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Preface

This book is dedicated for explaining and introducing “D-branes,” a new concept
on which theoretical developments in superstring theory in the past decade are all
based on, with brief words and equations. The original version of this book was
written in Japanese, and published by Tokyo University Press in 2006. I hope you
enjoy surprising and intriguing novel perspective of our world which is shown by
frontier of researches on elementary particle physics, cosmology and superstring
theory which may unify all matters and forces of our world.

D-branes, or in general “branes,” are membranes in higher-dimensional spaces,
in mathematical physics. Once we apply this notion of “branes” to various physics,
such as elementary particle physics and cosmology, we reach surprising change
of our perspective on our world: we may live on 3-dimensional membranes in
higher-dimensional space. This scenario is called “braneworld,” and not a scientific
fantasy. In fact, every day and night, quite a number of particle physicists and
cosmologists all over the world investigate this fascinating possibility of “living
on hypersurfaces.” Why is this fascinating? It is not because the hypothesis is
novel as a sci-fi, but because it is a logical consequence of superstring theory, a
candidate theory unifying all forces and matters. And the hypothesis has a scientific
possibility of resolving long-standing problems in particle physics, cosmology and
gravity.

This book is written for undergraduates who are interested in particle physics,
superstring theory and cosmology, and also for researchers and graduate students
whose major is not particle physics. In writing this book, I tried to minimize the
assumed knowledge for readers, and I skip subjects which are necessary to really
study elementary particle physics. I suppose readers have basic knowledge only on
mechanics and electromagnetism, and a short path to the frontier research results
is provided in this book. As a whole, I describe, in plain language, mechanism
of elementary particle physics and superstring theory, and bring a “flavor” of
frontier science research on D-branes. For instance, many conceptual figures are
used in this book, for you to grasp easily and intuitively various physical concepts.
Indeed, researchers everyday draw these kind of figures on blackboards for research.
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viii Preface

Footnotes are for advanced/supporting explanations so that most of readers can just
skip them on a first reading. Some of the important concepts which are indispensable
in undergraduate/graduate courses in physics, such as quantum mechanics and
quantum field theories, statistical mechanics and thermodynamics, are not described
in detail but briefly outlined in this book, so readers who like to learn particle physics
on more solid basis are advised to use some other textbooks. But I hope that this
book is an entrance to view easily what is actually happening now at the frontier of
theoretical physics.

This book is not a textbook, so readers can just skip whatever they feel difficult
or not interesting. I had to use some equations to show the fun of logic which leads
to tremendously interesting results of the physics researches and how researchers
are excited with them. But equations are only for advanced readers, so it is not
necessary to follow all of them. It is important to “feel logically” that D-branes are
necessary and indispensable in superstring theory, and how they provide us with
such an interesting outcome. Even if in some parts of the book you may feel that
the content is just mathematics, it is important to notice that all physics are based
on mathematical equations, and the “brane paradigm” is completely based on such
a logical reasoning.

D-branes are a kind of “solitons.” Solitons are one of the important concepts
in physics, so the first part of this book is for explaining basics of solitons. You
will find that the importance of the D-branes originates in solitons. In case you
are bored by the mathematical structure of solitons, you may start reading from
Chap. 6. Braneworlds, a hypothesis that we live on some hyper-surfaces in higher-
dimensional space, and other applications of D-branes are treated topic-wise in
Chap. 6. The topics covered there are

• Braneworld scenario
• Black hole production in experiments
• Braneworld cosmology and inflation
• Counting of states on black holes by superstring theory
• Holographic principle: gravitational description of quarks (also known as

AdS/CFT correspondence)

and readers can start from anywhere. These are just a part of the main achievements
of superstring theory using D-branes; there are other important developments which
could not be covered in this book. Some explanations in this book are not precise in
theoretical sense, which is for readers to understand physics and mathematics in an
easier manner. At the end of this book, I include some web links to research papers,
with which readers can just feel more flavors of frontier researches.

In 1995, I entered a graduate course in Kyoto University and eventually started
reading the famous original research paper by J. Polchinski on D-branes, written in
1995. This paper initiated the revolution of superstring theory. Now, after a decade,
this book is complete, largely owing to my friends and collaborators with whom I
really enjoyed physics discussions, at Kyoto University, University of Tokyo, and
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all over the world. I would like to thank them all. I thank my parents who allowed
me to pursue my interest in physics. And I am indebted to my wife Haruko for
encouraging me and supporting my life as a physicist.

Tokyo Koji Hashimoto
August 2011
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Chapter 1
From Elementary Particles to D-Branes
and Strings

D-branes are higher-dimensional membranes in string theory. The simple mem-
branes take on special importance in physics. The D-branes are not only widely
applied for various subjects of physics related to string theory, such as elementary
particle physics, cosmology and mathematics, but also might be fundamental
constituent elements of the whole universe. Looking at recent results of researches
of the D-branes, we might be able to say “All matters and interactions which our
bodies consist of are made up of D-branes,” or we might be able to say “we live
in D-branes.” These two expressions apparently look quite different from each
other, but they are just different ways of viewing the same D-branes. And these
two possibilities about D-branes are parts of the subjects which a large number of
elementary particle physicists concentrate on currently. The main purpose of this
book is to tell attractive aspects of this D-brane to readers intelligibly, and to enjoy
together excitement in the leading-edge study of the candidacy of ultimate theory,
namely, string theory which unites whole elementary particles and forces.

The definition of the D-branes is, in a word, “surfaces (objects) to which end
points of fundamental strings can be attached.” The “D” in D-branes comes from
the initial of Dirichlet boundary condition (fixed boundary condition), and it means
that the end points of string are attached at particular locations in a space. This
fixed plane is the D-brane. On the other hand, “brane” means a part of the word
“mem-brane.” Speaking of membranes, we easily imagine objects extending in two
dimensions in space, such as balloons and bubbles. But the D-branes are objects
generally extended in any dimension as well as two dimensions. For example, the
dimensions span from low to high, such as zero or six dimensions. You can see this
image in Fig. 1.1.

It was 1995 when the importance of the D-branes was recognized in string theory.
It was found that D-branes can be fundamental constituent elements replacing the
role of strings. Since more than a decade ago, string theory, elementary particle
physics and cosmology around it have enormously developed under the influence of
the D-branes. In particular, in these 15 years in string theory, string theorists have
devoted themselves to the study of the D-branes. The reason for this is that D-branes
have splendid fascination and flexible applicability in them.

K. Hashimoto, D-Brane, DOI 10.1007/978-3-642-23574-0 1,
© Springer-Verlag Berlin Heidelberg 2012
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2 1 From Elementary Particles to D-Branes and Strings

Fig. 1.1 Objects (branes) of various dimensions in space. Left: particles are a kind of branes.
Middle: string-like one-dimensional brane. Right: two-dimensional branes are ordinary membranes

In this book, I will briefly explain string theory in which the D-branes originate,
and further give a full account of what D-branes are. And then I will introduce
several applications of the D-branes and their vast achievements in these 15 years,
in a topic-by-topic manner. These practical researches are, of course, currently
developing, and they reached the level of forming independent established research
subjects, owing to achievements by a huge amount of efforts made by researchers.
I would like to show how wonderful the D-branes are, through the explanations
of them in Chap. 6. In the final Chap. 7, we will look at a possibility that the
D-brane can be a fundamental constituent element constructing our whole world.
I will introduce you to various recent challenges by elementary particle physicists
in pursuit of ultimate unified theory.

1.1 String Theory and Problems in Elementary Particle
Physics

String theory is a candidate of the unified theory which describes the whole
elementary particles existing in this world and the forces interacting between those
particles in a unified manner. To find the ultimate theory is the final goal of
elementary particle physics and also is a dream of elementary particle physicists.
String theory still remains incomplete, and D-branes are considered to play an
important part in shaping string theory’s future. That is the reason why we study
D-branes. In this chapter, I will give an overview of elementary particle physics and
string theory, followed by a brief explanation of what D-branes are and what is the
importance of the D-branes, as an introduction to the whole contents of this book.

Elementary particle physics is a subject to describe irreducible constituents of
matter, “elementary particles,” which compose matter and force. Strictly speaking,
the most fundamental elements are still unknown, so the elementary particle physics
is also called as “particle models.” However, elementary particle physics has a basic
theory which explains fairly accurately results of elementary particle experiments,
and it is called “Standard Model of elementary particles.” This Standard Model
dominantly stays in elementary particle physics over two decades. There barely
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exists a few results of experiments which are inconsistent with its predictions. After
all, we can say that elementary particle physics is based on the Standard Model.

The Standard Model is written as a “quantum field theory” in mathematical
terms. The word “quantum” means quantum mechanics, and “field” of the field
theory is, for instance you can imagine, electric and magnetic fields. Each field
appearing in the Standard Model corresponds to each kind of elementary particles.
For example, there is a field of the electron, and a field of the elementary particle
mediating the electro-magnetic interaction (it is in fact the light), and so on. In
the Standard Model, interactions between various elementary particles (describing
forces interacting between them and how they change their species) are included
as theoretical constants (parameters). You can theoretically calculate interactions of
any matters by using the Standard Model. For instance, you can calculate what kind
of a final state two nuclei go to when they collide with high speed and react/scatter.

If we can precisely predict all experimental results, then what do we want further?
Some readers might think that we are just fine with the Standard Model being the
ultimate theory. However, the truth is that the Standard Model has the following
problems. The Standard Model has no problem as a “mathematical” theory, as it
gives a start point and calculation methods for describing scattering of elementary
particles. However, “physically” it has problems.1

The biggest problem in the standard model is that it does not include gravity. In
fact, it is very difficult to unify Einstein’s general relativity describing gravity and
quantum mechanics on which the standard model is based. In a naive unification of
the general relativity and the quantum mechanics, physical quantity (for example
how the gravity acting among particles changes by quantum effects) diverges, and
it does not make sense at all.

Furthermore, as the second difficulty of the standard model, there are too many
unconstrained arbitrary constants (parameters) in the theory. For instance, the
standard model of elementary particles cannot answer the question such as why the
mass of electron equals actually measured values. This is because the part relevant
to the electron mass in the standard model is just an arbitrary constant. Moreover,
the standard model assumes the species of the elementary particles from the first
place, so it does not, of course, explain why those particles show up. It can never
explain why there are two more species of particles resembling electrons, and why
we have electromagnetism, weak force and strong force, as interactions.

By the way, the main theme of this book, namely string theory, is a theory
regarding strings extending 1-dimensionally in space as fundamental constituent
elements. The reason why string theory is a candidate for an ultimate theory unifying
the whole matters and forces is that it has a possibility to solve the difficulty and the

1To be precise, the Standard Model has some mathematical problems, such as technical difficulties
in practical calculations by using the Standard Model, and no proof for quark confinement which
will be described later in Chap. 6.4. However, we can say there are no mathematical problem in
the sense that the starting point is given in the theory. As described below, it remains a physical
problem why we choose the starting point like that.
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Fig. 1.2 Oscillation of an open string. From left to right, it shows a state with node numbers 0, 1
and 2. The ends of the string are subject to a free boundary condition. We can easily imagine strings
with more nodes

A

Fig. 1.3 Left: an interaction (scattering process) among two open strings in spacetime (the time
direction is specified by an arrow on the left). Right: corresponding interaction for particles. At
the central point A, the interaction occurs, where one has a freedom to put a constant showing the
strength of the interaction

problems in the standard model mentioned above. As for the first problem, that
is, the unification of gravity and quantum effects, string theory contains gravity
naturally as you will see, and furthermore it does not give divergences in calculations
of the quantum effects. Moreover, in string theory, just the fact that everything is
made of strings determines almost all the structure, by a mathematical consistency.
Hence, we have very little freedom for the arbitrariness of interactions. Finally,
it is expected that in string theory there is no arbitrary constant which can vary.
Therefore, once string theory is complete, it can possibly explain the mass and the
charge of electrons theoretically, in the end. This offers an approach to the second
problem mentioned above (Fig. 1.2).

These are the important reasons why we consider string theory. Then, how does
the one-dimensional string describe point-like elementary particles? Strings extend
in one dimension in space, which gives itself a degree of freedom to change its
shape, compared to particles. Let us take a look at an open string. The shape of
the string can be classified by the number of oscillation nodes. We can regard each
of this as a particle. That is just single string can describe infinitely many kinds of
particles at once. In the case of a closed string, one of the oscillation modes stands
for a graviton describing interactions of gravity. This is the reason why string theory
contains gravity.2

Let us consider how interactions of particles are described in string theory. See
Fig. 1.3. This figure shows a spacetime .Dspace C time/. The vertical direction

2This fact was found by T. Yoneya and by J. Scherk and J. Schwarz in 1974.
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B

A

Fig. 1.4 Two closed strings propagate in space and interact. The worldsheet has a hole (Left),
while its particle version has a single particle loop (Right). In calculations of scattering processes
of the particles, the limit of bringing the interaction point A closer to the point B generates a
divergence

shows the direction of time, and a horizontal slice stands for the shape of a string
at a certain time. This membrane in spacetime is called a “worldsheet” and the
motion of a string is described by this. Here, a worldsheet of a string scattering
process corresponding to a particle scattering (Fig. 1.3 right) is shown, where we
can immediately understand that the spacetime point of the particle interaction
(the point A in Fig. 1.3 right) does not exists for the case of string theory. This
means that, though it is possible in particle theory to put different parameters at the
interaction points for each kind of point-like particles, string theory does not have the
freedom. Interaction strengths of the theory are necessarily unified. This is contrast
to the standard model which has a large arbitrariness with parameters put for each
interaction, and so it is a first step to solve the problems of the standard model.

Now, let us take the case of a scattering of closed strings, for instance (Fig. 1.4).
The left side shows a scattering of strings, and the right side is a corresponding
scattering of particles. In the figure of the particles, if the loop at the center shrinks,
the calculation of the scattering includes a divergence.3 This is because the two
interaction points A and B come closer. On the other hand, in string theory this
infinity does not show up. Strings are extended, so there is no point corresponded to
the points A and B in Fig. 1.4 left.4

In this manner, string theory provides us with a possibility to solve the problems
of the standard model of elementary particles. It is wonderful that quite a simple
procedure of replacing particles with strings may solve the difficulties. Then, why
does string theory still remain as just a candidate of ultimate theory? In fact, string

3In particle theories, a procedure called “renormalization” exists which can eliminate these
divergences. However, in the theory of gravity, the standard renormalization is impossible.
4This is a heuristic argument. In reality, if we consider the case of the central hole in Fig. 1.4 left
shrinking, or the case of decomposing the string into infinite number of particles as mentioned
earlier, possible infinities may show up. However, string theory has an open-closed duality which
we will see later, and due to such mechanism which is intrinsic to string worldsheets, the calculation
results of these scattering process become finite.
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theory has a crucial unsolved question. String theory does not have any starting point
yet, as opposed to quantum field theories on which the standard model is based. For
instance, in string theory, rules which give calculations of scattering processes for
weakly interacting strings are generally known, but for strong interactions, nobody
knows how to calculate them. In addition, as string theory contains gravity, it
should be able to answer the question why the universe is as what we observe now.
However, what we know now is just calculations of scattering of strings moving in
a spacetime which we put by hand. It is considered that in string theory these two
problems are deeply related with each other – it reaches a problem of how string
theory is defined at the end. We know only a part of string theory.

D-branes appearing in string theory are the most important clue to solve this
ultimate problem. D-branes might be fundamental constituent elements defining
string theory.

1.2 What is D-Brane?

Then, what is a D-brane? In the case of the above-mentioned example of oscillation
of an open string, we considered a free motion of a string by imposing free boundary
condition on the endpoints of the string. One can also set a fixed boundary condition
instead of the free boundary condition. To impose a fixed boundary condition equals
to demand that there is a high-dimensional membrane in a space and end points of
the string should be attached on the membrane. You can choose the dimension of the
“membrane” arbitrarily. This is a D-brane. “D” means a fixed boundary condition:
it is named after the initial of Dirichlet boundary conditions. For instance, if one
considers a point-like D-brane, the string must have its edge attached on the point.
Furthermore, if one considers a membrane-like D-brane of two dimensions, the open
string can move only on the membrane limitedly (Fig. 1.5). On the other hand, in the

Fig. 1.5 D-branes in a space, and open strings whose end points are on them. End points of the
string may be on the same D-brane, or may be on different D-branes. This example shows D-branes
put parallel to each other
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case of closed strings, they can move in the whole space freely because they don’t
have endpoints. That is, motion of open strings is confined to the “limited space”
which is the D-brane.

By applying this concept, we come up with an interesting idea called braneworld.
For example, let’s imagine a situation where the whole space is not 3-dimensional
but higher-dimensional, and the dimension of a D-brane in it is spatially
3-dimensional. And let us assume that matter constituting our body is made of
open strings. Then, it is concluded that we are confined inside this D-brane, and
only closed strings, namely, only gravity can propagate in a higher-dimensional
space! This scenario is called “braneworld,” following the sense that our world
turns out to be a D-brane itself. The concept of the braneworld is used not only for
D-branes in string theory but also generally when extended objects are introduced
in higher-dimensional space. The multi-dimensional extended objects are called
just simply “brane” without “D.”

Let us suppose that D-branes of various dimensions exist at various directions
in the whole spacetime. Then, as there are open strings connecting each D-brane,
we can label the open strings. For instance, if two D-branes cross each other, open
strings connecting them must be localized around the intersection points because
of the string tension. Different kinds of particles come out from the oscillations
of various open strings. In this way, by distributing various D-branes in a high-
dimensional space geometrically and well-organizedly, one can rebuild the standard
model of particles. This method gives us geometrical and interesting possibilities
to explain the standard model of the elementary particles by using the string theory
(Fig. 1.6).

Fig. 1.6 D-branes crossing in a space. 2-dimensional D-branes share a line and also cross each
other. An open string connecting two D-branes localizes around this line
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On the other hand, D-branes themselves are dynamical objects. For example,
D-branes have masses and they can move with some velocities. And D-branes
influence each other, as they scatter, collide or create a bound state after combining.

In the view of a brane world that the universe of our 3-dimensional space is
the D-brane, what kind of effect does the motion of a brane in a high-dimensional
space provide? In fact, this turns out to reproduce a time evolution of the universe –
how the universe expands as time passes. Furthermore, there is also an interesting
research in which a big bang which is the origin of the universe is regarded as a
collision of two D-branes.

Moreover, D-branes can be regarded as black holes. As mentioned above, string
theory contains gravity, the most mysterious object made by the gravity is the one
called a black hole. Black holes are remnants of stars shrinking by the gravity itself
after undergoing supernova explosions. They are “holes in space” which continues
sucking all matters and even the light. If one comes closer to the black hole, one feels
enormous gravitational force. We can regard this black hole as a D-brane. Let us see
Fig. 1.7 standing for a worldsheet of a string. The object on which an open string has
its end point is a D-brane, and let us consider this open string propagating in time
to form a loop trajectory. If one exchanges the time and the space directions of this
sheet, the sheet shows a configuration of a closed string emitted from the D-brane
and flying away to the right. Therefore, D-branes originally defined as membrane on
which the end points of strings are attached, are the origins of the gravity. Because
the gravity emitted spreads all over from the location of the D-brane in a spherically
symmetric manner, it will get weaker as it goes away from the D-brane. On the
other hand, it is very strong near the D-brane. Namely, D-branes are black holes. By
using this equivalence, properties of black holes, which are mysterious objects, can
be revealed by the D-branes and string theory.

Fig. 1.7 A schematic view of interaction of strings and a D-brane in a spacetime. In the left hand,
we consider a worldsheet of an open string. An open string which has an end point on a D-brane
extends infinitely (to the right) and make a round (the loop) longitudinally in time. Regarding the
worldsheet as in the right figure, it shows a worldsheet which represents a closed string being
emitted from the D-brane and flying away to the right. In other words, the D-brane is a source of
closed strings
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In this way, introducing D-branes in string theory has changed our perspective
on our “world” drastically in elementary particle physics and cosmology. A large
amount of various physics phenomena are interpreted as geometrical distributions,
motions, and interactions of D-branes floating in a high-dimensional space. This
doesn’t only add some new interpretations of physics established earlier. This is
because, in developments in physics, new constructions and new concepts create
fundamental reformulations.

For instance, there is a very interesting idea for which this D-brane gave a
concrete example. It is called holography: physics in different spatial dimensions are
equivalent to each other in fact. From a common sense point of view, if dimensions
of spaces we consider are different, physics must be completely different. So, the
holography is a quite odd and interesting situation. The very important aspect for
identifying D-branes with black holes, as described earlier, is the duality. Even
though we thought that we described them with an open string, in fact we could
alternatively see closed strings emitting. This is a property called an open-closed
duality. Now, the gravity, namely the closed strings, can propagate outside the
D-branes, while the open strings remain confined on the D-branes, so, in the physics
described by each of them, the dimensions considered must be different. As those
different dimensions give the same physics, this is an example of the holography
(Fig. 1.8).

In string theory in which the D-branes are introduced, it has been gradually
understood that various “dualities” exist, related to the D-branes. The duality means
a property that two physical systems are equivalent to each other, as the holography
mentioned above. The most interesting duality conjectured in string theory is a
duality of exchange of D-branes and strings. In various physical models, there
appears a duality of exchange of fundamental particles and “solitons,” and it is
applied to string theory.

Fig. 1.8 D-branes (Left) can be considered as a gathering of strings (Right)
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Soliton is a state in which a large number of fundamental constituent elements of
a theory condense and move collectively as if they are a single object.

For instance, a theory having a duality of the exchange of particles and solitons is
(a slight generalization of) electromagnetism. In electromagnetism, electrons have
electric charges and produce an electric field around them. On the other hand,
equations of the electromagnetic field (Maxwell equations) have the duality under
which the exchange of an electric field and a magnetic field keeps the equations
invariant. From this fact, we might expect the existence of a matter having magnetic
charges, in correspondent with the electrons having electric charges. This object
is called (magnetic) monopole, and is considered as a soliton constituting of a
collective motion of the electromagnetic fields. That is, there is a duality exchanging
particles and solitons, in this example of generalized electromagnetism.

Matters are made of strings in string theory, and a black hole is formed once a
large amount of matters condense. Then, we can say that a large number of strings
condense to become D-branes. That means “D-brane is a soliton in string theory.” If
strings can be exchanged with D-branes in string theory, D-brane can be considered
as a very fundamental matter. From this observation, there appeared an idea that
all matters and interactions constitute of D-branes. Also it was then understood
that, in this exchange, the strength of interaction in string theory is mapped to its
inverse. Namely, it became clear that the situation of weak interaction we can easily
understand is in fact equivalent to the situation of strong interaction. This is a big
step to resolve the issues in string theory which are described above. D-branes may
be fundamental constituent elements in final and ultimate unified theory describing
our world.

1.3 Organization of This Book

Above is a summary of important parts of this book, in particular a part concerning
the essence of the D-branes. The following chapters introduce theoretically physics
of D-branes, by putting flesh on this chapter, from elementary particle physics, string
theory and basics of solitons. Furthermore, I will explain how D-branes are applied
for various physics and how D-branes are regarded as an important object in string
theory.

As a guide for readers, I will show the main organization of this book. First in
Chap. 2, I will explain what field theories and their solitons are, and also why soli-
tons are important. This is an important step to explain in later chapters the meaning
of D-branes being solitons in string theory, and also is necessary because dynamics
of the D-branes is described by using field theories and solitons. There will appear
solitons of various dimensions. In standard textbooks, field theories and quantization
of fields are described, but this book skips those stories, and approaches them from
a different perspective: solitons in field theories. Although this may look strange,
I hope readers to enjoy this different viewpoint on quantum field theories. For
readers who are familiar with quantum field theories, this “alternative” viewpoint
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may serve as a new way of looking at quantum field theories, as there are few
textbooks which discuss solitons and their importance in quantum field theories.

Next, in Chap. 3, let us see a surprising application “brane world,” by looking
at solitons from the dimensional viewpoint. Though this needs a high-dimensional
space, the high-dimension is also a concept naturally appearing in string theory. We
learn the basics of string theory in the chapter and get how high-dimensional spaces
are dealt with in string theory. I hope readers may enjoy how dimensions are treated
in physics. In Chap. 4, let us see that the high-dimensional space and the solitons
appeared in Chap. 3 become a basis of a new concept “D-branes.” There a definition
of the D-branes is given, and it turns out that the D-branes are in fact solitons of
string theory. The aim of the chapter is to know what D-branes are, and to know the
importance of them.

In Chap. 5, I will explain various aspects of dynamics of D-branes. There, it is
described that how D-branes move, combine, create and annihilate. You can see
vivid appearance of the D-branes living in a high-dimensional spacetime. What is
more, you can also learn various interesting relation between D-branes and soliton.
You need these knowledges in order to learn broad applications of the D-branes in
later chapters.

And in Chap. 6, I will pick up and explain four topics as various applications of
D-branes. (You can read each section in Chap. 6 independently.) The explanations
there will lead readers to a mainstream of recent explosive developments in string
theory. D-branes, which brought a new notion of high-dimensional membrane
in high-dimensional spacetime, flourish not only within string theory but also in
various physics close to string theory. In the subjects such as cosmology, relativity,
black holes and of course elementary particle physics, I will give full explanations
of the new methods and paradigms given by D-branes. In Sect. 6.1, I will explain
“brane world,” developments in higher-dimensional particle theories, and “creation
of artificial black holes” which those theories predict in experiments. Then, it will
be described how D-branes explain the inflationary universe and how D-branes clear
up mysterious thermodynamic properties of black holes, in Sect. 6.2 and Sect. 6.3,
respectively. Furthermore, I will give a detailed description of the “holography”
which was obtained by the D-branes entering the story, in Sect. 6.4. It realizes a
marvelous physical dualities: the holography is an equivalence between theories
with different spatial dimensions, and we can calculate physics of quarks by using
a gravity theory.

Finally, in Chap. 7, I will briefly take a general view of, how the string theory,
which is regarded as an ultimate theory unifying all elementary particles and
interactions, has approached its final goal, by active researches of D-branes. Thanks
to the D-branes, the ultimate dream of physicists may come true.

I hope that through this book you may feel flexible and visual charm of the D-
branes, possibility of the D-branes, and also the excitement in researches of the
D-branes.



Chapter 2
Solitons and Elementary Particle Physics

As I mentioned in the preceding chapter, the D-branes play an important role in
elementary particle physics and cosmology. A purpose of this book is to introduce
how prominent the D-brane physics is, but another very important purpose is to
make clear why the D-branes physics is prominent and why they are considered to
be very important.

What is the meaning of studying the D-branes? The answer resides in the fact
that “D-branes are solitons in string theory.” Solitons are objects which play a very
important role in field theories on which elementary particle physics is based. In this
chapter, I will have an account of what field theories are, what are the objects called
solitons which appear there, and what in elementary particle physics is the meaning
of clarifying the properties of the solitons. In the next chapter, I will explain the
basics of string theory. When we combine the solitons described in this chapter
and string theory given in the next chapter, we can see the importance of D-branes,
namely, solitons in string theory, introduced in Chap. 4.

The present elementary particle physics is completely based on a theoretical
scheme called “quantum field theory.” Standard textbooks of elementary particle
physics start with explanation of how elementary particles are described by fields
in field theories, and proceed to theoretical description of scattering of elementary
particles by the computations of quantum field theories. Solitons are not emphasized
there, because the true power of elementary particle physics resides in this precise
identification of particles and their physical processes with computations in a
distinguished quantum field theory, called “standard model of elementary particles.”
In this book, alternatively, we start by accepting the fact that there is a well-
established quantum field theory called standard model, and will explore what
is the problem of the standard model. Almost any field theories have nontrivial
classical solutions called solitons, and so solitons are quite generic concept, though
not emphasized in most of textbooks. Solitons are not elementary particles, so not
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directly related to elementary particle physics. However, they play important roles
in resolving the problems of various field theories. I will emphasize this viewpoint
in this chapter, and will see how solitons are relevant in the problems of the standard
model of elementary particles.

First, in Sect. 2.1, we will have a brief look at what are the quantum field
theories, and how they are related to elementary particles. There, I provide a list
of problems of the present particle physics: (1) quantum gravity, (2) arbitrariness
problem, (3) hierarchy problem, (4) quark confinement problem. The theme of this
book is to provide what researchers are trying now, to resolve these problems,
via solitons, D-branes and superstring theory. For each subject in the list, a short
explanation is included, to bring you the information where you should read in
this book concerning the question you are interested in. Whenever you feel that
the content of the book is too mathematical, you can come back to these problems
in the list in order to remind yourself of how the mathematical tools explained in this
book can be used for resolving important physical questions in elementary particle
physics.

Then in Sect. 2.2, the notion of solitons are introduced mathematically, through
the field theory language. Solitons appearing in elementary particle physics are
packets of energy moving as if they are particles (though they are not particles).
Generally speaking, solitons appear in various physics, not only in the elementary
particle physics, and also they are seen as physical phenomena around us. For
instance, tsunami and vortices are also solitons. Precisely speaking, solitons are
objects defined in theoretical physics called field theories.

In Sect. 2.3, let’s follow concrete examples of simple solitons by using figures
and equations, in order to help you image what the solitons are. There, it is shown
how solitons appear in physics. It will be made clear that the situation of appearance
of solitons correlates closely to what kinds of symmetry the physics system we
consider has and how the symmetry is broken.

In Sect. 2.4, I will explain how we can actually observe and find the solitons in
elementary particle physics, and what kinds of knowledge the finding of solitons
brings to the elementary particle physics. In fact, the usefulness of solitons is
considerably wide and not restricted to the elementary particle physics. I will explain
how useful solitons are in various theories of physics, there. The new symmetry
“duality” which will be made clear in that section is the origin of importance of
D-branes in string theory. Among various kinds of dualities, the important duality is
a strange symmetry with which a physical theory of concern is actually equivalent
even if particles and solitons are exchanged. That is, if solitons of string theory are
the D-branes, you might exchange strings for the D-branes, and you could regard the
D-branes as fundamental constituent elements in string theory! (This will be shown
in Chaps. 4 and 7.) An aim of this chapter is to introduce a way of thinking of
dualities which is a very important idea based on string theory, elementary particle
physics, and field theories.
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2.1 Elementary Particle Physics and Field Theory

2.1.1 Fields

Field theories are used as a fundamental theory in physics, especially in elementary
particle physics, nuclear physics, solid-state physics, and cosmology. Elementary
particle physics among those describes elementary particles existing in our world
and their interactions (how they influence each other through forces, how they
scatter, and so on). It is closely related with string theory. In order to learn how
solitons work there, first we shall see the notion of “fields” and field theories by
using a simple example of water surface, and then will see how the field theories are
used in elementary particle physics.

To grasp the notion of the “field,” one of the best ways is to imagine a
mathematics describing water surfaces. Let us imagine a water pond. The surface of
the pond usually oscillates and fluctuates, by winds and some other external inputs.
In ideal situation, we have no external disturbance, and we imagine that the water
surface has a wave expanding and traveling.

What is a tool describing the height of the water surface? If each point of the
planer water surface is described by a two-dimensional coordinate system .x; y/,
the height h of the water surface is a function of .x; y/. In addition, since this height
changes in time, it is also a function of time t . So, in total, the height is written as
h.t; x; y/. Functions of spacetime coordinates like this are called “fields.”

If you want to describe a motion of a single particle, then you need to specify
the location of the particle at given time, so the motion is described by Xi.t/ where
i D 1; 2; 3 are the indices for the spatial directions. This is just a function of time t .
But, in general, fields are functions also of spatial coordinates, as in the case of
h.t; x; y/.

A field theory called “standard model of elementary particles,” which has been
established to describe elementary particles in quite a precise manner, introduces
a field respectively for each particle existing in the world, such as electrons and
quarks. For instance, we introduce an electron filed to describe the electron. Namely,
the type of the field corresponds to the type of the particle itself.

One of the most familiar field theory is the theory of electromagnetism, and this is
a part of the standard model of elementary particles. Electric and magnetic forces are
one of the fundamental forces in nature, and elementary particles carrying electric
charges are subject to these forces. The electromagnetic forces are described by
fields; these are electric and magnetic fields. And, in fact, in the standard model,
there is an elementary particle corresponding to these fields: it is the photon.

Electromagnetism is a theory of an electric field Ei.x
0; x1; x2; x3/ and a

magnetic field Bi .x0; x1; x2; x3/ (x0 is time and this relativistic notation is used
below in this book). Since i takes a value 1; 2, or 3, the electronic and magnetic
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fields are “vector” fields. These are described by a relativistic 4-dimensional vector
field A�.x/ (� D 0; 1; 2; 3) which is more fundamental and called a “gauge field.”
The relation to the electric and magnetic fields is written through the “gauge field
strength” F��.x/, defined as1

F��.x/ D @�A�.x/ � @�A�.x/; (2.1)

Ei.x/ D F0i .x/; Bi .x/ D 1

2
�ijkF

jk.x/: (2.2)

Here, �ijk is a tensor with completely antisymmetric indices .i; j; k/, and �123 D
�231 D �312 D 1, �132 D �321 D �213 D �1. (“Tensors” have multiple indices, and
the number of the indices is called a “rank” of the tensor.) The reason why we write
the electromagnetic fields in this manner explicitly is that, as I will mention later, it
relates to a considerably important principle in elementary particle physics, called
gauge symmetry.

At any rate, in the case of electromagnetism, both the electric field and the
magnetic field are written by a single vector field A�.x/. The particle corresponding
to this A�.x/ is nothing but the light. In order to emphasize its particle nature, it is
usually called a photon.

2.1.2 Equation of Motion, Quantization and Elementary
Particles

In the case of the water surface, it is known that this field h.t; x; y/ satisfies a certain
differential equation of .t; x; y/. Let us call it an “equation of motion” of a field
theory of the field h.

In mechanics, especially in analytical mechanics, when an “action” is given, its
equation of motion is derived by a variational principle. It is entirely the same in
field theories. A certain action written by fields is given as a basis, a field equation
of a motion is derived once we apply the variational principle to the action.2

1In this book, Einstein’s convention is used, namely, we will make it a rule to sum subscripts
appearing twice. And @� is an abbreviation of a partial differential operator @=@x�. Moreover, we
employ the unit system where velocity of light is c D 1, in this book.
2The variational principle is a principle deriving equations of motion from actions. In the present
case of field theories, the situation is the same as that of an analytical mechanics where an equation
of motion is derived from an action (a Lagrangian). Suppose an action is given. The action is written
by action variables (which are fields in the case of field theories, and are coordinate x.t/ in the case
of the analytic mechanics). Let’s require that the action itself doesn’t change by any infinitesimal
change of the action variables (this is called “variational principle”). It gives a condition for the
action variables to satisfy, and it is nothing but the equation of motion. In the case of the action
SŒA�� described by the field A�.x/, the equation of motion is written as ıS=ıA� D 0. This means
an infinitesimal change of the action must be zero. Here, we have derived the equation of a motion
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For instance, in the previous example of electromagnetism, the action is given as

S D
Z

d4x
1

4
F��.x/F

��.x/: (2.3)

By the variational principle, an equation of motion

@�F��.x/ D 0 (2.4)

is derived. This is equivalent indeed to the well-known Maxwell’s equation. For
instance, Gauss law @iEi D 0 is derived for a component � D 0.3

The standard model which describes almost all physics of known particles
consistently is basically written by an action like this. Actions give a definition
of physical theories, and they consist of informations such as species of fields
appearing in the theory, dimensions of spacetime on which the theory is defined,
and forms and strengths of interactions of the fields. A unique action describes all
matters and interactions in our whole world – which is quite amazing, and is a
monumental achievement in modern physics.

The important point of field theories is that each field corresponds to each kind
of particles. Precisely, this correspondence is called “second quantization.” Small
excited waves of a field appearing in an action is “quantized,” and they become
particles which are countable (one particle, two particles, ... This is called an
elementary excitation), and represent particles appearing in the physical theory.4

Let us see how this works in more details. It is easy to imagine that the water
surfaces have a generic solution which is a traveling plane wave. The simplest form
should be

h.t; x; y/ D a cosŒk0x0 C k1x
1�: (2.5)

Here a, is a very small constant which is the height of the wave, and x0 is time, while
x1 means a certain direction of the .x; y/ plane. This wave solution of the water
surface equation of motion travels in the direction x1. I do not write the explicit
equation here, but the equation will be presented in the next section for a so-called
scalar field. In a similar manner, for the electromagnetism, we have a solution for

with respect to the gauge field A�.x/, and in the next section let’s have a look at a derivation of an
equation of motion for a little bit easier example of a non-vector �.x/.
3For bringing the indices up or down, we use a metric tensor for a flat spacetime (due to special
relativity). The component of this tensor ��� is �00 D �1, �11 D �22 D �33 D 1, while the
other components are zero. For instance, the Maxwell’s equation ���@�F�� D 0 is interpreted
with summed indices for � and �. Here ��� is an inverse matrix of ��� , and as you know from the
components just mentioned above, the actual form of the matrix is just the same.
4About how you may obtain a quantum mechanical description of scattering of particles from this
action, you would consult an explanation of “a perturbation theory” in Sect. 2.4.
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the equation of motion (2.4) which looks like a plane wave,

A�.x/ D a�.k/ cosŒk�x
��; (2.6)

when the constant a�.k/ satisfies a constraint k�a�.k/ D 0. This is an electromag-
netic wave.

If we follow the “quantization” procedure, we reach an interpretation that this
a�.k/ indeed represents a photon. This photon has a momentum k� (this is a
four-momentum notation in special relativity), and freely propagates in space. For
any computation of scattering process of elementary particles, we first need to
specify the incoming and outgoing states of the particles, which are indeed freely
propagating in asymptotic space. The plane waves are identified as the asymptotic
states of the elementary particles, and the state is specified by this a�.k/ for photons.
The quantization provides how you count the number of photons in the asymptotic
states. This is made possible by upgrading the normal number a�.k/ (or rather to
say a function of k) to a “quantum operator.” I will not go into the details, but the
essence is that the state is specified by a product of the “operator” a�.k/, and this
is nothing but the way how we specify the number of the elementary particles at the
asymptotic states, in computing the scattering processes in quantum field theories.

In reading the following of this book, the readers are just asked to keep in mind
that each field in a quantum field theory has a corresponding elementary particles,
and the quantum field theory has an action, and the standard model of elementary
particles is written entirely in that manner, with given fields and given action.

2.1.3 Problems in Elementary Particle Physics

The standard model of elementary particles is written as a quantum field theory. It
consists of a set of fields (each of which corresponds to a species of elementary
particles), and a single unique action written by the fields. Techniques of quantum
field theories can define any scattering (interaction) of elementary particles in a
concrete mathematical manner, so, once the action is given, we can compute any
scattering of elementary particles. And, this procedure of description of elementary
particles and their interaction has been extremely successful. In fact, so far, almost
all of particle experiments are consistent with the standard model of elementary
particles.

At this stage, you may think that, okay, there is no need to improve the standard
model, as it describes all known experiments. This is not the case. The standard
model, or rather to say, particle theory, has serious problems. Superstring theory
and D-branes, in addition to solitons, are for resolving those problems, which is
a theme of this book. In this subsection, we just list the problems which will be
discussed in later sections and chapters in this book.

Before listing the serious problems, let me provide two additional issues on the
standard model of elementary particles. It is of course important to find an answer



2.1 Elementary Particle Physics and Field Theory 19

to these problems, but will not be treated in this book. First one is about “Higgs
particle.” A field corresponding to this elementary particle is included already in the
standard model, but this particle has never been observed. It is expected that this
particle is observed in the modern experiments using a particle accelerator called
“Large Hadron Collider (LHC).” Once this particle is observed there, we will obtain
information on how it interacts with other elementary particles, which will test the
standard model of elementary particles. See Sect. 2.4.1 for more details. The second
issue is the mass of neutrinos. In the standard model, elementary particles called
neutrinos are supposed to be massless. However, recent experiments revealed that
the masses are not zero, which says that the standard model needs a modification.
Experiments ongoing will provide us with more information on the neutrino sector
of the standard model, which is important for what kind of modification we need for
improving the standard model.

These two issues are of course important, but a bit different in nature from the
serious problems which are discussed in this book. Here is a list of the serious
problems of the particle physics. The theme of this book is how these serious
problems may be resolved once we consider superstring theory and D-branes. There
are four questions:

• Quantum gravity: Quantizing gravity?
The standard model is written by a quantum field theory, where fields are
quantized to provide a particle picture. Now, Einstein’s general relativity, which
is the theory of gravity, is also written by a field, which is the gravitational field.
But this gravitational field is not included in the standard model. We all know that
gravity is coupled to any elementary particle physics, so the gravitational field
should be included to the model and should be quantized as well as the fields of
the elementary particles included in the standard model. However, there exists a
theoretical difficulty in quantizing the gravitational field. There appears infinities
in calculations which cannot be removed. We do not know how to quantize the
gravity, by using the standard techniques of quantum field theories.

This is the reason why we are interested in superstring theory. As we will see
in Sect. 3.2.2, string theory naturally includes gravity and the gravitational field,
and furthermore, string theory is expected not to provide any infinity, as we saw
in Sect. 1.1.

The most interesting object in gravity theory is black holes. At the center of the
black holes, there are singularities where all physical laws are invalid. Quantum
treatment of gravity is expected to resolve this issue, and thus the quantization
of gravity is quite important. Quantum nature of black holes appears when one
try to count number of quantum states of the black holes. Superstring theory
and D-branes provide a way to give this number, as we will see in Sect. 6.3.
Therefore, a first step toward finding a consistent quantization of gravity is made
in superstring theory and D-branes.

Gravity is intimately related to cosmology of our universe. Recent progress in
observation of the cosmic microwave background revealed interesting properties
of the early universe, and we start understanding that there was an era of
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rapid inflation of the universe: inflationary cosmology. Then, how naturally can
we implement this inflationary expansion of the universe in our field theory
models of cosmology? And how quantization of gravity is related to this, at the
early universe? These are important questions in cosmology related to quantum
gravity, and we will see in Sect. 6.2 that superstring theory and D-branes provide
a simple interesting setup for the inflationary cosmology.

• Arbitrariness problem: Arbitrary interaction strengths among particles?
In the standard model, the action is given, but there are plenty of room for
modifying the standard model. For example, the electric charge of electrons
can be modified by hand if you like. To reproduce the observed electric charge
of electrons, we need to choose one number. But the standard model does not
explain why the number is that. In the same manner, the masses of the elementary
particles are arbitrary constant numbers in the model, and constants specifying
all the interactions among particles are again arbitrary numbers. Why the nature
chose such values of the interaction strengths and masses? This is called an
arbitrariness problem.

A famous attempt to resolve this issue a bit is a trial called “grand unification.”
The unification means gluing and combining various interactions in the standard
model to a unique one, and in this way, we can reduce the number of arbitrary
constants. At present, there is no direct experimental proof for this grand
unification, but solitons are very important for a direct observation. Details are
described in Sect. 2.4.1.

A more radical unification can be made by superstring theory. In string theory,
particles are replaced by oscillations of strings as will be described in Sect. 3.2.2,
and resultantly, some of the interaction strengths are unified. This was briefly
explained in Sect. 1.1. A modern version of this interaction unification using
D-branes are described in Sect. 6.1.6. There, you will find that the interaction
strengths in the standard model can be understood in a geometrical manner in
higher dimensions in superstring theory.

• Hierarchy problem: Why gravity is so weak?
One of the reasons why the gravity is not included in the standard model is,
besides the problem of the quantization of gravity, that it is very weak compared
to the other forces and so can be ignored at a first approximation. All the other
forces are included in the standard model, for example the electromagnetic
forces. So, the question is: why the gravity only is so weak? Is there any
qualitative difference in theoretical formulation, between the gravitational forces
and the other forces? There is apparently a hierarchical structure in the interaction
strengths of the forces, this is the hierarchy problem of gravity.

In Sect. 6.1, you will see that a novel scenario “braneworld” can solve this
hierarchy problem. The braneworld scenario is the hypothesis that we are living
on a hypersurface in higher-dimensional space. Only gravity can propagate out
of the hypersurface, that is the origin of a possible solution of the gravitational
hierarchy problem. The novel perspective of the braneworld scenario came out
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of the physics of D-branes. The interesting physics behind this new perspective
is already encoded in the physics of solitons, and you will see in Sect. 3.1 (in
particular Sect. 3.1.4) how you can live only on such hypersurfaces, in terms of
field theories. The important concept “solitons” are necessary to understand the
idea, and solitons are explained in the following subsections in this chapter.

• Quark confinement problem: Why there is no observation of a single quark?
As is mentioned, all fields in the standard model have their corresponding
elementary particles. This is also the case for quarks. We know that protons and
neutrons are made of quarks, that is how almost all the hadrons in our world are
understood and classified, as quark bound states. However, interestingly, no one
has observed a single quark in experiments; what we see are only bound states
of quarks. Why is this? And how is this realized? This problem is called “quark
confinement problem” which is one of the serious problems in the standard model
of elementary particles.

From the next subsection, we will see that in most of field theory models
we can find “solitons” which are special solutions of equations of motion. And
interestingly, you will see that solitons are expected to play an important role in
solving the problem of the quark confinement, via so-called “duality” symmetry.
It will be explained at the end of this chapter, Sect. 2.4.2.

D-branes in superstring theory provides us with a fascinating new idea called
“holography” or “gauge/gravity correspondence.” This new mathematical tool
found in D-brane physics in superstring theory shows that in a certain limit the
physics of quarks can be mapped to a physics of hypothetical gravity in higher
dimensions. Using this new correspondence, once can compute interactions
between quarks, to show the confinement. The new technology is completely
based on the D-branes in superstring theory, which you can learn in Sect. 6.4.

The final goal of the elementary particle physics should be to find a solution to
these serious questions. The excitement of researchers studying superstring theory
and D-branes is mainly the fact that this theory can solve these questions, and at
least at some level, some are solved, as you will see in this book. The notion of
solitons in field theories, and that of D-branes in superstring theory, are related and
provide a new paradigm for possible solution of these serious questions.

From the next section, let us start seeing how the theoretical notions such as
solitons and D-branes are introduced, to find a novel possibility of resolving these
problems in elementary particle physics.

2.2 What is Soliton?

To begin with, what kind of physics does the word “soliton” indicate? Soliton is a
certain kind of objects considered in field theories in physics. I will introduce the
definition of the solitons, and explain the field theories which are the basis for the
solitons.
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2.2.1 Field Theory and Soliton

The word “soliton” can be split into “solit-” and “-on”. The latter part “-on” is
often used for particles in physics. For example, electrons are particles carrying
electricity. This usage is generic: particles transmitting gravity are called gravitons,
and particles transmitting electromagnetic force are photons, and there are many
other examples. Then, the problem is, what does the part “solit-” which should show
a characteristic of the particles mean? This comes from a word “solitary”. That is,
solitons are solitary particles.

To see how the solitariness can be defined in physics, it is appropriate to refer
to the way how the solitons were found, which I will tell you in the following. In
1834, John Scott Russell, who wondered at a canal in Edinburgh, found that waves
on the surface of the Union Canal in Scotland were moving without breaking up for
miles. In a common sense of water waves, for example, when you fall a stone into
a still pond, waves form periodic co-axial circles origined at the point of the fall,
and gradually expand and disappear finally. However, in the case of the waves of
this canal, waves were solitary and kept moving without changing their height and
their velocity, for miles. This shows that the wave behaves as if it were one particle
(“-on”). Particle could solitarily keep traveling without any sudden disappearance.
The waves of this canal correspond to Tsunami on sea surface, and they also share a
property of slipping through each other in collision of two waves of the same kind.
This phenomenon shows solitariness of waves.

The origin of the word “soliton” is due to these characteristics, while modern
physics is described by mathematics called field theories, and solitons are the objects
defined there. By using the words of the field theories, solitons in physics are
“solutions of equation of motion of the field theory with their energy localized.”
In order to explain this meaning, at first, I will explain the notion of fields and field
theories, by using this phenomena of the water surface.

We have seen previously that the water surface is described by a field h.t; x; y/
which is subject to an equation of motion, a differential equation. As a solution
of it, there exists a soliton solution, namely, a solitary wave solution. Since this
field theory of the water surface is not a “quantum field theory” which respects
quantum mechanics, the solution is called a “classical solution.”5 Figure 2.1 shows
a configuration of a solitary wave at a certain time.

Any water wave has a traveling direction, and the “height field” h of the simplest
solution doesn’t depend on the coordinates transverse to the traveling direction.
Therefore, for instance, in the case of a wave traveling along the direction of x,
h.t; x; y/ is independent of y, and is a function of only .t; x/. The energy of this
solution is localized at a certain place in the x direction for a fixed certain time.
In this sense, water waves are solitons.

5In this way, solitons are introduced as classical solutions without a concern on quantum effects.
However, as we will see later, solitons play an important role in quantum field theories.
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h(t = t0, x, y)

Fig. 2.1 A configuration of a solitary wave on the water surface at a certain time t D t0. The wave
travels toward the direction of x

However, as you see in Fig. 2.1, the energy of this soliton solution is not
localized in y. The meaning of “localized” is loose, like this. Speaking with another
expressions, this water wave is a solution of a partial differential equation whose
variables are only .t; x/ from the first place. Since there is no dependence on the
direction y, we can put the differential with respect to y to zero in the partial
differential equation, and you don’t have to consider y from the first place. In the
previous view, the theory is a field theory in 3-dimensions of .t; x; y/. It is often
called 2C 1 dimensions by writing the time direction separately. However, if there
is no y at the first stage, this is a field theory in 1C 1 dimensions, and the soliton is
entirely localized in the space x.

Now you would understand that solitons are solutions of equations of motion in
field theories and also their energy is localized even if time passes. The definition of
this word “soliton” differs in subjects, a little. For instance, in mathematics, there are
cases in which solitons have another requirement that they are solitary that solitons
travel through each other, as well as the previous conditions. On the other hand, in
elementary particle physics the condition of this solitariness is usually not required,
and just classical solutions having localized energy are called solitons. In the rest of
this book, I use the term “solitons” in that sense.

String theory, the main subject of this book, is closely related with elementary
particle physics, which uses field theories as its basis. Therefore, solitons, that is,
solutions of equations of the motion in field theories, are as a matter of course very
important. I will have a description of their importance over showing examples in
Sect. 2.4 (and Sect. 3.1), but beforehand, here I briefly explain the relation and
the present situation of solitons and string theory. To tell the truth, ultimate and
fundamental action of the field theory of strings has not been found yet. However,
it has been gradually found what kind of properties the action should possess. It
is about solitons which should exist in string theory – The solitons are the very
D-branes! A revolution has occurred in string theory, when this fact was found in
1995. In explosive developments after that, the D-branes which are solitons of string
theory play a main role, furthermore, they give a vast influence on not only string
theory but also various theories of physics.
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2.2.2 Elementary Particles Versus Solitons

Now, after a long introduction, let us now explain how solitons are derived in
elementary particle physics. First, When you say that solitons are classical solutions
of equations of motion, the equations of motion stand for the whole equations of
motion containing all self-interactions of the field. On the other hand, when we
derive the particle viewpoint by second-quantizing the field, at first we usually
don’t consider the interactions: We consider the interaction part later. That is, in this
sense particles and solitons are completely different kinds of things from each other.
Both of them are objects derived from field theories and their energy is localized.
However, in fact properties of elementary particles and that of solitons are different,
and as a result, they play different roles.

Let us take the previous analogy of the water waves to see this difference.
Suppose that surface of the water is rippled. When the height is small in such
a case as the ripples, since as the field h is small, when the equation of motion
is written by a polynomial expression of h (and its derivatives @h, .@/2h and so
on), we can use an approximation treating only terms linear in h. Namely, we can
neglect the higher order terms such as h2 and h3, when h is small. These small
ripples correspond to elementary particles. Small waves are given point-particle-
like picture by quantum mechanics, and behavior as elementary particles. On the
other hand, when h gets bigger, we must not neglect the terms of higher orders in h.
Then we have to solve the whole equations of a motion at once. Apparently, this
higher terms are interpreted as “self-interactions of h.” As h gets bigger and bigger
at a certain location, the field h around the location is influenced. The higher terms
stand for the influence. As a result of the interaction with neighbors without using
the approximation of small h, when the field h eventually takes a certain shape and
keeps it while moving, it is called a soliton.

In standard model of elementary particles, for each of all the fundamental
particles found ever, such as electrons, quarks, and photons, a corresponding field
is introduced, and the fields are treated as particles by the quantization. Then what
is the relation between solitons and the elementary particles? Though solitons have
localized energy, the field at the localized place takes a special configuration which
is far away from a “vacuum solution.” The vacuum solution is a configuration with
a constant or often vanishing field, and stands for a state of completely nothing
(say, for the water waves, a state h D 0, at which the surface of the water is
quite still enough and there is no ripple, corresponds to the vacuum solution). We
can say that, at the location of the soliton where the field is locally far away from
the vacuum solution, elementary particles obtained by the quantization of the field
moves collectively. Namely, many elementary excitations of the field condense. This
means that you can regard that solitons are generated by the collective motion of
many elementary particles. This is obvious in the previous example of the water
surface. A big solitary wave which is soliton-like is a big deformation from the
flat water surface, and it is made by piles of small ripples. This image is shown in
Fig. 2.2.
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x

h(t = t0, x)

Fig. 2.2 Left: some ripples are interspersed. These correspond to elementary particles. Right: A
soliton as a big solitary wave. Many particles group and take a special configuration to move
collectively. Here, the appearance of the water surface at time t D t0 is shown. There is no
y-dependence in the field, and only the x direction is shown

Moreover, this soliton collectively move as a group and it looks like a particle
by itself. Even though we call it particle-like, since a lot of elementary particles
move as a collective motion, the mass of the soliton is quite heavy compared with
the elementary particles. A distribution of the masses of various states appearing in
a theory is called a “spectrum.” Given a field theory, we can say that the particle
spectrum include two categories, namely, elementary particles obtained by field
quantization, and solitons.

What is the meaning of the existence of solitons in field theories which look
like one heavy particle? In fact this question is closely related with what kinds
of principles describe actions of field theories in elementary particle physics. The
principle is “symmetry” which we describe in the next section. Once we make
clear the relation between solitons and symmetries, it will naturally become clear
what standpoint solitons are on in physics theories. And possibilities of solitons –
a possibility that solitons are objects which can be observed, and a possibility to
solve logical difficulties in field theories – appear from there. Let us take a look at
these in Sects. 2.3 and 2.4, one by one.

2.3 Symmetries in Field Theories and Solitons

The standard model of elementary particles is written based on a certain symmetry.
If I summarize a relation between the symmetry and solitons in one sentence, it reads
as “Solitons are generated when a symmetry of the field theory is spontaneously bro-
ken.” Since this sentence shows in what situation the solitons appear in elementary
particle physics, this is very important in physics of solitons.6 In this section, I will

6Some solitons often appear without any relation to symmetries. (Say, the example of the water
waves.) In this book, we mainly treat solitons related with symmetries, because we consider
solitons of elementary particle physics and string theory. All solitons which are introduced in
Sects. 2.3 and 2.4 are of that type, and they are called topological solitons.
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explain the meaning of this sentence, especially, what the symmetries are, what the
spontaneous breaking means, and why solitons are generated from that.

2.3.1 Symmetry Breaking, Tachyons, Vacuum Condensation

In the standard model of elementary particles, the mechanism of “symmetry
braking” is used essentially. Since the standard models of elementary particles is,
unfortunately, very complicated and it is hard to tell the essence of how solitons are
derived, let us take a look at a relation between solitons and symmetries by using a
toy model.7 The relation with the standard model will be mentioned later.

The previous solitary waves on the water surface are solitons having energy
localized in the direction x. A typical example of a field theory which gives localized
solitons in one-dimensional space in the same manner, is a theory called 1 C 1

dimensional �4 model. This model has a certain simple symmetry, and solitons
appear by its breaking. In order to break the symmetry, a condition is derived that
at first this theory, as an appearance, must have tachyons which are particles of
faster-than-light speed. After the symmetry breaking, these tachyons disappear. This
is called “vacuum condensation,” and it is a very important element of elementary
particle physics. Here let us take a view around these physics by using the �4 model.

The �4 model is a theory of a field �.x0; x1/, and its action is written as

S D
Z

dx0dx1
�
1

2
.@0�/

2 � 1

2
.@1�/

2 � V.�/
�
: (2.7)

Here, we give the potential term V.�/ as

V.�/ D 1

4
	.�2 Cm2=	/2: (2.8)

m and 	 are constant parameters. Then this action has the following symmetry, that
is, the action is invariant under the following symmetry transformation,

�.x/ $ ��.x/ (2.9)

because the action is all written by terms of even powers of �. This is the symmetry
of our concern.

7Toy models are various mathematical models (in particular, field theories) which physicists
often use in favor. Reasons of actual phenomena of physics have varieties, and furthermore, are
complicatedly involved each other. Therefore, we consider a hypothetical simple physics theory
(a toy model) at first and examine its properties, and then by comparing them with the actual
phenomena, we learn principles hidden behind the actual phenomena – this is our strategy.
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The “potential” which appears in the action is a generalized version of a potential
of mechanics, to field theories (for example, when an object is put at a heigh place
on the earth, it has a gravitational potential).8 What is the physical meaning of
the parameters contained in the potential (2.8)? The parameter 	 is a coefficient
in front of the term �4, it is a “coupling constant” which shows the magnitude of
the interaction in this theory. This is the reason why we call this theory as the �4

model. In addition, the parameter m is a mass of the particles coming from the
field �. Let us explain why. First, we shall derive an equation of motion by the
variational principle from the action (2.7). Basically, we differentiate the quantity
in the integration in the action (it is a Lagrangian) by the field �. As for the term
@1�@1� containing the differentiation of � with respect to x, let us use a technic:
first we partially integrate it and rewrite it as ��@1@1�, and then we differentiate �
which is not act by the differentiation by x. Then finally, as an equation of motion
we have

� .@0/2� C .@1/
2� �m2� � 	�3 D 0: (2.11)

For now, we would like to consider the mass of the particle, we neglect the
interaction term 	�3. Then, this equation is “linearized” (that is, it has only terms
linear in �) and has the following wave-type solution:

� D .const./ � cosŒk0x0 C k1x
1 C .const./�; (2.12)

k0 D
p
.k1/2 Cm2: (2.13)

Here, since .k0; k1/ is a relativistic momentum, k0 is the energy and k1 is the
momentum. Namely, (2.13) is a famous relation of relativistic energy of particles9

andm is the mass of the particle. This particle is interpreted as an elementary particle
derived from a second quantization of the field �.x/.

At this stage, in this �4 model, suppose that m2 is a negative number. (That is, m
is considered as a purely imaginary number.) In fact, this allows a soliton solution
in the theory. We will explain it concretely later, but before that, let us examine in
detail what is the meaning of setting m2 negative. It is closely related with how the
symmetry of the theory is broken.

When m2 is negative, the velocity k1=k0 of this particle is beyond the speed
of light 1, it becomes what is called “tachyon.” The word tachyon sounds like a

8In the same manner as the mechanics, Hamiltonian can be derived from the action, and it stands
for energy of the field:

H D
Z

dx1
�
1

2
.@0�/

2 C 1

2
.@1�/

2 C V .�/

�
: (2.10)

This expression shows that the potential V .�/ by itself directly contributes to the energy.
9In the case of momentum k1 D 0, this equation is equivalent to k0 D m. Bringing back the light
velocity c D 1, it becomes the famous E D mc2.
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Fig. 2.3 The potential for negative m2 in the � D 0 model. The point � D 0 is placed at the top
of the mountain of the unstable potential, and the actual vacua are placed at the right of it or at
the left

scientific fiction. Using a tachyon makes it possible to communicate with a speed
faster than light, so, does it mean a contradiction to relativity? the answer is no. In
a certain field theory, even if it contains a tachyon field, it has no problem against
relativity. This is because a “vacuum condensation” which will be described below
will help the theory from the contradiction.

The potential V.�/ is called a double well potential, and two values � D
˙jmj=p	 of the field are its bottoms. Take a look at Fig. 2.3. The potential is
concave around the point � D 0. That is, the theory is unstable at � D 0. That
the potential is concave corresponds to the negative m2, and as a result it appears
that a tachyon comes out. Since any theory generally favors stable states with lower
energy, � falls and rolls down to the bottom. The value of the field at this bottom
stands for the “vacuum” of this field theory. A vacuum is a state with no particle in
the sense of quantum field theory. The phenomenon of rolling down to the bottom
of potential is called “vacuum condensation.” At the vacuum where the potential is
convex and thus stable, if we expand the field around it, the mass squared of the
elementary particles which appear there is positive, properly.10 This would be clear
when you see the figure. Namely, the tachyon does not actually exist, and we have
just misunderstood as if the tachyon could exist because we look at all things just
around the unstable � D 0.

By the way, in this vacuum condensation mechanism, it is important that the
symmetry the theory originally had is spontaneously broken. The �4 model has the
symmetry of changing the sign of the field � as � ! ��. However, after one among
the true vacua � D ˙jmj=p	 is chosen, the symmetry is broken (see Fig. 2.4). This
is called a “spontaneous symmetry breaking.”

The situation like this is not only in this model, and in fact, even in the
standard model of elementary particles, the same vacuum condensation occurs. In

10Writing � D jmj=p	C ı� and substituting this to the action, you get the mass as a coefficient
of .ı�/2 .
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Fig. 2.4 Spontaneous symmetry breaking. The system changes from the unstable state � D 0 to
the stable vacua � D ˙jmj=p	 (the “vacuum condensation”). The horizontal arrow stands for
the symmetry � ! �� of the system, and after the vacuum condensation this symmetry is broken
spontaneously

the standard model, the field � is called “Higgs field.” The Higgs field has the same
kind of potential which generates the vacuum condensation. In the standard model,
there exists a symmetry larger than the �4 model, which breaks due to a vacuum
condensation. As we saw in the example of the electromagnetism contained in the
standard model, the electromagnetic field, namely, the strength F�� is written by the
gauge field A�.x/. As can be understood in (2.1), it is invariant under the following
transformation with an arbitrary function
.x/,

A�.x/ ! A�.x/C @�
.x/: (2.14)

Therefore, the action (2.3) of electromagnetism is also invariant under the trans-
formation. The invariance under an arbitrary function 
.x/ like this is called a
“gauge symmetry.” Since this symmetry is for an arbitrary function 
.x/, the
constraint to the theory is very strong, therefore it can be a ruling principle for
writing down actions. In fact, the standard model of elementary particles has a
gauge symmetry generalized in such a way that it contains the gauge symmetry
of this electromagnetism. However, since the symmetry like that is not seen in
nature, the standard model is technically made to break spontaneously the large
gauge symmetry by the Higgs field. After the spontaneous symmetry breaking, the
gauge fields for the broken gauge symmetry acquire a mass. This mechanism is
called “Higgs mechanism.”11

When a symmetry of a field theory is broken spontaneously by a vacuum
condensation, solitons often come up with it. The �4 model we saw here is a typical
example of it. Next, let us see its solitons concretely.

11S. Glashow, S. Weinberg, and A. Salam received a Nobel Prize in 1979 for their work on an
application of this mechanism to the standard model.
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2.3.2 Solitons Emerging from Spontaneous Symmetry Breaking

Let us write down concretely a soliton in the �4 model. For simplicity, we consider
time-independent solitons. Namely, we assume � to be a function of only x1.12

The points we must pay attention in writing down is that two stable vacua (� D
˙jmj=p	) exist. Since solitons are configurations with localized energy, the value
of the field should equal to the vacua in the regions far away from the solitons. So,
let us consider the following case:

space x1 �1 C1
field �.x1/ �jmj=p	 Cjmj=p	 : (2.15)

This is a configuration of � moving from one vacuum to another vacuum at a certain
point in x1. On the transition, the field must climb up the potential hill, and @1� is
not zero there since the value of � moves so it contributes to the energy (see the
Hamiltonian (2.10)). Around there the energy is localized, and a soliton exists there.

This configuration is a solution of the equation of motion and is stable. In order
to see it, let us visualize this soliton pictorially. We now look at a space spanned by
x1, �, and V.�/ (Fig. 2.5). The shape of a classical solution is like a chain lying
on a galvanized sheet iron roof which is snaked. Here, the chain stands for �.x1/
and extends from x1 D �1 to x1 D C1 . The stable vacuum solution is a state
of the chain put totally in a single ditch of the roof. In Fig. 2.5, it is shown with a
bold dotted line. On the other hand, let us consider the soliton with the boundary
condition (2.15) mentioned earlier. The corresponding chain should move from one
ditch to another ditch at some point. This is shown in Fig. 2.6. When the chain passes
the top of the swell of the roof, it is at a high place and earns V.�/ corresponding to
the potential energy for the height. Furthermore, since it changes the place, it needs
more length (The derivative @1� is nonzero). This point where the chain passes the
swell is the location of the soliton, namely, the place where the energy is localized.
At other places, the chain lies down at the bottom of the ditch, and the density of
energy vanishes. By this visualization, it is clear that the solution like that exists and
is stable.

It is also possible to get the soliton solution by solving the equation of motion
concretely. To get a static classical solution, we may neglect time derivatives @=@x0,
and then the equation of motion (2.11) is

.@1/
2� �m2� � 	�3 D 0: (2.16)

12In field theories, for solitons of classical field theories we often consider ones independent of
time x0, and they are called static solitons. In the case of relativistic physical systems, moving
solitons are obtained by acting a Lorentz transformation of special relativity to the static solitons.
That is, we can get a solution of a moving soliton by using the fact that for a moving observer even
a static object could be seen as one moving in the opposite direction.
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V (f )

x1

f

Fig. 2.5 A hypothetical space spanned by x, �, and V .�/, is shown. The potential V .�/ is given as
a surface which looks like a galvanized sheet iron roof, in this 3-dimensional space. A bold dotted
line stands for one of the vacuum solutions � D �jmj=p	. Since the vacuum solution does not
depend on x, it linearly lies down at the bottom of the ditch

V (f )

x1

f

Fig. 2.6 A soliton solution. A chain (bold dotted line) once crosses over the swell of a galvanized
sheet iron roof

The simplest solution is

� D b�.x1/ D jmjp
	

tanh

� jmjp
2
.x1 � X1/

�
: (2.17)
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x1 x1

f f

Fig. 2.7 A kink solution (left) and an anti-kink solution (right). Both of these are solitons, with
only a difference of just opposite signs of the boundary conditions. We choose X1 D 0 in the
figure

x

f

x

f

Fig. 2.8 A pair annihilation of a kink and an anti-kink. In the left figure, a kink and an anti-kink
stay further each other. In the right figure they collide and annihilate and turn to get back the state
of vacuum solution

Here, X1 is an arbitrary real constant. As we expect, this solution satisfies the
condition (2.15) at the infinities x1 D ˙1, and it crosses across a swell of a
galvanized sheet iron roof at x1 D X1 (see Fig. 2.7). By substituting this soliton
configuration (2.17) into the Hamiltonian (2.10) to obtain the energy density, we
exactly find energy localized at the point x1 D X1. This is a soliton placed at
x1 D X1. We call this a “kink” because the solution has the shape given in the left
figure of Fig. 2.7.

On the other hand, the following configuration in which the sign of the solution
is flipped,

� D � jmjp
	

tanh

� jmjp
2
.x1 � X1/

�
; (2.18)

is also a classical solution, however, with an “inverse” direction, compared to the
previous one. That is, the way of choosing the vacua at x1 D �1 and x1 D C1
is taken flipped (see Fig. 2.7 right). This is called an “anti-kink.” The distribution
of the energy density is just the same as the kink. As we put the kink and the anti-
kink far away from each other and then bring them closer gradually, they happen to
pair-annihilate each other finally (Fig. 2.8). This is similar to a pair annihilation of
a particle and an anti-particle. Note that the boundary conditions at the infinities of
x do not change in the process of this pair annihilation. That is, the process of the
pair annihilation of the solitons occurs locally. The locality of the pair annihilation
is common to that of particles, and also in that sense, solitons behave like particles.
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In this way, we saw that, from the concrete construction of the soliton solutions,
they have localized energy and behave like particles, together with the anti-solitons.
However, it appears that this soliton is in the 1-dimensional space and has nothing
related with the 3-dimensional space we live in. Furthermore, if we try to put two
solitons in this 1-dimensional space (without using the anti-soliton), we run into a
problem: allowed configurations of solitons are only the case of solitons and anti-
solitons put alternatively. These problems are resolved once we consider solitons in
a little bit higher dimensions. Since solitons in not only one dimension but also
two and three dimensions are considerably related with particle observations in
elementary particle physics and cosmologies, in the next subsection, let us consider
those solitons in higher dimensions.

2.3.3 Vortex: Soliton in Two Dimensions

The reason for the existence of the solitons in the �4 model is that there are two
vacua in the theory. Namely, related with the symmetry breaking, the two field
configurations � D ˙jmj=p	 became the vacua. Here, note that there are two
infinities x1 D ˙1 in the 1-dimensional space on which the theory is defined. The
reason why the soliton exists is that, as shown in Fig. 2.15, there are non-trivial ones
among the maps which map the two infinities to the set consisting of the two points
of the field vacua. In other words, the map

f�1;C1g �.x
1/�!
n
jmj=

p
	;�jmj=

p
	
o

(2.19)

has a degree of freedom to choose whether f�1;C1g is mapped to the same
vacuum or to different vacua for each.

This way of thinking can be applied not only to the one-dimensional case but also
to two, three, or even higher dimensions. Here, as an example, we shall consider the
two dimensions in detail. The example of the two dimensions gives us an example of
countable solitons – one soliton, two soliton, etc., and moreover, it is closely related
with creation/annihilation of D-branes in string theory which will be described in
Sect. 5.3.

The 2-dimensional space is spanned by x1 and x2, and its asymptotic infinity is
considered to have the shape of a circumference (see Fig. 2.9).13 Let us consider a
field theory on this 2-dimensional space. (This is a field theory on 2C1-dimensional
spacetime, if we count time. The example of the previous soliton is a 1 C 1-
dimensional spacetime.) As a generalization of the previous �4 model, suppose we

13In the polar coordinate z D rei� , the asymptotic infinity corresponds to a limit r ! 1. The
asymptotic infinity of 2-dimensional space is characterized by 0 � � < 2� , and its shape is a
circumference.
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x2

x1

Fig. 2.9 Infinities of the 2-dimensional space spanned by x1 to x2 equal a circumference. Since an
asymptotic infinite point can be determined by the direction along which one goes away from the
origin, so the angle of the direction determines the point at the infinity. It is equivalent to determine
one point on a circle

V ( f1, f2)

f2

f1

Fig. 2.10 The potential of the complex field. It can be seen that there is a rotational symmetry.
The vacuum of the theory is the bottom of the potential, and it has the shape of a circumference
(bold line in the figure)

have two real fields �. This can be considered as a complex field, if we combine
them as �1.x/ C i�2.x/. And as a potential appearing in an action, we consider a
generalization of the previous �4 model,

V.�1; �2/ D 1

4
	

�
.�1/

2 C .�2/
2 C m2

	

�2
: (2.20)

We assume thatm2 is negative as we set before. This potential is called “wine-bottle
type,” and I show the shape in Fig. 2.10. As you can find from this figure, this theory
contains an interesting symmetry and vacuum. First, there is a symmetry:

�1.x/C i�2.x/ ! ei' .�1.x/C i�2.x// : (2.21)
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x1

x2 f2

f1

Fig. 2.11 Consider a map from a circumference to another circumference. The left circumference
stands for the asymptotic infinity of the 2-dimensional space, and the right one stands for the
vacuum of the field theory

This is a degree of freedom to change the phase of the complex field. ' is an arbitrary
constant varying from 0 to 2� , and this symmetry is continuous. You can see that
under this symmetry transformation the potential (2.20) is invariant.

This continuous symmetry is broken spontaneously, as before. The vacuum,
namely the bottom of potential, can be found from (2.20) as an arbitrary pair .�1; �2/
satisfying the equation

.�1/
2 C .�2/

2 D jmj2
	
: (2.22)

In this sense, the bottom of the wine bottle is the vacuum (see Fig. 2.10), and the
shape of the vacuum is a circumference.

Now once that a certain pair .�1; �2/ satisfying (2.22) is chosen, namely, one
point on the circumference is chosen, the symmetry (2.21) disappears. This is a
spontaneous symmetry breaking (Fig. 2.11).

Let us see solitons showing up in correspondence to this symmetry breaking.
Since solitons have localized energy, the field at the asymptotic infinity far enough
away from the solitons must be at the vacuum. The way a place in the asymptotic
infinity corresponds to the point in the vacuum classifies the kinds of solitons.
This is the same logic applied for the classification of the kink and the anti-kink
previously. In the present case, the asymptotic infinity of the 2-dimensional space
is given by one circumference. On the other hand, the vacuum is also given by
one circumference. That is, we learn that classification of the maps from one
circumference to another gives the solitons. This map can be easily understood
by regarding the first circumference as a circular rubber band and the second
circumference as a thick stick. Apparently, the maps are classified by how many
times we wind the rubber band (see Fig. 2.12). As the winding has an orientation
(there is an opposite winding), including the case of no winding (which corresponds
to the vacuum), the windings turn out to be classified by an integer number.
This is the “particle number” of the solitons. Negative integers correspond to the
existence of anti-solitons whose number is its magnitude of the integer. Furthermore,
if solitons and anti-solitons exist at various places, this number stands for the
whole number of them (where we count the anti-solitons with minus sign). That
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Fig. 2.12 Maps from a circumference to another are classified by winding numbers. In the left,
the winding number is 1, and in the middle, the winding number is 2, while the right one has the
winding number 3. Arrows are for showing the orientation of the winding. Opposite orientation of
the arrows correspond to negative winding numbers. There is also a case with vanishing winding
number

Fig. 2.13 The concept of the winding number is intact even when the rubber band is loose. In
the left, a rubber band winds the circle tightly, while in the right a rubber band winds with a little
folding. However, we consider that both give the same winding number

is, the solitons in this 2-dimensional space are countable, “one soliton, two solitons,
� � � ” and we can consider states of multi-solitons. On this point, the situation is
different from the previous �4 model, but common is the essential part concerning
the conditions for the existence of the solitons, namely, the logic that solitons are
classified by maps between the asymptotic infinity and the vacuum.

The integer label we saw here is called a homotopy group in mathematics.
Homotopy is a property of invariants under continuous deformation of maps. For
instance in the present case, even if a rubber band is loose or folded, the winding
number is the same as that for a band which winds the stick tightly.14 This agrees
with the requirement that the number of elementary particles must conserve. That
is, solitons behave as if they are particles (Fig. 2.13).

Solitons whose energy is localized in two dimensions like this example are
called vortices. The integer labeling them is called vortex number. The vortex is
an interesting soliton in 2-dimensional space. However, as a matter of fact, if we
write down equations of a motion from the action containing the potential (2.20)

14Static soliton solutions solve the equations of a motion concretely, so they attain minimum energy
configurations. And so they have the shape of the rubber tightly wound.
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and solve the equations of a motion under the condition that the vortex number is
not zero at the asymptotic infinity, then we will find that the total energy is divergent.
As this shows the mass of the soliton is infinite, this is not a physically interesting
solution at all.

To resolve this problem, combine electromagnetism with the theory of the
complex field �1.x/ C i�2.x/. Originally, the theory of the complex field has
the symmetry (2.21) which changes a constant phase of the field. On the other
hand, electromagnetism has also a symmetry (2.14) by a parameter of an arbitrary
function. The symmetry of the combined theory is to perform (2.21) simultaneously
with the gauge transformation (2.14) of electromagnetism,

�1.x/C i�2.x/ ! ei
.x/.�1.x/C i�2.x//; (2.23)

A�.x/ ! A�.x/C @�
.x/: (2.24)

Note that here the constant parameter ' of the symmetry (2.21) for the complex
field is upgraded to an arbitrary function 
.x/. Now that the gauge symmetry
of electromagnetism and the constant phase symmetry of the complex field are
combined to a single gauge symmetry. Since also in this combined theory15 the
potential of the complex field is shaped like a wine bottle, a vacuum condensation
occurs and then the gauge symmetry is broken spontaneously. This is the Higgs
mechanism aforementioned. Though the analysis is omitted in this book, vortex
soliton solutions exist as well in the combined theory, and what is more, the total
energy of the soliton becomes finite due to the electromagnetic field. Interestingly,
in this solution, a nonzero magnetic field F12.x/ is concentrated around the center
of soliton.16 That is, solitons have magnetic charges.

2.3.4 Monopole: Soliton in Three Dimensions

By applying the example of the vortices in 2-dimensional space, we can consider
solitons localized in 3-dimensional space, which is familiar with us. Probably you
may easily guess what it will be, but let us write this down concretely. First of all,
the asymptotic infinity of 3-dimensional space is given not by a circumference but
by a spherical surface. And as a further generalization of the previous complex field,
we consider three real fields �1, �2, and �3, and a potential

V.�1; �2; �3/ D 1

4
	

�
.�1/

2 C .�2/
2 C .�3/

2 C m2

	

�2
(2.25)

15This model is called Abelian–Higgs model.
16In the electromagnetism of 2 C 1 dimensional spacetime, the magnetic field has only one
component F12, as opposed to the familiar case of the 3C 1 dimensional spacetime. On the other
hand, the electric field has two components of a vector: F01 D E1, F02 D E2. In electromagnetism
of lower 1C 1 dimensions, there is only a single component F01 D E1 of the electric field.
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Fig. 2.14 The classification of maps from a sphere to another sphere gives us the number of
monopoles. Though it is difficult to imagine a picture of windings, if one considers the case of
winding by allowing it to crossing itself, one can find out that the winding number is given by an
integer, just as in the case of the circumference

with m2 < 0. Then the vacuum of this theory is given by

.�1/
2 C .�2/

2 C .�3/
2 D jmj2

	
; (2.26)

which has the shape of a spherical surface. In this case, solitons are classified by
maps from a sphere to another sphere (Fig. 2.14), and they are characterized by
an integer which is the number of solitons, as in the case of the vortices. What is
more, by combining a generalized electromagnetism (which will be explained in
the following), the monopole is shown to have a magnetic charge at its core. This
soliton solution is called monopoles (magnetic monopoles).17

Interestingly, the emergence of this monopole is deeply related with the standard
model of elementary particles. The standard model of elementary particles is based
on a field theory called “non-Abelian gauge theory” which is a generalization of
electromagnetism. The gauge symmetry of the non-Abelian gauge theory is one of
the most important principles in elementary particle physics, and this is a key point
for how to measure the monopoles and how the elementary particle physics spreads
beyond the standard model. Let us learn the non-Abelian gauge theory through the
monopoles, below.

For the monopoles which are solitons in 3-dimensional space to appear, it is
important that the vacuum of the field theory has the structure of a spherical surface.
On the other hand, it is known that the monopoles would have infinite energy
and become meaningless if the theory is not combined with an electromagnetism-
like theory, as in the case of the vortices. So, let us consider what kinds of
the electromagnetism we need to combine, from the viewpoint of the symmetry.
Since in the case of the vortices the parameter of the symmetry transformation
for �1.x/; �2.x/ is a constant parameter ', we have upgraded it to the arbitrary
function 
.x/ and could identify the symmetry with the gauge symmetry of the

17The existence of this solution was proved by G.’tHooft and A. Polyakov.
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Fig. 2.15 When we perform a rotation around a certain axis and then a next rotation around
another different axis, if we invert the order of the choice of the axes of the rotations, the result is
different, even though we choose the same rotation angles

electromagnetism. On the other hand, in the case of the monopoles, the parameter
of the symmetry transformation for �1.x/; �2.x/; �3.x/ is not a single but three
constant parameters. This is because this symmetry is a symmetry rotating the
spherical surface, namely, a rotation symmetry in 3-dimensional space, and is
specified by three angles (called Euler angles). When upgrading this to arbitrary
functions, we have a gauge symmetry with three arbitrary functional parameters.
That is, in this case, three gauge field will appear.

Furthermore, the rotational transformations with these three parameters are not
mutually “commutative” operations. For instance, we consider, in a 3-dimensional
space, a spherical surface which is the vacuum structure and two rotational axes
there (Fig. 2.15). For example, performing a rotation by 30ı around the first axis
and then a rotation by 20ı around the second axis, does not give the same result
as performing the rotation by 20ı around the second axis first and then the rotation
by 30ı around the first axis. This is expressed as these rotational operations being
“not commutative.” This time, the gauge symmetry possesses this non-commutative
nature, it is not appropriate to bring three copies of the electromagnetism. This kind
of generalization of the electromagnetism is called “non-Abelian gauge theory.”

In the field theory of �1.x/; �2.x/; �3.x/ combined with the non-Abelian
gauge theory, the spontaneous breaking of the gauge symmetry by the vacuum
condensation occurs, due to the potential of �1.x/; �2.x/; �3.x/, as before (Higgs
Mechanism). However, interestingly enough in this case, not all the symmetries
are broken. Let us see the reason for this in Fig. 2.16. Suppose that a certain
point (point X in the figure) on the spherical surface is chosen by the vacuum
condensation. Then, although the symmetry rotating the whole spherical surface
arbitrarily is broken, the symmetry rotating the spherical surface while keeping
the chosen point fixed remains unbroken. Since this remaining symmetry does not
change the circumference of equal distance from the chosen point, it is equivalent to
the symmetry of the electromagnetism which we saw in the example of the vortex
in 2-dimensional space. One out of three gauge symmetries remains unbroken.



40 2 Solitons and Elementary Particle Physics

X

Fig. 2.16 The vacuum is a point on the spherical surface (point X). Once this point is chosen, it
remains a rotational symmetry around the axis passing through point X and the center of the sphere

I hope now you can easily imagine the appearance of monopoles in the
spontaneous symmetry braking of the non-Abelian gauge theory. In the part of
the field theory of �1.x/; �2.x/; �3.x/, the asymptotic condition at the infinity of
3 dimensional space generates the solitons. And, for this soliton, looking at the
magnetic field of the electromagnetism remaining unbroken which is mentioned
earlier, we can show that the magnetic field emanates from the center of the soliton
(I will omit the calculation of this). This is the reason why the soliton in this
3-dimensional space is called a monopole, namely, a magnetic monopole.

Since the monopoles are localized in 3-dimensional space, it is the a particle-
like object similar to elementary particles we know well. Therefore, it is possible
that it can be observed in our 3-dimensional space we actually live in. This is
related with the possibility to open a way for a new physics beyond the standard
model of elementary particles. On the other hand, as monopoles appear, as well as
particles, in the particle spectrum of field theories in 3+1-dimensional space time,
there is a possibility to give us a new symmetry which may overcome difficulties
in calculations in field theories. (This is called “duality” and is very important as
being related with D-branes in string theory.) In this way, solitons play vivid roles in
various aspects of field theories. We shall see these two possibilities in the following.

2.4 Importance of Soliton: Observation and Duality

2.4.1 Observing Soliton: Monopole in Grand Unified Theory

To see solitons, just go to a river or a seaside. Solitary waves created when a ship
goes on the wave surface are solitons. The concept of solitons was found at a canal
with the solitary waves on the water surface. In solid-state physics, actually there
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are solitons which can be observed. Here, in the elementary particle physics, which
is closely related to string theory, I will give you an explanation of solitons there
and their existence, and possibilities of their observation. The particle-like solitons I
mentioned earlier are monopoles. How can they be observed, and what does it mean
in elementary particle physics?

Monopoles appear according with the gauge symmetry breaking in non-Abelian
gauge theories. On the other hand, the same kind of non-Abelian gauge symmetry
breaking is used in the standard model of elementary particles. However, unfor-
tunately, since in the standard model of elementary particles the structure of the
vacuum is slightly different from the case of the monopoles written by �1; �2 and
�3, solitons localized in the 3-dimensional space do not exist. This is unfortunate,
but, there are more important monopoles. Those are monopoles appearing in “grand
unified theories”. I will explain it here. What are the grand unified theories beyond
the standard model of elementary particles? And what is the meaning of the
monopoles there?

The accuracy of the standard model of elementary particles has thoroughly
proved by various accelerator experiments. It is perfect enough that no experimental
result contradicts with the standard model.18 However the standard model has a
problem. The standard model contains a lot of constant parameters standing for the
interactions, and the theory doesn’t know why they take those values, and so they are
given by hand at the step of writing the action. This is not satisfactory, and is a big
problem in elementary particle physics. The mechanism determining such constants
naturally is demanded. If it is found, we could predict, for example, the mass of the
electron.

As one of attempts solving this problem, there is a field theory called “grand
unified theory”. This is written as a non-Abelian gauge theory in the same manner
as the standard model, but the gauge symmetry is larger and contains the whole
gauge symmetries of the standard model. And the attempt of the grand unified
theory is to reproduce the whole standard model, by using the Higgs mechanism
in this large gauge symmetry to break it to the gauge symmetries of the standard
model. Anticipating the grand unified theory like this can give a relation among
some parameters in the standard model, and can reduce the numbers of arbitrary
parameters there.

If we assume this grand unified theory, the monopole, namely, the soliton
associated with spontaneous symmetry breaking must appear. In fact, it is proved
that a monopole must appear in a certain kind of grand unified theories.19 That is,
the monopole is the very evidence of the existence of the grand unified theory.

18Though it is supposed that the particle called neutrino is massless in the standard model,
experimental results at the observatory Super Kamiokande in Gifu prefecture were reported that
the neutrino has a mass. At the present, this is considered to be the only clear evidence deviating
from the standard model.
19This is the case when the “group” defining the gauge symmetry of the grand unified theory is
“semi-simple.” The theories with a semi-simple group are simplified. Ideal grand unified theories
should have fewer number of the parameters, and the case is a main subject of researchers.
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Then, why hasn’t this monopole been found in experiments before? It is because
the monopole is considerably heavy. This is related to the fact that the energy
scale of the gauge symmetry breaking of the grand unified theory is very high.
The energy scale of the symmetry breaking corresponds, for example in the �4

model, to the difference between the value of potential V.� D 0/ at � D 0 and
the value of potential V D 0. A picture is as follows: When a certain field at the
vacuum (the bottom of potential) has the energy corresponding to the height of
barrier of the potential, it can climb from vacuum at the bottom up to the top of the
hill of potential. In the potential of the grand unified theory, the magnitude of this
energy is set to be considerably high. This is from a theoretical requirement that
the standard model should be included in it, here I will not describe it in detail (it
will be explained in Chap. 6.) The most important is that the mass of monopole is
large as this breaking energy (D the height of the potential) is high. As you can see
in Fig. 2.6 of the kink solution of the �4 model, solitons climb over the potential
barrier at least once. From this it is concluded that solitons must have the mass of
order of the energy scale of the symmetry breaking.

The modern verification of elementary particle physics is mainly made by huge
particle accelerators. Particle accelerator accelerates a lot of particles and gives them
a large amount of energy and makes them collide. A pair of a new particle and its
anti-particle (which has the same mass as the particle and has an opposite sign of
charge) having the mass which amounts to the collision energy is pair-created at the
accelerator, and we are able to learn a new physics by observing them. However,
the mass of the monopoles expected in the grand unified theory is too large to reach
even by the newest huge accelerator LHC which was activated in 2008. Therefore,
to pair-create monopoles at huge accelerators is a task of extreme difficulty, and is
not a realistic experimental subject.20

Then, can’t we observe monopole? In truth, though monopoles of the grand
unified theory cannot be created by mankind at accelerators, there must exist a lot
of monopoles in the space of the universe. In the current standard model of the
universe, the universe is supposed to begin with a big explosion called Big Bang.
At the initial era of the universe it was extremely hot, but it was getting colder and
colder as time went. That is, in the era close to the beginning of the universe, there
must have been a period when the whole universe is hotter compared to the energy
scale of the grand unified theory. Being hot means that the whole universe is full of
energy, in other words, it was in the state at which the field � can climb from the
vacuum to the top of the hill of the potential. And as the universe expands and the
temperature decreases, the spontaneous symmetry breaking occurs. As a result of
this breaking, the monopoles are created. The creation mechanism of solitons like
this is called Kibble mechanism. A lot of the monopoles of the grand unified theory
were created in early universe and they must remain in the universe somewhere now.

20In the brane world which will be described in Chap. 6, the symmetry breaking energy of the
grand unified theories might be brought much lower. If brane world is real, we might be able to
produce solitons at accelerators.
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How can we see the monopoles of the grand unified theory left over? Since
these monopoles are related with the higher symmetry which is not present in the
standard model of elementary particles, they create interactions which do not exist
in the standard model, among particles. In this sense, if we find these interactions
which we cannot interpret in the standard model, they would be the evidence of
the existence of the monopoles. A typical example of the interaction is a decay of
protons. A proton is made of three elementary particles (quarks) and considered to
be stable in the standard model, but if a monopole passes nearby, the interaction
generates a decay of the proton to other elementary particles. If this decay is
observed, it might be the evidence of the existence of solitons.21 Since all matter
have protons and so there are much amount of the protons around us, it is considered
that the observation of the rare decay like this might be possible. However, it hasn’t
been detected so far, in experimental observations. The present situation is that the
value of the upper limit of the monopole density in the universe is computed from
the data.

As a matter of fact, the monopole density in the universe is associated with
so-called “monopole problem”, and which is a big problem in cosmology (see
Chap. 6.2). It is calculated that, if too many monopoles are created in the early
universe, the mass energy of the monopoles hold a big portion of the energy of the
whole universe, then the universe doesn’t inflate but contract soon so that it does not
grow up to become the present vast universe. Hence, a mechanism to decrease the
monopole density is required. The most promising candidate of it is “inflationary
cosmology”. The inflationary cosmology is currently studied by cosmological
physicists actively, and an interesting relationship with string theory/D-branes has
been revealed. I will give an explanation of this theme in Chap. 6.2.

In addition to the monopoles, vortices also may exist in the universe as well,
and might be observed. However the vortices are solitons in 2-dimensional space,
while the space of our universe is 3-dimensional. How can we resolve this gap of the
dimensions? This problem is related with a very interesting theme of dimensions of
solitons, and I will give a full explanation in Sect. 3.1.

2.4.2 Duality and Soliton: Solving Difficulties in Field Theory

Let us explain a theoretical importance of the solitons. This is also the importance
of the existence of solitons (D D-branes) in string theory, and the most important
point for establishment of the ultimate theory. Solitons have a possibility to resolve
a certain kind of theoretical difficulties in field theories. First, I have to explain what
the difficulties are. And after that, I will describe the role of the solitons as a method
for resolving the difficulties. The method is a very strange symmetry “exchanging
elementary particles and solitons”!

21There are various other physical mechanisms which generate a decay of protons. In reality, we
need to examine how the protons decay, for identifying whether it is by monopoles or not.
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Fig. 2.17 A Feynman graph stands for a scattering process of two electrons. The solid lines with
arrows stand for the electrons, and the wavy lines stand for the gauge field of electromagnetism
(photon). The arrow on your left depicts the direction of time. The horizontal direction shows space

Basically in field theories, once the action is given, we can calculate any physical
quantities. Here, I mean by “we can” that we can do it in principle, but to actually
perform the calculations exactly is a hard task. There, difficulties in the calculations
often appear. Even if the way of calculating physical quantities and the equations
are given, it is difficult to actually calculate them and derive the answer.

Let us explain an abstract of how to calculate a collision/scattering process of
two electrons in a field theory. In the calculation of the field theory, as a starting
point an action written with a field of the electron and the electromagnetic field is
used. This is called Quantum Electrodynamics. The scattering of the electrons is
given by a graph like the one in Fig. 2.17. This is called a Feynman graph, and
it also stands for a way of the calculation. Once a graph is given, we can write
a mathematical formula showing the scattering probability corresponding to it. In
this graph, the vertical direction shows time and the horizontal direction shows
a space. (Though the spacetime is 3 C 1-dimensional, as a matter of convenience
for showing a figure, we depict the space in a 1-dimensional manner.) Lines are
“worldlines” of the particles, that is, trajectories of the particles in the spacetime,
and the point of intersection of the line with a horizontal line stands for the location
of the particles at that time. Solid lines are the electrons and wavy lines are the
electromagnetic field. The scattering by an interaction among electrons comes from
the interaction by the electromagnetic field, and it correspond to exchanging an
elementary particle of the electromagnetic field (a photon). The configuration is
shown in the Feynman graph and with that the probability for the scattering of
the electrons is calculated. Since the “coupling constant” of the interaction between
one electron and the electromagnetic field is the electric charge e, the magnitude of
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the electron scattering is about e2 in magnitude (this is called a scattering amplitude,
squared of the absolute value of which gives the probability of the scattering). This
is because in the Feynman graph of Fig. 2.17 there are two points of the interaction.

In order to calculate the scattering of the electrons in the field theory, at first,
while fixing the condition that two electrons come in and two go out, we write down
all possible Feynman graphs. In the quantum electrodynamics, in addition to the
Feynman graphs of Fig. 2.17, there are innumerable Feynman graphs with higher
powers of e (called orders), and the sum of all the terms with the higher orders is
the final description of the scattering. For example, there is a graph like Fig. 2.18.22

This is order e4. A calculation method like this using series-expansions of graphs
is called a “perturbation theory.” The perturbation theory is a fundamental and an
important method of calculations in field theories.

As a matter of fact, it is quite difficult to calculate terms of higher orders and it
is a laborious problem to sum the terms of all the orders. However in this case of
QED, since the quantity e2 called the fine structure constant is given approximately
by 1=137 (in the unit of h=2� D 1 and c D 1 where h is the Planck constant and c
is the speed of light), the whole can be approximated by the first term. That is, the
higher order terms are given as small perturbations. So, by calculating higher order
terms and adding them, the calculation gets more precise. The perturbation theory
of QED have achieved a huge success. For instance, experimental results of the
magnetic moment of an electron agree with theoretical calculations of QED at the

Fig. 2.18 An example of a Feynman graph of higher orders. In the previous graph, there are two
interaction points and so it gives e2 in magnitude, while in this graph it is e4 in magnitude

22When the Feynman graph includes a loop, the result of the calculation is infinite because of a
sum of all possible energy of particles rounding along the loop. This infinity can be made finite by
a procedure called “renormalization.” According to this recovery, J. Schwinger, R. Feynman, and
S. Tomonaga awarded a Nobel prize in 1965 for their theoretical contribution to QED.
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accuracy of more than ten digits. This can be called the most successful theoretical
calculation ever.

The standard model of elementary particles includes not only QED as a part but
also quantum chromodynamics (QCD) as other important part. QCD is a field theory
describing quarks and interactions between quarks which form protons, neutrons
and mesons. Perturbation theories actually make sense only when their coupling
constants are small, but unfortunately the coupling constant of QCD is large and of
order 1 in magnitude at the energy region of our interest. So, there the perturbation
theory doesn’t make sense any more. This is a serious difficulty on calculations in
field theories and in the standard model of elementary particles.

Then, how can we calculate QCD? An answer is to use computers. Instead
of using perturbation theories, actually we can calculate the whole process in
computers. By discretizing points in spacetime and making them a lattice, we can
calculate the field theory without the perturbation theories on the computers. This is
called lattice QCD, and it is one of main subjects in elementary particle physics. Due
to the limitation of the computer ability, the lattice size of each side in the spacetime
is less than 100. However, the computer results give good achievement.

Then, is it impossible to perform by hand the calculations of theories having large
coupling constants such as QCD? To solve this problem, the concept of “duality”
using solitons comes up here. The duality means a situation where two different
physical systems (or physical descriptions) turn out to be equivalent to each other.

I will explain what this duality is, with an example of electromagnetism. The
Maxwell equations have a beautiful symmetry that an exchange of the electric field
Ei and the magnetic field Bi will bring the equations back to the same form. This
is a special example of duality, and called “self-duality.” The duality means that
transformations performed twice would bring the system back to the original one
(for example, Ei ! Bi ! Ei ). However, in electromagnetism, even with a single
duality transformation the theory remains the same, so, it is called a self-duality.
A part of the Maxwell equations are given as

@iEi D 0; @iBi D 0: (2.27)

We can apparently see the self-duality. Now, when there is an electron, the electric
field is created around it. How about the magnetic field? Judging from the duality of
the Maxwell equations, might particles creating the magnetic field exist, as a dual of
the electron? The hypothetical particle with this magnetic charge is the monopole.

Let us see how the duality help calculations in field theories with large coupling
constants. Concerning the magnetic charge of the monopole, P. Dirac in 1931 wrote
down the following constraint equation: g D 1=2e. This constraint equation is
derived from the condition that electrons behave in a consistent manner around the
monopole quantum-mechanically.23

23Let me explain how to get the Dirac’s condition. In quantum mechanics any particle is
represented by a description of waves, a wave function  .x/. The square of the absolute value of



2.4 Importance of Soliton: Observation and Duality 47

We have an interesting finding if we combine this condition with the electro-
magnetic duality. When the electric field is exchanged with the magnetic field the
electrons are exchanged with the monopoles, e and g should be exchanged with each
other. According to the Dirac’s condition, g is large for small e. In this sense, the
theory with weak coupling (e � 1) is equivalent to a theory with strong coupling
(e � 1). Even when we cannot apparently use the perturbation theory because
of the large coupling constant e of the theory, if there is the duality, the theory is
equivalent to a theory with weak coupling constant, so we can do calculations using
a perturbation theory.

However, so far, any monopole of this electromagnetism has not been found
yet. There is a theoretical reason about it: It can be shown that the magnetic
field Bi.x/ around a point-like source of it cannot be written by any gauge field.
A�.x/.24 However, not in the case of the monopoles of this electromagnetism, but
of monopoles as solitons in the non-Abelian gauge theories mentioned earlier, there
is no such difficulty, and we can find a soliton as a field configuration with smooth,
finite and localized energy. Here, the fact that electromagnetism is generalized to be
a non-Abelian theory is helpful. We can actually expect the theory like this has a
self-duality. However proving it mathematically is very difficult. This is because, of
course we cannot use the perturbation theory for the proof. And this is also because
we exchange elementary particles and solitons. Theoretical properties beyond the
perturbation theory such as the dualities is called non-perturbative. It is the very
important to understand physics theory in an essential way.

Though Maxwell electromagnetism is self-dual, there are cases which are not
self-dual. A duality transformation brings a certain theory to a completely different
theory, while they are equivalent to each other. In most cases, on the one hand
the coupling constant is small while on the other it is large. And elementary
particles on the one hand are interpreted as soliton on the other. This is a duality
among different theories. In this kind of duality between strong and weak couplings
(strong–weak duality), in the strong coupling regime of a certain theory another
equivalent field theory plays a vivid role, and there solitons of the former theory
become a fundamental field. That is, solitons are quite important objects when we
want to handle the non-perturbative region of field theories.

the wave function j .x/j2 stands for the probability for observing the particle at the point x. Now
when the monopole is placed at the origin x D 0, suppose that electron is put near the monopole
and then let the electron go round about the monopole. When it comes back to the original place,
the wave function of the electron must be equal to the original wave function. In the process, a
calculation shows that the wave function acquires a phase factor e4�ieg when the electron goes
round. The condition of this phase being equal to 1 is the Dirac’s condition mentioned above.
24Let me quote a proof of it for readers who are interested in it. When there are electric charges
like electrons, the right hand side of the first equation of the Maxwell equations (2.27) is not set
to 0, but there a density function of the electrons appear. Therefore if there is a magnetic charge,
in the second equation of the Maxwell equations (2.27), the right hand side is not 0. But by using
the definition equation Bi D 1

2
�ijkFjk of the magnetic field and the definition equation (2.1)

F��.x/ D @�A�.x/� @�A�.x/ of the gauge field strength, this is shown to be impossible.
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The duality plays a very important role in string theory. The duality makes clear
the relation between different string theories. And what is better, thanks to duality,
we can handle physics at the region of a strong coupling constant in string theory.
We shall describe the duality of string theories in Sect. 4.2, where we find also that
solitons of string theory are D-branes, so considering all of them, we see that there
exists a symmetry of exchanging strings and D-branes! Therefore, even though we
start thinking of string as a fundamental matter in string theory, it turns out that
we might actually regard D-brane as fundamental. This surprising result is brought
by the duality. I will have a full account of this story in Chap. 7. What is the
fundamental ultimate theory describing the whole physics in our universe written
by? This is the a very important question. It might be the D-branes, the extended
objects, rather than the strings!

And the fact that the D-branes appear concerning the duality in string theory gives
a big influence on field theories of elementary particles as well as string theory. Let
us get back to the previous problem of QCD. It is not known whether the actual
QCD in the standard model of elementary particles has such an exact dual theory
as I mentioned here. However, by recent advances in string theory, we start to learn
that a certain gravity theory describes the strong coupling region of theories similar
to the QCD. This is a great progress in theories. First of all, what is strange is that
QCD, the theory of quarks, can be describe by a gravity theory! What is more, this
duality requires the gravity theory to be not in 3C 1 dimensional spacetime but in
4C 1 dimensional spacetime! This is a duality of theories in different spacetime
dimensions, and called holography. (“Holography” originally means a principle of
3-dimensional photograph (hologram), while in physics it is used for the meaning
I mentioned.) If this new duality is developed more and more, analytical calculations
by hand can attain various calculations of QCD, and the day when we can achieve it
might be a near future. D-brane makes clear the following points: why the theories
with different dimensions are equivalent and why a gravity theory and a non-Abelian
gauge theory are equivalent. I will have a full explanation of the mechanism in
Chap. 6.4.



Chapter 3
Dimensions of Solitons, Dimensions of String
Theory

In Sect. 2.4, I focused on the importance of solitons. The importance of course
depends on what kind of field theory and solitons we consider. Solitons appear
in various field theories, and an index characterizing those various solitons is the
dimension of the solitons. The kinks, vortices, and monopoles having appeared in
the preceding chapter are classified by their dimensions.

In this chapter, at first, we consider various dimensions of field theories and
solitons, in Sect. 3.1. We will see an interesting fact that physical applications
of identical solitons are completely different according with which dimension in
spacetime they are put. This more often occurs in string theory. This is because
string theory is basically a theory in higher dimensional spacetime, as will be
explained in Sect. 3.2. Solitons appearing in string theory (namely D-branes, which
are the main subject of this book) have a vast variety, and their applications for
physics appear very differently according with their dimensions and their kinds. We
will enjoy the variety and the attraction of the applications in Chap. 6. In Sect. 3.1,
first let us see how solitons described so hitherto change their appearance, according
to the dimensions. If we consider solitons in the situation of spatial dimensions
larger than three, over stretching our imagination, a quite attractive idea called
“braneworld” comes out. There, an interesting idea of “people living on the soliton”
emerges. We might live on the soliton, in reality.

Solitons in higher dimensions are a basis of the concept of D-branes. I will
introduce the D-branes as higher dimensional solitons in string theory in Chap. 4,
and in Sect. 3.2 I will explain a basic part of string theory as a necessary preparation
for the introduction of D-branes. String theory brings us extremely exciting physics,
even without mentioning D-branes. I will have an explanation on, how elementary
particles in the world can be expressed by strings and what the higher dimensional
spacetime appearing in string theory is, and how string theory is related consistently
to the fact that dimensions of our space is three.

K. Hashimoto, D-Brane, DOI 10.1007/978-3-642-23574-0 3,
© Springer-Verlag Berlin Heidelberg 2012
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3.1 Dimensions of Solitons and Braneworld

3.1.1 Solitons and Dimensions

Since the dimension of the spacetime we live in is 4 consisting of one-dimensional
time and 3-dimensional space (this is often written as 3C1 dimensions), realistic
field theories are written by function fields of 4-dimensional spacetime coordinates
x� .�D 0; 1; 2; 3/. For example, electromagnetism and the standard model of
elementary particles are like that. However in even lower dimensions, realistic field
theories (namely which can be compared with experiments) exist. For instance, the
physics of conductors on spatial 2-dimensions (such as a board) or 1-dimension
(such as a line) is one of the cases. Or even for the case of dealing with elementary
particles, when we treat not many elementary particles at once in a field theory
but only a single particle (namely the case of one body problem), the position of
the elementary particle is given by a function Xi.t/ .i D 1; 2; 3/, therefore, this is
regarded as a field theory in 0+1 dimension. In this sense, particle mechanics can
be regarded as a field theory in lower dimensions. In this way, in physics, there
appear field theories in various dimensions in accordance with physical systems we
consider.

In Sect. 2.3, we saw three kinds of solitons relating with their dimensions and the
symmetries. The first soliton is the kink soliton which is static in one-dimensional
space (1C1 dimensional spacetime), the second one is the vortex in 2C1 dimen-
sional spacetime and the third one is the monopole in 3C1 dimensional spacetime.
Which, among these three, can exist in the 3C1 dimensional spacetime which is
familiar to us? The answer is, in fact, not only the monopole, but all of the three.

Let me explain the reason. We shall remind that in the example of the first soliton,
a water wave in Sect. 2.2, the energy is localized about the direction x, while on
the other hand it is not localized about the direction y, and what is more, it is
completely independent of the coordinate y. As is obvious from this example, a
water wave in the 1+1 dimensions (the time t and the space x) may be regarded also
as a soliton in 2C1 dimensions (the time t and the space x; y). Though the whole
energy of the soliton in 2C1 dimensions is infinite (because of the integration about
the direction y), this is not a problem. The physically important quantity is the
energy of the soliton in the 1C1 dimensions, and in terms of the 2C1 dimensions,
it is the energy density per a unit length of the direction y.

From the example of this water wave, it is easy to learn that even the kink
or the vortex could become a soliton in 3C1 dimensional spacetime. Let us see
Fig. 3.1. If the kink or the vortex exist in 3-dimensional space, the kink extends
in a 2-dimensional space, or the vortex extends in a 1-dimensional space. Such an
extension of the solitons put in a higher dimensions is called “worldvolume.” (See
also Fig. 4.1.) The dimension of solitons is specified by the spacetime dimension of
the physical theory we consider and the spacetime dimension of the worldvolume. In
the case of this kink in the 3C1-dimensional spacetime, its worldvolume has 2C1
dimensions. On the other hand, in the case of the vortex in the 3C1-dimensional
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Fig. 3.1 Left: The figure of a kink in a 3-dimensional space. The horizontal axis is the original
x1 direction considered in the �4 model, and the energy is localized at a point on that axis. If the
space spreads into a 3 dimensional space, the lump of the energy homogeneously distributes along
the expanded directions (the vertical direction and the forward direction), and it has an extended
worldvolume. That is, the kink is a wall. Right: The figure of a vortex in a 3-dimensional space.
The horizontal directions are x1 and x2 at which the vortex is originally localized. The vertical
direction is a newly added dimension, and the vortex extends along that direction. Namely, the
vortex becomes a vortex string

spacetime, the worldvolume has 1C 1 dimensions. And finally in the case of
the monopole, the worldvolume is of 0+1-dimension. In particular, 1 C 1.D 2/-
dimensional worldvolume is called a worldsheet, and that of 0C 1.D 1/ dimension
is called worldline. When defining the dimensions of the worldvolume, notice that
we ignore the thickness of the soliton and count it as infinitely thin.

It is obvious that the way of thinking of the worldvolume of solitons is appropri-
ate not only for the case of the 3C1 dimensions in spacetime for the field theories of
concern. For example, let us consider a kink solution in D-dimensional spacetime.
The worldvolume of the kink solution must haveD � 1 dimensions. Or for the case
of a vortex in theD-dimensional spacetime, the worldvolume hasD�2 dimensions.
In this way, solitons in field theories are characterized not with the spacetime dimen-
sions of the field theory, but with how many dimensions the solitons worldvolume
is smaller by compared to the spacetime dimension of the whole field theory. This
is called co-dimension. The kink has one co-dimension, and the vortex has two co-
dimensions, and the monopole has three. By using this co-dimension, we can draw
out the characteristic of solitons in field theories in any dimensions. The worldvol-
ume is a useful notion to designate the dimension of an extended object floating in a
certain dimensional space time, not only for solitons. For example, in string theory,
an object extending along a 1-dimensional space in D-dimensional spacetime is
fundamental. For this case, the worldvolume is .1C 1D/2-dimensional, and so is a
worldsheet. Let us remember this notion of the worldvolume, as we will often use it
when D-branes of various dimensions appear later.

In this way, we begin with considering various spacetime dimensions and
worldvolumes. You might think that we define somewhat easy stuffs in a difficult
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manner. However, physics of string theory and D-branes is not the case. In string
theory, higher dimensional spacetime is considered, so it is very important to know
which direction the worldvolume of solitons and strings extends along, and what is
the relation with the whole spacetime. You can see that in Chap. 6. Only masters
of dimensions can handle higher dimensional spacetime unrestrictedly, and the
fundamental notion there is the concept of this worldvolume.

3.1.2 Cosmic String: Vortex in Three Dimensions

If a vortex exists in our 3C1 dimensional spacetime, its worldvolume has 1C 1

dimensions. Therefore it is a string-like object in the 3C1 dimensional spacetime.
This is called a vortex string. It is a very important object in various physics. The
most famous example is a state in which a magnetic field is confined and forms a
vortex string, in a superconducting matter. Here, I will describe an example related
with elementary particle physics and cosmology, for our later convenience.

The monopoles are a soliton appearing under the symmetry breaking in a grand
unified theory, and a vortex string can also be generated at this symmetry braking.
This is called a “cosmic string.” The cosmic string is an extremely long soliton
which extends over the whole universe and so it is an interesting object, while it has
not been observed yet.1

If there is a string, it bends the trajectory of the light traveling around it, because
of the gravity generated by the mass energy. This is one of the phenomena called
“gravitational lensing effect,” and galaxies and such at the other side of the cosmic
string seen from the earth can look doubled. We can judge whether the gravitational
lensing effect comes from the cosmic string or any other localized celestial body,
by analyzing the pattern of the duplication. How interesting if we could observe
magnificently huge solitons lying in the universe!

In addition, interestingly, these days a possibility was pointed out that this
cosmic string may be a fundamental string or a D-brane in superstring theory. The
fundamental matters, strings or D-branes, might float in the night sky.

By the way, although too large number density of monopoles is a cosmological
problem, the cosmic strings escape this problem very well. Suppose that there are
a lot of strings in a 3-dimensional space. They move and inevitably collide each
other, then reconnections take place (see Fig. 3.2). The reconnection makes the
string to form a closed loop, and it disappears by shrinking the radius of the loop.
Namely, cosmic strings have a self-annihilation mechanism, as opposed to the case
of the monopoles. The mechanism of the reconnection of the cosmic strings is an

1Though in the 1990s cosmic strings were considered to play an important role in density
fluctuation structure formation of the universe, recently it is being denied by a precise observation
of cosmological background radiation at 3 Kelvin. However, it is still possible that the cosmic
string exists in the universe.
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Fig. 3.2 An example of a reconnection process of cosmic strings. In the lower figure, by the
reconnection a loop is formed, and it shrinks and finally disappears

interesting subject of physics in cosmology. The mechanism differs for strings of
string theory, or the vortex solitons, or D-branes. This difference comes up as a
difference of the probability of the reconnection at the collision, and it is used to
find the identity of the string, at the step of observing actually something like cosmic
strings. Let us see it concretely in Sect. 5.3.

3.1.3 Braneworld

In the case of the cosmic string, we considered the situation that the vortex itself
extends spatially in one dimension, by upgrading the vortex to an object in a 3C1
dimensional spacetime. Generalizing this method further, let us imagine the case
that the worldvolume of a soliton is our 3C1 dimensional spacetime. This is the
very beginning of the attractive idea “brane world.”

Let us consider a kink, the simplest soliton. When we introduced the kink in
Sect. 2.3, it is a localized object in one spatial dimension, and the dimension of
the worldvolume is only one, the time. However, this story can be easily extended
to general dimensions. Consider the �4 model in D dimensions. The spacetime is
spanned by x0; x1; � � � ; xD�1 and the field � is a function of these. In order to solve
its equation of motion, for simplicity we suppose that the field � doesn’t depend on
x2; x3; � � � ; xD�1. Then, the static equation of motion is the same as the previous
(2.16), and as a result of this, the same solution (2.17) exists. This is an object
of co-dimension 1, and the dimension of the worldvolume is D � 1. To reduce
the field at higher dimensions to a lower dimensions, by assuming that the field is
independent of the coordinates, like this, is called a dimensional reduction from a
higher dimensions. In the present case, concretely, we consider only a field which
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is independent of x2; � � � ; xD�1. This method is often used in string theory, and so
used also in this book.

By the way, as a concrete example, if we start with our familiar D D 3 C 1,
the dimension of the worldvolume of this soliton is 2C1, which is spanned by
x0; x2; x3. As we saw in the left of Fig. 3.1, this is a 2-dimensional wall floating in
a 3-dimensional space. In this sense, the kink is called also domain wall. And, now
if we increase the whole dimension by one and consider D D 4 C 1, applications
of the physics change completely. The worldvolume of the kink solution is 3C1-
dimensional, namely, the dimension of the spacetime we live in. Therefore, we can
consider that we live only on a soliton and the actual spacetime is 5-dimensional.
The idea like this is called braneworld.2 It is essential that a high dimensional
spacetime is prepared at the beginning. The direction (the fifth dimension in this
example) transverse to the kink (our spacetime), namely directions not belonging
to the worldvolume, is called “extra dimensions.” The name of the “braneworld”
comes form the D-branes. The braneworld needs a higher dimensional spacetime,
while string theory needs inevitably a higher dimensional spacetime and solitons
appearing there are the D-branes. The braneworld is the idea which have been
developed there. The appearance of the higher dimensions in string theory will be
explained in the next section, and the D-branes in Chaps. 4 and 5, and after that, I
will have a full account of this fascinating braneworld in Chap. 6. However, before
that, in order to make sense of the braneworld, I must define physically the sentence
“to live on a soliton.” Let us think of this next.

3.1.4 How to Live on Solitons?

If the braneworld is real, why don’t we feel the higher dimensional space even
though it is there? To tell the truth, on the worldvolume of the soliton, there exists
a field theory standing for a motion of the soliton and such, and it composes the
physics of people living on the soliton. Here, let us construct the field theory only
on the worldvolume, concretely for the kink solution (2.17).

By using the dimensional reduction, let us think of a kink in a D-dimensional
spacetime. The worldvolume of the kink is .D�1/-dimensional spacetime spanned
by .x0; x2; x3; � � � ; xD�1/. Though the solution is the same as the previous (2.17),
we generalize this � and suppose that X1 is not constant but a function of
x0; x2; x3; � � � ; xD�1. (Here, note that X1 does not depend on x1.) Then, of course,
(2.17) is not in general a classical solution, but this turn out to be again a solution
only when X1.x0; x2; x3; � � � ; xD�1/ satisfies a certain equation. The equation is
given by

��.@0/2 C .@2/
2 C .@3/

2 C � � � C .@D�1/2
�
X1 D 0 (3.1)

2This idea was proposed by K. Akama (1982), V. A. Rubakov and M. E. Shaposhnikov (1983).
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and this is the same as the equation of motion of a massless field “living” on the
.D � 1/-dimensional spacetime. Here, we approximate X1 to be small enough,
when deriving (3.1). Since this equation for the new field X1 is the same as the one
derived from an action in the .D � 1/-dimensional spacetime,

Z
dx0dx2dx3 � � �dxD�1 ��.@0X1/2 C .@2X

1/2 C � � � C .@D�1X1/2
�
;

we can say that X1 is subject to this action. Namely, X1 lives on the .D � 1/-
dimensional spacetime which is lower by one dimension compared with the original
D dimensions. The X1 field theory defined by this action is called an effective field
theory of the kink. The physical meaning of the fieldX1.x0; x2; � � � / is obvious. The
original worldvolume of the kink solution is spanned by x0; x2; � � � ; xD�1, and X1

is given as a function of those, and the kink position in the direction x1 is provided
by the value of X1 (see Fig. 3.3). In other words, the shape in the higher dimension
of the kink is given by the field functionX1.

Since the field X1 does not depend on x1 and is a field in .D � 1/-dimensional
spacetime, it is considered to live only on the kink. Let us take a look. If we expand
the solution (2.17) by X1 by supposing that X1 is small, we obtain

� D O�.x1/
ˇ̌
X1D0 �X1.x0; x2; � � � /

h
@1 O�.x1/

i
X1D0 C � � � : (3.2)

This first term is the original solution (2.17), and the second term is the term which
shows how much the field X1 of our concern extends along the actual direction x1.
That is, we regard the soliton (the first term) as a “background” and an infinitesimal
difference from that is the field appearing in the field theory. This second term

is proportional to
h
@1 O�.x1/

i
X1D0, and as you see from the original shape of the

solution (2.17), it is localized around x1 D 0 (see Fig. 3.4). Namely, the field X1

lives only on the soliton. In this way, it is shown that a massless field X lives on

x2

x2
x1

X1 (x2)

f

Fig. 3.3 The center point of a kink solution depends on x2. The center point is denoted by a bent
bold line. This center position is given as a function X1.x2/
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x1 x1

f ∂1f

Fig. 3.4 Left: The kink solution with X1 D 0. Right: a derivative of the kink solution by x1. This
means an extension of the field X1 into the higher dimensional direction. We can see that the field
X1 is localized at the position of the kink

the worldvolume of the kink solution, but actually this fact is quite general. For
example, for a vortex or a monopole, on its worldvolume it is known that massless
fields corresponding to the position of the soliton exist, as many as the number of
the co-dimension. That is, two (three) massless fields appear on the worldvolume
of a vortex (monopole). The number of the field appearing can be understood
by reminding that the parameter showing the position of the kink is upgraded to
the massless field X . This emergence of the massless fields is comprehended in
terms of theoretical physics, as in the following. There is a translational symmetry
in the whole spacetime when the soliton does not exist. On the other hand, the
translational symmetry along the co-dimension direction is broken if the soliton
exists. Applying with a theorem (Nambu–Goldstone theorem) that any symmetry
breaking accompanies a massless particle, we can understand that the massless
field X appears corresponding to the direction transverse to the worldvolume of the
soliton. In this way, the braneworld is introduced as a soliton in a higher dimensional
spacetime. The new physics brought by the existence of the extra dimensions is too
extensive to introduce here, and it predicts novel experimental consequences. I will
explain a part of them in Chap. 6. It may seem that the braneworld is a notion which
have necessarily appeared, as you follow this book until here. However, it is actually
not the case. Behind the history of its emergence, there were a great development in
string theory. String theory needs necessarily the space with dimensions more than
four, and it brings us the multi-dimensional objects – D-branes – localized in there.
First, I will have an explanation of the higher-dimensional space and the basics of
string theory in the next chapter, and then in Chap. 4 finally I will focus on what the
D-branes are.

3.2 Higher Dimensions and Compactification in String Theory

While the main subject of this book is to introduce the physics of D-branes, first I
have to describe the spacetime dimension of string theory itself which is a stage the
D-branes of various dimensions play a vivid role on. Let us see that in string theory
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higher-dimensional spacetime inevitably appears and it is the origin that makes
physics of string theory rich and fruitful. String theory is a theory in which point-
like particles that are fundamental constituent elements in the theory of particles are
replaced by strings extending spatially in one dimension. This replacement changes
dramatically the theory. One of the remarkable differences is that the dimensions of
the spacetime in which strings exist turn out to be determined by a consistency of
the theory. (In the case of the theory of particles, the dimensions of the spacetime in
which the particles move is basically not constrained.3) This is a wonderful property
of string theory. The spacetime in which strings move is called “target spacetime.”
The reason of the limitation of the dimensions of the target spacetime comes from a
natural requirement that there should exist Lorentz symmetry there.4

The dimensions of the target spacetime must be 26 or 10. This 26 is for the case
of bosonic string theory, on the other hand the number 10 is for superstring theory.
(I will explain these species of string theories soon later.) Therefore, if we consider
string theory, we are inevitably thrown into the higher-dimensional spacetime. If the
higher dimensions like these appear, you might think it is not useful as a realistic
physical theory any more. As a matter of fact, historically, string theory appeared as
a theory describing particles called hadrons such as protons. However, because of
this limitation on the dimensions, it lost its status as a theory of hadrons. However,
in late 1980s, thanks to the developments on the method “compactification” which
I introduce later, a way to “compactify” the ten dimension to the 4-dimensional
spacetime has been constructed, and string theory started to be put in a spotlight as
a unified theory or an ultimate theory.

3.2.1 Species of String Theories

First, let me briefly explain the bosonic string theory and the superstring theory
which are the basis of the stories on D-branes. For that, it is easier to focus at
first on what the theory of a point particle is. Since the worldline trajectory of the
point particle in spacetime extends in one dimension, let us write the coordinate
parameterizing it as � . Then, the worldline is given as a function X�.�/. This
X�.�/ is a function specifying a point X� in the target spacetime once a certain
point � on the worldline is given. If the target spacetime is D-dimensional, �,
the index of the coordinates of the target spacetime, runs from 0 to D � 1. If we

3The spacetime dimensions are restricted in order to renormalize infinities in calculations of
Feynman diagrams, but the constraint is not so strict as string theory. For example, even in 4-
dimensional spacetime, one can write infinite kinds of field theories for particles, but we have
limited kinds of string theories.
4Lorentz symmetry is a symmetry required by the special relativity. It is a generalization of a
rotational symmetry of space to include also the time direction. Even for theories of particles,
it is definitely required when we consider relativistic particles. The fact that the requirement of
the Lorentz symmetry determine the dimensions of the spacetime in string theory is a result of a
quantum mechanical treatment of string theory, and here I will not describe the mechanism.
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Fig. 3.5 A worldline of a point particle and a worldsheet of a string (Right). The left arrow stands
for the time direction X0 of the target spacetime

use the simplest parameterization X0 D � , Xi.X0/ stands for the spatial position
(i D 1; 2; � � � ;D � 1) of the particle at a certain time X0. You may be familiar with
this way of writing in mechanics.

Now, in the case of string theory, this worldline is replaced by a worldsheet,
which is parameterized by two coordinates .�; �/ (see Fig. 3.5). That is, the position
of the string in the target spacetime is provided by a function X�.�; �/. The theory
described by thisX�.�; �/ is called bosonic string theory. This might be regarded as
a field theory in 1C 1 dimensions. This is because the function fieldX� is written by
the two coordinates � and � . The reason why it is called bosonic is that the function
fieldX�.�; �/ is a bosonic field in two dimensions. A “boson” means a field with an
integer spin (spin is an inner angular momentum intrinsic to elementary particles), in
general. (On the other hand, fields with half-odd integer spins are called “fermions.”
For example, in the standard model of elementary particles in 3C 1 dimensions,
electrons are fermions and the gauge fields A�.x/ of electromagnetism are bosons.)
� D 0; 1; � � � ;D � 1 is an index standing for directions of the target spacetime, but
as seen from the viewpoint of the field theory in 1C 1 dimensions, it is just an index
labeling the bosonic fields X.�; �/. Furthermore, as mentioned earlier, this string
theory turns out to have D D 26. Strings have lengths, which is represented by a
period 0 � � � 2� of the coordinate on the world sheet. In the case of a closed
string forming a loop, we impose the following periodic boundary condition,

X�.�; � C 2�/ D X�.�; �/ (3.3)

and this theory is called a closed string theory. In the case of an open string, we
impose a free boundary condition at the end points � D 0; 2� of the string, as

@�X
�.�; �/

ˇ̌
ˇ̌
�D0;2�

D 0 (3.4)
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and this theory is called an open string theory. Here, instead, one can impose a
fixed boundary condition. it actually is related to the definition of the D-branes
which appear in Sect. 4.2. The “D” of the D-branes is an abbreviation of the
fixed boundary condition, namely, the Dirichlet boundary condition. Here let us
consider only the free boundary condition (called the Neumann type), first. The
superstring theory is a theory contains the supersymmetry as it is considered as
a field theory on a worldsheet (that is, a 1 C 1-dimensional spacetime). The
supersymmetry is a symmetry which interchanges bosons and fermions, and it
has a mathematically beautiful structure. Since this beautiful structure brings
us physically important characteristics, physicists respect theories possessing the
supersymmetry in elementary particle physics. String theory has also the tendency,
and it is often told that “Superstring theory doesn’t contain tachyons and thus is
consistent.” Later, I will have an explanation of the spectrum of string theory, with
regard to it. Because of the supersymmetry on the worldsheet, superstring theory
contains also fermion fields on the worldsheet of 1C 1 dimensions, in addition to
the bosonic fields X�.�; �/. Here, we omit the details as they are unnecessary.5 By
the influence of existence of these fermionic fields, the dimensions of the target
spacetime of the superstring theory is determined to be 10. As a result, the index of
X� runs as � D 0; 1; � � � ; 9. As briefly summarized, there are two kinds of strings,
open and closed, and for each, there are two kinds, bosonic strings and superstrings.
Combinations of these form the whole species of superstring theories. We must pay
attention to the fact that there is no theory of only the open strings. As you can
see the worldsheet of the left figure in Fig. 3.6, the end point of an open string can
joint to become a closed string. Or, depending on how you cut the worldsheet, you
can find a closed string in an open string worldsheet (Fig. 3.6, Right). Therefore,
for the open string theory itself to be consistent, it must contain closed strings. On
the other hand, in the case of the closed string theory, there is a requirement that
its worldvolume has no boundary from the first place, there is no inconsistency in
a theory only with closed strings. However, if one considers D-branes which are
solitons in string theory, one can see a surprising requirement that the closed string
theory must contain open strings too. I will explain this fact in Sect. 4.2.

3.2.2 Spectrum of String Theory: Relation Between Particles
and Strings

In the bosonic string theory or in the super string theory, we start with a certain kind
of a string. Then, how can it describe all the particles and interactions in our world

5Strings oscillate in spacetime. In the case of the closed string theory, the oscillations propagating
on the closed sting are either right-moving or left-moving. Now, there is a hetero-type string theory
in which the left-movers are bosonic while the right-movers are of a superstring. This is called a
heterotic superstring theory. Since it is useful to construct grand unified theories of elementary
particles from the string theory, the heterotic string theory is enthusiastically studied as a candidate
of the unified theory.
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Fig. 3.6 Worldsheets of a string. The arrow stands for the direction of the coordinate � on the
string. Left: The end points (shown as black blobs) of an open string joints to form a closed string.
Right: a worldsheet in which an open string make a loop is shown, but if we look at a part of this
worldsheet as the dashed line, it turns out that a closed string appears. Therefore, in the theory of
open strings, closed strings should be contained

in a unified way? In order to explain this, we have to know the “spectrum of string
theory” and the “compactification.” At first, I will have an explanation of the former
“spectrum of string theory.” Interestingly, in string theory, if one considers a single
string, one can express infinite kinds of particles by the oscillations. Let us show
this in a simplified example. We can regard an open string with the free boundary
condition as a water surface in a swimming pool (with a very narrow width so that
the surface is thought of as one-dimensional). A position in the swimming pool is
specified by the coordinate � . Standing waves on this water surface can be classified
by the number of nodes on the wave (Fig. 1.2). Speaking a little more precisely,
any standing waves can be described by a superposition of basic standing waves
classified by the number of nodes. That is, the number of nodes can classify the
� dependence of X�. This can be considered as a Fourier transformation for the
direction � . If the basic standing wave classify and definite the direction � , the
remaining of the worldsheet is only the direction of time � and it is as same as
the point-like particles. As you can understand from this, the single string can
represent infinite kinds of particles, which are labeled by the number of nodes of
the oscillation on the string. Let us see how these particle states are labeled. Let us
imagine that, by quantum mechanics, in all those basic standing waves on the string
the magnitude of each is determined by a positive integer number. If you are familiar
with quantum mechanics, please read the footnote.6 Then, the state of the string must

6The physics of each basic standing wave is equivalent to the quantum mechanics of a harmonic
oscillator. For the harmonic oscillator, a quantum state is given by multiplying operators creating
waves, on a vacuum state. In the preset case, since the number of species of the standing waves is
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be specified by a certain array of non-negative integers: .N1;N2;N3; � � � /. Here, Nn
.n D 1; 2; 3; � � � / shows the magnitude of the standing wave with n nodes, that is,
the magnitude of the Fourier amplitude. Once the integer array is given, the state of
the string along the � direction is determined correspondingly, and the particle state
represented by the string is specified. The mass of each particle represented by the
string is determined by how much the string oscillates. The reason is as follows. A
large oscillation would increase the energy of the string, but in the interpretation as
a particle, the energy is just some internal energy, so one can interpret that the mass
of the particle increases by that amount. Though I omit the derivation, by using
a Hamiltonian of 1C1 dimensions for the string, the mass formula of the particle
excitations is given as7

m2.D p�p�/ D 1

l2s

 
�1C

X
n>0

nNn

!
: (3.7)

ls appearing here is the unique quantity which has a mass-dimension in string theory,
and called the “string length.” The physical meaning of it is that 1=.2�l2s / is the
string tension. As the tension is larger, one needs more energy to oscillate the string.
It is reflected in this mass formula. The distribution of masses of particles appearing
in a theory is called a spectrum, so this is the spectrum of the bosonic string theory.
The first part of the spectrum looks

Nn D 0 W tachyon; m2 D �1=l2s�
N1 D 1;

N2 D N3 D � � � D 0

�
W massless particle; m2 D 0:

as many as that of nodes, which is infinity, a string is the same as a system with infinite kinds of
harmonic oscillators. Let us write the creation operator of the waves with the node number n as
˛
�
�n. This creation / annihilation operator is given precisely as

X� D x� C l2s k
�� C i ls

X
n2Z;¤0

1

n
˛�n e

�in� cosn�; (3.5)

where ˛�n is a Fourier coefficients of the solution of the equation of motion of the bosonic field X�

on the worldsheet, @˛@˛X�.�; �/ D 0 with the free boundary condition. The generators have the
index of the spacetime �, because the position operator X� has the index of each coordinate of the
spacetime, as in the quantum mechanics. Then, a general state of the string is written as

j0I k�i; ˛
�
�1j0I k�i; � � � ; ˛�

�1˛
�
�1˛

�
�3j0I k�i; � � � (3.6)

Here k� is the center-of-mass momentum of the whole string. Although some creation operators
˛
�
�n are there, those degrees of freedom can be seen as internal degrees of freedom, since they

are all on the waves on the string. Then, one can regard this state (3.6) as a particle carrying the
momentum k�. In this way, string theory can accommodate infinite kinds of particles at once, by a
single string.
7Quantum mechanically,Nn counts the number of the creation operators ˛

�n for each node number
n contained in a state (3.6) of the string, and �1 originates from the zero-point energy in quantum
mechanics.
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We notice here that, in this bosonic string theory, there exists a state of a tachyon
particle for which the mass squared is negative. In the researches in 1970s and
1980s, by this reason the bosonic string theory was considered to be inconsistent,
and so it was discarded away from the subject of researches. However, after the
active researches in the late 1990s about the tachyonic state, it turned out that
this is not an inconsistency but a quite important state concerning a creation and
annihilation of D-branes. The wise readers remember that, in Sect. 2.3, tachyons
are related with a creation of solitons. Since this relates to the main subject of this
book, I will have a full account of it in Sect. 5.3. Before the D-branes appeared,
string theories without tachyons were considered to be important. And so the main
streams of research moved from the bosonic string theory to superstring theories. I
omit here the explanation of the spectrum in the superstring theories, for simplicity.
But you may think of it just the same as the bosonic string theory except for the
absence of the tachyon part. Then, the important state is the massless state. The
massless state is a state with N D 1 in the bosonic string theory, that is, with one
unit of the excitation of a single standing wave with one node. This standing wave
originally come from the field X�.�; �/ of 1+1 dimensions, which has the index �.
This is the degree of freedom for the direction along which the standing wave points
in the target spacetime. According to this, the massless state must have one index
�. Therefore, the massless state is a vector particle in the 10-dimensional spacetime
(26-dimensional one for the case of the bosonic string). Massless vector particles are
gauge fields. Gauge fields appears along with gauge symmetries, and for example,
as we saw in Sect. 2.2, the electromagnetic field is written by a gauge field standing
for photon2s. Namely, a theory of a gauge field appears from the open string theory.

Then, how about the closed string? In the case of the closed string, oscillation
modes can be classified by waves right-moving and left-moving on the closed string,
and furthermore each wave can be classified by the number of nodes. So, compared
with the open string, we have doubled species of the integersNn labeling the waves.
Let us write this as .Nn; eNn/. From a mass formula, in addition to the tachyon particle
state as before, a state with N1 D eN1 D 1 appears as a massless state. This has,
as considered in the same way as the open string case, two indices � of the target
spacetime: that is, the index is .�; �/. Such a massless field should be a gravity
field. From the closed string theory, a gravity theory comes out. To be a little more
precisely, the part with a symmetrized indices � and � after the part proportional to
the unit matrix is removed, is the particle of the gravity field (graviton). The anti-
symmetric part is a gauge particle called Kalb–Ramond field. The part proportional
to the unit matrix has no index and called a dilaton. Bosonic fields without any index
of spacetime is called scalar fields, so the dilaton is a kind of scalar fields.

Besides the massless particles, from the oscillation modes of a string, infinite
kinds of massive particles appear. Their masses are at least m2 D 1=l2s , and
appear periodically, namely, m2 has to be an integer multiple of 1=l2s . If we look
at the mass of elementary particles of our world, for example the electron and the
quarks, appearing in the standard model of elementary particles, we cannot find
the periodicity. Therefore, to claim that string theory describes the real world, it is
natural to consider that 1=ls is a considerably large mass scale so that particles with
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such large masses are too heavy to observe. Namely, the particles we observe are
approximately regarded as massless. This huge scale 1=ls can be considered to be
related to the spontaneous symmetry breaking of grand unified theories, since at
that scale we can see the beautiful structure of string theory. Therefore, the energy
scale of the symmetry breaking may be close to the mass scale 1=ls of string theory.
However, even though we take 1=ls to be so large, it is obvious that superstring
theory still have big problems in the comparison to the real world. First, we do
not live in 10-dimensional spacetime but in 4-dimensional spacetime. Second, the
particles we observe are not only gravitons and photons (electromagnetism) but
also various other particles. These two big problems can be solved by a method
“compactification” in string theory. Next, I will explain what is the compactification
which changes the dimension of the spacetime.

3.2.3 Compactified Spacetime

How should we transform the 10-dimensional spacetime which was derived due to
the consistency of string theory to the 4-dimensional spacetime? You might answer
that the “braneworld” which we learned in Sect. 3.1 can be brought into string
theory. That is right, however, before using it we have to make clear what is the
soliton realizing the braneworld in string theory. Since it, in fact, is the D-branes
which are the main subject of this book, I will leave the story until Chaps. 4 and 6.
Instead, here I will have an account of the “compactification” which was developed
before the D-brane era as a method to transform the 10-dimensional spacetime to
the 4-dimensional spacetime. Even at present times when D-branes play a crucial
role, the compactification is a main research subject of string theory and is a basis
on which D-branes are considered.

The compactification is a method of “making the spacetime round.” As a simple
example, we consider a compactification of a 2-dimensional spacetime to a 1-
dimensional one. Let us imagine a paper of infinite size as a 2-dimensional space.
If one makes this paper round, the cross section is a circle. If one makes it round
more tightly (Fig. 3.7), the radius of the circle becomes smaller and smaller. Let us
suppose that it becomes too small to see with our eyes, at the last. We can say that the
dimension becomes “approximately” one dimension form the two dimensions. The
reason why I emphasize the “approximately” is that, if you observe it with a good
effort, you can find that in reality it is 2-dimensional. What does it mean to “observe
it with a good effort” in terms of physics? The original root of this idea is old. To be
more precise, this is called a Kaluza–Klein compactification, and Einstein used this
to look for unified theories. The 10-dimensional spacetime with which the string
theory starts is spanned by x0; x1; � � � ; x9, and the 6-dimensional space spanned by
x4; � � � ; x9 is unnecessary for us, so we will consider a compactification of this.
The process of making the paper round I mentioned earlier is written in term of a
mathematical equation as

xi � xi C 2�Ri .i D 4; 5; 6; 7; 8; 9/: (3.8)
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Fig. 3.7 A paper is made round and shrinks. For smaller radii, the paper which has a surface of
2-dimensional space looks 1-dimensional

Here, “�” means an identification of the two values of the coordinate. Now, the
sentence “If the radius Ri is small enough, the spacetime looks 4-dimensional.”
does not make sense physically unless we describe what the radius is smaller than,
because it has a dimension of length. I will have a more detailed explanation of this.
In string theory, the gauge particles and the graviton appear as seen before. When we
describe these particles by field theories, they become theories of gauge fields and
a gravity field. As an example, let us consider a compactification in a field theory
of a scalar particle appearing as a massless mode of closed string theory. Among
the arguments x� of the scalar field �.x�/, the 6-dimensional spacetime part x4–
x9 is compactified by the mathematical relation (3.8). From this, the scalar field is
considered to have a periodic boundary condition along the directions and can be
Fourier-decomposed:

�.x�/ D
X

s4;��� ;s9�0

"
�s4;��� ;s9 .x0; x1; x2; x3/

Y
iD4;5;��� ;9

cos

�
sixi

Ri
C ci

�#
: (3.9)

Here, s4; � � � ; s9 are non-negative integers and ci is a constant phase. Namely, as
seen from the 4-dimensional spacetime after the compactification, the single scalar
field living in the 10-dimensional spacetime turns out to be decomposed into infinite
number of 4-dimensional scalar fields labeled by fs4; s5; � � � ; s9g. Let us consider
the masses of the these decomposed scalar fields. The equation of the motion for
the massless scalar field in the original ten dimensions is

@M@
M� D 0 .M D 0; 1; � � � ; 9/ (3.10)

and if one substitutes the above decomposition equation (3.9),
"
@�@

� �
9X
iD4

s2i
R2i

#
�s4;��� ;s9 .x0; x1; x2; x3/ D 0 .� D 0; 1; 2; 3/: (3.11)
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Therefore, these decomposed particles respectively have the following masses

m2 D
9X
iD4

s2i =R
2
i : (3.12)

This is the spectrum of the particles after the compactification. The lightest particle
in the 4-dimensional spacetime is the unique massless scalar particle, which has the
label s4 D � � � D s9 D 0. All the others are massive scalar particles, and the lightest
among them has the mass 1=R where R is the largest radius among the six radii
compactified. Now, let us suppose that the world of our 4-dimensional spacetime is
obtained in fact by a Kaluza–Kline (called “KK” in abbreviation) compactification
of higher dimensions. How can we observe it? When we engage in some particle
collision experiment with a particle accelerator, we can observe more new particles
when the collision energy gets higher, because we gradually reach the energy to
create the new particles. If the collision energy does not reach it, the particles
are not created, and so they are not observed in a reality. In our present case, if
the acceleration energy at a particle accelerator does not reach 1=R, we cannot
create the particles which are associated with the KK compactification (called “KK
particles”). On the other hand, once this energy is reached, one can observe the
KK particles by various interactions or pair creations of particles and anti-particles.
Therefore, the sentence “the spacetime looks like four dimensions or not” which
we used above means, in this sense, whether the KK particles characterizing the
compactification can be observed or not. When we say “if you observe it with a
good effort, you see ten dimensions,” the “good effort” means that we increase the
energy of the accelerator and observe the KK particles. It was pointed out that these
KK particles may be observed at particle accelerators which will be built/operated
in the future.8 If we can accelerate particles at extremely high energy and let them
collide to observe the KK particles pair-created as a result, it is a direct proof for
that we actually live in a high-dimensional spacetime! I will have a full explanation
of this attractive experimental observation in Chap. 6.

3.2.4 Compactification and Unified Theory

One of the problems in string theory is, aside from the problem that our spacetime
is not 10-dimensional but 4-dimensional, that the actual elementary particles are
not only gravitons but also other various particles. Then, how does the second
problem relate with the compactification which solves the first problem? Previously
we considered a scalar particle, but let us replace it with a graviton. By the KK

8In 2008, a particle accelerator called Large Hadron Collider (LHC) started to operate, and in 2009
it reached the energy which human being has never reached in history, and will reach higher energy
in the near future.
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compactification, massive particles labeled by non-negative integers appear, which
is same as before. However, the gravity field gMN .x/ has the indices, which is
different from the scalar field. The index M and N run from 0 to 9 because the
field lives originally in the 10-dimensional spacetime. (Although I wrote the index
as � so far, I will write it as M and N in order to show the sense of the higher
dimensions). However, if one sees them from the 4-dimensional spacetime, the
indices from 4 to 9 among them are not regarded as spacetime indices, so they are
just labels. For example, the components of the gravity field of the ten dimensions
g�9(� D 0; 1; 2; 3) are no longer a gravity field, but a vector field (a gauge field) of
the 4-dimensional spacetime! In the same way, the component g99 becomes a scalar
field of the 4-dimensional spacetime. In this way, by the reduction of the spacetime
dimensions due to the spacetime compactification, the higher-dimensional vector
and tensor fields generate vector and scalar fields which have less indices of the
spacetime if one sees them from the dimensions after the compactification. Using
this, even though there are less kinds of particles in higher dimensions, many kinds
of particles could be given in lower dimensions. If we use this idea, in string theory,
we can generate many kinds of particles after the 4-dimensional compactification,
in spite of smaller number of massless fields in the 10-dimensional spacetime. Then
we can build “models” which are close to the actual elementary particles. Although
we considered here only the simplest case of rolling a circumference, we may bring
not the circumference but various 6-dimensional manifolds and regard them as the
directions of the compactification. By various characteristics of the manifolds, the
species of the massless particles in the 4-dimensional spacetime are determined. In
late 1980s, by using this method, compactifications with various manifolds were
examined, and some compactification models of string theory which reproduce
the actual particle constitution were constructed. It is very interesting to explain
the actual various particles unifiedly in terms of geometries of internal space, by the
compactification of high-dimensional spacetimes. String theory has given a stage
where this idea plays an important role, and so is paid an attention as a unified
theory.

In the previous chapter and this chapter, I described what solitons are in field
theories and what is string theory. We learned that solitons are important objects
solving problems in field theories. And we learned also that higher-dimensional
spacetimes appearing from dimensions of solitons and string theory produce various
physics. In the next chapter, D-branes appear on stage finally, and it turns out
that D-branes are solitons of string theory. Confirmation of this fact is a brilliant
start point of physics theory of higher-dimensional spacetimes, and from there,
various new theories of physics for elementary particles and cosmology are born
and developed.



Chapter 4
D-Branes

As I mentioned a little in Chap. 1, D-branes are objects defined as a space on
which end points of a string can be attached. Why is such a space important? For
a preparation for answering this question, we have learned the solitons and their
importance, and the construction of string theory and the compactification of higher-
dimensional spacetime, in detail in Chaps. 2 and 3. In this chapter, based on those,
I will show that the D-branes are solitons of string theory, and I will explain the
importance of the D-branes. First, in Sect. 4.1, we consider what the solitons of
string theory should be like, and after all we will find that they turn out to be “black
holes” which are holes of spacetime. The black holes are objects whose existence is
shown in Einstein’s general relativity. In the sense that even light cannot escape due
to too large gravity force, they are holes in spacetime. I will explain also the black
holes later, but in fact the black holes are solitons, because they are defined as
solutions of equations of motion of gravity. Since string theory contains gravity,
solitons of string theory turn out to be the black holes. However, since string theory
has higher-dimensional spacetime, the black holes appearing there show various
dimensions. Here, we will see how higher-dimensional black holes appear in string
theory. And, in Sect. 4.2, finally I will introduce the D-brane as a space on which
the end points of a string can be attached. As a result of the definition, surprisingly,
it turns out that D-branes can be identified with the black holes, and thus be solitons
of string theory. And furthermore, we will see that in string theory there may exist
a “duality” which is a symmetry exchanging the black holes and the strings. That
is, the D-branes can be exchangeable with the string, and might play a role as a
fundamental constituent of string theory. What is the ultimate theory describing all
the particles and interactions in this world? As a matter of fact, string theory, which
is a candidate for that, may be constructed by the D-branes. I will explain the path to
the ultimate theory in Chap. 7. In Sect. 4.2, first I will start with the explanation of
what D-branes are, and then of the role played by the D-branes as solitons in string
theory, and finally about the duality.
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4.1 Soliton of String Theory is a Black Hole

In Sect. 3.2, I explained that the spacetime appearing in string theory is higher-
dimensional and how our elementary particle physics of the 4-dimensional space-
time can be born from that. On the other hand, in Sect. 3.2, we learned that by
generalizing the solitons of the �4 model to higher dimensions, the interesting idea,
the brane world, came out. In this way, you can make sure that field theories in
higher dimensions and solitons there give us very interesting physics and also that
string theory is a basis which provides us with the higher-dimensional spacetime in a
consistent manner. In this Sect. 4.1, we shall answer the question naturally occurring
from that, “what is the soliton of string theory?” It, in fact, turns out to a hole of the
spacetime called a black hole.

Because string theory has a higher-dimensional spacetime, we have to generalize
the notion of solutions of equations of motion of the gauge theory and the gravity
theory, into the high dimension, in order to understand the solitons there. As I
will describe later, gauge fields generalized to higher dimensions appear from the
massless part of the string oscillations. In this chapter, I will have an explanation
that the soliton of string theory is a black hole having electric and magnetic charges
generalized to higher dimensions. And it will turn out that it is the very D-brane, in
Sect. 4.2.

4.1.1 Strings and Charges of Tensor Fields

In order to see what gauge fields are in higher dimensions, let us review the relation
between electrons and electromagnetic fields in a 4-dimensional spacetime which
we are familiar with. The electron is a point-like particle, and the motion is written
by the worldline X�.�/. Because the electron has an electric charge, in some
electromagnetic field, it moves under the influence of it. Let us write the interaction
term concretely. As in (2.1) the electric field is written by the gauge field A�.x/,
and the basic idea of gauge theories is to demand a gauge symmetry that the theory
has to be invariant under any gauge transformation. The gauge transformation is
written as (2.14), so the interaction term we consider should be invariant under this
transformation.

Such a term is written as
Z

d� @�X�.�/A�.X.�//: (4.1)

It is obvious that this expression is invariant under (2.14). It is because, since the
infinitesimal change is written by a total derivative with respect to � , it vanishes
after the integration of � . Here, the electromagnetic field, namely, the gauge field,
is written as a “background field.” That is, this interaction term gives us how the
electron moves in a given background electromagnetic field. In the following, I will
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generalize this to a higher-dimensional one, where a key point is how this interaction
term can be written at the higher dimensions.

Among the massless modes of the closed string seen in Sect. 3.1, there is a Kalb–
Ramond field, in addition to the gravity field. This is a field with two antisymmetric
indices of the spacetime, and is written as B��.x/ (B��.x/ D �B��.x/). The Kalb–
Ramond field is in fact a gauge field which is like the electromagnetic field, and the
gauge transformation is generalized as

B��.x/ ! B��.x/C @���.x/ � @���.x/: (4.2)

The transformation parameter ��.x/ is now a vector field. While the electric field
is sourced by the electrons, what gives the source of the Kalb–Ramond field in this
string theory? We should know the answer by considering what corresponds to (4.1).
It is written as Z

d�d� �˛ˇ@˛X�@ˇX�B��.X/ (4.3)

(� is a completely antisymmetric tensor and �01 D ��10 D 1.) Here, I parameterize
the worldsheet by two coordinates .�; �/ and write � D �0; � D �1 as the index of
this �˛ is supposed to be ˛; ˇ D 0; 1. This term is shown to be invariant under (4.2),
too, in the same way. The important point is that in order to write the interaction
term having the gauge symmetry it is necessary that it should be an interaction in
1C 1 dimensions. That is, the source needs to be not a particle but a string, and the
string itself has an electric charge of the Kalb–Ramond field. The objects having the
electric charge of the gauge field with two indices of the spacetime like the Kalb–
Ramond field must have a worldvolume of 1C 1 dimensions.

If we apply this to higher ranks, the case of a gauge field with n anti-symmetric
indices, it turns out that the object having the electric charge of it must be an
extended object having the worldvolume of n dimensions (including the time
dimension). (Let us see Fig. 4.1.) As we will see from now on, in string theory gauge
fields with higher ranks like this in fact appear, and the higher-dimensional objects
which are the source of those are the solitons of string theory, namely, D-branes.

4.1.2 Equation of Motion of String Theory

Solitons are solutions of equations of motion in field theories. Then, before asking
the question “what is the soliton of string theory?”, we need necessarily “string field
theory.”1 What is the string field theory? In Sect. 3.1, I described that a single string

1Actually, there are two kinds of the “equation of motion of string theory,” and only one of them is
important for our solitons. To understand this situation, first you may think of a particle theory. For
a description of particle(s), we have the one for a one-body problem and a many-body problem.
The former is a worldline described by X�.�/, and it is a method used for the case of a motion of
one particle. The latter is, for example if it is for photons, described by a gauge field A�.x�/. Now
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Fig. 4.1 Worldvolumes of various-dimensional objects in a spacetime. The arrow stands for the
direction of time in the target spacetime. Left: a worldline of a point-like object It can be a source
of a gauge field A�.x/. Middle: a worldsheet of an object extending in one spatial dimension like
a string. It can be a source of B��.x/. Right: a worldvolume of an object extending in two spatial
dimensions like a membrane. This can be a source for a gauge field having three indices C��	.x/

is the same as infinite kinds of particles. Therefore, it turns out that the string field
theory is described as a summation of actions of the infinite field theories. To obtain
a soliton solution of the equations of motion of this string field theory is considerably
laborious! That is because they are infinite number of differential equations mixing
infinite number of fields.

In order to evade from this problem, let us make an approximation to consider
the equation of motion only at the low energy region. As we saw in Sect. 3.2, unless
the energy reaches 1=ls, the massive modes among the string oscillation modes are
not excited. Namely, in this low energy approximation, one can consider only the
massless particles in the spectrum. Since in string theory there are only finite number
of massless particles, our problem becomes very simple.

Here as an example, we consider “type IIB superstring theory” which is one of
the closed string theories having the supersymmetries. Let us write only the fields
of massless bosonic particles (fields in the 10-dimensional spacetime spanned by all
the xM ) among the string oscillations:

• Gravity field gMN.x/, Kalb–Ramond field BMN.x/, dilaton field �.x/
• Ramond–Ramond field C.x/, CMN.x/, CMNPQ.x/

if we look back what the soliton is in Sect. 2.3, we know that it is a solution of equations of motion
of the very latter many body problem, namely, the solution of a field equation depending on x. You
can easily understand this if you remember the viewpoint that solitons are a collective motion of
elementary particles. Then, what is the equation of motion of string theory? There are two answers
for this question, as in the same way, and the first one is equations of motion controlling X�.�; �/

of the one-body problem. However, this is not the answer we want for the soliton. The second, the
action of the many-body problem, is important. It is the string field theory.
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The newly appearing one is the Ramond–Ramond field.2 This originates from the
supersymmetry, so this doesn’t appear in the case of the bosonic string. All the
indexes are anti-symmetrized, for the case of the Ramond–Ramond field, and it is a
gauge field generalized to higher dimensions in the same way as BMN.x/.

As we have a complete set of massless bosonic fields appearing in the string
oscillation, let us consider the action of those fields. Since the superstring theory has
supersymmetries even of the 10-dimensional target spacetime, actually the action of
those fields is determined uniquely. It is the action of a theory called “supergravity.”
In the present case, it is called type-IIB supergravity theory, from the type of the
supersymmetry.3 Here let us write only a part of it to show how the action looks.

S D
Z

d10x
hp� detg��RŒg��
C � � �

i
: (4.4)

This term is called the Einstein–Hilbert action, and is an action of a gravity theory.
R is the quantity called Ricci scalar. Though I will not describe its detail, it is a
quantity written by gMN.x/ and its derivatives. It is an analogue of a mixture of
the first and the second (potential) term of the action (2.7), in the �4 model of
Sect. 2.3. String theory is, not only a theory including the rank-2 symmetric tensor
field gMN.x/ as an oscillation mode, but also a theory at which the mode obeys
the same interaction as the standard gravity theory, except for the difference in
dimensions of the spacetimes.

4.1.3 Black Hole

Now, let us consider, in string theory, solitons defined as solutions of the equations
of motion. The equations of motion of string theory contains the gravity field, and
in general, solutions of the equations of motion of the gravity field with localized
energy are “black holes.” Namely, it turns out that the soliton of string theory is the
black hole!

2The Kalb–Ramond field was named from two scientists, Kalb and Ramond, on the other hand in
the case of the Ramond–Ramond field, it does not mean there are two Ramond’s. It was named
from the fact that both the right- and left- movers of the fermion on the 1+1-dimensional worldsheet
satisfy the boundary condition of the Ramond type.
3We can obtain the field action of particles corresponding to various string oscillation modes by
calculating scattering amplitudes of string theory. (In the case of ordinary field theories of particles,
first as a starting point we give an action of a field by hand, and then we draw Feynman graphs
to compute scattering amplitudes. However, in fact in string theory, the process is opposite.) In
string theory, by deforming the 2-dimensional worldsheet, we can find the scattering amplitudes of
multi-strings. So as to reproduce the scattering amplitudes obtained in that manner, one can write
an action of the corresponding particle fields (the correspondence can be seen as in Fig. 1.3.) In this
way, in string theory, an action obeyed by the massless field like the gravity field having appeared
above is written. The action obtained in this way is known to be equal to the action determined by
the supersymmetry.
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Here I will explain briefly what black holes are. Einstein’s gravity theory, that
is, the general relativity, is a theory of the gravity field4 g��.x/ (it is also called
“metric”) and the action is given in fact by (4.4) (while the spacetime dimensions
are not 10 but 4.) There is a solution of the equations of motion derived from this,
which is called a black hole. The simplest one is called Schwarzschild solution,
which assumes a spherical symmetry about the center of the black hole. The
gravity field g��.x/ of the solution is written with the distance from the center
r D p

.x1/2 C .x2/2 C .x3/2 as

g00 D �
�
1 � 2Gm

r

�
; grr D

�
1 � 2Gm

r

��1
: (4.6)

grr is a component of the gravity field along of the radial r direction after a
coordinate transformation (for the coordinate transformation, see the footnote 4).
m is the mass of the black hole, and G is the coupling constant of the gravity theory
(the gravitational constant). We know from this expression that, first, when r is
large enough, namely, when we are very far away enough from the center of the
black hole, the gravity field coincides with that of a flat (not curved) spacetime,

g��.x/ D ��� D

0
B@

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
CA
��

: (4.7)

This is the metric invariant under Lorentz transformations, which appears in special
relativity. However, if we see smaller values of r , the difference from the flat
spacetime metric becomes bigger. And at the radius r D 2Gm the metric diverges.
This radius is called the Schwarzschild radius. Inside of this radius, the spacetime is
curved so strongly that one needs a velocity faster than the speed of light to escape
from it. In relativity, there is no object/particle which travels faster than the speed of
light. Therefore, this means that near the black-hole there is a region from which any
particle cannot escape. The spherical surface defined by the Schwarzschild radius

4The physical meaning of the gravity field (metric) is as follows. Given the gravity field g��.x/,
by using a vector .dx�/ connecting two arbitrary points separated infinitesimally, the “proper
length” ds between the two points is given as ds2 D g��.x/dx

�dx�. This proper length is a
“physical” length which is invariant under any general coordinate transformation, namely, arbitrary
relabeling of the coordinates, x0� D x0�.x/. This can be understood by the fact that the coordinate
transformation for the gravity field is given by

g0

�� D dx	dx�

dx0�dx0�
g	� : (4.5)

The general relativity is a theory with the principle that physics is invariant under this relabeling of
the coordinates, the gravity field is a basic field of that. You may understand the physical meaning
of the gravity field from this proper length ds. For instance, to multiply the gravity field by a
constant means that the physical distance between two points is multiplied by the constant.
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is called an “event horizon” or abbreviatedly called just “horizon.” Particles having
entered the horizon cannot come back to the outside forever. The black hole is “a
hole in the space.”

Since classic solutions of equations of motion are called solitons, the solitons of
the gravity theory should be the black holes. Note that in the gravity theory there is
a little bit subtle point on that standard solitons are solutions of just equations of a
motion. For example, the Schwarzschild solution has a problem at r D 0. (Although
it appears that there is a problem at the Schwarzschild radius that the metric diverges,
in fact we can remove this infinity by a coordinate transformation and so it is not a
problem. It is just an event horizon.) The divergence at r D 0 cannot be removed.
This point is called a singularity, where the gravity is infinite, and so any physical
law at the singularity doesn’t make sense. For the soliton (the kink solution) of the
�4 model in Sect. 2.3, there is no such problem at its center, while for the black
hole solution something strange happens there. It must be something heavy with
a mass producing the gravity field. This situation is similar to the situation, for
example, in electromagnetism in which when one find an electric field around an
electron the electric field is divergent at the place of the electron. The electron has
an electric charge and is a source of the electric field. In the gravity theory, the mass
corresponds to the electric charge, and at the center of the black hole something
massive which is a source of the gravity should exist as a singularity. That is, in a
strict sense, black holes are not solitons. This is because they do not satisfy equations
of a motion at the singularity. However, here in a broad sense, namely, in the sense
that they are classical solutions except for the singularity point, let us understand
the sentence that “black holes are solitons.”5

4.1.4 Soliton of String Theory = Charged Black Brane

The low energy region of string theory is described by the supergravity theory in ten
dimensions. Then, how many kinds of black holes exist as solutions of the equations
of motion of this supergravity theory? As a matter of fact, the whole number is
huge once we take into account the ways of the compactification, and even now
they have not been classified yet. However let us remember the supersymmetries
in the 10-dimensional target spacetime in this theory. Black holes which do not

5This claim that the black hole is a soliton may be correct in a strict sense if we exactly calculate
it in string theory in fact. String theory becomes a supergravity theory at low energy. However,
in the region near the singularity where fields vary quite rapidly, one cannot take the low energy
approximation. If we treat this without the low energy approximation in a proper way in string
theory, the singularity of this black hole may be actually “resolved” and the singularity might
go away. There various massive fields, as well as the massless field such as the gravity, could take
complicated configurations. The appearance of the singularity may be due to that we approximately
focus on only the low energy of the string theory such as the gravity theory and ignore the massive
fields. Therefore, the black hole could be exactly an soliton if we look at it in the whole string
theory. For this, some evidence is known in string theory.
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break the supersymmetries to some extent (which are called BPS black holes6) show
some good properties, and have been studied in detail. The most important property
of the BPS black hole is that it has an electric charges and the magnitude of the
electric charges is equal to its mass. (Here the dimension of the mass is taken to
be equal to that of the electric charge by multiplying some appropriate powers of
the gravitational constant.)

The electric charge of the BPS black hole is the charge of gauge fields
appearing in the supergravity theory. The gauge fields are Ramond–Ramond fields
C.x/, CMN.x/ and CMNPQ.x/ in addition to the Kalb–Ramond field BMN.x/. As I
mentioned at the beginning of this section, the number of the tensor indices of the
gauge field directly corresponds to the dimension of the worldvolume of the object
having the electric charges. The electric charge of the Kalb–Ramond field BMN.x/

is carried by a string with 2-dimensional worldsheet. On the other hand, the object
carrying the electric charge of the Ramond–Ramond fields which newly appeared,
is the one with a 2-dimensional worldvolume for example for the case of CMN, and
the one with a 4-dimensional worldvolume for the case of CMNPQ.7

As the dimension of the worldvolume of the objects having the electric charges
is large in this way, the electric charges of the gravity field, namely, the mass, is
distributed to the extent of the worldvolume, since the energy source is accompanied
with the electric charge. Namely, the singularity is not a point but a higher-
dimensional object which is as large as the worldvolume. For this kind of situation,
the name “black hole” is no longer appropriate. The “hole” is a point-like and
so has an impression of having only one-dimensional time if one counts the
spacetime dimension of the worldvolume. Instead of that, the solutions of the gravity
theory with the extended mass distribution as the worldvolume are called “black
p-branes.” “Brane” came from a part of “membrane” and p shows the dimensions
of the spatial directions of the worldvolume. So the worldvolume of the black p-
brane has p C 1 dimensions, with the time dimension. Using this labeling, the type
IIB supergravity theory has BPS black 1-branes and BPS black 3-branes. There are
two kind of black 1-branes due to the existence of the two kinds of rank-2 tensor
gauge fields (BMN.x/ and CMN.x/). These are standard solitons of string theory,
from the viewpoint of the low energy.

In order to write correctly the black branes as gravity solutions generated by
extended singularities (with higher dimensions), we can directly apply the method
to lifting the dimensions of solutions which was described in Sect. 3.1, in the
same way. For instance, the Schwarzschild black hole solution in the 4-dimensional
spacetime can be lifted up into 10-dimensions as it is, and it is a black 6-brane

6The “BPS” means the capital letters of three scientists, E. Bogomol’nyi, M. Prasad and
C. Sommerfield. The BPS method, which was originally invented as a convenient way to find a
monopole solution of a certain gauge theory, turned out to be related with the supersymmetries in
later days.
7This applies to C.x/ too, and the object has a 0-dimensional worldvolume which is a point in
the spacetime. This is called an “instanton.” Although the instanton is a very important physical
concept, I will not deal with it in this book.
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solution, as understood from its dimensions. (Since this solution doesn’t have the
electric charge and is not BPS, it is not on the list above.) The various BPS black
brane solutions listed above are made in that way.

4.1.5 Black Branes with Magnetic Charge

As we saw, the BPS black branes have electric charges. There exist BPS black branes
with magnetic charges as well. However from the first place, what is the definition
of the magnetic charges in the higher-dimensional string theory?

The Maxwell equations, which are equations of motion of the 4-dimensional
electromagnetism, have the duality symmetry exchanging the electric and magnetic
fields. Then, what about the case with the higher-dimensional and higher-rank tensor
gauge fields appearing in string theory? By looking at this, one should be able to find
what is the black p-brane having the magnetic charges.

The duality of the electromagnetism in the 4-dimensional spacetime is called
“Hodge dual” and in the term of the gauge field strength (2.1) it is written as

F��.x/ ! 1

2
���	�F

	� : (4.8)

Here, the index of ���	� takes 0; 1; 2; 3 and it is completely antisymmetric (It is a
tensor with �0123 D 1 for whose index any pair is antisymmetric. ) By using the
expression (2.2), one can immediately recognize that the Hodge dual exchanges
the electric field and the magnetic field. Because of the 4 dimensional spacetime,
we can define the completely antisymmetric tensor with four indices, therefore we
can define the Hodge dual by using it. That is, one can define the field strength
F��.x/ with two indices from the gauge field A�.x/ with one index, and its Hodge
dual is the gauge field strength with 4 � 2 D 2 indices. And the electric charges of
the Hodge dual is indeed the magnetic charge.

Let us consider this Hodge dual for the gauge fields coming from the 10-
dimensional string theory. Suppose that the number of indices of the higher-
dimensional gauge field is n, then following the same reasoning, we easily finds that
the number indices of the Hodge dual gauge field is 8 � n. The gauge field strength
has nC 1 indices, and its Hodge dual is the field strength with 9 � n indices. Then
in terms of the gauge field, the number of the indices is 8�n. From this, BPS black
branes with magnetic charges must have the following worldvolume dimensions:

• Kalb–Ramond field BMN.x/ ! Black 5-brane
• Ramond–Ramond fields C.x/, CMN.x/, CMNPQ.x/

! Black 7-brane, black 5-brane, black 3-brane

Here, though the last black 3-brane appeared also in the previous case of the electric
charges, this field CMNPQ.x/ is originally defined as a Hodge self-dual field and so
it turns out that it does not generate a new kind of black branes. Although monopole
appears as an object corresponding to the electron via the exchange of the electric
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and magnetic fields in 4-dimensional spacetime, the reason why monopoles are
point-like objects is that we consider the duality eventually at the 4-dimensional
spacetime. As we learned here, in the case of gauge theories in generic spacetime
dimensions and with generic number of indices, we have not only that the original
objects are extended ones, but also that their Hodge dual objects with magnetic
charges have worldvolume dimensions different from that of the original electrically
charged objects.

To summarize the electric and magnetic charges, as the BPS black p-branes, we
have

• p D 1; 5 comes from the Kalb Ramond field BMN.x/,
• p D 1; 3; 5; 7 comes from the Ramond Ramond field C.x/, CMN.x/, CMNPQ.x/.

Objects with any odd spatial dimensions of the worldvolume appear, and in the case
of p D 1 and p D 5 we have two kinds of black p-branes, as there are the Kalb–
Ramond field BMN.x/ and the Ramond–Ramond field CMN.x/ respectively and also
electric and magnetic charges. These are the solitons of the supergravity theory and
therefore the solitons of superstring theory.

4.2 Emergence of D-Branes

In the previous section, we saw that the higher-dimensional black holes called BPS
black branes emerge as the solitons of the supergravity theory which appear at the
low energy of string theory. That is, the solitons of string theory are generalized
black holes. As these black brane solutions have the center which are held up by
the singularity extending to specific dimensions, what is this source of the gravity
and higher-dimensional gauge fields? In this section, we will see that it is the D-
branes, “a space on which end points of strings can be attached.” And in this sense,
D-branes are solitons of string theory. First in this section I introduce the definition
of the D-branes, and next, I will have an explanation of the relation between the
D-branes and the black branes, and finally I will give a meaning for the sentence
“D-branes are solitons of string theory.”

4.2.1 D-Branes: Space on Which Strings Can End

Open strings are defined by specifying their boundary conditions, and in Sect. 3.2,
we considered only the free boundary condition (see (3.4)). Now, let us consider a
fixed boundary condition instead of the free boundary condition. The fixed boundary
condition is written as

X�.�; �/

ˇ̌
ˇ̌
�D0;2�

D c�: (4.9)
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Here, c� is a constant number. Generally, among the directions of the 10-
dimensional spacetime in string theory, one may distinguish the directions of the
free end from the directions of the fixed end. For example, the directions � D 0; 1;

� � � ; p are supposed to be subject to the free boundary condition (3.4) while the
other directions � D p C 1; � � � ; 9 are to the fixed boundary condition (4.9). Then,
as the end point of the string is fixed along the directions � D p C 1; � � � ; 9, the
string cannot move along those directions. (It can oscillate but the center of it cannot
move.) The surface on which the end points of the string are attached is, as you see
in (4.9), defined by the equation

xi D ci .i D p C 1; � � � ; 9/: (4.10)

This is a sub-space in the 10-dimensional spacetime. This is called a D-brane. The
“D” of the D-brane comes from the fixed boundary condition, that is, the first
letter of the Dirichlet boundary condition. The “Brane”’ comes from the part of
“membrane” as I have mentioned before.

As D-branes are defined in this manner, they are extended objects with p C 1-
dimensional worldvolume in the 10-dimensional spacetime. Since we may consider
that p is an arbitrary integer running from 0 to 9, the value p identifies the kind of
the D-branes. The D-brane with the worldvolume dimension of pC 1 is called Dp-
brane. (That is, the dimension at the spatial directions of worldvolume.) Although
it is supposed here that D-branes are oriented along the spacetime coordinates for
simplicity, of course the rotated object is also permitted. As long as D-branes are
planar, orientations of the boundary conditions is not a problem. Furthermore, in
(4.9) of the fixed boundary condition, although I write the one for which both the end
points (� D 0; 2�) of the string are on the same D-branes, one can choose different
D-branes for each. Moreover, those D-branes may have different dimensions. As
we allow such a freedom, we may consider various D-branes and strings ending on
those. Let us see Fig. 1.5. There I draw three parallel D-branes (for drawing the
picture I chose D2-branes) put separately and open strings which end on those.

In Sect. 3.2, I stated that the gauge field A�.x/ appears as a massless state in the
open string spectrum. Then, how about the case that D-branes exist, by changing
the boundary condition? To begin with, for simplicity, let us consider a case that we
have a single Dp-brane and both of the end points of the open string are attached on
that (The situation of Fig. 1.5 Left.) This time, as massless boson particles,

A�.x
0; � � � ; xp/ W Gauge field .� D 0; 1; � � � ; p/; (4.11)

˚i.x0; � � � ; xp/ W Scalar field .i D p C 1; � � � ; 9/ (4.12)

appear from an analysis of the string oscillation modes (I omit the detailed
derivation). At first all we notice is that these particle fields are functions of pC 1

dimensional coordinates. That is, the field theory is limited on the D-brane. This
originates from that the center-of-mass of the string cannot move in the directions
transverse to the D-brane, that is, the ones of the fixed boundary conditions. By the
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Fig. 4.2 A configuration of a string oscillation on a D-brane (a D2-brane in the figure). Left:
the oscillation at the direction of the free boundary condition being independent of the fixed
boundary condition of the D-brane. The gauge field A�.x�/ emerges from this oscillation. Right:
The oscillation transverse to the D-brane is subject to the fixed boundary condition. From this
oscillation, the scalar field ˚i .x�/ emerges

same reason the gauge field is a gauge field of the p C 1-dimensional spacetime,
that is, the index � runs only among the p C 1 dimensions (Fig. 4.2).

In addition to the gauge field, scalar fields˚ appear, whose number is 9�p. This
is the very same number for the scalar fields as the case of the dimensional reduction
from the 10-dimensional gauge field to p C 1 dimensions (which appeared by the
compactification in Sect. 3.2). As one finds that these scalar fields have the label
i D pC1; � � � ; 9which are the directions transverse to the D-brane, the scalar fields
are the excited modes of the string coming from the oscillation along the directions
transverse to the D-brane (which is the direction of the spacetime coordinateXi for
which the fixed boundary condition is imposed). Actually, this ˚i.x�/ is the field
specifying the location of the D-brane in the 10-dimensional spacetime. You can
understand this if you remember that the scalar field X1 lives on the worldvolume
of the kink solution and it defines the position of the kink solution (Sect. 3.1).

So far, I introduced the D-branes by considering just the fixed boundary
conditions for the open string. Next, let us start with a closed string theory and
introduce the D-branes. Then, we find a situation where open strings can reside
only on the D-branes in the 10-dimensional spacetime, and only closed strings can
propagate away from D-branes. Why do we need to introduce the D-branes in the
closed string theory? The reason is that the black branes are identified with the D-
branes. Next, I will have an explanation why they can be identified, but once they
are identified, the D-branes have to be introduced in the closed string theory. This is
because there is the supergravity theory at the low energy of the closed string theory
and there are black brane solutions as its classical solutions. In this way, even though
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at first we start with the closed string theory, finally we have to introduce also the
open strings on the D-branes.

Then, next, let us consider why the black branes are identified with the D-branes.

4.2.2 Black Branes and D-Branes

Though the D-branes are surfaces on which the end points of open strings can be
attached, if we change the viewpoint of the worldsheet of the open string, we can
see new characteristics of the D-branes. Let us see Fig. 1.7. In the left figure, an
open string has its end on a D-brane, and it moves to form a circle as time goes.
In terms of the worldsheet parameters .�; �/, the string extends from right to left
whose direction is � , and the direction of the circumference is � . The right figure
stands for the same worldsheet, but intentionally I exchanged the roles of � and � .
The string extends in the direction of the circumference whose direction is � , and
the string moves from the left to the right direction, and we can regard the direction
as � . Then, it turns out that this is a figure of a creation and emission of a closed
string from the D-brane. The duality on the viewpoints like this is called an open-
closed duality. Although first the D-branes were introduced as surfaces on which
open strings can end, if we change our viewpoint of the worldsheet, we find that
D-branes are sources of closed strings. Since the closed strings contain the gravity
the D-branes are sources of the gravity. This is indeed the property of the black
brane. Therefore, the D-branes are the black branes!

Then, how about the electric and magnetic charges which the BPS black p-
branes have? Do the D-branes have the same electric and magnetic charges, too? In
1995, J. Polchinski8 proved that D-branes are also a source of the Ramond–Ramond
fields. He considered a force between two parallel D-branes as in Fig. 4.3. Because
the force must be calculated by an exchange of closed strings, one may calculate
the Feynman graphs like Fig. 4.3 in which a closed string moves between the two
D-branes, in string theory. To calculate this graph, he used the open/closed duality
which we have seen in Fig. 1.7, and regard the graph as an open string rotating once
around. In this calculation of the open string, there is no need of the information of
how the closed string is emitted and annihilated. Then, if we reinterpret the result
as a closed string flying from left to right, we can derive the information of the
magnitude of the creation and annihilation of the closed string, that is, the mass and
the electric charges of the D-branes.

As a result of this calculation, he proved that the Dp-brane has an electric charge
of the Ramond–Ramond field with p C 1 tensor indices for the case of p � 3. In
addition, he showed that the Dp-brane for the case of p � 5 has a magnetic charge
of the Ramond–Ramond field with 7�p tensor indices. These are indeed the same as

8J. Polchinski already found D-branes in 1989 with J. Dai and G. Leigh, the importance of the
D-branes has been hidden until he identified the D-branes with the black branes in 1995.



80 4 D-Branes

Fig. 4.3 A configuration of an interaction between two parallel D-branes. Though this looks as an
exchange of a closed string in the horizontal direction, but as you can find by combining it with the
previous figure, this can also be seen as an open string ending on different D-branes moves along
the circumference

the black p-branes with the Ramond- Ramond charges. And, he could also showed
that the calculated values of the electric or the magnetic charge of the D-brane are
the same as the mass of the D-brane, which is the case for the BPS black p-branes.

As we saw in Sect. 4.1, the black p-branes with the Ramond–Ramond magnetic
charges of type IIB supergravity theory are allowed to have only odd p, and the
D-branes reproduce also this property. In type IIB superstring theory, if the
dimension p C 1 of the D-brane worldvolume is not even, tachyons appear in
the spectrum of the open string on the D-brane. As we saw in Sect. 2.3, the
tachyons mean an instability of the field theory on the worldvolume, so the D-branes
containing the tachyons are unstable. Moreover, when p C 1 is odd, we miss the
supersymmetries in the spectrum. Namely, it does not correspond to the BPS black
brane having the supersymmetries.

4.2.3 Duality Symmetry Exchanging Strings and D-Branes

What does it mean for string theory that the D-branes are solitons of string theory?
Let us think about it. In Sect. 2.4, we saw that solitons called monopoles played
an important role in field theories. That is, a role to solve the problem how we
can calculate physical quantities in the case of large coupling constant of the field
theories. When there is a “duality” exchanging a weakly coupled theory with a
strongly coupled theory, the duality exchanges elementary particles with solitons.
On the other hand, how about string theory? Actually, it is expected that in string
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theory such a duality exists. This duality is called S-duality. “S” is said to have come
from the term “strong-weak,” that is, strong and weak couplings.

Why do we expect that the S-duality exists in string theory? It is because the type-
IIB supergravity theory has this symmetry. The whole action of the supergravity
theory is invariant under the exchange of the Kalb–Ramond field BMN.x/ with
one of the Ramond–Ramond field CMN.x/ and a simultaneous change of the sign of
the dilaton field �.x/. So this is a self-duality. Let us see that this self-duality of the
supergravity theory is related with the coupling constant of string theory. Once we
choose the kind of the string, the coupling constant of the string theory is uniquely
fixed. This is because, as you see in Fig. 1.3, whatever the oscillation of the string
is, interactions among strings are unique, due to the fact that they are described by a
worldsheet (for details, see Sect. 6.4). All the interactions of strings depend only on
the single parameter gs called the string coupling constant. Since there is a relation
between the value of the dilaton field � and the coupling constant of string theory
gs as9 (though I will not describe the detail)

gs D e�.x!1/; (4.13)

changing the sign of the dilaton field means to make a transformation gs ! 1=gs.
This is indeed a transformation to change the weak coupling to the strong coupling.

There are various other reasons we believe that the self-duality of the supergrav-
ity theory describing the low energy of string theory can be upgraded to a duality of
the whole sting theory, but I will not go deeply into this subject here. The important
point is that by this S-duality transformation strings and D-branes (namely solitons)
are exchanged. As we saw, D-branes become sources of the Ramond–Ramond fields
CM ���N .x/, and D-branes are identified with the black branes with the Ramond–
Ramond electric/magnetic charges. On the other hand, in Sect. 4.1, we saw that the
source of the Kalb–Ramond field BMN.x/ is given by a string itself. And by this
S-duality transformation, we exchange the Ramond–Ramond field CMN.x/ for the
Kalb–Ramond field BMN.x/, therefore it must exchange the string for the D1-brane!
Namely, once we assume the existence of this S-duality, D-branes stand on a place
which is as important as strings. This situation is indeed the same as the duality
we have seen in Sect. 2.4, the one exchanging solitons (monopoles) for elementary
particles.

Since the S-duality has been checked in various viewpoints in string theory, there
is no doubt on its existence. Then, why don’t we build string theory, not by using
strings, but by regarding D-branes as fundamental constituent elements? In fact,
such a quite attractive new theory has been already proposed, and I will introduce it
in Chap. 7.

9In string theory, one expects that the value of the coupling constant gs too is determined
automatically in the framework of the theory. This is based on the relation (4.13) of this dilaton
field. The reasoning is that once the “vacuum” of string theory is determined, the value of the
dilaton field is fixed, and then the coupling constant of string theory is also determined.



Chapter 5
Dynamical D-Branes

The D-branes defined in the previous chapter are, if we take a glance only at their
definition, just planar higher-dimensional membranes and subspaces in the whole
space. However, as you will find in this chapter, the D-branes have various interest-
ing physical characteristics. As we saw in Chap. 2, solitons behave like particles.
The D-branes are solitons and therefore the D-branes are also objects moving and
interacting in higher-dimensional space. In this chapter I will explain the mechanics
of the D-branes, such as motion, intersection, merger, and creation/annihilation.
These kinds of mechanics are described by a “field theory on the D-brane” and the
fact opens up ways to interpret and analyze various field theories by the D-branes.
Indeed, these field theories on the D-branes are the non-Abelian gauge theories
which are the basis of the standard model of elementary particles having appeared in
Sect. 2.4. Therefore, solitons concerning non-Abelian gauge theories are necessarily
involved in the physics of D-branes, closely.

First, in Sect. 5.1, after I give the field theory on the D-branes, I will explain the
basis of the D-brane mechanics, such as deformation, motion, and merger, from the
viewpoint of the field theory on the D-branes.

Next, in Sect. 5.2, I will show that, when there are multiple D-branes, the
field theory on the D-branes becomes a non-Abelian gauge theory. Using this,
the monopoles of Sect. 2.4 are interpreted geometrically by D-branes in higher
dimensions. The geometrical interpretation of solitons of field theories by D-branes
has even a power to predict existence of new solitons.

In Sect. 5.3, I will describe the creation and the annihilation of the D-branes
again from the standpoint of the field theories on the D-branes. Here, one can
see once again the clear relation between solitons of field theories and D-branes.
The spontaneous symmetry braking of the �4 model stands for the annihilation
of D-branes, and the vortices, solitons of the field theory, stand for creation of
D-branes.

The various dimensions and kinds of D-branes, and the fact that field theories live
on D-branes, make a foundation of a new physics based on D-branes, and also link
various physics to string theory. Furthermore, D-branes as solitons of string theory
might become fundamental constituent elements of an ultimate unified theory. Then

K. Hashimoto, D-Brane, DOI 10.1007/978-3-642-23574-0 5,
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the unified theory is described by D-brane mechanics which will be introduced
in this chapter. Namely, D-brane mechanics is an important basis in regard to the
application for various physics and also to the ultimate theory. You will see that, in
the explanation of these applications and the ultimate theory from the next Chaps. 6
and 7, D-brane mechanics appearing in this chapter provides new ideas and concepts
vividly.

5.1 D-Branes Moving and Merging

The D-branes introduced in the foregoing chapter is, in 10-dimensional spacetime,
a flat fixed surface determined by constants ci appearing in the fixed boundary
condition (4.10) of a string. However, in fact, the D-branes have quite dynamical
physics such as motion, bending, intersection with other D-branes, merger, and what
is more, creation/annihilation in a manner similar to elementary particles. It is due
to the oscillation modes of the open string attached on the D-brane. A collection of
those many strings brings us physics that D-branes move and vibrate. The flexibility
of the D-brane mechanics supports the brilliant revolution of string theory after the
D-branes appeared. In this section, let us see the basic mechanics of the D-branes
and their physics.

5.1.1 Moving D-Branes

Various physics of D-branes basically depend on the gauge field (4.11) and the scalar
field (4.12) living on the D-branes. First, let us see physics of the scalar field˚i.x�/.
As I mentioned before, the scalar field stands for the position of the D-brane. The
equation of motion of the massless scalar field ˚i.x/ is

@�@
�˚i .x�/ D 0: (5.1)

This is the same as the equation of motion (3.1) of the scalar field which is the
moving center point of the kink solution. Let us consider the following simple
solution of this equation,

˚9.x/ D x1 tan �: (5.2)

Here, � is a constant. This means that the D-brane is rotated in the surface x1-x9

(Fig. 5.1). It is almost obvious that this solution is allowed. If we have considered the
fixed boundary condition after rotating the original target spacetime coordinates, this
kind of D-branes rotated a little should be permitted. In this solution, since the field
˚9 which comes from a string oscillation is nonzero, we can have an interpretation
that, after many strings with the oscillation gather on the D-brane and condense, as
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x1

x2,… , xp

x9

q

Fig. 5.1 A configuration of a Dpbrane which changes (rotates) its position in the target spacetime
due to the scalar field ˚9

a result they make the D-brane rotate. Namely, the result of the collective motion
of strings gathering can be interpreted as a motion of the D-brane. This could be
understood if we remember solitons of field theories, for example, the kink of the
�4 model. The motion of D-branes is a gift from strings attached on them.

Then, how about the actual kinetic motion instead of the static rotation? The
following solution realizes it:

˚9.x/ D vx0: (5.3)

Here, v is a constant. Apparently, the D-brane which this solution stands for moves
at a constant velocity v to the direction x9. On the other hand, let us consider a
solution

˚9.x/ D A cos.x0 � x1/: (5.4)

(A is a constant and we suppose p � 1.) This shows that a wave is generated on the
surface of the D-brane and propagates along the direction x1 in the worldvolume of
the D-brane.

5.1.2 D-Brane Merger

Next, let us see how the gauge field A�.x/ on D-branes appearing in (4.11) gives
us interesting physics. This is related with a D-brane merger. In the foregoing
calculation by Polchinski (Fig. 4.3), the force acting between two D-branes is
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calculated when they are parallel and of the same kind. In fact, the calculation of
this force result in zero. Although there are the gravity and the force of the Ramond–
Ramond field (similar to electromagnetism) as for forces, the attractive force made
from the gravity just balances with the repulsive force made from the Ramond–
Ramond field. In superstring theory, when we put the same kinds of D-branes, there
is no force between them. This is an important characteristics of D-branes, and is
also a characteristics of BPS black branes. Because of the supersymmetry, the forces
between D-branes cancel.

On the other hand, the case of D-branes with different dimensions has a different
story. As an example, let us set a D3-brane and a D1-brane at some distance
parallelly (Fig. 5.2). We can calculate in this same way that there is an attractive
force between them in this case. Then, what would the result be after they approach
each other? It is known that in the end these two D-branes combine and form a bound
state. The bound state is described by having a magnetic field of the gauge field on
the D3-brane (if the original D1-branes extend along the direction x3, B3.D F12/

is non-zero.) The reason is that, in the black 3-brane solution of the supergravity
theory, if we consider a D3-brane as a singularity, the magnetic field on it appears to
be a source of the Ramond-Ramond field CMN.x/ as seen far from the singularity.

Furthermore, by a similar argument, if we consider an electric fieldE3.D F03/ ¤
0 along the direction x3 in the D3-brane, in the supergravity theory it looks as a
source of the Kalb–Ramond field. Therefore, the situation that there is an electric
field on a D3-brane is a bound state of fundamental strings and the D3-brane. The
strings of string theory are often called “fundamental strings.” This is because D1-
branes have the same dimensions of the worldvolume as the strings and are called
“D-strings” so we need to distinguish them.) In this case the fundamental strings
extend along the direction x3 infinitely.

x3

x1, x2

x4,… , x9

Fig. 5.2 A D3-brane and a D1-brane attract each other and form a bound state. Left: the D1-
brane is put parallel to the D3-brane. Right: the two D-branes combine and form the bound state
(represented by a magnetic field B3 on the D3-brane)
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The fact that the magnetic field and the electric field on the D3-brane stand
for bound states is consistent with the S-duality above-mentioned. The gauge
field on the D3-brane forms a gauge theory there, and it is indeed a Maxwell
electromagnetism (2.3). This is because the worldvolume of the D3-brane has
3 C 1 dimensions. Since Maxwell electromagnetism has the duality exchanging
the electric field for the magnetic field (see (2.27)), after applying it to the present
situation, this turns out to be the very symmetry exchanging the D1-branes of the
bound state with the fundamental strings. This is the S-duality which we saw in
Sect. 4.2.

Though we considered the electric/magnetic fields on the D3-brane here, this is
not limited for the D3-brane. For example, let us consider one D1-brane stretching
along the direction x1 and a gauge field on that. As the worldvolume of the D1-brane
has 1 C 1 dimensions, there is only an electric field E1.x/ there. If we apply the
Gauss law (@1E1 D 0), we find that this electric field is constant. When this electric
field is non-zero, as in the case of the electric field on the D3-brane, it stands for a
bound state of the D1-brane and fundamental strings attached on it. This bound state
is called a (p; q)-string. p is the number of the bound fundamental strings and q is
the number of the D1-branes. The .p; q/-string is a kind of D-branes, and one can
find an interesting configuration of D-branes called string junctions as in Fig. 5.3.

The gauge fields on D-branes play a considerably important role, not only
concerning the bound states we have seen here. We saw in the foregoing example
that a single D3-brane brings us a Maxwell electromagnetism in the 3 C 1

dimensions, but once we consider several D3-branes on top of each other, it
represents a non-Abelian gauge theory. Next, let us see it. In Sect. 2.4 we learned

(1, 1) string

the fundamental string ((1, 0) string)D1-brane ((0, 1) string)

Fig. 5.3 A string junction. Three .p; q/-strings extending half-infinitely join together at a point
and they are stable with a force balance. The dashed line stands for a fundamental string and the
solid line stand for a D1-brane. The part at which two lines run parallelly is a bound state called
(1,1)-string. At the center of the junction, strings prong in such a way to preserve the number of
the fundamental strings and that of the D1-branes
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monopoles as solitons of a non-Abelian gauge theory, and if we use the realization
of the non-Abelian gauge theory by D-branes, the monopoles can be surprisingly
described by D-branes!

5.2 Non-Abelian Gauge Theories on D-Branes and Solitons

5.2.1 D-Branes Generating Non-Abelian Gauge Theories

Let us see an interesting physics produced by D-branes of the same kind on top of
each other. In the situation of two parallel D3-branes, as you see in the right Fig. 1.5,
open strings connecting the two D3-branes exist. Massless particles do not appear
from oscillation modes of the strings, because energy is present with stretching of
the string and a positive constant is added to the mass formula. For example, in the
case of a bosonic string, the mass formula of the string connecting the two parallel
D-branes at some distance is modified as:

m2 D 1

l2s

 
�1C

X
n>0

nNn

!
C
�

the distance between D � branes

2�l2s

�2
: (5.5)

However, on the other hand, when the distance between the D3-branes becomes
zero, that is, if the D3-branes are on top of each other, massless particles appear
in the spectrum of the string connecting these two D3-branes. Let us name the two
D3-branes for a D 1; 2 and write the string stretching from the D3-brane a to
the D3-brane b as ha; bi (Fig. 5.4). There are four types of strings, h1; 1i, h1; 2i,
h2; 1i and h2; 2i. When the D3-branes are put on top of each other, massless particle
appears from each of them. The kinds of the particles are exactly the same as the
case of a single D3-brane, so now we have four copies of them.

First let us consider the physical meaning of the four scalar fields. If we write
the scalar field as ˚i

ha;bi.x
�/ (a; b D 1; 2), as it is clear from explanation of the

scalar field in Sect. 4.2 and the previous section, ˚i
h1;1i.x

�/ stands for the position
of the first D-brane (in the direction transverse to the D-brane, namely, the right
direction in Fig. 5.4), and ˚i

h2;2i.x
�/ stands for the position of the second D-brane.

Then, the motion of the center of mass of the D3-branes is the average of the scalar
field coming from h1; 1i and h2; 2i. That is, the motion of whole D3-branes along
the transverse direction is represented by .1=2/.˚i

h1;1i C˚i
h2;2i/. Then what does the

remaining .1=2/.˚i
h1;1i �˚i

h2;2i/, ˚
i
h1;2i, ˚

i
h2;1i mean? In fact, these can be identified

with the three scalar fields �1; �2; �3 having appeared concerning the monopoles in
the last part of Sect. 2.3. Although the scalar fields �1; �2; �3 originally contains the
tachyonic negative m2 and the interaction � in the field theory, if we take a limit
in which both m and � go to zero (which is called a BPS limit), it is known that it
becomes a theory of those three scalar fields, .1=2/.˚i

h1;1i � ˚i
h2;2i/, ˚

i
h1;2i, ˚

i
h2;1i.
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〈2, 1〉

〈1, 1〉 〈2, 2〉

〈1, 2〉

Fig. 5.4 A classification of open strings when there are two D3-branes put parallelly. The arrow
represents the orientation of the parameterization � . We suppose that D-branes are on top of each
other. From this, a non-Abelian gauge theory appear on the D-branes

Moreover, on the D3-branes there appear gauge fields .1=2/.Ah1;1i
� �Ah2;2i

� /, Ah1;2i
� ,

A
h2;1i
� , correspondingly, and they can be identified in the same light as the three

gauge fields related with the rotation in Fig. 2.15 in Sect. 2.3. These fields form a
non-Abelian gauge theory introduced in Sect. 2.3.1

It is surprising enough that non-Abelian gauge theories of 3 C 1 dimensions
appear in a very simple fashion from string theory. This is because important
theories in elementary particle physics, such as the standard model of elementary
particles and the grand unified theory, are non-Abelian gauge theories in 3 C 1

dimensional spacetime. The spacetime dimensions are given by the worldvolume
dimensions of the D-branes, and the gauge symmetry can be supplied by piling up
the D-branes. This mechanism of D-branes gives not only a big help for trying to
give the standard model of elementary particles from string theory, but also methods
to study how the standard model is naturally understood from string theory and what
is the grand unified theory favored in string theory. Let us explain the part of these
developments in Chap. 6.

Here, we saw that, when two D3-branes are put on top of each other, there
emerges a non-Abelian gauge theory whose gauge symmetry is a symmetry rotating
a spherical surface in a 3-dimensional space having appeared at the last of Sect. 2.3.
Let us generalize this and consider a situation where the number of the D3-branes
in the pile is N . The gauge fields and the scalar fields are labeled by ha; bi
(a; b D 1; 2; � � � ; N ) in the same way, and each number is N2. The N2 � 1

gauge fields except for the center of mass part correspond to a more generalized

1More precisely, in order to identify it with the non-Abelian gauge theory, one has to show that
interactions of these oscillation modes equal to the interactions of the non-Abelian gauge theory.
This can be checked by calculations of scattering amplitudes in string theory.
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non-Abelian gauge symmetry. This symmetry is mathematically described by a Lie
group called SU(N )2 and this is the one generalized from the rotational symmetry of
the spherical surface in a 3-dimensional space (the Lie group called SU(2)3). On the
other hand, the symmetry of the electromagnetism is same as a degree of freedom of
a phase rotation of a complex field as we saw for the vortex solitons in Sect. 2.3. This
is called U(1) in terms of the Lie groups. When there is a single D-brane, we have a
gauge theory of a gauge symmetry U(1). The standard model of elementary particles
is described by a non-Abelian gauge theory based on the symmetries SU(2), SU(3),
and U(1). (The SU(3) part is QCD having appeared in Sect. 2.4.) From that, one can
understand the importance of the fact that such symmetries emerge from D-branes
in a simple manner.

5.2.2 Seeing Monopoles: D-Brane Prediction of New Solitons

Among field theories, which are not only the standard model of elementary
particles describing the real world but also various field theories studied in order
to understand the physics of it, interesting field theories are non-Abelian gauge
theories. Once D-branes construct theories in various dimensional spacetime with
various symmetries, the road to study the theories from string theory opens in
front of us. One example is a “visualization” of solitons such as monopoles by
the D-branes. It is possible to represent monopoles by a geometrical configuration
of D-branes in higher dimensions. To understand monopoles geometrically means
to understand them quite intuitively. As a result, the existence of new solitons
other than monopoles were predicted by the D-branes! Furthermore, amazingly, the
prediction was proved to be correct.

First, in order to see how the monopoles are described by D-branes, let us
consider how the spontaneous symmetry breaking occurs in the system of D-branes.
As we have seen the way we construct non-Abelian gauge theories by using
D-branes, there we just pile up two D3-branes on top of each other. Let us make
these two D-branes separate from each other while keeping them parallel. Then,
since the string h1; 2i and the string h2; 1i connect separate D3-branes, massless
particles do not appear in their oscillation modes (spectra). Namely, Ah1;2i

� .x/

and Ah2;1i
� .x/ obtain their masses and as a result lose the gauge symmetry. On

the other hand, .1=2/.Ah1;1i
� � A

h2;2i
� / remains massless and still have the gauge

symmetries related with it. This situation is indeed the same as the spontaneous
symmetry breaking by a vacuum condensation which was explained at the last of

2A kind of the Lie groups, SU(N ), is a group made by N � N matrix M where M satisfies
MM	 D M	M D 1N�N (the unitarity) and detM D 1. “SU” means the initial letters of “special
unitary” (“special” stands for the condition detM D 1).
3Precisely speaking, this rotational symmetry is called SO(3). This is locally equivalent to SU(2)
but globally different. In this book we ignore this difference.
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D1

D3 D3

Fig. 5.5 The figure of D-branes representing a monopole. A D1-brane is suspended between two
parallel D3-branes

Sect. 2.3. In Fig. 2.16, I mentioned that after the breaking the rotational symmetry
around the chosen vacuum remains, and the gauge field of the symmetry is in
fact .1=2/.Ah1;1i

� � A
h2;2i
� /.4 In this way, the spontaneous breaking of the gauge

symmetry of the non-Abelian gauge theory is determined by the relative position
of the D3-branes. This is very interesting in the sense that the symmetry breaking is
geometrically visualized.

As the symmetry breakings are deeply related with soliton, we shall see that
monopoles can be expressed by D-branes. To say the conclusion first, the monopole
corresponds to the D-brane configuration of Fig. 5.5. This is a D1-brane that is
suspended between two parallel D3-branes, and so the D1-brane has its end points
on the D3-branes.

If we consider the reason why the D1-brane can have its end points on the
D3-branes in this way, we may understand why Fig. 5.5 is the monopole of
Sect. 2.3. First, let me remind you of the aforementioned S-duality, it is a symmetry
exchanging the fundamental string for the D1-branes. And the fundamental strings
can end on D3-branes. (This is the definition of D-branes.) Therefore, the D1-brane
can end on D3-branes, due to the S-duality. Let us consider the meaning of the end
points. We consider the following procedures, in order to understand Fig. 5.5. We
put a single D1-brane on the two D3-branes on top of each other, as in the left figure
of Fig. 5.6. This must be described by a magnetic field on the D3-branes. Then let us
separate these two D3-brane a little, and simultaneously we keep each end point of

4On the other hand, since .1=2/.Ah1;1i
� C Ah2;2i

� / concerning the center-of-mass motion is not
affected even if we change the relative position of the D3-brane, it still remains massless. So
there are two remaining massless gauge fields, Ah1;1i

� .x/ and Ah2;2i
� .x/. These are the gauge

fields localized independently on each D3-brane. Once we regard the two D3-branes as just in
independent motion, we can understand easily that these two gauge fields remain massless.
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Fig. 5.6 A deformation for understanding that the previous figure represents a monopole. Left:
we put a single D1-brane on two D3-branes on top of each other. The D1-brane is expressed as a
magnetic flux in the D3-branes. Center: we make the D3-brane separate from the other. When the
distance is large enough, the D1-brane looks suspended between the D3-branes vertically. The end
points of the D1-brane turn out to be sources of the magnetic field on the D3-branes

the D1-brane remaining on a different D3-brane. The result of making them separate
more is Fig. 5.5. As you may understand from this, the end point of the D1-brane
must be a source for the magnetic field on the D3-branes. This is indeed the magnetic
monopole. In order for the monopole to be present, there has to be a spontaneous
symmetry breaking, which now corresponds to the distant D3-branes.

The visualization of the monopole by the D-brane is indeed a quantitative
correspondence. For example, the mass of the monopole can also be calculated
by D-branes. It is known that in the analysis of the field theory the mass of the
monopole is determined by a scale of the symmetry breaking, that is, the magnitude
j�j of the field at the vacuum. (In the BPS limit, the mass is completely proportional
to the magnitude � in the vacuum.) The magnitude of the field at the vacuum is a
square root of the right side of (2.26), while in terms of D-branes it is the distance
between the D3-branes. For simplicity, I have chosen .1=2/.˚i

h1;1i � ˚i
h2;2i/ as a

corresponding field on the D-3brane, among �1, �2, �3. Moreover since the D1-
brane extends between the D3-branes, the energy of the D1-brane is proportional
to the distance between the D3-branes. (The energy of the D1-brane is the energy
per a unit length (tension) multiplied by the total length.) Namely, to conclude,
the mass of the monopole is proportional to the energy of D1-branes. In fact
it can be found that the proportionality coefficient completely coincide, by a
detailed analysis. The quantitative properties of monopoles can be calculated by
a geometrical configuration of D-branes.

As in this way we grasp the quantitative properties of monopoles, D-branes turn
out to provide us with a technology at the level that it can be used to look for new
monopole solutions. In 1997, Bergman made a conjecture that a new soliton solution
should exist in non-Abelian gauge theories which looks like Fig. 5.7, by exchanging
the D1-brane of Fig. 5.5 for a string junction of Fig. 5.3. Due to the structure of
the string junction, three D3-branes have to be there parallelly. And the mass of the
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Fig. 5.7 A new kind of monopoles which was predicted by string theory. Once we replace the
D1-brane in the monopole by a string junction, we have this D-brane configuration (The actual
orientations are a little different in this figure as we make a reduction from higher dimensions to
the 3-dimensional space.)

soliton solutions must be the energy of the string junction (which is a sum of the
tension of each string multiplied by each length). This was a conjecture made by
string theory for field theories. Later, corresponding equations of the motion of
the non-Abelian gauge theory were concretely solved, and this interesting soliton
solution was constructed exactly on the field theory side, and the existence was
proved. And the mass of the soliton turned out to be identical to the energy of the
string junction. Namely, the conjecture of string theory was correct.

In this manner, by applying the fact that non-Abelian gauge theories are on
D-branes and soliton solutions there are also described by D-branes, we have had
developments in researches of field theories. The understanding about which kinds
of D-branes interact in what way in string theory reveals the properties of solitons
in field theories.

5.3 Creation/Annihilation of D-Branes and Tachyon
Condensation

We have seen in Sect. 4.2 that, thanks to the S-duality, D-branes might be
fundamental objects of string theory instead of fundamental strings. If we suppose
this is the case, the process of creation and pair-annihilation of D-branes has to



94 5 Dynamical D-Branes

be able to be described. Let us see that this process of the creation/annihilation of
D-branes can also be described by the field theory on the D-branes in fact.

5.3.1 Pair-Annihilation of D-Branes and Anti-D-Branes

While D-branes are solitons of string theory, let us remember how solitons of field
theories annihilate. When a kink solution and an anti-kink solution collide as in
Fig. 2.8, the configuration goes back to the vacuum. This is the pair-annihilation of
solitons. Then, in the case of D-branes, once we put a D-brane and an anti-D-brane
together, they must pair-annihilate. What is the anti-D-brane? For simplicity, first
let us consider the case of point-like particles. What are anti-particles? They are
things with the same mass but a different sign of the electronic charge, like positrons
corresponding to electrons. From the viewpoint of the worldvolume, anti-particles
have the worldlines X�.
/ specifying the location of them with the opposite
direction of the parameterization by 
 . The reason for that can be easily understood
by the process of the pair annihilation of a particle and an anti-particle (Fig. 5.8,
left). The disappearance of the particle and the anti-particle is shown by the figure
in which a single worldline goes from the past to the future and returns back to the
past again. As for D-branes, the same reasoning leads us to the anti D-branes. The
orientation of the worldvolume in the higher dimensions is opposite. For example,
let us describe a worldvolume of a D1-brane by two coordinates, 
 and � . Supposing
that the D1-brane extends along the direction X0 and X1 in the target spacetime,
then we have two simplest ways of the parameterization, as

.1/ 
 D X0; � D X1; .2/ 
 D �X0; � D X1:

X 0

Fig. 5.8 Left: worldlines describing a pair-annihilation of a particle and an anti-particle. The
vertical direction stands for the time direction. At a certain instance the worldlines of the particle
and the anti-particle join, which stands for the annihilation. For this to happen consistently, the
directions of the parameterization of the worldlines must be opposite to each other. The arrow
placed at the left stands for the direction of time of the target spacetime. Right: the worldvolumes
standing for a pair annihilation of a D1-brane and an anti-D1-brane. In the same way the labelings
of the orientations are opposite to each other
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This (1) is a D1-brane and (2) is an anti D1-brane. You can understand this by
drawing a figure of the worldvolume giving the pair annihilation of (1) and (2)
(Fig. 5.8, right). This way of thinking can be easily extended even for higher-
dimensional worldvolume of D-branes.

Then what will happen when a D-brane and an anti D-brane are on top of each
other? Let us look at Fig. 5.4 again. Previously, we considered two D-branes of
the same kind, while now we suppose that there is a D-brane and an anti D-brane.
Then what would be the difference? Among four kinds of strings, the string h1; 1i
and the string h2; 2i are in the same situation as before, so they generate massless
particles (4.11) and (4.12). However, h1; 2i and h2; 1i connect D-branes of opposite
orientations, so the particle spectra coming from the oscillation modes are known to
be different from that of h1; 1i and h2; 2i. Though I omit the explanation, the mode
with the lowest m2 among the spectra is not the massless field but a tachyon field.

T h1;2i.x0; � � � ; xp/; T h2;1i.x0; � � � ; xp/ W tachyon; m2 D � 1

2l2s
:

Precisely as in the �4 model seen in Sect. 2.3, a tachyon field appears. The point
T D 0 is at the top of the potential and so unstable. This means that the D-branes
we consider are unstable.5

The real vacuum places at the bottom of the potential, and there the theory should
be stable. Using this way of thinking, Sen in 1998 made a conjecture as below:

• When the tachyon particle coming from the string connecting the D-brane and
the anti D-brane reaches the true vacuum after the vacuum condensation, it is
equivalent to the pair annihilation of the D-branes.

This conjecture was proven by an examination of the bottom of the potential of the
tachyon field derived in string theory. Concretely speaking, since the potential of
the tachyon field interacts complicatedly with infinite number of other oscillation
modes, one must handle them all. This is the string field theory which was
mentioned in Sect. 4.1. It was shown that, if one solves the simultaneous nonlinear
equations of infinite dimensions containing infinite number of fields, and calculates
the hight (Fig. 5.9) from the bottom of the potential to the top of it, then it is equal
to the mass energy (that is the tension) per a unit area of the D-brane and the anti
D-brane. Furthermore, interestingly, it is shown that all the oscillation modes of the
open strings which were originally there disappear at the bottom of this potential.6

This is exactly corresponding to the annihilation of the D-branes.

5In the type IIB superstring theory, I described that Dpbrane with odd p only exists, while when p
is even, a tachyon appears in its spectrum and that stands for a D-brane which is unstable by itself.
This is called a non-BPS D-brane.
6It is a very interesting situation that the annihilation of the D-branes themselves can be described
by the strings on the D-branes. In fact, when one gets closer to the bottom, the speed of light gets
smaller and in the end it vanishes. This means that all the oscillation modes cannot move. The limit
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Tension of D3-brane × 2

V (T )

(T 〈1, 2〉 )2 + (T 〈2, 1〉 )2

Fig. 5.9 The height of the tachyon potential. The energy difference between the vacuum and the
potential top becomes the tension of the D3-brane and the anti D3-brane disappearing

5.3.2 Creation of D-Branes

As there are two tachyon fields, h1; 2i and h2; 1i, you might recognize that it
resembles the situation of the vortex solitons as we saw in Sect. 2.3.7 T h1;2i and
T h2;1i are �1 and �2, respectively.8 Using this similarity, Sen made the second
conjecture:

• The vortex soliton made by the two tachyon fields on the Dp-brane and the anti-
Dp-brane is a D.p � 2/-brane.

Here the reason why the dimensions of the worldvolume of the D-branes decrease
by two is that, as we saw in Sect. 3.1, the vortex is basically a soliton localized in a
two-dimensional space and, if we generalize it (via the dimensional reduction) to a
p-dimensional space, the spatial part of the worldvolume of the vortex soliton turns
out to has p � 2 dimensions. Namely, the reason is that the co-dimension of the
vortex soliton is two.

For this conjecture, a proof was given by showing that the mass of the vortex
soliton as a solution of equations of motion of a string field theory equals the tension
of a D.p � 2/-brane (the mass energy per a unit area).

in which the velocity of light equals zero is called a “Carroll limit.” A mathematician L. Carroll is
the author of “Alice in Wonderland” where there is a scene in which Alice feels she cannot move.
7In the case of the non-BPS D-brane there is only a single tachyon, and it is just like the �4 model.
8In the previous section, we considered two D-branes sharing the same direction, then the massless
scalar fields ˚i

h1;2i
and ˚i

h2;1i
appear, and together with .1=2/.˚i

h1;1i
� ˚i

2;2/, they correspond to
�1, �2, �3 appearing in monopoles in Sect. 2.3. The point on which we should not be confused with
the story in this section is that in the foregoing chapter we took the “BPS limit” in which these �1,
�2, �3 become massless. This time, we don’t take this limit, and in fact one can directly identify
�1 and �2 for the vortex in Sect. 2.3 with the tachyonic field T h1;2i and T h2;1i with the negativem2.
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In this way, the D-branes with lower dimensions generated by the pair-
annihilation of D-branes are described by a vacuum condensation of the tachyon
field on the D-branes. It is interesting that we can understand the creation /
annihilation of D-branes as a behavior of the tachyon field living on the D-branes
themselves.

5.3.3 Reconnection of Intersecting D-Branes

As an application of this annihilation of D-branes, let us consider intersecting
D-branes and their reconnection. We put two D1-branes as an example, let them
intersect each other, and call the intersection angle � (0 � � � �). Since D-branes
have orientations, the case of � D 0 means parallel D1-branes, while the case of
� D � shows a D1-brane and an anti D1-brane on top of each other.

Let us consider the strings h1; 2i and h2; 1i which were mentioned previously.
These generate the massless gauge fields for � D 0 while the tachyon fields for
� D � . Since these two should be connected by a continuous deformation, for
generic � ,m2 has to be between those two values. In fact, the spectrum of the string
is calculated as

m2 D � �

2�l2s
(5.6)

and it turns out to be the case. That is, when � is nonzero even with a slightest angle,
the tachyon field appears. Then, let us consider what happens, for an intermediate
value of � (which is neither 0 nor �), with a vacuum condensation of this tachyon
field. The characteristic feature in this case of the intermediate value of � is
that the strings h1; 2i or h2; 1i, that is, the string connecting the two D1-branes,
exist only around the intersection point (Fig. 5.10). Since strings have tensions,
they try to connect the two D-branes at the shortest distance. Then, applying the

Fig. 5.10 Intersecting D1-branes (center) become D1-branes (Left) put on top of each other when
the intersection angle � is 0, while become a D1-brane and an anti D1-brane (Right) on top of
each other when the intersection angle � is � . When the intersection angle � is neither 0 nor � , a
fundamental string (a wavy line) connecting the two branes is localized at the intersection point
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Fig. 5.11 If the tachyon modes localized at the intersection point go through the vacuum
condensation, the intersecting D-branes reconnect. The reconnection at the intersection point can
be regarded as a localized pair-annihilation of the D-brane and the anti D-branes

Sen’s conjecture shows that the D-branes have to pair-annihilate only around this
intersection point.

This localized pair-annihilation, in fact, corresponds to the reconnection of the
D1-branes. This would be obvious when you see Fig. 5.11. You try to erase
the D-branes only around the intersection point while keep the remaining parts
un-erased, then the only possible configuration left is the reconnection. One can
intuitively understand the reconnection from the viewpoint of the energy. Since the
intersecting D-branes can reduce their length by the reconnection, they can reduce
their energy. Therefore, the intersecting D-branes are unstable states concerning the
energy. The decrease of the energy by the reconnection just corresponds to the
potential energy gained by the vacuum condensation of the tachyon. In fact,
the reconnection of the intersecting D-branes can be concretely shown by the non-
Abelian gauge theory on the D-branes.

In the previous chapter, we saw that D-branes can be recognized as solitons of
string theory, namely, black branes. On the other hand, in this chapter we saw that
the physics such as motion, merger and annihilation of D-branes, can be described
by the non-Abelian gauge theory on the D-branes and its solitons. These two stories
apparently look irrelevant. One story is with a close connection with gravity in
which D-branes play an important role as solitons in string theory, while the other
story is that motion of D-branes can be described by the field theory. However, in the
very fact that the D-brane exhibiting these two properties is in fact the same object
in string theory, secrets of D-branes on their surprising applicability are hidden. Let
us find out these secrets, in the following chapters, as I introduce various interesting
applications of D-branes. One can realize the actual power of D-branes there.



Chapter 6
Application of D-Brane Physics

Since the discovery of D-branes as solitons of string theory by Polchinski in 1995,
the application research has been explosively developed. This word “explosively”
is not an exaggeration. D-branes have given tremendous influences not only to the
framework of string theory but also to various physics around, by their flexibility.
They have brought us not a slight influence but a huge revolution such as a creation
of new subjects and supply of new paradigms. In this chapter, I will pick up four
topics which have been considerably developed intrinsically owing to the emergence
of the D-branes, and will have a brief explanation for each. As you can read
these four sections independently, you might start with whichever section you are
interested in. Since they are leading-edge research results, I am forced to omit details
a little bit. However, I hope you may read the great influences given by D-branes,
the possibility of their future, and the excitement of researchers engaged in the study
of D-branes.

First in Sect. 6.1, I will explain the application of the “braneworld” which
was mentioned in Sect. 3.1. The braneworld means a hypothesis that we live
on D-branes. It not only is naturally expected from string theory but also gives
various merits in elementary particle physics. It not only gives us a higher-
dimensional interpretation of the characteristics of known elementary particles and
their interactions, but also becomes a method to resolve problems of the standard
model of elementary particles. Furthermore, supposing the braneworld, we can
expect quite interesting experimental results. Let us see them later.

Next in Sect. 6.2, as an application of the braneworld, I will explain an
understanding by D-branes of inflationary cosmologies of the expansion of our
universe. The important process of the universe expansion called an inflation is
interpreted by a motion of a D-brane in higher-dimensional space. The dynamics
of D-branes we saw in the previous chapter is actually made the best use of in
cosmology.

In Sect. 6.3, I will explain an example in which the notion of D-branes gives
us a landmark outcome in the physics of black holes. Although the black holes are
“space holes” which are difficult to handle in general relativity, their thermodynamic
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properties are revealed by D-branes. D-branes give the answer to the question : what
is the entropy of black holes?

And, in Sect. 6.4, I will explain a duality called “holography” which is an
application of the identification of black holes and D-branes. This is a very
intriguing equivalence at which a gravity theory is equivalent to a non-Abelian
gauge theory, and moreover, the dimensions of the spacetimes of these theories of
our concern are different. The holography is a new correspondence brought by an
understanding of the D-branes, and this is a considerably innovative method having
the possibility to solve the problems of the standard model of elementary particles,
such as the quark confinement, calculations of spectra of QCD, and so on.

6.1 Application I: Braneworld

6.1.1 Beyond the Standard Model of Elementary Particles

Elementary particle physics has been developed to explain theoretically new
particles and their interactions, observed at particle accelerator experiments and
radiations. When a theory is written to explain a certain particle and its interaction,
from a consistency of the theory, some existence of a new particle or a new interac-
tions is predicted, and then observation of them proves the validity of the theory.
Repetition of this process has made the present Standard Model of elementary
particles. The Standard Model is almost perfect. The only particle which has not
been observed among the Standard Model particles is the Higgs particle. Except
for some latest experimental results, all experimental and observed results can be
explained without contradiction by the Standard Model of elementary particles.

However, in the Standard Model, there are some problems. It is considered
that they are rather theoretical problems, and will be explained by a bigger theory
containing (or reproduce in a certain limit) the Standard Model. One of the problems
is the “hierarchy problem” which will be described below. The braneworld I will
explain in this section is a new and very interesting idea to solve the hierarchy
problem. The braneworld not only can solve the problem but also will predict
substantial and various important physics, and they are expected to be able to be
observed at future accelerator experiments. In this section, after describing first what
the hierarchy problem is and what the braneworld is, I will explain how it solves the
hierarchy problem, and then describe very interesting experimental results predicted
by it.

6.1.2 Standard Model and Hierarchy Problem

The Standard Model does not contain the gravity. Why? The Standard Model is
written as a field theory, and it is treated as a quantum field theory. As I mentioned
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in Sect. 2.4, in quantum field theory, corrections to the interactions and masses
are calculated by the effects of various Feynman graphs (higher order effects in
perturbation theory). These results containing the “quantum corrections” accurately
reproduce experimental results at accelerators. If one tries to include the gravity
here, it creates a problem of having the non-renormalizable infinity. When we
calculate quantum corrections in the field theory of the Standard Model, a lot of
infinities appear in the result of the calculations. However, we can make these
infinities finite by a process called “renormalization,” so they are “well-behaved”
infinities. On the other hand the infinities appearing in the quantum corrections
by gravity, that is, in the contribution of Feynman graphs in which gravitons fly,
cannot be made finite by the “renormalization.” They are “bad-behaved” infinities.
String theory appeared as a theory making quantum correction of this gravity finite.
Namely, string theory is a theory unifying Einstein’s general relativity and quantum
mechanics consistently.

In spite of the fact that the Standard Model does not contain gravity, why the
Standard Model succeeds in describing the properties of elementary particles? It is
because the magnitude of the gravity interaction is immeasurably smaller than that
of the interactions contained in the Standard Model of elementary particles. And
so there is no problem in ignoring gravity temporarily when describing results of
accelerator experiments.

However, conversely, this offers one problem: Why gravity is much weaker than
the other interactions? This problem is called “a hierarchy problem” in the sense
that the energy scale of gravity interaction is quite separated from that of the other
interaction. Why does nature provides us with hierarchical strengths of forces?

To show the seriousness of this problem, I will explain how weak the gravity
interaction is. In the Newton’s law of gravity, the force between the objects with
mass m1, m2 is given as

F D G
m1m2

r2
: (6.1)

HereG is called the gravitational constant. In the natural Planck unit, we take c D 1

and h=2� D 1 (c is the speed of light, and h is Planck constant). In this unit system,
we can rewrite the gravity constant in the unit of energy (or mass) and it is called
the Planck scale or the Planck mass. The value of it is about

MPl D 1p
G

D 1019 ŒGeV�: (6.2)

This unit “GeV” is an abbreviation of giga electron volt. One electron volt amounts
to the energy obtained by a single electron accelerated between two plates with
1-volt difference in their electric potentials. In terms of mass it is 1 ŒeV� ' 1:73 �
10�36 [kg], but in elementary particle physics this eV is usually used as a unit of
energy and mass. On the other hand, the energy scale of the spontaneous symmetry
breaking by the Higgs mechanism appearing in the Standard Model of elementary
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particles is about1

MEW D 102 ŒGeV�: (6.3)

We can see that the difference between these two scales MPl and MEW turns out to
be considerably large. The gravity constant G is the inverse of M2

Pl, and the effect
is extremely small compared with the typical interaction of the Standard Model of
elementary particles. Why does the nature hierarchically give us these extremely
different energy scales?

The hierarchy problem appears when we consider “grand unified theories
(GUT).” I have already mentioned on the GUT a little in Sect. 2.4, but here I
will explain a bit more in details. The Standard Model is a non-Abelian gauge
theory based on three gauge symmetries (precisely speaking, in terms of Lie
groups, the symmetries are SU.3/, SU.2/, and U.1/). The theories which unify
these three gauge symmetries into a single large gauge symmetry, while break the
single symmetry spontaneously down to the symmetries of the Standard model by
a Higgs mechanism, are called GUT. The research of them aims to understand in
a unified way various parameters appearing in the Standard model, for example,
gauge coupling constants (electric charges concerning the gauge symmetries).

There is evidence which show the existence of a grand unified theory, which
is a unification of the gauge coupling constants. The coupling constants actually
change a little bit depending on the energy for observation of particles with the
charges. When one follows this change, the three coupling constants equal each
other at a certain large energy scale. Therefore, we can expect that the three gauge
symmetries are unified at this point (Fig. 6.1). This energy scale called a GUT scale
and it is about

MGUT D 1016 ŒGeV �: (6.4)

This is tremendously large compared with the energy scale of the Standard Model
(6.3). This problem is called a gauge hierarchy problem.2

We call it hierarchy problem that either the Planck scale or the GUT scale is
extremely large compared to the energy scale of Standard model. Although the

1Here, “EW” stands for electro-weak, that is, the “electro-weak theory.” This electro-weak theory
is the theory unifying the electromagnetism and the “weak interaction,” and it is a main part of the
Standard Model. In the electro-weak theory the Higgs mechanism is also used.
2It is considered that the scale at which the symmetry of this grand unified theory appears
provides an upper limit of the energy for computing Feynman graphs of the Standard model
(called “cut-off”). Since this cutoff is large as (6.4), an extremely large quantity comes out when
one calculates for example a Feynman graph with loops of Higgs particles. The infinity which I
mentioned previously means this cutoff in a concrete sense. Although this is made finite by the
“renormalization,” the value after being finite must be the energy scale of the Standard model. The
gauge hierarchy problems refer to that this procedure of making things finite is not natural. This
problem is also called as “fine tuning problem” or “naturalness problem.”
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MEW MGUT

Energy

Fig. 6.1 The picture of the unification of three gauge coupling constants. Depending on the energy
scale of observation, the values of the gauge coupling constants change. At a certain high energy
scale, the three gauge coupling constants in the Standard Model take the same value. This is
considered to be the energy scale of the grand unified theory

Standard model has other problems to be clarified, we can say that the hierarchy
problem is the main problem of the Standard model. Then, hereafter, I will explain
that considering braneworlds can solve these hierarchy problems.

6.1.3 Braneworld

The braneworld is a concept in the elementary particle phenomenology, which
appeared in the influence of the research on the D-branes of string theory. This has
been developed to form a single big subject at present. The particle phenomenology
is a subject which studies consequences of various phenomenological “models”
supposed, in order to solve the problems of the Standard model. What we call as
“models” are mainly field theory models, and the Grand unified theories as men-
tioned above are also a typical example. After the importance of D-branes was
made clear in string theory in 1995, applications of the idea of the D-branes have
been also tried in the particle phenomenology. The idea mentioned here is the
concept that non-Abelian gauge theories live on the D-branes while outside the
D-branes there are more extra spaces in which only gravity propagates. Although
this is a conclusion of string theory, even when we do not deal with string theory
some membranes on which various fields are localized are called “branes” in
general. The branes are defined with this definition which is a lot milder than the
D-branes in string theory.3 As we saw in Sect. 3.1, “braneworld” means a particle

3Even in string theory the word “brane” is used often. This word is for all extended objects
including fundamental strings, D-branes and such. Since the D-branes have given influence on
a number of subjects, the word “brane” has various definitions.
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Fig. 6.2 A picture of a braneworld. Particles of the Standard Model can move only on the brane
(the straight lines stand for their trajectories). On the other hand, gravitons can propagate outside
the brane (the wavy lines stand for their trajectory)

phenomenology in which branes with 3C 1-dimensional worldvolumes are present
and fields are localized on those branes in higher dimensions.

In the rest of this section, we shall see that a braneworld model can give a solution
to the first hierarchy problem of the Standard Model mentioned above, that is, the
problem that gravity is not included in the Standard Model, as it is unnaturally too
weak. Furthermore, let us describe a sensational experimental result predicted by
the braneworld (Fig. 6.2).

In 1998, N. Arkani-Hamed, S. Dimopoulos and G. Dvali considered the follow-
ing situation. What if the Standard mode of elementary particles is localized on a
certain 3C 1-dimensional brane and if only the gravity field can propagate freely in
the .3Cn/C1-dimensional spacetime? If gravity could propagate in such a higher-
dimensional spacetime, the gravitational law would change. As (6.1) is Newton’s
law in 3 C 1-dimensional spacetime, in terms of the gravitational potential V , it is
rephrased as

V.r/ D �m1m2

M2
Pl

1

r
: (6.5)

The magnitude F of gravity is given as dV=dr . If we generalize this equation for
the potential to a general dimension, the generalization of the Gauss law brings it
easily as

V.r/ D � m1m2

MnC2
Pl.4Cn/

1

rnC1 : (6.6)
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(Here, I introduced the Planck massMPl.4Cn/ in 4Cn-dimensional spacetime. When
n D 0, it equals the original Planck mass.) In this form, this generalization has a
problem: gravity controlling our solar system is based on the inverse-square law,
so the power of r must not be different. So, let us consider the compactification
of the Kaluza–Klein mechanism which was explained in Sect. 3.2. Let us suppose
that the extra n dimensions form circles. Then, at a distance large enough compared
to the radius R of this circumference, the 4 C n-dimensional spacetime should be
seen as a 4-dimensional spacetime, and the gravitational potential equation (6.6) at
the 4C n-dimensional spacetime above should be written as

V.r/ D � m1m2

MnC2
Pl.4Cn/Rn

1

r
.r � R/: (6.7)

This is supposed to be equivalent to the inverse square law (6.5) which we observe,
then we have a relation

M2
Pl D M2Cn

Pl.4Cn/R
n: (6.8)

Now, our hierarchy problem is thatMPl is too large compared to the energy scale
MEW of the Standard Model. In the present higher-dimensional theory, simply MPl

is seen like this because we see eventually the gravity at a long distance scale, while
the actual scale of the theory isMPl.4Cn/. Therefore, if it is a natural theory,MPl.4Cn/
roughly equals MEW. However if we make them equal each other exactly, some
gravity effects can be seen at the present accelerator experiments, which turns out
to be inconsistent. So, for example, we assume MPl.4Cn/ � 10 � MEW, and then
substitute (6.2) and (6.3) to (6.8), to obtain the following equation

R ' 10
30
n �19 Œm�: (6.9)

Namely, if we like to solve the problem that gravity is too weak by the extra
dimensions, this spatial size R of the extra dimensional directions is necessary.

How large is this size R of the internal space? At first in the simplest case of
n D 1, that is, the case of only one dimension transverse to the brane, R of (6.9)
almost equals the distance between the sun and the earth (about 1:5 � 1011Œm�) and
so this doesn’t make sense. However, if we consider the second simplest case of
n D 2, we obtain R ' 10�3Œm�. Is this a sensible number? May the fifth- and the
sixth- dimensional directions of the size of 1 mm exist?

In fact, in experiments, the inverse square law (6.1) of Newton has been verified
only at the distance of about 1 mm for r . At a distance smaller than that for r , it
might possibly deviate from the inverse square law. This will be able to be checked
by experiments in the near future. In this way, the possibility that higher-dimensional
spacetime exists is much closer than we expected, and so is very attractive. One
millimeter is the size of letters we write in our daily life. However, all the activities
such as writing and watching use interactions appearing in the Standard Model, and
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not in gravity. Only for the gravity, at the scale of this 1 mm, a vast extra dimensional
world might be extendedly present. This elementary particle model is called a model
with a large extra dimension. Here, the reason why we call “large” is that in the case
of compactifications in string theory usually the radius of this compactification is
the scale of Planck mass (This is about 1:6 � 10�35Œm� in the dimension of length),
while this R is much larger than that. For example, even if we take the energy scale
MEW of the Standard model (which is about 10�18Œm� in the dimension of length),
it is still extremely larger internal space.

6.1.4 Creation of Black Holes at Experiments

The large internal space provides not only the aforementioned relation with
experiments of surveying the gravity law, but also, as a matter of fact, extremely
dramatical experimental results which I will describe in the following. At present,
at a research facility located on the boundary of Switzerland and France, a new
particle accelerator Large Hadron Collider (LHC) is at operation to find the Higgs
particle, the only particle which has not been found yet in the Standard model.
LHC started to operate in 2008, and as the total collision energy is scheduled to
reach 1:4 � 104 [GeV], we expect to find new particles carrying the mass which
amounts to the energy. A new elementary particle physics beyond the Standard
model might be observed. By the way the important points of the model having
these large extra dimensions is that the Planck scale MPl.4Cn/ is near the energy
scale MEW of Standard model. Then it is possible that the Planck scale is an energy
scale reached by the LHC. If we accelerate particles and let them collide each other
with the energy reaching the Planck scale defined by the gravity, then what will
happen? Quite surprisingly, a black hole will be formed!

If, at the particle collision, the distance between the particles is smaller than the
Schwarzschild radius of the mass energy determined by the center-of-mass energy
of the particles, black hole should be formed (see Fig. 6.3).4 The Schwarzschild
radius is the radius characterizing the size of a black hole, where objects inside the
radius cannot escape. If the extra dimensions exist and one can reach the Planck
scale at particles accelerators, numbers of black holes will be created there, and we
may have a “black hole factory.”

Once black holes are created by human beings, one might imagine that they suck
up the whole earth and then human beings extinguish. However, it is not the case.
This is because S. Hawking showed that small black holes should evaporate and
disappear. This mysterious story of evaporation of black holes was made clear by
researches on D-branes, and I will describe it in Sect. 6.3. Since the creation ratios of
the species of elementary particles emitted on the evaporation of the black holes is

4Since the gravity is present in the 4C n dimensions, this is a higher-dimensional black hole.
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Fig. 6.3 Particles collide on the brane, and as a result a black hole is created in the 3 C n-
dimensional spacetime. In the left figure, particles collide inside branes (the arrows stand for their
trajectories). When the shortest distance between the particles (called the impact parameter) is
shorter than the Schwarzschild radius of the black hole in the 3 C n-dimensional spacetime, a
black holes is generated (the right figure)

characteristic, by observing them we can understand whether black holes are created
or not at particle accelerators.

6.1.5 Solving Hierarchy Problem by Curved Extra Dimensions

In the model of the large extra dimensions introduced here, the extra dimensions
with the size about 1 mm appeared. In the dimension of energy, this is about
10�4[eV]. Compared with the energy scale of the Standard model, as this time it
is very far from it in the opposite direction, this sounds that we don’t solve the
hierarchy problem after all. Then, can we construct a braneworld model with all the
energy scales not so far from each other? This problem was solved by a model with
a curved internal space. This model was found in 1999, and was named Randall–
Sundrum model after the names of the researchers who discovered it.

For simplicity, let us suppose one extra dimension to have the whole 5-
dimensional spacetime. And we consider that the spacetime is curved along the extra
dimensional direction x5. Let us take the following as a gravity field describing the
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0 c

x5

Fig. 6.4 A picture showing how the internal space (the horizontal direction x5) in curved, by the
thickness of the arrow. The brane on the right is the one on which we live. The brane drawn with
dotted lines on the left side is a virtual brane, and is supposed to create the curvature of this extra
dimensional space. Depending on the coordinate x5 of the brane on which we live, the magnitude
of the vacuum expectation value of the Higgs fields on it changes

curved spacetime:

gMN.x
�; x5/ D

0
BBBBBB@

�e�2kx5 0 0 0 0

0 e�2kx5 0 0 0

0 0 e�2kx5 0 0

0 0 0 e�2kx5 0
0 0 0 0 1

1
CCCCCCA

MN

: (6.10)

This is a 5 � 5 matrix, and a metric of 5-dimensional spacetime. Among xM .M D
0; 1; 2; 3; 5/, the first four indices (written as x� standing for x0; � � � ; x3) show the
directions along the brane (see Fig. 6.4). An interesting point of this metric is that
the metric (g��) on the brane is multiplied by a constant number according with
the location x5 of the brane in the extra dimensional space.5 The space represented
by this metric is called an anti-deSitter spacetime (called AdS in short), and is a
solution of 5-dimensional Einstein gravity with a negative cosmological constant. k
is a certain constant related with this cosmological constant.

In order to see that the curved extra-dimensional space like this solves the
hierarchy problem, let us consider a �4 model of 3 C 1 dimensions localized on a
brane at x5 D c.>0/. As the �4 model of the 3C1 dimensions generates a symmetry
breaking and has a structure similar to the Higgs particle part of the Standard model,

5As for the physical meaning of the metric (gravitational field), see the footnote including (4.5). In
the case of the present metric (6.10), the distance between two points sharing the same value of the
coordinate x5 (that is, on the same brane) is multiplied by a factor e�kx5 . Even if the two points
share the same x�, once their coordinates x5 are different, the distance gets different by constants.
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we can think of it as a realistic braneworld model. The action is naturally written as
follows:

S D
Z

d4xdx5
p�g ı.x5 � c/

�
1

2
gMN@M�@N� � 1

4
�.�2 Cm2=�/2

�
:

Here, g D detgMN, and the Dirac’s delta function6 ı.x5 � c/ shows that the field �
is localized at x5 D c. By a redefinition of � to ekc�, a little calculation shows that
the following action of the 3C 1 dimensions follows easily (notice @5� D 0):

S D
Z

d4x

�
1

2
@��@

�� � 1

4
�.�2 C e�2kcm2=�/2

�
:

In this equation, the index � D 0; 1; 2; 3 is raised/lowered (contracted) by the flat
metric in the 4-dimensional spacetime (4.7). In this action, the difference from the
usual action of the �4 model (2.7) is that the location of the vacuum is

� D ˙e�kc jmj=
p
�; (6.12)

which is smaller by a constant power e�kc . Moreover, the important thing is that this
is an exponential function.

The magnitude of the field at the vacuum is related with the energy scale of the
symmetry braking. Now let us suppose that our fundamental scale is the Planck
scale. Once we use this braneworld of the curved extra dimensional space, even
though the original whole action of the 5-dimensions is written by the qualities of
the Planck scale, on the brane at x5 D c the energy scale of the symmetry breaking
becomes smaller by e�kc . We want to relate the Planck scaleMPl with the scaleMEW

of the Standard model. If kc is of only the order of 50, a large hierarchy like this can
be realized. In this model, the size of the extra-dimensional space is determined only
by c, and so, since we think that k is determined mostly by the fundamental scale,
that is, the Planck scale MPl, the extra-dimensional space is not so large to generate
a new energy scale. The extremely simple assumption that the extra-dimensional
space is curved turns out to solve the hierarchy problem.

What is the prediction for phenomena of elementary particles in this Randall–
Sundrum model? If this model is the right one, it is expected that an interesting sign
at the new accelerator will be seen. It is generation of Kaluza–Klein (KK) particles.

6The Dirac’s delta function ı.x5 � c/ is the function that is infinite only at u D 0 while vanishes
for the other values of u. The delta function satisfies the following integral equation

Z
duf .u/ı.u � c/ D f .c/ (6.11)

for an arbitrary function f .u/, that is, it can extract by the integration the information of the location
of the delta function.
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The graviton can move also in the extra-dimensional direction, and as we look at it
from the 3 C 1 dimensions, they become the KK particles with mass of 1=R (and
its integer multiples), as we saw in Sect. 3.2. These are called KK gravitons. R is
the size of the extra-dimensional space. If R is large, the mass of the KK graviton
is small enough so that it might be created by the energy of the collision. Since the
KK gravitons are originally a graviton, they do not have the charge of the gauge
symmetries of the Standard model, and as a result of that they are not observed
directly. However, in the case of the accelerator experiments, we can compare the
energy before and after the collision. If we find some difference there, it means that
an elementary particle without the charge, such as the KK gravitons, is generated.
Namely, the KK graviton is “observed” as a “missing energy.”7

6.1.6 String Theory and Braneworld

So far, we took D-branes in string theory in a broader sense and supposed that
the “brane” equals a “subspace in higher dimensions with localized fields on it” to
see that the braneworld model has a possibility to solve the hierarchy problem and
predicts interesting particle accelerator experiments. There have been many trials to
construct these phenomenological models from string theory. In this final part of this
chapter, I will explain how to construct the Standard model by using string theory.

I explained in Sect. 5.2 that the Standard model of elementary particles has
symmetries written by Lie groups SU(3), SU(2) and U(1) as a gauge symmetry,
The symmetries appearing when D-branes are put on top of each other are indeed
this gauge symmetry. For example, the SU(3) gauge symmetry can be realized on
three D-branes put on top of each other. Then, for the case of the gauge symmetry of
the Standard model, we just need to bring coincident three D-branes, two D-branes
and one D-brane for each. Then how about particles other than the gauge fields? For
instance, there are elementary particles carrying electric charges of both the SU(2)
gauge symmetry and the U(1) gauge symmetry. If we suppose that the coincident
two D-branes intersect with a single D-brane in the higher-dimensional space, then
this comes up from a string connecting them (Fig. 6.5). In order for the D-branes to
intersect in the higher-dimensional space, the dimension of the worldvolume of the
D-brane has to be greater than four.

7In the model with large extra dimensions as we saw previously, the KK gravitons are extremely
light, since the radius of the extra dimension is large. So you might wonder if a lot of the KK
gravitons will be created at the accelerator. But it is not the case. These KK gravitons with the
large extra dimensions have an extremely small coupling constant (given by 1=MPl) since the
interaction with particles of the Standard model is only the gravitational interaction in the 3 C 1

dimensions, so they are hardly created. On the other hand, in the case of the Randall–Sundrum
model, it is known that this coupling constant is large (as about 1=MEW), because of the curved
internal space. Once these KK gravitons at a particle accelerator are created and observed as the
missing energy, information on the extra dimensional space should be revealed through the masses
and the coupling constants.
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x1, x2, x3

x4, x5, x6

Fig. 6.5 The configuration of the intersection of three D-branes, two D-branes and a D-brane in
the internal space. At the intersections, there are strings whose end points are on each pile of
D-branes, and these generate particles with electric charges of each gauge symmetry. Since the
intersection is placed inside the internal space, the dimension of the worldvolume of the D-branes
must be greater than four. In this figure, the horizontal direction is the internal space, while the
vertical direction is the 3C 1 dimensional spacetime which we sense. We suppose that the internal
space should be compactificated to be small

Then how do various magnitudes of the interactions among elementary particles
show up? The gauge interaction and their coupling constants appear from strings at
the intersection points of the D-branes as mentioned above. Then, for example, how
about interactions among elementary particles appearing from the strings at different
intersection points? This again has an interesting interpretation via geometry. Let us
consider three distant intersections of the D-branes in the internal space (Fig. 6.6
left). The D-branes form a triangle. For the fundamental strings localized at each
of the three intersections to interact, the strings must stretch for them to touch each
other. Imagine the configuration, then you should find that the worldsheet of the
string standing for the interaction must wrap the triangle (Fig. 6.6 Right). Since
the string has a tension 1=.2�l2s /, the probability that the worldsheet stretching to
form a triangle is smaller as the area of the triangle is larger. That is, the area of the
triangle formed by the D-branes in the higher-dimensional space is related to the
magnitude of the interaction of the particles appearing in Standard model.8

Beside these, there are may other examples at which various physics occurring
in the Standard model of elementary particles can be realized by a geometrical
configuration of branes in higher-dimensional spaces. For example, how about

8Precisely speaking, suppose A is the area of the triangle, then the magnitude of the elementary
particle interaction is e�A=.2�l2s /. This is the probability that the worldsheet of a string with the
tension 1=.2�l2s / extends to the area A.
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A B

C

Fig. 6.6 Left: string A, B, C are localized at each of the intersections of D-branes (we are viewing
the previous figure from the top.) Right: The configuration that the string A stretches and becomes
string B and string C. If we follow the time-dependence, we understand that the worldsheet of the
string should fill out the triangle

the Higgs mechanism? There is an idea that it is related to the reconnection of
intersecting D-branes which we saw in Sect. 5.3. Once the intersecting D-branes
in higher-dimensional space are reconnected, the D-branes get apart from each
other, as we saw in Fig. 5.11. When D-branes get apart, the gauge symmetry is
spontaneously broken, as is described in Sect. 5.2. Namely, we can see that the
change of the D-brane shape in higher-dimensional space is related with the Higgs
mechanism of the Standard model.

Due to the lack of room of sheets in this book I do not afford to introduce other
various interesting ideas here, but you would now understand how D-branes and
generalized “brane” generate new elementary particles physics, the “braneworld.”
D-branes offered a new paradigm called “braneworld” into the elementary particle
phenomenology. On the other hand, applications of the D-branes are not limited
only to the elementary particle phenomenology. They provide an extreme influence
also on cosmology. In the next section, let us see that.

6.2 Application II: Inflationary Cosmology
in Higher Dimensions

In the foregoing section, I introduced the braneworld model in which we brought
“branes” in the higher-dimensional space and supposed that all particles except for
the gravitons are localized on the branes. Since the gravity propagates in a more-
than-5-dimensional spacetime there, we must change our sense of our cosmology
controlled by gravity, to the one for higher dimensions. For example, in Sect. 5.2,
monopoles are represented by a configuration of D-branes in higher dimensions,
and I explained application of the interpretation, then how about cosmology? This
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is also an important problem of string theory: how can we include cosmologies in
the framework of string theory?

String theory is a framework which can handle gravity in a way of quantum
theory, and stringy effects appear at the energy scale of strings, that is, at the energy
of the order of 1=ls. As a result of that, cosmological physics at high-energy region
should be closely related with string theory. A typical one of them could be the
origin of the universe, namely, the big bang. The big bang is a singularity in terms
of the gravity theory, so one can not describe what kind of physics occurs at that
point (time) by the general relativity. This is the same situation as the singularity
of black holes. I will explain, in the last of this section, a little about what kind
of possibility string theory gives for the big bang. In this section, I mainly explain
cosmological inflation for which there are interesting research results of relations
between cosmologies and D-branes.

The universe is expanding at present, and it is considered that there exists a period
of a very fast expansion in the early stage of the universe. This is called inflation
cosmologies. This inflation is accompanied with an interesting higher-dimensional
interpretation with D-branes: the inflation cosmologies can be naturally explained
by D-branes moving in higher-dimensional spacetime.

6.2.1 Inflation Cosmology

At first I will have a brief explanation of necessity of the inflation cosmologies,
and also the mechanism. The inflation cosmology is a conjecture that there was a
period with an exponentially fast expansion of the universe at its early stage. A. Guth
and K. Sato independently proposed in 1981 the model as the one solving various
“problems” which appear in the evolutional process of the universe beginning with
the big bang. The problems are mainly the following three:

• Monopole problem:
Since the temperature was extremely high in the early universe, there was a
period in which the energy density of the universe is higher than that of the
spontaneous symmetry breaking of grand unified theories. As the universe got
colder and colder, the spontaneous symmetry braking occured, and a number
of monopoles should have been generated, associated with that (the Kibble
mechanism). However, we have not observed the monopoles yet. This can
be explained as that the density of monopoles was diluted in the period of
the inflation when the universe expanded rapidly.

• Horizon problem:
There is an observation that cosmological background radiation is homogeneous
at any direction of the universe seen from the earth. This is a problem in the sense
that it appears to relate regions of the universe which are causally disconnected.
Because there is no information communication which runs beyond the speed of
light, two regions which are too far from each other for reaching by the speed
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of light are out of the “horizon” and they cannot be related with each other.
This problem is resolved by the inflation as follows: before the inflation the two
regions were casually connected with each other actually, but after the inflation
they are isolated by a distance which has no casual contact.

• Flatness problem:
The expansion of the universe is described by the Einstein’s generally relativity.
If in the universe the amount of matters (precisely speaking, the energy density)
were too large, the universe should have contracted soon and would have not
expanded to the present extent. (The universe like this is called a closed universe.)
On the other hand, if the amount of matters were too small, the universe would
have expanded so fast that there would have been no time for the structure of the
universe such as galaxies to form. (This universe is called an open universe.) The
present energy density of the universe sits just in the middle of these, and is called
a plain universe. But the standard Big bang model of the universe cannot explain
why this is the case. If the inflation exists at the early stage of the universe, by
the rapid expansion of it makes the curved space stretch to become flat, then this
problem is solved.

Then, how the exponential expansion of the universe can be realized? It can be
realized (though I do not explain it in detail) by introducing a positive cosmological
constant in the action of general relativity. The cosmological constant is a potential
energy of vacuum. However, the inflation must end after the universe expanded
exponentially to a certain extent. From the first place, the present universe does not
expand exponentially. Then, it leads to that the potential energy of the vacuum has
to vary in time. Though at first the potential energy is positive, it has to become zero
after a while.

In the standard inflation cosmology, this framework is supplied by introducing a
field ˚.x�/ called an inflaton. Let us see Fig. 6.7. At a certain time, the inflaton is
at the top of its potential, and its value changes in time. And finally the inflaton field
reaches the bottom of the potential and the potential energy becomes about zero,
and the inflation is over.

In string theory, through the use of D-branes for braneworlds, this inflation can
be realized in a very interesting way, geometrically and higher-dimensionally. The
inflation is interpreted as a motion of the D-brane in a higher-dimensional spacetime,
and the end of the inflation is described by a collision and a pair-annihilation of the
D-brane and an anti-D-brane. Let us see this “brane inflation” in the following.

6.2.2 The Motion of D-Branes and Inflation

When D-branes exist, on them there are schalar fields describing the position of
the D-branes in the direction transverse to the worldvolume (Sect. 4.2). Those are



6.2 Application II: Inflationary Cosmology in Higher Dimensions 115
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Fig. 6.7 A time dependence of the value (black circle) of the inflaton field ˚ , which is used in
inflation cosmologies. At first when the potential energy is positive, ˚ moves slowly. After a while,
the field slips down the potential and reaches zero

a natural candidate for the inflaton field ˚ which is a scalar field. A concern is the
potential of the inflaton field. How can we provide the potential as in Fig. 6.7 for
D-branes in string theory?

Suppose we set some other D-brane, in addition to the D-brane we considered.
As far as they are placed parallelly, as I mentioned in Sect. 5.1, there is no force
between the D-branes. That means that the scalar field ˚ has no potential. As the
distance between the D-branes can be arbitrary, any˚ is a stable solution. (Precisely
speaking, this ˚ is given by the D-brane separation ˚ h1;1i � ˚ h2;2i with the scalar
field on each D-brane ˚ h1;1i and ˚ h2;2i. See Sect. 5.2.) However, let us replace
the other D-brane by an anti-D-brane. The anti-D-branes has the Ramond–Ramond
charge of the sign opposite to that of the D-brane. For two D-branes, gravity and the
Ramond–Ramond force cancel with each other, while this time they sum up and the
D-brane and the anti-D-brane attract each other. We can interpret the attraction as
caused by a generated potential of the field ˚ .

In order to generate enough inflation, it is known that the upper part of the
potential of the inflaton field has to be flat as in Fig. 6.7. In order to attain this
flatness by D-branes, let us consider the following set up. For simplicity, we suppose
that in the compactified space, the direction along which the D-brane and the anti-
D-branes is separated is a one-dimensional circumference. And let us suppose that
the D-brane and the anti-D-branes are placed on the anti-podal points (Fig. 6.8).
Since when they are at the anti-podal points the forces from the both sides are
in balance and they do not move, this state is “mearginally stable.” However,
if they are shifted even a little from that position, their balance is broken and
they change their positions rapidly. Therefore, around the anti-podal points the
potential becomes flat enough, and the inflation is generated. It is very interest-
ing that the inflaton field has a higher-dimensional geometric interpretation, in
this way.
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Fig. 6.8 A configuration of D-branes which generates an inflation. When the internal space is a
circumference and the D-brane and the anti-D-brane are placed on the anti-podal place, this is
mearginally stable. If they are shifted even a little, they start to move closer. The distance between
the D-brane and the anti-D-branes becomes the inflaton field

6.2.3 The End of Inflation and Annihilation of D-Branes

Then, as the D-brane approaches the anti-D-brane closer, what happens if they
collide with each other at last? They should pair-annihilate. Namely, the end of
the inflation is a pair annihilation of D-branes!

The pair annihilation of D-branes was described in Sect. 5.3. And the important
thing there is that a tachyon appears in the oscillation modes of the strings h1; 2i
and h1; 2i connecting the D-brane and the anti-D-branes, and the tachyon vacuum-
condenses. In fact, this tachyon does not appear if the D-brane and the anti-D-brane
are far enough from each other. Let us see why this is the case. As we saw in (5.5),
when a string is stretched between D-branes, the length of the string amounts to
the distance between the D-branes, which contributes to the energy of the string.
In view of the fact that the second term of (5.5) contributes to the mass squared of
the tachyon, the tachyon mass coming from the string between the D-brane and the
anti-D-brane is

m2 D � 1

l2s
C
�
˚ h1;1i �˚ h2;2i

�2
: (6.13)

Here we have used that the distance between the D-brane and the anti-D-brane is
given by 2�l2s j˚ h1;1i � ˚ h2;2ij. The factor 2�l2s is deduced in string theory so that
the value of the field is translated to fit the dimension of distances. This formula
tells that m2 is negative only when the D-brane and the anti-D-brane are close
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V (F, T )
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F

Fig. 6.9 The potential of the inflation by the D-brane and the anti-D-brane. The value of the fields
(blob) moves slowly in the space of the inflaton field ˚ and the tachyon field T

enough. The tachyon does not appear when the distance is larger than a certain
value. However, when the distance is small enough, the tachyon with a negative
mass squared appears, and the D-brane and the anti-D-brane pair-annihilate via the
vacuum condensation.

The relation between the two kinds of fields, the tachyon field T (in fact, there
are two tachyon fields, coming from strings h1; 2i and h2; 1i) and the scalar field
˚ D ˚ h1;1i �˚ h2;2i, is described, and now the picture of the total potential is shown
in Fig. 6.9. The black blob stands for the value of the fields .T; ˚/, and the figure
shows how it moves as time goes. At first, since the mass squared of the field T
is positive, it remains at T D 0. The field ˚ moves slowly in the slowly varying
potential in the direction to smaller values of j˚ j, during which the inflation takes
place. When j˚ j decreases small enough, the mass squared of the field T becomes
negative, then the tachyon condensation occurs. In Fig. 6.9, the direction of the
motion of the field changes to the right, and the inflation ends when it reaches the
bottom of the potential.

This mechanism, in which a scalar field (tachyon T in our case) is introduced
in addition to the field creating the inflation (the inflaton field ˚) so that the
inflation naturally ends, is called a hybrid inflation. This is a model often used in
inflation cosmologies. The string-theoretical description of the inflation by a pair
annihilation of a D-brane and an anti-D-brane realizes the hybrid inflation quite
naturally.

An interesting physics appears when the D-brane and the anti-D-brane pair-
annihilate. As we saw in Sect. 5.3, in the pair-annihilation process of the D-branes,
vortex solitons are generated in the condensation of the complex tachyon field (Sen’s
second conjecture), and these are D1-branes in the present case. Namely, there is a
possibility that string-like objects extending like one-dimensional strings in space
may be generated at the end of inflation. These resemble the cosmic strings we saw
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Fig. 6.10 A configuration that two D-branes placed as skew lines in an internal space approach
each other, collide, and reconnect

in Sect. 3.1. In fact, recently a possibility was discussed that the D1-branes may
be realized as the cosmic strings.9 Once the cosmic strings are actually observed,
they might be the D1-branes! That is, we might be able to see the huge D-branes
extending in the sky. What a great and interesting possibility it is!

Once the inflation comes to end by the pair-annihilation of the D-brane and
the anti-D-brane, then where is our brane representing our world? Although this
problem can be solved by supposing that there are originally third D-brane in
addition, let us introduce an idea using reconnection of intersecting D-branes, here.
Let us suppose that two D-branes are placed at skew lines in an internal space
(Fig. 6.10). Since these are a little bit deviated from the parallel state, an attraction
between them is generated. If we choose the angle of the skew lines to be � ,
this is a D-brane and an anti-D-brane, then all the D-branes vanish. However, this

9Once cosmic strings are observed, how do we distinguish the vortex solitons of a field theory
in Sect. 2.3 from the D-branes? This is an interesting question. Concretely speaking, it has been
argued that there may be a difference in the number of the cosmic strings observed, for the field
theory vortex solitons and for the D-branes. Figure 3.2 shows how the cosmic strings collide and
reconnect with each other, and then form closed loops which contract to vanish. In this way, as
the reconnection is a reason for the number of cosmic strings to decrease, what kinds of situation
the reconnection occurs relates to how many cosmic strings remain in the end. It is known that the
reconnection is classical in the case of the vortex solitons of the field theory, while it is probabilistic
in the case of the D-branes, in fact. This difference should result in the number of the cosmic-
string-like objects which we observe, at the end. By the way, we know that the D1-branes are
vortex solitons coming from the tachyons of the D3-brane and the anti-D3-brane, then what is the
origin of this difference? The reason is that in the annihilation of the D-branes there are related
other stringy modes (infinite massive modes) which we omit, in addition to the tachyon. From the
string connecting a D3-brane and an anti-D3-brane, there appear many oscillation modes as well
as the tachyon, and these infinite number of modes condense too at the same time as the tachyon
condensation. This is the reason why the D1-branes are different from just the vortex solitons. In
the discussion of the annihilation of D-branes in Sect. 5.3, I described this points briefly. To prove
the Sen’s conjecture was difficult (however finally it was proved), because of the difficulty to handle
these infinite number of modes. The theory to handle the infinite number of modes simultaneously
is the string field theory which appeared in Sect. 4.1.
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time it is not the case. As we saw in Sect. 5.3, the tachyon field is localized near
the intersection point, and the tachyon condensation bring the reconnection of the
D3-branes. Therefore, even if the inflation ends, in this case the D-branes do not
disappear, and they remain almost parallel to each other.

6.2.4 Why Do We Live in Four Spacetime Dimensions?

So far, I have described the geometrical method to realize the inflationary cosmology
by using D-branes. The natural motion of D-branes that a D-brane approaches
an anti-D-branes and they pair-annihilate explains the inflation. Now, the biggest
mystery in cosmology is the question of why our world is 3C 1 dimension. For this
mystery, the pair-annihilation of D-branes gives us a hint. It is called a brane gas
cosmology, which is one of the subjects under active research.

If all the elementary particles and the interactions are described by superstring
theory, they are in the 10-dimensional spacetime. Many strings and D-branes move
in the 10-dimensional spacetime. So, let us suppose that, as in the beginning
of our universe in the big bang cosmology, this 10-dimensional spacetime may
have been extremely hot at the beginning. Then, because of this thermal energy,
D-branes and anti-D-branes should have pair-created one after another. However,
when the 10-dimensional spacetime gradually cools down, these D-branes and
anti-D-branes disappear by pair-annihilation. When they disappear, as described
in the Sen’s second conjecture, lower-dimensional D-branes and anti-D-branes are
created. These generated lower-dimensional D-branes and anti-D-branes form pairs
and collide and pair-annihilate further, but you may recognize that the process of
this “pairing” is more difficult as the dimension of the D-branes is lower. D7-branes
and anti-D7-branes in 10-dimensional spacetime intersect easily and pair-annihilate,
except for some special situation. This is also the case for D5-branes. However,
in the case of D3-branes, since the dimension of their worldvolume is too small
compared to the 10-dimensional spacetime, it takes very long time to form pairs.
By this reason, we argue that our universe becomes D3-branes, that is, of 3 C 1

dimensions. It is very interesting that this simple mechanism may determine the
dimension of our universe.

You might admit that the brane gas cosmology also gives quite an interesting
interpretation for the big bang, namely, the beginning of our universe The D3-branes
which are our universe started with a pair-annihilation of the D5-branes and the anti-
D5-branes. Therefore we can interpret that the big bang is a pair-annihilation with a
collision of higher-dimensional D-branes and a creation of D3-branes from there.

Since the gravity can freely propagate also in the internal space, we must explain
why the internal space becomes round small, for this scenario to be right. There have
been various trials for solving this problem, for example by wrapping D-branes
along the direction of the compactified internal space. The big mystery of our
universe, why we live in the 3-dimensional space, might be solved by dealing with
geometrical objects in higher-dimensional spacetime, by using string theory.
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6.3 Application III: Black Hole Entropy

Black holes are solutions of equations of motion of general relativity, and one can
say that they are the most important objects predicted by the gravity theory. As for
their observation, for example it is believed that there exists a huge black hole at
the center of the Milky Way Galaxy where our solar system resides, but speaking
exactly, it has not been observed yet, because it is a “black hole.” What has been
observed actually is various interesting physical phenomena expected near black
holes.10

However, the black holes are not only interesting objects in observation but
also important objects theoretically. I mentioned in Chap. 6 that the problem of
the standard model of elementary particles is that it does not contain gravity. The
reason for this is that there is a big problem that gravitational field theory cannot be
quantized. The gravitational interaction is “accidentally” small enough compared
to the other interactions appearing in the standard model of elementary particles,
and because of this the standard model succeeds even though gravity is ignored.
However, black holes make space time extremely curved, so it is considered that
around it gravitational effects are quite large. If string theory is a quantum field
theory unifying all the interactions including gravity, we should be able to describe
precisely what happens at the black hole. What kinds of knowledge does string
theory give us about black holes?

In this section, first, we see a problem called “information loss” hidden among
the black holes and quantum mechanics, and take an overlook at “black hole
thermodynamics” related with it. The thermodynamics of black holes is thermody-
namic formulas which black holes appear to follow. One of the relations is a formula
for “black hole entropy,” called Beckenstein–Hawking formula. In the standard ther-
modynamics, there is a derivation of the relations from the viewpoint of statistical
mechanics, since a number of microscopic particles gather and behave statistically,
and the thermodynamics is understood as macroscopic relations followed by the
whole bunch of particles.11 However, in the case of the black holes, this viewpoint
of the statistical mechanics is completely lost. This is because the thermodynamics
of black holes came from just an analog, as I will describe in the following.

What are the microscopic constituent elements reproducing the thermodynamics
of black holes? After all, what are black holes made of? D-branes show up here to
answer this question. As we saw in Sect. 4.2, some kinds of black holes are identified

10For instance, since black holes accelerate objects around them and absorb all of stuffs, there
appears a disk of matters rounding at a high speed around the black hole, which is called an
accretion disk. The acceleration energy is emitted as strong X-rays. We observe these X rays and
guess the mass and the volume of the stars, the would-be black holes.
11In this section, basic knowledge of thermodynamics is supposed. The entropy S is a quantity
characterizing “disorder” of the whole system where many microscopic elements interact with
each other. When the microscopic state number of the system is d , the entropy is written as
S D kB log d (here, kB is the Boltzmann constant).
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as D-branes. And D-branes are defined by strings, the microscopic constituent
elements. According with this idea, counting of the number of states of black holes
was made by using D-branes, and their entropy was derived from the viewpoint of
the statistical mechanics in the microscopic way. The formula of Beckenstein and
Hawking was derived exactly. This proof was sensational, as it became an important
example showing that string theory actually works as a quantum gravity theory. At
the end of this section, I introduce how this black hole entropy was derived.

6.3.1 Black Holes and Quantum Mechanics

The big problem when we deal with black holes quantum mechanically is the
information loss problem. This is the problem that although in quantum mechanics
time evolution does not lose any information black hole exists and then informations
are lost and contradict quantum mechanics. Before explaining this problem, we need
to see the thermodynamics of black holes first.

In Sect. 4.1, the radius of a sphere which is an event horizon of a black hole, the
Schwarzschild radius, is given by r D 2Gm. (Here, G is the gravity constant, and
m is the mass of the black hole.) Once any particle falls into the event horizon
of the black hole, it cannot escape from there ever. Therefore the mass of the
black hole only increases. According with it, the radius of the black hole grows
bigger, and the area of the event horizon increases. This resembles the second law
of thermodynamics, which states that entropy S never decreases.

Actually, the following existence of the thermodynamic low of black holes was
pointed out. The first low of thermodynamics is written as dE D TdS (here E is
the total energy and T is the temperature), and the second low of thermodynamics
states that entropy never decrease, dS � 0. For black holes, the entropy is replaced
by the area A of the event horizon. And the energyE is replaced by the mass of the
black hole, and the temperature T is by the Hawking temperature. This is called a
thermodynamics of black holes.

Hawking temperature is the temperature of black hole, which was suggested by
Hawking. Let me explain why black holes have the temperature. Objects carrying
temperature have radiation corresponding to the temperature. Since black holes only
swallow particles and do not spew them out, one may think that black holes do
not radiate. However, this is just a classical picture, and if we consider quantum
mechanics near the event horizon of the black hole, it turns out to radiate, as follows.
Let us suppose that a particle and an anti-particle are pair-created just outside
the event horizon (Fig. 6.11). Due to quantum mechanics, there are pair creations
everywhere. And let us also suppose that the anti-particle is eventually absorbed by
the black hole while the particle safely escape outside. Then, this process looks as
if the particle is emitted from the black hole as seen from far away, and the black
hole radiates. This is called Hawking radiation. Since the radiation has a spectrum
characterized by the temperature of the radiator, the temperature of the black hole is
determined by that. This is called Hawking temperature, which is given as follows
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Fig. 6.11 A configuration of the Hawking radiation. A particle and an anti-particle are pair-created
outside the event horizon of a black hole, and one is absorbed by the black hole while the other
“runs away” from the black hole. The big ball stands for the event horizon of the black hole, and
the black blob means the pair creation, and the wave lines stand for the trajectory of the particles

for the case of Schwarzschild black hole:

T D 1

8�Gm
: (6.14)

Here I used the unit system that the Boltzmann constant k, the speed of light c,
and the Planck constant h=2� all set to 1. Using this formula, with the first low of
thermodynamics, we can express the entropy precisely by the area A of the event
horizon of the black hole:

S D 1

4G
A: (6.15)

This is called Beckenstein–Hawking formula. Although here I described the story
only for the Schwarzschild black holes, it is known that this formula is applicable
for more general framework, such as charged black holes and black holes in higher
dimensions.

Once the black hole emits particles by the radiation, then the mass of the black
hole decreases. This is called evaporation of black holes, and in the process of
the evaporation, the problem of the information loss in quantum mechanics shows
up. The black hole itself was formed after some matter which was originally
there collapses gravitationally and shrinks. The original matter should have been
described by quantum mechanics, and we can learn the quantum mechanical state
of it (this is called a pure state). However, once a black hole is formed after the
gravitational collapse, the evaporation process is caused by the quantum-mechanical
pair correlation of particles outside the black hole as mentioned above, and because
the particles came out by the evaporation are completely randomly chosen, they do
not have the original information of the matter which forms the black hole. The state
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like this is called a mixed state. In this way, the process of the formation and the
evaporation of black holes loses the original information. This is called information
paradox problem of black holes.

Then, can string theory, which has been told that it is a quantum gravity theory
for long years, solve the information paradox problem? This problem is considered
to relate with the question of what happens at the end of the black hole evaporation.
The development in string theory which I will explain next has not yet been able to
solve this big problem, but offers an answer to the following question as a single step
toward the solution of the information paradox problem: What is the microscopic
states of black holes? And the answer is “states of strings on D-branes.”

In the black hole thermodynamics, it is just that the thermodynamic formula can
be applied to black holes, that has not been calculated from some statistical system
of microscopic states. However, string theory provides what this statistical system
is, and for a certain class of black holes, a calculation of entropy from this statistical
system can be made, and it results in the entropy formula of Beckenstein–Hawking.

6.3.2 D-Brane Configuration Representing Black Holes

In Sects. 4.1 and 4.2, it became clear to us that BPS black holes with electric charges
can be identified as D-branes in string theory. Surprising in this identification is that
D-branes are originally unrelated with curved spacetimes while are defined as a
space on which strings can end. Therefore, in order to examine characteristics of
black holes, we can use the D-brane, a simple space.

The entropy of a black hole should be determined by counting the microscopic
states of the black hole in statistical mechanics. Once D-branes are identified with
black holes, it should be clear what these microscopic states are. They are the states
of a string which has end points on the D-branes. In 1996, A. Strominger and C. Vafa
introduced the entropy of a black hole with electric charges in five-dimensional
spacetime, by counting the states of the string. Here, we shall take the example
given by C. G. Callan and J. Maldacena which is easier to understand.

The black hole we consider is a black hole in five-dimensional spacetime.
Although we may deal with four-dimensional spacetime which is familiar to us, we
shall consider a five-dimensional one for a simplification of the calculations. String
theory is defined in ten-dimensional spacetime, and we will make a Kaluza–Klein
compactification (see Sect. 3.2) of the five-dimensional part .x5; x6; x7; x8; x9/ to a
circumference for each. Then, at low energy, this becomes a supergravity theory in
five-dimensional spacetime spanned by (x0, x1, x2, x3, x4). As well as the gravity
field and the Ramond–Ramond gauge field, there are gauge fields coming from the
Kaluza–Klein mechanism. As a solution of this supergravity theory, we consider a
black hole which keeps supersymmetries and has electric charges as follows:

• Electric chargeQ1 of the Ramond–Ramond field CMN.
• Magnetic chargeQ5 of the Ramond–Ramond field CMN.
• Electric charge N of the Kaluza–Klein gauge field.
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Here the electric charges of the Ramond–Ramond field is that of C5� (� D
0; 1; 2; 3; 4). Moreover, the magnetic charge is a source for the magnetic field H���,
where HMNR D @MCNR C @NCRM C @RCMN is the field strength made by CMN (see
(2.1) for the field strength in electromagnetism. Remember the Hodge dual given
in Sect. 4.1). And the last electric chargeN is that of the Kaluza–Klein gauge field
which is g5�. The reason why we introduce many charges like this which looks
cumbersome is in fact that easier charged BPS black hole solutions have problems
that their event horizons coincide with their singularities. On the other hand if one
introduces various electric charges like this example, the event horizon sets apart
from the singularity and has a nonzero area. When one substitute this area to the
Beckenstein–Hawking formula and calculate the entropy, one can get the result

S D 2�
p
NQ1Q5: (6.16)

As we will see below, this result is reproduced by D-branes, including its numerical
coefficients.

6.3.3 Derivation of Entropy Formula by D-Branes

First, let us see what kind of D-branes corresponds to this black hole with the electric
charges and the magnetic charge. You may understand that the electric charge of
the Ramond–Ramond field can be created by D1-branes wrapping by Q1 times
the direction of x5 among the internal space. Next, in the same way, the magnetic
charge of the Ramond–Ramond field can be produced if D5-branes wrap by Q5

times all the internal space .x5; x6; x7; x8; x9/. And as for the last electric charge
of the Kaluza–Klein gauge field, the field was originally a gravity field g5�. Since
electric charges of gravity field stand for momenta, the electric charge N of g5�
corresponds to a string moving with momentum N in the direction of x5. A picture
showing the configuration of the D-branes and the strings is Fig. 6.12. When we
show complicated configurations of D-branes like this, we often use the following
table representing the directions along which the D-branes extend.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D1 ı ı
D5 ı ı ı ı ı ı

string ı !
Here, the arrow “!” stands for strings moving in that direction.

As it is expected that the number of states of the black hole is that of the states
of the string connecting these D-branes, let us consider what kinds of strings exist
concerning the D-brane configuration. Since there are Q1 D1-branes and Q5 D5-
branes, we have the following species of strings:

• D1-D5 string: connecting the D1-branes and the D5-branes. There are Q1Q5

species.
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x5

Q1 D1 branes

x6, x7, x8, x9

Fig. 6.12 A configuration of D-branes corresponding to the five-dimensional black hole with the
electric and the magnetic charges. All D-branes wrap the internal space. Strings connecting the
D1-branes and the D5-branes move with momenta in the direction of the internal x5

• D1-D1 string: connecting the D1-branes. There are .Q1/
2 species.

• D5-D5 strings: connecting the D5-branes. There are .Q5/
2 species.

Let us excite these strings and let them have the momentum N . At this stage, if
many of the first D1-D5 strings are excited, it is expected that the second and
the third strings acquire masses and are not excited. The reason is as follows.
For instance, as we saw in Sect. 5.2, once parallel D-branes are set away from
each other, strings connecting them acquire masses. For the D-brane to change
its position to make itself separate from the other, the scalar field representing
the location of the D-brane needs to change its vacuum expectation value. This
change can be interpreted as a collective motion of many elementary excitations.
This is the same relationship as that between solitons and elementary excitations
(see Sect. 2.2). In the present example, when many strings connecting the D1-branes
and the D5-branes are excited, the other kinds of strings acquire their masses, and
they are not excited.

As a result, only a lot of D1–D5 strings are excited, with the internal momen-
tum N . The number of states d.N / of strings with the total internal momentum N

is, when N is large, known to be given as

d.N / � e2�
p
cN=6: (6.17)

(As the derivation of this concerns quantization of a string, I shall not describe it
here. Basically, it is a counting of the number of possible oscillation modes of the
string.) Here the constant c is the quantity related with the numbers of the kinds
of the strings, and is given by c D 6Q1Q5 corresponding to the D1-D5 strings we
consider. Using this, by taking a logarithm, we derive the entropy as

S D logd.N / � 2�
p
NQ1Q5: (6.18)
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This is indeed the Beckenstein–Hawking formula of black hole entropy given
by (6.16).

In this way, it was shown by D-branes that a black hole entropy can be derived
actually by counting the number of microscopic states. We can say that string theory
succeed in taking the first step to link black holes to quantum mechanics.

However, the physics of D-branes has not been able to answer the big question
of what remains after black holes evaporate. As a matter of fact, the Hawking
temperature T of the higher-dimensional BPS black hole which we considered is
zero, thus it does not evaporate. On the other hand, the temperature of evaporating
black holes is of course nonzero. For example, when a Schwarzschild black hole
evaporates, in the end the mass m vanishes, and one can see in (6.14) that the
Hawking temperature reaches infinity. What happens at the last moment? To
solve the information loss paradox completely, we might need further study on
D-branes and string theory.

In the next section, I will introduce more intriguing and new duality born out
of the identification of black holes and D-branes. There it is revealed that a certain
gravity theory in five-dimensional spacetime and a non-Abelian gauge theory in
four-dimensional spacetime are in fact equivalent to each other. Two physical
systems which have different dimensions and have different kinds of theories turn
out to be related beautifully by D-branes. Furthermore, this duality has a possibility
of resolving the difficulty in QCD which was described in Sect. 2.4.

6.4 Application IV: Holography – Quarks and Strings

As was described in Sect. 2.4, Quantum Chromodynamics (QCD) has calculational
difficulties. Since in QCD the gauge coupling constant is large, as a matter of fact
one cannot calculate scattering of various particles in perturbation theory which is
in an expansion in powers of the coupling constant. In fact, in QCD, the issue is not
only the calculational difficulty, but also a more fundamental one which should be
solved. It is the problem called “quark confinement.”

QCD is a non-Abelian gauge theory based on a gauge symmetry SU(3), and
is contained in the standard model of elementary particles. There are eight gauge
fields corresponding to the symmetry, and they are called gluons. And elementary
particles carrying the electric charges of this symmetry are called quarks. For
example, proton consists of three quarks. However, we have never observed a single
quark by itself in any experiment. Why is it?

Heuristically, one may speculate that, since the coupling constant of QCD is too
large, quarks bind together so that any single quark may not be able to exist alone.
However, it has never been proved theoretically. After all, at present we have not
understood yet QCD, the theory with a large coupling constant in which quantum
theoretical effects (many loops in Feynman graphs as in Fig. 2.18) are essential.
This is really a serious problem. Actually, one of big seven mathematical millennium
problems proposed by Clay mathematical institute in the United States is concerning
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this QCD, and one million dollars will be awarded for a solution of the problem
related with this.

D-branes give us quite an innovative idea, as an approach to this problem. It
is called “holography” which is introduced in this chapter. In Sect. 5.2, we saw
that when D-branes are on top of each other, a non-Abelian gauge theory appears
on them at low energy. And in Sect. 4.2, we saw that D-branes can be identified
with black holes. As a combination of these, the non-Abelian gauge theory can be
related with the black holes, a gravity theory with a curved spacetime. Thanks to
this new idea, we can calculate various properties of theories with a large coupling
constant such as QCD by using gravity theories! Non-Abelian gauge theories and
gravity theories become equivalent to each other – this is a duality, a corresponding
principle.

In this duality, the spacetime dimension defined by the non-Abelian gauge theory,
which is 3C1 dimensions, is different from that defined by the corresponding gravity
theory. This is related with the fact that the gravity theory came from the black holes
and they are higher-dimensional black branes appearing in string theory. The case
in which physical theories with different dimensions are equivalent to each other is
called holography.

First of all, how does this correspondence appear? And how does the theories
with different dimensions correspond to each other? And, what kinds of new
calculational method may be given by this correspondence to theories with a large
coupling constant such as QCD? In this section, let me explain this surprising
duality.

6.4.1 String Theory and Quantum Chromodynamics

Historically, string theory appeared as a theory describing hadrons. I would like to
introduce how to relate strings with the hadrons.

Hadrons stand for bound states constituting of two or three quarks in QCD in
the standard model, and protons and neutrons are included among them. It is known
that, as a result of experimental observation related to hadrons, when one consider
groups of hadrons sharing the same quantum numbers (conserved numbers proper
to particles such as electric charges) except for the spin J , the mass squared of these
particles is a linear function of J , and the linear coefficient of J is shared by all the
groups. This is called Regge trajectory.

The Regge trajectory can be explained by an assumption that hadrons are made
of something like a string. Let us remember the spectrum in the open string theory,
that is the mass formula (3.7) which we saw in Sect. 3.2. The mass squared m2 is
proportional to an integer-multiple of the string tension, and the integer is related to
the spin, in the manner that the excitation is a tachyon namely a scalar field (whose
spin zero) when the integer is zero, and it is a massless gauge field with spin 1 when
the integer is 1. This fact follows also for larger integers and larger masses, and
actually it becomes the Regge trajectory.
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We can understand that this reproduction of the Regge trajectory by the string
originates in the fact that the string has a constant tension. Let me make this reason
clear. It is known that the Regge trajectory is satisfied in the following general cases.
Suppose that there are two particles and they form a bound state via a force between
them. We suppose that the potential standing for the force is proportional to the
distance L between the particles.

V.r/ / L: (6.19)

When there is a potential like this, as longer distance costs more energy, the two
particles attract each other with a strong force so that they are expected not to be
observed independently. This potential is called a confining potential. When two
particles rotate around each other with this attractive force, the total energy (namely,
the mass of a “hadron” if we regard the system as a single particle hadron) is known
to be proportional to the internal angular momentum coming from the rotation.
Therefore, the confining potential turns out to reproduce the Regge trajectory.

Let us see that this confining potential is the very string. For that, we had better
think why the potential like this appears, first of all. In electromagnetism, the
form of the potential is 1=L, because the electric flux (the electric field) comes
out homogeneously from an electron in the three-dimensional space. Now, let us
suppose that this is not homogeneous but it extends only in the direction to the
particle which is paired (Fig. 6.13). Since the total electric flux should be conserved,
only on this line the electric flux has the total value of the conserved constant. That
is, the electric flux is constant on the line. Then, the electrostatic potential turns out
to be (6.19). This is because the electric flux is constant on the line and it is given by
a derivative of the potential. Therefore, the potential like (6.19) describe an electric
flux which is localized linearly and connects particles as a straight line. Strings are
identified with the line electric flux, in the sense that strings have a constant energy
per unit length (tension). Namely, we may come to a picture that a string connect two
particles and they rotate, forming a hadron. The confining potential and the resultant
Regge trajectory can be derived if one suppose that strings connect particles.

Fig. 6.13 Left: A configuration of an electric field between an electron and a positron in
electromagnetism. Right: The existence of the confining potential corresponds to some string
consisting of total electric fluxes concentrating on a line
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In QCD, the particles making pairs like this are considered to be quarks. Then, the
interaction corresponding to the strings should be the gauge interaction by gluons.
However, the reason why the gauge interaction of the gluon has the confining
potential has not been proved. This is indeed a problem of QCD.

QCD has this unsolved mystery, but historically string theory had a more serious
problem. It is a problem of the spacetime dimensions. String theory is well-
described consistently only in 26 dimensions in the case of bosonic strings, but
then it cannot describe hadrons in four-dimensional spacetime. On the other hand,
why was QCD established as an important part of the standard model in spite of
the unsolved mystery? The reason is that a property called “asymptotic freedom”
has been shown in calculations of a perturbation theory of QCD. In the late 1960s,
experimental results of deep inelastic scatterings at which electrons collide with
hadrons can be well reproduced by the quark model, once in the hadrons quarks are
supposed to move freely almost at the speed of light. However, why don’t quarks
fly out of the hadrons? In 1973, D. Gross and F. Wilcek, and D. Politzer found12 the
“asymptotic freedom” which means that, once the quantum effect of the coupling
constant is implemented in QCD, at short distance the coupling constant becomes
small while at long distance it becomes large. The term “asymptotic” means the
asymptotically high energy region, since in terms of energy, the short distance
corresponds to the high energy. At high energy, the coupling constant is small, and
the quarks are free. On the other hand, at long distance, that is, at low energy, the
coupling constant is large and the quarks lose their freeness. With this discovery
of the asymptotic freedom, QCD is considered to show well also the properties
the deep inelastic scatterings, and the theory of hadrons was established to be the
QCD. After that, by calculations on computers, the mass spectra of hadrons are well
reproduced in QCD.

On the other hand, in string theory, the dimension of the target spacetime in which
strings move should be 26 or 10, otherwise there appears a problem (see Sect. 3.2).
Because of this history, the idea using string theory to understand hadrons as an
effective theory was away from the mainstream. However, in 1974, J. Scherk and
J. Schwarz, and T. Yoneya pointed out that string theory contains gravity interaction,
and string theory was reborn as a consistent quantum theory of gravity and as a
unified theory. The revolution by D-branes took place in string theory 20 years later,
in 1995. The achievement of the D-branes is the point that they can realize non-
Abelian gauge theories in 4-dimensional spacetime on their worldvolume at low
energy. That is, the foregoing problem of the inapplicability because of the wrong
dimensions can be avoided by the advent of the D-branes. And in fact, the point
that D-branes are solitons of string theory, that is, at low energy they look like black
holes, is a key for accessing the situation with large coupling constants. To look at
this, next as a preparation, let us see how non-Abelian gauge theories with large
coupling constants admit a stringy description.

12They were awarded a Nobel prize for their discovery of the asymptotic freedom in QCD.
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6.4.2 Large N Limit: From Gluons to String Worldsheet

The gauge symmetry of QCD is SU(3), while if we put N D3-branes parallelly
on top of each other then SU(N ) gauge symmetry appears. Although QCD has
N D 3, as a matter of fact, there is a method of evaluation which have a better
perturbation theory in this non-Abelian gauge theory as one has a larger N . In
standard perturbation theory, scattering processes of particles are described in a
power expansion of a small coupling constant gYM, but instead of it, we described
it as a power expansion of 1=N , at large N . This is called “large N expansion” or
“1=N expansion.” It was shown by G. ’tHooft, in 1974, that interestingly enough
this large N expansion in non-Abelian gauge theories gives an interpretation of
calculations of Feynman graphs of particles to be worldsheets of strings. It is quite
intriguing that in this large N expansion the stringy description naturally appears in
non-Abelian gauge theories such as QCD. Since the limit to the large N becomes
quite important at its relation to D-branes and black holes which will be described
later, let us see the details here.

If we add a gauge field of the “center-of-mass part (of D-branes)” which have
appeared in Sect. 5.2 into the SU(N ) non-Abelian gauge theory, we have in total
N2 gauge fields (namely gluons). Though I have not mentioned earlier, quarks in
QCD are of three kinds, corresponding to the SU(3) gauge symmetry. If we upgrade
this to SU(N ), we have N kinds of quarks hypothetically.13

The bound state made by a pair of a quark and an anti-quark is called meson, and
this is a kind of hadrons. The confinement problem of our concern is the question
of why the mesons cannot be made separate to a quark and an anti-quark. So, let us
depict a situation of a meson moving, by a Feynman graph. Here, for simplicity, we
consider a Feynman graph in which a pair of a quark and an anti-quark is created
from the vacuum and in the end they happen to pair-annihilate (Fig. 6.14, left). In
this Feynman graph, gluons are written by wavy lines, and quarks are by solid lines
with arrows (the direction of the arrows stands for the quark or the anti-quark). Now
let us draw the gluons by double lines with arrows, instead. Each line is assigned
with a number a; b D 1; 2; � � � ; N . This double line means that N2 kinds of gluons
are divided into N �N with one line representingN ways while the other line also
representing the other N ways, and the kinds of gluons are described by these two
indices ha; bi. This representation is consistent with group theory (though I omit
the details), and here, understand that gluons are represented by double lines ha; bi
with arrows and, at the interaction vertices where the gluons gather, recognize that
we have a rule that these lines smoothly connect with keeping the orientation of the
arrows.14 Then this Feynman graph can be rewritten as Fig. 6.14 right.

13These three do not mean the species of quarks called for example up quark and down quark. Each
species of quarks such as up quark has three kinds. These three kinds are called “color.” The reason
why the theory of quarks and gluons is called QCD, quantum chromodynamics, is the mechanism
of this “color” of the SU(3).
14The index ha; bi of these gluons resembles the labels of the strings connecting various D-branes
which appeared in Sect. 5.2, and as we will see later, indeed these are physically the same.
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B

A

Fig. 6.14 Left: A Feynman graph showing a pair of a quark and an anti-quark created in the
vacuum and their annihilation back to the vacuum. The blob stands for an interaction. At point
A, the quark and the anti-quark are pair-created. The vertical direction in the graph is the time
direction. At point B they pair-annihilate. Right: A redrawn figure in which the wavy lines of the
gluons are replaced by double lines with arrows

Let us see how the Feynman graphs with the new writing rules depend on
the coupling constant gYM of the non-Abelian gauge theory and the integer N
characterizing the gauge symmetry. First, we shall see the dependence of the
coupling constant. Among the gluon interaction terms, there are points at which
three or four gluons come gather, and it is known that they take values respectively
gYM or .gYM/

2 in the action of the non-Abelian gauge theory. In addition, the value
of the interaction at which a gluon comes out from a quark is also gYM. By using
these, we find that the gYM dependence of a Feynman graph is

.gYM/
V3C2V4 : (6.20)

Here V3 and V4 are, respectively, the number of the interacting points appearing in
the Feynman graph of the left Fig. 6.14. V3 counts the number of the cases with three
lines gathering at one point, and V4 counts the case of four lines gathering. Now,
suppose that the number of the lines appearing in this Feynman graph (Fig. 6.14
left) is P , then we have a formula 2P D 3V3 C 4V4. This equation can be derived
once you notice that each end of the lines are points. With this, the gYM dependence
(6.20) is

.gYM/
2.P�V /: (6.21)

Here, V is the total number V3 C V4 of the interacting points.
Next, theN dependence is easier to understood with the double lines with arrows.

In this view, N degrees of freedom are given per each line. In the Feynman graph,
quarks are pair-created in the vacuum and they pair-annihilate, so any line form a
closed loop, and suppose that the number of the loops is I . Then, theN dependence
of the Feynman graph apparently becomes NI . Moreover, if the number of loops
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Fig. 6.15 A summation of Feynman graphs in perturbation theory

of quarks appearing in Fig. 6.14 left is h (this includes the outer quark loop), after
all, the number F � 1 of the faces (the regions surrounded by lines) appearing in
Fig. 6.14 left is given F � 1 D h C I � 1. (Here, we have defined the number of
faces as F � 1 for a latter convenience.)

With the previous (6.21), a perturbative summation of Feynman graphs
(Fig. 6.15) is given, with coefficients A.P;V;F;h/ calculated by the quantum field
theory for each Feynman graph, by

X
fP;V;F;hg

A.P;V;F;h/.gYM/
2.P�V /NF�h: (6.22)

A statement made by G. ’tHooft is that this formula (6.22) can be seen also as a
perturbation theory of string theory. To see this, we reformulate this equation as
follows,

X
fP;V;F;hg

A.P;V;F;h/..gYM/
2N /.P�V /

�
1

N

��2C2gCh
: (6.23)

Here we have made a replacementV �PCF D 2�2g, which you might be familiar
with. This is called Euler’s polyhedral formula which applies when two-dimensional
surfaces are decomposed like a surface of polyhedrons. When any two-dimensional
surface is decomposed with arbitrary polygons, with V the number of vertices,P the
number of sides, and F the number of faces, then the combination V �P CF does
not depend on the way of the polygon decompositions.g is the integer characterizing
the continuous two dimensional surfaces in this way, is called a genus. To be more
concrete, this g is the number of “holes” of the two-dimensional surface. Spheres
have g D 0, and the shape of doughnuts (called a torus) has g D 1. Note that
the vacant space of the torus which the genus counts is different from holes on the
surface which can be created by cutting a part of the two-dimensional surface.

Let us see that the summarized (6.23) of the dependence in Feynman graphs
coincides with the expansion in the perturbation theory of open string theory.
The perturbation expansion of string theory is the expansion creating higher order
“Feynman graphs” by adding loops of various open and closed strings to a simple
string worldsheet, as in Fig. 6.16. To see the coincidence, let us define the so-called
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Fig. 6.16 A perturbation expansion in string theory. Attaching closed and open string loops on a
worldsheet of a string generates higher order worldsheets in the expansion

Fig. 6.17 An easier way to see the definition of the string interaction strength gs is to draw
worldlines of particles as in the right figure corresponding to the left figure of the string worldsheet.
The particle view has a single interaction point, correspondingly. In this way, it is a natural idea to
assign gs when a closed string branch comes out

“ ’tHooft coupling constant”

� D .gYM/
2N: (6.24)

We consider a limit which makes N extremely large while keeping � finite. Then,
(6.23) is regarded as a power expansion in terms of 1=N . Here, if 1=N is regarded
as the coupling constant gs of string theory, it just turns out to be a perturbation
expansion of worldsheets of strings, as follows.

Let me explain what the string coupling constant is. gs is, as defined in Fig. 6.17,
the extent of branching of string worldsheets, namely, the magnitude of interaction
of strings. When a closed string forms a loop, two gs appear (see Fig. 6.18), so any
addition of one loop gives a multiplication of .gs/

2. If the number of closed string
loops is g, their effect is .gs/

2g . Next, we define the coupling constant of open strings
g
.open/
s as in Fig. 6.19 left. Then, similarly to the closed strings, a loop of an open

string creates a hole, and its effect should be .g.open/
s /2. And the coupling constant

of closed strings gs and that of open strings g.open/
s are related via an equation gs D

.g
.open/
s /2 as is understood in Fig. 6.20. Therefore any open string loop gives a factor

gs appearing. After all, related with the number of hole h, a factor ..g.open/
s /2/h D

.gs/
h should be multiplied. In sum, a worldsheet with genus g and the number of
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Fig. 6.18 Left: A closed string form one loop. This corresponds to creating a single genus.
Right: You can understand that each worldsheet loop is accompanied with .gs/

2, by looking at
a corresponding particle worldlines as it amounts to the case with two interaction points

Fig. 6.19 Left: the strength of the interaction of open strings, namely, the definition of the open
string coupling constant g.open/

s . The definition is similar to that of closed strings. Right: a loop of
an open string creates one hole. .g.open/

s /2 is assigned for each hole

Fig. 6.20 A process of emission of a closed string from an open string (for which gs is assigned)
in the left figure can be viewed also as an open string forming a loop as in the right figure

holes h has a factor .gs/
2gCh. At this stage, if we identify gs with 1=N , this is totally

equivalent to (6.23). The perturbative expansion by means of the string worldsheets,
namely, the expansion by gs, corresponds to the large N expansion of non-Abelian
gauge theories such as QCD.
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In this correspondence, we can find that the following rule relates Feynman
graphs of QCD to string worldsheets: the lines of quarks are left as they are, and
paste worldsheet inside the quark loop lines in the double-line formalism. Namely,
the picture is that many gluons fly around and form a worldsheet. For instance, in
the case of the Feynman graph of Fig. 6.14, the corresponding string worldsheet is
a sphere with two holes, as in Fig. 6.21. This is because in the case of the Fig. 6.14
we have V3 D 10; V4 D 0; V D 10, P D 15; I D 5, g D 0; h D 2. The graph with
all the lines on a plane in the double-line formalism is called a planar graph, whose
corresponding worldsheet is a sphere. The ones in Figs. 6.14 and 6.21 are of this
kind. In the large N limit, these planar graphs contribute most in the summation of
all graphs. And non-planar graphs which do not fit in a plane become worldsheets
with nonzero genus g (see Fig. 6.22).

In the correspondence we saw so far, holes stand for worldlines of quarks in
Feynman graphs. On the other hand, holes on the worldsheet mean “end points of
strings” in the sense that there is a boundary of the worldsheet there. Altogether,
we understand that quarks live at the edge of strings. This indeed coincides with the

Fig. 6.21 A string worldsheet corresponding to Fig. 6.14. There are two holes on a sphere

Fig. 6.22 When the double-line graph cannot fit on a plane, the corresponding worldsheet has
nonzero genus g. As this graph has V3 D 4; V4 D 0; V D 0; P D 6; I D 1; h D 1; F D 2, it has
g D 1
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picture introduced in the previous explanation of the confining potential: the gluon
interaction stretching straightly between two quarks is interpreted as a string. The
string worldsheet picture having appeared in the large N limit of Feynman graphs
in QCD gives us a path to regarding string theory as an effective theory of hadrons.
Is QCD represented by a string theory, after all? As a matter of fact, the situation
withN being large is the case when physics of D-branes can be described by gravity
theory. Next, we shall see a surprising duality between gauge theories and gravity
theories, brought by D-branes.

6.4.3 Gauge/Gravity Correspondence: Equivalence Between
Non-Abelian Gauge Theory and Gravity

In Sect. 5.2, we saw that a non-Abelian gauge theory with a gauge symmetry SU(N )
is realized at low energy on N D3-branes put on top of each other. And in Sect. 4.2
we learned that the D3-brane is a classical solution of supergravity theory, that is, a
black 3-brane. Combining these, we have a very interesting “conjecture” that non-
Abelian gauge theories can be described by gravity. This is a conjecture proposed
by J. Maldacena at the end of 1997, and called “gauge/gravity correspondence” or
“Maldacena conjecture,” and also “ADS/CFT correspondence” by the reason which
I will describe later. I show two characteristic points in this conjecture, and from
here, let us proceed with explaining these in order.

1. The gravity side has one more spacetime dimensions compared to that of
the non-Abelian gauge theory. The duality in which theories with different
dimensions are equivalent in this manner is called “holography.”

2. The situation where in gravity theory quantum and massive corrections are not
necessary corresponds to the case with a large N limit and also a large ’tHooft
coupling constant �, on the non-Abelian gauge theory side. Namely, it is in a
region of strong coupling.

Then, using this conjecture, for example we can calculate the potential between a
quark and an anti-quark in the non-Abelian gauge theory with a strong coupling, by
gravity!

At first, let us imagine what the corresponding gravity theory looks like. As
we are considering the situation that N D3-branes are piled up, the corresponding
solution is a black 3-brane solution and we need to see the ones with justN electric
charges of the Ramond-Ramond field CMNPQ of supergravity theory. The solution
has the following metric (though the derivation is not described here)

�g00 D g11 D g22 D g33 D f .r/�1=2;

g44 D g55 D g66 D g77 D g88 D g99 D f .r/1=2; (6.25)

f .r/ D 1C R4

r4
; R4 � 4�gsN.ls/

4:
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Here, the D3-branes extend along the direction x0; x1; x2; x3, and they are at the
origin r D 0 (r is the radial direction transverse to the D3-branes and is defined as

r �
qP9

iD4.xi /2).15

Now, I will show that we need to see the region near r D 0, in order to find the
correspondence to the non-Abelian gauge theory. We like to know various physical
quantities in the non-Abelian gauge theory, and, what is the energy scale of those
physical quantities? As we will see, it is in fact related with r . The non-Abelian
gauge theory is the degree of freedom of open strings on the D-branes, so, intuitively
speaking, we can have an image that if this string has some energy it can move
widely and reach far from the D-brane surfaces.

First, to have the non-Abelian gauge theory, we need to take only the massless
gauge field among various oscillation modes coming from the open string while
throwing away the other massive modes. As you see in the mass formula (3.7), this
corresponds to a limit ls ! 0. This is a limit of infinite string tension � 1=.ls/

2, and
is called a “low energy limit.”

With this limit in our mind, we recall the appearance of the non-Abelian gauge
theory on D-branes in Sect. 5.2. The string connecting D-branes provide a massless
particle when D-branes are on top of each other, but when D-branes are away from
each other, the massless particle acquire a mass. From the mass formula (5.5), we
find

2�m.ls/
2 D distance between D-branes; (6.26)

and thism is the energy scale of the modes of our interest in the non-Abelian gauge
theory. Therefore, keeping m finite, we take the above-mentioned low energy limit
ls ! 0. We understand that this is a limit where the distance between the D-branes
decrease. That is, even though we may make D-branes separate, the distance is
extremely small. As the physics of our interest in the non-Abelian gauge theory
appears only in the region with this distance, in the black 3-branes solution (6.25)
of the corresponding gravity, we have to see the region near r D 0. As r D 0 is an
event horizon of the gravity solution, the limit of looking at the region around there
is called a “near-horizon limit.”

In the black 3-brane solution (6.25), the r-dependence comes in only as R=r in
the function f .r/, and the near-horizon limit means that we ignore the part “1C” in
the function f .r/ while leaving only the second term. Namely, in the near-horizon
limit, we may take

f .r/ D R4

r4
: (6.27)

15In the solution, the Ramond-Ramond field CMNPQ is nonzero, but it is not written here. The
important is that the dilaton field � is constant in this solution. As seen in (4.13), if dilaton is
constant, the coupling constant gs of string theory is constant regardless of the distance from
the branes. As you will see next, as we need to see a region close to r D 0 in order to find a
correspondence to the non-Abelian gauge theory, it helps a lot that gs is constant and does not
diverge to infinity even there.
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At this stage, we focus on only the radial direction of the space x4, � � � , x9, of the
solution (6.25). The angular directions form a five-dimensional spherical surface
(written as S5) surrounding the D3-branes, but it does not appear in the metric (6.25)
explicitly. (This way of separation is similar to the situation where, for example
in polar coordinates of a two-dimensional plane, separation of the radial and the
angular directions provides just a circumference for the angular part.) Omitting
writing the angular directions, the metric (6.25) is written as

�g00 D g11 D g22 D g33 D r2

R2
; grr D R2

r2
: (6.28)

This metric is the same spacetime as the metric of the five-dimensional AdS
spacetime which appeared in Randall–Sundrum model in Sect. 6.1. This is because,
using the coordinate transformation formula (4.5) for the gravity field and regarding
k D 1=R after a coordinate transformation r D Re�x5=R, (6.10) is related with
(6.28).

In this way, by focusing the region near r D 0, the five-dimensional AdS
spacetime appears (Fig. 6.23). Although the non-Abelian gauge theory is in a four-
dimensional spacetime, the corresponding gravity theory turns out to be in the
five-dimensional spacetime including the r direction. The theories with different
dimensions are connected, which is exactly the holography (1). In order to define
the holography precisely, we need to clarify what physical quantities are evaluated
on both sides in what manner. I will describe this later, and before that, we shall
see how the condition of the strong coupling in the non-Abelian gauge theory side
which was mentioned in (2) appears.

0 R r

Fig. 6.23 Left: A configuration of D3-branes put parallelly. Open strings propagate on those. The
vertical direction is x1; x2; x3. Right: A conceptual picture of the corresponding black 3-branes.
r D 0 is an event horizon. The region r < R near the horizon is shaded, which is an AdS
spacetime. Outside of it is an almost flat spacetime
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6.4.4 Validity of Gravity and Emergence of Large N Limit

Is it safe to look at the region r < R of the black 3-brane solution, first of all?
The black 3-brane solution is a solution of the supergravity theory. However this
supergravity theory has been derived under the following conditions:

(i) The low energy approximation, namely where we consider ls ! 0.
(ii) We ignore effects of quantum gravity (contribution of Feynman graphs with

graviton loops).

Therefore, if these conditions were violated by the classical solution, we cannot trust
it, to begin with. So, let us consider in what kind of situation these conditions are
satisfied, for the case of the present black 3-brane solution. As for (i), in the solution
(6.25) the only parameter which has dimensions is R, so this determines how the
gravity field giving the solution is curved. Once the extent of the curving is in a
shorter scale than the string length ls, the solution cannot be trusted. So we need to
require R � ls, and from the definition (6.25) of R, the condition becomes

gsN � 1: (6.29)

Here, let us use the relation gs D .gYM/
2 between the coupling constant gYM of the

non-Abelian gauge theory and the coupling constant of string theory. As I mentioned
earlier around Fig. 6.20, first there is a relation gs D .g

.open/
s /2, and, the fact that the

gluons come out from the open strings deduces that the magnitude of interaction by
gluon gYM is equal to the magnitude g.open/

s of the interaction of open strings. From
this, the condition (6.29) of (i) is

.gYM/
2N D � � 1: (6.30)

Namely, we have a condition that the ’tHooft coupling constant � should be large
enough.

Next, let us consider (ii). The quantum effects of gravity is given by the coupling
constant of gravity, that is, the gravitational constant. The particular length which
can be obtained by rewriting the gravitational constant in the dimension of length
is caller Planck length, and is written as lp. This is expressed by the parameters
ls and gs of string theory, whose derivation is through the derivation of the ten-
dimensional supergravity theory at low energy from string theory (I will not describe
the derivation here): .lp/8 � .gs/

2.ls/
8. Using this, we find that, for the black 3-brane

solution not to be affected by the quantum gravity corrections, we need R � lp,
namely,

N � 1: (6.31)

This demands the limit of the large N expansion.
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Therefore, when we examine the interesting region r � 0 of the black 3-branes
solution, in order for the solution not to violate the validity condition of the
derivation of the supergravity theory, we need to require that both the ’tHooft
coupling constant � and N have to be large. It is very interesting that the large N
limit naturally appeared. In spite of the discussion of black branes which is totally
different from the original discussion by ’tHooft, the same limit appeared.

Is it unlucky that we have the strong coupling condition � � 1? No, it is
not. The gauge/gravity correspondence says that “one can calculate strong coupling
region of non-Abelian gauge theories by classical methods in gravity.” In Sect. 2.4,
I mentioned that the difficulty in calculations in QCD is due to the strong coupling
constant. However, if we use the gauge/gravity correspondence, it turns out that
we can calculate even the most difficult region of the non-Abelian gauge theory
(difficult as seen from the perturbation perspective) by a gravity theory via classical
calculations. Then, let us calculate the potential between a quark and an anti-quark
which is our concern, by using this correspondence principle.

6.4.5 Deriving Inter-quark Potential by Gravity

Along the ’tHooft’s idea, the quark lines in Feynman graphs are holes on worldsheet.
Namely, this is the configuration that quarks are put at the end points of an open
string. This is natural even in the stand of D-branes. In Sect. 5.2, we considered
a brane configuration of Fig. 5.5, where the end points of the D1-brane stand for
monopoles. So if we take an S-duality on it, the end points of a fundamental string
turn out to stand for electric charges. In QCD, since carriers of the electric charges
concerning the gauge symmetry are quarks, we can understand that quarks are put
at the end points of the fundamental strings. Furthermore, along the ’tHooft-way
of thinking, as there are N kinds of quarks (in the case of QCD, this is SU(3) and
so we have N D 3, so the quark has three “colors”), there should be N kinds of
holes on worldsheets. On the other hand, in the way of thinking of corresponding
D-branes, N sheets of D-branes are prepared, and the label a D 1; 2; 3; � � � ; N of
the D-branes found in Sect. 5.2 specifies the location of the end points of strings. In
this sense too, the picture that quarks are put at the end points of string is consistent.

However, in the current situation of the N D3-branes, there is no fundamental
string which has only one end point, so we cannot consider a situation with “a single
quark.” So, let us consider the situation in Fig. 6.24 left, where one end of a
fundamental string is on the N D3-branes while the other is infinitely away from
them. This infinitely long fundamental string stands for a single quark.

To evaluate the potential between a quark and an anti-quark, we have to introduce
also a single anti-quark. So, let us introduce another infinitely long fundamental
string with opposite orientation (Fig. 6.24 left). The opposite orientation means an
electric charge of a different sign, as in the case of a D-brane and an anti-D-branes
(see Sect. 5.2). And we let the distance between this fundamental string and the
anti-fundamental string to be L. The potential between the quark and the anti-quark
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L

Fig. 6.24 Left: A configuration of an infinitely long fundamental string and an anti-fundamental
string (with the opposite orientation) are put on the D3-branes at the distanceL. In the worldvolume
theory of the D3-branes, these strings respectively represent a quark and an anti-quark. Right: a
corresponding figure of the gravity side. In the shaded region, there exists the gravity field of the
AdS spacetime, so the fundamental string can have shorter length and thus a lower energy if it is
connected with the anti-fundamental string

should correspond to the energy of the string (the energy of the string simply given
by multiplying the length of string by the tension).

We have learned that, in the situation where � and N is large, the calculation of
this configuration in the gravity side by using the gauge/gravity correspondence is
a good approximation. So, let us see the appearance of this fundamental and anti-
fundamental strings in the gravity side. In the gravity side, the spacetime is curved as
given in (6.28). Although the fundamental and the anti-fundamental strings stretch
in the direction r , it turns out that they can have lower energy once the strings are
connected in the AdS spacetime, actually because of effects of the curved spacetime.
As the energy is originally infinite because we have infinitely long strings stretched,
we may regard the inter-quark potential energy as the energy gained by the string
connection. That is, the problem of the inter-quark potential reduces to a geometrical
problem of what configuration of the string minimizes its length in the curved
spacetime.

The minimal length problem in the curved spacetime is not easily solved, but one
can solve it concretely. Here is the result. The inter-quark potential is given as, after
the calculation in the gravity theory,

V.L/ � �
p
�

L
: (6.32)

Because this is not proportional to L, it is not a confining potential (6.19). In fact, it
is expected that the potential is not a confining potential. I will explain that this
is because of a symmetry called “conformal symmetry” which the non-Abelian
theory attained on the D3-branes has. Since in the actual QCD there is no conformal
symmetry like this, we need to figure out some way to apply this gauge/gravity
correspondence to QCD. I will tell the scheme and a derivation of the confining
potential at the end of this section.
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6.4.6 Coincidence of Symmetries in Gauge/Gravity
Correspondence

An important evidence for the correspondence between the non-Abelian gauge
theory and the gravity is that their symmetry coincides. Let us see it here.

The non-Abelian gauge theory on the D3-branes on top of each other has
a property that it is invariant under conformal transformations. The conformal
transformation stands for a transformation which multiplies by a constant the four-
dimensional coordinate of the spacetime on which the non-Abelian gauge theory
lives,

x� ! Cx�: (6.33)

When a field theory is invariant under this transformation, the theory is called a
conformal field theory (which is abbreviated as CFT). On a field �.x/, in general,
the conformal transformation is written as

�.x/ ! C	�.cx/: (6.34)

	 is a number given for each field, and called a scaling dimension. To make sure
whether a field theory is invariant under this conformal transformation, if quantum
effects are not taken into account, it is enough to see the invariance of the action
of the field theory. In fact if 	 is taken to be the same as the mass dimension
of the field (Here, mass dimensions stand for how to count dimensions with a
dimension of mass defined to be C1 in the unit system adopted in this book, with
the velocity of light c D 1. For instance, length has a mass dimension Œ�1�, and
energy has a mass dimension Œ1�.), and if in the action there is no constant having
a dimension such as the mass m, the action turns out to be conformally invariant.
This is because the mass dimensions are originally defined such that the dimension
of the total action is zero, and the conformal transformation is just a multiplication
by constants according to the mass dimensions. If constants with a mass dimension,
such as m, appears in the action, then they are fixed constants so not conformally
transformed. However, if some of the quantities do not transform according to their
mass dimensions like (6.34), the mass dimension of the action does not vanish, so
after all, the action is not invariant.

Now, the non-Abelian gauge theory appearing on the D3-branes on top of each
other has no constant with a mass dimension. The only constant is the coupling
constant of gauge fields, and its mass dimension is zero. That is, this theory is
conformally invariant classically. And it is known that even with quantum effects
this theory is indeed conformal invariant. That reason is a huge supersymmetry
which this gauge theory has. I mentioned that D-branes correspond to BPS black
p-branes in Sect. 4.2, where “BPS” means having unbroken supersymmetries. As
a result of that, the non-Abelian gauge theory appearing on the D3-branes also
has the large supersymmetries. This non-Abelian gauge theory is called “N D 4

supersymmetric Yang–Mills theory.” “Yang–Mills” theory stands for a theory of the
gauge field part in non-Abelian gauge theories, and gives us basis of non-Abelian
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gauge theories. AlthoughN expresses the number of super-symmetry, the important
point is that conformal symmetry is guaranteed in this theory thanks for many super
symmetry. The N D 4 supersymmetric Yang–Mills theory is a CFT. From this, the
gauge/gravity correspondence is also called “AdS/CFT correspondence.”

As the conformal symmetry exists on the non-Abelian gauge theory side, it
should be seen also on the gravity side. On the gravity side, the theory is defined
by the AdS spacetime (6.28). The conformal symmetry of the gauge theory is
understood as a symmetry which does not change the metric of this AdS spacetime.
for simplicity, we consider (6.10) which is equivalent to (6.28). Since metric is
transformed as (4.5) in coordinate transformations, the conformal transformation
(6.33) generates a transformation g11 ! .1=C 2/g11. Here, at the same time if we
make a transformation

x5 ! x5 C .1=k/ logC; (6.35)

the factor 1=C 2 can be absorbed. That is, the metric (6.10) of the AdS spacetime is
invariant if we perform (6.33) and (6.35) simultaneously. Therefore, the conformal
symmetry can be seen as a symmetry of the metric in AdS spacetime.

In addition to this, there are other symmetries which coincide on the both sides.
For example, in the N D 4 supersymmetric Yang–Mills theory, there are six kinds
of scalar fields (and for each we have N2 species.) You might understand this
number six, if you remember that the scalar fields represent the location of the
D3-branes in the 10-dimensional spacetime. We choose arbitrary two fields among
these six scalar fields, and combine them to form a complex field, and then we make
a constant phase transformation. Then it is known that the theory is invariant against
this transformation. On the other hand, on the gravity side, remember that there is a
five-dimensional sphere in addition to the AdS spacetime. As this five-dimensional
sphere does not change under a rotation around an axis of the sphere, so the metric
standing for a the sphere does not change. This rotation makes the metric invariant.
As you can see here, on the both sides of the gauge/gravity correspondence, the
symmetry coincides.16

6.4.7 Toward Further Understanding of Quarks

Let us consider why the potential between the quark and the anti-quarks does not
become a confining potential. Since this non-Abelian gauge theory has a conformal

16For readers familiar with group theory, here I will precisely write what the symmetry is.
Combining the conformal symmetry and Lorentz symmetry of the 3C 1 dimensional spacetime, it
turns out to be a symmetry called SO(2,4). This is called a conformal group. SO(2,4) corresponds
to a symmetry which does not change the metric of the five-dimensional AdS spacetime (called an
isometry). And the transformation of the phase of the scalar fields described here is understood as
a group called SO(6) acting on the six scalar fields. This turns out to be an isometry of the metric
of the five-dimensional sphere on the gravity side.
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symmetry quantum-theoretically, there is no constant with a mass dimension in
the theory. When the quark and the anti-quark are put by the distance L in this
theory, L turns out to be the unique parameter with a mass dimension Œ�1�. Then,
all quantities with mass dimensions have to be written by this constant L, to fit the
mass dimensions. On the other hand, the mass dimension of the potential energy V
is definitely 1. Therefore, the potential V has to be in inverse proportion to L. That
is, the confinement does not occur.

This is a result of the conformal symmetry, and it can be said that (6.32) satisfies
it in a right way. Here the interesting is the coefficient of (6.32), that is, a numeratorp
� D gYM

p
N . Any perturbative calculation of Feynman graphs on the gauge

theory side should provide only even powers of gYM, however, (6.32) does not have
it. It is considered that, when the coupling constant of the gauge theory is strong,
some effects (called non-perturbative effects) which cannot be calculated by the
perturbation theory appears and they change the coupling constant dependence. To
say more concretely, the coefficient of the potential should be proportional to .gYM/

2

in the perturbation theory (which is the electrical charge of the quark multiplied by
that of the anti-quark), but at the strong coupling, it turns out to be proportional to
.gYM/ as in (6.32). Since gYM is much less than .gYM/

2, it is interpreted that the
electric charges are screened by the non-perturbative effects at the strong coupling.
In this way, by the gauge/gravity correspondence, we can calculate classically the
effects which cannot be calculated in the perturbation theory.

The reason why the confining potential does not appear is the conformal
symmetry. So, if a confining potential appears in the gauge/gravity correspondence,
then we have to adopt what is not an AdS spacetime on the gravity side. It means
that we may consider, on the gravity side, a spacetime which does not have a
symmetry corresponding to the conformal symmetry. However, you cannot bring
in whatever you like. If you do so, we miss what the corresponding gauge theory
is. Therefore, various deformations of the D3-branes which we considered have
been tried in the gauge/gravity correspondence. Though I cannot describe all the
challenge because they are too many, let us finish this section by introducing an
important example briefly (Fig. 6.25).

In the foregoing gauge/gravity correspondence, the x3 direction is along the
D3-branes, and this is an infinite length. Here, let us compactify this into a
circumference. With this only, symmetries does not break much, so in order to
break the supersymmetry, we impose the following boundary condition: when
fields go around this circumference once, bosonic fields come back to its original
form while fermionic fields acquire a minus sign. This boundary condition breaks
completely the supersymmetries which interchanges the bosons and fermions, so
this is appropriate for us. With this compactification with making the radius of
circumference to be small enough, this theory becomes a Yang Mills theory having
no supersymmetry. However, the spacetime dimension turns out to be 3. In this
way of the compactification, also in the gravity side, we have to compactify the
x3 direction too. However, as a matter of fact, just the gravity solution of the
compactified AdS spacetime is unstable, and it is known that we reach a solution
with a deformed central part r � 0. At large r it is the same as the original AdS
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Fig. 6.25 In a deformed AdS spacetime, the connected string has a smaller energy if it sweeps the
bottom of the spacetime. Since the length is proportional to the string distance L at the infinity,
there appears a confining potential between the quark and the anti-quark

spacetime, but for small r , it deforms and becomes a metric different from the AdS
spacetime.

In this spacetime we compute the configuration of a fundamental string such that
its energy is minimized, in the same way, then we will find that the confinement
occurs. This, to say briefly, is because, since the gravity field around the center is
deformed, the string can lose its energy when it goes through a certain value of r
(this value depends on your choice of the coordinates, but here let me suppose that
it is r D 0). The energy is proportional to the length of the strings r D 0, which
is L. In Fig. 6.24 right, we see that the string hanging down reaches r D 0 and there
it sweeps at r D 0 by the length L. As a result of forming a right angle, the shape
of the string turns out to be a part of a rectangle. So the length of the string at r D 0

is L. Therefore, as the energy of the string is proportional to L, the confinement
potential can be reproduced.

The confinement potential like this has been examined by computer simulations
of non-Abelian gauge theories at strong coupling, and is known that there is no
contradiction with results using the gauge/gravity correspondence. Calculations for
checking the gauge/gravity correspondence have been also made for other various
physical quantities.17 Gravity theories corresponding to gauge theories which are
close to QCD have been studied, and recently the mass spectrum of mesons
appearing in QCD can be nearly reproduced by the calculations in the gravity

17For example, in non-Abelian gauge theories, it is known that there are states called glueballs
which are bound states of two or more gluons. The mass spectrum of these glueballs calculated by
using the gravity theory coincides almost with results of numerical calculations of the spectrum on
computers.
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theories. However, the evaluation of the spectrum contains various assumptions,
and so there are also some issues. For example, as an essential problem, in
this gauge/gravity duality it is considered that only the large N limit can make
it precise, while in the case of QCD which has N D 3, it hardly becomes an
accurate correspondence. In spite of that, it is quite interesting and a new physics
that classical computations in gravity theories with completely different properties
and dimensions can give various hadron masses which cannot be calculated in
perturbation theory because of the strong coupling, even with N D 3 ¤ 1. There
is no doubt that it will provide a new perspective to the elementary particle physics
in the future.

The gauge/gravity correspondence is not a proved correspondence. Although in
this section we considered the D3-branes and from there we have derived the non-
Abelian gauge theories and the gravity theories, first of all, the origin, string theory,
has not been exactly formulated beyond its perturbation theory yet. In string theory,
methods on how to calculate scattering amplitudes for given states of strings are
known in the case of a small coupling constant gs, which is a perturbation theory.
On the other hand, in field theories, solitons are a typical non-perturbative effect.
We cannot find solitons forever if we only look at the perturbation theory. Now
that D-branes turn out to be the solitons, the definition of string theory beyond its
perturbation theory, which can describe strings and D-branes unifiedly, has not been
given yet. In the case of field theories, once an action of a field is given, then it gives
a perturbation theory and also non-perturbative effects. However, in string theory, a
conclusive action corresponding to the field theory action has not been known yet.18

In the next last chapter, I will finish this book by introducing discussions by present
researchers for the big problem on what is the ultimate theory defining string theory.

From Sects. 6.1 to 6.4, various new paradigms of elementary particles physics
and cosmology have been described. These, in each subject, often give us not only
new visions to re-interpret known physical phenomena, but also an essential under-
standing and methods which are actually applicable. Moreover, these subjects keep
developing with interacting closely with each other. I hope you have grasped that,
in elementary particles physics and cosmology, D-branes, the multi-dimensional
solitons appearing in string theory, are driving us into a big excitement among
researches!

18The “string field theory” which was mentioned in Sect. 4.1 might become the “field theory
action” supposed here. However, in the string field theories, there are various problems: for
example, it is difficult to include supersymmetries, and to perform a procedure called “second
quantization” which is necessary for any field theory to have a particle picture.



Chapter 7
Toward a Description of Ultimate Theory

In Chap. 6, we saw that drastic changes in various physics around string theory
have been brought from string theory, by the discovery of D-branes. Although each
of these are very meaningful and interesting developments, on the other hand how
about developments in string theory itself? How has string theory been developed by
advent of D-branes? String theory is a candidate theory unifying all the elementary
particles and their interactions. What extent has string theory been understood as the
ultimate theory to?

In field theories, solitons have an important meaning theoretically. As the duality
exchanging solitons for elementary particles appearing in various theories is a
symmetry exchanging a weak coupling for a strong coupling, it turns out that it
is very useful to analyze the cases with strong couplings in field theories, and this
becomes a clue to know the structure of the field theories. And, in string theory,
D-branes are the solitons (see Sects. 4.1 and 4.2). As a matter of fact, in string theory,
as a conjecture derived from supergravity theory, there is a strong-weak coupling
duality called S-duality, and it is a symmetry exchanging fundamental strings for
D-branes. Then, if we consider D-branes as fundamental constituent elements, can
we make a new theoretical formalism with which we can use string theory even in
the region of strong couplings of it, that is, a non-perturbative region in which we
cannot use the perturbation theory? And does it become the ultimate theory?

String theory is being developed toward possible answers for these questions,
currently. The role of D-branes is important and adventurous, to form the basis
of string theory as an ultimate theory and even replace the role played by strings.
Let us see this development in this chapter. At first, I shall explain a problem that
the definitions of string theory is not known yet, and a problem that a principle
for determining the vacuum of string theory is missing. It is directly connected
with the problem of the spacetime dimension of our world and the problem that
the mechanism of the compactification is still missing. Therefore let us see what
the spacetime dimension is, from the viewpoint of D-branes. In fact, it will be
revealed that the spacetime dimension is not a definite concept in the viewpoint
of string theory and D-branes, but an “emergent concept” from physical theories.
This thought brings us to “M-theory” in 11-dimensional spacetime, which will be
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explained later, and its concrete realization “Matrix theory.” This Matrix theory is a
theory consisting of D-branes as fundamental constituents! Let us follow surprising
developments in the string theory mainstream.

7.1 Definition of String Theory?

In Sect. 2.4, we have learned that, to solve a theory thoroughly, it is important to
clarify the symmetry exchanging solitons for elementary particles. When we say “a
theory is solved,” it means the situation that for a given certain field theory, including
all quantum effects, one can determine the vacuum of the theory and calculate the
mass spectrum of particles at the vacuum, and information of particle scatterings.
These are the most important quantities in elementary particles physics.

However, as for this “solving the theory,” string theory has not reached yet even
the start point. This is because, as mentioned in the last part of the previous chapter,
in string theory the thing corresponding to an action in field theories is not known
yet. Namely, this is not a problem on calculation, but a fundamental problem. It is a
problem of how to define string theory.

String theory is a theory with strong constraints, and the rules of string perturba-
tion theory (that is, calculations of scattering amplitudes at small coupling constants)
are already known. Any definition of string theory beyond the perturbation theory,
namely, a “non-perturbative definition” should automatically derive the rules. In the
standard case of field theories , once a field theory action is given, we can derive
methods for calculating Feynman graphs. On the other hand, in the current string
theory, we have to think of it backwards. And as we saw in this book, string theory
includes supergravity theory at low energy, and its solitons, the black holes are
regarded as D-branes. The information of these solitons should be implemented in
any definition of string theory. That is, the S-duality which we saw in Sect. 4.2 has
to be derived from the definition of string theory. Saying in other way, the S-duality
turns out to be an important point for seeking for the definition of string theory.

And, because string theory has this problem, it leads that string theory also
has a serious issue that “the vacuum of string theory has not been determined.”
Although string theory is considered to be a theory unifying all the forces and
the elementary particles, so far string theory cannot answer questions concerning
concrete properties of particles, for example, a question like why the electron mass is
the value observed. In order to reproduce properties of observed elementary particles
as precise as possible, various selections of the internal space in compactification
have been tried. However, this may not mean that string theory derives the standard
model of elementary particles, but means that we look for a compactification in
string theory which suits the standard model. If string theory is the ultimate theory,
there should be a mechanism which can determine the internal space compactified,
in string theory itself.

Unfortunately, the mechanism has not been found yet. For instance, let us
consider the flat 10-dimensional spacetime which is not compactified at all. String
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theory has no problem there, as the perturbation theory can be written consistently.
The flat 10-dimensional spacetime is stable perturbatively. Hence, the problem
of the compactification mechanism is a non-perturbative problem beyond the
perturbation theory, and it needs a definition of string theory beyond the perturbation
theory. To sum all, if we consider string theory as a theory giving the complete
explanation of the properties of the actual elementary particles, we need a non-
perturbative definition of string theory, inevitably. This is called a problem of
vacuum selection. To select a vacuum of string theory means to determine a
target spacetime in which strings propagate, which is nothing but to determine the
compactified internal space.

Recent accurate observation of cosmic microwave background suggests that a
non-zero cosmological constant (the vacuum energy) exists in the universe. So,
many research has been carried out to reproduce a 4-dimensional spacetime with
a non-zero cosmological constant from string theory or supergravity theory with
selected compactifications. According to the results, the number of vacua which are
consistent is quite huge, even at some specific setup. This is called a “landscape.”
The landscape is an approach to seek for a low energy cosmological model close
to the reality by adding effects of string theory or D-branes to classical solutions of
supergravity theory. So, the problem of this landscape originates in the fact that we
miss a non-perturbative definition of string theory.

In the following of this chapter, as a conclusion of this book, I would like to intro-
duce interesting understanding of, and approach to, a non-perturbative string theory,
which appeared in researches for solving this big problem, after the appearance of
D-branes. Among the various approaches, a common keyword is the “dimension.”
In the following explanation, you will understand that the definition of string theory
should be related closely with a new idea about dimensions There, the multi-
dimension solitons of string theory, D-branes, play an extremely important role.
D-branes might give a definition of string theory and break new ground for the
ultimate theory.

7.2 D-Branes and Their Dimensions

To answer the questions why a compactification occurs and why our spacetime is
of four dimensions, first we need to consider in string theory how the spacetime
dimension is understood. As a matter of fact, in string theory, the spacetime
dimension is a concept which depends on the situation we are dealing with. Let
us see this interesting fact by following some examples below.

When we make a Kaluza–Klein mechanism of the compactification in field
theories, as we saw in Sect. 3.2, infinite kinds of particles called KK particles
appear. Their masses are given by (3.12), and in the case that the internal space
is a circumference with a radius R, they are written as

m D jsj=R; (7.1)
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Fig. 7.1 The T-duality. Left: a string moves in the compact direction with a momentum in a
compactified space. Right: a string wrap the compact direction

where s is an integer. Since the KK particles come from a Fourier expansion
along the direction compactified, the integer n can be regarded as a momentum
of the compactified direction. If we make a KK compactification for massless
particles appearing in string theory, in the same way, particle modes with the mass
(7.1) appear. Interestingly, in string theory, in addition to them, modes intrinsic to
strings appear. They are closed strings winding the compact direction (Fig. 7.1).
As the mass of this closed string is the length of the string 2�R multiplied by the
string tension 1=.2�.ls/2/, it is, with the winding number w which is an integer,

m D jwjR=.ls/2: (7.2)

In this expression, contributions from oscillations of the string are ignored.
Let us make the following transformation on these (7.1) and (7.2),

R ! R0 D .ls/
2

R
; s $ w: (7.3)

Then, interestingly, the states (7.1) with momenta in the compact direction are
exchanged with the states (7.2) with the winding numbers, and the total spectrum
turns out to be invariant. Moreover, although an infinite number of modes coming
from the oscillations of the string has been ignored here, even with all of them, this
invariance still holds. That is, a closed string theory compactified by a radius R is
equivalent to a closed string theory compactified by a radius R0. This is called a
“T-duality.”1 This transformation (7.3) is a duality transformation because trans-
forming twice brings things back to the original, and “T” is the initial letter standing
for a target spacetime.

1The T-duality was found by K. Kikkawa and M. Yamasaki, in 1984.
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What is interesting in this duality is that a compactification with a very small
radius R of the circumference gives the same result as that with a large radius
compactification. If we take a very smallR to try to make the target space dimension
decrease, too small radius, as opposed to the expectation, is equivalent to a string
theory with a large radius of that direction. That is, only when we look at an energy
scale which is lower than both 1=R and 1=R0, we observe a dimension deceasing.
However, at an energy scale which is lower than 1=R but higher than 1=R0, the
dimension does not appear to decrease, and there appear KK-like particles with
masses of order 1=R0.

What happens for a T-duality in the presence of a D-brane? We will see that,
as a matter of fact, the T-duality is a transformation which changes the dimension
itself of the worldvolume of the D-brane thoroughly. At first, we consider a
situation with a D-brane localized in the compactified space direction (Fig. 7.2
right). Namely, strings satisfy the fixed boundary condition in the direction of
the compactification, and strings can wrap the compactified circumference. Let
us perform a T-duality transformation to this system. The string with a winding
number has to be transformed to a string with a momentum in the compact direction.
However, in order to have a momentum in the compact direction for the open string,
the direction should take a free boundary condition. That is, the D-brane should
extend along the compact direction (Fig. 7.2 left). Therefore, a T-duality along a
direction transverse to a Dpbrane changes it to a D(p C 1)brane! And as a doubled
T-duality transformation brings things back to the original, once in Fig. 7.2 left
a T-duality along the D(p C 1)-brane is taken, then it becomes the Dp-brane of
Fig. 7.2 right. To summarize all, we have the following rules:

• T-duality along D-brane: Dp ! D(p � 1)
• T-duality transverse to D-brane: Dp ! D(p C 1)

Fig. 7.2 The T-duality on D-branes. Left: a D-brane (thick line) wrap a compact direction. On
the D-brane, an open string move freely in the compact direction, namely, the direction of the
D-brane worldvolume. Right: a D-brane (black blob) is completely localized. A string ending on
the D-brane wrap the compact direction
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Since this is a duality and so the string theory before and after thetransformation are
equivalent, after all, even the dimensions of D-branes change in this way, theories
turn out to stand for the same physics.2

Let us remember that, in type IIB superstring theory used in this book, Ramond–
Ramond fields have even number of indices such as C ,CMN, and CMNPQ, therefore
only odd numbers for p are allowed for Dp-branes. There, the T-duality trans-
formation brings p to be only even numbers. This theory is called type IIA
superstring theory, and at low energy, Ramond–Ramond fields have odd numbers
of indices, such as CM and CMNP. This type IIA superstring theory and the type
IIB superstring theory are equivalent to each other, after a compactification at
circumferences satisfying a certain relation on the radii (one is R, while the other
is R0).

In this way, by using the T-duality, D-branes with different dimensions are shown
to give equivalent string theories. Then, how about the S-duality? As we saw in
Sect. 4.2, in type IIB superstring theory or in type IIB supergravity, the S-duality
is a self-duality, and is a duality exchanging fundamental strings for D1-brans in
the same theory, as in the duality exchanging solitons for elementary particles.
And the S-duality is a duality exchanging weak couplings for strong couplings.
Then, in the case of the type IIA superstring theory, what is an equivalent of the
S-duality? What is the strong coupling region of the type IIA superstring theory?
I will describe next that it actually turns out to correspond to a 11-dimensional
theory.

7.3 M-Theory: Emergence of 11-Dimensional Spacetime

In 1995, when a revolutionary paper on D-branes by J. Polthinski was released,
another important development was made in string theory. It was an insight by
E. Witten that at the strong coupling region of type IIA superstring theory, the space-
time dimension increases by one, and then the theory becomes 11-dimensional. Why
does the dimension increase by one at the strong coupling?

It is known that from 11-dimensional supergravity theory, type IIA supergravity
theory in 10-dimensional spacetime can be obtained by a dimensional reduction,
which is a 1-dimensional Kaltza–Klein compactification with the compact radius
taken to be zero. The 11-dimensional supergravity theory is known as a beautiful
theory with the highest dimension among supergravity theories since before. There
appear only two kinds of bosonic fields, and they are a gravitonGmn.x/ and a gauge
field Amnp.x/ with antisymmetric indices (m; n; p D 0; 1; � � � ; 10). Let us consider

2Though the discussion here is rather heuristic, actually T-duality can be defined as a transforma-
tion exchanging the coordinate � and � on the worldsheet of a string, and with it, it can be shown
that the free boundary condition and the fixed boundary condition exchange under the T-duality
transformation.
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the dimension reduction for these fields by following Sect. 3.2,

GMN D e�.2=3/�gMN; (7.4)

G10 10 D e.4=3/�; (7.5)

GM 10 D �e.4=3/�CM : (7.6)

Here, the upper-case indices M;N are for the 10-dimensional spacetime indices
running from 0 to 9. With this dimensional reduction, the gravitational part of
the 11-dimensional supergravity theory is actually identified with a part of the
10-dimensional type IIA supergravity theory. � is the dilaton field and CM is the
Ramond–Ramond field.

How large is the mass of the KK particles (called “KK gravitons” as they are
related to the gravitational parts) appearing in this Kaluza–Klein compactification?
The radius of the compactification is determined by the metric of the direction
G10 10, and is given as3

R �
p
G10 10 D e.2=3/�: (7.7)

On the other hand, the mass is measured by the metric (7.4) of the 10-dimensional
spacetime. Taking into account the factor of the right side of (7.4), the mass of the
KK particle is, with an integer s,

m � e�.1=3/� jsj
R

D ne�� D jsj
gs
: (7.8)

Here in the end we used the relation (4.13) between the dilaton and the string
coupling constant. Namely, the mass of the KK particles has gs in its denominator.

Let us see the meaning of this relations (7.8). First, this KK particle is a solitonic
object in string theory. This is because gs should not appear in the denominator
of the mass formula, for string oscillation modes in type IIA superstring theory.
Namely, (7.8) is a non-perturbative state, a soliton. The solitons of type IIA
superstring theory can be identified with D-branes in the same way for type IIB
which we have seen. In the case of type IIA, as p for Dp-branes is even, among
them there are D0-branes, which are D-branes having particle-like worldvolumes,
and those are identified with the KK particles. In fact, in the process of the dimension
reduction (7.6),GM 10 is identified with a Ramond–Ramond field in ten dimensions,
therefore the KK particles with the momentum s of the 11-dimensional direction x10

should have an electric charges of this gauge field GM 10, which is consistent.
The KK particles become lighter as the radius of the compactification gets larger.

On the other hand this process corresponds to making the string coupling constant gs

larger, in terms of the D0-branes. Therefore, when the coupling constant grows, the

3The metric is the scale for measuring the intrinsic length of that direction, and to measure the
length of the compactified circumference by using it, we understand the relation between the
circumference and the metric.



154 7 Toward a Description of Ultimate Theory

direction of the 11th dimension emerges! Namely, when the coupling gets stronger
in type IIA superstring theory, it is suggested to become an 11-dimensional theory.
This 11-dimensional theory is called “M-theory.”4

The important point in this discussion is that dimensions of spacetime is not
an essential element at determining theories, but an emergent concept. When we
consider physical theories, first we usually fix the dimension of spacetime and then
start discussions. However, in the case of string theory, depending on what kind
of situation we consider, the spacetime dimensions themselves change. In the case
of type IIA superstring theory, in particular when its coupling constant becomes
strong, a new dimension appears. This situation resembles very well that of the
gauge/gravity correspondence which we saw in Sect. 6.4. The strong coupling
region of non-Abelian gauge theories can be described by gravity theories with
spacetime dimensions increased by one. In this way, spacetime dimension is not
a definitive concept but an “emergent concept.”

Then, what at all is the M-theory? The type IIA supergravity theory is derived
by the massless fields of the type IIA superstring theory, then what is the “stringy”
theory which derives the 11-dimensional supergravity theory? We don’t know the
answer to this question yet. However, there is some evidence supporting the idea
that this is not a theory of strings stretching in one dimension but of a “membrane”
extending in two dimensions.

First of all, in the 11-dimensional supergravity theory, there is a gauge field
with three indices, Amnp. Then, applying the discussion of Sect. 4.1, we find that
a source (an electric charges) for the gauge field with the three indices is an object
having a 2C1 dimensional worldvolume, that is, a “membrane.” This membrane is
called an “M2-brane.” And the object with a magnetic charge turns out to have a
worldvolume of 5C1 dimensions in the 11 dimensions, as we understand by using
a Hodge duality of Sect. 4.1. This is called an M5-brane. By assuming these two
objects, we can show all the players in the type IIA superstring theory appear by the
dimension reduction. In the type IIA superstring theory, there are D0-, D2-, D4-, and
D6-branes, in addition to fundamental strings and NS5-branes. This NS5-brane is a
brane having a magnetic charges of the Kalb–Ramond field BMN (as we have seen
in Sect. 4.1, the electric charge is carried by fundamental strings). These various
branes are obtained by the dimension reduction from M-theory, as follows:

type IIA superstring theory M-theory

D0-brane KK particle
Fundamental string M2-brane wrapping x10

D2-brane M2-brane not wrapping x10

D4-brane M5-brane wrapping x10

NS5-brane M5-brane not wrapping x10

D6-brane KK-monopole

4M-theory was named by E. Witten.
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The KK particles have the “electric charge” which is momentum along the
direction of the compactification, and the last KK monopole stands for one with its
magnetic charge. To say concretely, it is a classical solution of the 11-dimensional
supergravity theory and it is smooth at the center.

In this way, assuming M2-branes and M5-branes can let us understand D-branes
and fundamental strings unifiedly. This is an extremely attractive idea. However,
in the theory of the M2-brane which is a two-dimensional membrane, there is
an essential problem that it is quite difficult to quantize oscillation modes of the
membrane as opposed to string theory. As quantized oscillation modes have not been
obtained, we do not know at all what kind of physics the M2-branes bring us. We do
not know even the spectrum of the theory, and cannot calculate scattering processes
between the M2-branes. So, we cannot follow the idea of M-theory as a definition of
string theory. However, what came from the quantization problem of the membrane
theory of the M2-branes was “Matrix theory” which will be described next.

7.4 Matrix Theory: M-Theory Made by D0-Branes

Matrix theory is a theory whose fundamental object is a D0-brane, namely, a KK-
graviton. This is a theory of particles, and its concept is as follows. We saw that
the 11-dimensional spacetime appears at a strong coupling of string theory. If we
want to see this 11-th dimension, it is clear that we should consider various states
with momenta of the 11-dimensional direction. So, let us bring many D0-branes and
consider a many-body system of them. In particular, supposing that the number of
the D0-branes is N , we take a limit N ! 1, then, in the 11-dimensional theory, it
should correspond to considering a sector with infinite momentum in the direction
of x10 (called an infinite momentum frame). Although this does not necessarily
mean to see the whole M-theory, we can see at least a part of physics of the 11-th
dimension.

Then, what is the physics of the many D0-branes described by? It is the scalar
field on the D-branes, as we see the oscillation modes of a string ending on
D-branes in Sects. 4.2 and 5.2. Since the D0-branes have 0C1 dimensions for
their worldvolumes, this scalar field is function of only time. Moreover there are
N2 kinds of the scalar fields ˚.t/ meaning for the location of the D0-branes, in
the present case. (Here we did not count the species coming from the dimensions
transverse to the D0-branes.) It is natural to consider a decomposition of this N2

species into the degree of freedom of N � N , as for the gluons in the ’t Hooft
large N limit in Sect. 6.4. The scalar fields with indices ha; bi .a; b D 1; 2; : : : ; N /

can be naturally regarded as a component .a; b/ of an N by N matrix. That is, a
“matrix-valued scalar field theory in 0C1 dimension” like this is the theory of the
many-body system of the D0-branes. This theory is called “M(atrix) theory.”5 The

5M(atrix) theory was proposed by T. Banks, W. Fischler, S. Shenker, and L. Susskind in 1996,
and is called BFSS Matrix theory by taking their initial letters. On the other hand, a matrix model
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reason why parentheses are added like “M(atrix)“ especially here is that it is for
M-theory.

What we have to pay attention to is that the field ˚i.t/ is a function of only time.
That is, this is not a field theory but rather a quantum mechanics standing for motion
of point-like particles. The difference from the standard quantum mechanics is that
the part corresponding to the location of the particles becomes N � N matrices.
Therefore, a theory for “particles feeling spacetime with matrices” is the M(atrix)
theory. It would be exquisitely wonderful if this kind of an interesting generalization
of quantum mechanics may turn out to be really proven to represent M-theory.

M(atrix) theory uses the D0-branes (the KK gravitons) as fundamental elements,
but M(atrix) theory should be able to describe other objects such as M2-branes.
Let us see how the objects with different dimensions, such as M2-branes, are
constructed.6 There, the essence that M(atrix) theory is written by matrices appears.

Let us write the field of theN�N matrix as˚i .t/. Here i is an index standing for
the dimensions transverse to the D0-branes. When only the diagonal entries of˚i.t/

are non-zero, the meaning of the scalar field (4.12) described in Sect. 4.2 is clear.
When the n-th entry among N diagonal ones is written as ˚i

.n/.t/, then it stands
for the coordinates of the location of the n-th D0-brane at time t in the spacetime.
I will explain why this is the case. The matrix element of the p-th row and the q-th
column of the matrixN �N is the scalar field coming from the oscillation of a string
connecting the p-th D0-brane and the q-th D0-brane. Therefore, as the diagonal
elements of the matrix correspond to just the case that a string has its ends on the
same D0-brane, we can directly use the derivation of (4.12) as we saw in Sect. 4.2,
and the value of the diagonal elements stand for the location of the D0-branes.

However, when non-diagonal elements of the matrix are nonzero, this interpreta-
tion can not be used. What happens to the D0-branes when the off-diagonal matrix
elements appear, showing the essence of what matrices are? As a matter of fact, it
turns out to stand for an M2-brane! Then let us see how this solution looks like,
concretely. There is a solution of the equation of motion of the M(atrix) theory as
follows, (while I will not write the action of the theory,)

Œ˚2; ˚3� D 1N�N : (7.9)

Other˚i are put to zero. Here, 1N�N in the right hand side is anN byN unit matrix.
If we take a trace of the both sides, as we learn easily, the left hand side is zero
while the right hand side is N , which is inconsistent, for finite N . However, if N
is infinite, it does make sense. Equation (7.9) has the same form as the well-known

which provides a definition of type IIB superstring theory was proposed. This is called IKKT
matrix model (or type IIB matrix model) which was named after the initial letters of advocators
N. Ishibashi, H. Kawai, Y. Kitazawa, and A. Tsuchiya, and researches have been engaged to make
clear a mechanism of spacetime generation based on this.
6M(atrix) theory is derived by using the method called a matrix regularization, from a theory of an
M2-brane (membrane). Here I omit the derivation.
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Heisenberg algebra in quantum mechanics,

Œq; p� D i
h

2�
: (7.10)

(q is a coordinate of a particle, p is a momentum of the particle, and h is the Planck
constant.) it is known to have a representation (a solution) with matrices of infinite
dimensions (N D 1).

For a solution of (7.9),˚2 and˚3, we can not find one whose nonzero entries are
only diagonal ones. This is because it would lead to a vanishing commutator Œ˚2;

˚3�. Namely, this is not a situation where D0-branes are localized here and there in
the spacetime. Instead of it, infinite number of D0-branes gather and get bound, and
they fill the direction x2 and the direction x3. This is indeed an M2-brane.

In this way, in M(atrix) theory, in spite of starting with lower-dimensional
D-branes, higher-dimensional branes can be constructed. The way to build them
is extremely interesting. When many D0-branes come together, not just D0-branes
see the spacetime but also string connecting them together see the spacetime. And,
by a condensation of the strings (that is, off-diagonal entries of the matrix field ˚
become nonzero), higher-dimensional D-branes are formed. From the view point of
the D0-branes, spacetime is described by matrix degrees of freedom. This provides
us with a completely new perspective of spacetime.

Unfortunately, this very interesting M(atrix) theory has a problem that it is unable
to reproduce a situation, for example, where a single fundamental string propagates
in the spacetime. However, this example of the M(atrix) theory is quite important
in the sense that it gives us a perspective of how D-brane see the spacetime. No
matter how M-theory and string theory are formulated non-perturbatively, this way
of viewing the spacetime should be included at least as an aspect.

In the M(atrix) theory, D0-branes can construct branes with other dimensions.
And, as we saw before, if we use the T-duality, various dimensional D-branes are
related with each other, and if we include also the S-duality, even fundamental
strings join there. This idea that, whichever D-brane we use as a starting point
we finally reach the same complete string theory, is called “brane democracy.”7 As
an embodiment of this idea, for example, why can’t we construct all by starting
from higher-dimensional D-branes? This is a subject which is developing as a
discussion like what we saw already in the last of Sect. 6.2. By using unstable
D-branes with higher dimensions and letting a tachyon condensation occur, lower-
dimensional D-branes are realized as vortex solitons of the tachyon. By preparing
infinite pairs of D9-branes and anti-D9-branes which have the highest dimensions
for the worldvolumes first, one can create arbitrary number of lower-dimensional
D-branes by the tachyon condensation. This idea is called K-theory in mathematics,
and it is applied for a classification of possible kinds of D-branes, but we have to
wait more development to see it as a non-perturbative string theory.

7The brane democracy was proposed by P. Townsend in 1995.
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7.5 Further Developments in String Theory, for Building
Ultimate Theory

In this chapter, my emphasis has been on how the description of spacetime as
seen by D-branes and string theory is different from our familiar perspective of
spacetime. Spacetime dimension is an emergent notion accompanied by physical
theory, and D-branes told us that dimensions vary depending on situations we
consider. And, we have learned that D-branes see spacetime in a strange manner
via matrices. Physics of D-branes which would challenge our common sense on
dimensions, like these, will surely provide us with further surprising physics.

In the 1980s, the ultimate theory unifying all the elementary particles and
interactions was considered to be brought from string theory by generalizing
point-like particles to strings extending in one dimension. However, at present,
we understand that string theory is not a theory just of objects stretching in one
dimension, the strings, but a theory controlled by multi-dimensional objects with
various dimensions – branes – moving here and there. This theory is not simply
that various dimensional objects exist simultaneously, but the whole having every
each independent object as a fundamental ingredient which can build others. These
objects called (D-)branes have various kinds and different dimensions, and the way
they look at the spacetime dimension is extraordinary. In any complete definition
of string theory, mutual relations among the whole of these D-branes with various
dimensions should be realized clearly. It will be something which unify concepts of
different dimensions. Nobody knows what the final definition looks like. However,
compared with 20 years ago, it is true that understanding of what the string
theory has totally changed. The change means that we gradually come to know
the whole view of understanding, including the previous understanding. How does
the final definition of string theory contain the recently-found idea of branes and
M-theory? How does it relate with the standard model of elementary particles and
our observations, as a consistent framework as a whole? To imagine possible answer
is very thrilling. And, it may be the case that we just have not recognized it while it
is very close to us.

However, it may be opposite and the final definition may not be near us but
be very far from us. Some people doubt the meaning of the existence of string
theory, and what they may think the biggest question is that, after all, string
theory seems not to have sound predictive power. In this viewpoint, one might
say that string theory is still far from the goal. We learned in Sect. 3.2 that
higher dimensions are required in string theory and in order for it to be consistent
with our observable four-dimensional spacetime a part of the spacetime should be
compactified tightly. We saw that, as an alternative to the compactification, there is
an attractive method called braneworld, in Chap. 6. However, physical mechanism to
answer the questions such as why the higher dimensional space is compactified, or
why the D-branes exist in the higher dimensional spacetime to give the braneworld,
has not been known yet. Therefore, after all, string theory cannot predict what kinds
of particles at the low energy region of string theory and what kinds of interaction
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and mass spectra they should have. This point is, to be said, the biggest mystery of
string theory. This is a good question at some extent. As I explained at the beginning
of this chapter, this relates with the biggest goal of string theory. The definition of
string theory has not been found yet, and the vacuum of string theory is not known.

However it is too early to conclude that, with this fact only, string theory has
no meaning for existing. This is because we can say that at present, besides string
theory, there is no consistent theory which can calculate quantum corrections of
gravity, at all. In this sense, to pursuit string theory is extremely meaningful.
However, even with this statement, some people may like to have a concrete
meaning via how it can give predictions beyond the standard model, as string theory
is there for going beyond the standard model of elementary particles. A gap of
“sense” between those who need the ultimate theory and those who need a relation
to the present standard model of elementary particles, should be the origin of the
question above against string theory. This gap is quite simplistic, and it is important
to hold and bind both senses organically, as elementary particle physicists. This gap,
so to speak, might resembles the gap which a mathematician feels when he has an
interview on winning his Fields Medal: “how is your research useful for our modern
society?” Although this example is exaggerated, it is sure that there is some kind of
a gap, and it is one of big forces driving researchers of string theory into study.

As achievements of the study, D-branes have provided a new answer concerning
the meaning of existence of string theory. It is the fact that D-branes can reveal
properties of various kinds of physical theories, in spite of not giving some direct
results on the standard model of elementary particles, and the fact that D-branes can
give new methods and paradigms for physical theories. This kind of viewpoint is
opposite to the view mainly concerning relations to the standard model, so I have
not emphasized in this book, However, the stories on the application of D-branes (in
Chap. 6) in this book embody this idea quite well. This is the idea that we use string
theory and D-branes as a method and as a technology to analyze various physical
theories.

For instance, the holography which was mentioned in Sect. 6.4 can be said
to be really along this way of thinking. By considering a D-brane configuration
corresponding to QCD, and taking a near horizon limit of a classical solutions
of gravity, we could calculate various physical quantities which are technically
difficult to calculate in QCD. And in Sect. 6.3, in the study of black holes, the
entropy is reproduced by bringing D-branes and counting the number of states
of strings attached on them. There are also many other examples which have
not been mentioned in this book. For instance, physics of solitons and D-branes
are very closely related. As we saw briefly in Sect. 5.2, by the D-brane method,
in field theories with various spacetime dimensions, new solitons are predicted
to exist, and new properties of known solitons are predicted. And they turn out
to be proved analytically by field theories analytically or numerically. Although
in this book description of a relation between string theory and mathematics of
D-branes is omitted, it often happens that by using properties of D-branes, formulas
in mathematics and relations among invariants have been predicted, are proved by
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mathematicians. These are indeed “predictions” made by string theory, and they are
successful.

Therefore, we can say that, for the question on the meaning of existence of string
theory, D-branes give a little bit exquisite kind of answers. String theory can be
directly applied for not only relations to the standard model of elementary particles
but also to various other physical theories and mathematics, and it gives predictions,
thus is “useful.”

Here, on the meaning of research on D-branes, I gave an explanation from a
little bit different angle. But of course, the genuine goal of researchers working on
string theory is to show that string theory is the theory describing our real world,
and to reproduce and include the standard model, and to complete string theory as
the ultimate theory in that sense. String theory and D-branes are expanding a certain
kind of their “general versatility” which is described above, and developing also
their mainstream for approaching a definition of string theory, steadily. I strongly
hope that the following framework may work well in the future: the all-purpose
versatility in the sense of close relations to various physics described here will
produce feedback to string theory from different aspects of physics, with which
string theory itself develops. E. Witten, who is a leading scientist of string theory,
said in the 1990s that string theory is “a bit of twenty first century physics that
somehow dropped into the twentieth century.” Now, in the twenty first century,
string theory and D-branes take a new step forward, and begin to open new doors to
physics.
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number, 35
phenomenology, 103

Perturbation theory, 45, 101, 133, 144
Photon, 16, 22, 44
�4 model, 26
Planar graph, 135
Planck constant, 45, 101, 122, 157
Planck length, 139
Planck mass, 101, 105
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Point particle, 94
Positron, 94, 128
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confining, 128
inter-quark, 140, 145

(p; q)-string, 87
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Pure state, 122

QCD. See Quantum chromodynamics
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Regge trajectory, 127
Relativity, 72
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90, 101, 113
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junction, 87
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Superstring theory, 59
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type IIA, 152
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Target space, 57
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field, 71
Thermodynamics, 120, 121

first law of, 121
second law of, 121

’tHooft coupling constant, 133
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Type IIB matrix model, 156

Unified theory, 10, 11, 48, 129, 147
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— condensation, 28, 90, 95
— selection, 149
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