-3. Using Eq. 3-5b we find 

This gives an infinite contribution to the energy of a free electron. It is 
independent of p, so it is the same for all electrons. It will cancel out whenever 
energy differences occur. 

A more interesting infinite energy comes from the p A term in second 
order. This is 

Since A is linear in the creation and annihilation operators for photons, the 
intermediate states must contain one photon. The terms in Eq. 10-18 can be 

Figure 10-4 
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represented by the diagram of Fig. 10-4. Using Eq. 3-5a we find 

Ihp * ~ k d l '  (10-19) 
h2p2/2m - (A2/2m [p - kI2 + hkc)  

In evaluating this we make the dipole approximation k <<p. Also, we use 

(10-20) 
We obtain 

Again we find an infinite result, but now e2' is proportional to p2. We can 
combine it with the zero order energy to  write 

Now, we can adopt the following point of view. The mass m in the formula 
E:' = hv2/2m is the mass of a "bare" electron which does not interact 
with the electromagnetic field. It is fictitious, since the interaction cannot 
be turned off. The experimental mass of the electron must include the ever- 
present interaction with the field. To lowest order in the interaction it is 
given by 

which must be a finite quantity whatever the fictitious mass may be. This 
shift of the mass of the eIectron from its bare value of m to its observed 
value of m,, is called "renormalization" of the mass, 

THIS LAMB SHIFT 

According to the Dirac theory, the 2s and 2pg levels of the hydrogen 
atom should coincide. However, in some very beautiful experiments Lamb 
and Retherfords7 showed that there was a small energy difference between 



XI4 The Problem of Infinities in Quantum Electrodynamics 

Figure 

these levels corresponding to a frequency of about 1000 megacycles. This is 
known as the Lamb shift. It was suspected that this shift was due to the 
interaction with the electromagnetic field, but when calculations were made 
of the shift it turned out to be infinite. Bethe5 showed that this difficulty 
could be overcome by the renormalization of the mass. 

We shall follow Bethe in making a nonrelativistic calculation. The terms 
responsible for the shift in the energy of the state In) of the hydrogen atom 
can be represented by the diagram of Fig. 10-5. This diagram is analogous 
to Fig. 10-4, the only difference being that the states of the electron are 
bound states rather than free states. The correction to the energy is 

(We have used p, = (hli) aldx to avoid confusion with the wave vector p 
which was used in the preceding section. We have made the dipole approxima- 
tion in Eq. 10-24.) Using Eq. 10-20 we can simplify Eq. 10-24 to obtain 

I h ' l  Po lnSI2 
377 m2c n1 E ,  - En# - hkc 

Equation 10-25 is divergent just as Eq. 10-19 was. However, Bethe reasoned 
as folIows. For a free electron p, has only diagonal matrix elements and Eq. 
10-25 reduces to Eq. 10-21 which we interpreted as the change in the kinetic 
energy due to the fact that electromagnetic mass is added to the mass of 
the electron. For a bound electron the square of the momentum in Eq. 10-21 
should be replaced by its expectation value (n] pO2 In). By the completeness 
relation 

(4 po2 I l l )  = x Ih'I Po In)12 (10-26) 
R' 

Thus the correction to the kinetic energy due to electromagnetic mass is 
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This should be subtracted from Eq. 10-25 to obtain the observable energy 
level shift of 

This integral is still divergent, but now only logarithmically . Bethe reasoned 
(his reasons will be discussed presently) that in a relativistic theory the 
integral should be convergent. This convergence can be simulated in the 
nonrelativistic theory by cutting off the integral when the energy of 
the photon hck becomes comparable to mc2, the rest energy of the elec- 
tron. Replacing the upper limit of the integral by mclh and carrying out 
the integration gives 

where Em. - En has been neglected compared with mc2. In evaluating Eq. 
10-24 it is a good approximation to replace (En. - En) in the argument of 
the logarithm by an appropriately chosen average value since the argument 
is large and the logarithm is a slowly varying function. Then the logarithm 
may be removed from the sum. The sum that remains can be evaluated as 
follows. 

2 i(n'l P MI2 (En* - En) = 2 (nl P In') (n'l P InU, - En) 
n ' n ' 

= 2 (nl P(H, - En) In') (n'l P In) 
n* 

/ 

= (.I p(H0 - En) * P I nS 
= (m I P (HOP - pH,) I n) (10-30) 

where H, is the Hamiltonian of the hydrogen atom. We may use 

where V = Ze2/r to  write Eq. 10-30 as 

Finally we get 
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The gy,(O) vanishes for states with nonzero angular momentum. For s states 

where n is the principal quantum number and a is the Bohr radius. 
Bethe calculated numerically (Ear - En),,. When he applied his results to 

the Lamb shift he found a value of 1040 megacycles which is in good agree- 
ment (considering the approximations rnade) with the experimental value 
of 1057 megacycles. 

The problem of the self energy of the electron is not as bad in the relativistic 
theory as it is in the nonrelativistic theory for the following reason. If one 
tries to construct a wave packet to represent a positive energy electron using 
relativistic wave functions then the negative energy states are not available 
for use, since they are already full. As a result there is a limit to how small 
the wave packet can be made. It is as if the electron had a finite size about 
equal to its Compton wavelength. It turns out that this does not completely 
cure the divergence but makes it only logarithmically divergent instead of 
the linear divergence of Eq. 10-21. Bethe argued that when the subtraction 
was made in the relativistic theory to obtain the equivalent of our Eq. 10-28 
a convergent result would be obtained. When the relativistic calculation was 
done by Kroll and Lamb59 this was found to be the case, The agreement 
between experiment and the relativistic theory is now extremely good. 

It is now realized that all of the infinities in quantum electrodynamics 
are essentially unobservable, since they must be embodied in the finite 
values of the observed mass and charge of the particles. This favorable 
circumstance has rnade quan turn elect~odynamics an extremely successful. 
theory in spite of the infinities that detract from its esthetic appeal. 

ANOMALOUS MAGNETIC MOMENT OF THE ELECTRON 

The Dirac equation predicts a magnetic moment of the electron of 
-eh/2nzc. When the coupling of the electromagnetic field is taken into 
account there is a shift in this value. We give a very simplified theory of this 
effect and then qualitatively discuss the more rigorous theory. 

Consider an electron fixed at the origin of the coordinate system. Let 
there be a uniform magnetic field B in the =-direction. The zeroth order 
H amil tonian is 
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where g = 2 and cy = eB/21?1c. The eigenvalues of H, are 

where 

Associated with the radiation field there w i l  be a magnetic field given by 

This also interacts with the magnetic moment of the electron to give the 
energy 

(The c when set in boldface or with subscripts x ,  y, or z denotes Pauli 
matrices; there should be no confusion with the subscript a denoting 
polarization.) 

Just as in the precedingsection, Hz can give a second order correction to 
the enerm of 

This correction can be represented by the diagram of Fig. 10-6. We have 
denoted by Im} the state in which the electron has the quantum number m 
and there are no photons. In the intermediate state the electron has changed 
its quantum number to m' and there is a photon present. By the artifice of 
fixing the electron at the origin we have restricted the electron to two possible 
states. This simplifies the. problem but at the expense of making it somewhat 

Figure 10-6 
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artificial. Using Eq. 10-38 in Eq. f 0-39 gives 

I(m'l a k x 4, Im)l2 
gAw,(m - m') - hkc 

2 
d3k [(A rr k x u,, lrn)l2 

f 10-40) 
ghmo(m - m') - kkc 

We can carry out the sum over polarizations and show that 

2 I(m'l 0 k x u,, lm)I2 = k2 [(m'l o /m)I2 - I(rntl k 0 Im)12 (10-41) 
n 

If we choose m = +$ then this is 

k2(1 - cos2 0) 
for m' = ++ and 

k2(1 + cos2 8 )  

for m' = -4. Here ces 0 = k,ik. The angular integrations can be carried 
out with the result 

This is infinite, of course. Furthermore, it is infinite even when B (which is 
contained in w,) vanishes. We should subtract this energy which remains 
when B = 0, for it cannot be interpreted as an energy of interaction of a 
magnetic moment with a magnetic field. Subtracting a term with the brace 
replaced by - 3/k and calling the difference A E:' we obtain 

The integral is still divergent, so we shall cut off the integral at the upper 
limit of k = as we did in the Lamb shift calculation. The result is 

(10-45) 
If we keep only the term that is linear in B we obtain 

(2)  AE, = 

A correct relativistic treatment gives the factor in Eq. 10-46 as (e2/2rl ic)  
rather than ( e 2 / 3 ~ h c ) .  Our crude approximate treatment has led to a result 
that is only off by a factor of 3. We could have gotten the right answer if we 
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had chosen the cut off to be 4 (mclh). The answer is much more sensitive 
to the cutoff than it was in the case of the Lamb shift. 

The terms in Eq. 10-45 which are nonlinear in B can be interpreted as a 
magnetic polarizability of the electron. They are too small to be measurable. 

We conclude by describing how a correct calculation would go, First, one 
must use the soIutions of the Dirac equation in a uniform magnetic field 

These solutions are well known.61 (The n stands for the four quantum 
numbers that characterize a sotution.) In the usual way we expand 

and find for the unperturbed Hamiltonian 

= 2 Enbib,  + 2 hokatmar, 
n ku 

The interaction with the radiation field gves the term 

= - e { a  d3xy:a u,. y,e'k'x + HC) (10-49) 
k,a n.nr J 

The electrostatic interaction cannot be neglected. The methods of Chapter 8 
may be used to write it as 

It might be thought that since only one electron is involved the Coulomb 
interaction would not enter. However, it must be kept in mind that in 
relativistic quantum electrodynamics there is no such thing as a one body 
problem. There is always present the infinite sea of negative energy electrons. 

One chooses a state of H, in which there is one electron in state n and no 
photons. Perturbation theory is used to calculate the shift in the energy of 
this state. The H, gives a correction to the energy proportional to e2 in first 
order and HI gives an ee correction in second order. When the part of the 
energy that remains when B = 0 is subtracted, both contributions are 
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convergent. The H, contributes 

and HI contributes 

so that the net result is 

This correction can be considered to be a correction to the g-factor of 
*2 

Further contributions to the magnetic moment of the electron arise from 
corrections of order e4, e6 and so on. The e4 correction has been worked out 
with the result 

e2 2.97 e2 
Ag = - - -(--) = 0.001145 (10-55) 

2nhc n2 

This result is in excellent agreement with experiment. 

Problem 10-1. A calculation of the Lamb shift. due to Welton is very 
instructive in that it makes it  clear that the origin of the shift is the zero point 
fluctuations of the electromagnetic field. It proceeds as follows. Solve the 
classical equations of motion for a particle in an oscillating electric field. 
Calculate the mean square displacement of the electron assuming that it is 
acted on by a superposition of electromagnetic waves and assigning to each 
mode of this radiation field the energy t io /2.  Show that the mean square 
displacement is 2 ("c t 

{lAxi2> = - - - 
rn Pt2 mc 

This is infinite, of course. It must be made finite by a suitable choice of cutoffs 
at the upper and lower limits of integration. Next, show that the change in 
potential energy of the electron due to fluctuations in the electrons position is 

V ( x  + Ax) = (1 + Ax - V + $(ax Vl2 + . I~(X) (1 0- 5 7) 
and 

Treat this second term as a perturbation and use perturbation theory to 
show that the shift in energy of a level in the hydrogen atom is 

k,,,,, AE = - - - log - lW(0)12 
3 '" hc rnc 7 klni,, 



Appendix A 

Relativistic Wave Equations 

In discussions of  relativistic invariance two notations are in common use. 
In one of these we denote the space-time coordinates by 

In this notation the interval between two neighboring events is 

(dsI2 = dx,, dxp = (dx1I2 + ( d ~ ) ~  f ( d ~ ) ~  - c2t2 (A-2) 

In the other notation 

and the interval between neighboring events is 

where g,, = 0, A # p 

goo = - 1 

811 = 9 2 2  = 9 3 3  = 1 

We are using the summation convention; a repeated index is to be summed 
over. For simplicity we refer to these notations as the x, notation and the x, 
notation. 

Under a Lorentz transformation the coordinates transform as 

xh = a,,x, (A-5) 

where the elements of a,, are restricted by the requirement that ( d ~ ) ~  be an 
invariant. For the 2, notation this requirement is a,,a,d = dl, ; for the 
x,-notation the requirement is g,,a,,a,c = gap. 

It is a postulate of the special theory of relativity that physical laws are 
invariant under Lorentz transformations; that is, they take the same form 
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in a reference system with space-time coordinates x; as they do in a system 
with space-time coordinates x,. This is easily accomplished if the physical 
laws are written as relations among tensors of the same rank, since then all 
of the terms in the equation transform in the same way under the Lorentz 
transformation, Eq. A-5. This postulate of relativistic invariance is one of 
the guiding principles to be followed in constructing relativistic wave equa- 
tions. 

The other guiding principle is that the frequency of the wave must be 
related to tbe energy of the corresponding particle by the Einstein relation, 
and the wave vector of the wave must be related to the momentum of the 
corresponding particle by the De Broglie relation; that is 

E = hw (Einstein) 
p = h k  (DeBroglie) 

If one constructs a wave packet of the form 

y(x, 1 )  = /d 'k~(k )~"~ .~ -~ ( * ) f l  ( ~ - 7 )  

and uses E = E(p) to infer the functional form of co = ~ ( k ) ,  then it follows 
that the centroid of the wave packet moves with the velocity of the cor- 
responding classical particle. This follows from 

The left-hand side of Eq. A-8 is the particle velocity given by Hamilton's 
equations and the right-hand side is the group veIocity of a wave packet. 
The equation satisfied by y(x,  t )  may be obtained by writing 

and replacing E by -t t / i(a/ar) and p by hl i (a /ax) ,  for then 

If one chooses the nonrelativistic relation between energy and momentum 

then one obtains the nonrelativistic Schr~dinger equation 

(A- 1 1) 
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If one chooses the relativistic relation 

E = JcZp2 + m2c4 
one obtains 

which is rather troublesome to interpret. Actually, the right-hand side can 
be interpreted as a nonlocal operator, but the prevailing view of the theorist 
is that nonlocal operators should be avoided if at all possible. A better 
solution i s  to square both sides of Eq. A- 13 and then replace E and p by the 
corresponding operators to obtain 

which may also be written 

(A- 16) 

where 

1 a2 
p = v 2 - - -  = a2 

or gl, 
a2 (A- 1 7) 

e2 at2 ax, ax, axI ax, 
is called the D'Alembentian operator. It is easily shown that is a scalar 
operator. 

Problem A-1. Use a,,a,, = 8, (x, notation) to show that the transforma- 
tion inverse to Eq. A-5 is 

Xh' all14 (A-18) 
Use x,x, = xLx; to show that a,,as, = dup Show that 

and that 

If y(xu) is a scalar then Eq. A-16 is a relativistically invariant equation; 
it is called the Klein-Gordon equation, although it was originally proposed 
by SchrGdinger in 1926. Equation A-1 6 will be relativistically invariant if 
y(xp) is a tensor of any rank. If y, is a Cvector, we write it as y.(z,) and the 
resulting equation is called the Proca equation. In the special case that the 
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rest mass of the particle vanishes, the equation 

U",, = 0 (A-2 I ) 

is just the equation obeyed by the vector potential for the electromagnetic 
field, 

We could go on to consider second rank tensors y,,, third rank tensors 
yPv,, and so on. The subscripts on yl may be considered as additional co- 
ordinates of the particle. For instance, the particle described by the Cvector 
wave function yr,(x,) has, in addition to the space-time coordinates xp, the 
coordinate Y which can only take on the discrete values u = 1,2, 3,4.  It may 
be shown that these additional coordinates are related to the spin of the 
particle. A scalar wave function describes a spin-zero particle; a 4-vector 
wave function describes a spin-one particle; a second rank tensor wave 
function describes a spin-two particle; and so on. 

As a single particle equation, Eq. A-16 has some undesirable features 
which are connected with the fact that it is a second order equation in the 
time. As a result it was in disrepute for about seven years after it was proposed. 
Then in 1934 Pauli and Weiskopf reestablished the validity of the equation 
by reinterpreting it as a field equation which was to be quantized as the 
electromagnetic field equations were. It is now believed to be the equation 
that describes mesons. 

It may appear that by considering tensors of all ranks as choices for y, 
we have exhausted all of the possibilities for relativistically invariant wave 
equations. However, as Edington phrased it, "something has slipped through 
the net." Dirac reasoned that if a relativistic equation is to be first order in 
time then in order for space and time to be treated symmetrically it must be 
fist order in space as well. Let us try to extract the square root in Eq. A-13 
by writing 

E = c(%p, 3- a$%i -I- aspZ) + Bmc2 (A-22) 

Replacing E by -h / i  slat andp, by fi/i a l a x ,  and letting each side operate on 
y gives an equation which is first order in both space and time derivatives. 
If the right-hand side of Eq. A-22 is indeed the square root of c2p2 + )1z2c4 
then we must have 

2 2 c2p2 + H ? ~ c ~  = c2(alZp: + x22py2 + a3 pz ) 
+ B21112~4 + 2c2(a,a, + ~ ~ ~ ~ ) p ~ p ,  + . . . (A-23) 

This cannot be accomplished if a,, a,, a,, and are numbers, but it is 
possible if they are noncommuting matrices which satisfy 

rn12 = rn2= = a3= = 8 2  , 1 

aiaj + ccjol, = 0 for i f j 

or$ + pori = 0 for all i 
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It can be shown that the lowest order matrices which satisfy these relations 
are 4 x 4. A convenient choice for the 4 x 4 matrices is 

where a = ( x , ,  u,, cc,), and we have written the 4 x 4 matrices as 2 x 2 
matrices of 2 x 2 matrices. We have denoted by a = (a,, o,, a,) the Pauli 
matrices 

The wave equation becomes 

av 
A -- fie 

=Hy = + - a r m V y + ~ m c 2 y ,  
i at i 

Since a and ,B are 4 x 4 matrices, yl must have four components for this 
equation to make sense. Equation A-28 is called the Dirac equation. It may 
be put in a more symmetrical form by multiplying through by and using 
p2 = I. We then obtain 

where we use the x4 notation and y, = -ipcc, for i = 1,2,3, y, = p. 
Next we investigate the relativistic invariance of Eq. A-29. If Eq. A-29 is 

to be relativistically invariant then in the new coordinate system the equation 

(yip; - i m c ) y ' ( x ~ )  = 0 (A-30) 

must be true. Here the prime denotes the variables in the transformed 
coordinate system. We assume that since the elements of the matrices. are 
pure number they remain unchanged, Let 

ylr(x;> = SW(XJ (A-3 1) 
where S is some matrix still to be determined. It follows from Eq. A-19 that 

P; = Q f l ~ P , .  

so that Eq. A-30 can be written as 

( Y ~ ~ ~ A P A  - imc)Syl - 0 (A- 3 3) 
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Multiplying from the left with S-I gives 

Comparing this with Eq. A-29 shows that the two equations are the same if 

S-ly,Sa,A = y,  
which can also be written as 

S-l y,S = nPl yA 

This gives a nonlinear equation for the determination of the elements of S. 
The Dirac wavefunctions do not transform as tensors of any rank; instead 

they are what are called spinors. Certain bilinear combinations of y's do 
transform as tensors. Let us write 

and similarly for some other spinor #. Then it can be shown that 

is a pseudoscalar (y5 r y, y, y,  y,), 

~ Y P +  

is a 4-vector, 
T Y ~ Y ~ Y & >  + Y ~ Y I Y ~ ,  F Y I Y ~ Y ~  (A-4 1 ) 

and +y,y,y,$ are the components of an axial 4-vector, and 

are the six components of a antisymmetric tensor. 

Problem A-2. Consider the infinitesimal Loren tz transformation 

where E,, is infinitesimal. Show from o,,a,, = S,, that E, ,  = - E  ,-,. Write 
S = 1 + T where T is of order E ~ , .  Use Eq. A-36 to show that 



Relativistic Wave Equations 127 

This may be used to find S for infinitesimal transformations and then by 
iteration S can be found for finite transformations. For example consider 
the infinitesimal rotation about the a-axis: 

Show that - 
0 

i 
& 2 

0 

By-iteration show that for a finite rotation through an angle $ 

~ o t e ' t h a t  for 4 = 27r, y' = - y. This would be unsatisfactory if yl itself were 
an observable. However, ly always enters quadratically into any observable 
quantity. 

As another example consider the infinitesimal Lorentz transformation: 

Show that 

and that for a finite Lorentz transformation 

where = vlc. 
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Problem A-3. Show that for the space reflection transformation xi = - x i  
(i = 1,2, 3), xi = x4 the transformation matrix is 

Our next task is to solve the Dirac equation for a free particle. We take 
the equation in the form given in Eq. A-28. It is natural to look for a plane 
wave solution 

y(x, t )  = tke i / f i ( ~ - x - ~ t  ) (A-50) 

where u is a 4component spinor. Equation A-28 becomes 

(N- E)u = [ c a m p  + Pmc2 - EJu = 0 (A-5 1 )  

Equation A-51 is four linear homogeneous equations for u. The condition 
that a nontriviaI solution exist is that the determinant of the coefficients 
vanish. It is easily shown that this gives 

(A- 52) 

With these values for E the set of equations can be solved for the components 
of u. Four column vectors are obtained. Two correspond to the positive sign 
of E, and two correspond to the negative sign of E. The solutions for u is 
a little complicated because of this degeneracy. A simple shortcut for finding 
the solutions is the following. We note that 

since He = c2p2 + w2c4 by Eq. A-23 and E is given by Eq. A-52. NOW 
H + E is the matrix 

where p,  = p, & ip,. 
From Eq. A-53 we see that each column of H + E will give zero when 

operated on by (H - E).Therefore, thecolun~ns of H + E are the solutions we 
are looking for. We then multiply each column by a factor which normalizes 
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it properly, In this way we find the four solutions 

We have let R = IEl = + Jcv2 + mZc4. The normalization is chosen so that 

The solutions u"' and d2) correspond to E = +R, and the solutions d3' and 
uC4) correspond to E = - R. 

It may be shown (see Problem A-4) that the Dirac equation describes 
particles of spin -9. Solutions u'l)  and ~ ( ~ 1  correspond to the orientation 
of this spin along the +z-axis while ut2) and d4' correspond to its orientation 
along the -z-axis. 

* 

Problem A-4. Show that the orbital angular momentum operator 
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does not commute with the Dirac Hamiltonian H = ca p $ prnc2, but that 

J = L + S  
where 

(A- 5 8) 

does commute with H. S may be interpreted as the spin operator. Show that 
the eigenvalues of any component of S are f h/2. Show that the eigenvalues 
of S2 are 3h2/4. 

Problem A-5. Write the 6component Dirac spinor as 

where 4 and x are Zcornponent spinors. Show that 4 and x obey the coupled 
equations 

in the presence of an electromagnetic field described by the potentials A and 
@. Show that in the nonrelativistic limit x can be eliminated and 4 satisfies 
the equation 

This shows that the Dirac electron has a magnetic moment of 

Problem A-6. A Zcomponent theory of the neutrino has been proposed by 
Yang and Lee. The Hamiltonian is taken to be 

(a) Find the eigenvalues and eigenfunctions of H. 
(b) Show that L does not commute with H but that 

does commute. 
(c) Show that a positive energy neutrino has its spin antiparallel to i t s  

momentum. 
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Details of the Calculation 
of the Klein-Nishina Cross Section 

i 

Our purpose here is to calculate Mfi of Eq. 6-44 and use it in the calculation 
of the cross section for Compton scattering. The necessary matrix elements 
are given in Eq. 6-46. We can simplify the notation somewhat by denoting 
the Dirac spinors u,,,~ and u,,,~ by ui and u,. Also we shall denote a u, and 
a u, by or, and a,. Then Eq. 6-44 may be written as 

The sum over t is a sum over the spins and signs of the energies of the inter- 
mediate states. We write 

In evaluating Mii it is convenient to choose units so that f i  = c = 1. The 
original units are easily restored by noting that M;, has units of (energy)-l. 
In these units 

En = d k ? +  m2+ k,+ k,= E z +  kt + k, (B-3c) 

We have let qi = 0, so the electron is initially at rest. We have denoted the 
energies of the electron in the intermediate states by El and E,. The MA is 
given by 
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We cannot remove the denominators from the sum because both signs of 
E, and E, occur in the sum over I Z .  However, if we multiply numerator and 
denominator of the first term by m + ki + El and the numerator and 
denominator of the second term by nz - k, $- E, then the denominators can 
be extracted and we obtain 

This can be simplified by noting that 

(nz + ki)2 - El = 2mkf (B-6a) 
(FTI - k,)' - EZ2 = - 2mkf (B-6 b) 

We use 
Elv, = Hlu, = (k, a + mB)tdl (B-7a) 

and 
Ezuz = H,u, = (-kl u + ~ n p ) u ~  (B-7b) 

Just as in the section on cerenkov radiation, we can use the completeness 
relation to obtain 

where 1 is the 4 x 4 matrix. In this way we obtain 

where 

Now, pai = -a$ and BE, = -or,/?, so that the can be moved to the right 
in Q. Then 

pug = up. (B-10) 

since qi = 0 ,  and the terms containing Pn7 cancel the terms containing nz in 
Q. Next, we use Eq. 6-30 to obtain 

MfEp + Ribf = 2(ui l l f ) j .  

and obtain 
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The differential cross section is proportional to the square of M;,. We are 
not interested in the spin of the electron in the initial or final states; so we 
sum I Mji12 over final spin states and average over initial spin states. The 
quantity we want is 

We can extend the sums over 1, and 1, by using 

Equation 13- 13 becomes 

From this point on some tedious algebra is unavoidable. It can be reduced 
to a minimum by simplifying the notation and using the properties of the 
Dirac matrices. Let 

Equation 33- 12 becomes 

Q = 2(u, uf) + a,qa, + aia ,~f  (B-17) 

Equati~n B- 15 becomes 
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Now it is easily proven that 

Tr oriuj.. ec, = 0 (B- 19) 

when there are an odd number of the a's in the product. Similarly, the trace 
of such a product vanishes when there are an odd number of p's among the 
factors. When there is an even number of B ' s ,  one may use a,/7 = -pai to 
move the p 's  together and then use b2 = 1. In this way many sf the terms in 
Eq. B-18 may be shown to be zero. What remains may be reduced by using 

Equation B-18 reduces to 

1 Tr {8m2(u, u,)~ + m(k, - k,) 
32m2 IEil lEfl 

+ ~fu,miafa2a, + ~ , a ~ ~ ~ a ~ a ~ a , ] )  (B-21) 
We now use 

Tr (a,a,cc,tc, + a,a,a,~) = 8(u,-u,)(u,*u,) - 8(uimu2)(u,= ut) (B-22a) 
Tr ( ~ ~ a , a f ~ c ~ ~ ~ a ~  + cxiatf%~fcl,cx,) = 16111, u f ) 2 ( ~  u2) 

- 16(u, uf)(u, uf)(u2 ui) 

- 2(h . u d  (B-22b) 
and 

to obtain 

When this is used in the Fermi golden rule to calculate the cross section, 
The Klein-Nishina formula, Eq. 6-53, is obtained. 



Appendix c 
Answers and Solutions to the Problems 

CHAPTER 1 

Problem 1-1. Write 

Tr C = I ( A ' J  CIA') = Tr 1C1 
A' 

= 2 2 (A' I B') (B'I C IB") {B" I A') 
A' B' B" 

= 2 2 2 ( B  I A'} (A' I B') (B'I C IB") 
A' B' B" 

= I: 2 (B" I B') (B t [  C (B") 
B' B" 

= 2 {B' 1 C IB") 
- B' 

where Eqs. 1-41 and 1-32 have been used. 

Problem 1-2. Write 

2 I(A'I C IA")]' = 2 (A'l C IA") (A'[ C IAJ')* 
'A' A" A' An 

where Eqs, 1-27 and 1-43 have been used. 

Problem 1-3. Write 

@'If (A)  IB') = z 2 (B' I A') (AJI f(A) IA") (A" I B') 
A'. A" 

= 2 2 (B' I A') f (Af)6,.,,.(A" I B') 
A' A" 

= 2 (B' I A') f (A')(A1 I B') 
A' 

where Eqs. 1-41 and f (A )  1 A') = f (A') I A') have been used. 
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Problem 1-4. Use the power series for the exponential to write 

Note that ax2 = 1.  It follows that 

Recognizing the series for cos 812 and sin 812 we see that 

lZfiu*/2) - e B rS - 1 cos - + io, sin - 
2 2 

which is the same as Eq. 1-53. This problem can also be solved by using 
Eq. 1-51. It is convenient to define the vectors 

(Actually, these are the eigenvectors of o, given by Eq. 1-85.) Then 

Solving the eigenvalue problem 

we find that I. = =t= 1 and the normalized eigenvectors are 

Then Eq. 1-51 gives 

,L+, i 1 e ( i f i u ~ / 2 )  lz3 j )  = (2, i 1 x, ?b)e(iflA12'(x, Ib 1 z, j }  
L i t 1  

This gives Eq. 1-53. For instance setting i = j = 1 gives 

t,iai2 + 4eg/2 = cos - B 
v 

2 

which is the i = 1 ,  j = 1 element of the matrix in Eq. 1-53. 

Problem 1-5. Writing L, = yp,  - zp, and L, = zp, - xp, we find 

[L,, L,] = (yp, - zp,)(zp,  - xp3  - (ZP, - ~ P ~ ) ( Y P *  - ~ P W )  

= yp.@.z - ZP.) + XP.(ZP. - PA 
= ih(xpw - ypa) = ihL, 
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Problem 1-6. We get the vector 

from Eq. I-91a by setting 0 = rj2 and  4 = 0. Then 

= COS SC)t 

The other relations are obtained in the same way. 

Problem 1-7. Write 

( P ' I  XP - PX IP") = d"'p{(p'l x IP")(P'"I P IP") - (p'l P l~")@"l x lp")) S 
= iti $(p' - p") 

= (PI' - p')(PfI x IP") 
Equation 1- 109 follows from this just as Eq. 1-108 followed from Eq. 1- 107 

Problem 1-8. Let 

Ic> = af la} 
Then 

n k> = a+aaf la} =,af(a+a + 1) In) = ( ~ 1  + 1) jC) 

It follows that 

Ic) = D,In + 1) 

The normalization constant is found to be Jn + 1 times an arbitrary phase 
factor. 

Problem 1-9. Use Eg. 1-254a to write 

(n11 x2 1%) 
= 2 (n1l x in)(nl z 1%) 

A similar calculation using Eq. I-154b gives 
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It follows that 

CHAPTER 2 

Problem 2-1. Write 

(el a+a lc) = 2 2 b:b,(ml a'a In) 
m=O n=O 

Equations 2-39b to e can be derived in a similar manner. 

Problem 2-2. Using Eq. 2-29 we find 

The necessary expectation values are given in Eq. 2-39. Equation 2-38 gives 
I (cl E ) C) 12. The difference gives Eq. 2-42. 

CHAPTER 3 

Problem 3-1. We can construct a three-dimensional space with coordinate 
axes H ~ ,  n,, and n,. Since there is a mode of the electromagnetic field with a 
given polarization for each triplet of integers (n,, nu, n,), there must be 
An, An, An, modes with n, in the range An,, n, in the range An,, and n, in 
the range An,. Since An, = L Aki/2.rr we can say that 

L Aka Aka Ak, 
( 2 d 3  
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is the number of modes with k, in Ak,, and so on. Taking the limit as L --t oo 
and Ak, -. 0 gives 

for the number of modes in an infinitely large box with k in d3k. 

Problem 3-2. The atomic wave functions are of the form 

y,,m(x) = R,,(r) Y,"(O, 4) 
where Ylm(B, +) is a spherical harmonic. We can write 

x = rsin Bcos + = r(a,yI1 + b,Y;') 
y = r sin 13 cos 4 = r(a,YI1 + b, Y;') 
x = r cos 8 = razYI 0 

where a,, 6,, a,, and so on, are constants. Now 

mrl m f l  Y:lXni = AYl+y + BYz-l and YlOxm = CY& + D Y r l  

where A ,  B,  C, and D are canstants. We see immediately that the matrix 
elements of x and y vanish unless A2 = =t 1 and Am = f 1,  and the matrix 
elements of z vanish unless A2 = 1 and Am = 0. 

Problem 3-3. The matrix element for the transition from the 2p state with 
m = O to the 2s state is 

= 4JZ a($)' 

This may be used in Eq. 3-19 together with 

w AE 3 e2 ------ - - 
c fic 8 a  

to obtain 

The lifetime for the 2p states with m = +1 and -1 is the same. For these 
states the matrix eIements of both x and y contribute. 
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Problem 3-4. Choose k to be in the direction of the z-axis. Then 

Now u is perpendicular to k, so it lies in the x -y  plane. Since y,,y,. has 
spherical symmetry the integration over x and y gives zero. Note that this 
result does not depend of the dipole approximation. It holds in any order 
of the expansion of the exponential. 

Problem 3-5. The interaction energy of a magnetic dipole, p, with a mag- 
netic field B is 

H"' = - p ' B 

Using B = V x A and Eq. 2-1 1 gives 

Problem 3-6. The initial and final states can be taken to be 

1 I f )  = Ils), - (It), !I), - II), It),) 1'  ' 
' ' ')rad Jz 

The lifetime is given by 

1 2n  
- =  -1(f1Httt~i)126(AE-fick) 
7 final states h 

where AE = hck, is the energy difference of the levels and k, = 27~121 cm-I. 
Making the dipole approximation e**' E I .  The matrix element is found 
to be 

We can sl~ow that 
b 

2 IMI' = 4 [(k X M*.), + (k x urJt1 = 1k2(1 + cos2 0) 
u cr 
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(To see this,  rotate the pair of polarization vectors about k as an axis until 
one of them lies in the x-y plane.) Carrying out the integrations gives 

1 1 e3h 
-AI- - 
T 3 m2c2 

kd 

from which T = 2 x 1 014 sec, 

Problem 3-7. The lifetime is given by 

If we expand the exponential we find that the matrix element of the Erst 
two terms in the expansion vanishes and 

-1 
(131  el'^'^ 12s) - (lsl (k, x ) ~  12s) E - - 

2 
kbd (Is1 r2 12s) 
6 

Approximating the matrix element of rP by a2, this becomes 

Using e2/hc = this may be written as 

from which 
T = 2 x lo7 sec 

Problem 3-8. The transition probability per unit time is 

2 r (  e )1(2;E2) u a 2 - E,, - - -  - PZka [(ql P' ka 
ti mc 2m 

where 
ei"x 

Y+l = 6 1 4) = - 
JG 
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is the wave function of the ejected electron and 

is the wave function of the electron in the ground state of hydrogen. When the 
transition probability per unit time is summed over all final states of the 
ejected electron, the result is equaI to the total cross section times the flux 
n,,c/fi. In this way we obtain 

and 

We can use 

where 8 ,  4 and 8 ' ,  4' are the angles of q and x respectively. Also 

cor = (J)?Y,~(B~,  4) 
4rr 

We find 

{ q ~  cos 8 11s) - 4ni 'OS 'L'r2 drjI(qr)e*/a = 4ni - tor ~ j ( q o )  
- JZG d:: 

where 

f (qn) = i m x 2  dxjl(qa Z)C' = 2@ 2 8 2  
I l + q a )  

This gives 

where fig is the momentum and 0 is the direction of the ejected electron. 

Problem 3-9. Assuming q, = 0, the conservation Jaws become 

fi292f hck, = tick, $- - 
2m 

k, = k, + g, 

Eliminate q, and solve for l, - li with the approximation that A, E Ibi. 
Equation 3-4 1 results. 
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Problem 3-10. Write 

The matrix element for the process can be written as 

where 

M' = u, u,(lsl e-i(k~Ck2''x 12s) 

m 7s - En - hck, E,, - En - hck, 
Note that in the sum over intermediate states it is necessary to include both 
of the time orders in which the photons are emitted. We get 

Since M' is dimensionless an order of magnitude estimate can be obtained 
by assuming that 

The integrals can now be done and one obtains 
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This problem has attracted considerable attention from theorist beginning 
with M. G6ppert M a ~ e r ~ ~  in 1931. The lastest calculation by Shapiro and 
Breitw 4 in  1959 gives 

= 8 . 2 2 6 ~ ~  sec-I 
7 

Problem 3-11. Write the conservation of energy as 

2 2  2 hkc Jli c q + m2c4 = J P c 2  Iq - k12 + m2c4 + - 
n 

Solving for cos 8 = q klqk gives Eq. 3-63. 

CHAPTER 4 

Problem 4-1. Write 

Now use Eqs. 4-26 to write tp ( x r  , t)y+(x, t )  = 6(x - x') f @(x, t )  y (x' , t )  . 
Note that v(xf, t )  can be moved to the right of [-fft2/2rn) V2 + yl since V2 
operates on the unprimed variables. Next use Eq. 4-27 to write 

~ ( x ' ,  t)py(x, t )  = =Fy(xt f ) y ( ~ ' ,  f) 
We are left with 

Problem 4-2. Write 

Use Eqs. 4-26 and 4-27 to move the operator y+(x, t )y(x ,  r) in the first term 
through the operators which stand on its right. Then cancel the resulting 
expression with the last term. In  doing this you pick up a 6(x - x') when 
~ ( x ,  t )  is moved through y+(x', 1 )  and a - S(x - x') when y+(x, t )  is moved 
through ~ ( x ' ,  t ) ,  so that these terrns cancel. 
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CHAPTER 5 

Problem 5-2. In Eq. 5-6b interchange n and n' and note that 

M ( - k ,  a, n', n) = M*(k,  o, n,  n') 

Similar manipulations lead to Eq. 5-8b. 

Problem 5-3. No answer necessary. 

CHAPTER 6 

Problem 6-1. Write 

(a a)(u b) + (a b)(a a) = 2n,b,aZ2 + 2a,b,aY2 + 2a,bzm,2 

+ a,b,(a,a, + u,a,) + - . 
Using Eq. A-24, Eq. 6-30 follows. Next 

from which Eq. 6-32 follows. Note that since B anticommutes with a, for all i, 
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from which Eq. 6-33 follows. To prove Eq. 6-34 use Eq. 6-30 to move the 
factor (a a) to the left; thus 

Now, when Eqs. 6-31 and 6-32 are used, Eq. 6-34 is obtained. 

Problem 6-2 

Problem 7-1. Using the definitions y ,  = y,y,y,y,, y ,  = -$ai, and y,  = B 
we find 
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Then 

and 

All matrices are written as 2 x 2 matrices of 2 x 2 matrices. In the non- 
relativistic approximation 

where u, and u, are 2-component spinors. Equation 7-34 follows. 

Problem 7-2. This problem is analogous to Problems 3-5 and 3-6. We 
may write 

Assume that the initial and final states are 

] i} = 1 2 0  f ) Ino photons) 

I f >  = In? ?> I ' .  lk' * ) T  

Then 

The lifetime is given by 

1 f i ( k  x u,,): d[AE - lick] 

By comparison with Problem 3-6 we h d  

with 

- AMc -- 
h 



Now M, = 1192 MeVlc2 and MA = 1115 MeV/ca, so that 

AM = 77 MeV/c2 
We find r - 10-l8 sec. 

Problem 8-1. When Eq. 8-9 is substituted into Eq. 8-7 it is found that 
the quantity in braces vanishes whenever the argument of the d-function 
vanishes. 

Problem 8-2. The proof is almost identical to that of Problem 8-1. 

Problem 8-3. When a gas is far from degeneracy, N(k) << 1 and Eq. 8- 1 1 
reduces to Eq. 8-18. 

Problem 8-4. The proof of the classica~ H-theorem parallels almost exactly 
the proof outlined in the text for bosons. 

Problem 8-5. The critical speed (about 23 cmlsec) is the velocity of propaga- 
tion of surface waves on the water. Above this, velocity waves propagate 
away from the moving object. From a quantum-mechanical viewpoint we 
may say that the moving object can emit hydrons (this is what S ~ n g e ~ ~  calls 
them) and conserve momentum and energy when its velocity exceeds the 
velocity of propagation of the wave. This is another example of a very general 
phenomena that have applications to Cerenkov radiation, superfluidity, the 
wake of a ship, sonic booms, characteristic energy losses of electrons in 
solids, and Landau damping of plasma oscillations. 

CHAPTER 9 

Problem 9-1. In the absence of a plasma the potential would be Qlr. The 
Fourier transform of this is 

In the presence of a plasma this must be divided by the dielectric function 
evaluated at zero frequency (since Q is stationary) to obtain 

where 
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and 
1 2 

W P S  -=p-- 
i2 s v,," 

inverting the Fourier transform gives 

The field is shielded out in a distance about equal to 1. A similar result is 
obtained when the particles have a Maxwellian distribution. In this case 

is the Debye length. 

Problem 9-2. Let 

where 

is the thermal velocity. Forget about the sum over species in Eq. 9-24 for 
the time being. It can be reintroduced later. Take q along the z-axis and 
perform the integrations over v, and v, to obtain 

where 

and 

is the Fried-Conte function.66 It has been tabulated. 
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Problem 9-3. Write 

Replacing the diagrams by the corresponding transition probabilities per unit 
times gives 

IaGi,-k - Em - fiQ,,l(F,ol~ + k)Il * Fs,(p)l 
1N,lh) + 11 - FSo(p) [I f F ~ P  -I- klEN,(k)) 
+ dIEsp-k - E ~ g  + f i a k ~ J ( F ~ O ( ~  - k)[l f F s Q ( ~ ) I  

N,(k) - F,(P)[~ f FSO(P - k)J[N,(kl + 11)) 
The quasi-linear equations were first derived classically by Drummond and 
PinesG7 and by Vedenov , Velikov , and Sagdee~.~B The quantum-mechanical 
derivation is due to Pines and SchriefTe~.~~ 

CHAPTER 10 

Problem 10-1. Solving 

on the assumption the E oscillates with frequency w gives 

and 
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Now, we let E be one of the modes of the radiation field and obtain 

We use 

and obtain 

When the sum over field modes is made the term Ax V and the off-diagonal 
terms in *(Ax V)2 vanish. One is left with Eq. 10-58. Letting 

we find 

This gives an energy shift o f  

Which agrees with Eq. 10-33 if the cutoffs k,,, and kmi, are properly choseh. 
The reader is referred to Welton's paper for the arguments justifying the 
choice of k,, and kmi,. 

Problem A-1. Multiply Eq. A-5 by a,, to obtain 

a C l y x ~  = apyaNr2x2 = dglxA = xy 

Now use Eq. A-18 twice in x,x, = x;x; to obtain 
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If this is to be true for all x; it follows that U,PI ,  = By the chain rule 
of differentiation 

a a a -=-- = a 
ax, ax, ax; u~~ 

Similarly 
as 

= a,,aap 
82 a2 - - a2 

ax# ax, = 6, ax; ax; ax; ax; ax; ax; 
Problem A-2. Write 

a,,a,i = (4, + &,,)(6,, + &pv) 

= S ~ A  + E A ~  + f E ~ V E ~ . I  = S P A  

Since cVA is infinitesimal the term E ~ ~ E ~ ~  is negligible and it follows that 
- 

E V A  - -eAv. Equation A-36 becomes 

(1 - T)Ap(l + n = (A,, + ~ , l ) Y i  
from which 

Y,T - TY, = &,AYA 

This is easily seen to be satisfied by 

when y,yv + y,y, = 26,, is used. 
The Lorentz transformation corresponding to a rotation through an angle 

4 about the z-axis is given by 

xi  = xl cos 4 + x, sin 4 
z;l = -2, sin 4 + x, cos # 

from which 
= Q~~ = 1 

a,, = a,, = cos t j  

nlz = -az1 = +sin 4 
and all others are zero. For a rotation through an infinitesimal angle E we 
have 

EI2 = -EZ1 = + E  

SO 
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We can find S for a rotation through a finite angle 4 by iterating this the 
proper number af times. That is 

In the limit e + 0 this becomes 

By direct calculation one finds 

and so S+ is given by Eq. A-46. 
For the next part of the problem it is useful to consider the finite Lorentz 

transformation as a rotation in the x, - xcplane through an imaginary 
angle 4 such that 

COS 4 = 
1 iB 

S i n + =  Jz -F  
where /? = vJc. If 4 + 6 where 8 is infinitesimal, then 

Then 

# 
9 

+ = 1 cos - + a, sin ; 
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Problem A-3. For the space reflection transformation 

all = a,2 = a,, = -1 and a,, = + l  

Equation A-36 gives 

These equations are clearly satisfied by S = y,, since 

y 4 y i = - y i y 4  f o r i = 1 , 2 , 3  
and 

Y42 = 1 

Problem A-4. Consider 

Lz = XP, - YP, 
The lack of commutativity must come from the terms in H containing p, 
andp,. We find 

Now consider 

We find 
ti 

is,, a,], = - - i or, 

IS,, H ]  = -Ftcu,p, + kcorsw = -[L,, H] 

When L, and S, are added to obtain J, ,  their sum commutes with H, A similar 
proof holds for the other components. 
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One can show that 

It follows that the eigenvalues of the components of S are hl2 and the 
eigenvalues of S2 are 3A2/4. 

Problem A-5. Using Eq. A-25 for a and and making the usual replacement 
p 4 p - elcA and E - E - e@ it is straightforward to derive Eqs. A-61. In 
the nonrelativistic limit we have ;I << 4 for a positive energy electron. 
Furthermore, 

and E -- mc2, so that Eq. A-61 b gives 

Next we can show that 

( a a a ) ( b - a )  = a *  b + i~ (it x b) 
when a and b are noncommuting operators. Applying this to 

Equation A-62 results. 

Problem Ad .  Write 

Where as usual p ,  = pz ip,. Equating the determinant of the coefficients 
to zero and solving for E gives 

from which E = kcp.  The properly normalized eigenfunctions are 
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and 

The proof of part (b) is almost identical to that of Problem A-4. Writing 

For the spin operator in the direction of the momentum gives 

It is obvious that H and a, have the same eigenfunctions. The eigenfunction 
conesponhng to the eigenvalue E = +cp of H has the eigenvatue - 1  of 
o, and the eigenvalue - h/2 of (fi/2)nD. 
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