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PREFACE

One of the main missions of the Abdus Salam International Centre for
Theoretical Physics in Trieste, Italy, founded in 1964 by Abdus Salam, is to
foster the growth of advanced studies and research in developing countries.
To this aim, the Centre organizes a large number of schools and workshops
in a great variety of physical and mathematical disciplines.

Since unpublished material presented at the meetings might prove of
great interest also to scientists who did not take part in the schools the Centre
has decided to make it available through a new publication titled ICTP
Lecture Note Series. It is hoped that this formally structured pedagogical
material in advanced topics will be helpful to young students and researchers,
in particular to those working under less favourable conditions.

The Centre is grateful to all lecturers and editors who kindly authorize
the ICTP to publish their notes as a contribution to the series.

Since the initiative is new, comments and suggestions are most welcome
and greatly appreciated. Information can be obtained from the Publica-
tions Section or by e-mail to “pub_off@ictp.trieste.it”. The series is
published in house and also made available on-line via the ICTP web site:

“http://www.ictp.trieste.it”.

M.A. Virasoro

Director
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Introduction

This proceedings contains the lectures given at the 2001 Trieste Spring
School on String Theory. Several important and active areas of research in
string theory related topics were covered in this school. One of the main
topics of the School was the recently conjectured duality between gauge the-
ory living on D-branes and and gravity (or more precisely string theory)
living in the near horizon geometry around the D-branes. J. Maldacena
gave a set of lectures on the gauge theory/gravity duality in different exam-
ples. M. Strassler’s lectures dealt with a very interesting generalization of
the gauge theory/gravity duality for the case of a confining gauge theory.
D. Kutasov’s lectures dealt with Little String Theories (LST) that are sup-
posed to describe the physics of the NS5-branes. Using the holographic
principle, interesting features of LST were deduced by describing the string
theory in the background of NS5-branes.

E. Verlinde gave a set of lectures on holographic principle in the context
of radiation dominated FRW universe. Other topics included lectures by
R. Gopakumar on the solitons in non-commutative gauge theories that are
relevant in the context of D-branes in the background on anti-symmetric

tensor field, and lectures by M. Douglas on D-branes on Calabi-Yau spaces.

K.S. Narain
May, 2002
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Abstract

We describe the holographic correspondence between field theories and
string/M theory, focusing on the relation between compactifications of string/
M theory on Anti-de Sitter spaces and conformal field theories. We review
the background for this correspondence and discuss its motivations and the
evidence for its correctness. We describe the main results that have been
derived from the correspondence in the regime that the field theory is ap-
proximated by classical or semiclassical gravity. We focus on the case of the
N = 4 supersymmetric gauge theory in four dimensions. These lecture notes
are based on the Review written by O. Aharony, S. Gubser, J. Maldacena,
H. Ooguri and Y. Oz, [1].
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Large N Field Theories and Gravity 5

1 General introduction

These lecture notes are taken out of the review [1]. A more complete set of
references is given there.

Even though though string theory is normally used as a theory of quan-
tum gravity, it is not how string theory was originally discovered. String
theory was discovered in an attempt to describe the large number of mesons
and hadrons that were experimentally discovered in the 1960’s. The idea
was to view all these particles as different oscillation modes of a string. The
string idea described well some features of the hadron spectrum. For exam-
ple, the mass of the lightest hadron with a given spin obeys a relation like
m? ~ T'J? 4 const. This is explained simply by assuming that the mass and
angular momentum come from a rotating, relativistic string of tension T'. It
was later discovered that hadrons and mesons are actually made of quarks
and that they are described by QCD.

QCD is a gauge theory based on the group SU(3). This is sometimes
stated by saying that quarks have three colors. QCD is asymptotically free,
meaning that the effective coupling constant decreases as the energy in-
creases. At low energies QCD becomes strongly coupled and it is not easy
to perform calculations. One possible approach is to use numerical sim-
ulations on the lattice. This is at present the best available tool to do
calculations in QCD at low energies. It was suggested by ’t Hooft that the
theory might simplify when the number of colors N is large [7]. The hope
was that one could solve exactly the theory with N = oo, and then one
could do an expansion in 1/N = 1/3. Furthermore, as explained in the next
section, the diagrammatic expansion of the field theory suggests that the
large N theory is a free string theory and that the string coupling constant
is 1/N. If the case with N = 3 is similar to the case with N = oo then
this explains why the string model gave the correct relation between the
mass and the angular momentum. In this way the large N limit connects
gauge theories with string theories. The 't Hooft argument, reviewed be-
low, is very general, so it suggests that different kinds of gauge theories will
correspond to different string theories. In this review we will study this cor-
respondence between string theories and the large N limit of field theories.
We will see that the strings arising in the large N limit of field theories are
the same as the strings describing quantum gravity. Namely, string theory
in some backgrounds, including quantum gravity, is equivalent (dual) to a
field theory.

Strings are not consistent in four flat dimensions. Indeed, if one wants to
quantize a four dimensional string theory an anomaly appears that forces the
introduction of an extra field, sometimes called the “Liouville” field [8]. This
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field on the string worldsheet may be interpreted as an extra dimension, so
that the strings effectively move in five dimensions. One might qualitatively
think of this new field as the “thickness” of the string. If this is the case,
why do we say that the string moves in five dimensions? The reason is that,
like any string theory, this theory will contain gravity, and the gravitational
theory will live in as many dimensions as the number of fields we have on
the string. It is crucial then that the five dimensional geometry is curved,
so that it can correspond to a four dimensional field theory, as described in
detail below.

The argument that gauge theories are related to string theories in the
large N limit is very general and is valid for basically any gauge theory. In
particular we could consider a gauge theory where the coupling does not run
(as a function of the energy scale). Then, the theory is conformally invariant.
It is quite hard to find quantum field theories that are conformally invariant.
In supersymmetric theories it is sometimes possible to prove exact confor-
mal invariance. A simple example, which will be the main example in this
review, is the supersymmetric SU(N) (or U(N)) gauge theory in four dimen-
sions with four spinor supercharges (N = 4). Four is the maximal possible
number of supercharges for a field theory in four dimensions. Besides the
gauge fields (gluons) this theory contains also four fermions and six scalar
fields in the adjoint representation of the gauge group. The Lagrangian of
such theories is completely determined by supersymmetry. There is a global
SU(4) R-symmetry that rotates the six scalar fields and the four fermions.
The conformal group in four dimensions is SO(4,2), including the usual
Poincaré transformations as well as scale transformations and special con-
formal transformations (which include the inversion symmetry z# — z*/z?).
These symmetries of the field theory should be reflected in the dual string
theory. The simplest way for this to happen is if the five dimensional ge-
ometry has these symmetries. Locally there is only one space with SO(4, 2)
isometries: five dimensional Anti-de-Sitter space, or AdS5. Anti-de Sitter
space is the maximally symmetric solution of Einstein’s equations with a
negative cosmological constant. In this supersymmetric case we expect the
strings to also be supersymmetric. We said that superstrings move in ten
dimensions. Now that we have added one more dimension it is not surprising
any more to add five more to get to a ten dimensional space. Since the gauge
theory has an SU(4) ~ SO(6) global symmetry it is rather natural that the
extra five dimensional space should be a five sphere, S°. So, we conclude
that N' =4 U(N) Yang-Mills theory could be the same as ten dimensional
superstring theory on AdSs x S° [9]. Here we have presented a very heuristic
argument for this equivalence; later we will be more precise and give more
evidence for this correspondence.
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The relationship we described between gauge theories and string theory
on Anti-de-Sitter spaces was motivated by studies of D-branes and black
holes in strings theory. D-branes are solitons in string theory [10]. They
come in various dimensionalities. If they have zero spatial dimensions they
are like ordinary localized, particle-type soliton solutions, analogous to the
't Hooft-Polyakov [11, 12] monopole in gauge theories. These are called
D-zero-branes. If they have one extended dimension they are called D-one-
branes or D-strings. They are much heavier than ordinary fundamental
strings when the string coupling is small. In fact, the tension of all D-branes
is proportional to 1/gs, where g; is the string coupling constant. D-branes
are defined in string perturbation theory in a very simple way: they are
surfaces where open strings can end. These open strings have some massless
modes, which describe the oscillations of the branes, a gauge field living on
the brane, and their fermionic partners. If we have N coincident branes the
open strings can start and end on different branes, so they carry two indices
that run from one to N. This in turn implies that the low energy dynamics
is described by a U(N) gauge theory. D-p-branes are charged under p + 1-
form gauge potentials, in the same way that a O-brane (particle) can be
charged under a one-form gauge potential (as in electromagnetism). These
p + 1-form gauge potentials have p 4+ 2-form field strengths, and they are
part of the massless closed string modes, which belong to the supergravity
(SUGRA) multiplet containing the massless fields in flat space string theory
(before we put in any D-branes). If we now add D-branes they generate
a flux of the corresponding field strength, and this flux in turn contributes
to the stress energy tensor so the geometry becomes curved. Indeed it is
possible to find solutions of the supergravity equations carrying these fluxes.
Supergravity is the low-energy limit of string theory, and it is believed that
these solutions may be extended to solutions of the full string theory. These
solutions are very similar to extremal charged black hole solutions in general
relativity, except that in this case they are black branes with p extended
spatial dimensions. Like black holes they contain event horizons.

If we consider a set of NV coincident D-3-branes the near horizon geometry
turns out to be AdSs x S°. On the other hand, the low energy dynamics
on their worldvolume is governed by a U(N) gauge theory with N' = 4
supersymmetry [13]. These two pictures of D-branes are perturbatively valid
for different regimes in the space of possible coupling constants. Perturbative
field theory is valid when g;N is small, while the low-energy gravitational
description is perturbatively valid when the radius of curvature is much
larger than the string scale, which turns out to imply that g;/V should be very
large. As an object is brought closer and closer to the black brane horizon
its energy measured by an outside observer is redshifted, due to the large
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gravitational potential, and the energy seems to be very small. On the other
hand low energy excitations on the branes are governed by the Yang-Mills
theory. So, it becomes natural to conjecture that Yang-Mills theory at strong
coupling is describing the near horizon region of the black brane, whose
geometry is AdSs5 X S%. The first indications that this is the case came from
calculations of low energy graviton absorption cross sections [14, 15, 16]. It
was noticed there that the calculation done using gravity and the calculation
done using super Yang-Mills theory agreed. These calculations, in turn,
were inspired by similar calculations for coincident D1-D5 branes. In this
case the near horizon geometry involves AdS3 x S® and the low energy field
theory living on the D-branes is a 141 dimensional conformal field theory.
In this D1-D5 case there were numerous calculations that agreed between
the field theory and gravity. First black hole entropy for extremal black
holes was calculated in terms of the field theory in [17], and then agreement
was shown for near extremal black holes [18, 19] and for absorption cross
sections [20, 21, 22]. More generally, we will see that correlation functions
in the gauge theory can be calculated using the string theory (or gravity for
large gsN) description, by considering the propagation of particles between
different points in the boundary of AdS, the points where operators are
inserted [23, 24].

Supergravities on AdS spaces were studied very extensively, see [25, 26]
for reviews. See also [2, 3] for earlier hints of the correspondence.

One of the main points of these lectures will be that the strings coming
from gauge theories are very much like the ordinary superstrings that have
been studied during the last 20 years. The only particular feature is that
they are moving on a curved geometry (anti-de Sitter space) which has a
boundary at spatial infinity. The boundary is at an infinite spatial distance,
but a light ray can go to the boundary and come back in finite time. Massive
particles can never get to the boundary. The radius of curvature of Anti-de
Sitter space depends on N so that large N corresponds to a large radius
of curvature. Thus, by taking N to be large we can make the curvature
as small as we want. The theory in AdS includes gravity, since any string
theory includes gravity. So in the end we claim that there is an equivalence
between a gravitational theory and a field theory. However, the mapping
between the gravitational and field theory degrees of freedom is quite non-
trivial since the field theory lives in a lower dimension. In some sense the
field theory (or at least the set of local observables in the field theory) lives
on the boundary of spacetime. One could argue that in general any quan-
tum gravity theory in AdS defines a conformal field theory (CFT) “on the
boundary”. In some sense the situation is similar to the correspondence
between three dimensional Chern-Simons theory and a WZW model on the
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boundary [27]. This is a topological theory in three dimensions that induces
a normal (non-topological) field theory on the boundary. A theory which
includes gravity is in some sense topological since one is integrating over all
metrics and therefore the theory does not depend on the metric. Similarly,
in a quantum gravity theory we do not have any local observables. Notice
that when we say that the theory includes “gravity on AdS” we are consid-
ering any finite energy excitation, even black holes in AdS. So this is really
a sum over all spacetimes that are asymptotic to AdS at the boundary. This
is analogous to the usual flat space discussion of quantum gravity, where
asymptotic flatness is required, but the spacetime could have any topology
as long as it is asymptotically flat. The asymptotically AdS case as well as
the asymptotically flat cases are special in the sense that one can choose a
natural time and an associated Hamiltonian to define the quantum theory.
Since black holes might be present this time coordinate is not necessarily
globally well-defined, but it is certainly well-defined at infinity. If we assume
that the conjecture we made above is valid, then the U(N) Yang-Mills theory
gives a non-perturbative definition of string theory on AdS. And, by taking
the limit N — oo, we can extract the (ten dimensional string theory) flat
space physics, a procedure which is in principle (but not in detail) similar
to the one used in matrix theory [28].

The fact that the field theory lives in a lower dimensional space blends
in perfectly with some previous speculations about quantum gravity. It was
suggested [29, 30] that quantum gravity theories should be holographic, in
the sense that physics in some region can be described by a theory at the
boundary with no more than one degree of freedom per Planck area. This
“holographic” principle comes from thinking about the Bekenstein bound
which states that the maximum amount of entropy in some region is given
by the area of the region in Planck units [31]. The reason for this bound is
that otherwise black hole formation could violate the second law of thermo-
dynamics. We will see that the correspondence between field theories and
string theory on AdS space (including gravity) is a concrete realization of
this holographic principle.

Other reviews of this subject are [32, 33, 34, 35, 1].

2 The correspondence

In this section we will present an argument connecting type IIB string theory
compactified on AdSs x S5 to N = 4 super-Yang-Mills theory [9]. Let us
start with type IIB string theory in flat, ten dimensional Minkowski space.
Consider N parallel D3 branes that are sitting together or very close to each
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other (the precise meaning of “very close” will be defined below). The D3
branes are extended along a (3+ 1) dimensional plane in (9+ 1) dimensional
spacetime. String theory on this background contains two kinds of pertur-
bative excitations, closed strings and open strings. The closed strings are
the excitations of empty space and the open strings end on the D-branes and
describe excitations of the D-branes. If we consider the system at low ener-
gies, energies lower than the string scale 1/I;, then only the massless string
states can be excited, and we can write an effective Lagrangian describing
their interactions. The closed string massless states give a gravity supermul-
tiplet in ten dimensions, and their low-energy effective Lagrangian is that
of type IIB supergravity. The open string massless states give an N’ = 4
vector supermultiplet in (3 4+ 1) dimensions, and their low-energy effective
Lagrangian is that of N' =4 U(N) super-Yang-Mills theory [13, 36].
The complete effective action of the massless modes will have the form

S = Sbulk + Sbrane + Sint- (1)

Sbulk s the action of ten dimensional supergravity, plus some higher deriva-
tive corrections. Note that the Lagrangian (1) involves only the massless
fields but it takes into account the effects of integrating out the massive
fields. It is not renormalizable (even for the fields on the brane), and it
should only be understood as an effective description in the Wilsonian sense,
i.e. we integrate out all massive degrees of freedom but we do not integrate
out the massless ones. The brane action Sprane is defined on the (3 + 1)
dimensional brane worldvolume, and it contains the N' = 4 super-Yang-
Mills Lagrangian plus some higher derivative corrections, for example terms
of the form o/?Tr(F*). Finally, Sip; describes the interactions between the
brane modes and the bulk modes. The leading terms in this interaction
Lagrangian can be obtained by covariantizing the brane action, introducing
the background metric for the brane [37].

We can expand the bulk action as a free quadratic part describing the
propagation of free massless modes (including the graviton), plus some in-
teractions which are proportional to positive powers of the square root of
the Newton constant. Schematically we have

Stk ~ % / R ~ / (Oh)2 + K(OR)2h + - - -, @)

where we have written the metric as ¢ = n + xkh. We indicate explicitly
the dependence on the graviton, but the other terms in the Lagrangian,
involving other fields, can be expanded in a similar way. Similarly, the
interaction Lagrangian S;,: is proportional to positive powers of k. If we
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take the low energy limit, all interaction terms proportional to x drop out.
This is the well known fact that gravity becomes free at long distances (low
energies).

In order to see more clearly what happens in this low energy limit it is
convenient to keep the energy fixed and send I; — 0 (o’ — 0) keeping all
the dimensionless parameters fixed, including the string coupling constant
and N. In this limit the coupling k¥ ~ g;&/> — 0, so that the interaction
Lagrangian relating the bulk and the brane vanishes. In addition all the
higher derivative terms in the brane action vanish, leaving just the pure
N = 4 U(N) gauge theory in 3 + 1 dimensions, which is known to be a
conformal field theory. And, the supergravity theory in the bulk becomes
free. So, in this low energy limit we have two decoupled systems. On the
one hand we have free gravity in the bulk and on the other hand we have
the four dimensional gauge theory.

Next, we consider the same system from a different point of view. D-
branes are massive charged objects which act as a source for the various
supergravity fields. We can find a D3 brane solution [38] of supergravity, of
the form

ds? = ]"71/2(—alt2 + dx? + dzi + dz3) + fl/2(dr2 +r2dQ?) ,

F5 = (1 + *)dtdz dzodzadf ", (3)
R4
f:1+r_4’ R = 4ng,d?N .

Note that since g;; is non-constant, the energy E, of an object as measured
by an observer at a constant position r and the energy E measured by an
observer at infinity are related by the redshift factor

E=f"YE, . (4)

This means that the same object brought closer and closer to » = 0 would
appear to have lower and lower energy for the observer at infinity. Now
we take the low energy limit in the background described by equation (3).
There are two kinds of low energy excitations (from the point of view of
an observer at infinity). We can have massless particles propagating in
the bulk region with wavelengths that becomes very large, or we can have
any kind of excitation that we bring closer and closer to r = 0. In the
low energy limit these two types of excitations decouple from each other.
The bulk massless particles decouple from the near horizon region (around
r = 0) because the low energy absorption cross section goes like o ~ w3R®
[14, 15], where w is the energy. This can be understood from the fact that
in this limit the wavelength of the particle becomes much bigger than the
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typical gravitational size of the brane (which is of order R). Similarly, the
excitations that live very close to = 0 find it harder and harder to climb the
gravitational potential and escape to the asymptotic region. In conclusion,
the low energy theory consists of two decoupled pieces, one is free bulk
supergravity and the second is the near horizon region of the geometry. In
the near horizon region, r < R, we can approximate f ~ R*/r* and the
geometry becomes

T2

2
r
:ﬁ(

ds? —dt? + du? + do} + da3) + RQCi—Z + R?dQ3, (5)

which is the geometry of AdS5 x S°.

We see that both from the point of view of a field theory of open strings
living on the brane, and from the point of view of the supergravity descrip-
tion, we have two decoupled theories in the low-energy limit. In both cases
one of the decoupled systems is supergravity in flat space. So, it is natural
to identify the second system which appears in both descriptions. Thus,
we are led to the conjecture that N' = 4 U(N) super-Yang-Mills theory in
3 + 1 dimensions is the same as (or dual to) type IIB superstring theory on
AdSs x S° [9).

We could be a bit more precise about the near horizon limit and how it
is being taken. Suppose that we take o — 0, as we did when we discussed
the field theory living on the brane. We want to keep fixed the energies
of the objects in the throat (the near-horizon region) in string units, so
that we can consider arbitrary excited string states there. This implies that
V'E, ~ fixed. For small o (4) reduces to E ~ E,r/vc'. Since we want
to keep fixed the energy measured from infinity, which is the way energies
are measured in the field theory, we need to take r — 0 keeping 7/’ fixed.
It is then convenient to define a new variable U = r/co/, so that the metric
becomes

2

U du?
ds? = o W(_dtQ + dz? + da + dz3) + \/47T95NW + /Arg, NdQ2
S
(6)

This can also be seen by considering a D3 brane sitting at 7. This
corresponds to giving a vacuum expectation value to one of the scalars in
the Yang-Mills theory. When we take the o/ — 0 limit we want to keep
the mass of the “W-boson” fixed. This mass, which is the mass of the
string stretching between the branes sitting at ¥ = 0 and the one at 7,
is proportional to U = r/d, so this quantity should remain fixed in the
decoupling limit.
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A U(N) gauge theory is essentially equivalent to a free U(1) vector mul-
tiplet times an SU(N) gauge theory, up to some Zy identifications (which
affect only global issues). In the dual string theory all modes interact with
gravity, so there are no decoupled modes. Therefore, the bulk AdS theory is
describing the SU(N) part of the gauge theory. In fact we were not precise
when we said that there were two sets of excitations at low energies, the ex-
citations in the asymptotic flat space and the excitations in the near horizon
region. There are also some zero modes which live in the region connecting
the “throat” (the near horizon region) with the bulk, which correspond to
the U(1) degrees of freedom mentioned above. The U(1) vector supermul-
tiplet includes six scalars which are related to the center of mass motion of
all the branes [39]. From the AdS point of view these zero modes live at the
boundary, and it looks like we might or might not decide to include them in
the AdS theory. Depending on this choice we could have a correspondence to
an SU(N) or a U(N) theory. The U(1) center of mass degree of freedom is
related to the topological theory of B-fields on AdS [40]; if one imposes local
boundary conditions for these B-fields at the boundary of AdS one finds a
U(1) gauge field living at the boundary [41], as is familiar in Chern-Simons
theories [27, 42]. These modes living at the boundary are sometimes called
singletons (or doubletons) [43, 44, 45, 46, 47, 48, 49, 50, 51].

Anti-de-Sitter space has a large group of isometries, which is SO(4,2)
for the case at hand. This is the same group as the conformal group in
3 + 1 dimensions. Thus, the fact that the low-energy field theory on the
brane is conformal is reflected in the fact that the near horizon geometry is
Anti-de-Sitter space. We also have some supersymmetries. The number of
supersymmetries is twice that of the full solution (3) containing the asymp-
totic region [39]. This doubling of supersymmetries is viewed in the field
theory as a consequence of superconformal invariance, since the supercon-
formal algebra has twice as many fermionic generators as the corresponding
Poincare superalgebra. We also have an SO(6) symmetry which rotates the
S5. This can be identified with the SU(4)g R-symmetry group of the field
theory. In fact, the whole supergroup is the same for the N' = 4 field theory
and the AdS5 x S° geometry, so both sides of the conjecture have the same
spacetime symmetries. We will discuss in more detail the matching between
the two sides of the correspondence in section 3.

In the above derivation the field theory is naturally defined on R, but
we could also think of the conformal field theory as defined on S% x R by
redefining the Hamiltonian. Since the isometries of AdS are in one to one
correspondence with the generators of the conformal group of the field theory,
we can conclude that this new Hamiltonian (P + Kj) can be associated on
AdS to the generator of translations in global time. This formulation of the
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conjecture is more useful since in the global coordinates there is no horizon.
When we put the field theory on S2 the Coulomb branch is lifted and there is
a unique ground state. This is due to the fact that the scalars ¢! in the field
theory are conformally coupled, so there is a term of the form [ d*zTr(¢?)R
in the Lagrangian, where R is the curvature of the four-dimensional space
on which the theory is defined. Due to the positive curvature of S3 this leads
to a mass term for the scalars [24], lifting the moduli space.

The parameter N appears on the string theory side as the flux of the
five-form Ramond-Ramond field strength on the S°,

F5=N. (7)
g5
From the physics of D-branes we know that the Yang-Mills coupling is related
to the string coupling through [10, 52]
4 0 i
— i _

X
T=E—5—+—= + =, 8
g%,M 27 gs 27 ()

where we have also included the relationship of the 6 angle to the expectation
value of the RR scalar x. We have written the couplings in this fashion
because both the gauge theory and the string theory have an SL(2,7Z) self-
duality symmetry under which 7 — (a7 + b)/(ct + d) (where a,b,c,d are
integers with ad — bc = 1). In fact, SL(2,Z) is a conjectured strong-weak
coupling duality symmetry of type IIB string theory in flat space [53], and it
should also be a symmetry in the present context since all the fields that are
being turned on in the AdSs x S° background (the metric and the five form
field strength) are invariant under this symmetry. The connection between
the SL(2,7Z) duality symmetries of type IIB string theory and N' =4 SYM
was noted in [54, 55, 56]. The string theory seems to have a parameter
that does not appear in the gauge theory, namely ', which sets the string
tension and all other scales in the string theory. However, this is not really a
parameter in the theory if we do not compare it to other scales in the theory,
since only relative scales are meaningful. In fact, only the ratio of the radius
of curvature to o is a parameter, but not o/ and the radius of curvature
independently. Thus, o/ will disappear from any final physical quantity we
compute in this theory. It is sometimes convenient, especially when one is
doing gravity calculations, to set the radius of curvature to one. This can
be achieved by writing the metric as ds? = R2d5?, and rewriting everything
in terms of §. With these conventions Gy ~ 1/N? and o' ~ 1/4/gsN. This
implies that any quantity calculated purely in terms of the gravity solution,
without including stringy effects, will be independent of g; NV and will depend
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only on N. o corrections to the gravity results give corrections which are
proportional to powers of 1/4/gsN.

Now, let us address the question of the validity of various approximations.
The analysis of loop diagrams in the field theory shows that we can trust
the perturbative analysis in the Yang-Mills theory when

2 R*

S

Note that we need g%,,N to be small and not just g2,,. On the other
hand, the classical gravity description becomes reliable when the radius of
curvature R of AdS and of §° becomes large compared to the string length,

4
If—4 ~gsN ~ gy N > 1. (10)
S
We see that the gravity regime (10) and the perturbative field theory regime
(9) are perfectly incompatible. In this fashion we avoid any obvious con-
tradiction due to the fact that the two theories look very different. This is
the reason that this correspondence is called a “duality”. The two theories
are conjectured to be exactly the same, but when one side is weakly coupled
the other is strongly coupled and vice versa. This makes the correspondence
both hard to prove and useful, as we can solve a strongly coupled gauge the-
ory via classical supergravity. Notice that in (9)(10) we implicitly assumed
that g; < 1. If g5 > 1 we can perform an SL(2,Z) duality transformation
and get conditions similar to (9)(10) but with gs — 1/gs. So, we cannot get
into the gravity regime (10) by taking N small (N = 1,2,..) and g, very
large, since in that case the D-string becomes light and renders the gravity
approximation invalid. Another way to see this is to note that the radius of
curvature in Planck units is R*/ lé ~ N. So, it is always necessary, but not
sufficient, to have large N in order to have a weakly coupled supergravity
description.
One might wonder why the above argument was not a proof rather than
a conjecture. It is not a proof because we did not treat the string theory non-
perturbatively (not even non-perturbatively in o'). We could also consider
different forms of the conjecture. In its weakest form the gravity description
would be valid for large g; N, but the full string theory on AdS might not
agree with the field theory. A not so weak form would say that the conjecture
is valid even for finite g;N, but only in the N — oo limit (so that the o
corrections would agree with the field theory, but the g corrections may
not). The strong form of the conjecture, which is the most interesting one
and which we will assume here, is that the two theories are exactly the same
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for all values of g; and N. In this conjecture the spacetime is only required
to be asymptotic to AdSs x S° as we approach the boundary. In the interior
we can have all kinds of processes; gravitons, highly excited fundamental
string states, D-branes, black holes, etc. Even the topology of spacetime can
change in the interior. The Yang-Mills theory is supposed to effectively sum
over all spacetimes which are asymptotic to AdSs x S°. This is completely
analogous to the usual conditions of asymptotic flatness. We can have black
holes and all kinds of topology changing processes, as long as spacetime
is asymptotically flat. In this case asymptotic flatness is replaced by the
asymptotic AdS behavior.

2.1 Brane probes and multicenter solutions

The moduli space of vacua of the N' = 4 U(N) gauge theory is (R®)V /Sy,
parametrizing the positions of the N branes in the six dimensional transverse
space. In the supergravity solution one can replace

N

N
o — _>§ S — 11

and still have a solution to the supergravity equations. We see that if |7] >
|7i| then the two solutions are basically the same, while when we go to r ~ r;
the solution starts looking like the solution of a single brane. Of course, we
cannot trust the supergravity solution for a single brane (since the curvature
in Planck units is proportional to a negative power of N). What we can do
is separate the N branes into groups of N; branes with g;/N; > 1 for all 4.
Then we can trust the gravity solution everywhere.

Another possibility is to separate just one brane (or a small number of
branes) from a group of N branes. Then we can view this brane as a D3-
brane in the AdSs background which is generated by the other branes (as
described above). A string stretching between the brane probe and the N
branes appears in the gravity description as a string stretching between the
D3-brane and the horizon of AdS. This seems a bit surprising at first since
the proper distance to the horizon is infinite. However, we get a finite result
for the energy of this state once we remember to include the redshift factor.
The D3-branes in AdS (like any D3-branes in string theory) are described at
low energies by the Born-Infeld action, which is the Yang-Mills action plus
some higher derivative corrections. This seems to contradict, at first sight,
the fact that the dual field theory (coming from the original branes) is just
the pure Yang-Mills theory. In order to understand this point more precisely
let us write explicitly the bosonic part of the Born-Infeld action for a D-3
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brane in AdS [37],

S S
5= (2m)3gsa’? /d =
\/ — det(nag + fOarOpT + 12f§ij0001007 + 2ma/\/fFop) — 1| ,
g0 N

(12)
where 6 are angular coordinates on the 5-sphere. We can easily check that
if we define a new coordinate U = r/d/, then all the o/ dependence drops out
of this action. Since U (which has dimensions of energy) corresponds to the
mass of the W bosons in this configuration, it is the natural way to express
the Higgs expectation value that breaks U(N + 1) to U(N) x U(1). In fact,
the action (12) is precisely the low-energy effective action in the field theory
for the massless U(1) degrees of freedom, that we obtain after integrating out
the massive degrees of freedom (W bosons). We can expand (12) in powers
of OU and we see that the quadratic term does not have any correction,
which is consistent with the non-renormalization theorem for N' = 4 super-
Yang-Mills [57]. The (8U)* term has only a one-loop correction, and this
is also consistent with another non-renormalization theorem [58]. This one-
loop correction can be evaluated explicitly in the gauge theory and the result
agrees with the supergravity result [59]. It is possible to argue, using broken
conformal invariance, that all terms in (12) are determined by the (0U)* term
[9]. Since the massive degrees of freedom that we are integrating out have a
mass proportional to U, the action (12) makes sense as long as the energies
involved are much smaller than U. In particular, we need OU/U < U.
Since (12) has the form L(g;N(0U)?/U*), the higher order terms in (12)
could become important in the supergravity regime, when g;N > 1. The
Born Infeld action (12), as always, makes sense only when the curvature of
the brane is small, but the deviations from a straight flat brane could be
large. In this regime we can keep the non-linear terms in (12) while we still
neglect the massive string modes and similar effects. Further gauge theory
calculations for effective actions of D-brane probes include [60, 61, 62].

2.2 The field < operator correspondence

A conformal field theory does not have asymptotic states or an S-matrix,
so the natural objects to consider are operators. For example, in NV =
4 super-Yang-Mills we have a deformation by a marginal operator which
changes the value of the coupling constant. Changing the coupling constant
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in the field theory is related by (8) to changing the coupling constant in the
string theory, which is then related to the expectation value of the dilaton.
The expectation value of the dilaton is set by the boundary condition for
the dilaton at infinity. So, changing the gauge theory coupling constant
corresponds to changing the boundary value of the dilaton. More precisely,
let us denote by O the corresponding operator. We can consider adding
the term [ d*z¢o(Z)O(ZF) to the Lagrangian (for simplicity we assume that
such a term was not present in the original Lagrangian, otherwise we consider
¢0(Z) to be the total coefficient of O(Z) in the Lagrangian). According to the
discussion above, it is natural to assume that this will change the boundary
condition of the dilaton at the boundary of AdS to ¢(Z, z)|,—0 = ¢o(Z), in
the coordinate system

—dt* + dz? + -+ - + dz3 + dz2?

2 _ p2
ds _RAdS 22

More precisely, as argued in [23, 24], it is natural to propose that

<ef d4$¢0(5)0(‘z)>cpT = Zstring [¢(f’ 2:)

= @750(5)]’ (13)
z=0

where the left-hand side is the generating function of correlation functions
in the field theory, i.e. ¢p is an arbitrary function and we can calculate
correlation functions of O by taking functional derivatives with respect to
¢o and then setting ¢y = 0. The right-hand side is the full partition function
of string theory with the boundary condition that the field ¢ has the value
¢o on the boundary of AdS. Notice that ¢ is a function of the four variables
parametrizing the boundary of AdSs.

A formula like (13) is valid in general, for any field ¢. Therefore, each
field propagating on AdS space is in a one to one correspondence with an
operator in the field theory. There is a relation between the mass of the field
¢ and the scaling dimension of the operator in the conformal field theory. Let
us describe this more generally in AdS;.1. The wave equation in Euclidean
space for a field of mass m has two independent solutions, which behave like
2472 and 22 for small z (close to the boundary of AdS), where

2
A:g+\/dz+R2m2. (14)

Therefore, in order to get consistent behavior for a massive field, the bound-
ary condition on the field in the right-hand side of (13) should in general be
changed to

BT, €) = et Po(2), (15)
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and eventually we would take the limit where e — 0. Since ¢ is dimensionless,
we see that ¢y has dimensions of [length]*~¢ which implies, through the left-
hand side of (13), that the associated operator O has dimension A (14). A
more detailed derivation of this relation will be given in section 4, where we
will verify that the two-point correlation function of the operator O behaves
as that of an operator of dimension A [23, 24]. A similar relation between
fields on AdS and operators in the field theory exists also for non-scalar
fields, including fermions and tensors on AdS space.

Correlation functions in the gauge theory can be computed from (13)
by differentiating with respect to ¢9. Each differentiation brings down an
insertion O, which sends a ¢ particle (a closed string state) into the bulk.
Feynman diagrams can be used to compute the interactions of particles in
the bulk. In the limit where classical supergravity is applicable, the only
diagrams that contribute are the tree-level diagrams of the gravity theory
(see for instance figure 1).

Figure 1: Correlation functions can be calculated (in the large g, limit) in terms
of supergravity Feynman diagrams. Here we see the leading contribution coming from
a disconnected diagram plus connected pieces involving interactions of the supergravity
fields in the bulk of AdS. At tree level, these diagrams and those related to them by
crossing are the only ones that contribute to the four-point function.

This method of defining the correlation functions of a field theory which
is dual to a gravity theory in the bulk of AdS space is quite general, and
it applies in principle to any theory of gravity [24]. Any local field theory
contains the stress tensor as an operator. Since the correspondence described
above matches the stress-energy tensor with the graviton, this implies that
the AdS theory includes gravity. It should be a well defined quantum theory
of gravity since we should be able to compute loop diagrams. String theory
provides such a theory. But if a new way of defining quantum gravity theories
comes along we could consider those gravity theories in AdS, and they should
correspond to some conformal field theory “on the boundary”. In particular,
we could consider backgrounds of string theory of the form AdSs x M® where
M? is any Einstein manifold [63, 64, 65]. Depending on the choice of M?® we
get different dual conformal field theories. Similarly, this discussion can be
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extended to any AdSg; space, corresponding to a conformal field theory in
d spacetime dimensions (for d > 1).

2.3 Holography

In this section we will describe how the AdS/CFT correspondence gives a
holographic description of physics in AdS spaces.

Let us start by explaining the Bekenstein bound, which states that the
maximum entropy in a region of space is Sy = Area/4Gy [31], where the
area is that of the boundary of the region. Suppose that we had a state with
more entropy than Sy,.., then we show that we could violate the second law
of thermodynamics. We can throw in some extra matter such that we form
a black hole. The entropy should not decrease. But if a black hole forms
inside the region its entropy is just the area of its horizon, which is smaller
than the area of the boundary of the region (which by our assumption is
smaller than the initial entropy). So, the second law has been violated.

Note that this bound implies that the number of degrees of freedom
inside some region grows as the area of the boundary of a region and not
like the volume of the region. In standard quantum field theories this is
certainly not possible. Attempting to understand this behavior leads to the
“holographic principle”, which states that in a quantum gravity theory all
physics within some volume can be described in terms of some theory on the
boundary which has less than one degree of freedom per Planck area [29, 30]
(so that its entropy satisfies the Bekenstein bound).

In the AdS/CFT correspondence we are describing physics in the bulk of
AdS space by a field theory of one less dimension (which can be thought of
as living on the boundary), so it looks like holography. However, it is hard
to check what the number of degrees of freedom per Planck area is, since
the theory, being conformal, has an infinite number of degrees of freedom,
and the area of the boundary of AdS space is also infinite. Thus, in order
to compare things properly we should introduce a cutoff on the number of
degrees of freedom in the field theory and see what it corresponds to in the
gravity theory. For this purpose let us write the metric of AdS as

2
1+ 7‘2 4
2 2 2 2 2 102
S + Q . 1
ds“ =R <1 7"2) dt +(1 T2)2(dr r°dQ°) (16)
In these coordinates the boundary of AdS is at r = 1. We saw above

that when we calculate correlation functions we have to specify boundary
conditions at » = 1 — ¢ and then take the limit of § — 0. It is clear by
studying the action of the conformal group on Poincaré coordinates that the



Large N Field Theories and Gravity 21

radial position plays the role of some energy scale, since we approach the
boundary when we do a conformal transformation that localizes objects in
the CFT. So, the limit 6 — 0 corresponds to going to the UV of the field
theory. When we are close to the boundary we could also use the Poincaré
coordinates

—dt? + di?* + dz2*

2 2
ds* =R 2

: (17)

in which the boundary is at z = 0. If we consider a particle or wave prop-
agating in (17) or (16) we see that its motion is independent of R in the
supergravity approximation. Furthermore, if we are in Euclidean space and
we have a wave that has some spatial extent A\ in the ¥ directions, it will
also have an extent A in the z direction. This can be seen from (17) by
eliminating A through the change of variables x — Az, z — Az. This implies
that a cutoff at

z~0 (18)

corresponds to a UV cutoff in the field theory at distances ¢, with no factors
of R (¢ here is dimensionless, in the field theory it is measured in terms of
the radius of the §* or 2 that the theory lives on). Equation (18) is called
the UV-IR relation [66].

Consider the case of N' = 4 SYM on a three-sphere of radius one. We
can estimate the number of degrees of freedom in the field theory with a UV
cutoff §. We get

S~ N2%§73, (19)

since the number of cells into which we divide the three-sphere is of order
1/6%. In the gravity solution (16) the area in Planck units of the surface at
r=1-4, for § €1,is

Area  VgsR3673
4Gy~ 4Gy

~ N2573, (20)

Thus, we see that the AdS/CFT correspondence saturates the holographic
bound [66].

One could be a little suspicious of the statement that gravity in AdS
is holographic, since it does not seem to be saying much because in AdS
space the volume and the boundary area of a given region scale in the same
fashion as we increase the size of the region. In fact, any field theory
in AdS would be holographic in the sense that the number of degrees of
freedom within some (large enough) volume is proportional to the area (and
also to the volume). What makes this case different is that we have the
additional parameter R, and then we can take AdS spaces of different radii
(corresponding to different values of N in the SYM theory), and then we
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can ask whether the number of degrees of freedom goes like the volume or
the area, since these have a different dependence on R.

One might get confused by the fact that the surface r = 1 — § is really
nine dimensional as opposed to four dimensional. From the form of the full
metric on AdSs x S® we see that as we take 6 — 0 the physical size of four
of the dimensions of this nine dimensional space grow, while the other five,
the S®, remain constant. So, we see that the theory on this nine dimensional
surface becomes effectively four dimensional, since we need to multiply the
metric by a factor that goes to zero as we approach the boundary in order
to define a finite metric for the four dimensional gauge theory.

3 Tests of the AdS/CFT correspondence

In this section we review the direct tests of the AdS/CFT correspondence.
In section 2 we saw how string theory on AdS defines a partition function
which can be used to define a field theory. Here we will review the evidence
showing that this field theory is indeed the same as the conjectured dual
field theory. We will focus here only on tests of the correspondence between
the N =4 SU(N) SYM theory and the type IIB string theory compactified
on AdSs x S°; most of the tests described here can be generalized also to
cases in other dimensions and/or with less supersymmetry, which will be
described below.

As described in section 2, the AdS/CFT correspondence is a strong/weak
coupling duality. In the 't Hooft large N limit, it relates the region of weak
field theory coupling A = ¢g2,,N in the SYM theory to the region of high
curvature (in string units) in the string theory, and vice versa. Thus, a direct
comparison of correlation functions is generally not possible, since (with our
current knowledge) we can only compute most of them perturbatively in A
on the field theory side and perturbatively in 1/+/X on the string theory
side. For example, as described below, we can compute the equation of
state of the SYM theory and also the quark-anti-quark potential both for
small A and for large A, and we obtain different answers, which we do not
know how to compare since we can only compute them perturbatively on
both sides. A similar situation arises also in many field theory dualities that
were analyzed in the last few years (such as the electric/magnetic SL(2,7Z)
duality of the N' =4 SYM theory itself), and it was realized that there are
several properties of these theories which do not depend on the coupling, so
they can be compared to test the duality. These are:

e The global symmetries of the theory, which cannot change as we change
the coupling (except for extreme values of the coupling). As discussed
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in section 2, in the case of the AdS/CFT correspondence we have the
same supergroup SU(2,2|4) (whose bosonic subgroup is SO(4,2) x
SU(4)) as the global symmetry of both theories. Also, both theories
are believed to have a non-perturbative SL(2,Z) duality symmetry
acting on their coupling constant 7. These are the only symmetries of
the theory on R%. Additional Zy symmetries arise when the theories
are compactified on non-simply-connected manifolds, and these were
also successfully matched in [67, 40]'.

e Some correlation functions, which are usually related to anomalies, are
protected from any quantum corrections and do not depend on A. The
matching of these correlation functions will be described in section 3.2
below.

e The spectrum of chiral operators does not change as the coupling
varies, and it will be compared in section 3.1 below.

e The moduli space of the theory also does not depend on the cou-
pling. In the SU(N) field theory the moduli space is R6(N_1)/SN,
parametrized by the eigenvalues of six commuting traceless N x N
matrices. On the AdS side it is not clear exactly how to define the
moduli space. As described in section 2.1, there is a background of
string theory corresponding to any point in the field theory moduli
space, but it is not clear how to see that this is the exact moduli space
on the string theory side (especially since high curvatures arise for
generic points in the moduli space).

e The qualitative behavior of the theory upon deformations by relevant
or marginal operators also does not depend on the coupling (at least
for chiral operators whose dimension does not depend on the coupling,
and in the absence of phase transitions).

There are many more qualitative tests of the correspondence, such
as the existence of confinement for the finite temperature theory [68],
which we will not discuss in this section. We will also not discuss
here tests involving the behavior of the theory on its moduli space
[60, 69, 61].

'Unlike most of the other tests described here, this test actually tests the finite N
duality and not just the large IV limit.
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3.1 The spectrum of chiral primary operators
3.1.1 The field theory spectrum

The N = 4 supersymmetry algebra in d = 4 has four generators Q4 (and
their complex conjugates Qg44), where o is a Weyl-spinor index (in the 2
of the SO(3,1) Lorentz group) and A is an index in the 4 of the SU(4)r
R-symmetry group (lower indices A will be taken to transform in the 4
representation). They obey the algebra

{Q4:Qan} = 2(6")aaPuds, (21)
{Qa:QF} = {Qan, Qpp} = 0,

where o (i = 1,2,3) are the Pauli matrices and (0°)qq = —0aq (We use the
conventions of Wess and Bagger [70]).

N = 4 supersymmetry in four dimensions has a unique multiplet which
does not include spins greater than one, which is the vector multiplet. It
includes a vector field A, (u is a vector index of the SO(3, 1) Lorentz group),
four complex Weyl fermions \,4 (in the 4 of SU(4)g), and six real scalars
¢! (where I is an index in the 6 of SU(4)g). The classical action of the
supersymmetry generators on these fields is schematically given (for on-shell
fields) by

Qa6 ~ Xas,
{Qa, a8} ~ (0" )apFu + eapld’, ¢],
{Qa A5} ~ (0") 45 Dud’,
(@2t Aul ~ (0u)asXie,

(22)

with similar expressions for the action of the Q’s, where ¢#¥ are the gener-
ators of the Lorentz group in the spinor representation, D, is the covariant
derivative, the field strength F,, = [D,,D,], and we have suppressed the
SU(4) Clebsch-Gordan coefficients corresponding to the products 4 x 6 — 4,
4x4—1+15and 4 x4 — 6 in the first three lines of (22).

An N = 4 supersymmetric field theory is uniquely determined by spec-
ifying the gauge group, and its field content is a vector multiplet in the
adjoint of the gauge group. Such a field theory is equivalent to an N' = 2
theory with one hypermultiplet in the adjoint representation, or to an N’ =1
theory with three chiral multiplets ® in the adjoint representation (in the
3y/3 of the SU(3) x U(1)r C SU(4)g which is left unbroken by the choice
of a single N’ = 1 SUSY generator) and a superpotential of the form W oc
€k Tr(@®I®*). The interactions of the theory include a scalar potential



Large N Field Theories and Gravity 25

proportional to 37, ; Tr([¢!, $7]2), such that the moduli space of the theory
is the space of commuting matrices ¢’ (I =1,---,6).

The spectrum of operators in this theory includes all the gauge invariant
quantities that can be formed from the fields described above. In this section
we will focus on local operators which involve fields taken at the same point
in space-time. For the SU(N) theory described above, properties of the
adjoint representation of SU(N) determine that such operators necessarily
involve a product of traces of products of fields (or the sum of such products).
It is natural to divide the operators into single-trace operators and multiple-
trace operators. In the 't Hooft large N limit correlation functions involving
multiple-trace operators are suppressed by powers of N compared to those
of single-trace operators involving the same fields. We will discuss here in
detail only the single-trace operators; the multiple-trace operators appear in
operator product expansions of products of single-trace operators.

It is natural to classify the operators in a conformal theory into pri-
mary operators and their descendants. In a superconformal theory it is also
natural to distinguish between chiral primary operators, which are in short
representations of the superconformal algebra and are annihilated by some
of the supercharges, and non-chiral primary operators. Representations of
the superconformal algebra are formed by starting with some state of lowest
dimension, which is annihilated by the operators S and K, and acting on it
with the operators @ and P,. The N’ = 4 supersymmetry algebra involves 16
real supercharges. A generic primary representation of the superconformal
algebra will thus include 2'¢ primaries of the conformal algebra, generated
by acting on the lowest state with products of different supercharges; acting
with additional supercharges always leads to descendants of the conformal
algebra (i.e. derivatives). Since the supercharges have helicities +1/2, the
primary fields in such representations will have a range of helicities between
A—4 (if the lowest dimension operator 9 has helicity A) and A+4 (acting with
more than 8 supercharges of the same helicity either annihilates the state or
leads to a conformal descendant). In non-generic representations of the su-
perconformal algebra a product of less than 16 different ()’s annihilates the
lowest dimension operator, and the range of helicities appearing is smaller.
In particular, in the small representations of the N' = 4 superconformal al-
gebra only up to 4 @’s of the same helicity acting on the lowest dimension
operator give a non-zero result, and the range of helicities is between A — 2
and A + 2. For the N/ = 4 supersymmetry algebra (not including the con-
formal algebra) it is known that medium representations, whose range of
helicities is 6, can also exist (they arise, for instance, on the moduli space
of the SU(N) N =4 SYM theory [71, 72, 73, 74, 75, 76, 77, 78]); it is not
clear if such medium representations of the superconformal algebra [79] can
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appear in physical theories or not (there are no known examples). More de-
tails on the structure of representations of the N’ = 4 superconformal algebra
may be found in [80, 81, 82, 83, 84, 85, 79] and references therein.

In the U(1) N =4 SYM theory (which is a free theory), the only gauge-
invariant “single trace” operators are the fields of the vector multiplet itself
(which are ¢!, A4, A4 and F,, = 0uAy))- These operators form an ultra-
short representation of the N' = 4 algebra whose range of helicities is from
(—1) to 1 (acting with more than two supercharges of the same helicity on
any of these states gives either zero or derivatives, which are descendants
of the conformal algebra). All other local gauge invariant operators in the
theory involve derivatives or products of these operators. This representation
is usually called the doubleton representation, and it does not appear in the
SU(N) SYM theory (though the representations which do appear can all be
formed by tensor products of the doubleton representation). In the context
of AdS space one can think of this multiplet as living purely on the boundary
of the space [86, 87, 88, 89, 90, 46, 91, 92, 93, 94, 95], as expected for the U(1)
part of the original U(N) gauge group of the D3-branes (see the discussion
in section 2).

There is no known simple systematic way to compute the full spectrum of
chiral primary operators of the N' =4 SU(N) SYM theory, so we will settle
for presenting the known chiral primary operators. The lowest component
of a superconformal-primary multiplet is characterized by the fact that it
cannot be written as a supercharge () acting on any other operator. Looking
at the action of the supersymmetry charges (22) suggests that generally
operators built from the fermions and the gauge fields will be descendants
(given by @ acting on some other fields), so one would expect the lowest
components of the chiral primary representations to be built only from the
scalar fields, and this turns out to be correct.

Let us analyze the behavior of operators of the form Qf1/2In =
Tr(gp'1 g2 - .- ¢I»). First we can ask if this operator can be written as {Q, %}
for any field 9. In the SUSY algebra (22) only commutators of ¢'’s appear
on the right-hand side, so we see that if some of the indices are antisymmetric
the field will be a descendant. Thus, only symmetric combinations of the
indices will be lowest components of primary multiplets. Next, we should
ask if the multiplet built on such an operator is a (short) chiral primary
multiplet or not. There are several different ways to answer this question.
One possibility is to use the relation between the dimension of chiral primary
operators and their R-symmetry representation [96, 97, 98, 99, 100], and to
check if this relation is obeyed in the free field theory, where [O71/2In] = p,
In this way we find that the representation is chiral primary if and only if the
indices form a symmetric traceless product of n 6’s (traceless representations
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are defined as those who give zero when any two indices are contracted). This
is a representation of weight (0,7,0) of SU(4)g; in this section we will refer
to SU(4) g representations either by their dimensions in boldface or by their
weights.

Another way to check this is to see if by acting with Q)’s on these operators
we get the most general possible states or not, namely if the representation
contains “null vectors” or not (it turns out that in all the relevant cases “null
vectors” appear already at the first level by acting with a single @), though
in principle there could be representations where “null vectors” appear only
at higher levels). Using the SUSY algebra (22) it is easy to see that for
symmetric traceless representations we get “null vectors” while for other
representations we do not. For instance, let us analyze in detail the case
n = 2. The symmetric product of two 6’s is given by 6 x 6 — 1 + 20'.
The field in the 1 representation is Tr(¢!¢!), for which [Q4, Tr(¢¢T)] ~
CATBTr(Aqp¢”) where CAIB is a Clebsch-Gordan coefficient for 4 x 6 — 4.
The right-hand side is in the 4 representation, which is the most general
representation that can appear in the product 4 x 1, so we find no null
vectors at this level. On the other hand, if we look at the symmetric traceless
product Tr(¢p¢7}) = Tr(¢?¢7) — %(5”’1‘1‘(¢K¢K) in the 20’ representation,
we find that {Q4, Tr(¢!¢"H)} ~ Tr(Aap¢X) with the right-hand side being
in the 20 representation (appearing in 4 x 6 — 4 + 20), while the left-hand
side could in principle be in the 4 x 20’ — 20 + 60. Since the 60 does
not appear on the right-hand side (it is a “null vector”) we identify that
the representation built on the 20’ is a short representation of the SUSY
algebra. By similar manipulations (see [24, 101, 81, 84] for more details)
one can verify that chiral primary representations correspond exactly to
symmetric traceless products of 6’s.

It is possible to analyze the chiral primary spectrum also by using N’ = 1
subalgebras of the A/ = 4 algebra. If we use an N/ = 1 subalgebra of the
N = 4 algebra, as described above, the operators O, include the chiral
operators of the form Tr(®*1®% ... &™) (in a representation of SU(3) which
is a symmetric product of 3’s), but for a particular choice of the N' = 1
subalgebra not all the operators O,, appear to be chiral (a short multiplet
of the N' = 4 algebra includes both short and long multiplets of the N =1
subalgebra).

The last issue we should discuss is what is the range of values of n. The
product of more than N commuting? N x N matrices can always be written
as a sum of products of traces of less than NV of the matrices, so it does not

2We can limit the discussion to commuting matrices since, as discussed above, commu-
tators always lead to descendants, and we can write any product of matrices as a product
of commuting matrices plus terms with commutators.
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form an independent operator. This means that for n > N we can express
the operator O12/» in terms of other operators, up to operators including
commutators which (as explained above) are descendants of the SUSY alge-
bra. Thus, we find that the short chiral primary representations are built on
the operators O, = OU1l2In} with n = 2,3,--- N, for which the indices
are in the symmetric traceless product of n 6’s (in a U(N) theory we would
find the same spectrum with the additional representation corresponding to
n = 1). The superconformal algebra determines the dimension of these fields
to be [O,] = n, which is the same as their value in the free field theory. We
argued above that these are the only short chiral primary representations in
the SU(N) gauge theory, but we will not attempt to rigorously prove this
here.

The full chiral primary representations are obtained by acting on the
fields O,, by the generators ) and P of the supersymmetry algebra. The
representation built on O, contains a total of 256 x -5n?(n? — 1) primary
states, of which half are bosonic and half are fermionic. Since these multiplets
are built on a field of helicity zero, they will contain primary fields of helicities
between (—2) and 2. The highest dimension primary field in the multiplet
is (generically) of the form Q*Q*0,,, and its dimension is n + 4. There is an
elegant way to write these multiplets as traces of products of “twisted chiral
N = 4 superfields” [101, 81]; see also [102] which checks some components
of these superfields against the couplings to supergravity modes predicted
on the basis of the DBI action for D3-branes in anti-de Sitter space [4].

It is easy to find the form of all the fields in such a multiplet by using the
algebra (22). For example, let us analyze here in detail the bosonic primary
fields of dimension n + 1 in the multiplet. To get a field of dimension n + 1
we need to act on O, with two supercharges (recall that [Q] = 1). If we
act with two supercharges Qﬁ of the same chirality, their Lorentz indices
can be either antisymmetrized or symmetrized. In the first case we get a
Lorentz scalar field in the (2,n — 2,0) representation of SU(4)g, which is of
the schematic form

eaﬁ{Qa, [Qﬂ, On]} ~ GQ’BTT()\aAA,BB¢J1 L. ¢Jn_2)+Tr([¢K1’¢K2]¢L1 . ¢Ln_1)'

(23)
Using an N/ = 1 subalgebra some of these operators may be written as
the lowest components of the chiral superfields Tr(W2®J1 ... ®Jn-2). In the
second case we get an anti-symmetric 2-form of the Lorentz group, in the
(0,n — 1,0) representation of SU(4)r, of the form

{Q1as[Qpy, Onl} ~ Tr((0")apFruv ¢ - - ¢™°71) + Tr(Aaargpd™* - -- ¢Kn(_2)).
24
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Both of these fields are complex, with the complex conjugate fields given by
the action of two Q’s. Acting with one @) and one Q on the state O, gives
a (real) Lorentz-vector field in the (1,n — 2, 1) representation of SU(4)g, of
the form

{Qar [Qa, On]} ~ Tr(AaaX§d™ - ¢772) + (0")aa Tr((Dpug”) 9™ - - ¢71).
(25)
At dimension n + 2 (acting with four supercharges) we find :

e A complex scalar field in the (0, n—2, 0) representation, given by Q*0,,
of the form Tr(Fﬁqull ceeplne2) o

e A real scalar field in the (2,n —4,2) representation, given by Q?Q%0,,
of the form eaﬂedﬂ’l‘r()\aAlAﬂAQS\dBIX?2¢Il ) LI

e A complex vector field in the (1,n — 4,1) representation, given by
Q3Q0,,, of the form Tr(FWD”quqsfl Iy 4

e An complex anti-symmetric 2-form field in the (2,n — 3,0) representa-
tion, given by Q?Q%0,,, of the form Tr(F,,[¢71, ¢72]¢p" - -+ pTn-2) 4. ..

e A symmetric tensor field in the (0,n — 2,0) representation, given by
Q*Q?Op, of the form Tr(Dy,¢' D,y " ¢™ --- pln-2) 4 ...

The spectrum of primary fields at dimension n + 3 is similar to that of
dimension n + 1 (the same fields appear but in smaller SU(4)g represen-
tations), and at dimension n + 4 there is a single primary field, which is a
real scalar in the (0,n — 4,0) representation, given by Q*Q*O,, of the form
Tr(Fg,¢"™ -+« ¢'=+)+- ... Note that fields with more than four F,,’s or more
than eight \’s are always descendants or non-chiral primaries.

For n = 2,3 the short multiplets are even shorter since some of the rep-
resentations appearing above vanish. In particular, for n = 2 the highest-
dimension primaries in the chiral primary multiplet have dimension n+2 = 4.
The n = 2 representation includes the currents of the superconformal alge-
bra. It includes a vector of dimension 3 in the 15 representation which is
the SU(4)g R-symmetry current, and a symmetric tensor field of dimension
4 which is the energy-momentum tensor (the other currents of the super-
conformal algebra are descendants of these). The m = 2 multiplet also
includes a complex scalar field which is an SU(4) g-singlet, whose real part
is the Lagrangian density coupling to ﬁ (of the form Tr(Flf,/) +---) and
whose imaginary part is the Lagrangian density coupling to 6 (of the form
Tr(F A F)). For later use we note that the chiral primary multiplets which
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contain scalars of dimension A < 4 are the n = 2 multiplet (which has a
scalar in the 20" of dimension 2, a complex scalar in the 10 of dimension 3,
and a complex scalar in the 1 of dimension 4), the n = 3 multiplet (which
contains a scalar in the 50 of dimension 3 and a complex scalar in the 45 of
dimension 4), and the n = 4 multiplet which contains a scalar in the 105 of
dimension 4.

3.1.2 The string theory spectrum and the matching

As discussed in section 2.2, fields on AdSj5 are in a one-to-one correspondence
with operators in the dual conformal field theory. Thus, the spectrum of
operators described in section 3.1.1 should agree with the spectrum of fields
of type IIB string theory on AdSs x S°. Fields on AdS naturally lie in the
same multiplets of the conformal group as primary operators; the second
Casimir of these representations is Co = A(A — 4) for a primary scalar field
of dimension A in the field theory, and Cy = m2R? for a field of mass m
on an AdSs space with a radius of curvature R. Single-trace operators in
the field theory may be identified with single-particle states in AdSs, while
multiple-trace operators correspond to multi-particle states.

Unfortunately, it is not known how to compute the full spectrum of type
IIB string theory on AdSs x S°. In fact, the only known states are the states
which arise from the dimensional reduction of the ten-dimensional type IIB
supergravity multiplet. These fields all have helicities between (—2) and 2,
S0 it is clear that they all lie in small multiplets of the superconformal alge-
bra, and we will describe below how they match with the small multiplets
of the field theory described above. String theory on AdSs x S° is expected
to have many additional states, with masses of the order of the string scale
1/1s or of the Planck scale 1/l,. Such states would correspond (using the
mass/dimension relation described above) to operators in the field theory
with dimensions of order A ~ (g;N)/* or A ~ N/ for large N, g,N. Pre-
sumably none of these states are in small multiplets of the superconformal
algebra (at least, this would be the prediction of the AdS/CFT correspon-
dence).

The spectrum of type IIB supergravity compactified on AdS5 x S° was
computed in [103]. The computation involves expanding the ten dimen-
sional fields in appropriate spherical harmonics on S°, plugging them into
the supergravity equations of motion, linearized around the AdS5 x S back-
ground, and diagonalizing the equations to give equations of motion for
free (massless or massive) fields®. For example, the ten dimensional dilaton

3The fields arising from different spherical harmonics are related by a “spectrum gen-
erating algebra”, see [104].
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field 7 may be expanded as 7(z,y) = 352, 7F(x)Y*(y) where z is a coordi-
nate on AdSs, y is a coordinate on S°, and the Y* are the scalar spherical
harmonics on S°. These spherical harmonics are in representations corre-
sponding to symmetric traceless products of 6’s of SU(4)g; they may be
written as Y*(y) ~ yliy’ ... 4Tk where the y’, for I = 1,2,---,6 and with
> 1 (y")? = 1, are coordinates on S°. Thus, we find a field 7%(z) on AdS;
in each such (0, k£, 0) representation of SU(4)g, and the equations of motion
determine the mass of this field to be m? = k(k+4)/R?. A similar expansion
may be performed for all other fields.

If we organize the results of [103] into representations of the superconfor-
mal algebra [80], we find representations of the form described in the previous
section, which are built on a lowest dimension field which is a scalar in the
(0,m,0) representation of SU(4)g for n = 2,3,---,00. The lowest dimension
scalar field in each representation turns out to arise from a linear combina-
tion of spherical harmonic modes of the S® components of the graviton h2
(expanded around the AdSs x S° vacuum) and the 4-form field D gp.q, where
a,b,c,d are indices on S°. The scalar fields of dimension 7+ 1 correspond to
2-form fields By, with indices in the S°. The symmetric tensor fields arise
from the expansion of the AdSs-components of the graviton. The dilaton
fields described above are the complex scalar fields arising with dimension
n + 2 in the multiplet (as described in the previous subsection).

In particular, the n = 2 representation is called the supergraviton rep-
resentation, and it includes the field content of d = 5, NV = 8 gauged super-
gravity. The field/operator correspondence matches this representation to
the representation including the superconformal currents in the field theory.
It includes a massless graviton field, which (as expected) corresponds to the
energy-momentum tensor in the field theory, and massless SU(4)r gauge
fields which correspond to (or couple to) the global SU(4)g currents in the
field theory.

In the naive dimensional reduction of the type 1IB supergravity fields,
the n = 1 doubleton representation, corresponding to a free U(1) vector
multiplet in the dual theory, also appears. However, the modes of this mul-
tiplet are all pure gauge modes in the bulk of AdSs, and they may be set
to zero there. This is one of the reasons why it seems more natural to view
the corresponding gauge theory as an SU(N) gauge theory and not a U(N)
theory. It may be possible (and perhaps even natural) to add the doubleton
representation to the theory (even though it does not include modes which
propagate in the bulk of AdSs5, but instead it is equivalent to a topological
theory in the bulk) to obtain a theory which is dual to the U(N) gauge
theory, but this will not affect most of our discussion in this review so we
will ignore this possibility here.
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Comparing the results described above with the results of section 3.1.1,
we see that we find the same spectrum of chiral primary operators for n =
2,3, -+, N. The supergravity results cannot be trusted for masses above the
order of the string scale (which corresponds to n ~ (g;N)*/*) or the Planck
scale (which corresponds to n ~ N'/4), so the results agree within their range
of validity. The field theory results suggest that the exact spectrum of chiral
representations in type IIB string theory on AdSs x S° actually matches the
naive supergravity spectrum up to a mass scale m? ~ N2/R? ~ N 3/ QMI?
which is much higher than the string scale and the Planck scale, and that
there are no chiral fields above this scale. It is not known how to check this
prediction; tree-level string theory is certainly not enough for this since when
gs = 0 we must take NV = 0o to obtain a finite value of g;N. Thus, with our
current knowledge the matching of chiral primaries of the N’ = 4 SYM theory
with those of string theory on AdSs x S° tests the duality only in the large
N limit. In some generalizations of the AdS/CFT correspondence the string
coupling goes to zero at the boundary even for finite IV, and then classical
string theory should lead to exactly the same spectrum of chiral operators
as the field theory. This happens in particular for the near-horizon limit
of NS5-branes, in which case the exact spectrum was successfully compared
in [105]. In other instances of the AdS/CFT correspondence (such as the
ones discussed in [106, 107, 108]) there exist also additional chiral primary
multiplets with n of order NV, and these have been successfully matched with
wrapped branes on the string theory side.

The fact that there seem to be no non-chiral fields on AdS5 with a mass
below the string scale suggests that for large N and large g;/V, the dimension
of all non-chiral operators in the field theory, such as Tr(¢!$!), grows at least
as (gsN)Y* ~ (g%, N)*/*. The reason for this behavior on the field theory
side is not clear; it is a prediction of the AdS/CFT correspondence.

3.2 Matching of correlation functions and anomalies

The classical N' = 4 theory has a scale invariance symmetry and an SU(4)r
R-symmetry, and (unlike many other theories) these symmetries are exact
also in the full quantum theory. However, when the theory is coupled to
external gravitational or SU(4)r gauge fields, these symmetries are broken
by quantum effects. In field theory this breaking comes from one-loop dia-
grams and does not receive any further corrections; thus it can be computed
also in the strong coupling regime and compared with the results from string
theory on AdS space.

We will begin by discussing the anomaly associated with the SU(4)g
global currents. These currents are chiral since the fermions Ay 4 are in the
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4 representation while the fermions of the opposite chirality )_\aA are in the 4
representation. Thus, if we gauge the SU(4)g global symmetry, we will find
an Adler-Bell-Jackiw anomaly from the triangle diagram of three SU(4)g
currents, which is proportional to the number of charged fermions. In the
SU(N) gauge theory this number is N? — 1. The anomaly can be expressed
either in terms of the 3-point function of the SU(4)r global currents,

a b c _ N? -1 ; ubcTr [’75711(/&"_ /;(/)'YV(/Q_ ﬁ)yp(/é_ /%)]
<Jp($)‘]u(y)‘]p(z)>_ - 3276 id (x—y)4(y—z)4(z—x)4 )
(26)
where do%¢ = 2Tr(T*{T®,T¢}) and we take only the negative parity compo-
nent of the correlator, or in terms of the non-conservation of the SU(4)g
current when the theory is coupled to external SU(4)r gauge fields Fy,,

N2_1~abc;u/pa b e
3842 id® PO FL (27)
How can we see this effect in string theory on AdSs x S° ? One way to
see it is, of course, to use the general prescription of section 4 to compute the
3-point function (26), and indeed one finds [109, 110] the correct answer to
leading order in the large N limit (namely, one recovers the term proportional
to N?2). It is more illuminating, however, to consider directly the meaning
of the anomaly (27) from the point of view of the AdS theory [24]. In the
AdS theory we have gauge fields A, which couple, as explained above, to the
SU(4)r global currents Jj; of the gauge theory, but the anomaly means that
when we turn on non-zero field strengths for these fields the theory should
no longer be gauge invariant. This effect is precisely reproduced by a Chern-
Simons term which exists in the low-energy supergravity theory arising from
the compactification of type IIB supergravity on AdSs x S°, which is of the
form

(D"J7,)" =

iN?
9672
This term is gauge invariant up to total derivatives, which means that if we
take a gauge transformation Aj, — A, + (D, A)? for which A does not vanish

on the boundary of AdSs, the action will change by a boundary term of the
form

/ B(dec07 419, AL, A + - ), (28)
AdSs

iN?
ey d4 HVPUdabCAan F¢ . 29

38472 /6Ad55 e wr=po (29)
From this we can read off the anomaly in (D*J,) since, when we have a
coupling of the form [ d%AgJ;}, the change in the action under a gauge
transformation is given by [ d4:v(D“A)aJ;j =—/ d4:vAa(D“Jﬁ), and we find
exact agreement with (27) for large N.
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The other anomaly in the N' = 4 SYM theory is the conformal (or Weyl)
anomaly (see [111, 112] and references therein), indicating the breakdown of
conformal invariance when the theory is coupled to a curved external metric
(there is a similar breakdown of conformal invariance when the theory is
coupled to external SU(4)r gauge fields, which we will not discuss here).
The conformal anomaly is related to the 2-point and 3-point functions of
the energy-momentum tensor [113, 114, 115, 116]. In four dimensions, the
general form of the conformal anomaly is

(g™ Tyw) = —aEy — clu, (30)
where )
_ 2 2 2
Ey = ]_G?(R;Lupa - 4Ruu +R )’ 31
L= - (R? 2R? 1R2) o
7 T e S TR,
where R, , is the curvature tensor, R,, = Rﬁpu is the Riemann tensor,

and R = R/, is the scalar curvature. A free field computation in the SU(N)
N = 4 SYM theory leads to a = ¢ = (N2 — 1)/4. In supersymmetric
theories the supersymmetry algebra relates g*“T),, to derivatives of the R-
symmetry current, so it is protected from any quantum corrections. Thus,
the same result should be obtained in type IIB string theory on AdSs x
S5, and to leading order in the large N limit it should be obtained from
type IIB supergravity on AdSs x S°. This was indeed found to be true in
[117, 118, 119, 120]*, where the conformal anomaly was shown to arise from
subtleties in the regularization of the (divergent) supergravity action on AdS
space. The result of [117, 118, 119, 120] implies that a computation using
gravity on AdSs5 always gives rise to theories with a = ¢, so generalizations
of the AdS/CFT correspondence which have (for large N) a supergravity
approximation are limited to conformal theories which have a = ¢ in the
large N limit. Of course, if we do not require the string theory to have a
supergravity approximation then there is no such restriction.

For both of the anomalies we described the field theory and string theory
computations agree for the leading terms, which are of order N2. Thus, they
are successful tests of the duality in the large N limit. For other instances
of the AdS/CFT correspondence there are corrections to anomalies at order
1/N ~ gs(a!/R?)?; such corrections were discussed in [122] and successfully
compared in [123, 124, 125]°. It would be interesting to compare other

“A generalization with more varying fields may be found in [121].

5Computing such corrections tests the conjecture that the correspondence holds order
by order in 1/N; however, this is weaker than the statement that the correspondence holds
for finite N, since the 1/N expansion is not expected to converge.
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corrections to the large N result.

4 Correlation functions

A useful statement of the AdS/CFT correspondence is that the partition
function of string theory on AdSs x S5 should coincide with the partition
function of N/ = 4 super-Yang-Mills theory “on the boundary” of AdSs
[23, 24]. The basic idea was explained in section 2.2, but before summarizing
the actual calculations of Green’s functions, it seems worthwhile to motivate
the methodology from a somewhat different perspective.

Throughout this section, we approximate the string theory partition
function by e sUGRA_ where Isygra is the supergravity action evaluated
on AdSs x S5 (or on small deformations of this space). This approximation
amounts to ignoring all the stringy o' corrections that cure the divergences
of supergravity, and also all the loop corrections, which are controlled essen-
tially by the gravitational coupling & ~ gs:'2. On the gauge theory side, as
explained in section 2.2, this approximation amounts to taking both N and
g%y N large, and the basic relation becomes

—I ~ _ _ W
e 'SUGRA ~ Zstring = Zgauge =€ ’ (32)

where W is the generating functional for connected Green’s functions in
the gauge theory. At finite temperature, W = BF where 8 is the inverse
temperature and F' is the free energy of the gauge theory. When we apply
this relation to a Schwarzschild black hole in AdS5, which is thought to be
reflected in the gauge theory by a thermal state at the Hawking temperature
of the black hole, we arrive at the relation Isygra ~ BF. Calculating the
free energy of a black hole from the Euclidean supergravity action has a long
tradition in the supergravity literature [126], so the main claim that is being
made here is that the dual gauge theory provides a description of the state
of the black hole which is physically equivalent to the one in string theory.
We will discuss the finite temperature case further in section 6, and devote
the rest of this section to the partition function of the field theory on R*.
The main technical idea behind the bulk-boundary correspondence is
that the boundary values of string theory fields (in particular, supergrav-
ity fields) act as sources for gauge-invariant operators in the field theory.
From a D-brane perspective, we think of closed string states in the bulk as
sourcing gauge singlet operators on the brane which originate as composite
operators built from open strings. We will write the bulk fields generically as
¢(Z, z) (in the coordinate system (17)), with value ¢o (&) for z = e. The true
boundary of anti-de Sitter space is z = 0, and € # 0 serves as a cutoff which
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will eventually be removed. In the supergravity approximation, we think of
choosing the values ¢ arbitrarily and then extremizing the action Isygra[d]
in the region z > € subject to these boundary conditions. In short, we solve
the equations of motion in the bulk subject to Dirichlet boundary conditions
on the boundary, and evaluate the action on the solution. If there is more
than one solution, then we have more than one saddle point contributing to
the string theory partition function, and we must determine which is most
important. In this section, multiple saddle points will not be a problem. So,
we can write

Wauge[do] = — log <ef d's ¢0<w>0<w>> ~ extremum Isycrald] . (33)

CFT ol._ =do

That is, the generator of connected Green’s functions in the gauge theory,
in the large N, g% ,,N limit, is the on-shell supergravity action.

Note that in (33) we have not attempted to be prescient about inserting
factors of e. Instead our strategy will be to use (33) without modification to
compute two-point functions of @, and then perform a wave-function renor-
malization on either O or ¢ so that the final answer is independent of the
cutoff. This approach should be workable even in a space (with boundary)
which is not asymptotically anti-de Sitter, corresponding to a field theory
which does not have a conformal fixed point in the ultraviolet.

A remark is in order regarding the relation of (33) to the old approach
of extracting Green’s functions from an absorption cross-section [16]. In
absorption calculations one is keeping the whole D3-brane geometry, not
just the near-horizon AdSs x S° throat. The usual treatment is to split
the space into a near region (the throat) and a far region. The incoming
wave from asymptotically flat infinity can be regarded as fixing the value
of a supergravity field at the outer boundary of the near region. As usual,
the supergravity description is valid at large N and large 't Hooft coupling.
At small 't Hooft coupling, there is a different description of the process:
a cluster of D3-branes sits at some location in flat ten-dimensional space,
and the incoming wave impinges upon it. In the low-energy limit, the value
of the supergravity field which the D3-branes feel is the same as the value
in the curved space description at the boundary of the near horizon region.
Equation (33) is just a mathematical expression of the fact that the throat
geometry should respond identically to the perturbed supergravity fields as
the low-energy theory on the D3-branes.

Following [23, 24], a number of papers—notably [127, 128, 109, 129, 110,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141]—have undertaken
the program of extracting explicit n-point correlation functions of gauge
singlet operators by developing both sides of (33) in a power series in ¢.
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Because the right-hand side is the extremization of a classical action, the
power series has a graphical representation in terms of tree-level Feynman
graphs for fields in the supergravity. There is one difference: in ordinary
Feynman graphs one assigns the wavefunctions of asymptotic states to the
external legs of the graph, but in the present case the external leg factors
reflect the boundary values ¢y. They are special limits of the usual gravity
propagators in the bulk, and are called bulk-to-boundary propagators. We
will encounter their explicit form in the next two sections.

4.1 Two-point functions

For two-point functions, only the part of the action which is quadratic in
the relevant field perturbation is needed. For massive scalar fields in AdSs,
this has the generic form

S=n [ Ea 5 [509) + fm*]. (34)

where 7 is some normalization which in principle follows from the ten-
dimensional origin of the action. The bulk-to-boundary propagator is a
particular solution of the equation of motion, (0 —m?2)¢ = 0, which has
special asymptotic properties. We will start by considering the momentum
space propagator, which is useful for computing the two-point function and
also in situations where the bulk geometry loses conformal invariance; then,
we will discuss the position space propagator, which has proven more con-
venient for the study of higher point correlators in the conformal case. We
will always work in Euclidean space®. A coordinate system in the bulk of
AdS5 such that

2
ds? = é%—(dﬁ? +dz?) (35)

provides manifest Euclidean symmetry on the directions parametrized by
Z. To avoid divergences associated with the small z region of integration in
(34), we will employ an explicit cutoff, z > e.

A complete set of solutions for the linearized equation of motion,
(@ —m?)¢ = 0, is given by ¢ = ePZZ(pz), where the function Z(u) satisfies
the radial equation

1
mmﬁ%—ﬁ—memmzo. (36)

5The results may be analytically continued to give the correlation functions of the field
theory on Minkowskian R4, which corresponds to the Poincaré coordinates of AdS space.
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There are two independent solutions to (36), namely Z(u) = u?Ix_2(u) and
Z(u) = u2Ka_5(u), where I, and K, are Bessel functions and

A=2++V4+m2R?. (37)

The second solution is selected by the requirement of regularity in the inte-
rior: Ian_o(u) increases exponentially as u — oo and does not lead to a finite
action configuration. Imposing the boundary condition ¢(Z,z) = ¢o(Z) =
e7% at z = ¢, we find the bulk-to-boundary propagator

2 N = Ko7 ) = PEEA 2(07) iz
B(&,2) = Kp(T, 2) = (77K a2 (pe) : (38)

To compute a two-point function of the operator O for which ¢q is a source,
we write

W [¢0 = Aleiﬁ'w + AQei(f-w]

(0PO(9) =

OA10A2
A1=X2=0
= (leading analytic terms in (ep)?)
B T(3—A), . ZTA_ZL (39)
_ . 2A-8 ot T Ay p
ne (2A 4)I‘(A—1)5 (p—i—(j)(Q

+ (higher order terms in (ep)?),
_peasA-4 T(A+D) 1
A (A -2)|Z7—g*2

Several explanatory remarks are in order:

e To establish the second equality in (39) we have used (38), substituted
in (34), performed the integral and expanded in €. The leading analytic
terms give rise to contact terms in position space, and the higher order
terms are unimportant in the limit where we remove the cutoff. Only
the leading nonanalytic term is essential. We have given the expression
for generic real values of A. Expanding around integer A > 2 one
obtains finite expressions involving log ep.

e The Fourier transforms used to obtain the last line are singular, but
they can be defined for generic complex A by analytic continuation
and for positive integer A by expanding around a pole and dropping
divergent terms, in the spirit of differential regularization [142]. The
result is a pure power law dependence on the separation |Z — |, as
required by conformal invariance.
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e We have assumed a coupling [d*z ¢(Z,z = €)O(&) to compute the
Green’s functions. The explicit powers of the cutoff in the final position
space answer can be eliminated by absorbing a factor of ¢2~* into the
definition of . From here on we will take that convention, which
amounts to inserting a factor of ¢*~2 on the right-hand side of (38).
In fact, precise matchings between the normalizations in field theory
and in string theory for all the chiral primary operators have not been
worked out. In part this is due to the difficulty of determining the
coupling of bulk fields to field theory operators (or in stringy terms,
the coupling of closed string states to composite open string operators
on the brane). See [15] for an early approach to this problem. For
the dilaton, the graviton, and their superpartners (including gauge
fields in AdSs), the couplings can be worked out explicitly. In some
of these cases all normalizations have been worked out unambiguously
and checked against field theory predictions (see for example [23, 109,
134]).

e The mass-dimension relation (37) holds even for string states that are
not included in the Kaluza-Klein supergravity reduction: the mass and
the dimension are just different expressions of the second Casimir of
SO(4,2). For instance, excited string states, with m ~ 1/v/a/, are
expected to correspond to operators with dimension A ~ (g3-,,N)/*4.
The remarkable fact is that all the string theory modes with m ~ 1/R
(which is to say, all closed string states which arise from massless ten
dimensional fields) fall in short multiplets of the supergroup SU(2, 2[4).
All other states have a much larger mass. The operators in short multi-
plets have algebraically protected dimensions. The obvious conclusion
is that all operators whose dimensions are not algebraically protected
have large dimension in the strong 't Hooft coupling, large N limit
to which supergravity applies. This is no longer true for theories of
reduced supersymmetry: the supergroup gets smaller, but the Kaluza-
Klein states are roughly as numerous as before, and some of them
escape the short multiplets and live in long multiplets of the smaller
supergroups. They still have a mass on the order of 1/R, and typically
correspond to dimensions which are finite (in the large g%,,N limit)
but irrational.

Correlation functions of non-scalar operators have been widely studied
following [24]; the literature includes [143, 144, 145, 146, 147, 148, 149, 150,
151, 152, 153]. For N' = 4 super-Yang-Mills theory, all correlation functions
of fields in chiral multiplets should follow by application of supersymmetries
once those of the chiral primary fields are known, so in this case it should be
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enough to study the scalars. It is worthwhile to note however that the mass-
dimension formula changes for particles with spin. In fact the definition of
mass has some convention-dependence. Conventions seem fairly uniform in
the literature, and a table of mass-dimension relations in AdS;y; with unit
radius was made in [154] from the various sources cited above (see also [101]):

o scalars: Ay = 1(d+Vd? +4m?),
e spinors: A = 1(d+ 2[m)),
vectors: Ay = S(d £ +/(d —2)Z + dm2),

pforms: A =1(d+\/(d—2p)?+4m?),

first-order (d/2)-forms (d even): A = 3(d + 2|m|),

spin-3/2: A = 1(d + 2|m|),
e massless spin-2: A =d.

In the case of fields with second order lagrangians, we have not attempted
to pick which of AL is the physical dimension. Usually the choice A = A
is clear from the unitarity bound, but in some cases (notably m? = 15/4
in AdSs) there is a genuine ambiguity. In practice this ambiguity is usually
resolved by appealing to some special algebraic property of the relevant fields,
such as transformation under supersymmetry or a global bosonic symmetry.

For brevity we will omit a further discussion of higher spins, and instead
refer the reader to the (extensive) literature.

4.2 Three-point functions

Working with bulk-to-boundary propagators in the momentum representa-
tion is convenient for two-point functions, but for higher point functions
position space is preferred because the full conformal invariance is more
obvious. (However, for non-conformal examples of the bulk-boundary cor-
respondence, the momentum representation seems uniformly more conve-
nient). The boundary behavior of position space bulk-to-boundary propa-
gators is specified in a slightly more subtle way: following [109] we require

KA(Z,2;,9) = 222642 —7) as z—0. (40)

Here ¢ is the point on the boundary where we insert the operator, and (%, z)
is a point in the bulk. The unique regular Ka solving the equation of motion
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and satisfying (40) is

r'(A) z A
(A - 2) E @ g)?) : (41)

—

KA(:E’ Z3 y)

At a fixed cutoff, z = ¢, the bulk-to-boundary propagator Ka(Z,¢€;7) is a
continuous function which approximates e*~2§%(Z — 7) better and better as
e — 0. Thus at any finite €, the Fourier transform of (41) only approx-
imately coincides with (38) (modified by the factor of ¢*~2 as explained
after (39)). This apparently innocuous subtlety turned out to be important
for two-point functions, as discovered in [109]. A correct prescription is to
specify boundary conditions at finite z = ¢, cut off all bulk integrals at that
boundary, and only afterwards take ¢ — 0. That is what we have done
in (39). Calculating two-point functions directly using the position-space
propagators (40), but cutting the bulk integrals off again at e, and finally
taking the same € — 0 answer, one arrives at a different answer. This is not
surprising since the z = € boundary conditions were not used consistently.
The authors of [109] checked that using the cutoff consistently (i.e. with
the momentum space propagators) gave two-point functions (O(Z1)O(Z2))
a normalization such that Ward identities involving the three-point func-
tion (O(Z1)O(Z2)Ju(Z3)), where J, is a conserved current, were obeyed.
Two-point functions are uniquely difficult because of the poor convergence
properties of the integrals over z. The integrals involved in three-point func-
tions are sufficiently benign that one can ignore the issue of how to impose
the cutoff.

If one has a Euclidean bulk action for three scalar fields ¢1, ¢2, and ¢3,
of the form

S = / &z /g lzé(aqsi)? +5mid; + Apidads| (42)

i

and if the ¢; couple to operators in the field theory by interaction terms
[ d*z $;0;, then the calculation of (01 O203) reduces, via (33), to the eval-
uation of the graph shown in figure 2. That is,

(O1(21)O2(F2) O3(%3)) = —A/d% VIKA, (7 71) K, (75 T2) Kay (73 T3)

/\al
- |;Z-'1 _ j;'2|A1+A2—A3|fl — j-'3|A1+A3—A2|;Z"2 _ ;Z-'3|A2+A3—A1 ?
(43)
for some constant a;. The dependence on the Z; is dictated by the conformal
invariance, but the only way to compute a4 is by performing the integral over
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3

Figure 2: The Feynman graph for the three-point function as computed in supergravity.
The legs correspond to factors of Ka,, and the cubic vertex to a factor of A. The position
of the vertex is integrated over AdSs.

z. The result [109] is

T [3(A1+ 85— 8g)| T [3(A1 + A5 — 29)| T [5(Az + A5 — A1)]
214T (A1 — 2)T(A, — 2)[ (A5 — 2) '
T [3(A1+ 00+ 45) 2] .

a; = —

(44)
In principle one could also have couplings of the form ¢ 3¢20¢3. This leads
only to a modification of the constant a;.

The main technical difficulty with three-point functions is that one must
figure out the cubic couplings of supergravity fields. Because of the dif-
ficulties in writing down a covariant action for type IIB supergravity in
ten dimensions (see however [155, 156, 157]), it is most straightforward to
read off these “cubic couplings” from quadratic terms in the equations of
motion. In flat ten-dimensional space these terms can be read off directly
from the original type IIB supergravity papers [158, 159]. For AdSs x S°,
one must instead expand in fluctuations around the background metric and
five-form field strength. The old literature [103] only dealt with the lin-
earized equations of motion; for 3-point functions it is necessary to go to
one higher order of perturbation theory. This was done for a restricted set
of fields in [132]. The fields considered were those dual to operators of the
form Tr¢{/1¢72 ... ¢7¢) in field theory, where the parentheses indicate a sym-
metrized traceless product. These operators are the chiral primaries of the
gauge theory: all other single trace operators of protected dimension descend
from these by commuting with supersymmetry generators. Only the metric
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and the five-form are involved in the dual supergravity fields, and we are
interested only in modes which are scalars in AdSs. The result of [132] is
that the equations of motion for the scalar modes §; dual to

o' =Cj,. 5, Trgtr .. 970 (45)
follow from an action of the form
4N? 5 Ar (wl)2 ~\2 =2
S = Gy /d x\/g{ I R\ R (e

I

(46)
Gnwitwkw
+ Z 17273 3 S1,SI,SI3 ( -

11,1213

Derivative couplings of the form §05035 are expected a priori to enter into
(46), but an appropriate field redefinition eliminates them. The notation
in (45) and (46) requires some explanation. I is an index which runs over
the weight vectors of all possible representations constructed as symmetric
traceless products of the 6 of SU(4)g. These are the representations whose
Young diagrams are B E - 651... J, 18 a basis transformation ma-
trix, chosen so that CJ JZC}L.. 5 = 817, As commented in the previous
section, there is generally a normalization ambiguity on how supergravity
fields couple to operators in the gauge theory. We have taken the coupling
to be [ d*z 570!, and the normalization ambiguity is represented by the “leg
factors” w!. It is the combination s = w!3! rather than &' itself which has
a definite relation to supergravity fields. We refer the reader to [132] for
explicit expressions for A; and the symmetric tensor Gy, r,7,. To get rid of
factors of w!, we introduce operators O = w!O!. One can choose w! so

that a two-point function computation along the lines of section 4.1 leads to

6.[1]2

(O™ (&)0"(0) = S5; -

(47)
With this choice, the three-point function, as calculated using (43), is

(01 (7)) 0" (25) O™ (a3)) =
1 VAN A (CTi el Cls) (48)

N |.’I_;'1 _ £2|A1+A27A3|§;'1 _ 53‘3|A1+A37A2|j‘2 _ .’fg, Ao+Az—A7

where we have defined

I plapls\ _ oI I I3
<C c=c )_CJI...JiKl...KjCJI...JiLl...LkCKl...Kle...Lk . (49)
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Remarkably, (48) is the same result one obtains from free field theory by
Wick contracting all the ¢” fields in the three operators. This suggests that
there is a non-renormalization theorem for this correlation function, but
such a theorem has not yet been proven (see however comments at the end
of section 3.2). It is worth emphasizing that the normalization ambiguity
in the bulk-boundary coupling is circumvented essentially by considering
invariant ratios of three-point functions and two-point functions, into which
the “leg factors” w! do not enter. This is the same strategy as was pursued
in comparing matrix models of quantum gravity to Liouville theory.

4.3 Four-point functions

The calculation of four-point functions is difficult because there are several
graphs which contribute, and some of them inevitably involve bulk-to-bulk
propagators of fields with spin. The computation of four-point functions of
the operators Oy and O¢ dual to the dilaton and the axion was completed
n [160]. See also [128, 133, 135, 136, 161, 162, 139, 137, 163, 5] for earlier
contributions. One of the main technical results, further developed in [164],
is that diagrams involving an internal propagator can be reduced by inte-
gration over one of the bulk vertices to a sum of quartic graphs expressible
in terms of the functions

Dy as030,(Z1, T2, T3, Ta) /d5$fHKA Z, 2 %),

KA(& 29) = (mf

The integration is over the bulk point (#,z). There are two independent
conformally invariant combinations of the Z;:

22 =9 N B

s — 1 35135524 t— T19T34 — L14T23 (51)
= == = =

2 B3, + 7,753 T19T34 + L1433

One can write the connected four-point function as

4
o i . . 6 1 64 72
(O4(21)Oc (F2)Op(3)Oc (£4)) = (§> lmm <% - 1) Daass + 5 xj‘; 3D3355
16 72, 1 46 40 8 »
+ ?ﬁ—Dz%z‘) — 14D 444 — e —5—D3344 — 07, —5Daoas — 350, ——D1144 + 6475, D455
Ii3 8 13 13

(52)
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13

27

Figure 3: A nearly degenerate quartic graph contributing to the four-point function in
the limit |13, |T24| < |F12]-

An interesting limit of (52) is to take two pairs of points close together.
Following [160], let us take the pairs (#1,Z3) and (Z2,%4) close together
while holding #; and #3 a fixed distance apart. Then the existence of an
OPE expansion implies that

(08,(31)08,(@) 0, @) 0, @) = 3 2 TIOn NI gy
24

n,m T3

at least as an asymptotic series, and hopefully even with a finite radius of
convergence for 13 and Zo4. The operators O,, are the ones that appear in
the OPE of O; with O3, and the operators O,, are the ones that appear in the
OPE of Oy with O4. Oy and O¢ are descendants of chiral primaries, and so
have protected dimensions. The product of descendants of chiral fields is not
itself necessarily the descendent of a chiral field: an appropriately normal
ordered product : Oz, : is expected to have an unprotected dimension
of the form 8 + O(1/N?). This is the natural result from the field theory
point of view because there are O(N?) degrees of freedom contributing to
each factor, and the commutation relations between them are non-trivial
only a fraction 1/N2 of the time. From the supergravity point of view, a
composite operator like : O30y : corresponds to a two-particle bulk state,
and the O(1/N?) = O(k?/R®) correction to the mass is interpreted as the
correction to the mass of the two-particle state from gravitational binding
energy. Roughly one is thinking of graviton exchange between the legs of
figure 3 that are nearly coincident.

If (53) is expanded in inverse powers of N, then the O(1/N?) correction to
A, and A,,, shows up to leading order as a term proportional to a logarithm
of some combination of the separations Z;;. Logarithms also appear in the
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expansion of (52) in the |Z13],|T24] < |Z12| limit in which (53) applies: the

leading log in this limit is (512)16 log (flsz”). This is the correct form to
12
be interpreted in terms of the propagation of a two-particle state dual to an

operator whose dimension is slightly different from 8.

5 Wilson loops

In this section we consider Wilson loop operators in the gauge theory. The
Wilson loop operator

W(C) = Tr [P exp (z 7£ A)] (54)

depends on a loop C embedded in four dimensional space, and it involves the
path-ordered integral of the gauge connection along the contour. The trace is
taken over some representation of the gauge group; we will discuss here only
the case of the fundamental representation (see [165] for a discussion of other
representations). From the expectation value of the Wilson loop operator
(W(C)) we can calculate the quark-antiquark potential. For this purpose
we consider a rectangular loop with sides of length 7" and L in Euclidean
space. Then, viewing T as the time direction, it is clear that for large T the
expectation value will behave as e 7¥ where E is the lowest possible energy
of the quark-anti-quark configuration. Thus, we have

(W) ~ e V) (55)

where V(L) is the quark anti-quark potential. For large N and large g2 ,,N,
the AdS/CFT correspondence maps the computation of (W) in the CFT
into a problem of finding a minimum surface in AdS [166, 167].

5.1 Wilson loops and minimum surfaces

In QCD, we expect the Wilson loop to be related to the string running
from the quark to the antiquark. We expect this string to be analogous
to the string in our configuration, which is a superstring which lives in ten
dimensions, and which can stretch between two points on the boundary of
AdS. In order to motivate this prescription let us consider the following
situation. We start with the gauge group U(N + 1), and we break it to
U(N) x U(1) by giving an expectation value to one of the scalars. This
corresponds, as discussed in section 2, to having a D3 brane sitting at some
radial position U in AdS, and at a point on S°. The off-diagonal states,
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transforming in the N of U(N), get a mass proportional to U, m = U/2x.
So, from the point of view of the U(N) gauge theory, we can view these
states as massive quarks, which act as a source for the various U(N) fields.
Since they are charged they will act as a source for the vector fields. In order
to get a non-dynamical source (an “external quark” with no fluctuations of
its own, which will correspond precisely to the Wilson loop operator) we
need to take m — oo, which means U should also go to infinity. Thus, the
string should end on the boundary of AdS space.

These stretched strings will also act as a source for the scalar fields.
The coupling to the scalar fields can be seen qualitatively by viewing the
quarks as strings stretching between the N branes and the single separated
brane. These strings will pull the N branes and will cause a deformation
of the branes, which is described by the scalar fields. A more formal ar-
gument for this coupling is that these states are BPS, and the coupling
to the scalar (Higgs) fields is determined by supersymmetry. Finally, one
can see this coupling explicitly by writing the full U(N + 1) Lagrangian,
putting in the Higgs expectation value and calculating the equation of mo-
tion for the massive fields [166]. The precise definition of the Wilson loop
operator corresponding to the superstring will actually include also the field
theory fermions, which will imply some particular boundary conditions for
the worldsheet fermions at the boundary of AdS. However, this will not
affect the leading order computations we describe here.

So, the final conclusion is that the stretched strings couple to the operator

W(C) = T [P exp ( ]{ (1A, + 9I¢I\/ﬁ)d7)] , (56)

where z#(7) is any parametrization of the loop and 6! (I = 1,---,6) is
a unit vector in R® (the point on S® where the string is sitting). This is
the expression when the signature of R* is Euclidean. In the Minkowski
signature case, the phase factor associated to the trajectory of the quark has
an extra factor “” in front of 67 7.

Generalizing the prescription of section 4 for computing correlation func-
tions, the discussion above implies that in order to compute the expectation
value of the operator (56) in N' = 4 SYM we should consider the string
theory partition function on AdSs x S°, with the condition that we have
a string worldsheet ending on the loop C, as in figure 4 [167, 166]. In the
supergravity regime, when g; N is large, the leading contribution to this par-
tition function will come from the area of the string worldsheet. This area is

"The difference in the factor of ¢ between the Euclidean and the Minkowski cases can
be traced to the analytic continuation of v#2. A detailed derivation of (56) can be found
in [168].
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measured with the AdS metric, and it is generally not the same as the area
enclosed by the loop C in four dimensions.

|

Figure 4: The Wilson loop operator creates a string worldsheet ending on the corre-
sponding loop on the boundary of AdS.

The area as defined above is divergent. The divergence arises from the
fact that the string worldsheet is going all the way to the boundary of AdS.
If we evaluate the area up to some radial distance U = r, we see that for
large r it diverges as 7|C|, where |C| is the length of the loop in the field the-
ory [166, 167]. On the other hand, the perturbative computation in the field
theory shows that (W), for W given by (56), is finite, as it should be since
a divergence in the Wilson loop would have implied a mass renormalization
of the BPS particle. The apparent discrepancy between the divergence of
the area of the minimum surface in AdS and the finiteness of the field the-
ory computation can be reconciled by noting that the appropriate action for
the string worldsheet is not the area itself but its Legendre transform with
respect to the string coordinates corresponding to @/ and the radial coor-
dinate u [168]. This is because these string coordinates obey the Neumann
boundary conditions rather than the Dirichlet conditions. When the loop is
smooth, the Legendre transformation simply subtracts the divergent term
7|C|, leaving the resulting action finite.

As an example let us consider a circular Wilson loop. Take C to be a circle
of radius a on the boundary, and let us work in the Poincaré coordinates. We
could find the surface that minimizes the area by solving the Euler-Lagrange
equations. However, in this case it is easier to use conformal invariance. Note
that there is a conformal transformation in the field theory that maps a line
to a circle. In the case of the line, the minimum area surface is clearly a plane
that intersects the boundary and goes all the way to the horizon (which is
just a point on the boundary in the Euclidean case). Using the conformal
transformation to map the line to a circle we obtain the minimal surface we
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want. It is, using the coordinates (17) for AdSs,
T =+Va?— 2%(¢1 cos O + ea sinb), (57)

where €7, €3 are two orthonormal vectors in four dimensions (which define
the orientation of the circle) and 0 < z < a. We can calculate the area of
this surface in AdS, and we get a contribution to the action

dza a
2%
27ra ~ ond! / / 6 ), (58)

where we have regularized the area by putting a an IR cutoff at z = € in
AdS, which is equivalent to a UV cutoff in the field theory [66]. Subtracting
the divergent term we get

S~

(W) ~e™5 ~ e/ = gVimasN, (59)

This is independent of a as required by conformal invariance.

We could similarly consider a “magnetic” Wilson loop, which is also
called a ’t Hooft loop [169]. This case is related by electric-magnetic duality
to the previous case. Since we identify the electric-magnetic duality with the
SL(2,7) duality of type IIB string theory, we should consider in this case a
D-string worldsheet instead of a fundamental string worldsheet. We get the
same result as in (59) but with g; — 1/gs.

Using (55) it is possible to compute the quark-antiquark potential in the
supergravity approximation [167, 166]. In this case we consider a configura-
tion which is invariant under (Euclidean) time translations. We take both
particles to have the same scalar charge, which means that the two ends
of the string are at the same point in S° (one could consider also the more
general case with a string ending at different points on S [166]). We put the
quark at z = —L/2 and the anti-quark at z = L/2. Here “quark” means an
infinitely massive W-boson connecting the N branes with one brane which
is (infinitely) far away. The classical action for a string worldsheet is

S = / drdo[det (Garn 0. X M5XN), (60)

2mal!

where Gy is the Euclidean AdSs x S® metric. Note that the factors of
o' cancel out in (60), as they should. Since we are interested in a static
configuration we take 7 =%, 0 = z, and then the action becomes

2 ,L/2 2
S = E/ de_ (61)
2 —LJ2 Z
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We need to solve the Euler-Lagrange equations for this action. Since the
action does not depend on x explicitly the solution satisfies

1

——————— = constant. 62
224/(02)? + 1 nean (62)

Defining zp to be the maximum value of z(z), which by symmetry occurs at
z = 0, we find that the solution is®

1 dny
=2 g 63
0 / B (63)

where zj is determined by the condition

I 1 dun? 53/2

o [ Y2 (64)
2 0 1—y4 r'(1/4)
The qualitative form of the solution is shown in figure 5(b). Notice that the
string quickly approaches z = L/2 for small z (close to the boundary),

g—HINZ?’, z—0. (65)
Now we compute the total energy of the configuration. We just plug in the
solution (63) in (61), subtract the infinity as explained above (which can be
interpreted as the energy of two separated massive quarks, as in figure 5(a)),
and we find

am* (293 N)'/?

B=V(I) = -=—£ 5

(66)

We see that the energy goes as 1/L, a fact which is determined by conformal
invariance. Note that the energy is proportional to (g% ulN )1/ 2 as opposed
to g2 ,,N which is the perturbative result. This indicates some screening
of the charges at strong coupling. The above calculation makes sense for
all distances L when g;N is large, independently of the value of gs. Some
subleading corrections coming from quantum fluctuations of the worldsheet
were calculated in [170, 171, 172].

In a similar fashion we could compute the potential between two magnetic
monopoles in terms of a D-string worldsheet, and the result will be the same
as (66) but with gyar — 47/gym. One can also calculate the interaction
between a magnetic monopole and a quark. In this case the fundamental
string (ending on the quark) will attach to the D-string (ending on the

8 All integrals in this section can be calculated in terms of elliptic or Beta functions.
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Figure 5: (a) Initial configuration corresponding to two massive quarks before we turn on
their coupling to the U(N) gauge theory. (b) Configuration after we consider the coupling
to the U(N) gauge theory. This configuration minimizes the action. The quark-antiquark
energy is given by the difference of the total length of the strings in (a) and (b).

monopole), and they will connect to form a (1,1) string which will go into
the horizon. The resulting potential is a complicated function of gy s [173],
but in the limit that gy s is small (but still with g2 ,, N large) we get that the
monopole-quark potential is just 1/4 of the quark-quark potential. This can
be understood from the fact that when g is small the D-string is very rigid
and the fundamental string will end almost perpendicularly on the D-string.
Therefore, the solution for the fundamental string will be half of the solution
we had above, leading to a factor of 1/4 in the potential. Calculations of
Wilson loops in the Higgs phase were done in [174].

Another interesting case one can study analytically is a surface near a
cusp on R%. In this case, the perturbative computation in the gauge theory
shows a logarithmic divergence with a coefficient depending on the angle at
the cusp. The area of the minimum surface also contains a logarithmic diver-
gence depending on the angle [168]. Other aspects of the gravity calculation
of Wilson loops were discussed in [175, 176, 177, 178, 179].

5.2 Other branes ending on the boundary

We could also consider other branes that are ending at the boundary [180].
The simplest example would be a zero-brane (i.e. a particle) of mass m.
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In Euclidean space a zero-brane describes a one dimensional trajectory in
anti-de-Sitter space which ends at two points on the boundary. Therefore,
it is associated with the insertion of two local operators at the two points
where the trajectory ends. In the supergravity approximation the zero-brane
follows a geodesic. Geodesics in the hyperbolic plane (Euclidean AdS) are
semicircles. If we compute the action we get

a adz
S— /d — 9 R/ _ ez 67
m s m Sy s (67)

where we took the distance between the two points at the boundary to be
L = 2qa and regulated the result. We find a logarithmic divergence when
e — 0, proportional to log(e/a). If we subtract the logarithmic divergence
we get a residual dependence on a. Naively we might have thought that (as
in the previous subsection) the answer had to be independent of a due to
conformal invariance. In fact, the dependence on a is very important, since
it leads to a result of the form

1

=S emeRloga ~
a2mRi’

e (68)

which is precisely the result we expect for the two-point function of an op-
erator of dimension A = mR. This is precisely the large mR limit of the
formula (14), so we reproduce in the supergravity limit the 2-point function
described in section 4. In general, this sort of logarithmic divergence arises
when the brane worldvolume is odd dimensional [180], and it implies that
the expectation value of the corresponding operator depends on the overall
scale. In particular one could consider the “Wilson surfaces” that arise in
the six dimensional N' = (2,0) theory. In that case one has to consider a
two-brane, with a three dimensional worldvolume, ending on a two dimen-
sional surface on the boundary of AdS7. Again, one gets a logarithmic term,
which is proportional to the rigid string action of the two dimensional surface
living on the string in the N = (2,0) field theory [181, 180].

One can also compute correlation functions involving more than one Wil-
son loop. To leading order in N this will be just the product of the expec-
tation values of each Wilson loop. On general grounds one expects that
the subleading corrections are given by surfaces that end on more than one
loop. One limiting case is when the surfaces look similar to the zeroth order
surfaces but with additional thin tubes connecting them. These thin tubes
are nothing else than massless particles being exchanged between the two
string worldsheets [165, 181].
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6 Theories at finite temperature

As discussed in section 3, the quantities that can be most successfully com-
pared between gauge theory and string theory are those with some pro-
tection from supersymmetry and/or conformal invariance — for instance,
dimensions of chiral primary operators. Finite temperature breaks both
supersymmetry and conformal invariance, and the insights we gain from ex-
amining the 7" > 0 physics will be of a more qualitative nature. They are no
less interesting for that: we shall see in section 6.1 how the entropy of near-
extremal D3-branes comes out identical to the free field theory prediction
up to a factor of a power of 4/3; then in section 6.2 we explain how a phase
transition studied by Hawking and Page in the context of quantum gravity
is mapped into a confinement-deconfinement transition in the gauge theory.

6.1 Construction

The gravity solution describing the gauge theory at finite temperature can
be obtained by starting from the general black three-brane solution and
taking the decoupling limit of section 2 keeping the energy density above
extremality finite. The resulting metric can be written as

a?

ds®> = R? |u*(—hdt* + dz? + dz3 + dz3) + 2 + d02
(69)
ut
h =1- —2 ) ug = 7TT.
u

It will often be useful to Wick rotate by setting tg = it, and use the rela-
tion between the finite temperature theory and the Euclidean theory with a
compact time direction.

The first computation which indicated that finite-temperature U(N)
Yang-Mills theory might be a good description of the microstates of N co-
incident D3-branes was the calculation of the entropy [182, 183]. On the
supergravity side, the entropy of near-extremal D3-branes is just the usual
Bekenstein-Hawking result, S = A/4Gy, and it is expected to be a reli-
able guide to the entropy of the gauge theory at large N and large g%, N.
There is no problem on the gauge theory side in working at large N, but
large g2 ,,N at finite temperature is difficult indeed. The analysis of [182]
was limited to a free field computation in the field theory, but nevertheless
the two results for the entropy agreed up to a factor of a power of 4/3. In
the canonical ensemble, where temperature and volume are the independent
variables, one identifies the field theory volume with the world-volume of the
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D3-branes, and one sets the field theory temperature equal to the Hawking
temperature in supergravity. The result is

? 2 4
Fsygra = —§N VT, (70

4
Fsyu = §FSUGRA .

The supergravity result is at leading order in I;/R, and it would acquire
corrections suppressed by powers of TR if we had considered the full D3-
brane metric rather than the near-horizon limit, (69). These corrections do
not have an interpretation in the context of CFT because they involve R as
an intrinsic scale. Two equivalent methods to evaluate Fsygra are a) to use
F = FE—TS together with standard expressions for the Bekenstein-Hawking
entropy, the Hawking temperature, and the ADM mass; and b) to consider
the gravitational action of the Euclidean solution, with a periodicity in the
Euclidean time direction (related to the temperature) which eliminates a
conical deficit angle at the horizon.’

The 4/3 factor is a long-standing puzzle into which we still have only
qualitative insight. The gauge theory computation was performed at zero
't Hooft coupling, whereas the supergravity is supposed to be valid at strong
't Hooft coupling, and unlike in the 1+1-dimensional case where the entropy
is essentially fixed by the central charge, there is no non-renormalization
theorem for the coefficient of T# in the free energy. Indeed, it was suggested
in [184] that the leading term in the 1/N expansion of F' has the form

2
F = —f(g}nN) G NV, (71)
where f(g%,,N) is a function which smoothly interpolates between a weak
coupling limit of 1 and a strong coupling limit of 3/4. It was pointed out
early [185] that the quartic potential g2 ,,Tr[¢!, $7]? in the N' = 4 Yang-
Mills action might be expected to freeze out more and more degrees of free-
dom as the coupling was increased, which would suggest that f(g2,,N) is
monotone decreasing. An argument has been given [186], based on the non-
renormalization of the two-point function of the stress tensor, that f(g%,,N)
should remain finite at strong coupling.

9The result of [182], Ssyar = (4/3)'/*Ssvcra, differs superficially from (70), but it
is only because the authors worked in the microcanonical ensemble: rather than identi-
fying the Hawking temperature with the field theory temperature, the ADM mass above
extremality was identified with the field theory energy.
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The leading corrections to the limiting value of f(g2-,,N) at strong and
weak coupling were computed in [184] and [187], respectively. The results
are

3
f(g%MN)zl—ﬁg%MN—i—... for small g2, N,

72)
3 45 ¢(3) (
-t =} ... for 1 2 N.

1 + 39 (g%,MN)3/2 + or large gy,

f (Q%MN ) =
The weak coupling result is a straightforward although somewhat tedious
application of the diagrammatic methods of perturbative finite-temperature
field theory. The constant term is from one loop, and the leading correction
is from two loops. The strong coupling result follows from considering the
leading o corrections to the supergravity action. The relevant one involves a
particular contraction of four powers of the Weyl tensor. It is important now
to work with the Euclidean solution, and one restricts attention further to the
near-horizon limit. The Weyl curvature comes from the non-compact part of
the metric, which is no longer AdSs but rather the AdS-Schwarzschild solu-
tion which we will discuss in more detail in section 6.2. The action including
the o corrections no longer has the Einstein-Hilbert form, and correspond-
ingly the Bekenstein-Hawking prescription no longer agrees with the free
energy computed as SI where I is the Euclidean action. In keeping with the
basic prescription for computing Green’s functions, where a free energy in
field theory is equated (in the appropriate limit) with a supergravity action,
the relation I = SF is regarded as the correct one. (See [188].) It has been
conjectured that the interpolating function f(g2,,N) is not smooth, but ex-
hibits some phase transition at a finite value of the ’t Hooft coupling. We
regard this as an unsettled question. The arguments in [189, 190] seem as
yet incomplete. In particular, they rely on analyticity properties of the per-
turbation expansion which do not seem to be proven for finite temperature
field theories.

6.2 Thermal phase transition

The holographic prescription of [23, 24], applied at large N and g2 ,,N where
loop and stringy corrections are negligible, involves extremizing the super-
gravity action subject to particular asymptotic boundary conditions. We
can think of this as the saddle point approximation to the path integral
over supergravity fields. That path integral is ill-defined because of the
non-renormalizable nature of supergravity. String amplitudes (when we can
calculate them) render on-shell quantities well-defined. Despite the concep-
tual difficulties we can use some simple intuition about path integrals to
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illustrate an important point about the AdS/CFT correspondence: namely,
there can be more than one saddle point in the range of integration, and
when there is we should sum e /sUGrA gver the classical configurations to
obtain the saddle-point approximation to the gauge theory partition func-
tion. Multiple classical configurations are possible because of the general
feature of boundary value problems in differential equations: there can be
multiple solutions to the classical equations satisfying the same asymptotic
boundary conditions. The solution which globally minimizes Isygra is the
one that dominates the path integral.

When there are two or more solutions competing to minimize Isygra,
there can be a phase transition between them. An example of this was stud-
ied in [191] long before the AdS/CFT correspondence, and subsequently
resurrected, generalized, and reinterpreted in [24, 68] as a confinement-
deconfinement transition in the gauge theory. Since the qualitative features
are independent of the dimension, we will restrict our attention to AdSs. It
is worth noting however that if the AdSs geometry is part of a string com-
pactification, it doesn’t matter what the internal manifold is except insofar
as it fixes the cosmological constant, or equivalently the radius R of anti-de
Sitter space.

There is an embedding of the Schwarzschild black hole solution into anti-
de Sitter space which extremizes the action

1 12
I=— 5 = .
167TG5/dx\/§<R+R2> (73)

Explicitly, the metric is

ds® = fdt* + %er +1r?dQ3,
2 (74)

The radial variable r is restricted to r > r1, where r, is the largest root of
f = 0. The Euclidean time is periodically identified, ¢t ~ ¢ + 3, in order to
eliminate the conical singularity at » = r,.. This requires

27I'R2’I"+

=7 75
B 2r2 + R? (75)

Topologically, this space is S% x B2, and the boundary is $2 x S' (which is
the relevant space for the field theory on S with finite temperature). We

will call this space X5. Another space with the same boundary which is
also a local extremum of (73) is given by the metric in (74) with y4 = 0
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and again with periodic time. This space, which we will call X, is not
only metrically distinct from the first (being locally conformally flat), but
also topologically B* x S! rather than S3 x B2. Because the S' factor is
not simply connected, there are two possible spin structures on X;, corre-
sponding to thermal (anti-periodic) or supersymmetric (periodic) boundary
conditions on fermions. In contrast, X, is simply connected and hence ad-
mits a unique spin structure, corresponding to thermal boundary conditions.
For the purpose of computing the twisted partition function, Tr(—1)% e BH.
in a saddle-point approximation, only X; contributes. But, X; and X5 make
separate saddle-point contributions to the usual thermal partition function,
Tre=PH | and the more important one is the one with the smaller Euclidean
action.

Actually, both I(X;) and I(X3) are infinite, so to compute I(Xs)—1I(X1)
a regulation scheme must be adopted. The one used in [68, 184] is to cut
off both X; and X, at a definite coordinate radius r = Ry. For X, the
elimination of the conical deficit angle at the horizon fixes the period of
Euclidean time; but for X;, the period is arbitrary. In order to make the
comparison of I(X;) and I(X5) meaningful, we fix the period of Euclidean
time on X7 so that the proper circumference of the S; at r = Ry is the same
as the proper length on X5 of an orbit of the Killing vector d/0t, also at
r = Ry. In the limit Ry — oo, one finds

mr3 (R? —r?)

I(X2) — I(Xy) = iGs(? ¥ RY) (76)
where again 7 is the largest root of f = 0. The fact that (76) (or more
precisely its AdS, analog) can change its sign was interpreted in [191] as
indicating a phase transition between a black hole in AdS and a thermal gas
of particles in AdS (which is the natural interpretation of the space X1). The
black hole is the thermodynamically favored state when the horizon radius r
exceeds the radius of curvature R of AdS. In the gauge theory we interpret
this transition as a confinement-deconfinement transition. Since the theory
is conformally invariant, the transition temperature must be proportional to
the inverse radius of the space S3 which the field theory lives on. Similar
transitions, and also local thermodynamic instability due to negative specific
heats, have been studied in the context of spinning branes and charged black
holes in [192, 193, 194, 195, 196, 197, 198]. Most of these works are best
understood on the CFT side as explorations of exotic thermal phenomena, in
finite-temperature gauge theories. Connections with Higgsed states in gauge
theory are clearer in [199, 200]. The relevance to confinement is explored in
[197]. See also [201, 202, 203, 204] for other interesting contributions to the
finite temperature literature.
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Deconfinement at high temperature can be characterized by a sponta-
neous breaking of the center of the gauge group. In our case the gauge group
is SU(N) and its center is Zy. The order parameter for the breaking of the
center is the expectation value of the Polyakov (temporal) loop (W (C)).
The boundary of the spaces X1, X, is S x S', and the path C wraps around
the circle. An element of the center g € Zx acts on the Polyakov loop by
(W(C)) — g(W(C)). The expectation value of the Polyakov loop measures
the change of the free energy of the system F(T) induced by the presence
of the external charge ¢, (W(C)) ~ exp (—F,(T)/T). In a confining phase
F,(T) is infinite and therefore (W (C)) = 0. In the deconfined phase Fy(T')
is finite and therefore (W(C)) # 0.

As discussed in section 5, in order to compute (W (C)) we have to evaluate
the partition function of strings with a worldsheet D that is bounded by the
loop C. Consider first the low temperature phase. The relevant space is X3
which, as discussed above, has the topology B* x S'. The contour C wraps
the circle and is not homotopic to zero in X;. Therefore C' is not a boundary
of any D, which immediately implies that (W (C)) = 0. This is the expected
behavior at low temperatures (compared to the inverse radius of the S3),
where the center of the gauge group is not broken.

For the high temperature phase the relevant space is X9, which has the
topology S x B2. The contour C is now a boundary of a string worldsheet
D = B? (times a point in $3). This seems to be in agreement with the
fact that in the high temperature phase (W (C)) # 0 and the center of the
gauge group is broken. It was pointed out in [68] that there is a subtlety
with this argument, since the center should not be broken in finite volume
(53), but only in the infinite volume limit (R®). Indeed, the solution X
is not unique and we can add to it an expectation value for the integral
of the NS-NS 2-form field B on B?, with vanishing field strength. This is
an angular parameter ¢ with period 27, which contributes 77 to the string
worldsheet action. The string theory partition function includes now an
integral over all values of 9, making (W (C)) = 0 on S3. In contrast, on
R® one integrates over the local fluctuations of 1 but not over its vacuum
expectation value. Now (W (C)) # 0 and depends on the value of ¢ € U(1),
which may be understood as the dependence on the center Zy in the large
N limit. Explicit computations of Polyakov loops at finite temperature were
done in [205, 6].

In [68] the Euclidean black hole solution (74) was suggested to be holo-
graphically dual to a theory related to pure QCD in three dimensions. In the
large volume limit the solution corresponds to the N' = 4 gauge theory on
R® x S* with thermal boundary conditions, and when the S! is made small
(corresponding to high temperature 7T') the theory at distances larger than
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1/T effectively reduces to pure Yang-Mills on R®. Some of the non-trivial
successes of this approach to QCD are summarized in [1].
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1 Introduction

The holographic principle is based on the idea that for a given volume V the
state of maximal entropy is given by the largest black hole that fits inside V.
't Hooft and Susskind [1] argued on this basis that the microscopic entropy
S associated with the volume V should be less than the Bekenstein-Hawking
entropy 1

s< o (1
of a black hole with horizon area A equal to the surface area of the boundary
of V. Here the dependence on Newton’s constant G is made explicit, but as
usual i and c are set to one.

To shed further light on the holographic principle and the entropy bounds
derived from it, we consider a standard cosmology of a closed radiation dom-
inated Friedmann-Robertson-Walker (FRW) universe with general space-
time dimension

D=n+1.

The metric takes the form
ds®> = —dt* + R%*()dQ? (2)

where R(t) represents the radius of the universe at a given time ¢ and dQ2
is a short hand notation for the metric on the unit n-sphere S™. Hence, the
spatial section of a (n+1)d closed FRW universe is an n-sphere with a finite
volume

V = Vol(S™)R".

The holographic bound is in its naive form (1) not really applicable to a
closed universe, since space has no boundary. Furthermore, the argumen-
tation leading to (1) assumes that it’s possible to form a black hole that
fills the entire volume. This is not true in a cosmological setting, because
the expansion rate H of the universe as well as the given value of the total
energy F restrict the maximal size of black hole. As will be discussed in
these notes, this will lead to a modified version of the holographic bound.

The radiation in the universe is described by a conformal field theory
(CFT) with a very large central charge c¢. In a finite volume the energy F
has a Casimir contribution proportional to ¢. Due to this Casimir effect, the
entropy S is no longer a purely extensive function of £ and V. The entropy
of a (1+1)d CFT is given by the well-known Cardy formula [2]

S =2 g(L —2i> (3)
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where L represents the product E'R of the energy and radius, and the shift of
51 is caused by the Casimir effect. In these notes we show that, after making
the appropriate identifications for Ly and ¢, the same Cardy formula is also
valid for CFTs in other dimensions. This is rather surprising, since the
standard derivation of the Cardy formula based on modular invariance only
appears to work for n = 1. By defining the central charge ¢ in terms of the
Casimir energy, we are able to argue that the Cardy formula is universally
valid. Specifically, we will show that with the appropriate identifications,
the entropy S for a n4+1 dimensional CFT with an AdS-dual is exactly given
by (3).

There appears to be a deep and fundamental connection between the
holographic principle, the entropy formulas for the CFT, and the FRW
equations for a radiation dominated universe. In n+1 dimensions the FRW
equations are given by

167G E 1

0= v @

where H = R/R is the Hubble parameter, and the dot denotes as usual
differentiation with respect to the time ¢. The FRW equations are usually
written in terms of the energy density p = E/V, but for the present study
it is more convenient to work with the total energy E and entropy S instead
of their respective densities p and s = S/V. Note that the cosmological
constant has been put to zero.

Entropy and energy momentum conservation together with the equation
of state p = E/nV imply that E/V and p decrease in the usual way like
R~(+1)_ Hence, the cosmological evolution follows the standard scenario
for a closed radiation dominated FRW universe. After the initial Big Bang,
the universe expands until it reaches a maximum radius, the universe sub-
sequently re-collapses and ends with a Big Crunch. No surprises happen in
this respect.

The fun starts when one compares the holographic entropy bound with
the entropy formulas for the CFT. We will show that when the bound is sat-
urated the FRW equations and entropy formulas of the CFT merge together
into one set of equation. One easily checks on the back of an envelope that
via the substitutions
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2rLy = —FER
n
c v
2 = DGR (6)
HV

the Cardy formula (3) ezactly turns into the n + 1 dimensional Friedmann
equation (4). This observation appears as a natural consequence of the
holographic principle. In sections 2 and 3 we introduce three cosmological
bounds each corresponding to one of the equations in (6) The Cardy formula
is presented and derived in section 4. In section 5 we introduce a new
cosmological bound, and show that the FRW equations and the entropy
formulas are exactly matched when the bound is saturated. In section 6 we
present a graphical picture of the entropy bounds and their time evolution.

2 Cosmological entropy bounds

This section is devoted to the description of three cosmological entropy
bounds: the Bekenstein bound, the holographic Bekenstein-Hawking bound,
and the Hubble bound. The relation with the holographic bound proposed
by Fischler-Susskind and Bousso (FSB) will also be clarified.

2.1 The Bekenstein bound

Bekenstein [4] was the first to propose a bound on the entropy of a macro-
scopic system. He argued that for a system with limited self-gravity, the
total entropy S is less or equal than a multiple of the product of the energy
and the linear size of the system. In the present context, namely that of a
closed radiation dominated FRW universe with radius R, the appropriately
normalized Bekenstein bound is

S < Sp (7)

where the Bekenstein entropy Sp is defined by

2
S = ““ER. (8)
n
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The bound is most powerful for relatively low energy density or small vol-
umes. This is due to the fact that Sp is super-extensive: under V. — AV
and E — AE it scales like S — A1T1/7Sp.

For a radiation dominated universe the Bekenstein entropy is constant
throughout the entire evolution, since E ~ R™!. Therefore, once the Beken-
stein bound is satisfied at one instance, it will remain satisfied at all times
as long as the entropy S does not change. The Bekenstein entropy is the
most natural generalization of the Virasoro operator 27w L to arbitrary di-
mensions, as is apparent from (6). Indeed, it is useful to think about Sp not
really as an entropy but rather as the energy measured with respect to an
appropriately chosen conformal time coordinate.

2.2 The Bekenstein-Hawking bound

The Bekenstein-bound is supposed to hold for systems with limited self-
gravity, which means that the gravitational self-energy of the system is
small compared to the total energy E. In the current situation this im-
plies, concretely, that the Hubble radius H~! is larger than the radius R of
the universe. So the Bekenstein bound is only appropriate in the parameter
range HR < 1. In a strongly self-gravitating universe, that is for HR > 1,
the possibility of black hole formation has to be taken into account, and the
entropy bound must be modified accordingly. Here the general philosophy
of the holographic principle becomes important.
It follows directly from the Friedmann equation (4) that

v

Therefore, to decide whether a system is strongly or weakly gravitating one
should compare the Bekenstein entropy Sp with the quantity

v
Spr = (n 1)4GR. (10)
When Sp < Spp the system is weakly gravitating, while for Sp > Spg the
self-gravity is strong. We will identify Spy with the holographic Bekenstein-
Hawking entropy of a black hole with the size of the universe. Sppy indeed
grows like an area instead of the volume, and for a closed universe it is the
closest one can come to the usual expression A/4G.

As will become clear in these notes, the role of Sgy is not to serve as

a bound on the total entropy, but rather on a sub-extensive component of
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the entropy that is association with the Casimir energy of the CFT. The
relation (6) suggests that the Bekenstein-Hawking entropy is closely related
to the central charge c. Indeed, it is well-known from (1+1)d CFT that the
central charge characterizes the number of degrees of freedom may be even
better than the entropy. This fact will be further explained in sections 5 and
6, when we describe a new cosmological bound on the Casimir energy and
its associated entropy.

2.3 The Hubble entropy bound

The Bekenstein entropy Sp is equal to the holographic Bekenstein-Hawking
entropy Spm precisely when HR = 1. For HR > 1 one has Sp > Spp and
the Bekenstein bound has to be replaced by a holographic bound. A naive
application of the holographic principle would imply that the total entropy
S should be bounded by Spg. This turns out to be incorrect, however, since
a purely holographic bound assumes the existence of arbitrarily large black
holes, and is irreconcilable with a finite homogeneous entropy density.
Following earlier work by Fischler and Susskind [5], it was argued by
Easther and Lowe [6], Veneziano [7], Bak and Rey [8], Kaloper and Linde [9],
that the maximal entropy inside the universe is produced by black holes of
the size of the Hubble horizon, see also [10]. Following the usual holographic
arguments one then finds that the total entropy should be less or equal
than the Bekenstein-Hawking entropy of a Hubble size black hole times the
number Ny of Hubble regions in the universe. The entropy of a Hubble size
black hole is roughly HVy /4G, where Vg is the volume of a single Hubble
region. Combined with the fact that Ny = V/Vyg one obtains an upper
bound on the total entropy S given by a multiple of HV/4G. The presented
arguments of [6, 8, 9, 7] are not sufficient to determine the precise pre-factor,
but in the following subsection we will fix the normalization of the bound
by using a local version of the Fischler-Susskind-Bousso formulation of the
holographic principle. The appropriately normalized entropy bound takes
the form
S < Sy for HR>1 (11)
with v
Sy = (n—l)ﬁ. (12)
The Hubble bound is only valid for HR > 1. In fact, it is easily seen that for
HR <1 the bound will at some point be violated. For example, when the
universe reaches its maximum radius and starts to re-collapse the Hubble
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constant H vanishes, while the entropy is still non-zero.! This should not
really come as a surprise, since the Hubble bound was based on the idea that
the maximum size of a black hole is equal to the Hubble radius. Clearly,
when the radius R of the universe is smaller than the Hubble radius H ' one
should reconsider the validity of the bound. In this situation, the self-gravity
of the universe is less important, and the appropriate entropy bound is

S<Sp for HR<1 (13)

2.4 The Hubble bound and the FSB prescription

Fischler, Susskind, and subsequently Bousso [12], have proposed an ingenious
version of the holographic bound that restricts the entropy flow through
contracting light sheets. The FSB-bound works well in many situations, but,
so far, no microscopic derivation has been given. Wald and collaborators [13]
have shown that the FSB bound follows from local inequalities on the entropy
density and the stress energy. The analysis of [13] suggests the existence a
local version of the FSB entropy bound, one that does not involve global
information about the causal structure of the universe, see also [11]. The
idea of to formulate the holographic principle via entropy flow through light
sheets also occurred in the work of Jacobson [14], who used it to derive
an intriguing relation between the Einstein equations and the first law of
thermodynamics. In this subsection, a local FSB bound will be presented
that leads to a precisely normalized upper limit on the entropy in terms of
the Hubble constant.

According to the original FSB proposal, the entropy flow S through a
contracting light sheet is less or equal to A/4G, where A is the area of the
surface from which the light sheet originates. The following infinitesimal
version of this FSB prescription will lead to the Hubble bound. For every
n—1 dimensional surface at time ¢ + dt with area A + dA one demands that

dA
dsS < — 14
<% (14)
where dS denotes the entropy flow through the infinitesimal light sheets
originating at the surface at ¢ + dt and extending back to time ¢, and dA
represents the increase in area between ¢ and t + di. For a surface that is
kept fixed in co-moving coordinates the area A changes as a result of the

!To avoid this problem a different covariant version of the Hubble bound was proposed
in [11].
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Hubble expansion by an amount
dA = (n—1)HAdt, (15)

where the factor n—1 simply follows from the fact that A ~ R"~1. Now pick
one of the two past light-sheets that originate at the surface: the inward or
the outward going. The entropy flow through this light-sheet between ¢ and
t+dt is given by the entropy density s = S/V times the infinitesimal volume
Adt swept out by the light-sheet. Hence,

S
ds = VAdt. (16)
By inserting this result together with (15) into the infinitesimal FSB bound
(14) one finds that the factor Adt cancels on both sides and one is left exactly
with the Hubble bound S < Sy with the Hubble entropy Sy given in (12).
We stress that the relation with the FSB bound was merely used to fix the
normalization of the Hubble bound, and should not be seen as a derivation.

3 Time-evolution of the entropy bounds

Let us now return to the three cosmological entropy bounds discussed in
section 2. The Friedmann equation (4) can be re-written as an identity that
relates the Bekenstein-, the Hubble-, and the Bekenstein-Hawking entropy.
One easily verifies that the expressions given in (8), (10), and (12) satisfy
the quadratic relation

S% +(Sp — Spw)? = S%. (17)

It is deliberately written in a Pythagorean form, since it suggests a useful
graphical picture of the three entropy bounds. By representing each entropy
by a line with length equal to its value one finds that due to the quadratic
Friedmann relation (17) all three fit nicely together in one diagram, see figure
1. The circular form of the diagram reflects the fact that Sp is constant
during the cosmological evolution. Only Sy and Spy depend on time.

Let us introduce a conformal time coordinate via

Rdn = (n—1)dt (18)

and let us compute the n-dependence of Sy and Sy. For Spy this easily
follows from: Spy = (n—1)HSpy = (n—1)R~'Sy. For Sy the calculation
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is a bit more tedious, but with the help of the FRW equations, the result
can eventually be put in the form

dSu

i = S — SBH,
dSpH

- —Su. 1
dn S (19)

These equations show that the conformal time coordinate n can be identified
with the angle 7, as already indicated in figure 1. As time evolves the Hubble
entropy Sy rotates into the combination Sg — Spy and visa versa. Equation
(19) can be integrated to

Sy = Spsiny
Spm = Sp(l —cosn) (20)

The conformal time coordinate 1 plays the role of the time on a cosmological
clock that only goes around once: at n = 0 time starts with a Big Bang and
at 7 = 27 it ends with a Big Crunch. Note that 7 is related to the parameter
HR via

HR = cotg (21)

Su

Figure 1: A graphical representation of the Bekenstein entropy Sg, the Hubble entropy
Su and the Bekenstein-Hawking entropy Spr. The angle 7 corresponds to the conformal
time coordinate. The value of each entropy is represented by an actual distance: Sp is
constant, while Sy and Spr change with time.

So far we have not yet included the CFT into our discussion. We will see
that the entropy of the CFT will ‘fill’ part of the diagram, and in this way
give rise to a special moment in time when the entropy bounds are saturated.
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4 Casimir energy and the Cardy formula

We now turn to the discussion of the entropy of the CFT that lives inside
the FRW universe. We begin with a study of the finite temperature Casimir
energy with the aim to exhibit its relation with the entropy of the CFT.
Subsequently a universal Cardy formula will be derived that expresses the
entropy in terms of the energy and the Casimir energy, and is valid for all
values of the spatial dimension 7.

4.1 The Euler relation and Casimir energy

In standard textbooks on cosmology [15, 16] it is usually assumed that the
total entropy S and energy E are extensive quantities. This fact is used for
example to relate the entropy density s to the energy density p and pressure
p, via T's = p+p. For a thermodynamic system in finite volume V the energy
E(S,V), regarded as a function of entropy and volume, is called extensive
when it satisfies E(AS,AV) = AE(S, V). Differentiating with respect to A
and putting A\ = 1 leads to the Euler relation®

E:V(?—g)erS(g—g)V (22)

The first law of thermodynamics dE = T'dS — pdV can now be used to
re-express the derivatives via the thermodynamic relations

@) G e

The resulting equation T'S = E + pV is equivalent to the previously men-
tioned relation for the entropy density s.

For a CFT with a large central charge the entropy and energy are not
purely extensive. In a finite volume the energy F of a CFT contains a
non-extensive Casimir contribution proportional to ¢. This is well known in
(141) dimensions where it gives rise to the familiar shift of ¢/24 in the Lg
Virasoro operator. The Casimir energy is the result of finite size effects in the
quantum fluctuations of the CFT, and disappears when the volume becomes
infinitely large. It therefore leads to sub-extensive contributions to the total
energy E. Usually the Casimir effect is discussed at zero temperature [17],

2We assume here that there are no other thermodynamic functions like a chemical or
electric potential. For a system with a 1st law like TdS = dE + pdV + udN + ®dQ the
Euler relation reads T'S = E + pV + uN + Q.
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but a similar effect occurs at finite temperature. The value of the Casimir
energy will in that case generically depend on the temperature T'.
We will now define the Casimir energy as the violation of the Euler
identity (22)
Ec=n(E+pV -TS) (24)

Here we inserted for convenience a factor equal to the spatial dimension
n. From the previous discussion it is clear that E¢ parameterizes the sub-
extensive part of the total energy. The Casimir energy will just as the total
energy be a function of the entropy S and the volume V. Under § — AS
and V' — AV it scales with a power of A that is smaller than one. On general
grounds one expects that the first subleading correction to the extensive part
of the energy scales like

Ec(AS,A\V) = X'"2/"Eq (S, V) (25)

One possible way to see this is to write the energy as an integral over a local
density expressed in the metric and its derivatives. Derivatives scale like
A~Y" and because derivatives come generally in pairs, the first subleading
terms indeed has two additional factors of A='/™. The total energy E(S,V)

may be written as a sum of two terms
1
E(S, V) :EE(Sa V) + EEC(Sav) (26)

where the first term Eg denotes the purely extensive part of the energy E
and E¢ represents the Casimir energy. Again the factor 1/2 has been put in
for later convenience. By repeating the steps that lead to the Euler relation
one easily verifies the defining equation (24) for the Casimir energy E¢.

4.2 Universality of the Cardy formula and the Bekenstein
bound

Conformal invariance implies that the product EFR is independent of the
volume V', and is only a function of the entropy S. This holds for both terms
Eg and E¢ in (26). Combined with the known (sub-)extensive behavior of
Er and E¢ this leads to the following general expressions

_ 2 qi+1/n _ b qi-1/m
Br = r® Be=5Rr”
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where a and b are a priori arbitrary positive coefficients, independent of R
and S. The factors of 47 and 27 are put in for convenience. With these
expressions, one now easily checks that the entropy S can be written as

S— %,/EC(QE " Fo). (27)

If we ignore for a moment the normalization, this is exactly the Cardy for-
mula: insert FR = Ly and E¢R = ¢/12, and one recovers (3). It is obviously
an interesting question to compute the coefficients a and b for various known
conformal invariant field theories. This should be particularly straightfor-
ward for free field theories, such as d = 4 Maxwell theory and the self-dual
tensor theory in d = 6. This question is left for future study.

Given the energy E the expression (27) has a maximum value. For all
values of E, Ec and R one has the inequality

2T
S < —FER
~ Vab

This looks exactly like the Bekenstein bound, except that the pre-factor is in
general different from the factor 2w /n used in the previous section. In fact,
in the following subsection we will show that for CFTs with an AdS-dual
description, the value of the product ab is exactly equal to n?, so the upper
limit is indeed exactly given by the Bekenstein entropy. Although we have
no proof of this fact, we believe that the Bekenstein bound is universal. This
implies that the product ab for all CFTs in n+1 dimensions is larger or equal
than n2. Only then it is guaranteed that the upper limit on the entropy is
less or equal than Sp.

The upper limit is reached when the Casimir energy F¢ is equal to the
total energy E. Formally, when E¢ becomes larger that E the entropy S
will again decrease. Although in principle this is possible, we believe that in
actual examples the Casimir energy E¢ is bounded by the total energy F.
So, from now on we assume that

Ec<E (28)

In the next subsection we provide further evidence for this inequality.

From now on we will assume that we are dealing with a CFT for which
ab = n?. In the next section I will show that this includes all CFTs that
have an AdS-dual description.
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4.3 The Cardy formula derived from AdS/CFT

Soon after Maldacena’s AdS/CFT-correspondence [18] was properly under-
stood [19, 20] it was convincingly argued by Witten [21] that the entropy,
energy and temperature of CFT at high temperatures can be identified with
the entropy, mass, and Hawking temperature of the AdS black hole pre-
viously considered by Hawking and Page [22]. Using this duality relation
the following expressions can be derived for the energy and entropy?® for a
D =n+ 1 dimensional CFT on R x S™:

cV
5= 5
cn L2\ v
E=——[1+Z ] 2
1247TL< +R2> Ln (29)

The temperature again follows from the first law of thermodynamics. One
finds

7= (s +m-1nL (30)
~4nn "TUR)

The length scale L of the thermal CFT arises in the AdS/CFT correspon-
dence as the curvature radius of the AdS black hole geometry. The expression
for the energy clearly exhibits a non-extensive contribution, while also the
temperature 7' contains a corresponding non-intensive term. Inserting the
equations (29,30) into (24) yields the following result for the Casimir energy

cn Vv

Bp=—_" _ 7
¢~ 1227RIL" 'R

(31)
Now let us come to the Cardy formula. The entropy S, energy E and Casimir
energy F¢ are expressed in ¢, L and R. Eliminating ¢ and L leads to a unique
expression for S in terms of F, Ec and R. One easily checks that it takes
the form of the Cardy formula

2
S = WTR Ec (2E — E¢) (32)

3These expressions differ somewhat from the presented formulas in [21] due to the fact
that (i) the D + 1 dimensional Newton constant has been eliminated using its relation
with the central charge, (ii) the coordinates have been re-scaled so that the CFT lives on a
sphere with radius equal to the black hole horizon. We will not discuss the AdS perspective
in these notes, since the essential physics can be understood without introducing an extra
dimension. The discussion of the CFT/FRW cosmology from an AdS perspective will be
described elsewhere [3].
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In the derivation of these formulas it was assumed that R >> L. One may
worry therefore that these formulas are not applicable in the early universe.
Fortunately this is not a problem because during an adiabatic expansion both
L and R scale in the same way so that R/L is fixed. Hence the formulas are
valid provided the (fixed) ratio of the thermal wave-length and the radius
R is much smaller than one. Effectively this means, as far as the CFT is
concerned, we are in a high temperature regime. We note further that with
in this parameter range, the Casimir energy E¢ is indeed smaller than the
total energy E.

Henceforth, we will assume that the CFT that describes the radiation
in the FRW universe will have an entropy given by (32) with the specific
normalization of 27/n. Note that if we take n = 1 and make the previously
mentioned identifications FR = Ly and EcR = ¢/12 that this equation
exactly coincides with the usual Cardy formula. We will therefore in the
following refer to (32) simply as the Cardy formula. To check the precise
coefficient of the Cardy formula for a CFT we have made use of the AdS/CFT
correspondence. The rest of our discussions in the preceding and in the
following sections do not depend on this correspondence.

5 A new cosmological bound

In this section a new cosmological bound will be presented, which is equiva-
lent to the Hubble bound in the strongly gravitating phase, but which unlike
the Hubble bound remains valid in the phase of weak self-gravity. When the
bound is saturated the FRW equations and the CF'T formulas for the entropy
and Casimir energy completely coincide.

5.1 A cosmological bound on the Casimir energy

Let us begin by presenting another criterion for distinguishing between a
weakly or strongly self-gravitating universe. When the universe goes from
the strongly to the weakly self-gravitating phase, or vice-versa, the Beken-
stein entropy Sp and the Bekenstein-Hawking entropy Spp are equal in
value. Given the radius R, we now define the ‘Bekenstein-Hawking’ energy
Epp as the value of the energy E for which Sp and Spy are exactly equal.
This leads to the condition

2;’].(-EBHR = (n—l) (33)

AGR’
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One may interpret Fpy as the energy required to form a black hole with
the size of the entire universe. Now, one easily verifies that

EBH for HR S 1
EBH for HR Z 1. (34)

Hence, the universe is weakly self-gravitating when the total energy F is less
than Epp and strongly gravitating for £ > Epy.

We are now ready to present a proposal for a new cosmological bound.
It is not formulated as a bound on the entropy S, but as a restriction on
the Casimir energy F¢. The physical content of the bound is the Casimir
energy F¢ by itself can not be sufficient to form a universe-size black hole.
Concretely, this implies that the Casimir energy E¢ is less or equal to the
Bekenstein-Hawking energy Epp. Hence, we postulate

Ec < Eppy (35)

To put the bound in a more conventional notation one may insert the defi-
nition (24) of the Casimir energy together with the defining relation (33) of
the Bekenstein-Hawking energy. We leave this to the reader.

The virtues of the new cosmological bound are: (i) it is universally valid
and does not break down for a weakly gravitating universe, (ii) in a strongly
gravitating universe it is equivalent to the Hubble bound, (iii) it is purely
holographic and can be formulated in terms of the Bekenstein-Hawking en-
tropy Spg of a universe-size black hole, (iv) when the bound is saturated the
laws of general relativity and quantum field theory converge in a miraculous
way, giving a strong indication that they have a common origin in a more
fundamental unified theory.

The first point on the list is easily checked because E¢ decays like R~}
while Epg goes like R™". Only when the universe re-collapses and returns
to the strongly gravitating phase the bound may again become saturated.
To be able to proof the other points on the list of advertised virtues, we have
to take a closer look to the FRW equations and the CFT formulas for the
entropy an entropy.

5.2 A cosmological Cardy formula

To show the equivalence of the new bound with the Hubble bound let us
write the Friedmann equation as an expression for the Hubble entropy Sy
in terms of the energy F, the radius R and the Bekenstein-Hawking energy
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FEpg. Here, the latter is used to remove the explicit dependence on Newton’s
constant G. The resulting expression is unique and takes the form

2
Su = —-Ry/Epu (2E — Bpn) (36)

This is exactly the Cardy formula (32), except that the role of the Casimir
energy F¢ in CFT formula is now replaced by the Bekenstein-Hawking en-
ergy Epp. Somehow, miraculously, the Friedmann equation knows about
the Cardy formula for the entropy of a CFT!

With the help of (36) is now a straightforward matter to proof that
when HR > 1 the new bound F¢ < Epp is equivalent to the Hubble bound
S < Sg. First, let us remind that for HR > 1 the energy E satisfies
FE > Eppg. Furthermore, we always assume that the Casimir energy F¢ is
smaller than the total energy E. The entropy S is a monotonically increasing
function of E¢ as long as E¢ < E. Therefore in the range

Ec<Epyg <E (37)

the maximum entropy is reached when Ec = Egg. In that case the Cardy
formula (32) for S exactly turns into the cosmological Cardy formula (36) for
Sp. Therefore, we conclude that Sy is indeed the maximum entropy that
can be reached when HR > 1. Note that in the weakly self-gravitating phase,
when E < Eppg, the maximum is reached earlier, namely for Fc = E. The
maximum entropy is in that case given by the bekenstein entropy Sp. The
bifurcation of the new bound in two entropy bounds is a direct consequence
of the fact that the Hubble bound is written as the square-root of a quadratic
expression.

5.3 A limiting temperature

So far we have focussed on the entropy and energy of the CF'T and on the first
of the two FRW equations, usually referred to as the Friedmann equation.
We will now show that also the second FRW equation has a counterpart in
the CFT, and will lead to a constraint on the temperature 7'. Specifically,
we will find that the bound on E¢ implies that the temperature T in the
early universe is bounded from below by
H

Ty = ——— (38)
The minus sign is necessary to get a positive result, since in a radiation
dominated universe the expansion always slows down. Further, we assume
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that we are in the strongly self-gravitating phase with HR > 1, so that there
is no danger of dividing by zero.

The second FRW equation in (5) can now be written as a relation between
Epyg, Sy and Ty that takes the familiar form

This equation has exactly the same form as the defining relation E¢ =
n(E + pV —TS) for the Casimir energy. In the strongly gravitating phase
we have just argued that the bound E¢ < Epp is equivalent to the Hubble
bound S < Sp. It follows immediately that the temperature T" in this phase
is bounded from below by Tr. One has

T>Ty for HR>1 (40)

When the cosmological bound is saturated all inequalities turn into equal-
ities. The Cardy formula and the defining Euler relation for the Casimir
energy in that case exactly match the Friedmann equation for the Hubble
constant and the FRW equation for its time derivative.

Su

Figure 2: The entropy S and Casimir entropy Sc fill part of the cosmological entropy
diagram. The diagram shows: (i) the Bekenstein bound S < Sp is valid at all times (ii)
the Hubble bound S < Sy restricts the allowed range of n in the range HR > 1, but is
violated for HR < 1, (iii) the new bound Sc¢ < Spr is equivalent to the Hubble bound
for HR > 1, and remains valid for HR < 1.
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6 The entropy bounds revisited

We now return to the cosmological entropy bounds introduced in sections 2
and 3. In particular, we are interested in the way that the entropy of the
CFT may be incorporated in the entropy diagram described in section 3.
For this purpose it will be useful to introduce a non-extensive component of
the entropy that is associated with the Casimir energy.

The cosmological bound EF¢ < Epp can also be formulated as an entropy
bound, not on the total entropy, but on a non-extensive part of the entropy
that is associated with the Casimir energy. In analogy with the definition of
the Bekenstein entropy (8) one can introduce a ’Casimir’ entropy defined by

2
Sc = %ECR. (41)

For d = (1+1) the Casimir entropy is directly related to the central charge
c. One has S¢ = 2mc¢/12. In fact, it is more appropriate to interpret
the Casimir entropy Sc¢ as a generalization of the central charge to n+1
dimensions than what is usually called the central charge c. Indeed, if one
introduces a dimensionless ‘Virasoro operator’ flo = %S B and a new central

charge 5 = 5S¢, the n+1 dimensional entropy formula (32) is exactly
identical to (3).

The Casimir entropy S¢ is sub-extensive because under V. — AV and
E — AE it goes like S¢ — A1=Y/"Sq. In fact, it scales like an area! This
is a clear indication that the Casimir entropy has something to do with
holography. The total entropy S contains extensive as well as sub-extensive
contributions. One can show that for E¢ < FE the entropy S satisfies the
following inequalities

Sc <5< 5B (42)

where both equal signs can only hold simultaneously. The precise relation
between S and its super- and sub-extensive counterparts Sg and S¢ is de-
termined by the Cardy formula, which can be expressed as

S? 4 (Sp — Sc)? = S%. (43)

This identity has exactly the same form as the relation (17) between the
cosmological entropy bounds, except that in (17) the role of the entropy and
Casimir entropy are taken over by the Hubble entropy Sy and Bekenstein-
Hawking entropy Spg. This fact will be used to incorporate the entropy S
and the Casimir entropy S¢ in the entropy diagram introduce in section 3.



98 E. Verlinde

The cosmological bound on the Casimir energy presented in the section

4 can be formulated as an upper limit on the Casimir entropy S¢. From the

definitions of S¢ and Epy it follows directly that the bound E¢ < Epy is
equivalent to

Sc < Spw (44)

where we made use of the relation (33) to re-write Egy again in terms of
the Bekenstein-Hawking entropy Spr. Thus the bound puts a holographic
upper limit on the d.o.f. of the CFT as measured by the Casimir entropy
Sc.

In figure 2 we have graphically depicted the quadratic relation between
the total entropy S and the Casimir entropy S¢ in the same diagram we used
to related the cosmological entropy bounds. From this diagram it easy to
determine the relation between the new bound and the Hubble bound. One
clearly sees that when HR > 1 that the two bounds are in fact equivalent.
When the new bound is saturated, which means Sc = Sgy, then the Hubble
bound is also saturated, ie. S = Sy. The converse is not true: there are
two moments in the region HR < 1 when the S = Sy, but S¢ # Spy. In
our opinion, this is an indication that the bound on the Casimir energy has
a good chance of being a truly fundamental bound.

7 Summary and conclusion

We have used the holographic principle to study the bounds on the entropy
in a radiation dominated universe. The radiation has been described by a
continuum CFT in the bulk. Surprisingly the CFT appears to know about
the holographic entropy bounds, and equally surprising the FRW-equations
know about the entropy formulas for the CFT. Our main results are sum-
marized in the following two tables. Table 1. contains an overview of the
bounds that hold in the early universe on the temperature, entropy and
Casimir energy. In table 2. the Cardy formula for the CFT and the Euler
relation for the Casimir energy are matched with the Friedmann equations
written in terms of the quantities listed in table 1.
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H CFT-bound ‘ FRW-definition H
T > Ty Ty = —H/2nH
S < Sy Sy = (n—1)HV/AG

EC < Epy EBH = n(n—l)V/SWGRQ

Table 1: Summary of cosmological bounds

H CFT-formula ‘ FRW-equation H

S =28 /EcRE —Ec) | Sp=%8\/Epy(2E — Egn)

ECEn(E-I-pV—TS) EBH:?’L(E-l-pV—THSH)

Table 2: Matching of the CFT-formulas with the FRW-equations

The presented relation between the FRW equations and the entropy formu-
las precisely holds at this transition point, when the holographic bound is
saturated or threatens to be violated. The miraculous merging of the CFT
and FRW equations strongly indicates that both sets of these equations arise
from a single underlying fundamental theory.

The discovered relation between the entropy, Casimir energy and tem-
perature of the CFT and their cosmological counterparts has a very natural
explanation from a RS-type brane-world scenario [23] along the lines of [24].
The radiation dominated FRW equations can be obtained by studying a
brane with fixed tension in the background of a AdS-black hole. In this
description the radius of the universe is identified with the distance of the
brane to the center of the black hole. At the Big Bang the brane originates
from the past singularity. At some finite radius determined by the energy of
the black hole, the brane crosses the horizon. It keeps moving away from the
black hole, until it reaches a maximum distance, and then it falls back into
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the AdS-black hole. The special moment when the brane crosses the horizon
precisely corresponds to the moment when the cosmological entropy bounds
are saturated. This world-brane perspective on the cosmological bounds for
a radiation dominated universe are described in detail in [3].

We have restricted our attention to matter described by a CFT in order
to make our discussion as concrete and coherent as possible. Many of the
used concepts, however, such as the entropy bounds, the notion of a non-
extensive entropy, the matching of the FRW equations, and possibly even the
Cardy formula are quite independent of the equation of state of the matter.
One point at which the conformal invariance was used is in the diagrammatic
representation of the bounds. The diagram is only circular when the energy
E goes like R~!. But it is possible that a similar non-circular diagram exists
for other kinds of matter. It would be interesting to study other examples
in more detail.

Finally, the cosmological constant has been put to zero, since only in
that case all of the formulas work so nicely. It is possible to modify the
formalism to incorporate a cosmological constant, but the analysis becomes
less transparent. In particular, one finds that the Hubble entropy bound
needs to be modified by replacing H with the square root of H? — A/n. At
this moment we have no complete understanding of the case A # 0, and
postpone its discussion to future work.
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Abstract

Confinement in four-dimensional gauge theories is considered from
several points of view. General features are discussed, and the mech-
anism of confinement is investigated. Dualities between field theories,
and duality between field theory and string theory, are both put to use.
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1 Introduction to Confinement

One of the most important discoveries of the twentieth century is that our
world consists of atoms, of size 107'° meters, made from electrons bound
to positively charged nuclei. The size of the atom is set by the uncertainty
principle; the electron is nonrelativistic, with a velocity of order «, so the size
of the atom is of order 6z ~ 1/dp ~ (mea) !, where « is the QED coupling
constant. While all experiments to date indicate that the electron itself has
a size smaller than 10~ meters, nuclei of atoms have a definite size, of order
10~ !5 meters. They consist of weakly-bound clumps of protons and neutrons.
It was learned in the 1950s that the protons and neutrons have a size compa-
rable to the nuclei which contain them. In the 1960s, evidence emerged that
nucleons have pointlike constituents, weakly coupled in high-energy scatter-
ing processes, but highly relativistic, and therefore strongly bound, inside
the proton. By the 1970s the theory of QCD emerged to explain how this
strange effect was possible. The QCD interaction is weak in high-energy
processes, and grows, through renormalization effects, to become strong in
the low-energy processes that bind the quarks in the nucleons. The energy
scale Agcp at which it becomes strong is a few hundred MeV, correspond-
ing to the size of the nucleon. The pointlike objects in the nucleons are the
quarks suggested by Gell-Mann, interacting through the color charge sug-
gested by Greenberg. These quarks are now themselves known to be smaller
than 107'8 meters. They are also very light; most of the mass of the proton
comes from their kinetic energy and from the powerful interactions binding
the quarks together.

Yet no one has ever seen a quark, or its fractional electric charge, sitting
by itself somewhere. So why should we believe this story? We all know
the words: quarks are confined in hadrons — nucleons, pions, etc. — and
never come out. But all too often we overlook the subtleties involved in
this statement. What actually happens if we send an electron deep into a
proton and try to kick a quark away from its two friends? A large amount
of energy, in the form of chromoelectric field, appears in the region between
the escaping quark and the remaining parts of the proton. Then what?
We are familiar with the idea that large electric fields beyond a certain
magnitude cannot survive; sufficiently strong fields, with energy densities
bigger than m? ~ 1 MeV*, are able to decay by producing pairs of electrons
and positrons, the lightest electrically charged particles. The same holds for
chromoelectric fields; when they become sufficiently strong, of order A‘éc D~
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(300 MeV)*, they can pair-produce light quarks and antiquarks. How does
this affect the departing quark? Well, as it moves away, the field between
it and the other two quarks starts producing pairs. If for example a single
pair is created, the new antiquark can end up bound to the escaping quark,
and the new quark can end up bound to the other two quarks in the proton,
making a new nucleon. Or perhaps multiple pairs will be created, and many
quark-antiquark bound states will result. But in any case, the original quark
succeeds in its escape. The force between it and the remaining quarks in the
proton drops to zero as it moves away. Is this really “confinement”?

g €
[oX )

+++ttttt++ £

e

—_—

%

Figure 1: As with pair production of electrons in a strong electric field, pair production
occurs as a quark tries to escape from a proton.

Let’s contrast this with what might happen in an imaginary world in
which all of the quarks had masses much larger than 100 MeV. In fact, let’s
take all of their masses to all be, oh, say, about 1000 GeV. Now the proton is
a very heavy object, with mass of order 3000 GeV, and it is now quite a bit
smaller than usual, about 10™'7 meters in size (the factor of ten compared
to (1000 GeV) ™! comes from the fact that the strong coupling constant is
about 1/10 at these energies.) But let’s imagine trying to kick a quark out
of the proton now. As it rushes away, the chromoelectric field becomes very
large, but the energy density, of order A‘éCD ~ (300 MeV)*, is far too low
to produce pairs of 1000 GeV quarks. (Notice that for pair-production to be
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impossible, it is essential that all flavors of quarks be heavy; if even one type
of quark is light, the field will pair-produce it, independent of whether the
quarks in the proton are themselves heavy.) So what happens now? Does
the quark escape?

Noj; it cannot — or at least, it is extremely difficult. In this imaginary
world, where all the quark masses m, are very large compared to Agcp, the
quark is truly imprisoned. The force between the escaping quark and the
remains of the proton goes to a constant; as we will discuss further, a “string”
or “tube” of chromoelectric flux, of thickness Aélc p ~ 10715 meters, and of
tension (energy per unit length) A2QC’ D, connects the two colored objects to
one another. Unless the tube becomes very long, of length m, /A% p (which
in this case ~ 10 '? meters, many times larger than the proton radius), there
is insufficient energy in the chromoelectric field to pair-produce quarks. Even
if the string does become this long, there is an exponentially low probability
that all of its energy, spread out over 10712 meters, will find itself localized
in a region of radius m;l ~ 1078 meters, as would be necessary to produce
a pair of heavy quarks. So this tube of flux, stable if short, metastable if
long but with a exponentially long lifetime, makes it essentially impossible
for the kicked quark to escape. Eventually, the constant force from the flux
tube will bring it to a stop, and pull it back into its protonic prison. This
is true confinement, no doubt about it. The word really means something
here.

Notice that it is not just the quarks which can be said to be “confined”.
The chromoelectric field emitted by the quarks, rather than spreading out
across space as in electromagnetism, is confined into “tubes,” or “strings”.
This is important, because even when we take the quarks away — say, by
taking their masses to infinity — it might still be true that flux is confined,
though there are no confined particles. In fact, we will soon see this is a
more precise definition of confinement.

(300 MeVy 1TeV
* o

Figure 2: If all quarks were heavy, then flux tubes would break much less readily.

Strict confinement, of flux and of quarks, is thus a property of QCD only
when all of its quarks are heavy. [More precisely, it is seen in the limit where
the number of flavors Ny of light quarks is much smaller than the number
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of colors N; the number of flavors need not be strictly zero, because the
amplitude for the pair production process that splits flux tubes is of order
N;¢/N.] QCD with at least one light quark shows only a few remnants of
these properties; there are hints of flux tubes between an escaping quark
and the proton it leaves behind (though they break very quickly and never
become long); and there are hints that some of the bound states of the
theory behave as bits of spinning flux tube (though this is a very imprecise
statement, and has as its strongest merit that it helped to motivate string
theory).

So what is the right way to describe what happens in real-world QCD?
We do not live in a truly confining world, and it might have been better for
our own conceptual thinking if we had come up with another word for what
QCD does to quarks. “Cloaking” or “maximal screening” might have been
a better term. What QCD really does is ensure that a quark seeking to be
free has a region in its vicinity, of size AZ?% p in volume, with chromoelectric
energy density that is of order Aézc p- This by itself will cause an antiquark
(and its partner quark) to pop out nearby, cloaking — that is, completely
screening — the charge of the original quark. Compare this with electrons;
in their vicinity there are regions with energy density of order m?, but since
the energy density is («/r?)2, the size of the region with this energy is too
small to pair-produce electrons and positrons by a factor of &®2. Thus to
have this cloaking effect we need a strong coupling constant, but it hardly
requires something as drastic as the flux tubes and the imprisonment found
in worlds with only heavy quarks. (Indeed you might amuse yourselves by
considering the possible physical properties of a hypothetical point particle
of electric charge greater than v/137e.)

In these lectures, we are going to explore truly confining gauge theories
in some detail. Such theories may indeed exist in nature, but it is important
to remember that real-world QCD is not among them.

1.1 Confinement in pure Yang-Mills

How do we even know that true confinement does in fact occur in some
theories? This is a long story, and there are many ways to tell it. Let us
begin in the middle, by assuming that confinement of flux occurs in pure
Yang-Mills (YM) theory.

So instead of QCD, let us discard the quarks, leaving only a gauge boson
A, in the adjoint of SU(N). The group SU(N) consists of N x N matrices
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Ug (with row indices o and column indices 3.) which are special (det U = 1)

and unitary (U! = U™1). The “gluon” field A, takes values in the algebra
of SU(N),

(A,)% = AL(T®)° .
Here T is a generator of the group SU(N), also an N x N matrix (normalized
to tr ToT? = %6“”,) and the group index a runs from 1 to the dimension of
SU(N), namely N? — 1. The theory has the simplest possible Lagrangian;
defining F,,, = 0,A, — 0, A, +i[A,, A)] (here F' and A are matrices and the
brackets indicate a matrix commutator), we write the Lagrangian as

L= —itr F,F*

292 M '

This normalization of the field A, differs from the one in standard text-
books on perturbation theory. There is good reason for this. We will not
be doing perturbation theory. In perturbative calculations, it is more conve-
nient to absorb the 1/g into A; then F,, = 0,A, —0,A, +ig[A,, A)). The
quadratic terms in the Lagrangian are then the free Maxwell equations, and
do not depend on g. We may then think of the theory as a set of free fields
— simply (N? — 1) independent photons — coupled together by interactions
of order g. However, in these lectures we will not assume small g, and will
rarely expand in powers of g. The normalization chosen here is more pro-
found; it puts the coupling constant in its proper place, multiplying & and
therefore determining the size of all quantum effects. Most nonperturbative
properties of the theory will involve either 1/¢? or e/ 92, as we will soon
see.

Pure Yang-Mills theory is weakly coupled at high energy, like QCD, and
becomes strongly coupled at a scale A. More accurately, we can show, using
perturbation theory, that it cannot become strongly coupled at energies above
a scale A; below this point we simply don’t know what it does. The scale
A can be estimated using one-loop graphs; at this order, the running of the
gauge coupling is given by

dg g ( 11 )
= — __N
By Olnpy 1672 3

for SU(N). The solution is

82 82 11
= 4+ —NIn(u/u
P~ Py T3 mluli)
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4n a

Figure 3: The coupling constant o versus energy scale p; the one-loop calculation is valid
at g > A but becomes only approximate at low energy.

where pg is an arbitrary starting point. Thus, the coupling is small above
the energy scale y ~ A, where

—872
AN NS oy . 1
fo P 192 (o) @

This is reliable since higher loop graphs and nonperturbative effects are
comparatively small above A.

As is standard in renormalization, the scale A is physical and thus in-
dependent of the arbitrary starting point pg. Near and below this energy
regime, the coupling constant is strong; above it, perturbation theory in g2
is possible. Also, notice that A involves e~/ 9*. All of the really interesting
physics in Yang-Mills theory is related to A; it is therefore nonperturba-
tive in g2, and cannot show up at any order in an ordinary Feynman graph
expansion.

Now we must consider two more profound claims, which are fully non-
perturbative, and are based on a combination of experiment, theoretical
reasoning, and both analytic and especially numerical lattice gauge theory.
First, the quantum Yang-Mills theory is known to develop a mass gap (that
is, it has no massless fields in its spectrum, and instead has a discrete set
of states with masses of order A) and second, it apparently becomes con-
fining, in the true sense, at the scale A. Both of these effects are through
strongly-coupled physics not visible semiclassically.

Both statements are strange. The gluons in the above Lagrangian are
massless; how can there be no massless particles in the spectrum of the
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Figure 4: Classically the theory has many massless particles, but the quantum theory
has a mass gap and a spectrum of gauge-neutral hadrons.

theory? Well, let us assume that, as in QCD, the effect of the strong in-
teractions will be that we will observe only colorless bound states. What
kinds of bound states can we make from gluons? We might say that we can
make a bound state of two gluons, or three gluons, or four. But this is surely
wrong. The interactions of the theory do not conserve the number of gluons
even in perturbation theory; there are terms cubic and quartic in A, in the
Lagrangian, so one gluon may become two or three, and vice versa. The
situation will be worse once the interactions of Yang-Mills become strong.
We clearly cannot use “gluon number” as a quantum number describing a
state. In fact, the strong coupling dynamics makes it impossible to talk
about gluons at low energies. Instead, we have only bound states, whose
name “glueballs” is reasonably accurate, in that these gluey states do not
really consist of a fixed number of gluons, but rather of a shifting mass of
chromoelectric flux lines. There are a large number of these states. Below
the scale A we might try to write an effective theory of these glueballs. Un-
like the gluons, for which mass terms are forbidden (since they have only two
polarization states and massive vectors require three), the glueballs include
scalars (for which mass terms cannot be forbidden) and vectors with three
polarizations (for which mass terms also cannot be forbidden) and similar
higher spin particles. Their masses can’t be much larger than A since that
would contradict perturbation theory, but nothing stops them from having
masses of order A. Essentially, there is a mass gap because there are no
symmetries which forbid mass terms for any of the glueballs.

The statement about confinement is also, at first, strange. The theory
has only gluons; are they confined? What happens when we try to pull a
gluon out of a bound state? Does a flux tube form between it and the other
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gluons? What does this mean, since the flux tube itself is made from gluons?
How is it possible that pair-production of gluons is forbidden? In fact, it
is not forbidden, but that is fortunately irrelevant. The statement about
confinement has nothing to do with the gluons. The gluons are no more
confined in Yang-Mills than light quarks are in real-world QCD; in fact they
are even less so, since there is no parameter analogous to the quark mass
which when large can make the gluons confined. “Confinement” means that
chromoelectric field is confined; it cannot spread out in space over regions
larger than about A~' in radius.

One might ask if there is a connection between the mass gap and the
confinement of flux. We will return to this issue later.

r

(® @)
q q
V(r)

Figure 5: The confined field lines between a heavy quark and antiquark form a tube;
the potential energy of the system goes as 1/r at distances short compared to A~ but
becomes linear at larger distances.

Now, how can we detect the presence of the strings which contain the
chromoelectric flux? Ideally we would like to find a long and straight flux
tube and find its tension (energy per unit length) but we might have trouble
convincing one to stay straight long enough to do this measurement. So
here we need a new idea. Recall how the heavy quarks of QCD-with-no-light-
quarks were truly confined. This suggests that the way to detect confinement
of flux in Yang-Mills theory is to put some extremely heavy quarks in it —
so heavy that they can’t affect the dynamics of the Yang-Mills theory —
and see that these quarks are confined! That is, we can compute the quark-
antiquark potential V(r) and see that it grows without bound (indicating
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confinement) and more specifically is linear in 7 (indicating confinement by
flux tube.) Why is the linear potential characteristic of a flux tube? Well,
consider Gauss’s law. In an unconfined theory, the electric flux is uniformly
distributed over a sphere surrounding a charge, and therefore falls off as 1/72.
In a confining theory with flux tubes, the flux tube has a fixed cross-sectional
area of order A2 no matter how long it is; and thus, for any sphere of radius
r > A~! surrounding a charge, the flux on the sphere is zero everywhere
except in a region of area A2 where the flux tube passes through the sphere.
From this we conclude that the electric field in that region has a magnitude
which is r-independent! In turn, this implies the force that it generates on
a test charge is also r-independent, and finally, that the potential between
charges grows linearly with r.

So, let us add a charged fermion (or scalar) to the Yang-Mills theory, one
whose mass M is so much larger than A that it cannot play a role in the
strong-coupling physics. Adding a quark ¢ we make the Lagrangian

1 L _
EZ—@tI‘ FIH/FN +Z’(ﬁlp’¢—M¢’(ﬁ .

The quark 1) is charged under SU(N), but for the moment let us not specify
the representation R of SU(N) under which it transforms. Now let us con-
sider the potential V(r) between 1, placed at one position, and 1, placed a
distance r away. Since the quarks are very heavy, we can expect that they
can be placed at rest and will move only very slowly, allowing us to do this
computation. Confinement means that when r is large, a string — a tube of
chromoelectric flux — stretches between v and 1, of constant tension T,
such that the potential V' (r) = Tgrr [1]. The force between two such fermions
goes to a constant, and never drops off to zero. (That these facts are true
in Yang-Mills theory does not follow from any direct theoretical calculation.
Highly quantum mechanical in nature, they have only been checked using
direct numerical simulation of Yang-Mills theory.)

In the limit where M — oo, the quarks become completely non-dynamical
[1]; they are what we may call “chromoelectrostatic sources”, probes which
never appear in any loop diagram and thus are purely classical. What re-
mains dynamical is the flux tube. Thus, we didn’t really need the quarks
as physical particles; using nondynamical chromoelectric sources, we could
have detected the confinement of chromoelectric field, which is a property
of the Yang-Mills theory without the added quarks. (An equivalent way to
make this statement, without introducing the quarks, is to talk about Wil-
son loops in various representations R; in a confining theory the value of
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Figure 6: Gauss’s law for unconfined and confined flux.

the Wilson loop is proportional to the exponential of minus its area, with
proportionality constant Tg [1].)

In general, the string tension, and the corresponding force, between quark
and antiquark can depend on the representation R. After all, why not? In
particular, for R the adjoint, we already know Tygjpint = 0: any fermion in
the adjoint can combine with a light gluon to make something gauge neutral,
so two such fermions will each cloak themselves with a gluon and will feel
no long-range force as we pull them apart. So clearly we need to think
about how things depend on the representation R. Clearly the map from
representations to flux tubes cannot be one-to-one (since both the trivial
representation and the adjoint representation have T = 0.) Lie groups
have an infinite number of representations, but the stable flux tubes number
at most dim C, the dimension of the center of the gauge group. Let us see
why this is so.

What is the center of SU(N)? A matrix UOZ; = ezmk/Né"‘B, k=0,...,N—
1, is an element of SU(N). Being proportional to the identity, it obviously
commutes with everything in SU(N); in short, U is in the center Cgy(ny-
The elements of the center are thus labelled by the integer k, which from
the definition of U is only determined modulo N, so the labels form the
group Zy, the additive integers mod N. Now consider any representation
R. An element p of this representation is labelled by a certain number n
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of unbarred (upper) and 7 of barred (lower) indices; that is, it takes the

form pgllgjg“ Under a group transformation, each unbarred index is ro-

tated by the matrix U, while each barred index is rotated by UT. Conse-
quently, the transformation of the representation R under the center Cg
is by the phase e2mik(n—n)/N where n — 7 is called the “N-ality” of the
representation. The adjoint representation, with one upper and one lower
index, is invariant under the center. The fundamental N representation
(one unbarred index) rotates by e2mk/N . the antifundamental N rotates by
e~2mk/N Both the antisymmetric-tensor and symmetric-tensor representa-
tions N(N =+ 1)/2, which have two unbarred indices, rotate by e2™(k)/N,
Indeed, all p-upper-index tensors carry charge p under Zy — that is, they
rotate by e2™P%/N under the k"
tions R of SU(N) break up into equivalence classes under the center, and
can be labelled by their “N-ality” charge p [2, 3]. Note that the conjugate
representation of R has “N-ality” N — p, since the number of barred and

unbarred indices is exchanged.

element of Zy. In short, the representa-
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Figure 7: The flux between different quarks, or combinations of quarks and gluons, all
with N-ality 2.

Why is this interesting? First consider, for example, adding a heavy
quark 14, in the antisymmetric representation, to Yang-Mills theory; the
potential between 14 and 14 is V(r) = Tar. Now consider instead adding
a heavy quark g in the symmetric representation; the quark-antiquark po-
tential between 15 and 15 is now V(r) = Tsr. Suppose that Ts > T4 in
Yang-Mills theory. (This is probably true, but what I’'m about to say won’t
depend on the specific assumption.) Nothing prevents the theory from tak-
ing one of its light gluons (remember their number is not conserved so it
need not be pair-produced) and putting it very near 1g. The combination
of the gluon A, and the fermion 15 looks, from a distance, as though it were
a single object. What is its charge? Well, we must consider the group theory
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of SU(N); what is (adjoint)®(symmetric)? It is a direct sum of a number of
representations, all of which have the same “N-ality” as the symmetric rep-
resentation, namely 2. Said another way, the product of (Au)ag and ¢g5 can
lead, no matter how the indices are contracted, only to representations with
two more upper indices than lower indices. Among these representations is
the antisymmetric representation. (In SU(3), for instance, the symmetric
tensor is 6, the antisymmetric tensor is 3, and 8 ®6 = 3+6+15+24.) But
then, since we assumed Ty < T, there exists a dynamical process by which
the theory may lower its energy! By popping a gluon out of the vacuum and
putting it near g, the theory can make g look more like a fermion in the
antisymmetric representation. The same goes for 1g. Then, instead of a
string of tension Ty, a string of tension T4 can link these two fermion-gluon
combinations. The energy cost is that of making two extra gluons — at most
of order A — while the energy gain is (T's — T4)r, which for r sufficiently
large always wins. The reverse process will hold if Ty > Tg.

More generally, the fact that gluons are in the “N-ality”-zero adjoint
representation implies that the presence of nearby gluons can change one
representation to another but only in a way that conserves N-ality. Thus
in Yang-Mills, the representation R of a chromoelectric source is not a con-
served quantum number; only its “N-ality” is actually conserved. Conse-
quently, we should expect that for the entire class of representations with
the same N-ality charge, there will be only one stable configuration of strings
(which might involve one or more tubes — for “N-ality” =2 there might be
one tube with two units of flux or two tubes with one unit each.) The ten-
sions of the stable strings, or combinations of strings, are labelled not by R
but by the N-ality p of R. Charge conjugation symmetry also ensures that
T, = Tn—p; thus we have of order N/2 stable flux tube configurations in
SU(N) Yang-Mills theory.

Can we see this in SU(3) Yang-Mills? Yes and no. There is N-ality 0,1,
and 2; but Ty = 0 while T5 = T7, so only one confining string is predicted.
The nontrivial statements are then only that, for example, the symmetric
6 representation of SU(3) is confined by the same string tension as the
antisymmetric tensor, the 3; this in turn has the same tension as the funda-
mental 3. To have a nontrivial set of strings we must go to SU(4); here the
antisymmetric tensor 6 should have a tension Ty different from that of the 4
and 4, Ty. There is still a question as to whether Ty < 2T}; if not, the flux
between two 6 fields may be carried by two strings of N-ality 1 rather than a
single string of N-ality 2. Theoretical arguments [4] and lattice calculations
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[5, 6, 7] support the view that T < 2T} (and similarly in other theories) so
that there really are two independent stable flux tubes, of N-ality 1 and 2
(and again T3 = T1.)

To summarize, we expect that Yang-Mills theories have stable flux tubes
labelled by a charge in the center of the group [2]; for SU(N) this is its
N-ality, a charge under the Csy(y) = Zpy group action. While the gluons
are not confined by these strings, any heavy quark with nonzero N-ality will
experience a linear potential energy and a constant force which will confine
it to an antiquark, or more generally, to some combination of quarks and
antiquarks which have the opposite N-ality. (For example, it could combine
with NV — 1 other quarks to form a baryon. As another example, a 6 of
SU(4) could combine with two 4 quarks to form an exotic object not found
in real-world SU(3) QCD.)

1.2 Confinement in N' =1 Super-Yang-Mills

Let us now consider N’ = 1 supersymmetric Yang-Mills theory (SYM.) This
theory is very interesting in that (1) many of its properties can be exactly
or approximately determined, (2) it resembles Yang-Mills theory, in that it
has confinement and flux tubes, has a mass gap, and lacks light particles
similar to pions, yet (3) it resembles QCD in that it has chiral symmetry
breaking and an anomaly which makes a would-be Nambu-Goldstone boson,
the ', massive, while (4) it differs from both in that it has multiple isolated,
degenerate vacua.

The SU(N) SYM theory is nothing more than SU(N) gauge theory with
a vector boson (gluon) A, and a massless Majorana spinor (gluino) A,, both
in the adjoint representation of the gauge group. The Lagrangian is simply

1 L
L= ﬁ [tr FuyFu +ZAlD A] (2)

Pure N = 1 SYM, like pure non-supersymmetric YM, is a confining
theory. (Convincing arguments confirming earlier expectations are given in
[8, 9].) It will have stable flux tubes, just like YM, despite the presence of
the gluinos. The gluino carries the same gauge charge as the gluon, and is
neutral under Cgy(y) = Zy. Therefore, like the gluon, it does not break
flux tubes carrying Zy; no flux tube which carries such a charge can end on
a Zy-neutral gluino. (This is in contrast to SU(3) QCD, where the quarks,
which carry charge under the Zs3 center, do indeed break the flux tubes.)
Thus SYM is a good place to study confining strings.
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The theory also has an anomalous U (1) global symmetry, just like QCD.
We won’t need this, but it is useful for you to know a bit about it. How does
this work? Classically, the Lagrangian of the theory has a global symmetry
X — Xe'®, where « is any real number. However, the path integral of SYM
does not have this symmetry. There isn’t time in these lectures to study
anomalies in detail, so let me just quote the classic result: under this rota-
tion, the path integal itself is not invariant unless 2N« is a multiple of 2.
(A similar statement applies in QCD with Ny massless flavors of quarks ;
and 1%5; under the global rotation 1; — 1;e*®, 1&; — zz;em, the path integral
is not invariant unless 2Ny« is a multiple of 27.) Thus the U(1) is a fake;
only a discrete Zyxy subgroup of this U(1) is actually a symmetry.

In QCD, with Lagrangian'

Ny Ny .
L= st Bl + S i i+ 3 5005 — S
i=1 G=1 i)
there is an entire SU(Ny) symmetry for the quarks 1);, another SU(Ny) for
the antiquarks 'LZ;, a U(1) “baryonic” symmetry under which the 1; and '&3
have opposite charge, and finally the fake “axial” U(1) mentioned above of
which only a Zyy, is a true symmetry. These symmetries do not all appear at

low energy, however. First, the nonzero quark masses m* 1%1/1, break most of
the two SU(Ny) symmetries; but the masses are relatively small for the up,
down, and strange quarks, so let us imagine for a moment that they are zero,
and, forgetting the heavier quarks (which are dynamically less important,)
take Ny = 3. But even then, for m% = 0, the vacuum does not show all of
the symmetries of the theory. For reasons not entirely understood, a quark-
antiquark bilinear operator 1&3% develops a nonzero expectation value? pro-
portional to (5i3, with a magnitude of order (Agcp)?. This quark-antiquark
condensate is not invariant under the SU(Ny) symmetries mentioned above;

'Note the fermion fields 1, written here are not each others’ complex conjugates!
They are left-handed quarks and left-handed antiquarks; they form two separate sets
of two-component Weyl fermions, transforming in the N and N representations. Mass
terms m% 15;% make them into massive four-component Dirac fermions, but without the
masses they are independent fields, with independent generation indices ¢ = 1,..., Ny and
3 =1,...,Ny.

2All of the following statements about chiral symmetry breaking apply at least for
small Ny; they are certainly not true for Ny > (11/2)N, at which point SU(N) QCD has
a positive one-loop beta function and can’t possibly be strongly-coupled in the infrared.
At what value of Ny they stop being true is not known, although most guesses these days
for N = 3 range from 5 to 12.
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it is only invariant under simultaneous rotations of the quarks v; by a ma-
trix U in their SU(Ny) and of the antiquarks 153 by the conjugate matrix UT
in the other SU(Ny). These “diagonal” rotations define a group SU(Ny)p,
which remains a symmetry of the vacuum. All other SU(Ny) x SU(Ny) ro-
tations change the vacuum, and thus are not symmetries of it. This is known
as “spontaneous chiral symmetry breaking”; the equations of the theory still
have an SU(Ny) x SU(Ny) symmetry, but the vacuum itself, a particular
solution of those equations, is invariant only under its SU(Ny)p subgroup.
As both Nambu and Goldstone taught us years ago, this implies, as an au-
tomatic consequence, that there are massless particles corresponding to the
broken rotations. These are the pions. They tell us that QCD has not one
vacuum, but in fact a continuous set of degenerate vacua (if the quarks are
strictly massless!) The pions are massive in nature only because the quark
masses are in fact not zero, and the SU(Ny) x SU(Ny) flavor symmetry is
only approximate. Note that the baryonic U(1) is unbroken. If the axial
U(1) had been a true symmetry, it would have been broken, and we would
have expected a Goldstone boson for it, the ', which corresponds to shifts
of the phase of the condensate (&5%5” ). However, the U(1) is a fake; and
although the Zyy, axial symmetry mentioned above is also spontaneously
broken by the condensate to a Zs subgroup, only continuous symmetries
give continuous sets of degenerate vacua and corresponding massless parti-
cles. The 7' in fact has a periodic potential, with Ny minima rotated by
the Zyy, symmetry. In each of these minima the potential has some upward
curvature, so the 1’ has a mass. Note however, that these minima are not
actually isolated since they are connected via SU(Ny) x SU(Ny) rotations.

What happens in SYM? In this case the operator A\ develops an expec-
tation value (this is a largely rigorous statement, for which there are many
fairly strong proofs; see for example [10].) The Zyx axial symmetry is bro-
ken to Zs. Because there are no continuous global symmetries, we have no
continuous space of vacua. Instead we have N isolated, degenerate vacua,
in which

(AN o< 3™ /N =0,1,2,...,N—1.

In this theory, the beta function has coefficient 3N, so the strong-coupling
scale satisfies A3V = ,ugN e~ 87°/9°(m0)  Notice that the Zsn symmetry ro-
tates one vacuum into the next, so the N vacua, though distinct from one
another, are isomorphic. This guarantees they are degenerate with one an-
other. Again, in each vacuum the Zsy is broken, but the space of N vacua is
Z5n symmetric, and the symmetry rotates one vacuum into the next. The
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n' particle in this theory is the phase of (A)), and it has a periodic potential,
with N degenerate minima. Thus, like QCD, SYM has a fermion bilinear
condensate which breaks global symmetries, and it has an 1 with a periodic
potential; but unlike QCD, and similar to YM, it has no massless or very
light particles.

Figure 8: The vacua of ' = 1 SU(N) SYM (shown in the complex (A\) plane) are
rotated by a Zy global symmetry.

2 Confinement of Magnetic Flux

Now let us try to understand why and how confinement occurs. In Yang-
Mills theory it occurs through a process requiring strong coupling; detailed
investigations have revealed no small parameter in which we can do pertur-
bation theory, and no simple calculation that we can perform. From where
can we gain some insight? We might ask: where we have seen tubes of
confined flux before?

2.1 Superconductors and the Abelian Higgs Model

In Type I superconductors, magnetic flux is excluded from the material.
This occurs through the appearance of surface currents, which can exist
without energy cost due to the absence of any resistance in the material.
These currents generate an exactly-compensating magnetic field which can-
cels any external magnetic field trying to penetrate the material, and instead
produces some additional magnetic field outside. This makes it appear that
all external magnetic fields are “expelled” from the superconductor. This
famous piece of physics is called the “Meissner effect.”

In Type II superconductors, however, the situation is a bit more compli-
cated. Flux can indeed penetrate the superconductor in this case, although
only in a very specific way. The material becomes nonsuperconducting in
a narrow tube running from one side of the material to another, and the
magnetic flux threads that tube. The magnetic field, which would have been
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free to roam in a normal material, is trapped inside “Abrikosov vortices” [11]
traversing the superconductor. These vortices carry one or more quanta of
flux; in short, they carry an integer charge, g € Z. Superconductors confine
magnetic fluz into quantized vortices.

Indeed this looks familiar. We have learned that SU(N) YM and N’ =1
SYM both confine electric flux into tubes which carry a discrete charge in
Zy . This looks similar enough to set off alarm bells. We had better look at
this more closely.

Figure 9: Normal materials can sustain magnetic fields.

How does a superconductor accomplish this? The superconductivity oc-
curs because electrons form Cooper pairs, which are bosons. Let us call the
density of these pairs ¢. Since the pairs carry electric charge 2, ¢ must be
complex, and couples to the photon. More specifically, the photon must
couple to a conserved current, namely

JH = ¢lore — (049" ¢ (3)

Now suppose that there were a magnetic field attempting to pass through
the material. Since the Cooper pairs can flow without resistance, they can
respond by creating a compensating current. For instance, suppose we have a
long cylinder of material of radius R; let us use cylindrical coordinates r, 0, z.
Suppose we attempt to apply a uniform magnetic field B, > 0 along the axis
of the cylinder. The Cooper pairs can respond by generating a current J?,
which can propagate without resistance, at the surface of the cylinder r = R.
This completely cancels the applied field, reducing the energy density inside
the superconductor. It also generates a dipole field outside the cylinder. The
field appears to have been “expelled” from the material.

However, the material could also respond in an additional way, and does
so in the type II case. In addition to generating a current at r = R, it could
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Figure 10: In superconductors, Cooper pair currents (shown into and out of the plane
of the paper) are induced, causing the magnetic flux to be expelled or trapped in vortices.

also generate a current in the opposite direction at r = ry < R, deep within
the material. This current, like the current in a solenoid, generates a field
in the positive B, direction, all confined within the region r < ry. This is a
magnetic flux tube.

What does ¢ do near this flux tube? Consider a circle of radius r1 > r¢.
The integral of the magnetic flux inside this circle, [ . B, r dr df, should
be independent of r; if flux is indeed confined. On the other hand, it is also
equal to §T:” df Ay. By cylindrical symmetry, Ay can be only a function of r.
From this we learn that Ay is a constant for large . But this poses problems.
The kinetic terms for ¢ itself surely include ﬁqﬁ . ﬁcﬁ, where V; = 0; +i4;,
and thus A2|¢%|/r?. If ¢ is a constant v at infinity, then the integral of such
a term in the Hamiltonian density is divergent! So this cannot give a finite
energy solution. The only way out is to have 9p¢p = —i Ay, which can be
accomplished if ¢(r) = ve’? at large r, where s a real constant. Furthermore,
we can avoid a divergent potential energy only if v is at a potential minimum;
and at the minimum v # 0 (or we would not have superconductivity!) But
then single-valuedness of ¢ requires that s is an integer. Therefore this
approach only works if Ag = s € Z, and thus if [ B, rdrdf is an integral
multiple of a fundamental flux quantum.

From Eq. (3), we see that J? is now nonzero; as advertised, the flux is
of necessity enclosed by a current of Cooper pairs. Furthermore, because
the phase of ¢ is winding as we go once around in 6, the radial derivatives
of ¢ will be ill-defined at » = 0 unless ¢ has a zero there. Thus we have
¢ = ve’? f(r), where f(0) = 0 and f(r — oc) — 1, and s an integer. The
material becomes nonsuperconducting at the vortex core, paving the way for
the magnetic field to pass through unobstructed.
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Figure 11: A flux tube of radius ro; the phase of ¢ winds as one circles the core, in which
the magnetic flux is trapped and |¢| < v.

This configuration, with quantized magnetic flux and a zero for ¢ at its
center, and a winding of Ay and a corresponding winding of the phase of
¢ outside its core, is the Abrikosov vortex. Let us consder the topology
associated with this vortex. We have a U(1) gauge group, under which ¢ is
charged. When the vacuum expectation value of ¢ is nonzero, the U(1) group
is broken spontaneously; gauge transformations will rotate the phase of ().
[However, remember that gauge transformations are not real symmetries!
Therefore, unlike the case of sponaneously broken global symmetries, we
do not have a continuous set of physically distinct vacua and associated
Nambu-Goldstone bosons. Instead we will get a massive photon!] To make
a magnetic flux tube, it must be that as we traverse a circle around the flux
tube in space, the phase of the field ¢ makes a closed loop inside the U(1)
group. We may think of this as a map from a circle in space to a closed loop
in the broken gauge group. Such a map may wind s times around the U(1)
as we make a single circle in space. In short, the topology of such maps,
given by the first homotopy group of U(1), is the group m1[U(1)] = Z. Every
element in the group is labelled by an integer, the winding number s.

To round out the story, it is a bit more convenient to look at a slightly
different system. Instead of studying superconductors — three-dimensional
nonrelativistic systems — I will take us on a quick tour of the relativistic
version, the “abelian Higgs model”. This model has Nielsen-Olesen vortices
[12], magnetic flux tubes very similar to those of Abrikosov.

Let us take a photon — a U(1) gauge field — and a charged scalar field ¢.
The action for ¢ must be invariant under local U(1) rotations ¢ — peie@)
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which can only happen if all derivatives of ¢ are covariant, that is, of the form
D,¢ = (0, +1iA,)p, where A, is the photon vector potential. In particular,
the kinetic term for ¢ must be of the form

(Du¢) D ¢ .

There can also be a potential for ¢, but gauge invariance requires it be a
function only of ¢!$. In addition we should add the action for the photon.
The action is thus of the form

1 P+ (D) D= V(619)

The potential V may have its minimum at ¢'¢ = 0. In this case the
vacuum of the theory is much like the one we live in; the photon is massless,
propagates at maximum speed, and generates a long-range force. Magnetic
and electric fields are related by a symmetry; both fall off as 1/r2 from
magnetic and electric point charges.

However, the potential might instead have its minimum at ¢'¢ = |v|? #
0. Now the physics is very different. First, the photon is now massive. To
see this, consider small fluctuations of electric fields A4, for fixed ¢ = ve'.
The Lagrangian for these modes is

1

—@FWFW — [v[* (4, 4%)

A massive photon, which can be brought to rest, must have three polarization
states (J3 = 1,0, —1) unlike a photon which has only two, J3 = £1. Where
does this extra state come from? It comes from o, the phase of ¢! Let us
see this; if we write ¢ = ve'(*) the Langrangian density now becomes

_éFNVFW — [v*(9uo + Aﬂ)’f(aua + Ay)

from which we see that ¢ and A, mix. We cannot think of them any
longer as separate fields, and thus o and A, together form a massive, three-
polarization-state spin-one particle. (If we like, we can use a gauge transfor-
mation to set o = 0 and absorb it into A,, but this merely puts the degree
of freedom of ¢ into A,. It will not always be useful to do this.) This is
the Higgs mechanism, discovered by Anderson (always remember that con-
densed matter physicists have much to teach us) and then rediscovered by
many others independently, including Higgs.
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Finally, we still have the magnitude of ¢. Writing ¢ = v + §¢, we can
quickly see from the Lagrangian that §¢ acts as a neutral, massive field. I
will leave this as an exercise. This means the theory has a mass gap! There
are no massless modes and no long-range forces.

Now, what happens to electric fields in this context? Suppose I put an
electric charge at the origin. The equation of free electrostatics

V2A? = ¢%5(x)

whose solution is the usual 1/r electrostatic potential, is now modified. The
new equation is

[V + (gv)*]A° = g°6(x)

The solution to this equation is the Yukawa potential for a massive field with
mass m, = gv, V(r) oc ™" /r. The electrostatic field falls off exponen-
tially rapidly at distances larger than the inverse of m.. Electric fields are
screened!.

What about magnetic fields? We cannot expel magnetic fields from an
infinite system, but we can make currents, just as in superconductors, from
the charged scalar ¢, and use them to confine magnetic flux. Since the
photon is massive, it is energetically preferable for the magnetic field to be
localized in tubes where ¢ shrinks to zero and the photon is lighter than
m,. On the other hand, the presence of the magnetic field in a confined
region requires, as we saw, that the phase of ¢ wind an integer number
of times around the center of the vortex. Classical solutions to the above
equations satisfying these conditions can be found; they are called Nielsen-
Olesen vortices. Their tensions can be calculated, and are proportional to
1/¢?. Thus, magnetic fluz is confined! The topological analysis that we did
for the Abrikosov vortex — that the charges of these vortices is given by the
first homotopy group of U(1), the group m1[U(1)] = Z — goes through here
as well, without alteration.

Magnetic flux tubes can arise in other gauge groups as well when they
are broken via the Higgs mechanism. If we have a gauge group G broken
down to a smaller gauge group H (which might be the identity, as in the
example above) we will get magnetic flux tubes if 71(G/H) is not trivial.
For example, if we have the group SU(N), and it is broken down to nothing,
then there are no flux tubes; SU(N) is simply connected, so all closed curves
on it can be shrunk down to nothing, and all of its homotopy groups are
trivial. However, if we break SU(N) down to its center Zy, then since
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m1(G/H) = mo(H) if G is simply connected, and since my(H) is the number of
distinct components of H, we have simply 71 (SU(N)/Zy) = Zy. Magnetic
flux tubes are generated, and they carry a charge in Zy, the integers modulo
N [2]. [As an example, consider SU(2). The matrices diag(e‘®,e~*®) are in
SU(2); for @« = 0 and 7 they are in the center. The path from o = 0 to
a = 27 is a closed path in SU(2), but the path from @« = 0 to @ = 7 is
not closed. However, in SU(2)/Z,, the matrices with & = 0 and o = 7 are
identified, so the second path is also closed and forms the nontrivial element
of ™ (SU(Q)/ZQ) = Z2.]

2.2 Electric Sources and Fluxes

Let us review what we learned in the first lecture, but a bit more formally.
Consider a pure gauge theory with gauge group G. Suppose we have a
source — an infinitely massive, static, electrically charged particle — in a
representation R of G. If we surround the source with a large sphere, what
characterizes the flux passing through the sphere? If G is U(1), the flux
measures the electric charge directly. However, in non-abelian gauge theo-
ries the gauge bosons carry charge. Since there may be a number (varying
over time) of gauge bosons inside the sphere, the representation under which
the charged objects in the sphere transform is not an invariant. But, by defi-
nition, the gauge bosons are neutral under the discrete group C¢, the center
of G. It follows that the charge of R under the center is a conserved quan-
tity, and that the total flux exiting the sphere carries a conserved quantum
number under Cg.

Electric sources and fluxes in pure gauge theories carry a conserved Cg
quantum number. If the gauge group confines, then the confining electric
Sfluz tubes will also carry this quantum number.

If the theory also contains light matter charged under C¢ but neutral
under a subgroup C, of Cg, then the above statements are still true with
C¢ replaced with C,. For example, if we take SU(N) with light fields in
the N representation, then Cy, is just the identity, reflecting the fact that
all sources can be screened and all flux tubes break. If we take SO(10)
with fields in the 10, then the center Z, is replaced with spinor-number Zs.
Sources in the 10 will be screened and have no flux tube between them,
while sources in the 16 or 16 will be confined by a single type of flux tube.
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2.3 Magnetic Sources and Fluxes

Before discussing the magnetic case, I review some basic topology. [The
presentation which follows is overly naive, though it serves for present pur-
poses. A more rigorous story requires a study of the relevant fiber bundles.]
The p-th homotopy group of a manifold M, m,(M), is the group of maps
from the p-sphere into M, where we identify maps as equivalent if they are
homotopic (can be continuously deformed into one another) in M. All we
will need for present purposes are the following examples. Suppose a Lie
group G has rank 7, so that its maximal abelian subgroup is U(1)"; then

mG =1 = m[G/UQA) | =mUL)|=ZxZx---xZ=[Z]". (4)

Similarly,

m[G =1 = m[G/Cq]=m|Cq]=Cg . (5)

Gy ——=G
\

Figure 12: A magnetic monopole soliton of size v™".

We will need to investigate both monopole solitons and string solitons
below. The classic monopole soliton is that of 't Hooft and of Polyakov,
which arises in SU(2) broken to U(1); in this case the important topological
relation is mo[SU(2)/U(1)] = m1[U(1)] = Z. This leads to a set of monopole
solutions carrying integer charge. Note that the stability of, for example,
a single monopole which has charge two against decay to two monopoles,
each of charge one, is determined not by topology but by dynamics. The
situation is similar for the Nielsen-Olesen magnetic flux tube of the abelian
Higgs model; here the relevant topological relation is 71[U(1)] = Z. This
again leads to solutions with an integer charge, whose stability against decay
to minimally charged vortices is determined dynamically.
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Gy, ———=G
v ——> infinity

Figure 13: A pointlike Dirac monopole, with its unphysical Dirac string.

More generally, if we have a simply connected gauge group Gy which
breaks to a group G at a scale v, there will be solutions to the classical
equations in the form of magnetic monopoles carrying a quantum number
in m9[Go/G] (see, for example, [13].) These will have mass [radius| propor-
tional to v [1/v]. Now imagine that we take v — oo. In this limit the gauge
group Gy disappears from the system. The monopoles become pointlike
and infinitely massive; their only non-pointlike feature is their (nonphysical)
Dirac string, which stems from our having discarded Gy, and which carries
a quantum number in 71[G]. In short, the solitonic monopoles become fun-
damental Dirac monopoles in this limit. Note that since m3[Go/G] = m1[G],
the charges carried by the solitonic monopoles and their Dirac monopole
remnants are the same. At this point, we can forget about Gy, which is only
relevant at infinitely high energies. Since the Dirac monopoles are heavy, we
may use them as magnetic sources in a theory with gauge group G.

Let’s further suppose that the gauge group G is broken completely at
some scale v'. In this case no Dirac strings can exist in the low-energy
theory, and so the monopoles allowed previously have seemingly vanished.
However, solitonic magnetic flux tubes, carrying charges under m[G], will
be generated; they will have tension [radius] of order v2 [1/4']. Their m[G]
quantum numbers are precisely the ones they need to confine the m1[G]-
charged Dirac monopole sources of the high-energy theory. Thus, when G is
completely broken, the Dirac monopoles disappear because they are confined
by flux tubes.

Magnetic sources and fluzes in pure gauge theories carry a conserved
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m1[G) quantum number. If the gauge group is completely broken, then the
confining magnetic flux tubes will also carry this quantum number.

Figure 14: Confined monopole solitons in a theory with flux tubes.

3 Electric-Magnetic Duality?

So let us observe something about SU(N). The electric fluxes of SU(N)
are in Cgy(ny = Zn, while its magnetic fluxes are in m1[SU(N)] = 1. The
electric fluxes of SU(N)/Zy are in Cgy(ny/z, = 1, while its magnetic fluxes
are in 71 [SU(N)/Zy] = Zn. In fact, more generally, for k a divisor of N, a
theory with SU(N)/Z has electric fluxes in Z(y/;) and magnetic fluxes in
Z,. This electric-magnetic symmetry appears very interesting. What does
it mean?

3.1 Duality in Maxwell’s theory

The symmetry between electric and magnetic fields in the case of classical
electromagnetism is well known. If there are no electric charges present, the
Maxwell equations have a symmetry £ — B, B — —FE. This is physically
meaningful, since F and B are both gauge invariant. Without charges, there
is no way to say which type of field is which.

Let us be more explicit. Under this transformation, the Bianchi identities
VxE+B=0,V-B = 0 are exchanged with the equations of motion
VxB—FE=0,V-E=0. Said more covariantly,

Fu = Fuy = €uupe F*°
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and the Bianchi identity e**??0,F,, = 0 goes to the equation of motion
0" Fy, = 0.

None of this is particularly obvious if one uses the formalism of potentials,
and with good reason. Because of the Bianchi identities, we are free to write
F,, = 0,A,—0,A,, which defines A,,. The symmetry of the equations under
Ay (z) = Au(z) + 0ux(z) is the U(1) gauge symmetry — let us call it the
“electric” gauge symmetry. Notice it is not a symmetry of anything physical!
It is a symmetry of the variables A,! The physical quantities — FE and B —
are gauge invariant, and are trivial under this “symmetry.” This is a good
thing, because under exchange of F and B, we cannot exchange A, with
anything. We must introduce a new, and entirely different, vector potential
Cy, with ﬁ’,w = 0,C, — 0,Cy. No local expression will convert A, to C,.
Furthermore, C), has its own U(1) symmetry — let us call it “magnetic” —
Cu(z) = Cu(z)+0up(x). This is just as unphysical as the first U(1). Even if
we were to find a transformation from A, to C),, nonlocal as it would be, we
are free to redefine C, through a magnetic U(1) transformation separately
from any redefinition of A, through an electric U(1) transformation! There
are two U(1) groups here; they are two entirely distinct symmetries of two
entirely distinct sets of variables, and both are unphysical. When we say
that the Maxwell equations are the equations of a U(1) gauge theory, we are
being extremely careless with the truth.

Let’s see this as a path integral statement. (I learned the following from
Seiberg and Witten’s first paper [9].) They start with the free Maxwell
theory

g2
/DA iz 5. a)

(I will suppress indices except where clearly needed.) Notice the gauge fixing
term. This expression is just a number. Let us instead write something more
useful. Let’s introduce a source J* for F),,, and write

Z0J] = /DA I 59, a)

Functional derivatives of InZ with respect to J now give the correlation
functions of F'.

Let us now change variables in this path integral. Up to an overall
constant. the path integral can be rewritten as an integral, not over A, but
over F. We have to be careful, though, because F' is subject to the Bianchi
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identities, which are exact operator identities. Consider the expression
g2
—i [E5+[JF
Z10] = / pF ¢ i /I s FL)

There’s no gauge fixing needed now, but the Bianchi identities must be
implemented through a delta function. Let us rewrite this Bianchi identity
using a Lagrange multiplier which we will for some unknown reason call C,,,

: 2 i vpo
Z[J] = /DFDC o At g [0 5 oy

Notice that the integral over C enforces the Bianchi identity, but since
€*P?0,0,F,, = 0, the Langrange multiplier field C' itself has a gauge invari-
ance, which must be fixed by the new delta function. Now let us integrate
by parts

1~
7 CypFruy = =90, Co Fyyy + O () = —5 FoF + ()

where F( is the field strength of C' and ~ represents contraction with an e
tensor. We next carry out the integral over F', obtaining

2 2 ~
Z[J) = e_ingJQ/DC e EateR e 5. )

where I have used Fé = FZ. Thus we recover a free Maxwell theory for C!
It looks identical to the original one, except (1) g has been replaced with
g = 4m/g — weak coupling and strong coupling have been exchanged — (2)
the source J, which coupled to F', now couples to %ﬁ’c, so the electric field
F/g of A, is proportional to the magnetic field Fiz/g for C,, and (3) there
is a contact term proportional to J? (a typical quantum subtlety which does
not affect Green’s functions of fields at different points — you may want to
experiment with Fourier transforms of Gaussian integrals to see why it is
there.) Thus we have found that we can express a single quantum theory (in
the form of a generating function for gauge-invariant correlation functions)
using two, entirely distinct, integral representations, both of which are nice-
looking and well-behaved. One theory, two descriptions, each with its own
U(1) gauge (non-)symmetry. This is duality.

3.2 The addition of charged fields

Only when we add charges to the theory do we start to learn the distinction
between electric and magnetic fields. We know that in nature we have only
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electric charges, and all symmetry between electric and magnetic charges is
lost. And yet — what if there are magnetic monopoles? Could the symmetry
be restored?

Yes, and no. If we put both electric and magnetic currents in the classical
Maxwell equations, they look beautifully symmetric: the Bianchi identity
P9, F,, = Jj, is exchanged with the equation of motion 0,F* = Jy.
All seems well. Electric charges have charge e, while magnetic charges are
proportional to 1/e; thus if electrons are weakly coupled, monopoles are
strongly interacting with the photon, and vice versa.

So let us return to the question of confinement. We have seen that we
can use condensing electric charges to cause electric charge to be screened,
and make magnetic flux confined through the Meissner effect. Clearly, there
should be a “dual” Meissner effect; if we have condensing magnetic charges,
then magnetic charge will be screened and electric fluz will be confined. In
both cases there will be a mass gap in the theory. Thus we now have a guess
as to how confinement will occur: if there are some magnetically charged
objects around — perhaps composite ones not visible even semiclassically
— then their condensation would cause electric flux to be confined via the
dual Meissner effect. All we have to do now is write down the equations
governing this process, and see that in such a world, electrons are confined
by flux tubes...

But there’s a problem. The Bianchi identities are now V x E+B= Jmags
V - B = ¢mag- This means we cannot introduce A, anymore; the very
introduction of the vector potential imposes the Bianchi identities with zero
for the right-hand sides. If we want to introduce a magnetically charged
field, we will have to use C,. In this case, the equations for C}, will look
exactly the same as they did before for A, simply relabelled. And that’s
not good, if we want to see that electrically charged particles are confined.
Fields for electrically charged particles must have kinetic terms defined using
covariant derivatives which contain A,! We cannot write a local expression
for an electron’s kinetic terms if we only have C),. Even worse, the presence
of the electron field ruins the Bianchi identity for C,, so we can’t really
introduce C), either. There isn’t going to be a local Lagrangian, and there
isn’t going to be an ordinary, classical analysis. All we have is a mess.

And that’s before quantum mechanics. These complications prevent us
from repeating the argument for duality using the path integral. Once there
are charged fields, we do not know how (as of yet — though see [14]) to write
a path integral which converts an electric description of a theory to an mag-
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netic one. (Furthermore, in contrast to U(1) without charged matter, there
is in fact little reason to expect that a U(1) theory with charged matter is
actually quantum-mechanically dual to an identical theory; it could easily be
dual to a nonabelian gauge theory, and /or have multiple dual representations
[15].)

We could, of course, forgo the electrically charged particles. Then we
would just have a photon coupled to magnetically charged particles; but
this would look exactly the same as the superconductor we just considered.
That won’t help us with Yang-Mills theory, or any other theory with electric
confinement that we would like to understand. In such theories, the gluons
themselves are chromoelectrically charged, and we can’t simply choose to
discard all possible chromoelectrically charged objects.

3.3 Duality in pure Yang-Mills?

Can we find a similar duality for the pure Yang-Mills theory? We know that
Yang-Mills has the property that it generates electric flux tubes with Zy
quantum numbers. We might hope that Yang-Mills has an obvious duality
to some theory with a gauge group H which has 7 (H) = Zy, so that when
H is broken by a condensing field, it generates magnetic flux tubes with
Zy charges. A natural guess for H would be SU(N)/Zy. Of course we
will need some additional matter — at least a couple of scalar fields — if
we are to break this gauge group completely, so the dual description of this
theory can’t itself be pure Yang-Mills. Is there any hope that there exists a
dual SU(N)/Zx gauge theory of some type, which gives a weakly-coupled
(and therefore calculable) dual description analogous to the Meissner effect
of confinement in Yang-Mills?

This type of idea, popular briefly in the 1970s, has a few serious problems.
First, unlike the case of U (1) gauge theories, the electric and magnetic fields
of SU(N) are in the adjoint representation of the gauge group and are not
themselves gauge-invariant. This makes the Bianchi identities e#*?? D ,F* =
0 nonlinear. Secondly, their equations of motion D,F*” = ( are nonlinear.
In both expressions, covariant derivatives appear, which means we always
have to write expressions using the vector potential A,. This means we
cannot simply exchange electric and magnetic fields as we did in the classsical
Maxwell equations; the potential appears in the classical equations. At the
quantum level, this is equally problematic; the path-integral trick used above
for U(1) is useless here, since it required we write the path integral only in
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terms of F. (Note Halpern [16] showed in the 1970s that it is consistent
to write A nonlocally in terms of F' inside a path integral, but no one has
figured out how to make use of this fact.)

Another complication is that Yang-Mills theory has a running coupling
constant. At high energies it is weak. (Any magnetic description therefore
will be strongly coupled at these high energies, but we don’t mind that,
since the original description is weakly coupled, and extremely useful, in
this regime.) At low energies, below A, it is strong — but how strong? Is it
infinite, or merely order 17 This is important, because we are interested in
trying to find a dual description of confinement which presumably inverts the
coupling constant ¢ — 1/g. Unless the gauge coupling is much larger than
one, our dual description will itself have a large coupling (of order one) and
we won’t be able to use it for a semiclassical description of the physics. In
this case the dual magnetic description will be as hard to use as our original,
electric one.

Unfortunately, all indications are that the coupling in the region near A
is closer to /4w than to infinity. There is no evidence that the theory at low
energies has a weakly-coupled magnetic description, and the dynamics of the
theory does not seem to have any small parameters, or large separations of
scales, which could make it easier to analyze. The nonperturbative physics
of Yang-Mills may just be a hard problem.

We might be stuck. But here’s an idea. What happens if we make the
gauge coupling ¢ artificially large? Maybe in that limit a dual description
can be found, and its description of confinement will be easier to study and
to use. And maybe from there we can get back to the Yang-Mills theory
that we want to understand.

How could we do this? Well, let’s review... why does the coupling become
small in the ultraviolet? It does so because the theory is asymptotically free;
its beta function is negative, so the coupling becomes smaller and smaller as
we go to high energy. We can’t avoid this region of small coupling unless we
do something drastic...

Well, one drastic thing we can do is put the theory on a lattice. This
means there is a shortest distance below which there can be no vibrations; the
theory only looks like pure Yang-Mills at much longer scales. The ultraviolet
modes are simply removed, so we won’t have to worry about the theory
becoming weakly coupled at high energy. In fact, we are free to choose

1

the coupling constant g(a~!) at the energy a~! corresponding to the lattice

spacing a. Instead of choosing it small and allowing the theory to run to
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strong coupling at low energy, let’s just choose g(a™!) very large. What
happens?

In this case we can do a “strong-coupling expansion”. I won’t review
this here, but the expansion on the lattice in powers of 1/¢g? can in fact
be performed [1], and one sees the existence of confining strings right away.
There, we’re done. Yang-Mills confines chromoelectric field, and Strassler’s
lectures are over.

Or does it? The problem is that the theory on the lattice has very
different dynamics from that of pure Yang-Mills. If g(a™!) is very large,
then the confinement scale A will be at the same order as 1/a. This can be
seen from Eq. (1) with pg = a™!, using the fact that e 879" L 1if g2 > 1.
There will be no separation between the scale of the lattice and the scale
of confinement. The mass gap will be at this scale also, so there will be no
long-distance physics at all. All of the glueball spectrum will be sensitive to
the lattice. Thus the theory is very different from Yang-Mills, in fact. If we
change the lattice from a square lattice to a triangular one, we will change
the glueball spectrum significantly. So why should the fact that the lattice
theory confines convince us that when we take the limit

a—0, g2 =0, AUN/3 = a " 11N/3=8n%/g(a) fixed,

thereby recovering the pure Yang-Mills theory, that the confinement, the
flux tubes, and the mass gap will actually survive? Couldn’t there easily
be a phase transition at some value of g which would change the physics
completely?

It’s a serious objection. Indeed, we see here a general approach at work,
and its basic advantages and disadvantages. Let’s review them. We can'’t
study Yang-Mills directly; it is too hard. But let’s change the theory in a way
that allows us to artificially make a parameter small (in this case 1/¢%.) By
doing so, we permit a new expansion in powers of the small parameter. This
gives us a calculational technique in which it may be possible to show that
confinement and other nonperturbative properties do actually occur, and
explain how and why they arise. That’s a great idea; and it works, too! But
we changed the theory; it is related continuously to Yang-Mills, but that’s all.
Let’s now try to go back to Yang-Mills itself. The problem is that our small
parameter will become large again as we do so, and we have no guarantee
that confinement, etc., and especially the explanation for confinement, will
survive as we make our way back to our starting point. This is especially
true since the dynamics of the theory with the small parameter depends in
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detail on how we changed the theory.

In fact, experience shows that in considering a variety of weakly-coupled
variations on pure Yang-Mills, one finds (1) all of the reasonable variations
confine, tending to confirm that Yang-Mills confines, and (2) each variation
has its own, separate explanation as to how confinement happens. The vari-
ous explanations have a few things in common but their details are different.
Is this progress? I leave this as a question for you to decide.

Similar issues arise for ' = 1 SYM. There are many ways to distort the
theory (see for example [17, 3, 9]) so that it becomes easier to study; each
shows that the theory confines, although each gives a somewhat different
explanation. In the remaining part of these lectures, we will be choosing
a couple of these variations, and studying how confinement occurs in these
cases. We will embed the N' =1 SYM theory into N' =4 SYM — the most
symmetric of all gauge theories — and use the dualities of N' = 4 to study
the confinement in A" = 1 (and possibly, if the mathematics is kind, of pure
Yang-Mills itself.)

3.4 N =4 Supersymmetric Gauge Theory

We now need to review some properties of N' = 4 supersymmetric gauge
theory. We will take the gauge group to be SU(N) unless otherwise noted.
The theory consists of one gauge field, four Majorana fermions, and six real
scalars, all in the adjoint representation. It is useful to combine these using
the language of N' = 1 supersymmetry, in which case we have one vector
multiplet (the gauge boson A, and one Majorana fermion \) and three chiral
multiplets (each with a fermion %° and a complex scalar &%, s = 1,2, 3.)

These fields have the usual gauged kinetic terms, along with additional
interactions between the scalars and fermions. I won’t write them all here
(vou can find them in many books and review articles on supersymmetry)
and will instead focus on the potential energy for the scalars.

dim G 3
V(@)= > Dl + ) IF[ (6)
a=1 s=1

where ;
D, = (Z[‘PST,@SO (7)
s=1 a
(here a is an index in the adjoint of G) and

Fy = €44, [®, Y] . (8)
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Supersymmetry requires that (V(®%)) = 0, and so all D, and F; must vanish
separately. The solution to these requirements is that the matrices are all
diagonal, namely

(@%) = diag(v‘f, V3, 7“?\7) : (9)

If the v}, thought of as N vectors @;, i« = 1,... N, in a three-dimensional
complex space, are all distinct, this breaks G to U(1)". Since mo[G/U(1)"] =
[Z]" [see Eq. (4)] the theory has monopoles carrying r integer charges under
U(1)". (Quantum mechanically, the theory also has dyons, carrying r electric
and r magnetic charges (ne, ny,) [18].)

The space of vacua written in Eq. (9) is not altered by quantum mechan-
ics. In the generic U(1)" vacuum, each U(1) has no charged matter, and
consequently has the usual electric-magnetic duality of the Maxwell equa-
tions.

When all v] are zero, the gauge group is unbroken. The theory is con-
formally invariant. All reasonable Green’s functions are power laws. All
reasonable operators have a definite, fixed, dimension. The gauge coupling
¢ has an exactly-zero beta function, and does not run. Thus, in contrast to
QCD, YM, and N =1 SYM, the N = 4 SYM theory has a truly dimension-
less coupling constant; there is no strong-coupling scale A, no dimensional
transmutation. We can dial this truly dimensionless g to be whatever we like
— it can be small, or it can be large — and it will stay that way at all energy
scales. And this nonabelian gauge theory, with lots of charged matter, has a
generalization of electric-magnetic duality, suggested first by Montonen and
Olive in 1977 [19], in which this coupling constant is inverted.

3.5 Montonen-Olive Duality

Like the pure Maxwell theory, the N' = 4 theory has more than one de-
scription. There’s lots of evidence for this, although it has not been proven
directly. Consider this an open challenge.

There is actually an infinite set of alternate descriptions (one has to talk
about the 8 angle of the theory to obtain them, and I will not have time
to cover this here) but the most important one, for our purposes, exchanges
electric and magnetic charges. It is generated by a change of variables S
analogous to the one we discussed above for electromagnetism, but whose
explicit form remains a mystery. It has the effect

4
S:g—);ﬂ;qeﬁqm;G—)G. (10)
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S exchanges electric and magnetic charge, inverts the gauge coupling [19],
and changes the gauge group [20, 21] from G to its dual group G, as defined
below.

The group G has a root lattice I'¢ which lies in an 7 = rank(G) dimen-
sional vector space. This lattice has a corresponding dual lattice (I'g)*. It is
a theorem that there exists a Lie group whose root lattice I'; equals (T'g)*
[20]. Here are some examples:

SU(N) <> SU(N)/Zy ; SO@2N + 1) < USp(2N) ; )
SO@2N) < SO2N);  Spin(2N) <> SO@2N)/Z .

Notice that this set of relationships depends on the global structure of the
group, not just its Lie algebra; SO(3) (which does not have spin-1/2 repre-
sentations) is dual to USp(2) ~ SU(2) (which does have spin-1/2 represen-
tations.) These details are essential in that they affect the topology of the
group, on which Montonen-Olive duality depends.

In particular, there are two topological relations which are of great im-
portance to Montonen-Olive duality. The first is relevant in the generic
vacuum, in which G is broken to U(1)". The electric charges under U(1)"
of the massive electrically charged particles (spin 0, %, 1) lie on the lattice
I'¢. The massive magnetic monopoles (also of spin 0, %, 1) have magnetic
charges under U(1)" which lie on the dual lattice (I'¢)* [20, 21]. Clearly,
for the S transformation, which exchanges the electrically and magnetically
charged fields and the groups G and G, to be consistent, it is essential that
I'z = ([g)* — which, fortunately, is true.

The second topological relation is the one we will use below. We have
seen that the allowed electric and magnetic sources for a gauge theory with
adjoint matter (such as N' = 4) are characterized by quantum numbers in C
and 71 (G) respectively. Counsistency of the S transformation would not be
possible were these two groups not exchanged under its action. Fortunately,
it is a theorem of group theory that [20]

7T1(G)=Cé; Wl(é):CG . (12)

For example, m1[SU(N)] = Csy(ny/zy = 1 while Cgyyy = m[SU(N)/Zn] =
Zy.

Thus, as a consequence of Eq. (12) and the results discussed in our earlier
discussions of electric and magnetic fluxes and sources, the allowed magnetic
sources of G are the same as the allowed electric sources for G, and vice
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Figure 15: N D3 branes have a U(N) N =4 SYM on their world volume.

versa. This is a significant piece of evidence in favor of S-duality, and will
be essential later on.

Now, this is not the only way to approach N' = 4 SYM, as you have
already heard in Prof. Maldacena’s lectures. As he showed you, the world-
volume theory on a stack of N D3 branes of Type IIB string theory has
a complicated action, but at low energy it reduces to N' = 4 U(N) SYM
theory. The extra U(1) decouples, and all of the interesting physics is in the
SU(N) part of the theory.

Do we see signs of S-duality in this string construction of N’ =4 SYM?
We certainly do! Type IIB string theory itself has an S-duality — for which,
again, there is tremendous evidence but no proof (see for example [22] and
[23].) The duality inverts the string coupling: gs — 1/gs. It also changes
various extended objects into one another. The theory has (among other
things) fundamental strings, Neveu-Schwarz 5-branes, and D1, D3 and D5
branes. (It also has D(-1) and D7 branes but we won’t discuss them.) Now,
under S-duality, the D1 and F1 (fundamental) strings are exchanged, as are
the D5 and NS5 branes. The D3 branes, however, are unchanged. The
N = 4 SU(N) SYM theory goes back to itself, except that its coupling
constant g2 ,, = gs/4n is inverted — just as we expected! Furthermore, a
fundamental string ending on a D3 brane looks like a point electric charge
from the perspective of an observer stuck on the D3 brane. A D1 brane
ending on a D3 brane looks like a point magnetic charge. Thus S-duality in
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Type IIB string theory correctly inverts the N'=4 SYM coupling constant,

exchanges its electric and magnetic charges, and exchanges the gauge groups
3

of the electric and magnetic descriptions.

Figure 16: F1 (D1) strings appear as electrically (magnetically) charged particles.

A word of warning about this beautiful structure. Most examples of
duality are much more complicated than this! The identification of the dual
group is vastly more difficult, and the relations which we have used in arguing
that it is @ do not work. So don’t be fooled into thinking that most of the
other known dualities are this elegant. They are both less straightforward
and much richer in content. A good example for you to look at is the Seiberg
duality of N’ = 1 supersymmetric gauge theories [17, 24, 25], which could
actually be relevant in nature. But the example of A’ = 4 duality proves to
be a good one for examining confinement in A/ = 1 SYM and pure YM, so
we’ll stick with it.

4 Breaking N =4to N =1

It’s time to return to our goal of discussing confinement in ' = 1 SYM
theory. Let’s try to apply the trick we discussed earlier in the context of the
strong-coupling expansion on the lattice. Is there, perhaps, a way to take
N =1 SYM, make its coupling artificially large, and do a strong-coupling
expansion? The lattice badly breaks supersymmetry, so it won’t help us very

3Well, almost. Actually, the D3-branes give U(N), whose dual is U(N) again. To
remove the U(1) factors, and see the Zy, is subtle. It is much easier to see that SO(2N +1)
is exchanged with USp(2N), so you might try that instead.
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much (although it might be worth revisiting this point after recent advances
in lattice theory [26].) A different approach would be to put N/ = 1 Yang-
Mills theory inside of N' =4 Yang-Mills. How might we do this?

We could add to the N/ =1 SYM theory three chiral multiplets (that’s
three Majorana fermions and six real scalars) in the adjoint representation
of the group, all with a common mass m. We’ll also add some additional
interactions, so that when m goes to zero the theory has N' = 4 supersym-
metry. We take all scalars to have expectation values less than or of order
m (an assumption which will be justified later.)

At energies well above m, the theory is approximately N' = 4 SYM.
Since the masses m are comparatively tiny at these energy scales, the theory
will be approximately conformally invariant. The gauge coupling will run
very little for energies bigger than m, and for very high energy it goes to a
constant go. But at energies well below m, the classically massless particles
will be those of N = 1 SYM. Quantum mechanically, the gauge coupling
will run below the scale m, and confinement will presumably occur at some
scale A < m.

Thus this A/ = 1 supersymmetric theory — which we will call “N = 1*”,
for short — interpolates between N' =4 SYM and N’ = 1 SYM. As required
for our trick, we have kept the basic ' = 1 SYM infrared dynamics but
have changed the ultraviolet behavior of the theory in such a way that we
can, if we wish, ensure the coupling constant is always large! In particular,
we can simply choose the ultraviolet value of the coupling gg much larger
than one. Since g(u) = g¢ for u > m, the coupling constant at p = m will
also be large — and thus, just below the scale m, we obtain a theory with
the matter content of N' = 1 SYM, but with an artificially large coupling
constant. All we have to do now is expand in 1/gg. But that’s exactly what
Montonen-Olive duality allows us to do! The magnetic dual description of
this physics will be weakly coupled, with coupling constant 1/gy < 1.

But how close will the N/ = 1* theory be to N' = 1 SYM? What properties
will they share? It is worth examining the strong coupling scale of the
N = 1* theory. Below the scale m, the coupling constant g(u) will run as it
does in pure N = 1 SYM theory, so the one-loop relation between g(u) at
the scale 4 = m and the scale A reads

ASN m3Ne—87r2/g2(m) ~ mSNe—SWQ/gg

Notice that if gy is small, A < m, but if gy is large, as we will want for
our strong-coupling expansion, A ~ m. Thus, just as in the lattice strong-
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pure N=1

confinement

Figure 17: N =1 for small go.

coupling expansion, there will not be a separation of scales between the new
physics (in this case the three massive adjoint multiplets) and the scale of
confinement, glueball masses, etc. We will not be doing much better than
the lattice case. Our strong-coupling expansion will depend on the details
of our the mass scale m. For example, if we give the extra chiral multiplets
different masses instead of a common mass m, the glueball spectrum will
reflect this change, although there would be no such change at small g
where m > A. This is the standard limitation; we accept it and move on.

M N=4

confi qement

an a
Figure 18: N = 1* for large go.

You might wonder if there is some danger that the massive chiral mul-
tiplets will ruin the confinement we want to study. In fact, there is not
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much to worry about. As we noted earlier, ' = 1 SYM has confining
strings because neither gluons nor gluinos can break these flux tubes; fields
in the adjoint representation are neutral under the center of the gauge group
Cg. The addition of massive matter in the adjoint representation does not
change this; heavy particles would only obstruct confinement by breaking
flux tubes, which adjoint matter cannot do. We therefore can expect that
N = 1* should share some qualitative features with pure ' =1 SYM: both
should have mass gaps and confine flux into tubes carrying a Cg quantum
number.

Now let’s examine things more closely. Let’s first take gy very small so we
can do a semiclassical analysis. When we break the N’ = 4 supersymmetry
by adding masses m for the fields ®*, the F; functions of (8) become

Fy = €54, [®, ®Y] + m®® | (13)

so that Fy = 0 implies €, [®, ®%] = —m®® [8]. Up to normalization, these
are the commutation relations for an SU(2) algebra; thus solutions will take
the form

3! = —imJ, ;8% = —imJ, ; ®* = —imJ, , (14)

where Jy, Jy, J, are N x N matrices satisfying [J;, J,] = iJ;, etc., a repre-
sentation of SU(2). Each possible gauge-inequivalent choice for the J’s gives
a separate, isolated vacuum of the classical N’ = 1* theory [8].

How does this work, explicitly, in SU(N)? We can write the ®° as
N X N traceless matrices, so the J; should be an N-dimensional (generally
reducible and possibly trivial) representation of SU(2) [8, 3]. The trivial
choice corresponds to J; = 0; clearly if ®* = 0 the JJ commutation relations
are satisfied. We will call the corresponding vacuum the “unbroken” vacuum,
since the SU(N) gauge group is preserved. Another natural choice is to take
the J; in the irreducible spin—% representation of the SU(2). In this case
SU(N) is completely broken (this is left as an exercise); we will call this the
“Higgs vacuum”. We may also choose the J; in a reducible representation

Os | 0
Js = l—— —|- ——] ; (15)

here the o, are the Pauli matrices. In this case SU(N) is partly broken.
There are many vacua like this last one, but they will play no role in today’s
story; we will only need the unbroken vacuum and the Higgs vacuum.
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Figure 19: A few of the classical vacua of ' = 1*, including the unbroken (U) and
completely Higgesd (H) vacua.

In all of these vacua, the scalar fields are massive, as are most of the
fermions. However, in any vacuum with unbroken gauge symmetry, there
are both massless gauge bosons and their massless fermionic superpartners.
Thus, the Higgs vacuum has a mass gap — there are no massless fields —
while the unbroken vacuum has the massless gauge bosons and fermions of
an SU(N) N =1 SYM theory.

As an example, let’s take the case of an SU(2) gauge group [8]. This is
a rather degenerate one, but it has all the essential features. In this case we
need two-by-two matrices which satisfy the above commutation relations; the
only solutions are J; = 0 and Js; = imo;. We thus have two classical vacua,
one with unbroken SU(2) gauge symmetry, and one in which the SU(2) is
completely broken by the Higgs mechanism. (The expectation value for ®3
breaks SU(2) to U(1), while the expectation values for ®! and ®? break the
remaining U(1).)

In summary, the classical analysis of the SU(N) N = 1* theory shows
that it has isolated supersymmetric vacua scattered about, with the unbro-
ken (U) vacuum at the origin of field space and the Higgs vacuum (H) at
large ®° expectation values (of order m) [8, 3]. The Higgs vacuum has a

mass gap, while the unbroken vacuum has the matter content of an SU(N)
N =1 SYM theory.

4.1 OM Duality and the Yang-Mills String

The above picture is modified by quantum mechanics. The U vacuum has
the matter content of SU(N) N =1 SYM theory. Remember we are still
working at small go. We know this theory is asymptotically free, so at an
energy scale exponentially small compared to m — more precisely, at an
energy A ~ me=8°/3N% « m — the gauge coupling will become strong.
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Figure 20: Quantum mechanically, the vacua with unbroken gauge groups split; the U
vacuum splits into IV, one of which (C) has confinement via magnetic monopole conden-
sation.

Since this scale is so small, the physics at energies of order m cannot affect
it. We already know, then, what this theory will do; it will confine, generate
a mass gap of order A, and it will have not one but N vacua due to the
breaking of the Zsy axial symmetry down to Zs. As we noted earlier, these
vacua are related by this Zoy symmetry, so we can focus on just one of
them.? Let’s call it the confining (C) vacuum.

By contrast, in the H vacuum the gauge group is completely broken at
the scale m > A, and there is a mass gap of order m, so there is no way for
non-trivial low-energy dynamics to take place. Consequently, the H vacuum
remains a single vacuuin.

Now let’s compare the Higgs vacuum and the confining vacuum. Recall
that we took the gauge group to be SU(N). The confining vacuum has
a strongly-coupled process of confinement and generation of a mass gap of
order A < m. We expect the confining electric flux tubes to have tension
of order A, and for them to carry a Zy charge. In the Higgs vacuum, on
the other hand, there is a weakly-coupled breaking of the gauge group. We
can see classically that a mass gap is generated. But actually the gauge
group is not completely broken. The adjoint scalar fields carry no charge
under the center of the group, so SU(N) is in fact broken down to its center
Zy! Now, we have already learned that there will be solitonic magnetic flux
tubes in any breaking of a gauge theory G — H if w1 (G/H) is nontrivial, and
these strings will carry charges in 71(G/H). Here we have SU(N) — Zy,
and m[SU(N)/Zy] is Zy. So the Higgs vacuum has confining magnetic
fluz tubes, carrying charge Zy, as a result of condensation of the electrically

4A caution: this symmetry is actually only exact when m — oo, and is approximate if
m > A. However, for reasons explained below, the number of vacua cannot change when
'm varies, so our counting of vacua is correct for any m. The vacua are actually related by
shifting the 6 angle by 27k, k € Z.
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charged fields ®°. The scale of these flux tubes and of the mass gap is ~ m.

This is extremely suggestive. Let us attempt to rewrite this physics using
the magnetic description of the theory. Montonen-Olive duality converts g
to 1/go > 1... oops. The physics we were just discussing for small gy will
now be converted to a very strongly coupled description. In such a highly-
fluctuating set of variables, we won’t know how to calculate anything. Bad
move.

So instead, let’s first continously vary gg from small to large, as we had
discussed doing earler. Now A and m will gradually become of the same
order. The classical analysis we performed of the Higgs vacuum will become
invalid, as will our semiclassical analysis of the unbroken vacuum. However,
we may now appeal to a special property of supersymmetric field theories.
Even an N' = 1 supersymmetric theory has the property that the energy of
any field configuration is positive. All supersymmetric vacua have exactly
zero energy, and are global minima of the potential. Furthermore, the po-
tential energy is proportional to the square of a complex function, whose
zeroes are controlled by complex analysis. These zeroes cannot simply dis-
appear. Even if we change gy (which, when combined with the 8 angle of
the gauge theory, is actually complex) the number of zeroes cannot suddenly
change. (This hand-waving argument is vastly improved by consideration of
Witten’s index [27], discovered around 1980.) This gives us great confidence
that even at large go, the H vacuum will still exist, with a mass gap and
confining magnetic flux tubes, and so will the C vacuum, with its own mass
gap and confining electric flux tubes. This is not quite a proof, but the
evidence is very strong. (The mathematics of [3] elevates the argument to a
near-proof.)

Now, having moved to a theory with ¢ > 1 which still has the flux
tubes of interest, let’s apply a strong-coupling expansion by switching over
to the magnetic description of the theory, using SU(N)/Zy variables whose
gauge coupling is § = 47 /go. What happens in the magnetic description?
Not only does Montonen-Olive duality invert the gauge coupling, exchange
electric and magnetic charge, and switch SU(N) with SU(N)/Zy, giving a
new description in terms of new adjoint gauge, spinor, and scalar fields &%,
magnetically charged, it also exchanges the H vacuum with the C vacuum
8, 3]!

It’s important not to get confused, so let’s review. In the electric theory,
there is an H vacuum, described at small gy by simple breaking of a gauge
group by condensation of the ®° fields. We don’t have a good electric de-
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Figure 21: The Higgs and Coulomb vacua, in the regions of large and small go, as
described by the two different sets of variables.

scription of it at large g, but we know it still exists. We also know there is a
C vacuum, and we don’t have a good electric description of it even at small
go, much less at large go. Each of these two vacua may also be described
using the magnetic variables of the ' = 4 theory. In these variables, we do
not have any good descriptions when gy is small, since 1/gq is big. However,
when gg is large, and 1/go is small, we have a good description of the C
vacuum (1) which is exactly isomorphic to the small-gy electric description
of the H vacuum at small gy. And that’s what we want: a magnetic de-
scription of the C vacuum, valid at go > 1, which makes it easy to see the
confining electric flux tubes of the C vacuum. In this magnetic description of
the C vacuum, the electric flux tubes are simply the semiclassical (remember
go < 1) solitonic strings which emerge from the condensation of the scalars
@DS, which are magnetically charged and break the magnetic gauge group from
SU(N)/Zy to nothing. These solitons carry Zy = m1[SU(N)/Zy] charge
— which is exactly what we need! Furthermore, we can easily see how the
mass gap is generated in this context, just as it is generated classically at
small gg in the H vacuum.



150 M.J. Strassler

So we have found our strong-coupling description of confinement, and
it is precisely as we originally suggested: it is a non-Abelian generalization
of the dual Meissner effect, in which condensation of magnetically charged
scalar fields generates a mass gap and confines electric flux. The picture
even gives us flux tubes with the correct charges!

Can we go back to N/ =1 SYM? No; that would require varying m —
00,90 — 0, which would make the magnetic description of the C vacuum
strongly coupled and unreliable. But by supersymmetry, the physics should
not change too much as we vary go. We may therefore consider this a near-
proof that N/ = 1 SYM does indeed have a mass gap and confinement. It is a
strong argument that the corresponding flux tubes carry Zy charges for the
flux tubes. However, it is no proof at all that confinement occurs via a simple
picture of condensing, weakly-coupled magnetically-charged objects. In fact,
it firmly suggests that the magnetic condensation process is strongly coupled.
This means, for example, that any calculation of the string tension, or even
of ratios of tensions of different flux tubes, will be suspect. Qualitatively
things look great; but a quantitative tool this is not.

Should we expect this picture to survive to the non-supersymmetric case?
Take the theory with A/ = 4 supersymmetry broken to N' = 1, and futher
break N' = 1 supersymmetry by adding an SU(N) gluino mass my < m.
Duality is in fact enough to tell us how to implement this breaking at leading
order in my/m. However we don’t need to think very hard. We know
that the theory has a mass gap, so small supersymmetry-breaking can only
change some properties of the massive fields, without altering the fact that
SU(N)/Zy is completely broken. The strings, whose existence depends only
on this breaking, thus survive for small my. To reach pure YM, however,
requires taking m,m) all to infinity together as go — 0. It seems probable,
given what we know of YM physics, that the strings undergo no transition
as these masses are varied. In particular, we may hope that there is no phase
transition for the strings between pure N' = 1 SYM and pure YM. Note that
this conjecture can, and should, be tested numerically on the lattice.

If in fact the strings of ' =1 SYM and of YM are continously related,
without a transition as a function of the gluino mass, then the arguments
given above for ' = 1 SYM extend to YM, establishing a direct link between
Montonen-Olive duality of N' = 4 gauge theory and the confining Z y-strings
of pure YM theory.
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4.2 A gravitational description of confinement

We have used up most of these lectures, and yet still not reached the latest
developments. I will give an overview of some recent work with Polchingki
[28] which gives a new and remarkable picture of confinement. A somewhat
different picture emerged earlier in this context [29], and other pictures were
discovered later [30, 31, 32]. The reason for the existence of all of these
different pictures is the same as before: each of them represents a distinct
modification of the confining theory of interest into a regime where there is
a new small parameter, and each therefore agrees that confinement occurs
but disagrees on the precise mechanism.

Let me comment on these disagreements. We should abstract a lesson
from all this, namely that confinement is a generic property of gauge theo-
ries for which there can be many causes. The various causes we are learning
about need not be directly relevant for pure YM, or N’ = 1 SYM, which is
too bad, since it means that we are not yet learning any quantitative method
for computing in such a theory. But it may be that neither of these theories
has enough small parameters to permit simple computation. We are not
guaranteed that a given physical phenomenon has a perturbative expansion
in some parameter, any more than we are guaranteed a similar property for
a generic function. It may be that the only way to understand Yang-Mills
theory is either to simulate it or solve it exactly. The latter goal is far be-
yond any mathematical problem ever solved. Simulation may be the end of
the line. [Fortunately, in real-world QCD, there are large global symmetries
among the quarks which are only weakly broken. Expansions around an
exactly-globally-symmetric theory in the small symmetry-breaking parame-
ters has allowed many relations between quantities in nonperturbative QCD
to be predicted. This was essential in the development of the theory of the
strong interactions.]

But even if our new descriptions of confinement are less relevant for YM
and N =1 SYM (and we already know they are even less relevant for QCD,)
they still provide new phenomena for us to think about, ones which could
be relevant in yet other contexts. The goal of these lectures is not merely
to explore confinement in YM and SYM. It is to show you the variety of
phenomena in gauge theories, and encourage you to consider the possibility
that confinement occurs elsewhere in nature, perhaps in unexpected ways
and in unexpected places.

In particular, the most strange and wonderful of all of the developments



152 M.J. Strassler

of the 1990s has been the discovery that string theory and field theory are
not even distinct mathematical entities. In the Maldacena [33] conjecture,
sharpened further by Witten [34] and by Gubser, Klebanov and Polyakov
[35], there is strong evidence for a new form of duality. We saw earlier that
we may take a generating functional and give it multiple integral representa-
tions, each of them with a four-dimensional local Lagrangian in its integrand,
giving us a local quantum field theory. But it turns out that we may also
rewrite this functional as a well-known string theory in 941 dimensions, with
five of the dimensions compact. Even though Polyakov [36] has argued for
years that we should seek a five-dimensional string to describe gauge theo-
ries in four-dimensions, it is astonishing that the needed string is one that
we already know. (Of course the string theory has its own dualities, so we
mustn’t limit ourselves to a single set of variables for it either.)

There are many technical problems with this duality. First, we don’t
know how to write a path integral for string fields. (The usual two-dimensional
world-sheet path integral is analogous to a one-dimensional particle world-
line path integral, not to the path integral of a four-dimensional field theory.
The first is “first-quantization”, the second is “second-quantization”.) We
therefore have no explicit way to write the equating of the field theory and
the string theory. Second, the string theory is particularly nasty. The pres-
ence of large curvatures and large Ramond-Ramond fields makes the usual
techniques of classical string theory invalid. But fortunately there is a limit
in which these issues are unimportant, and it is in that limit that we may
hope to study new properties of field theory. This is the limit in which the
quantum string theory reduces simply to classical supergravity. (Actually
this is too restrictive as has been shown very recently [37, 38].) In the re-
maining time, we will seek to study the A/ = 1* theory in a regime where it
is simply described by semiclassical supergravity coupled to strings and to
branes.

Both pure YM and the ' = 1 SYM theory have two parameters, the
QCD scale A and the number of colors N. (The coupling g(x) runs with
scale and is a determined function of y and A; thus it is not an independent
parameter.) However, A is simply the only scale in the problem, so it is
not a dimensionless quantity that it is meaningful to vary. The only other
parameter available is N, and it has long been suggested that as N — oo
gauge theory might simplify, and might even be soluble. The solution to
large N gauge theory has remained elusive, however.

By contrast, the N' = 4 theory has two dimensionless parameters: N
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and the high-energy coupling go. As Maldacena has shown you, the two
parameters play an essential role in the string theoretic description of the
N = 4 theory. The coupling g3 /47 is the string coupling gs, which when
small makes the string theory classical. However, this is not enough, since
even the classical theory in background Ramond-Ramond fields is too com-
plicated. When g3 N/4m = ), the 't Hooft coupling, is large, then the space
on which the classical string theory is defined becomes very large, with very
low curvature; then the string theory reduces to its low-energy limit, namely
type IIB supergravity.

Here we see that the hope of the previous paragraphs, that the large
N limit of gauge theory might simplify, appears to be partially realized.
At large N we do indeed find a new description, a classical string theory.
But only if we simultaneously take A large do we obtain a well-understood
theory, one in which anything can be calculated. At small A the theory is
very complicated. This is unfortunate, because the YM and SYM theories we
might want to study do not have a dimensionless parameter corresponding
to A. The gauge coupling runs from small to large, so we are guaranteed
that at high energy y > A the running A\(x) will be small (which is not a
problem, because we can use field theory perturbation theory in that regime)
and that A\(s) becomes potentially large only near to the energy scale A.
Unfortunately, there is no evidence that A > 1 at 4 ~ A. More likely,
it is only of order 2w, which (when you check the factors of 27) is not
sufficiently large for gravity to work. In particular, in A/ = 1 SYM, the scale
of confinement and the mass gap is

A~ 'u6727r/3)\(u)

(in pure YM, replace 3 with 11/3) so the energy scale y is of the same order
as the confining scale when A is of order 2. Thus, even if gravity were to
actually describe confinement in YM or N' = 1 SYM, it could only do so
at energy scales extremely close to A, corresponding to a ten-dimensional
space whose curvature would be large everywhere except (at best) in a small
region.

If this is true, then gravity cannot provide a nice description of confining
YM or N = 1 SYM. The confinement occuring in these theories can only
be studied using the classical but extremely complicated theory of strings
in Ramond-Ramond fields and on a highly curved space. This duality is
not much better than the electric-magnetic duality we had before. But we
can consider our by-now familiar trick; can we find a way to distort YM or
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N =1 SYM in such a way that we can take \ artificially large?

Yes; just as before, let us consider N' = 1*. The N/ = 1* theory has
three parameters: N, go and m. The first two are those of ' = 4 and
are the important ones in the ultraviolet. In the infrared, gy and m are
combined into A, leaving N as the only dimensionless constant. As in our
earlier discussion, we may take go small but g3 N large; then the ultraviolet
theory will be approximately N' = 4 SYM in the supergravity regime! We
can then consider the effect of m # 0 in the context of supergravity, and
see if we can obtain a picture of how confinement occurs. As always, the
corresponding picture will be special to this particular deformation of N' =1
SYM — note that A ~ me=87"/3N9% and m will be of the same order, so
as usual our confining scale will not be well-separated from the physics of
the massive adjoint chiral multiplets — but we’ll accept this limitation and
move forward.

4.3 Confinement in the supergravity regime of N’ = 1*

This is a long story, and I can’t describe it all here. One needs a nice
discussion of branes, fluxes, and all the rest. So let me be schematic, and
give you a brief but telling overview of what happens in this theory. Needless
to say, a significantly more rigorous discussion appears in our paper [28].

The key idea was provided by Rob Myers, in a slightly different context
[39]. What he showed was this. Suppose you take a collection of flat Dp
branes, forming p+ 1 dimensional Minkowski space MP*! embedded in 941
dimensional flat space. Now subject them to a certain electric field, not an
ordinary Fy,, = 9,4, but rather a derivative of an antisymmetric-tensor
potential with p+ 3 indices — in short, an electric field with p+4 indices. In
this background field, the Dp branes link together and expand into a D(p+2)
brane, with a p+ 3-dimensional worldvolume in the form of a two-sphere [40]
times MPT1L.

Myers called this “dielectric branes”, and with good reason. Take an
atomy; it is electrically neutral, but carries a global charge, its atomic number.
Now subject it to an electric field. It will polarize, as in a dielectric. It is
still electrically neutral, but it locally has electric charge. Also, it still has its
atomic number charge, which is unaffected. Here, our N Dp branes carry a
charge, the total number N. After they expand into a D(p + 2) brane, what
do they have? First, the number of Dp branes hasn’t changed; that charge
remains. Second, the total D(p + 2) brane charge hasn’t changed; a brane
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Figure 22: The Myers effect for D3-branes.

in the form of a two-sphere can collapse and disappear, so our D(p + 2)-
brane will vanish if we turn off the electric flux, and there is no net charge
associated with it. Still, locally on the two-sphere, there is D(p + 2) brane
charge. Go near to the two-sphere and you can feel it; the other side of
the sphere, with cancelling charge, is far away. Thus the Dp branes have
expanded into a D(p + 2)-brane dipole! Particles form dipoles by moving
apart a certain distance; strings and other branes form dipoles by forming
closed surfaces; but the idea is the same.

What’s the connection? Take the N = 4 theory, described as type IIB
string theory on AdSs x S°. Now modify the gauge theory by adding mass
terms as in A/ = 1*. Tt turns out that the modification of the Lagrangian by
the mass operators corresponds, in supergravity, to turning on a background
electric field, a tensor with 7 indices. The D3-branes, whose near-horizon
geometry formed the AdSs x S° spacetime, expand, as Myers suggested,
into a 5-brane. However, they have two choices (actually many more, but
we’ll only consider these two for now.) They can expand into a D5-brane.
But by S-duality, under which D3-branes are invariant and D5-branes are
exchanged with NSb5-branes, it must also be possible for the D3-branes to
expand into an NSh-brane. Solving the equations, one finds that both of
these possibilities are realized. The first corresponds to the Higgs vacuum
of N = 1%, the second to the confining vacuum!

What does this do to the supergravity? The full supergravity solution
has still not been found. However, we were able to show that there exists a
good perturbative expansion in this theory which allows us to demonstrate
solutions of the following form: at large AdS radius r, near the boundary,
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we have AdSs x S° modified slightly by corrections of order 1/r to a power.
At a radius of order ma’N these corrections become large. A singularity
is avoided, however, by the presence of a D5-brane (or NS5-brane) carrying
N units of D3-brane charge. The brane has world-volume S? (placed on an
equator of the S°) times M* (parallel to the boundary of AdSs.) Specifically,
this prevents the 7-form electric flux from diverging and causing the metric
to do the same. Instead, there is a smooth solution (except at the position
of the 5-brane, where there is a standard and understood singularity) which
rounds off nicely at » = 0, without a horizon or singularity at that point.
In fact, for r < ma’N, the spacetime is approximately flat ten-dimensional
space.

AdSx S

AdS

radius 5-Brane /

10

SZ

d=4 Minkowski space

Figure 23: A useful geometrically-reduced representation of a 5-brane of the sort found
in the /' = 1* solution.

What about confinement? Can we see that magnetic flux is confined in
the H vacuum and that electric flux is confined in the C vacuum? Indeed we
can. D-branes, by definition, are places where strings can end. In particular,
F1-strings can end on D3- and D5-branes. But then, by S-duality, D1-branes
can end on D3- and NS5-branes. On the other hand, F1-strings cannot end
on NS5 branes, nor D1-branes on D5-branes. Another important feature is
that D1 branes, and F1-strings, if placed parallel to D3-branes, can dissolve
in them. But D1-branes cannot dissolve into D5-branes, nor can F1-strings
dissolve into NS5-branes.

All of these facts have physical implications for the N’ = 4 and N = 1*
field theories. F1-strings ending on D3-branes look like electrically charged
particles; D1-strings look like magnetic monopoles. We can create a pair of
oppositely-oriented F1-strings, for example, and move them apart without
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large energy cost; thus the electric charges are unconfined, as expected in
N =4 SYM. An Fl-string placed parallel to and inside a stack of D3-branes
corresponds to putting a line of electric flux into the N' = 4 theory. The dis-
solving of this line indicates that electric flux prefers to minimize its energy
by expanding to infinity. Thus electric flux is, as expected, unconfined. The
same holds for magnetic flux, a dissolving D1-brane.

However, in the A/ = 1* theory the vacua of the theory correspond to
5-branes with D3-brane charge. Now, in the H vacuum, we have a spherical
D5-brane, on which D1-branes cannot end! Magnetic charges can no longer
appear with finite energy. And suppose we put a D1-brane parallel to and
near a Db-brane which also carries D3-brane charge. Here a remarkable
thing happens; the D1-brane can only partially dissolve. The D3-branes try
to make the D1-brane expand, but the D5-brane charge prevents its complete
dissolution. We are left with a diffuse, but nonetheless finite-thickness, D1-
brane-D5/D3-brane bound state. The magnetic flux corresponding to the
D1-brane expands, but only to a tube of fixed size; it is confined in this
tube. Furthermore, if we attempt to produce a pair of magnetic monopoles
in the form of D1-branes ending on this D5/D3-brane composite, we will
find instead that they are connected by this diffuse flux tube. The charges,
kinematics and dynamics of D-branes tell us that magnetic charge is confined
in the Higgs vacuum of N' = 1*!

D1
string

anti-monopole
' (monopole) \ ( POie,

NS5-brane ’

Figure 24: Monopoles (D1 strings) can end on NS5-branes; they are not confined.

The S-dual story holds in the confining vacuum. We can repeat the entire
previous paragraph, exchanging D1 with F1, D5 with NS5, and magnetic
with electric. The conclusion is also exchanged: the charges, kinematics and
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dynamics of NSh-branes, D3-branes and fundamental strings tell us that
electric charge is confined in the appropriate vacuum of N' = 1*. We have
found a new picture for confinement. It occurs through the appearance of
an NSb5-brane dipole in the 9+1-dimensional spacetime. The dipole prevents
flux tubes, in the form of fundamental strings, from dissolving into the D3-
branes contained within the dipole, and instead makes them into flux tubes
which are fundamental strings bound to the NS5-brane!®

F1 !

' string ' (anti-quark)
Y (quark) i

flux tube \

NS5-brane '

Figure 25: Heavy quarks (fundamental strings) cannot end on NS5-branes; however,
there is an NS5-F1 bound state that serves as a flux tube connecting the quark and
antiquark.

Of course this is not the end of the story. One should (and can) check that
there is a mass gap, that strings carry Zy charges, that various expectation
values come out correctly, etc. For a few quantities, there are exact results
from field theory that are complicated functions of A and N; comparison
with our gravity solution shows precise agreement, even for the numerical
coefficients. There is also an exciting new form of duality, which is beyond
the scope of these lectures, which takes not go — 1/go but A — 1/A! This is
still largely unexplored territory, although it has been discussed further in
[41].

It is important to remember that we have not been constructing an anal-
ogy. We have not found a new “model” for confinement in field theory.
This is confinement in field theory. The string theory is just a convenient

5In principle it is also possible to break supersymmetry. If the supersymmetry breaking
is small the story does not change much. For large supersymmetry breaking, of order m,
the technical challenges become greater. It is not known whether reliable computations
can be done in that regime, although there are no known obstructions.
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description of it; but we are not dealing with a different theory, just an al-
ternative description of the same theory. This mechanism for confinement is
a new behavior of ordinary, four-dimensional continuum field theory which
was not previously known. It is one of several which have been uncovered in
the regime of large 't Hooft coupling.

However, as always, this is not confinement in pure N = 1 SYM. To
reach that theory, we would have to take the 't Hooft coupling A small. In
that limit, the NS5-brane dipole would shrink in size, its radius becoming
of order the string scale. All calculational control would be lost. That’s the
price we paid for our new picture. Like Moses, we can see the promised land
but never quite manage to reach it.

5 Wrap-up

In these lectures I have given you an overview of some of the key ideas un-
derlying confinement as a property of field theory, and now, of string theory
as well. This is a tiny fraction of what field theory (and now string theory)
is capable of, and we are still uncovering new features on a monthly basis. In
fact, most field theories do not have confinement, for reasons entirely differ-
ent from those of QCD. Many become nontrivial conformal field theories at
low energy. Others become composite, weakly-coupled gauge theories (the
so-called “free-magnetic phase” [17].) Dualities of many stripes are found
everywhere. Ordinary dimensional analysis in string theory is totally wrong
in the regime where it looks like weakly-coupled field theory, and ordinary
dimensional analysis in field theory is totally wrong in the regime where it
looks like weakly-coupled supergravity. There’s much more. You are en-
couraged to stride into the midst of these developments, to search with us
for new features of both field theory and string theory (or, better said, of
the single theory of which both are a part,) and most importantly, and most
difficult, to explain to us what all these dualities really mean, and where
they come from. Good hunting.
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1 Introduction

Much has been learned over the years by studying string dynamics near
various kinds of “impurities.” Examples include string propagation on orb-
ifolds [1], where one finds “twisted sectors” corresponding to fundamental
strings trapped at the orbifold singularities, and vacua with D-branes which
contain localized excitations corresponding to open strings ending on the
branes.

In both of these examples, the states localized at the impurity couple to
the bulk — e.g. two open strings ending on a D-brane can fuse into a closed
string that can leave the brane. It is sometimes possible to decouple the
physics of the localized modes from bulk dynamics by taking a low energy
limit, E << myg, where m, = 1/+/o is the string scale, associated with the
tension of the fundamental string 7' = 1/27a/.

Whenever this limit gives rise to an interacting theory, it corresponds to
a local quantum field theory (QFT), such as the non-abelian gauge theories
found on branes. This embedding of field theoretic dynamics into string
theory led in recent years to many insights into field theory and string theory
(see e.g. [2, 3] for reviews).

The purpose of these lectures is to describe another class of impurities
— Neveu-Schwarz fivebranes [4], or equivalently singularities of Calabi-Yau
manifolds and other spaces!. One of the striking features of the dynamics
of N S5-branes is that it can be decoupled from the bulk without taking the
low energy limit o/ — 0. The decoupled theory of N S5-branes is known as
Little String Theory? (LST). It has the following properties:

(1) The theory is non-local. In particular, upon compactification on tori,
LST exhibits T-duality.

(2) It has a Hagedorn density of states at high energies, p(E) ~ E%exp(Sy E).

(3) The theory can be defined in six or fewer spacetime dimensions. It has
super — Poincare invariant vacua with sixteen or fewer supercharges.

(4) LST is a non-gravitational theory: there is no massless spin two particle
in the spectrum.

!Orbifolds are examples of such singularities, but in [1] they are in fact resolved by a
finite expectation value of a modulus — the B field [5]. We will be interested below in
situations where this v.e.v. is zero or at least very small.

A name due to [6].
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(5) The theory appears to have well defined off-shell Green functions, un-
like (closed) critical string theory, where it is believed that only on-shell
observables can be studied.

Note that while properties (1) and (2) are reminiscent of critical string the-
ory, properties (3), (4) and (5) are different in the two cases.

The main purpose of these lectures is to describe in more detail some of
the above properties and the techniques that were used to study them. Most
of these results were obtained by using holography, and this is the approach
that will be followed here. In particular, We will not describe an alternative
approach to LST based on a discrete light-cone quantization (DLCQ) of the
theory, which utilizes a certain 1 + 1 dimensional sigma model [7, 8, 9]. For
a review of that approach and LST in general as of mid-1999, see [10].
There are several reasons why I think LST is of some interest. Among them:

(1) In most (compactified) supersymmetric string theories one finds mod-
uli spaces of vacua. For generic values of the moduli the perturbative
description is non-singular, but one can often tune the moduli so that a
singularity appears somewhere on the compact manifold. The dynam-
ics near the singularity is described by LST. Thus LST is part of the
dynamics of rather conventional looking string vacua at special points
in the moduli space. Furthermore, when supersymmetry is broken, it
is possible that the theory is dynamically driven to such singular points
in moduli space.

(2) LST is relevant for the study of strongly coupled gauge theories, which
can be realized on N S5-branes wrapped around Riemann surfaces or
D-branes stretched between fivebranes (see [2] for a review). There are
also applications to matrix theory [11], which in fact provided some of
the original motivation for the construction of this theory [12, 13].

(3) It was proposed that LST might be phenomenologically relevant for
brane world scenarios with a relatively low string scale [14].

More generally, LST appears to be a structure that is intermediate in com-
plexity between local QFT and critical string theory. It has the non-locality
and Hagedorn spectrum characteristic of critical string theory, but not the
complications associated with gravity. A better understanding of its struc-
ture might shed light on string theory, strongly coupled gauge theory (QCD
strings), holography and other matters.
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The plan of these lectures is as follows. We start in section 2 by describing
the limit in which the dynamics of N S5-branes decouples from bulk physics.
In section 3 we discuss the holographic description of this limit and some
of the properties of LST mentioned above. In particular, we exhibit some
observables and physical states in the theory.

In section 4 we discuss the high energy thermodynamics of LST. We
show that the spectrum has a Hagedorn growth and compute the Hagedorn
temperature and the first subleading term in the entropy which shows that
the thermodynamics is unstable. In section 5 we introduce and study a
class of vacua of LST which can be analyzed in a controlled weak coupling
expansion.

Section 6 contains some comments on aspects of LST that we cannot treat
in detail due to lack of time, including singularities of Calabi-Yau manifolds
which give rise to d < 6 dimensional vacua of LST and models with reduced
supersymmetry, D-branes in the vicinity of N S5-branes, and instabilities in
LST. In section 7 we discuss some open problems.

2 The decoupling limit of flat NS5-branes

Consider a vacuum of type II string theory which contains NV parallel N S5-
branes?, which are extended in the directions (z!,--- , %) and are localized
in (z°,--. ,2%). We will initially take the fivebranes to be at the same point
and will later examine the deformations that separate them in the directions
(6,7,8,9).

The presence of the fivebranes breaks the Lorenz symmetry:
SO(9,1) = SO(5,1) x SO(4). (2.1)

From the fivebrane worldvolume point of view, SO(5,1) is the Lorenz sym-
metry, while SO(4) is an internal R-symmetry. The fivebranes also break
half of the supersymmetry, reducing the number of unbroken supercharges
from thirty two to sixteen. In terms of six dimensional supersymmetry along
the fivebranes, ITA fivebranes preserve a chiral (2,0) supersymmetry*, while
IIB fivebranes preserve (1,1) supersymmetry.

Since N S5-branes are dynamical objects, like D-branes, one expects to
find a rich spectrum of excitations on the branes. To decouple the dynamics

3Neveu-Schwarz fivebranes are magnetically charged under the Neveu-Schwarz B,
field. See e.g. [15] for a review of some of their properties.
“Le. two complex supercharges in the 4 of Spin(5,1).
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on the fivebranes from the bulk, consider the limit

gs — 0; 2 = fixed. (2.2)
mg
Processes in which modes that live on the fivebranes are emitted into the
bulk as closed strings are suppressed in this limit, since the corresponding
amplitudes are proportional to g; and thus go to zero. At the same time,
the dynamics on the NS5-branes does not become free in this limit. One
way to see this is to consider the low energy limit of the resulting theory and
to show that it is not free.

Consider first the low energy limit of N N S5-branes in type IIB string
theory. S-duality relates this to N D5-branes; thus the low energy theory is
a six dimensional gauge theory with (1, 1) supersymmetry and gauge group
U(N). The gauge coupling of the theory on the D5-branes is

2
iQ = Ms (2.3)
9p gs
Using the transformation of g; and mg under S-duality one finds that the
gauge coupling on the N S5-branes is

1 2
=mj. 24
9% 24

Thus in the limit (2.2) the gauge coupling remains fixed. Since the gauge the-
ory in question is non-renormalizable, the gauge coupling gy in fact changes
with the scale, approaching zero at long distances and growing at short dis-
tances. At energies of order ms the gauge theory description breaks down
and more data needs to be supplied to define the theory. As we will see,
there are in fact additional degrees of freedom in the theory at (roughly)
that scale, and the full density of states is much larger than that in any local
QFT. At any rate, since the dynamics at scales F ~ mg is not free, the full
theory must be interacting.

Note that the above arguments are only valid for N > 1 fivebranes. The
low energy theory on a single N S5-brane is free®. Indeed, we will see later
that LST is interacting only for N > 1.

5In the ITA case it contains a self-dual B, field, five massless scalars and fermions
related to them by (2,0) supersymmetry. In the IIB theory one finds a gauge field, four
scalars and fermions, related by (1,1) supersymmetry.
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The infrared dynamics of N ITA N S5-branes is more involved. One
finds in this case a non-trivial IR fixed point with (2,0) superconformal
symmetry [16]. To see that something special is happening in the IR imagine
separating the fivebranes in the (6,7,8,9) directions. In the IIB theory, one
then finds massive states corresponding to D-strings stretched between the
fivebranes; their masses go to zero as the fivebranes approach each other.
The resulting massless states are the off-diagonal U(N) gauge bosons on the
fivebranes.

The analogous process for ITA involves D2-branes stretched between the
fivebranes. The ends of the D2-branes are strings bound to the fivebranes.
Their tension goes to zero when the fivebranes coincide [17]. These tension-
less strings signal the interacting nature of the low energy limit of the ITA
fivebrane theory — the (2,0) superconformal field theory.

Thus, we conclude that the limit (2.2) corresponds to an interacting
theory on the N S5-branes decoupled from the bulk. What sort of theory is
it? Already at the level of the present discussion there are a few hints of
non-local/stringy behavior. Let us mention two:

(1) T-duality: Compactify some or all of the dimensions (1,2,3,4,5) on
circles. N S5-branes are known to transform to themselves under T-
duality along their worldvolume. Since the limit (2.2) commutes with
T-duality, inversion of the radius of a single circle (R — 1/m2R) ex-
changes the ITA and IIB LST’s, while inversion of an even number of
radii is a symmetry of the theory.

(2) The theory contains strings with tension 7' = 1/27¢’, which can be
interpreted as fundamental strings bound to the fivebranes. In the
IIB caseS, these strings can be constructed in the low energy gauge
theory as instanton solutions, which are extended (say) in (0,1) and
localized in (2,3,4,5). The tension of these strings is proportional
to the instanton action, 1/g%, which using (2.4) is indeed tension of
a fundamental string. Of course, this construction gives rise to long
strings, and it is not clear what are the properties of short strings which
actually govern the dynamics, but it suggests that LST is a theory of
strings. Later we will see further evidence that supports this.

It is instructive to compare the decoupling limit (2.2) with the limits studied
in D-brane physics. Usually, to decouple the physics of D-branes from the

SA similar construction can be performed in the IIA case.
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bulk one considers the low energy limit

£ — 0; g5 = fixed, (2.5)
mg
and the decoupling from the bulk is the standard low energy decoupling of
QFT from gravity. In contrast, the limit (2.2) for D-branes gives rise in
general to a free theory on the branes, since g; determines both the open
and the closed string couplings.
A limit for N D-branes which is more analogous to (2.2) is

N — 00; gs = 0; A= g;N = fixed; m£ = fixed. (2.6)
S
The open string coupling A is fixed; hence the theory on the D-branes remains
interacting. Since g; — 0, the closed string sector decouples, despite the fact
that a low energy limit has not been taken. The resulting theory is an open
string theory without closed strings; it has some things in common with LST
although there are differences as well.

3 A holographically dual description of LST

The construction described in the previous section is useful for establishing
the existence of LST, but it does not provide efficient techniques for study-
ing the theory. To proceed, we will use a holographically dual description
proposed in [18] (see also [19, 20]). This duality is a generalization of the
AdS/CFT correspondence [3]; it postulates that LST is equivalent to ten
dimensional string theory in the background of the fivebranes, in the limit
(2.2). In this section we will describe the fivebrane geometry and will briefly
discuss the duality of [18].

The metric, dilaton and NS B-field around N NS5-branes in type 11
string theory are [4]:

Ndo' . .
ds®* = dz,dz" + (1+ ;1 Ydz'dz',
r
Nd/
= G+, (3.1)
Hijp = —e€ijud'®,
where p =0,1,2,--- ,5 are worldvolume coordinates and %, j,k,l = 6,7,8,9

are transverse ones. We parameterize the space transverse to the branes by
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spherical coordinates,
dzidz’ = dr? 4 r2dQ3. (3.2)

To take the limit (2.2) one must send 7 — 0 at the same rate as gs;. Defining
r = gsexpo we have in this limit

ds® = dz,dz” + N/ (do? + d93),
(3.3)
d® = —o,

and we suppress the B-field (3.1). String propagation in this geometry cor-
responds to an “exact conformal field theory” [4]:

R> x Ry x SU(2) . (3.4)

IR>! is the worldvolume of the fivebranes. IRy is the real line labeled by
¢ = VNdo/o. The dilaton goes like (3.3):

_ Q@ 52
T=5h Q= .

The last factor in (3.4) describes the angular three-sphere in (3.3). The B-
field (3.1) is precisely such that the CFT on the three-sphere, whose radius
is

(3.5)

Rsphere =VNd ’ (36)

is described by a level N WZW model. We see that the number of fivebranes
N determines the slope of the linear dilaton, @, and the level of SU(2) cur-
rent algebra. More precisely, since (3.4) is a background for the superstring,
the worldsheet theory contains, in addition to the bosonic coordinates, ten
free fermions: 9*, u = 0,1,2,--- , 5, the superpartners of z*; ¢, i = 3, +, —,
the superpartners of the SU(2) currents J%; and 9?, the superpartner of ¢.
The total level N of the SU(2) current algebra receives a contribution of
N —2 from the worldsheet bosons, and 2 from the fermions 1%, which trans-
form in the adjoint of the total SU(2) current algebra. The total central
charge of the worldsheet theory (3.4) is

<6+%x6)+(1+%+%>+<3(NN7_2)+3X%>:15, (3.7)
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which is the correct value for the superstring.

The background (3.4) is thus expected to be holographically dual to the
LST on the fivebranes. We next discuss some features of this duality. First
note that while the string coupling (3.5) vanishes far from the fivebranes (i.e.
as ¢ — 00), it diverges as one approaches the branes (¢ — —oo, or r — 0 in
(3.1)). The N S5-branes have the remarkable property that quantum effects
near the branes cannot be turned off no matter how small the string coupling
is far from the branes [4]. This makes it clear that LST is not a free theory”,
as argued above, but it raises the question whether one can analyze the
physics of the string background (3.4), (3.5) perturbatively. We will return
to this question below.

As is familiar from the AdS/CFT correspondence, on-shell observables
in the “bulk” theory — string theory on (3.4) — correspond to off-shell observ-
ables in the “boundary” theory — the LST corresponding to N N S5-branes.
More precisely, off-shell observables in LST correspond to non-normalizable
observables in string theory on (3.4), whose wavefunctions are supported
near the “boundary” at ¢ — oo. This can be understood as follows (in
analogy with the AdS case).

Consider (say) a scalar field ¥ on the manifold (3.4), corresponding to
one of the modes of the string. As ¢ — oo, the field behaves as (assuming
for simplicity a profile constant on the angular S3):

U(p, zH) ~ Z CretvPeiku” (3.8)
k

where
A2 =k k" + C. (3.9)

C is a constant which depends on the mass of the scalar field. Choosing the
positive root of (3.9), we see that the mode (3.8) is non-normalizable and
thus the coefficients C}, do not fluctuate — they are not integrated over in the
process of integrating over all field configurations in the path integral [21].
Thus, we can think of the Cj as fixed sources. The string partition sum
with the fixed boundary conditions (3.8) as ¢ — 00, Zhuk(Ck), can be

“For N > 2 fivebranes. Note that for N = 1, the bosonic SU(2) current algebra has
formally a negative level, N —2 = —1, and the construction breaks down. This is usually
taken to mean that a single fivebrane does not have a throat region (3.4) associated with
it, and the dynamics on it becomes trivial in the limit (2.5).
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interpreted as the generating functional of off-shell Green functions in the
six dimensional LST via:

Zbulk(Ck) = (exp (— ZCkG(k)) )LST ; (310)
k

where ©(k,) is the off-shell observable which couples to the source Ci. Qual-
itatively, (3.10) is natural because modes that are non-normalizable in the
“near-horizon” geometry (3.4) are nothing but bulk modes in the full geom-
etry (3.1); they are supported at finite 7. Thus, they are not part of the LST
but rather are fixed background sources (in the limit (2.2)), which couple to
the brane modes via couplings like (3.10).

Similarly, normalizable modes in the geometry (3.4) correspond to states
in LST, since in the full geometry (3.1) they correspond to modes localized
on the fivebranes (i.e. at r — 0). To illustrate all this, we next give an
example each of off-shell observables and states in LST, as described in the
holographically dual picture.

3.1 Example 1: Chiral operators in LST

As discussed above, the low energy limit of IIB LST is a U(N) gauge theory
with (1,1) supersymmetry. This theory contains four scalar fields in the
adjoint of SU(N), X*, i = 6,7,8,9, which parameterize the locations of the
N fivebranes in (6,7,8,9). The gauge invariant off-shell operators

TrX“X®2... X" n=234,---N, (3.11)

where we only take the completely symmetric and traceless combination in
(41,--+ ,in), are lowest components of short multiplets of supersymmetry.
Writing the SO(4) symmetry in (2.1) as

50(4) jad SU(2)L X SU(2)R , (3.12)
the operators (3.11) transform in the spin (%, %) representations. In string

theory on (3.4) these chiral operators are described as follows. The SU(2)r, x
SU(2)r symmetry on (3.12) corresponds to the left and right moving SU(2)
symmetries in the SU(2)y WZW model in (3.4). Physical primaries of this
symmetry are V., » with the same spin (2j = 0,1,2,--- , N —2) under both
SU(2)’s. (m,m) are the eigenvalues of (J3,.J3).
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The lowest lying observables have the form (in the —1 picture)

Eapb® PPt v (3.13)
where o, 8 = 0,1,2,---9 and {,g is a polarization tensor satisfying the usual
physical state conditions. One can show that (3.11) correspond to®

. . . _ 25
TEX X2 X o (V) e viar®, j+1=7 (3.14)

On the right-hand side of (3.14), 9 stands for the three fermions associated
with the SU(2) WZW and the brackets mean that 1, which has spin 1 under
SU(2)r, is coupled with Vj into a spin j + 1 combination (and similarly for
the right movers). Thus, the non-normalizable operators (3.14) transform
under SU(2);, x SU(2)g as

in exact agreement with what was found for (3.11) above. Applying the
spacetime supercharges gives the other members of the supermultiplets.
Thus, the sets of short representations of supersymmetry in LST and in
string theory on (3.4) agree.

3.2 Example 2: Normalizable states

A large set of normalizable states is obtained by considering vertex operators
of the form

V(g) ~ el F+iN9 (3.16)

on IRy. Recall that the vertex operators are related to the wavefunctions
(3.8) by a factor of gs, which here is a function of ¢ (3.5). Therefore, (3.16)
actually corresponds to a wavefunction

U(g) ~e?, (3.17)

which is (é-function) normalizable, and thus gives rise to states in LST. Since
A is arbitrary, there is in fact a continuum of such states. To compute their
masses, consider the states (3.13) as an example. The mass shell condition
reads:

k. k" —B(B+Q) =0. (3.18)

8We set k, to zero for simplicity.
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Plugging in g = —% + i, we find

1

M? =
No

+ 2. (3.19)

Thus, we find a continuum above the gap ms/ V/N. The gap is given by a
natural scale in LST; looking back at (2.4), we see that it is the 't Hooft
coupling of the low energy super Yang Mills theory (for IIB fivebranes).

3.3 The strong coupling problem

As we have seen before, the background (3.4) has the property that the
string coupling depends on ¢; it goes to zero as ¢ — oo and diverges as
¢ — —oo. In this subsection we would like to discuss the physical origin
of this behavior and its implications. The strong coupling region ¢ — —o0
corresponds to the vicinity of the brane (r — 0). This is the low energy
region in the theory on the branes [19].

The low energy behavior of LST is different for ITA and IIB fivebranes.
In the IIB case, the low energy limit is a six dimensional U(N) gauge theory,
which is weakly coupled in the IR. Thus, in the limit ¢ — —oo of the near-
horizon geometry, which should be dual to the infrared limit on the brane [3],
string theory on (3.4) should reproduce the weakly coupled gauge theory on
the branes. Since one does not expect to find two different weakly coupled
description of the same physics, the “bulk” description should either be
strongly coupled, or exhibit large curvatures (or both). Since in our case the
curvature of (3.4) is small, it is natural to find that the string coupling is
growing in the infrared region.

In the ITA case the infrared limit of LST is somewhat different. As
discussed earlier, one finds in this case a non-trivial superconformal field
theory with chiral (2,0) supersymmetry, the (2,0) theory. Thus, it is not
obvious that one should run into any strong coupling problems in the dual
description.

To see what is going on, recall that type IIA string theory can be thought
of as an eleven dimensional theory, M-theory, compactified on a circle of
radius Ry, which is related to the eleven dimensional Planck scale l11, and
the string scale m, and coupling g, via

msRyy = £3,m3 = g,. (3.20)

The eleven dimensional theory contains membranes and fivebranes (the M2
and Mb5-branes), which preserve half of the supersymmetry; their tensions
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are (up to numerical constants) 1/13; and 1/1%,, respectively. The ITA N S5-
branes are Mj5-branes located at points on the circle. Thus, to study them
using holography we should construct the background around N coincident
M5-branes. Taking the limit (2.2), which corresponds to Ri1,l11 — 0 with
m fixed, one finds the eleven dimensional metric

ds® = H s [dz,da® + H(da?, + dr® + r?dQ3)] (3.21)

where

o0

N,

ne—oo [T2 + (z11 — 27nR11)?]

H= (3.22)

[NI[°H

T11 is a coordinate on the circle; it is periodic with period 27 R11. In the limit
r — 00, the background (3.21) goes over to (3.4). The radius of the z1; circle
goes to zero and one finds the linear dilaton behavior discussed above. As
7,211 — 0 only one term in the sum over n in (3.22) (say n = 0) contributes,
and the metric reduces to the near-horizon background of N coincident M5-
branes in eleven dimensions. This background, AdS7; x S*, is known to be
dual to the (2,0) superconformal field theory via AdS/CFT [3]. If N is large,
it can be studied using eleven dimensional supergravity; otherwise one needs
the full M-theory, which is not understood for these backgrounds.

Thus, we see that the growth of the coupling and associated breakdown
of string perturbation theory as ¢ — —oo in the background (3.4) have
slightly different origins in the ITA and IIB cases. However, regardless of
the origin of this problem, one can ask what is the dual description of LST
good for in view of its existence? We have already seen two examples of
applications of the formalism. Since off-shell observables correspond to non-
normalizable wavefunctions supported in the region ¢ — oo, we can classify
the observables of LST by analyzing such wavefunctions; since the coupling
is small at large ¢, perturbative string theory is suitable for this. Also, any
normalizable states that are supported in the weakly coupled asymptotic
region, like those described in section 3.2, can be studied using the formalism.

Correlation functions of the observables discussed above are in general
difficult to analyze. Since the string coupling goes to zero as ¢ — oo, distur-
bances on the boundary have to propagate to finite ¢ in order to interact.
Thus, to compute correlation functions in LST one needs information about
the strong coupling region. E.g. for ITA fivebranes, one has to understand
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M-theory in the background (3.21), (3.22) which seems difficult®.

There are actually some situations in which the strong coupling prob-
lem can be avoided. In the next section we describe an example of such a
situation, which is in fact of independent interest, the high energy density
thermodynamics of LST.

4 High energy thermodynamics of LST

At very high energy density one expects the thermodynamics of fivebranes to
be dominated by black brane states. Thus, in this section we will analyze the
thermodynamics of near-extremal fivebranes and deduce from it the entropy-
energy relation. We will find that the density of states has the Hagedorn
behavior

p(E) ~ E*efuE [1 +0 (%)] : (4.1)

One of our main purposes is to compute Sy and «. This section is based
on [23]. For some additional recent work on LST thermodynamics, see [24,
25, 26].

4.1 Thermodynamics of near-extremal fivebranes

The supergravity solution for N coincident near-extremal N §5-branes in the
string frame is [27]:

2 No' 2
ds? = — (1 - ;g) dt? + (1 + O‘) ( ar_ +r2dQ§> +dy?,  (42)

r2

). (4.3)

r = g is the location of the horizon, dy2 denotes the flat metric along the
fivebranes, and d)3 is the metric on a unit three-sphere, as before. The
solution also involves a non-zero NS By, field which we suppress. The
configuration (4.2), (4.3) has energy per unit volume

E 1 N
—=——— = +pu), 4.4
Vs (2m)5a (gz a ) 44

®For large N and energies much lower than ms one can use classical eleven dimensional
supergravity to compute correlation functions. See [22] for details.
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where

i

p (4.5)

= P
The first term in (4.4) is the tension of extremal N S5-branes and can be
ignored for the thermodynamic considerations below — it is a ground state
energy. u measures the energy density above extremality (in string units)
and g, is the asymptotic string coupling, which goes to zero in the decoupling
limit.

The near-horizon geometry is obtained by sending rg,g9s — 0, keeping
the energy density p fixed. Changing coordinates to r = rgcosho and Wick
rotating ¢ — it to study the thermodynamics, one finds

ds? = tanh? odt? + No'do? + No/dQ32 + dy?, 4.6
3 5
N
e?® = —. (4.7)
pcosh“c

This background corresponds to the worldsheet CFT

Hi/UQ1) x SU(2)x x R?, (4.8)
where
Hf = SL2,C)n L’;&;}f (4.9)

is the Euclidean AdS3 CFT which plays an important role in the AdS-CFT
correspondence; the coset H3 /U(1), parametrized by (o, t) in (4.6), is a semi-
infinite cigar [28]. The background (4.8) describes the high energy density
thermodynamics of fivebranes; it should be compared to (3.4), which is dual
to the zero temperature theory.

The absence of a conical singularity at the tip (o = 0 in (4.6)) requires
the circumference of the cigar to be

B =21V N (4.10)

Thus, Euclidean time lives on a circle of radius v No/, and the temperature
of the system is Ty = 1/8p. In particular, the temperature is independent
of the energy density u, which determines the value of the string coupling
at the tip of the cigar (4.7).
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The fact that the temperature is independent of the energy means that
the entropy is proportional to the energy (since § = g—g). Therefore, the free

energy is expected to vanish!?,
—BF=8—-pBE=0. (4.11)

In general in string theory the free energy is related to the string partition
sum via

_;Bf = log Z(ﬁ) = Zstringa (4'12)

where Zgiring is the single string partition sum, given by a sum over connected
Riemann surfaces [30]. The string path integral should be performed over
geometries in which Euclidean time is compactified on a circle of radius
R = pB/2m (asymptotically). As mentioned above, for high energies one
expects the thermodynamics to be dominated by the black brane geometry
(4.2), (4.6) and thus the free energy is proportional to the partition sum of
string theory in the background (4.8).
The string partition sum Zgine can be expanded as follows:

Zstring = 6_2¢0Z0 + Z1 + 62{)0 Z2 + .- , (413)

where exp(®g) is the effective string coupling in the geometry (4.6) and Zj,
the genus h partition sum in the background (4.8). Although the string
coupling varies along the cigar (see (4.7)), it is bounded from above by its
value at the tip,

N
e = (4.14)
o
Therefore, it is natural to associate (4.14) with the effective coupling in
(4.13). We see that the string coupling expansion in the background (4.8)
provides an asymptotic expansion of the free energy in powers of 1/u.
The leading term in the free energy (4.12), (4.13) goes like

—BF = %zo (4.15)

and corresponds to a free energy that goes like the energy (Zy is proportional
to the volume of the fivebrane). This term is expected to vanish (see (4.11)),

10Gee [29] for a related discussion in the low energy gravity approximation.



182 D. Kutasov

and therefore we conclude that the spherical partition sum in the background
(4.8) should vanish. The fact that this is indeed the case follows from the
results of [31]; we will not discuss it further here (see [23]).

To compute 1/p corrections to the free energy we have to examine string
loop effects in the background (4.8). We next turn to the one loop correction
Zy (see (4.13)).

4.2 The leading 1/u correction to classical thermodynamics

As discussed above, one expects the entropy-energy relation to take the form
(4.1)

S(E)=pBgE + alog% +0 (%) ) (4.16)

where A is a dimensionful constant (a UV cutoff) which we will not keep
track of below. Consider the canonical partition sum

[e.e]
Z(B) = / dEp(E)e PE. (4.17)
0
Near the Hagedorn temperature one might expect Z(3) to be dominated by

the contributions of high energy states;'! if this is the case, one can replace
p(E) by (4.1) and find,

Z(B) ~ / dEE“ePn=PF ~ (g — g)—o L. (4.18)
The free energy (4.12) is thus given by

BF ~ (a+ 1)log(B — Bu). (4.19)

The energy computed in the canonical ensemble is

O(BF) a+1
E-— ~ ; 4.20
08 =B P (420
thus the free energy (4.19) can be written as
—BF ~(a+1)logE. (4.21)

""We will see that this assumption is valid slightly above the Hagedorn temperature, but
is not valid slightly below it.
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Comparing to the expansion (4.12) — (4.14) we see that the leading term in
the free energy arises from the torus (one loop) diagram in the background
(4.8), since it scales as 0, like Z; in (4.13).

The torus partition sum in the background (4.8) is in fact divergent,
since it is proportional to the infinite volume of the cigar, associated with
the region far from the tip, ¢ — o0o. As is standard in other closely related
contexts, we will regulate this divergence by requiring that

¢ < ¢uvy. (4.22)

In the fivebrane theory, this can be thought of as introducing a UV cutoff.
This makes the partition sum finite, but the bulk of the amplitude still comes
from the region far from the tip of the cigar. For the purpose of computing
this “bulk contribution” one can replace the cigar by a long cylinder with
¢ bounded on one side by the UV cutoff (4.22) and on the other by the
location of the tip of the cigar. Combining (3.5) and (4.14) we find that

1 @
—log— < ¢ < . 4.2
QOgN_¢_¢UV (4.23)
Thus, the length of the cut-off cylinder is
Ly = v — ~log 2 = —Liog B + const (4.24)
= dpy — —log — = —— nst. .

Since we are only interested in the energy dependence, we suppress in (4.24)
a large energy independent contribution. Any contributions to the torus
partition sum from the region near the tip of the cigar can also be lumped
into this constant. Note the minus sign in front of log F in (4.24). The length
Ly is of course positive; the minus sign simply means that Ly decreases as
E grows.

To recapitulate, for the purpose of calculating the bulk contribution to
the torus partition sum, we can replace the background (4.8) by

Ry x S' x SU(2)x x Rs. (4.25)

The linear dilaton direction is regulated as in (4.23). The circumference of
the St is By (4.10).

The background (4.25) is easy to analyze since it is very similar to that
describing flat space at finite temperature (see e.g. [32, 33, 34]). The bosonic
fields on the worldsheet are seven free fields, one of which (Euclidean time) is
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compact, and a level N —2 SU(2) WZW model. The worldsheet fermions are
free and decoupled from the bosons; their partition sum, and in particular
the sum over spin structures, is the same as in the flat space analysis, which
we briefly review next.

Collecting all the contributions to the thermal torus partition sum in the
background (4.25) we find, 2

_ BVl [ 1 \T? 1
Z = 4 /FTz 4201y |77(T)‘10ZN_2(T)X
(4.26)
4 A .
Z ZJHUN(n,m)dyUy(n,m)(79/1(0,7')) (191;(0_,7)> o—Ss(n,m)_
n,meZ p,v=1 7](7') 77(7’)

The modular integral runs over the standard fundamental domain F. Zy_o
is the partition sum of level N —2 SU(2) WZW 13 (see for example [35]),

N-2 N—2
Znoa(r) = ) X2 (@xE2 (@ = D I P @) (4.27)
m=0 m=0

where g = exp(27iT) and

(m+1)2
_ q 4N n m n
(N=2)(g) = P Z[l +m + 2nN)]gn(tHmNn) (4.28)
nq nez

We note for future reference that Zy_o is real and positive.

14, v denote the spin structure for left and right moving worldsheet fermions,
respectively. d§, = (&, —,+,—) are signs coming from the usual GSO pro-
jections for ITA and IIB superstrings at zero temperature; n, m are winding
numbers of Euclidean time around the two non-contractible cycles of the
torus. The soliton factor Sg(n,m) is given by

132

4l 19

Sg(n,m) (m? 4+ n?|7|* — 2rymn). (4.29)

Uu(n,m) are additional signs that are associated with finite temperature.
Their role is to implement the standard thermal boundary conditions, that

12We follow the conventions of [34], which should be consulted for additional details.
We also drop the subscript H on B, and will reinstate it later.

3We choose the A series modular invariant; the D and E series modular invariants can
also be studied and correspond to other vacua of LST [18].
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spacetime bosons (fermions) are (anti-)periodic around the Euclidean time
direction. One can show [34] that this requirement together with modular
invariance leads to:

Ui(nm) = 5 (14 (=14 (<1 + (~1)7)
Unym) = 3 (1= (~1)" 4 (<) 4 (~1)™)
Us(nm) = 3 (1+(=1)" + (=1)" = (=1)"*™) (4.30)
Ustnm) = 5 (1 (~1)" = (<)) 4 (~1)"™)

The terms with g = 1 in (4.26) vanish because of the presence of fermionic
zero modes for the (+, +) spin structure, or equivalently since 91 (0,7) = 0.

The torus partition sum (4.26) can be rewritten in a way that makes it
manifest that the coefficient of SV5L4/4 is positive,

BVsLy / d2r 1 \7? 1
71 = — ZIN_
! i )om \Gan) poEine X

2

4
S 1D Uun,m)s,9;,(0,7)| e Slmm), (4.31)

n,meZ |u=2

It is not difficult to check that the integral (4.31) is convergent at 79 — oo,
the only region where a divergence could occur.

To exhibit the interpretation of (4.31) as a sum over the free energies
of physical string modes one can proceed as follows [30, 32, 33]. Using the
modular invariance of the integrand and the covariance of (n,m), one can
extend the integral from the fundamental domain to the strip

S: -

<7< ;0 T2 > Oa (432)

1
2

N | —

while restricting to configurations with n = 0 in (4.31). This leads to

_BVLy [P 1 NP1
) (s Zv-2(7)

9 \4m2a! Ty T

2
oo

4
> D UL(0,m)6,9,,(0,7)| e Om), (4.33)

m=—00 |u=2
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The integral over 71 projects on physical states (i.e. those with Ly = L),
while 79 plays the role of a Schwinger parameter. Because of the Jacobi
identity 93(0, 7) —95 (0, 7) +93(0,7) = 0, and the fact that Us(0,m) = (—)™,
Us3(0,m) = Uy(0,m) = 1, the sum over m in (4.33) can be restricted to odd
integers. It is not difficult to check in this representation too that the integral
over T, is convergent.

We are now ready to determine the parameter « in (4.16), (4.21). Using
the relation (4.12) between the free energy F and the string partition sum,
as well as (4.21), we see that Z; should be proportional to log E. This is
indeed the case in (4.33) since the length L, goes like —log E (see (4.24)).
Combining these relations we find that

BV [P 1\ 1
ol = 40 Jyn \iwam)  pmm 2
00 4 2
> 1D UL0,m)8,95,(0,7)| e 58Om), (4.34)

m=—00 |u=2

We see that o+ 1 is negative.'* Physically, it is clear that it is counting the
free energy of the perturbative string modes which live in the vicinity of the
black brane. An interesting point which was mentioned in [36, 37] is that «
is an extensive quantity — it is proportional to the volume of the fivebrane
Vs, in contrast, say, to the one particle free energy in critical string theory,
where the analogous quantity is of order one.

The integral (4.34) appears in general to be rather formidable and we
do not know whether it can be performed exactly. In the remainder of this
section we will compute it in the limit N — oo, where the computation
simplifies.

For large N the partition sum corresponding to the three-sphere, Zy_o(7),
simplifies significantly. Indeed, for N > 1 (4.27) can be approximated as

1 > (p+1)?
Zn_o(T) = > gl (p+1)% (4.35)

' 0Of course, since the r.h.s. of (4.34) is proportional to Vs which is assumed to be very
large, we can neglect the +1 on the left-hand side.
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Returning to the evaluation of «, (4.34), we have
12

BVs (1 \? 1 &1
atl = ——(T> / 972 | p(r)
4Q \ 47« 5 T, n(r)
2 2

> Z -t (p+1)% Tty

me2Z+1 p=0

94 + 03 — 94| (0, 7).

(4.36)

At this point it is useful to recall that the inverse temperature £ in (4.36)
is in fact the Hagedorn temperature of LST, (4.10). In the large N limit,
B ~ VN becomes large (or, equivalently, the Hagedorn temperature is
small in string units) and the exponential term in (4.36) suppresses the
amplitude, unless 7 is large as well (of order N). Therefore, the 7 integral
in (4.36) is dominated by the large 7o region, which corresponds to the free
energy of the supergravity modes. To compute the integral we recall the
asymptotic forms of the ¥ and 7 functions at large 7o (see e.g. [38])

92(0, 7) = Z q%("_%y = 2q§(1 +q+...)
n=—oo
0 1 1
930, 7) = > q" = 1422 +...
n=-—00
95(0,7) = Y (~1)"gr" =1-2¢7 +... (4.37)
n—=—oo
1 e 1
n(r) = qu [[0-q") =q%+....
n=1

Plugging in (4.36) and using the definition of the modified Bessel function
12\ [ 2,
K (z) = = (2 / Pl gy, (4.38)
2 z 0

o0

27r2k+1) T/ )
a+1l = 7T6NOA 5/2 z;()( p-l—l ) (p+1)

(V2r(p+1)(2k + 1)) ~ —4.08 - 10~*V5(No')™%/% = —a, V5.
(4.39)

we find

K 1
2
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Note that, as expected, « is negative. Of course, as is clear from (4.36), we
can write a+1 as —a1 V5 with a; a positive constant for all N, but in general
a1 receives contributions from massive string modes and is thus given by a
complicated modular integral. The large N behavior of a; is simpler and is
given by (4.39). It should be emphasized that, as mentioned above, the large
N result (4.39) comes entirely from the thermodynamics of the supergravity
modes in the near-extremal fivebrane background (4.6), (4.7), and thus could
have been obtained by a supergravity calculation.

The fact that o goes like N~%/2 for large N was found in a different way
n [36], by analyzing the deformation of the classical solution (4.6) at one
string loop. The analysis described here determines the coefficient of N~5/2,
and in particular its sign, which is important for the thermodynamics.

In the discussion above, the fivebrane was assumed to be effectively
non-compact. It is interesting to study the thermodynamics of fivebranes
wrapped around compact manifolds, and in particular the dependence of «
on the size and shape of the manifold. As an example of the sort of depen-
dence one can expect, consider compactifying the fivebrane on (S')® where
all five circles have the same radius R. It is sufficient to consider the case
R > v/ since smaller radii give rise to the same physics due to T-duality.

As is standard in string theory, the effect of this is to replace the contri-
bution of the non-compact zero modes on R® by the momentum and winding
sum on (S1)3:

Vs o/ (LypR)? o' (L_pR)?
At Y ) g (m=ar) | (4.40)
l,peEZ

Consider for simplicity the limit N — oo discussed above. As mentioned
after eq. (4.36), since the Hagedorn temperature is very low, the modular
integral is dominated in this case by 7 ~ N. If the radius R is much
larger than v N¢/, the sum over momenta on the r.h.s. of (4.40) can be
approximated by an integral and gives the same contribution as in the non-
compact case (namely the Lh.s. of (4.40)). For R ~ v/Na' one has to
include a few low lying momentum modes — this is a transition region. For
Vo' < R < v/Nao! one can neglect all contributions of momentum (and
winding) modes, just like one is neglecting the contributions of oscillator
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states. Thus, we get in this case

B 1 * dro O _p2er)? (p+1)’n
l=——--—— —=.1024 E 4ralT 2N —
@t 2Q \4r2a' ) Jo T2 = ¢ ’
=

256 (27T(Zk +1)2

~1/2
p+1)2 ) (p+1)2K_1(V2r(p + 1)(2k + 1)) = —3.693.

T
k,p=0
(4.41)

Interestingly, we find that for small fivebranes « is independent of the number
of fivebranes N in the N — oo limit. Note also that in this case it is
important to keep the +1 on the Lh.s. of (4.41), since « is of order one.

To summarize, the power « that appears in the high energy density of
states (4.1) is negative, and exhibits an interesting dependence on the size
of the spatial manifold that the fivebranes are wrapping. For manifolds of
size much larger than the characteristic scale of LST, vV N¢o/, « is propor-
tional to the volume of the manifold, while for sizes much smaller than this
charateristic scale, it saturates at a finite value, which is independent of N
(for large N), (4.41). If the density of states (4.1) is due to strings confined
to the fivebranes, then these strings belong to a new universality class, with
typical configurations not exceeding the size vV N¢/. It would be interesting
to understand this universality class better (see also [36]).

4.3 Comments on the near-Hagedorn thermodynamics of LST

The main result of the previous subsections is that the temperature-energy
relation has the form (4.20), with « given by (4.36) or for large N by (4.39),
(4.41). Since it is negative, the temperature is above the Hagedorn tempera-
ture, and the specific heat is negative. This raises two immediate questions:

(1) What is the thermodynamics for temperatures slightly below the Hage-
dorn temperature?

(2) What is the nature of the instability, reflected by the negative specific
heat, above the Hagedorn temperature?

Consider first the behavior well below the Hagedorn temperature, 5 > Bp.
In this regime, the thermodynamics is expected to reduce to that corre-
sponding to the extreme IR limit of LST, which is the (2,0) six dimensional
SCFT for type ITA LST, or six dimensional (1,1) SYM for IIB. From the
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point of view of the holographic description, this regime corresponds to the
strong coupling region of the near-horizon geometry of the fivebranes, and
thus should not be well described by the perturbative theory on the cigar
(4.6).

What happens as the temperature approaches Ty from below? One
might expect that due to the Hagedorn growth in the density of states (4.1),
the high energy part of the spectrum dominates as 8 — Sp, and the partition
sum becomes better and better approximated by (4.18). What actually
happens depends on the value of «, as we discuss next.

Consider first the case of large V5 (R > v/ N/ in the discussion at the end
of section 4.2). In this case, || is large, and the contribution to the partition
sum of the high energy part of the spectrum, (4.18), goes rapidly to zero as
B — Bmx- The integral over E is dominated by states with moderate energies,
whose contribution to the partition sum is analytic at S8g. It is clear that the
mean energy remains finite as we approach the Hagedorn temperature from
below, and that thermodynamic fluctuations are suppressed (by a factor
of the volume Vj5). Since the Hagedorn temperature is reached at a finite
energy, it corresponds to a phase transition.

As V5 decreases, « decreases as well, until it reaches the value (4.41). The
fluctuations in energy in the canonical ensemble increase with decreasing a.
To see that, consider the case R < v N¢' in the discussion at the end of
section 4.2. Since —5 < a < —4 in that case, the expectation values (E™)
with n > 4 in the canonical ensemble diverge as

(E") ~ (B — Bu)~ " (4.42)

In such situations, one is instructed to pass to the microcanonical ensemble,
in which the energy is fixed and the temperature is defined by

_ Ologp ]
B=—p =Prt+tgpt (4.43)

where on the r.h.s. we included the first two terms in a perturbative expan-
sion in 1/E. The perturbative evaluation of 8 in (4.43) gives a temperature
above the Hagedorn temperature. This of course does not imply that LST
cannot be defined at temperatures below Ty ; instead, it means that to study
the theory at such temperatures one must compute S(E) to all orders in 1/E,
include non-perturbative corrections, and solve the equation (4.43) to find
the energy E corresponding to a particular 8 > fg. From the form of the
leading terms in S(F) it is clear that the solution of this equation will cor-
respond to finite £. We are led again to the conclusion that the Hagedorn
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temperature is reached at a finite energy and thus is associated with a phase
transition.

Since the study of the non-extremal fivebrane geometry in the previ-
ous sections is perturbative in 1/F, it is not useful for studying the regime
B8 > Bm. Nevertheless, it seems clear that the specific heat is positive there
(this is certainly the case for the infrared theory on the fivebranes). Fur-
thermore, since the energy — temperature relation is such that the Hagedorn
temperature is reached at a finite energy, we are led to the second ques-
tion raised in the beginning of this section: what is the nature of the high
temperature phase of LST?

The perturbative analysis of the near-extremal fivebrane, which is valid
for 3 slightly below B, predicts that the thermodynamics is unstable. Usu-
ally, in such situations the instability is associated with a negative mode in
the Euclidean path integral (a tachyon). Examples include the instability
of flat space at finite temperature in Einstein gravity [39], and the thermal
tachyon that appears above the Hagedorn transition in critical string the-
ory. The one loop instability found above leads one to believe that a similar
negative mode should appear in LST above the Hagedorn temperature.

In [23] it was shown that there is a natural candidate for this, a mode
that lives near the tip of the cigar and is classically massless. It is likely that
one loop corrections give a tachyonic correction to the mass of this state
above the Hagedorn temperature, but this has not been proven and we will
not discuss the detailed properties of this state here.

5 Weakly coupled LST

In the previous section we saw that the high energy thermodynamics of LST
can be analyzed reliably using the holographically dual description, since at
large energy density the strongly coupled region on IRy is eliminated, and
the coupling never exceeds (4.14), a value that can be made arbitrarily small
by increasing the energy density. In this section we will describe another
situation where something similar happens at zero temperature, by studying
the theory away from the origin of its moduli space of vacua. This section
is based on [40].

Recall that the theory of N fivebranes contains four massless scalars in
the adjoint of U(N), X', i = 6,7,8,9, parameterizing motions in (6,7,8,9).
ITA fivebranes have one more scalar X!, which is compact, but we will not
discuss it here. The moduli space of vacua of LST is R*" /Sy for IIB and
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(R* x §')N /Sy for IIA. The origin corresponds to coincident fivebranes;
other points are labeled by relative separations of the fivebranes.
The four scalars X can be parametrized by two complex N x N matrices,

A =X8 44X,

(5.1)
B =X%+4iX".
Consider a point on the moduli space where
(4) = 0,
- (5.2)
s i 2mi(N -1
<B> = Todiag(l,e%,e4N,---,e N )

This corresponds to fivebranes symmetrically distributed around a circle of
radius ro in the (6,7) plane. The gauge invariant characterization of this
vacuum is

(Tr BNy =+ (5.3)

with all other v.e.v.’s of the operators (3.11) set to zero. Since for a single
fivebrane the worldvolume dynamics is trivial, in order to get a non-trivial
result in the limit (2.2), we have to tune 7o — 0 as we take the limit. E.g.,
in the IIB case the masses of D-strings stretched between N S5-branes

’f‘omg

gs

My ~

(5.4)

must be kept finite in the limit. This leads one to consider the double scaling
limit
gs = 0; roms — 0 (5.5)

with My /m (5.4) held fixed.
Distributing the branes on a circle as in (5.2) breaks the SO(4) R-
symmetry

SO(4) = SO(2) x Zy . (5.6)

We will next show that is also eliminates the strong coupling singularity at
¢ — —oo discussed above.
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The first thing we have to understand is how to describe the vacuum
(5.3) in the holographically dual theory. In section 3.1 we found the vertex
operators corresponding to the gauge invariant operators (3.11). It is not
difficult to see that

N
2

(

T BN & ¢+¢+V%_1;§_1,%_16XP [ — 1)(;5] : (5.7)

2
VN
Adding the vertex operator (5.7) to the worldsheet action is equivalent, via
the prescription (3.10), to adding the operator Tr BY to the action of LST.
In order to turn on a v.e.v. of Tr BY instead, as in (5.3), we have to use the
same vertex operator but replace the charge 8 in (3.13) by

f——-Q—5 (5.8)

Thus, to describe the vacuum (5.3) we must study the worldsheet Lagrangian

_ _ _. /N
L= Lo+ MGGtV w v e V¥ fee. (59)

2

where we explicitly wrote the worldsheet supercharges which are needed to
turn a (—1,—1) picture vertex operator to a (0,0) picture one (the appro-
priate picture for a term in the worldsheet Lagrangian). A is a coupling
related to rg. Lo is the free Lagrangian describing string propagation on
(3.4). Since the coupling A\ breaks explicitly the SU(2); x SU(2)r symme-
try, it is convenient to analyze its effect by rewriting the background (3.4)
as

SU(2)

R>! x R Stx —=)/z 5.10
<o (8 ) 12 (10
where SU(2)/U(1) is an N = 2 minimal model, and S* a circle of radius
vV Nd!'. Denoting the coordinate along the circle by Y, one can show that
the interaction in (5.9) can be written as

SL=XG_1G_se @) e (5.11)

This interaction is familiar in CFT as the N = 2 Liouville interaction. Thus,
we find that to describe the vacuum (5.3), we must replace the infinite cylin-
der Ry x S* in (5.10) by the N = 2 Liouville model. Note that:

(1) The fact that the interaction (5.9), (5.11) preserves N = 2 supercon-
formal invariance is related to the fact that spacetime supersymmetry
remains unbroken along the moduli space of LST.
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(2) The interaction (5.11) grows as ¢ — —oo. One can show that it resolves
the strong coupling singularity discussed in section 3. We will see this
directly momentarily.

To study N = 2 Liouville theory, it is convenient to use a dual description
of this background. It was argued in [40] that N = 2 Liouville is equivalent
via strong-weak coupling duality on the worldsheet to CFT on the cigar,
H3 /U(1), which was discussed in section 2. The parameter N which enters
the definition of N = 2 Liouville (5.11) via @ is mapped under the duality
to the level of the underlying SL(2) current algebra.

I will not describe the duality or the evidence for it here'®, but rather
will use it to conclude that the vacuum (5.2), (5.3) is dual to

1. (SL(2) SU(2)
R5! x ( o) X o) )/ZN. (5.12)

Note that the unbroken R-symmetry SO(2) x Zy of the vacuum (5.3) is
manifest in the description (5.12). The SO(2) symmetry corresponding to
rotations in the (8,9) plane is realized as the U(1) translation symmetry
around the cigar. The rotation symmetry in the (6,7) plane, which is broken
to Zy by the v.e.v. of B, corresponds to winding number around the cigar.
This quantum number is not conserved, since winding can slip off the tip of
the cigar. The Zy orbifold in (5.12) leads to a Zy remnant of it (since it

allows fractional windings € Z/N).

The radius of the circle on which the fivebranes lie, ry in (5.2), is related
to the value of the string coupling at the tip of the cigar, gcigar. The pre-
cise relation can be determined by noting that D-branes stretched between
fivebranes, whose mass is given by (5.4), correspond in (5.12) to D-branes
at the tip of the cigar, whose mass is m;/gcigar- This implies that

mg
Gcigar = Mo
w

(5.13)

Thus, the theory is weakly coupled when My >> mg; as My decreases,
we recover the original strongly coupled theory described holographically
by (3.4). As mentioned above, the behavior (5.13) is very reasonable: as
My /mgs — oo the fivebranes become infinitely separated and decouple (re-
call that the dynamics on a single fivebrane is trivial).

The weakly coupled nature of the theory (5.12) for My >> m; allows
one to determine the spectrum in a wide range of energies 0 < F << My,

15Gee [41, 42] for more detailed discussions.
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and to compute various off-shell correlation functions of the observables dis-
cussed in section 3. Interactions can be turned on gradually by increasing
eigar (5.13). For energies E > My one expects the weak coupling expan-
sion to break down. Physically, the reason for that is that in this regime
the symmetry breaking in (5.2) can be neglected, and the physics is that of
coincident fivebranes. All this is very similar to critical string theory, where
the string coupling expansion is associated with a large hierarchy of energy
scales, mg/my. For E ~ m, the string coupling expansion breaks down.

Two and three point functions as well as the spectrum of weakly coupled
LST were analyzed in [40]. We next illustrate the resulting structure by
discussing an example.

Consider the operator Tr BV (z). The dual vertex operator (5.7) can be
written in terms of the background (5.12) as

Tr BN (z) ¢ e~ 2em2" V0 (5.14)

with m = N/2. ¢, ¢ are the standard bosonized superconformal ghosts
needed for the —1 picture, Vj,, 7 is a Virasoro primary on the cigar carrying
p units of momentum and w units of winding, with

m= %(p-l—wN) ; mo= —%(p—wN) . (5.15)

In the case (5.14), p = 0 while w = 1 (i.e. m = m = N/2). The worldsheet
scaling dimension of Vj.p, , is

2 . .
x_m —j(+1)
A=A= 5.16
K (5.16)
Requiring that (5.14) be physical gives rise to the mass-shell condition
4
ok k* = N(J —m+1)(j +m). (5.17)

To compute the two point function of Tr BV (k,) we use the correspondence
(3.10):
(Tr BN (k) Tr BY (<ky)) = (€79 Pebnm™ Ve Pe b vy,
(5.18)
The only non-trivial part of the correlator on the r.h.s. is (VV). It was
computed in [43]:
I(1-2ET(-2j — DI(j —m+ 1)I(1 + j +m)
DT (2] + 20 (=j —m)D(m—5)
(5.19)

<Vj;m,fnvj;*mﬁm) = N[V(N)]2j+1
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where

1T+ )
v(N) = ;1“(17—%) i (5.20)

The two point function (5.19) has a series of poles; these can be interpreted
as contributions of on-shell states in weakly coupled LST, which are created
from the vacuum by the operator (5.14). The masses of these states can be
computed by using the relation (5.17) between j and M? = —k,k*. The
locations of the poles are given by

m|=j+n; n=12,3,--- (5.21)

These values of m and j belong to the principal discrete series representations
of SL(2). The corresponding states can be thought of as bound states that
live near the tip of the cigar [44]. Such bound states are to be expected since
winding modes around the cigar feel an effective attractive potential towards
the tip — their energy decreases as they approach the tip and shrink.

For the particular case (5.14), m = m = N/2, and the masses of these
states are given by

CM2=2(n—1)(N—n),
(5.22)
N+1>2n>1.

The second line in (5.22) comes from a unitarity constraint on j which must
be imposed, —1/2 < j < (N — 1)/2. Note that all the masses squared in
(5.22) are non-negative; For n = 1 one finds massless states, which corre-
spond to the eigenvalues of the scalar matrix B.

A few comments are in order here:

(1) By analyzing the behavior of the two point function (5.18), (5.19) one
can check that the residues of the poles corresponding to the states
(5.22) are positive, in agreement with the unitarity of the theory.

(2) In addition to the discrete spectrum given by (5.22), one also has the
continuum discussed in section 3 (3.19). One can show that the con-
tinuum starts right above the heaviest state (5.22). Thus the spectrum
of states that can be created from the vacuum by the operator (5.14) is
a finite discrete set, followed by a continuum (similar to the spectrum
of bound states and scattering states in quantum mechanics).
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It is interesting that the low lying spectrum of states associated with
N N S5-branes is independent of My, or equivalently the radius of the
circle on which the fivebranes are placed. This should be contrasted
with D-branes, for which masses of open strings stretched between dif-
ferent branes depend on the separation. When the distance between D-
branes goes to infinity, states associated with strings stretched between
different branes go to infinite mass and decouple. For N §5-branes, the
masses of low lying states remain finite, and the decoupling is due to
the vanishing of the effective coupling (5.13).

In addition to the poles (5.21), which corespond to principal discrete
series states near the tip of the cigar, the amplitude (5.19) has poles at
0<254+41€7Z,0<2j+4+1€ NZ. These poles have a different inter-
pretation than (5.21). They are associated with “bulk scattering pro-
cesses” which can occur anywhere in the infinite throat corresponding
to either the N = 2 Liouville (5.11), or SL(2)/U(1) (5.12) description.
This is discussed further in [42].

One can repeat the above discussion for other observables as well. The
resulting picture is similar; one always finds a finite set of discrete
states which live near the tip of the cigar, followed by a continuum of
states which propagate in the semi-infinite throat [40].

Since there is a Hagedorn growth in the number of observables (coming
from oscillator states on (5.12)), one finds a Hagedorn density of states
in LST. But the exponent By (4.1) does not grow like v/N as expected
from (4.10). Instead one gets By ~ 1/m,. This is not particularly
surprising since (4.10) is the expected behavior for high energies E >>
My, whereas the present analysis is only valid in the intermediate
regime my << F << Myy.

Three point functions of the off-shell observables discussed above can
be computed as well using the results of [43]. One finds a similar
analytic structure to that exhibited by the two point functions. There
are poles associated with external legs going on-shell; their locations
correspond again to the spectrum (5.22). The residues of these poles
describe the scattering amplitudes of the physical states; they seem to
have sensible physical properties. See [40] for details.
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6 Other aspects of LST

In this section we would like to briefly list some additional topics in Little
String Theory, which were not covered in detail in the lectures due to lack
of time.

6.1 Singular Calabi-Yau manifolds and lower dimensional vacua
of LST

The theory of N N S5-branes discussed in sections 2 — 5 is related to string
dynamics on an ALE space €?/Zy, which can be described as the manifold

AN rA+A=p (6.1)

in C3. For u = 0, (6.1) corresponds to a cone; non-zero u smoothes out the
tip of the cone. String propagation on R>! x C%/Zy is dual [45, 46] to a
vacuum with coincident fivebranes. The blowing up parameter y is related
by duality to the distance between the fivebranes. From the perspective of
the geometry (6.1), LST describes the dynamics of the modes localized at
the singularity, which can be decoupled from the rest of the theory.

This picture can be naturally generalized to a large class of vacua of LST
in d < 6 dimensions [47]. Consider, for example, string propagation on

R3>! x M, (6.2)

where M is a Calabi-Yau manifold with an isolated singularity, which looks
locally like

F(21,22,23,Z4) =0. (63)
Here F' is a quasi-homogeneous polynomial,
F(Xrl 21, )\T2z2, )\r323, )\T4Z4) = AF(Zl, 292423, 24) (64)

for some set of charges r1,72,73,74. Viewed as a hypersurface in C*, (6.3)
describes the vicinity of the singular point 21 = 29 = 23 = 24 = 0.

In analogy to the six dimensional situation (6.1), string theory in the
background (6.3) is expected to contain modes localized near the singularity;
these modes can be decoupled from the bulk in the same way as in the six
dimensional case.
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The decoupled dynamics at the singularity (6.3) is holographically dual
to string theory in the background

R*>! x Ry x (S* x LG(F)) /T, (6.5)

where LG(F) is a Landau-Ginsburg model with the superpotential given
by the quasi-homogeneous polynomial F'(z1,--- , z4) defining the singularity
(6.3). T is a discrete group whose origin is the chiral GSO projection in
the vacuum (6.5). As before, Ry is a linear dilaton direction, with the
slope ) determined such that the total central charge of (6.5) is fifteen,
as appropriate for a critical superstring vacuum. One can show that this
implies that

1 4
§Q2 = Z’l"a —1. (66)
a=1

Vacua of the form (6.5) preserve eight supercharges and give rise to N = 2
supersymmetric theories in four dimensions.
A simple example is

F=24+24+284+2, (6.7)
which corresponds to the conifold. In this case, (6.5) reduces to
R* x Ry x St (6.8)

which is the background holographically dual to string theory on the conifold.
Smoothing out the singularity as in (6.1) corresponds to replacing the factor
R, x S' in (6.8) by the cigar SL(2)/U(1) (or equivalently N = 2 Liouville).
In the same way that the ALE space (6.1) is dual to parallel fivebranes,
the background (6.7), (6.8) arises from two orthogonal N S5-branes inter-
secting along 3 + 1 dimensional Minkowski spacetime.
More generally, if

F(z1,-+ ,z1) = H(z1,20) + 23 + 73 (6.9)

the background (6.3) can be thought of as arising from an N S5-brane wrapped
around the surface H(z1,22) = 0 [48]. An interesting class of examples cor-
responds to H(z1,22) describing an ADE singularity (e.g. H = 2} + 23 for
Ap—_1), in which case the fivebrane wraps a Seiberg-Witten curve at the cor-
responding Argyres-Douglas point. For type 1IA fivebranes, at low energies
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the system approaches an interacting four dimensional N = 2 SCFT. In the
description (6.5), this SCFT corresponds to the strong coupling region in
the background (6.5), where the theory is eleven dimensional, and is diffi-
cult to study in detail (beyond the supergravity approximation). In [47] it
was shown that certain properties of chiral operators which can be studied
at weak coupling (such as the R-charges), agree with known results.

The construction described in this subsection can be generalized to other
dimensions and more complicated models in four dimensions. For some
work in this direction, see [49, 50, 51, 52, 53, 54]. Other vacua of LST
in six dimensions with less than maximal supersymmetry were discussed in

[55, 56, 57].

6.2 D-branes in the vicinity of NS5-branes

D-branes stretched between N S5-branes in the weak coupling limit g; — 0
have been seen in recent years to be very useful for studying the dynamics of
a wide class of gauge theories, which are realized as the low energy theories on
such branes [2]. In particular, D4-branes stretched between parallel adjacent
fivebranes realize N = 2 SYM and are very useful for embedding Seiberg-
Witten theory in string theory [58]. D4-branes stretched between orthogonal
fivebranes which share 3 + 1 dimensions, give rise to N = 1 SYM and are
very useful for studying Seiberg duality in string theory [59].

We have seen above that nearby fivebranes can be described by throat
geometries which involve the cigar SL(2)/U(1). Adjacent parallel fivebranes
are described by (5.12), while orthogonal fivebranes intersecting on 3 + 1
dimensional Minkowski spacetime correspond to R>' x SL(2)/U(1). D-
branes stretched between the fivebranes correspond in this description to D-
branes localized on the cigar and extended in some or all of the non-compact
directions. For example, a D4-brane stretched between parallel fivebranes
corresponds in the geometry (5.12) to a D3-brane in IR%!, which is localized
on the cigar, and is in one of the familiar boundary states in the N = 2
minimal model SU(2)/U(1). One can show that different boundary states
in the minimal model correspond to D-branes stretched between different
pairs of V.S5-branes.

Thus, one is led to study D-branes localized on the cigar. It is clear
that such D-branes will live near the tip of the cigar, since this is where the
string coupling is largest, and thus the energy of the D-branes is smallest.
The physics of D-branes living near the tip of the cigar is at present not
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completely understood, but progress has been made on two closely related
problems. In [60], D-branes in Liouville theory have been constructed which
can be thought of as being localized in the Liouville direction. It was found
that such D-branes are labeled by two integers, and exhibit very interesting
properties, such as having a finite number of Virasoro primaries in the open
string sector. This construction was generalized in [61] to Euclidean AdSs,
where similar D-branes were found.

Both Liouville theory and AdSs are known to share many properties with
the cigar and N = 2 Liouville CF'T’s. Thus, it is reasonable to expect that
localized D-branes exist on the cigar and N = 2 Liouville backgrounds as
well. It would be interesting to construct them and use their properties to
study gauge dynamics.

Another class of objects that figures in many brane constructions is D-
branes ending on N S5-branes. In some cases such branes can be studied
by analyzing them in the throat region of the fivebranes. For example,
consider a D-brane that ends on a stack of N fivebranes. Assuming that
the brane extends into the throat of the fivebranes,' one can study the
behavior of the brane inside the throat region described by (5.10), or for
separated fivebranes by (5.12). This analysis was carried out in [62], where
many properties of such D-branes that were previously deduced by using
spacetime considerations, were verified by using the technology of LST.

6.3 Low dimensional toy models of LST

From the modern perspective, the matrix model description of two dimen-
sional string theory (see e.g. [63]) for a review) provides an early example of
holography in string theory. Since the “bulk” theory involves in this case a
linear dilaton direction, the situation looks like a low dimensional toy model
of LST.

Unlike LST, which is difficult to formulate directly (except for the DLCQ
construction of [7]), here there is an alternative definition of the theory, which
is moreover exactly solvable to all orders in the string coupling expansion (or
equivalently, the 1/N expansion in the matrix model). This is especially in-
teresting since, like LST, two dimensional string theory is expected to exhibit
a Hagedorn growth in the density of states, as in (4.1), with the parameters

16This is a non-trivial assumption; it is believed that in some cases D-branes that end
on fivebranes do not extend into the throat. The simplest example is D-branes ending on
a single fivebrane, which does not have a throat region.



202 D. Kutasov

Br and « known from thermodynamic considerations [64]. Therefore, two
dimensional string theory is an interesting toy model of the dynamics of LST
in higher dimensions.

In [64], the matrix model description was used to study some properties
of the Euclidean black hole solution of two dimensional string theory. In
particular, some steps were taken towards developing a description of the
states that give rise to the Hagedorn entropy (4.1) directly in the matrix
model.

7 Some open problems in LST

While a lot has been achieved, many interesting questions regarding Little
String Theory await resolution. Some examples of open problems are:

(1) We have seen in section 4 that LST has at high energies a Hagedorn
spectrum of states (4.1). This was established by a thermodynamic
analysis; it would be very interesting to exhibit the density of state
(4.1) by an explicit counting of states. In the background (3.4) corre-
sponding to coincident fivebranes (and the lower dimensional analogs
(6.5)), this is complicated by the fact that string theory in the linear
dilaton background is not weakly coupled. The weakly coupled theory
described in section 5 does have a Hagedorn spectrum of perturbative
states, but the Hagedorn coefficient Sg is smaller than that of the full
theory (4.10). As explained in section 5, this is not surprising — most
of the states contributing to (4.1) are expected to be non-perturbative.
As a first step to counting non-perturbative states in the background
(5.12), it would be interesting to enumerate states corresponding to
collections of D-branes living near the tip of the cigar, which were
briefly discussed in section 6.

(2) It would be interesting to understand the dynamics of D-branes stretch-
ed between NN S5-branes, which correspond to D-branes localized near
the tip of the cigar in the dual geometry (5.12). This might be useful
for application to gauge dynamics, as well as for providing a direct
formulation of LST, independent of holography.

(3) Most of the work on LST concerned spacetime supersymmetric vacua.
In the absence of spacetime SUSY one expects to find infrared insta-
bilities such as tachyons, and the system might decay to a more stable
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vacuum. It would be interesting to understand the physics associated
with supersymmetry breaking and vacuum instabilities in LST. First
steps in that direction were recently taken in [65].
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1 Introduction

Dirichlet branes play many important roles in the modern discussion of su-
perstring compactification and duality. They provide a very general way to
embed gauge theories into string theory, which has led to remarkable phys-
ical conjectures such as M(atrix) theory and AdS/CFT. They have also led
to remarkably detailed connections between physics and mathematics, such
as a rederivation of the ADHM construction of instantons.

In these lectures, we will give some introduction to the problem of finding
BPS D-branes in weakly coupled type II string compactification on Calabi-
Yau manifolds. This problem is prototypical for the case of N' = 1 supersym-
metry in four dimensions, and as such has received a lot of study, especially
in the special case of non-compact Calabi-Yaus such as resolved orbifolds.
Almost all of the ideas apply to compact Calabi-Yaus as well, and although
these examples are not as well understood at present, no fundamental barrier
has been found to progress in this direction, and this could lead to a much
more complete understanding of N’ = 1 compactification than we now have.
This is the general direction our lectures will head in (though we won’t get
very far).

Rather than start from geometry of Calabi-Yau, we start from general
principles which apply to all D-brane problems, then specialize to the case of
N = 1 supersymmetry on the world-volume, and finally to special features
of the Calabi-Yau case.

As with most discussions of string compactification, unless one restricts
attention to very special regions in moduli space where the underlying con-
formal field theory is exactly solvable, which we do not want to do, making
a proper discussion involves a good deal of mathematics which is unfamiliar
to most physicists. In these lectures, we will discuss a bit of the theory of
holomorphic bundles — since the gauge fields on B-type BPS branes live in
such bundles, this is obviously relevant — and that of coherent sheaves, a
generalization which describes singular limits of bundles.

We will not start with this however, but rather with the mathematics
which underlies quiver theories, namely homological algebra and category
theory. This is even less familiar, but turns out to be very well motivated in
these problems. Let us start out by giving the basic dictionary, to explain
why this is.

A category is defined mathematically as a set of objects, and for each pair
of objects A and B a set of morphisms from A to B. There is a multiplication
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law: given a morphism from A to B and one from B to C, the product is a
morphism from A to C.

This data satisfies certain axioms, which are exactly the general proper-
ties we want for each open string boundary condition to be an object, and
each morphism to be an open string. The multiplication law is just the
operator product expansion between open string vertex operators.

There is much more structure in the physical problem than the open
string spectrum of course. One needs to distinguish “matter” and “gauge”
vertex operators; one needs to interpret the superpotential and D-flatness
conditions; and so on. It turns out that essentially all of the structure of the
low energy world-volume theory has known mathematical counterparts. We
will explain some of this as we go along.

What saves us from having to do this completely abstractly is that all
of this structure is already visible in quiver gauge theories. Indeed, the
mathematical notion of “quiver” was defined as a particularly simple source
of algebras and categories, long before any physical applications emerged.
Physically, these theories contain the minimal structure required to discuss
the following problem: one takes a basic finite set of “generating objects”
and all morphisms between these, and tries to form all the BPS branes as
bound states.

This project leads to many further questions. How many branes do we
need, and how do we find such a set? Suppose we start with a brane defined
using a different construction: can we find some canonical way to decompose
this brane into these fundamental constituents? Are there natural symme-
tries of the spectrum which map between different generating sets? As we
discuss, paths in Calabi-Yau moduli space are associated with monodromies
which should produce such symmetries. Of course we also need to discuss
marginal stability and the variation of the spectrum in this context. Finally,
is this a useful way to consider the problem? Can we compute the spectrum,
moduli spaces and so forth this way?

Although we will not have time to go into it deeply, there is a a powerful
underlying concept which simplifies all of this further discussion, the derived
category. In physical terms, this is a structure derived from the original
category of boundary conditions, which describes arbitrary bound states of
branes and antibranes, and keeps track of everything which does not depend
on the precise identification of which are branes and which are antibranes.

The derived category enters at many points in the discussion. For exam-
ple, it turns out that for string size Calabi-Yau, not all branes are bundles
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or coherent sheaves; some are more general bound states of branes and an-
tibranes which correspond to “non-classical” objects in the derived category.
As a second example, the relationship between quiver theories describing dif-
ferent sets of generating branes can be understood in terms of “Fourier-Mukai
transformations,” which can be simply formulated as acting on the derived
category, and which reduce for concrete quiver theories to “Seiberg duali-
ties” between these theories. Although we will not be able to get into details
of this (many of which are presently under investigation), the concepts we
discuss should serve as a good introduction to these directions.

2 Topological considerations

D-branes carry Ramond-Ramond charge and this is the most obvious topo-
logical classification we can make. If we consider a brane B wrapping an
arbitrary cycle X in the internal space M, and which looks like a D-particle
in 3 + 1 dimensions, it will carry electric and magnetic charges under the
3+1U(1)" gauge group of the bulk theory. Although the considerations we
discuss now are more general, let us assume M is a CY3. Then, if we start
with Ila theory, we will have r = by 1 + 1 coming from odd rank potentials,
while if we start with IIb it will have 7 = b1 + 1.

A simpler topological invariant which can be derived from these charges
is the “intersection form,” whose simplest physical definition is as the integer
appearing in the Dirac-Schwinger-Zwanziger charge quantization condition

(B1,B2) = €1 -mg —ez-mq (1)

in an appropriate basis. In the case of 3-branes, this is entirely geometric and
counts the signed intersection number of the two cycles 331 and 3. Poincaré
duality then tells us that there exists a basis for H3(M,Z) which makes this
form unimodular (determinant 1). More generally it would pair H,(M,Z)
with H,,_,(M,Z) to produce a unimodular form; this is sometimes referred
to as a “perfect pairing.”

For 2p-branes, computing the intersection form in this definition requires
using the general formula for RR charges of branes carrying gauge fields,

/C ATrel A y/A(M).

The DSZ term then becomes
(B1, By) = / Tref Tre P2 A(M). 2)
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This is exactly the index of the Dirac operator I) for bifundamental fermions
coupled to the gauge field —4; ® 1 + 1 ® As. This is no coincidence but can
be derived from stringy considerations. The basic point is that (Bj, Bs) can
be computed from a string annulus diagram with all boundary conditions
taken to be Ramond, leading in the closed string channel to the part of the
RR closed string exchange proportional to the Levi-Civita symbol €, and in
the open string channel to the index

(B1,By) = Trp, p,(—-1)"

which of course is equal to (2).

Thus, the intersection form also counts the massless fermion content of
the combined world-volume theory of the B; and By branes. Let the number
of fermions with charges (—1,41) under the U(1) gauge groups of the two
branes and four dimensional left and right chiralities be n;, and ng, then
ng, —ngr = (B1, By). We could also write all the fermions as left chirality of
course by complex conjugating the right chirality.

This quantity is also the natural definition of intersection form in K
theory. We will not talk specifically about K theory very much as it will
be subsumed in the derived category framework we will develop later. The
simplest argument for the relevance of K theory to topological classification
of branes however is short and well worth keeping in mind. It is simply that
a brane B should be identified topologically with anything one can get by
adding another brane X, its antibrane X, and performing any continuous
variations on this configuration. This can be expressed mathematically by
a simple construction: let a class in the K theory of “branes” be a pair
of branes (E, F) subject to the relation (E,F) = (E @ X,F & X) for all
X. This uses very little structure of the branes and indeed the objects
under discussion could be almost anything to make this definition; we just
need to know how to take direct sums such as E @& X and decide when two
direct sums produce the same object. Now we know many branes in the
large volume limit, namely those which wrap the entire space M and carry
arbitrary vector bundles on M, and it is plausible that these already carry
all the topological charges, leading to the classification by K theory of vector
bundles.

At this writing, it has not really been proven that this is the right clas-
sification. The issue is the torsion part, classes [X| which satisfy n[X] = 0
for some finite n. The rest of the K theory agrees with cohomology and
thus the RR charge considerations we started with, but one might imagine
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that the true answer in some string theory example might not distinguish
these torsion classes, or might make more distinctions, presumably associ-
ated with singularities which would not be governed by the large volume
Yang-Mills equations. Nevertheless the classification by K theory of vector
bundles works in all examples studied to date and seems to fit well with our
general understanding of string theory.

To get a simple example with torsion, consider a Calabi-Yau M with
m1(M) = G some finite group. One might well expect that a string wound
around a nontrivial element of 7 (M) would be topologically stable, and
use this to construct new topological classes of D1-branes. It can be shown
that H2(M,Z) = H{(M,Z) = G/|G,G] the abelianization of G and that
this appears in K°(M), so if G is abelian this works. (The story if G is not
abelian is less clear).

Any such M can be obtained as a quotient of a simply connected M by
a free action of a symmetry group G, so this particular type of torsion can
probably be understood by close study of the theory of branes on M. We
refer to [6, 7] for examples of this. It is not known whether other types of
torsion which cannot be understood this way exist in K (M) for M Calabi-
Yau; of course other K groups appropriate to type I theories, orientifolding,
H fields and so on will generally have other types of torsion.

We move on however and assume that M is a simply connected CY3, in
which case one can prove that K*(M) = H*(M,Z), and all of the topological
information is summarized in the intersection form. All of our considerations
would still hold in the presence of torsion, we would just have further con-
served quantum numbers which we would not be making explicit.

2.1 Noncompact manifolds

We need to generalize the previous discussion to handle noncompact mani-
folds such as the local orbifolds we will discuss below. Although all of the
same definitions of intersection form can be used, Poincaré duality takes
a different form: it relates the homology H,(M,Z) to the homology with
compact support H,_,(M,Z), and provides a perfect pairing between these.

We will use this below, but we still would like a way to decide whether
we have a complete basis for the charge lattice. We will be most interested
in BPS branes of finite energy which wrap cycles of compact support, so we
want a pairing purely in this sector.

We will do this below by using the pairing provided by the index (2)
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on the compact manifold of interest. This is also an intersection form in
a mathematical sense but it should be distinguished from (1) as it is not
symmetric or antisymmetric. Physically, we are dropping certain degrees
of freedom (fermions partner to normal deformations of the brane) in this
definition. However it still serves our purpose as if this pairing is unimodular,
one has a complete basis for the K theory of the compact space. It will
also turn out that this index will provide much more information about the
fermion spectrum than we would get if we restricted attention to (1).

3 Constraints on brane world-volume theories

A good way to study the dynamics of a collection of branes is to derive their
effective world-volume theory, which includes only modes which are visible
at the energy scales of interest. For analyzing the vacuum structure this
means only modes which can become massless somewhere on the moduli
space.

We restrict attention in these lectures to weakly coupled type II theory,
i.e. we define our effective Lagrangians using only sphere and disk world-
sheets, and treat the resulting world-volume theories as classical, solving
equations of motion to find vacua.

For D-branes, we can think of this world-volume theory as derived by
starting with a complete open string field theory, and then keeping only
the potentially massless modes. We could of course define it using world-
sheet conformal field theory instead, and we would only be keeping boundary
couplings which can become relevant or marginal.

There are some obvious constraints which are already visible at this level.
First, the world-volume theory has only a trivial dependence on the number
of dimensions in which the brane extends in the flat Minkowski dimensions.
If we derive it for branes filling these dimensions, the lower dimensional
cases can be defined by trivial Kaluza-Klein reduction, taking fields to be
constant in the dimensions we reduce. Components of the vector potential
will become coordinates in these dimensions.

The generating branes will each have gauge group at least U(1) and it is
natural to restrict attention to those with gauge group U (1), because a world-
volume theory with a larger unbroken gauge symmetry (in weakly coupled
type II theory it must be U(NN)) does not really describe a single brane. If we
consider D-particles, such a theory will have moduli which enable us to split
the brane into NV constituents at different positions in Minkowski space, and
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it is better to consider these as generating branes instead. Thus we define
a simple configuration of a gauge theory to be one which breaks the gauge
symmetry to be U(1) and take the B; to be simple. Furthermore, we only
need to classify the simple branes, as the others are just direct sums of these
configurations.

A theory with N; copies of the elementary brane B; will then have gauge
group

3

by the usual Chan-Paton arguments. We also know that the matter fields
will all transform in the adjoint or bifundamentals of the gauge groups, and
the action (computed from the disk world-sheet) can be written as a single
trace.

The matter content is constrained by the index theorem arguments dis-
cussed above. Let n;; be the number of massless fermions with charge
(N;, N;); we then have

Nij — Nj; = <BZ‘,B]'>.

3.1 Constraints from N = 1 supersymmetry

To go any farther we need some statement about the spectrum of scalar
fields. We will now make the important simplifying assumption that the
combined world-volume theory has A/ = 1 supersymmetry in d = 4 (so, four
supercharges). This is the supersymmetry preserved by a BPS brane in CY3
compactification and thus this assumption would seem very natural in the
problem of classifying BPS branes. On further reflection, however, it is not
at all obvious, because typically the generating branes B; will each preserve a
different ' = 1 subalgebra contained in the bulk A" = 2 supersymmetry, and
thus the combination will break all supersymmetry. This does not invalidate
the assumption because we can still claim that this configuration, which
in particular has zero vev for any open string modes associated to pairs
of branes, has spontaneously broken an underlying N' = 1 supersymmetry
visible in the ground state. This is what we will implicitly be claiming
and will verify in examples, but eventually we will find that this picture
cannot always be taken literally, and will have to generalize this assumption.
Nevertheless it is close enough to the truth to justify devoting a good deal
of attention to the particularities of the A" =1 case.

In an N = 1 supersymmetric Lagrangian, the massless fermion content
determines the massless field content. Massless fields can be in either chiral



222 M.R. Douglas

or vector multiplets. A bifundamental must be a chiral multiplet, while an
adjoint could be either, but we know that each set of N; generating branes
will have exactly the gauge bosons of U(NV;) and no more, so knowing just the
integers n;;, the number of massless fermions of each chirality, completely
determines the field content. (If one explicitly derives the world-volume
theory from world-sheet considerations, there is no difficulty in identifying
the fermions which are the gauginos: their vertex operator is just the spec-
tral flow operator, as we discuss later.) The index however is not enough
information.

This data can be conveniently summarized in a “quiver diagram,” in
which we denote each gauge group with a node, and each bifundamental
chiral multiplet with an arrow. Thus we obtain an oriented graph with n;;
links between nodes 7 and j, each representing a chiral matter field X7,.

This graph summarizes an infinite set of supersymmetric gauge theories,
distinguished by the choice of a rank N; for each gauge group. Let V; = CVi
carry the fundamental representation of the group U(N;), then X[ is in
VireV;.

This is a lot of information already and the remaining data we need to
know to find supersymmetric vacua is the superpotential W, the D-flatness
conditions, and some qualitative information about the Kahler potential, say
that it is nonsingular on the moduli space.

The superpotential is a gauge invariant function of chiral superfields
which can be written as a single trace. It can be written as a sum of mono-
mials, each of which could be denoted by a closed loop in the quiver. A
supersymmetric vacuum must satisfy the F-flatness conditions

ow

03: Fh ::Ei?z’ (3)

a matrix equation for each chiral superfield X*.

The D-flatness conditions are largely determined by the spectrum and
gauge representations, but there is one further input: each U(N;) factor in
the gauge group (so each node) can come with a single real parameter, the
Fayet-Tliopoulos term (;. A supersymmetric vacuum must then satisfy the
D-flatness conditions,

0=D; = i(X“)TX“ — XJ: XXt —¢. (4)
a=1 a=1

Supersymmetric vacua are gauge equivalence classes of solutions of these two
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sets of equations, and we will be interested in the general problem of finding
such vacua which break the gauge symmetry to U(1).

There is a variation on the D-flatness condition which is relevant for our
D-brane problems coming from the fact that D-brane world-volume theories
have an additional inhomogeneous N’ = 1 supersymmetry, the shift §x = ¢
of the decoupled gaugino in the diagonal U(1) factor of the gauge group.
We need to allow for vacua which break the linearly realized supersymmetry
but preserve some combination of the two as well.

Supersymmetry breaking by D terms shows up in an inhomogeneous
transformation law for the gaugino. Adding to this the overall inhomoge-
neous supersymmetry, we have

0x* = D% + ¢,

and we see that these more general supersymmetric vacua can be found by
the prescription of solving the D-flatness conditions with an overall constant
shift (, — (, + £ of all of the FI terms.

3.2 Finding supersymmetric vacua

An effective way to think about this problem is to first classify solutions of
F-flatness modulo complex gauge equivalence, and then check which of these
solutions can solve D-flatness as well. The complexified gauge group is

G(C = HGL(NM (C)a

and it acts on a bifundamental as
Xij— g7 ' Xij95- (5)

For general (nonunitary) g, this is a symmetry of the holomorphic part of
the theory (the F-flatness conditions in particular) but not of the D-flatness
conditions. Thus, any solution of F-flatness in fact comes with an entire
Gc-orbit of solutions, and in this first stage of the problem it is not natural
to distinguish the points on a given orbit. One can then try to find a g; in
(5) which solves (4).

A major advantage of this two-step procedure is that the second step is
very well understood mathematically, and indeed we will be able to quote a
general theorem which tells us precisely when solutions of D-flatness do and
do not exist. As motivation, let us review two very familiar examples.
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First, consider U(1) theory with n chiral multiplets z* of charge +1. The

Yl = (6)

Clearly there are three cases: for { > 0 there are solutions whose moduli

D-flatness condition is

space is CP"~1; for ¢ = 0 there is a unique solution z = 0, while for ¢ <
0 there are no solutions. This exhibits the fact that the moduli space of
solutions of D-flatness will depend on the specific values of the FI parameters
and can even disappear. It also illustrates the fact that not every G¢-orbit
will contain a solution of D-flatness. In the first case, the orbit z! = 0 cannot
solve (6) while all the others can; in the second case the situation is reversed,
while in the final case of course none will.

Second, consider U(N) theory with a single adjoint chiral superfield X.
In this case one cannot usefully introduce an FI term, so the D-flatness
condition is

[xXT,X]=0.

A matrix satisfying this equation is referred to as “normal” and it can be
diagonalized; the moduli space is the space of sets of N eigenvalues z; (the
ordering does not matter thanks to a remaining Sy discrete subgroup of the
gauge symmetry), so is CV /Sy.

Let us again compare with the G¢ orbits. This includes the normal
matrices but also matrices which cannot be diagonalized, such as

I 1
( 0 $2>
to give the simplest example. Such matrices cannot solve the D-flatness
conditions and thus our previous result for the moduli space was correct,
but we still can ask: what distinguishes these G¢ orbits from the ones which
can solve D-flatness?

There is an answer to this question which is fairly well known by physi-
cists but only applies to the case of zero FI terms. It is that the moduli space
of solutions of D-flatness is parameterized by a complete set of independent
holomorphic gauge invariant polynomials formed from the original fields. In
the matrix example, these could be taken to be TrX* for 1 < k < N. Clearly
these suffice to distinguish different sets of eigenvalues, but they are not a
good system of coordinates to describe all matrices up to gauge equivalence,
as any non-diagonalizable matrix will have the same invariants as some diag-
onalizable matrix. On the other hand, the non-diagonalizable matrices never
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solve the D-flatness conditions, so these are a good system of coordinates to
describe these solutions.

This connection between invariants and solutions of D-flatness is very
general and provides a very satisfactory description of the moduli space, but
only for the case of zero FI terms. For example, there is no obvious way
to adapt it to the first problem as this theory admits no holomorphic gauge
invariant observables.

There is a more general solution, which will turn out to have a fairly clear
picture in terms of the physics of branes, but explaining this will require some
additional formalism.

4 Pure quiver theories

Let us spend some time discussing the case with no superpotential first.
There is quite a bit to say, and making careful definitions here will in fact
carry us much of the way to the final results.

We can make the main points by considering the theory of two elementary
branes B; and By whose open string spectrum contains ¢ bifundamental
chiral multiplets X*. This is described by the diagram

_
—_—
_

q arrows

Fig.1. U(IN1) x U(N2) quiver

Almost all of what we will say in this section generalizes to the general
quiver theory with W = 0. In this case we will refer to matter fields be-
tween nodes ¢ and j as X; ;. Some of this generalizes directly to arbitrary
superpotential, and we will say so when it does.

Let us consider a configuration with N1 B; + NoBs elementary branes,
and suppose that all such configurations are described by this U(N;) x U(N2)
world-volume gauge theory. Each configuration of the g bifundamental chi-
ral multiplets, modulo complex gauge equivalence, will provide a physically
distinct bound state, if it solves the D-flatness conditions. Now even before
we consider D-flatness, it is clear that each such configuration represents at
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most one physical state. Of course it might not be a single bound state; this
will be the case only if the gauge symmetry is broken to U(1).

Let us refer to a configuration as an “object” (or holomorphic object) in
the category of quiver representations. One which breaks the complex gauge
symmetry to GL(1) is a simple object.

We now ask whether this quiver theory contains any simple objects, and
if so what is the dimension of their moduli space. Let us refer to such
a theory using the notation (N) or (N; Nb); the moduli space of simple
configurations will be M(J\_f ), while the vector N will be called the “charge”
of the object. The two elementary branes are (1 0) and (0 1); let us denote
these charge vectors as e; and es.

There is an obvious guess for the dimension of this moduli space, obtained
by counting matter fields minus the number of broken gauge symmetries, and
assuming that the resulting object is simple:

dim M(N) = gN; Ny — N? — N} +1.

One would expect that if this “expected dimension” dim M > 0, there will
exist simple configurations and that their moduli space will have this di-
mension, while if dim M < 0 there will not exist simple configurations. This
is true, although the mathematical proof of this fact is surprisingly compli-
cated. A similar result holds for general quivers with W = 0, quoted in the
appendix to [14].

We can also write the result in terms of a “Cartan matrix”:

dimM(N) =1-1 (M NQ)(fq —2‘1) (%;) (7)

=1-3(N|N). (8)
In this language, we can distinguish three types of vector N:

e Real roots with (N|N) = 2, which are “rigid” configurations with no
moduli.

e Imaginary roots with (N|N) < 0, which are configurations with mod-
uli.

e Vectors with (N|N) > 2 which do not correspond to simple configura-
tions.
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Using results which are probably familiar from Lie algebra theory, we can
see that the general nature of the solutions depends on ¢ in the following
way:

e For ¢ = 0,1 there are a finite number of real roots and no imaginary
roots, so this is the finite case.

e For g = 2, the real roots are (n+1n) and (n n+ 1), and the imaginary
roots are (n n). This is the affine case.

e For ¢ > 3, the hyperbolic case, there are infinitely many roots of both
types.

This last case is probably less familiar although as the reader may have
guessed, all three cases indeed admit a relation to Kac-Moody algebras. Let
us discuss it a bit more. The symmetries of a root system are generated by
Weyl reflections, which act as follows:

In the hyperbolic and affine cases, these reflections generate infinite discrete
groups (which are cyclic in this simple case).

The condition (N|N) < 0 defines a region in the (N7 N3) plane in which
all the points are imaginary roots. It contains infinitely many copies of a
fundamental region, defined by the condition rZ(N ) > N.

The real roots can all be obtained by Weyl reflection from the ele-
mentary roots, and thus form an infinite series which for ¢ = 3 starts
(01),(13),(38),....

Thus even for these very simple theories, the spectrum of branes has quite
a bit of structure. One can even define explicit operations corresponding
to the Weyl reflections which take one object into another. This is also
discussed in the appendix to [14], and underlies the more complicated Seiberg
dualities discussed in [4, 18, 9]. This structure is known to also be present
in the quantum mechanical treatment of such branes for the finite and affine
cases, and very likely is for the hyperbolic case.

We will say more about this structure and the nature of the Weyl reflec-
tions below, after introducing some more formalism.
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4.1 Bound states and Ext

A question of primary interest for us is the following: given two objects A
and A’, when can they form a bound state?

That this question is nontrivial can be seen by considering the example of
bound states of (0 1) and (1 n). Starting with (1 0), one can add successive
(0 1)’s until one reaches (1 g). However (1 g+1) is clearly not a simple object
as there are not enough matter fields to break U(q + 1) gauge symmetry.
We would like a rule which tells us when this can happen, ideally depending
only on the charges N and N'.

Clearly the answer to this question can be found by studying the U (N7 +
Ni) x U(N2 + NJ) gauge theory which describes the combination of their
constituents. Its matter will decompose in a block diagonal way:

x = (e dne)- (9)

If we can turn on matter fields p® or ¥ in a way which breaks the total
gauge symmetry back to U(1), these two objects will form a bound state. In
other words, if after using all possible gauge symmetry to set components
of p or 9 to zero, we are left with any nonzero components, we will find a
bound state.

Let us consider only turning on p® as we can then repeat the discussion,
exchanging the two objects, to treat ¢*. The gauge symmetries (5) can also
be decomposed in block diagonal form, and the relevant parameters which
act on X and can modify p are

o 1 €1 . -1 _ 1 —€9
g1 = 0 1 ) g9 = 0 1 .

The resulting gauge action is then
(Spa = Xa'el — GQ(XI)G'. (10)

Note that the g; are finite (not infinitesimal) complexified gauge transfor-
mations; in this sense this is not a linearized result but is exact. This also
generalizes in the obvious way to any matter field X; ; and its off-diagonal
part p; j in any quiver.

The result can be seen much more quickly in terms of the following
diagram:
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XI
Fig.2. Combining two bound states

The vertical lines represent the off-diagonal degrees of freedom, and sen-
sible (gauge invariant) products must respect the graphical structure.

Thus matter variations which cannot be gauged away are variations p®
which cannot be obtained from (10). These form a linear space which is
denoted by

Ext(A', A).

We are also interested in gauge transformations which are unbroken in the
combined configuration, i.e. solutions to the equation dp® = 0. These form
another linear space which is denoted by

Hom(A’, A).

Note that some of the ranks N; or N} might vanish in a particular exam-
ple. The definitions still make sense if we just omit those gauge transforma-
tions or matter multiplets for which one of the ranks is zero. Often in these
cases, the equation (10) will also degenerate; this is fine. One should check
that this is clear for the simple examples

dim HOIH(BZ‘, Bj) = 5i,j (11)
dim EXt(BZ', B]) = q5i715 j,2 (12)
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All of these definitions generalize in a direct way to arbitrary quivers
with W = 0. We will generalize them in the next sections to certain quiver
theories with superpotentials as well, and they are quite important in all of
the subsequent discussion.

The spaces Hom and Ext are examples of the spaces of morphisms asso-
ciated with pairs of objects, which as discussed in the introduction define a
category. The multiplication law is just the obvious composition of arrows
and multiplication of the matrices associated with each arrow. This struc-
ture provides an obvious generalization of representations of groups, and it
is in this spirit that quivers were first introduced in mathematics [20].

One can regard the equation (10) as defining a linear operator acting
on the space of parameters ¢; and producing a configuration in the space of
matter fields p®, whose matrix elements depend on the configuration X and
X'. Let us denote this operator as D, we then have

Hom(A', A) = ker D; Ext(A’, A) = coker D.

and we are studying a cohomology problem. This formalizes the observa-
tion that, although the dimensions of these two spaces depend on the spe-
cific configuration, they can only change in a paired way, with an element
disappearing or appearing on both sides, corresponding to the Higgsing or
unHiggsing of an off-diagonal gauge boson.

This also shows that it is easy to compute the difference in the dimensions
of these two spaces, since we can just do it for X = 0, by again counting
multiplets. This number is called the relative Euler character; it is

x(A’,A) = dimHom(A4’, A) — dimExt(4’, A) (13)
—ovt v (o ) () (19

It contains the information both of the intersection form and of the Cartan
matrix,

(A|B) = x(4, B) — x(B, A) (15)
(A|B) = x(4, B) + x(B, A). (16)

Although this does not directly determine either dim Hom(A, B) or dim Ext(4, B),
it will give a lower bound for one of them, so given only the charges of the
two objects we can often prove that one of dim Hom or dim Ext is nonzero.
It is harder to prove that one of these is zero, although in typical examples
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where A and B are simple objects, one of these dimensions will in fact be
7Z€ero.

This provides a procedure to decide whether two objects A and B can
form a bound state, and a formal construct which is associated with each
way of forming a bound state. There is a larger structure which this fits
into: any Ext(A, B) and bound state E produced by turning it on will have
an associated exact sequence

0—B-LE %40 (17)

By an exact sequence one means first of all that g- f = 0 defined by composing
these pairs of matrices. Furthermore, the terms 0 — B and A — 0 at the
beginning and end of this sequence indicate that the map f must be injective
(with no kernel), and g must be surjective (with no cokernel). In other words,
FE must incorporate all constituents of A and B, with nothing left over.

The object B is called a subobject of F, while A is a quotient object.
Physically the Hom’s represent the possibility of seeing that these two objects
are contained in E by bringing up either one “next to it;” an enhanced
complex gauge symmetry appears.

A simple example is provided by the bound states of the two elementary
branes B; = (1 0) and B = (0 1). Bound states with charge (1 1) exist
with a moduli space of dimension g — 1. Call one of these F; it will fit into
the exact sequence

0—01) -5 E 2510 —0
where f € Hom(By, E) and g € Hom(FE, By) are easy to write down using
our general definitions (exercise).

We can even write a “triangle” which completes the structure as follows:
given ¢ € Ext(A, B), we have

BLE %428 (18)
where f - ¢ - g is an Ext(E, E) we can vary in the resulting bound state.
We will better define and use this structure later. It is present in general
theories of D-branes on Calabi-Yau (and probably even more generally).

So far we have only talked about branes, and not their antibranes. The
exact sequence (17) can also be interpreted as describing certain processes
involving antibranes, namely the inverse to the bound state formation we
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just described. For example, given that A and B can form the bound state
E, we might expect that E and B could partially annihilate to produce A,
and also that E 4+ A — B, and indeed these are all valid readings of (17).
This does not get us too far on the problem of describing bound states of
branes with antibranes, however, as all three of the objects involved are
each made only from elementary branes or only from their antibranes. In
general we will need to talk about bound states of elementary branes with
antibranes, but this will require formalism we discuss later.

5 D-flatness and stability

In this section we will explain the general result promised earlier on D-
flatness conditions; it applies to general quiver theories with or without
superpotentials. The structure we described in the previous section will
play an essential role.

As we saw, the question of whether an object really corresponds to a
physical brane, i.e. solves the D-flatness conditions, can depend on the FI
terms. This is how marginal stability will appear in the physical theories of
branes on CY. Conversely, one might imagine that if by varying an FI term,
an object becomes physically unstable, it will have to decay into constituents
described by an exact sequence of the type we just discussed.

We can study the question of whether, given an Ext(A’, A) and exact
sequence (17), these two branes can actually form a physical bound state,
by again considering the direct sum U (N7 + N7) x U(N2 + NJ) gauge theory.
Now we want to write down the D-term part of the potential V = %trD2 for
the mode p. Taking D from (4), we have

q
Dy =-> XYXx -¢ (19)
a=1
q
Dy =Y (X)X — (. (20)
a=1

We first note that there is a rather trivial but necessary condition for
solving the D-flatness conditions, obtained by taking the trace of both and
adding: one finds

0= (Ni+ NG = (N + W) { (21)

2
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In this form it clearly holds for arbitrary quiver theories. We will further
assume that N - 5: N f: 0, so that both initial and final states solve the
D-flatness conditions with the same FI terms. We will see below that this
is the special case where all three branes preserve the same supersymmetry.
The same analysis can be made without this assumption; see [26].

We now compute the quadratic term in V for the mode p, assuming that
D; = 0 before we turn it on. Substituting (9) into (19) we have

f N
_ (" p(X')
D= (X’pT 0 )

Using X' X"f = (1, and taking the trace, the quadratic term in D?/2 becomes
Ni(1. Adding similar contributions from each gauge group, the total mass

i

If this is positive, the potential prevents us from turning on p to make a

squared for the p mode is

bound state, while if it is negative, p is tachyonic near the origin and this
combination is in fact unstable to forming the bound state.

Since the vacuum energy is always bounded below in this supersymmetric
theory, the process of tachyon condensation is guaranteed to stop, resulting
in a bound state. Since one has the exact potential, one can be much more
precise and prove that a solution of the D-flatness conditions (in the G¢
orbit of the object E) can exist only if we have (21) and

SN > 0. (22)

If it exists, it will be unique.

The mathematical theorem [23] is even stronger than this and asserts the
converse. Suppose we are interested in the particular object £ and we want
to know whether it is stable or not, i.e. whether it will decay into anything.
The theorem states that the configuration E can solve D-flatness if and only
if (21) is satisfied and if (22) is satisfied for every subobject of E. In other
words, if the mode p A and A’ becomes massive, not only is this process
of bound state formation prevented, the product becomes unstable even if
there are potentially other ways of forming it from brane pairs, and even if
these other pairs would have led to tachyonic modes. Such a subobject is
known as a destabilizing subobject.

This theorem is proven, and the general study of this type of problem
(known as symplectic quotient), uses the methods of geometric invariant
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theory. In fact this type of necessary and sufficient condition was already
known as stability, an amusing example in which mathematical and physical
nomenclature actually coincide in meaning. The particular version defined
here is known as 6-stability; other forms will appear below.

The theorem is not hard to prove, but we give only the general idea
here. A general strategy for finding a solution of the D-flatness condition on
a given orbit is to take the potential as a function of the group element g
parameterizing the orbit,

V=" tr(g7 Xgg'XTg™ — ()

and minimize it by gradient descent. The simple form of the potential makes
it possible to show that a minimum will be reached, but it is not guaranteed
that the minimum will be on the orbit; it could be a limit of points on the
orbit which is not on the orbit. This is illustrated by the second example
above (the adjoint chiral field) and the nonnormal matrix. Its gauge orbit
includes the matrices

A0 z1 1\ /AP 0\ [z A
(0 Al)(ﬂ I2>< 0 A)_<0 962)

and one sees that the minimum of tr[X, Xt]? will be achieved as A — 0, a
limit point not on the orbit but on a stable orbit with the same value of
the invariants tr X*¥. One can show that whenever this happens, there is a
similar one-parameter subgroup for which taking the limit decomposes the
original unstable object into two objects, the subobject and quotient object
(here 1-dimensional matrix configurations), and that conversely whenever
the condition (22) is violated, a destabilizing one parameter subgroup can
be constructed from it. Thus one obtains necessary and sufficient conditions
for a solution to exist.

In our D-brane problems, the relation (21) typically will not be satisfied
by any of the D-brane charges N, N’ or N + N’. However it can be restored

by taking advantage of the possibility mentioned earlier of making an overall
shift ¢ of the FI terms. This turns (21) into

0= (N+N)- (G +¢@) (23)

where € is the vector with components e; = 1. This can be solved for £.
One must then satisfy (22) with respect to the shifted FI terms. The
resulting stability condition, with & eliminated using (23), is

— - —

(N'-{)(&-N) = (N'-&)({- N) > 0. (24)
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This condition does not depend on e - 5 or on the overall scale of 5 In the
particular case of two nodes, only the ordering of the FI terms enters the
final condition,

sgn(Ca — (1)(N1Ny — N1N3) > 0.

Using methods we will not describe here, one can show that given two
nodes, all simple bound states are stable on one side of the line {; = (2, while
on the other side only the two elementary branes and their antibranes are
stable. This is very analogous to marginal stability in N' = 2 supersymmetric
gauge theory, and in fact one can formulate that BPS spectrum in terms of
representations of affine quivers [19].

5.1 D-brane stability near orbifold points

For quivers with more than two nodes, the condition (24) will have nontrivial
dependence on the FI terms, leading to a complicated structure with an
infinite number of lines of marginal stability. It is worth looking at this in
detail, because this turns out to the the exact result for the spectrum in
the neighborhood of orbifold points, and is a good illustration of the general
structure.

A detailed analysis is rather involved (see [14]), but the basic idea can
be illustrated by the following result: for any simple object, there is a line
going into the point ¢ = 0 (which will be the orbifold point in our later
examples) on which it is “most likely to be stable” (in many cases one can
easily prove that it is). The idea is that we have a necessary condition
for Hom(E', E) = 0, namely x(E', F) < 0. Although there could still be
Hom(E', E)’s which cancel out of x, this is not generic. Thus, if we could
show that for every candidate destabilizing subobject E’, i.e. one for which
(24) fails, we had x(E', E) < 0, we would have good evidence for stability,
while if this condition fails, we know that the object E is unstable.

This can be arranged by choosing (_,? so that

N'-{=x(¥',N),

i.e. ¢; = x4jN; in an obvious notation. Given this choice, the opposite of
(24) becomes
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Now by considerations in the previous sections, we know that x(N, N) < 1
for simple objects, and é- N' < &N for subobjects, so on this line x(E', E) <
0 follows.

On the other hand, every object has some elementary brane as subobject
which will destabilize it by taking its FI term negative, so for every object
there will also be a line on which it is unstable. These two lines must
be separated by lines of marginal stability, which may be associated with
the elementary brane we just discussed, or may be associated with larger
subobjects.

Furthermore, one can easily check that the line for decay into a given
subobject (say one of the elementary branes) is different for objects with
different charge. This will also be clear from more conventional (BPS charge)
marginal stability considerations, so there will be infinitely many lines of
marginal stability in these problems, and a rather intricate structure.

6 Orbifold quiver theories

The simplest source of physical theories of D-branes on non-flat spaces is the
orbifold construction. This is described in many places including [11].

We start with D3-branes extending in 3 + 1 Minkowski space and at
points in an internal space C", and choose an orbifold group I', an action
of T' on C" denoted r(g), and another N-dimensional representation of T'
acting on the “Chan-Paton factors” and denoted y(g). One then takes the
world-volume U(N) gauge theory and applies the projection

v(9) " py(9) =r(9)d (25)

to all the fields, where 7(g) acts on ¢ in the appropriate representation (scalar
for the gauge fields, vector for the coordinates, spinor for the spinors). For
r(g) preserving supersymmetry one can also take the action directly on the
superfields, which is what we will do.

The representation 7y can be written as a direct sum over irreducibles,

Y = @iNiri,
and one finds that the gauge group of the resulting theory is
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and the chiral matter spectrum is that of a quiver theory with
Nij = [’I"®’f‘;k ®7‘j]
where [R] denotes the number of times the trivial representation ry appears
in R, e.g. [r;] = dio-
There will also be a superpotential and FI terms. If the theory arises

from a C? orbifold, the superpotential is the projection of that of N' = 4
U(N) super Yang-Mills,

Wy—s = tr X[ X2, X3].
We will confine ourselves to the example of I' = Zj, with action

20,

X™ — exp xXm,

in which case there are k irreps and the result of the projection is

114 =3 (26)
trXl X2 X3

t,0+a1 “ita1,i+a1+az < i4a1+az,0

- tr X}, X3 X?

i,44+a1< i+a1,i+a1+a3 < ita1+a3,6

There are k FI terms which are fairly general, satisfying the relation
> 6Gi=0
i

and in certain examples additional relations. They can be derived from
world-sheet considerations of couplings to twist sector moduli and their phys-
ical interpretation is as blowup modes for the orbifold singularity; they can
be considered as real coordinates for the complexified Kahler moduli space
in the neighborhood of the orbifold point.

These quiver theories can be used to describe a large number of D-branes
anywhere near the orbifold point, along the lines we just described, as bound
states of arbitrary numbers of elementary branes, which are usually called
fractional branes in this context. We might even be able to describe all
branes, if these branes span the charge lattice.

We will focus particularly on the simplest case of C?/Z3, which has the
quiver diagram



238 M.R. Douglas

Yi

Fig.3. The C?/Z; quiver

and two independent FI terms related in some way to the single complexified
Kahler modulus. For simplicity, denote the three groups of chiral multiplets
as Xt Y* and Z?, then the superpotential is

W = e;jptr ZYI X,

The formal orbifold construction can be generalized to higher dimensional
complex space. Later we will see that in fact D-branes in Gepner models can
also be understood using this construction, essentially because they can be
defined as Landau-Ginzburg orbifolds. The case we will consider is C° /Z;,
and we will argue that these theories can be derived as the orbifold projection
of a U(N) gauge theory with chiral multiplets X* in the 5 of a global SU(5),
chiral multiplets Y};; in the 10, and superpotential

W =tr X' XY+ ...

where ... indicates higher order terms which we will pretty much ignore in
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these lectures. Applying the projection leads to a superpotential much like
(26).

Both of these superpotentials are cubic, and impose commutativity con-
ditions on the matrices X,

Xm, X" = X7 m (27)

Byt am 1+ am i+ am+an tyi+an “ri+an,i+an+am"

In fact they have a much more important common property: they express
the condition that a certain D operator squares to zero.

6.1 D? =0 superpotentials and higher Ext groups

We now generalize our previous discussion of bound states and the moduli
space to these quiver theories with superpotential.

The formula (10) for a gauge transformation, and the definition of Hom(A, B)
as the kernel of this operator D, go over unchanged.

However, the massless matter variations are different, because some of
these can be lifted by the superpotential. We need to supplement the con-
dition that a matter variation be in the cokernel of D with an additional
condition that it satisfy the superpotential constraint. For the quadratic
constraints (27), we can write this as

_yYm n
0= Xi,i+ampi+am Jitam+an

m nn
+pi,i+am (X )'i-}—am,i—l—am—f—an (28)
n m
— X it anPitan itantam

7 nm
_pi,i—l—an (X )i—l—an,z’—}-an—l—am .

Note that this is again linear in p and in the configuration variables X and
X'. Thus we can define a new operator D which takes a variation p and
maps it to the right hand side of (28). Gauge invariance requires D? = 0
and in terms of this D, the massless off-diagonal matter variations are now
the p in ker D/ImD.

Thus we regain the interpretation of Ext(A’, A) as the cohomology of the
operator D. One sees now however that to write a formula like (13), we will
have to keep track of the cokernel of (28), because now matter variations
can pair up with these and become massless. We thus define this space as

Ext?(A’, A)

and rename the previous space Ext'(A’, A) (often it is still called Ext without
the superscript).
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One naturally wants to know what is the physical meaning of Ext2. From
their construction, these are superpotential constraints which are not actu-
ally used in the matter configuration, and do not lift matter fields. This
is related to one of the major difficulties in working with general N' = 1
theories, namely the fact that the dimension of moduli space need not be
constant; it can consist of several branches with various dimensions, because
of the relatively unconstrained form of the superpotential and the fact that
generic cubic terms will produce such a structure. Indeed the naive estimate
for the dimension of moduli space in an N’ = 1 theory is that it is always
zero, because there are as many equations in W' = 0 as there are unknowns.
This naive estimate can fail because of unused and redundant superpotential
constraints, and this is reflected in the fact that the generalization of (13) is
not going to involve just dim Hom and dim Ext but additional terms which
can be different on different branches of moduli space.

This story could clearly be repeated again by defining a similar operator
acting on new fields (not present in the original Lagrangian) pl® with two
indices, and so forth up to n index fields (one will need to continue to
antisymmetrize indices to keep D? = (). Should we do this?

The answer appears to be yes, for specific reasons which will appear
shortly, and because in general it is useful to keep track of redundancies
between the superpotential relations. Suppose we found that a two index
element of coker D was not in fact in ker D, so that it drops out of Ext?
(being paired with a three-index field). This means that some of the un-
used superpotential constraints become redundant when multiplied by addi-
tional powers of the fields X. The presence of such redundancies in solving
equations was one of the main motivations for introducing the homological
algebra techniques we are now discussing.

The whole setup can be defined at once by introducing a Grassmann
algebra with n generators,

emen + epem =0,

and defining
Dx = X"e,

where X" is the direct sum of the various matrices X7’;,, acting on the
direct sum of Hilbert spaces associated to all the nodes. It is easy to see
that D? = 0 then precisely reproduces (28).
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The operator D of our previous discussion is then Dx — D (the relative
sign is not important) where Dx acts on the sum

[ab]

€+ peq + p%eqep + ...

on the left, and D’ acts on it on the right.
The same argument as before suffices to compute the relative Euler char-
acter, now defined as

x(4,B) =Y,;(-1)ht => (-1)'dimExt’(4, B) (29)
7
where we let Ext’(A, B) = Hom(A, B). For the configuration X = X' = 0,
every field e and p contributes with the sign (—1)?, leading to a formula
bilinear in the charges N; of the two representations.

In practice, it is often useful to assume that certain of the X or Y links are
zero, and also drop the fields p which cannot appear under this assumption,
to get a definition of x with stronger consequences. We already followed this
policy in the C° case in not considering the constraints 0W/8X = 0; these
can be automatically solved by setting Y = 0, leading to the equations we
kept. Example of such simplifications are to assume that some nodes are
not present, or that all links which cross a certain “line” on the quiver (say
all links from ¢ to j < %) are zero, in which case all fields p which cross this
line can also be dropped.

A simplified formula which will be of relevance below is to consider the
C3/Z3 quiver with the X§; = 0. In this case one obtains

/1 -3 3
x(A,B)=N4-[0 1 -3|- Ng. (30)
0 0 1

[

This corresponds to the
ber of matter fields minus unbroken gauge symmetries and superpotential
constraints, and is indeed the correct dimension (it turns out that h? = 0)
for all cases except the DO-brane, (1 1 1).

This case is instructive. The result x(D0,D0) = 0 corresponds to a
moduli space dimension for the DO of 1. Of course we left out the X3 ; links
and this could increase the dimension; however these satisfy superpotential

‘naive” dimension one obtains by taking the num-

constraints of their own and one finds that they provide one extra modulus,
leading to the incorrect answer 2.
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The resolution of this is that in fact h? = 1 in this case. The general
solution of the constraints 0 = X{,QX%,3eijk is to take X{,Q = AX§,3, for a
general complex number A. This is two conditions, and comparing to the
three superpotential constraints, we see there is one redundancy. Thus, the
result x = 1 = hg — h1 + hg predicts h; = 2. Similarly Xg’l = )\'Xé,?, solves
the remaining constraints, leading to the correct moduli space dimension 3
for an object moving on C?/Zs3.

This discussion was of course overkill for such a simple example, but the
point is that it illustrates the general (non-trivial) relation between x and
the naive dimension formula, and the true dimension of moduli space. In
general, moduli spaces in N/ = 1 theories can have branches with different
dimensions; this will happen because the h™ with n > 2 can differ on different
branches.

We could also extend the definition in the C5 case to include the W /90X =
0 superpotential constraints as well, by defining

D=¢,X*+ eabc‘ieeaebecY[de].

Both the forms p[‘““‘ak]ea1 ... €q;, and the forms representing Ext®, are in
many ways like differential forms. In particular they have a wedge product
which obeys the same formal rules. These rules can be axiomatized in the
structure of an “abelian category” as described in Gelfand and Manin [22]
and many other textbooks.

The field p with n indices (the “top form”) is special as it is a sum of
adjoints and thus one can take its trace to get the analog of an integral. This
trace provides a bilinear form on Ext*(4, B) x Ext"~*(B, A). If we work in
the original orbifold quiver category (i.e. not setting any links to zero), one
can see that this form is non-degenerate and thus the dimensions of these
two spaces will be the same. This is a quiver analog of “Serre duality” (on
which more later).

The DO problem again provides an example. There, the number of extra
moduli from the link X35 ; was equal to h%. This is an example of the duality
dim Ext!(D0, D0) = dim Ext?(D0, D0) valid for the orbifold quiver category;
the extra Ext! is the dual of the h? we derived earlier.

Having defined the higher Ext groups, we remark that the relation be-
tween Ext! and bound states, its further relations to exact sequences and
triangles, and the role of these in solving D-flatness conditions, all go through
in exactly the same way as before.
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7 Some large volume considerations

We more or less have all the tools we need to find the spectrum of BPS branes
in simple orbifolds, anywhere near the orbifold point. Indeed it is quite easy
to analyze the states which can be formed from arbitrary numbers of two
fractional branes, and one might do some exercises of this sort to get familiar
with the ideas.

The description does not look much like the way one is used to describing
D-branes at large volume, but on a deeper level the two limits can be made
part of the same formalism. The key to this is the “decoupling statement”
which asserts that all of the holomorphic structure of the branes must be
independent of Kahler moduli. This will imply that quiver objects and all
the information in the F-flatness conditions must in some sense be the same
as the set of holomorphic bundles or suitable generalizations of these.

To see this, we will need to review some of the theory of D-branes in
“large volume,” i.e. when stringy corrections are negligible. We assume
some familiarity with the material in Polchinski’s TASI lectures [27].

The problem of finding supersymmetric embeddings of branes governed
by the supersymmetrized Nambu-Born-Infeld Lagrangian has been much
studied and the general equations governing these are known. In the o/ — 0
limit (we will be a bit more general below), and if no other background fields
are turned on, the general answer is that a supersymmetric brane must
embed into a calibrated submanifold, and the gauge fields must preserve
supersymmetry in the usual Yang-Mills sense, except that one can use an
inhomogeneous supersymmetry as well: an unbroken supersymmetry is given
by two spinor parameters (e, €’) which must satisfy

0= (SX = FIJFIJG +€. (31)

The inhomogeneous supersymmetry simply corresponds to shifts of the non-
interacting gaugino (or its diagonal component in U(N) theory). Such a
supersymmetry is guaranteed to be present because the D-brane sponta-
neously broke half of the supersymmetry of the bulk theory. However, we
see that which half is preserved can depend on the world-volume background
fields, and in general will be some linear combination of the ¢ and € bulk
supersymmetries.
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7.1 Calibrated geometry

A calibration is a p-form A\ which is closed, dA = 0, and which provides a
lower bound for the volume: for any p-dimensional linear subspace V' of the
tangent space at any point, one has

Aly < (volume)y (32)

considered as an equation between oriented p-forms.

Given a calibration, one has an easy way to find minimal volume mani-
folds: a calibrated submanifold, defined as a submanifold 3 whose tangent
bundle saturates (32) at each point, is necessarily minimal volume. This
is because Stokes’ theorem tells us that [;, A will be preserved under any
continuous variation of the submanifold ¥, while the bound (32) then tells
us that volume can only increase under these variations.

Examples in flat space C" are not hard to find and check. They include
the Kihler form

18 _
w= ;ZdzI/\dzI,
I=1
and the various real parts of the holomorphic n-form,
Qp = R0

where
Q=dz" Ndz® A--- Ad2".

In general, calibrations arise from covariantly constant spinors and thus
are closely associated with supersymmetry. Suppose we have a covariantly
constant spinor ¢; then we claim that

A= TP
is a calibration, where

@) — ;((-1)/2 H INT
I

and we choose p to make the product non-zero.
To see this, consider a linear p-dimensional subspace V of the cotangent
space to a point, with orthonormal basis e!, and consider the operator

Ty = i®E-1)/2 H INT
I
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This operator satisfies the equation
(1-Ty)?=2(1-Ty)

and thus
et(1-Ty)e>0

which implies the bound.

This argument also shows that branes wrapped on calibrated submani-
folds preserve supersymmetry: taking V to be a tangent space to the brane,
we have I'yy = I'p, so saturating the bound implies € = I"pe.

7.2 B type calibrated submanifolds

Each of the types of calibrated manifold has its own distinctive geometry.
The most intensively studied case is the Calabi-Yau manifolds, with SU (n)
holonomy, for which there are two types of calibration.

The first (called “B-type” for reasons given later) is with respect to the
Kahler form, or powers of the Kihler form. It is not hard to see that these
are holomorphic submanifolds, defined by an holomorphic map from a p-
dimensional complex manifold into space, or else as the zero set of n —
p complex equations in space. This also includes branes which embed in
the entire CY manifold, and the brane which embeds in a point. All of
the methods of algebraic geometry which were so useful in analyzing the
geometry of Calabi-Yau manifolds will be just as useful in analyzing these
branes.

Gauge field backgrounds which preserve supersymmetry (admit solutions
to (31)) can be found by slightly generalizing a traditional argument used
in heterotic string compactification (as given in GSW); they are the her-
mitian Yang-Mills connections. The argument is simply to use the Kéhler
structure of the manifold to rewrite the Dirac algebra {I'/,T7} = 2¢'/ as
an algebra of fermionic creation and annihilation operators, which naturally
act on the space of (antiholomorphic) (0, p)-forms. Explicitly, using complex
coordinates z! and z/,

r7 — dz’ (33)
ngPI —> a5 s.tdig, dzl = (55— (34)

The two spinor representations of SO(2n) then reduce to the direct sum
of even or odd differential forms. Taking for € and € the zero form, (31)
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becomes
FZ0 = Frrdz! Adz? =0 (35)
FO2 = Frrdzl AdzT =0 (36)
and finally, for F(bY) = F, 7dz! A dz’, we have
F(l,l) A wnfl = cw”

where w is the Kéhler form and c is an arbitrary constant.

7.2.1 BPS central charge

The constant ¢ determines which A/ = 1 subalgebra of the bulk N' = 2
supersymmetry is unbroken. The N/ = 2 supersymmetry algebra admits a
moduli space of N' = 1 subalgebras parameterized by a phase 6, defined by

0 = Ime®? Q2.
In terms of the parameters € and € we can write
0 = Ime® (ie + €')
which if we insert the solution gives
0 = Tme®(w + iliF) A w? (37)

This is only an [; — 0 estimate and one can easily do better. Another way
to determine the unbroken N’ = 1 is computing the BPS central charge of
the brane; its phase will be €. The BPS central charge of a D-brane is
determined by its Ramond-Ramond charges, which are those of a source

/ C A TreP™F, (38)
b

Assuming that in the large volume limit a pure D2p-brane has central charge
J(—=iV)P leads to the expression

_ [ g F+B+iw _ 1 - nd—p
Z = /Ee = ; mchp(B +4.J) (39)
where the Chern character chy, is the 2p-form in the expansion of Tref'.
These considerations lead to a formula whose leading {; — 0 limit is
(37). They can be confirmed microscopically from an analysis using the
supersymmetrized Nambu-Born-Infeld action, leading to an equation derived
by Marino, Minasian, Moore and Strominger (the MMMS equation) [25].
They take into account all powerlike corrections in [, but not effects due to
world-sheet instantons.
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7.2.2 The Donaldson-Uhlenbeck-Yau theorem

There is a standard mathematical approach to solving such equations, based
on what is called the Hitchin-Kobayashi correspondence. For hermitian
Yang-Mills this is encapsulated in the theorems of Donaldson and Uhlenbeck-
Yau, but the approach is in fact more general and applies to the MMMS
equations and indeed in a sense we will describe to the general case of string
scale Calabi-Yaus.

We start by assuming we can find a solution to the equation F%? =
0. This is the integrability condition for the antiholomorphic part of the
connection,

0+ A0+ Al =0,

and thus one can locally trivialize the bundle by some holomorphic transfor-
mation which acts on sections as ¥ — g(z)1. Globally, the bundle need not
be trivial, but all of the transition functions will be holomorphic. Thus each
solution to this equation (up to complex gauge equivalence) oorresponds to
a holomorphic bundle. This is a notion which can be defined purely in terms
of the complex structure of the manifold, so this part of the problem does
not depend on the Kahler moduli of the CY. A hermitian connection will
then automatically solve F20 = (.

This leaves the equation on F(11)| and the DUY theorems then state
necessary and sufficient conditions that there exist a particular connection
in this orbit of the complexified gauge group which solves this equation.

First of all, one knows that the first Chern class ¢; = [TrF A J A J is
a topological invariant, so it is computable just knowing the holomorphic
bundle. Integrating the equation shows that the constant ¢ from above is
determined in terms of ¢;.

We then define the slope of a bundle E, u(F), as the ratio

WEB) = @® rk:(lE) /TrF AT

A holomorphic bundle E is then u-stable if, for all subbundles E’, we have

H(E) < p(E). (40)

The DUY theorems then state that an irreducible (simple) solution to wF1! =
¢ will exist if and only if F is y-stable. Both the equation and this condition
depend on the Kihler form and it can be seen in examples that if 5D > 1
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(so there is a choice of Kéhler form) this dependence is nontrivial; there are
“walls” in Kahler moduli space on which the list of stable bundles changes.

Note the very close parallel between this condition and the 6-stability
condition we discussed that controls the solvability of D-flatness conditions.
Both can be understood using the ideas of geometric invariant theory and
in fact the DUY theorem is proven by the same idea we discussed earlier of
flowing within a complexified gauge orbit to a minimum of a potential, here
the Yang-Mills action. Again the stability condition is what guarantees that
the minimum is still on the original orbit.

7.3 A type calibrated submanifolds

The other possibility is to calibrate with respect to one of the n-forms 2.
These are A-type or special Lagrangian (sL) submanifolds. One usually
wants to keep track of 6 and distinguish Ay or sLy submanifolds, because
0 determines the unbroken N' = 1 supersymmetry just as in our previous
discussion.

The reason for the name special Lagrangian is that one can show (by an
easy local argument) that the calibration condition is equivalent to the pair
of conditions

wly =0 (41)
Tme?Qy = 0. (42)

For A branes in other than two dimensions, a supersymmetric gauge
connection must satisfy F' = 0, i.e. it is a Wilson line. The case of two
dimensions is special and is better understood by bringing in the formalism
of hyperkéhler geometry, which we will not do here.

One of the basic results about these branes is that the moduli space of
a smooth special Lagrangian ¥ has real dimension b;(X). Combining this
with the moduli of the flat gauge connection, the D-brane moduli space has
complex dimension by (X).

The BPS central charge of an A brane 3 is simply

zzén (43)

7.4 Mirror symmetry and comparison of the two pictures

Mirror symmetry will exchange the A and B branes. The basic physics
behind this is a realization of mirror symmetry proposed by Strominger,
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Yau and Zaslow. The idea is to describe the CY3 as a T fibration, and then
interpret mirror symmetry as T-duality along the fibers. This exchanges the
DO0-brane with a distinguished D3-brane with topology T'3; since by (T3) = 3
one can rederive the original Calabi-Yau as the moduli space of this D3-
brane on the mirror. Similarly the T-duality will exchange every B brane
on M, with its moduli space and all other physics, with a corresponding A
brane on W.

The special Lagrangian picture has some advantages and disadvantages
over the holomorphic brane picture. Its main disadvantage at present is
that it is much less well understood mathematically, but this situation may
improve.

Sometimes in string theory, one finds that duality can exchange a de-
scription in which some observable receives quantum corrections, with a
dual description in which the corresponding observable is always equal to
its classical value. In this case one is usually much better off using the de-
scription which is always classical for detailed computation, while the other
description retains its primary importance only in limits in which it becomes
classical.

Indeed mirror symmetry is the example par ezcellence, as the observ-
ables relating to the special geometry of the N' = 2 compactified theory,
namely the prepotential and BPS central charges, are classically exact in
the ITb compactification, in which the BPS central charges are just (43),
the periods of the holomorphic three-form, which depend only on complex
structure and are independent of Kéhler moduli. This is in contrast to the
ITa compactification in which the BPS central charges are independent of
complex structure and depend only on Kahler moduli; although they take
simple values in the large volume limit, in general they receive world-sheet
instanton corrections. Physically, mirror symmetry is usually used as a tool
for summing these instanton corrections to derive exact prepotentials and
solve N = 2 string compactifications.

7.5 The decoupling statement

We should ask the same question, whether there is any dual picture in which
the world-volume theory can be determined purely classically, in our D-brane
context. It turns out to have a pretty answer [8]: of the two semi-independent
parts of our N' = 1 world-volume Lagrangian, the holomorphic part and the
D-flatness conditions, one of them will receive quantum corrections while
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the other will not. In the B brane picture, one can see that the holomorphic
structure is exact at large volume, while the D-flatness conditions receive
instanton corrections. In the A brane picture, it is the other way around.

There are various arguments for this. On one side, we can consider the
topologically twisted theory of the open strings ending on the D-branes. This
model only depends on a subset of the CY moduli, the complex structure in
the B model and the Kahler structure in the A model, and since B model
observables do not depend on the volume they must be exact at large vol-
ume. One can show that this topological theory can be used to compute the
holomorphic structure and superpotential of the world-volume theories.

This leaves the questions of how the Kéhler moduli affect B branes, and
how complex structure moduli affect A branes. These moduli directly control
the BPS central charges of the branes and the most striking physics resulting
from this is the variation of the BPS spectrum expressed in lines of marginal
stability: as we vary the moduli, a brane can decay into constituents, or new
bound states can form. As we discussed, this type of behavior is controlled
by the D-flatness conditions, leading to the idea that these moduli couple
only through the FI terms. Since A brane central charges are exact at large
volume (they are the D-particles of IIb theory), this more or less requires
that the A brane D flatness conditions are exact at large volume.

This is explained from a world-sheet point of view in [15]. A simple
space-time argument for this can be made by using the decomposition of the
moduli of the N/ = 2 bulk theory under the N' = 1 supersymmetry of the
D-branes. This argument is dimension dependent and it is most convenient
to make it for the 3 + 1 world volume theories we have been discussing so
far. In this case, B branes naturally live in IIb theory, while A branes nat-
urally live in ITa theory. Let us consider the case of IIb theory; then the
N = 2 vector multiplets contain complex structure moduli, while the hy-
permultiplets contain Kéhler moduli and partner RR scalars. Under N’ =1
supersymmetry, the vector must decompose into a vector and a chiral multi-
plet, so this chiral multiplet is purely NS-NS and is just a complex structure
modulus. The hypermultiplet decomposes into two chiral multiplets and one
can check that each of these contains one real NS-NS Kéhler modulus and
one real partner RR scalar. (The simplest case to check is the related type
I theory which keeps only one of these chiral multiplets).

Now, since the N' = 1 superpotential is holomorphic, if it depends on a
chiral multiplet, it must depend on both of its real components. This is fine
for the complex structure multiplet, but if it depends on a Kahler modulus,
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this means it will depend on an RR scalar, call it C;. Now perturbative
string amplitudes very generally do not produce nonderivative couplings to
the RR fields; for each RR scalar there is an exact symmetry §C; = ¢;.
This contradiction implies that the superpotential is independent of Kéhler
moduli (reproducing our previous claim).

Fayet-Iliopoulos terms are real however and in fact naturally depend only
on one real component of a chiral multiplet. The generic coupling of this
type to a world-volume vector superfield V is

[0 6+ ¢t -V

This is gauge invariant under §V = X+ XT and d¢ = X. This shifts the real
part of ¢, but a world-volume gauge transformation cannot act on the bulk
fields: thus this must be an exact symmetry of the bulk theory. This will be
true only if the real part of ¢ is a RR scalar, and this allows FI terms to be
controlled by Kahler moduli but not complex moduli.

The strongest test of the decoupling statement would of course be to
simply derive the F or D-flatness conditions in the appropriate brane world-
volume theories and check that they are the same in the cases they are
supposed to be. Let us consider this problem in an example. Since the F
flatness conditions are primary, one should start with these, and thus with
the B brane picture.

8 Introduction to the C*/z; orbifold

We start by reviewing the basic picture of strings compactified on this space.
Defining closed strings on this orbifold leads to an AN/ = 2 theory with
marginal operators in the twisted sectors corresponding to a single com-
plexified Kahler modulus. The geometric interpretation of turning these on
should correspond to some operation which fixes the complex structure but
introduces an element of H'!.

Such an operation is known mathematically and is called a blow-up. The
idea is that one can take any point in an n-dimensional complex manifold
and replace it by a CP"~! (henceforth just called P"~!) parameterizing the
various tangent vectors to the original point. This can be made precise by
the following equations in local coordinates z*: to blow up z = 0, introduce
a P~ with homogeneous coordinates w* = Aw’, 1 < i < n, and impose the
equations

2wl = Zut Vi, j.
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Away from z = 0 one can solve for w, while at z = 0 they are unconstrained.
2mi/3  this operation
is well defined on the orbifold and replaces the singularity with a P2. One
can also check that the holomorphic three-form has no zeroes, so the result is
a Calabi-Yau. In fact it is (the total space of) the line bundle M = Op2(—3).

Thus finite energy D-branes must wrap cycles in the P2. Now HP(P?,Z) =
Z for p = 0,2,4 and integrating RR potentials over these three cycles leads
to three conserved RR charges (agreeing with the orbifold) which we can call

DO, D2 and D4 charge.

Since we define our Z?2 orbifold as z* & wz* withw = e

8.1 Line bundles on P?

Let us discuss holomorphic branes on large volume P? a bit (much more
detail can be found in [14], and in fact the mathematical classification of
stable sheaves is completely known in this case). The simplest ones are
the line bundles, which we will denote O(n). These can be defined for
n > 0 as the bundles which admit sections which are degree n polynomials
in the homogeneous coordinates w®. For n < 0, one can either talk about
sections with poles, or define O(—n) as the dual object to O(n) such that
multiplication of sections from the two produces a function. All of these are
stable and correspond to a D4-brane with n units of D2 charge turned on.

From (38), the RR charge of O(n) is given by the Chern character
ch(O(n)) = e, where J = ¢;(O(1)) is the generator of H?(P",7Z) (the
unit of magnetic flux), and we use conventions where the V4 term has been
factored out. The successive terms in the expansion in J (up to o(J?)) are
the D4, D2 and DO charges. Thus for n # 0 these objects also carry D0
charge.

It turns out that these objects already provide a basis for the K theory of
P? (and the K theory with compact support of M). Since M is not compact,
we cannot directly check this from the intersection form, but as suggested in
section 2 we will instead look at the index of the Dirac operator on P2. In
the Kahler context this becomes the index of the 0 operator, which is also
known as the relative Euler character:

x(E,F) =) (-1’ dim H*?(M,E* @ F).
p

The index theorem in this case reduces to the Grothendieck-Riemann-Roch
formula, which is (2) with A(M) = Td(M).
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We now proceed to compute x(O(m), O(n)) = x(O, O(n—m)) = x(O(n—
m)) on PV, For those who want to do this directly from the index theorem
(it is not too hard), we quote Td(PV) = (J/(1 —e~7))N+1.

A shortcut to this is to compute x(O(n)) for large n, by explicitly com-
puting dim H%(O(n)) and appealing to the following vanishing theorem ([21],
p. 159),

Theorem B. Let M be a compact complex manifold and L — M a pos-
itive line bundle (i.e. there exists a connection such that Fj; is everywhere
positive; for P" we just need ¢; > 0). Then for any holomorphic vector
bundle E, there exists pg such that

HY(M,I*®E)=0  Yq>0,u> uo.

to conclude that x(O(n)) = dim H°(O(n)). But we also know from (2) that
x is polynomial in n, so computing it at large n determines it for all n.

Since the sections of Opn(n) are degree n polynomials in N + 1 homoge-
neous variables, we can conclude that

1 N
x(Oen(m)) = < [[(n+).
Ti=1

In particular, the three line bundles O, O(1) and O(2) have

1 3 6
X(O(m),o(n))z(O 1 3) (44)
00 1

which is a unimodular matrix, and thus this set can be used as a basis. For
example, the K theory class of the D0 is determined by solving Ny + Nyie’ +
Noe?? = J? + o(J3) to be

[0.] = [O(=1)] - 2[0] +[0(1)].

We have given the D0 at the point z its mathematical name O,, the structure
sheaf of the point z.

Readers with any familiarity with D-branes on orbifolds will immediately
recognize that the three fractional branes B; of the C?/Z3 orbifold cannot
be these, as these satisfy

[0.] = [B1] + [B2] + [Bs]- (45)

So what are the B; ?
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8.2 Identifying the fractional branes

This problem was first solved by mirror symmetry techniques [10]. The idea
[8] to take expressions for the BPS central charges computed using mirror
symmetry and explicitly compare them between the large volume Dp-brane
basis and a basis at the orbifold point.

We need to discuss the structure of the stringy Kéhler moduli space of
M, i.e. the complex structure moduli space of its mirror. It is a Riemann
sphere with three singularities. One is the large volume limit near which the
BPS charges are (39). The second is the orbifold point, described by our
quiver theory. Finally there is a third singularity called “conifold point” at
which one of the BPS central charges vanishes. Directly continuing this to
large volume, one finds that the corresponding brane is O, the “pure” D4.

As usual in N' = 2 theories, the simplest attribute of a singularity is the
monodromy it induces on the charges. In large volume this is B - B + 1
which takes O(n) — O(n + 1). Around the conifold point it is determined
by the usual considerations involving a massless particle, while the orbifold
point has an associated Zs monodromy which permutes the fractional branes
and the FI terms of the quiver theory.

The results which suffice to determine the identification in this case are
that O is one of the fractional branes (tested by continuing its period to the
conifold point), and the Z3 monodromy expressed in the large volume basis
using mirror symmetry.

We did not quote the final identification of the fractional branes as it
turns out that there is a simpler way to do this.

9 The McKay correspondence

An independent way to identify the fractional branes follows what is called
the “generalized McKay correspondence” in mathematics [28, 5], which we
summarize. It can be physically motivated [17] and agrees with the mirror
symmetry prediction wherever this has been tested.

The idea is that it is relatively easy to geometrically identify a dual set
of “fractional branes” which fill the noncompact space M, and to find their
intersection form with the original fractional branes. This data then turns
out to determine the original fractional branes.

An extended fractional brane can be taken as a D9-brane filling C3 /T.
Now the orbifold projection (25) acts on the spatial coordinates as well; for
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the Yang-Mills connection it is

7 U 9) A (2)7(9) = 11 A;(g9(2)). (46)

This is a twisted boundary condition and its interpretation is rather clear, at
least far from the singularity. It means that scalar matter in the fundamental,
i.e. a section of the associated bundle, must transform as

79(2) = $(g(2))- (47)

A particularly simple case is to take 7 to be the regular representation,
in which case we can consider ¢(z) as a vector-valued field indexed by an
element of ', so (47) becomes

bgn(z) = dn(g(2))- (48)

This bundle is referred to as the “tautological bundle” over the quotient
space. It can be decomposed as a direct sum over bundles R; associated to
irreps vy which if I' is abelian are line bundles; these are the tautological line
bundles.

Both types of fractional brane are labelled by a choice of group represen-
tation, and we can write a quiver theory summarizing the massless fermion
content of any combination of these, again associating each brane to a quiver
node. Let R; be the D9 node corresponding to ; and S’ be the D3 node
corresponding to 7, i.e. the original fractional branes.

The spectrum of (3,9)-strings between a pair (R;, $7) is also determined
by the orbifold projection. In fact, massless fermions with such boundary
conditions (Dirichlet-Neumann boundary conditions in all the transverse di-
mensions) transform like scalars in C2, so this projection acts as

5 H(9)x79(9) = X (49)

so we have n;; = (55 such fermions in each sector. As in section 2, this implies
that the intersection form between the two types of branes should be

(R;, 87 = 61, (50)

This is the natural Poincaré duality on our noncompact space M, between
K (M) and the K theory of bundles with compact support K.(M) (meaning
bundles over compact submanifolds) and we see that it indeed gives a perfect
pairing.
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This relation can then be used to determine the K theory classes of the
S; (and, given more formalism, even identify them as specific holomorphic
objects). We need to know the intersection form for the R; in an explicit
basis to make this definition concrete. For example, if we have

(Ri, Rj) = (I 1)y, (51)
then we can write ' B
for which
(§7, 8%y = I*. (53)

In terms of the K theory classes, (52) becomes
[5°] = T[], (54)

a simple explicit formula for the K theory classes of the fractional branes
given those of the tautological line bundles.

In practice, we will restrict the bundles R; from the total space M to the
exceptional divisor, and then use x(R;, R;) on this space as our intersection
form in these formulas.

9.1 The C*/Z; example

We have done almost all the work already if we can convince ourselves.
that the R; for ¢« = 1,2,3 are in fact the bundles O(i — 1) of our previous
discussion. This can also be seen fairly directly from the quiver diagram
using the fact that the DO is the object (1 1 1).

The moduli space of this theory is then the space M itself (as seen by
the DO0). If we are just interested in the P?, we can solve a simpler problem
obtained by setting one set of the links to zero, say Z* = 0. One already
sees a P? for the moduli space of (say) X' (with appropriate signs of the
FI terms; this went into the choice of which link to set to zero) and it is
easy to check that the constraints Y{*X7 = 0 then determine Y* = X* up to
complex gauge equivalence.

The three branes R; are then distinguished by which node S; their as-
sociated link 1; is charged under. The line bundle interpretation of R; is
then determined by the transformation properties or the allowed values of
1;, which must be a section of the associated bundle. We can identify these
by comparing the gauge invariant observables constructed from each, as we
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know that both X’ and Y* correspond to the homogeneous coordinates.

Only the relative transformation properties are defined; one can define one
of the bundles to be O.

Looking at the figure,

qu

Yi

Fig.4. Dual bases

we see that gauge invariant combinations involving these variables are 9, X*Y? ~
o X* ~ 1p3. This implies that gauge invariant sections must look like 97 ~ 1,
ahy ~ z, and 13 ~ z2, which establishes the claim.
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Thus x(R;, R;) is given by (44). We need to invert it; this is easy if we
realize that it can also be thought of as multiplication of functions a+bz+cz?

by a formal power series (1 — z) ™3, so its inverse is (1 — 2)3 or

1 -3 3
X(Si,Sj) = (0 1 —3) . (55)
0 0 1

We can now implement (54) to find that

[S5] = [R1] = [O] (56)
[Ss] = [Ry] — 3[R =¢’ -3 (57)
[S1] = [R3] — 3[Ry] + 3[R1] (58)

= —3e! +3=e"7 4+ 0o(J3). (59)

We already knew that one of the fractional branes was O (this seems to
be a very general result). The third relation is compatible with

and indeed a large volume monodromy avoiding the conifold point could
clearly turn this into O, so this is consistent with expectations.

The identity of the second brane may not be as obvious but there is
a natural exact sequence which this formula suggests, and a much more
developed framework in which this can be seen to be necessary. It is

0— 5 —0° L 001)—o0. (60)

The obvious map f takes a vector of three functions 1; (a section of ©3) and
produces z'1p;. Thus a section of Sy is a set of functions satisfying z'; = 0.
In fact one can see that this is the cotangent bundle twisted by (tensored
with) a line bundle,

Sy = Q]P’Z(l) = Q]Il’? & O(l)

This is seen perhaps more easily in its dual form
0—0—001)—Tp2—0

which says that a tangent vector to P? can be written as

9 0
v;zjg—i-)\zzﬁ
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where the choice of A (a section of Q) drops out.

Note that S5 is not a coherent sheaf but an “antibrane” to a coherent
sheaf, with D4 charge —2. That such a thing would be necessary was already
clear from (45) and does not seem so remarkable at first, but it is a sign that
we are going to have to start thinking harder about bound states of branes
and antibranes than we have done so far.

10 Moduli spaces of coherent sheaves on P?

Having identified the fractional branes, we are at a point where we can make
nontrivial comparisons between large volume and the orbifold point. Recall
that we have an extremely strong prediction: the holomorphic objects and
their moduli spaces should be literally the same in these two limits.

The simplest thing to compare is the intersection form, or x(E,F) —
Xx(F,E). This is supposed to count massless fermions between pairs of
branes, and the claim is that as we vary the Kahler moduli, the massless
fermions must carry over unchanged between the two limits.

There is a subtlety in this interpretation of (30), however, because we
added fields p® which were not present in the original quiver theory in
making our definition. This interpretation is still correct however because
we did not count the fermions in the links Z¢ which we set to zero to simplify
the analysis. These contribute exactly as the term we added, and in fact
these two fields are “dual” in a clear sense.

Now x(E,F) is (55) at large volume and (30) at the orbifold point,
so indeed the intersection forms agree; in fact we have an even stronger
statement that x (F, F') itself agrees. The simplest argument that this had to
happen is that the dimensions of moduli spaces must agree in the two limits,
and this and the intersection form is enough information to reconstruct x. In
fact this is a very small part of the equivalence between the two descriptions:
all objects, all moduli spaces, and all morphisms must agree as well.

In fact the equivalence between representations of the C3 /Z3 quiver (with
the Z link set to zero) and a large subset of sheaves on P? had been observed
in [14] and follows from a mathematical theorem due to Beilinson.

Without describing this in all detail, let us show how a quiver represen-
tation E can correspond to a sheaf S(F). If all of the matrices in the quiver
representation were zero, we know the correspondence from the above, we
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have
So(F) = ®N;S; = Z Vi ®S;
%

using notations established in section 3.

To incorporate the quiver configuration, we first note that there are nat-
ural maps é* : S; — S;11 for 1 < a < 3. For ¢ = 2 this is clear from (60),
and these are just the maps

éa(wi) = "ba-

For i = 1, one needs to check that O(—1) = A2?Q(1); in other words a
section of O(—1) can be written as a vector of three functions ;) satisfying
zilp[m = 0. Then one has é*(¢(;;)k = Yak-
Because of the antisymmetrization in 1;;}, these maps satisfy the rela-
tions
%6’ + ébet = 0. (61)

Using these, the quiver configuration X[ can be used to construct a
natural operator on Sy(F),

D=3 X"
a

From (61) and (27), one sees that D? = 0, so the operator D has a coho-
mology, which is a sheaf. This is the sheaf which corresponds to the original
quiver configuration. One can show that this relation is one to one; fur-
thermore the construction can be reversed and used to show equivalences
between all morphisms as well.

This provides a very detailed equivalence for many objects in the large
volume limit, and at the orbifold point, and is the sense in which the quiver
theory really does know about all the geometry of coherent sheaves at large
volume. However, on reflection one can see that the set of quiver represen-
tations and the set of coherent sheaves on P? cannot be literally identical.
The simplest counterexample is the D2-brane. This also has a simple repre-
sentation as an exact sequence,

O—>(’)(—1)i>(’)—>(’)g—>0.

Here X is a P! contained in P? and Oy, is its structure sheaf, the D2. The
map f is just linear, f = a;2*, and 3 is the curve f = 0 in P2, leaving Oy,
as its cokernel.
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The main point we want to make about this is that the D2 is a bound
state of a fractional brane with a fractional antibrane, i.e. it is (=1 0 1).
Since we have a complete basis, there is no other way to make it. Physically,
in fact, such a bound state cannot exist at the orbifold point, as its BPS
central charge would have vanished. Thus there is no contradiction, but we
see that the quiver representation framework as we have defined it so far
cannot describe all holomorphic objects at all points in moduli space.

If one’s goal is just to describe each brane separately, there are easy ways
around this problem. For example, the D2 with a flux turned on, Ox (1), can
be described with fractional branes — it is (0 1 2) — and from large volume
considerations we know this has the same moduli space as Ox.. In this sense,
the quiver does give an adequate description of all sheaves, and is used for
this purpose in their classification.

However, one would prefer to have a uniform description of all the branes.
Worse, it looks like we have found a contradiction to the decoupling state-
ment. However the agreement between the objects that do exist in both
limits is so precise, one feels that there must be some way to extend it to
these cases as well. We will eventually find that this can be done, by using
the derived category.

11 Flow of gradings

As one explores the relationship between the quiver description of holomor-
phic branes and the coherent sheaf description, more subtle differences start
to appear.

Let us consider the line bundles. Although x(O(m),O(n)) agrees be-
tween the two descriptions, the groups Ext?*(O(m), O(n)) as defined by the
quiver theory do not always agree with the groups H? (M, O(n—m)) defined
by sheaf theory. (We distinguish the quiver groups with a “*” because there
is also a definition of ExtP(A, B) for sheaves, which is what one would use
in a more general discussion. It is equal to HP(M, A x ®B) if A and B are
bundles.)

This is fairly clear without detailed analysis as the groups Ext?*(O(m), O(n))
do not in fact depend only on n —m. Let us look at some specific examples.
One can check that O(-3) = (6 3 1), O(-2) =(310), O(-1) = (1 00),
O=(001),0(1)=(013), and O(2) = (1 3 6). Then one can compute
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A- B Ezt? EztP*
O(-2) —0O(=1) 300 300

0(0)—O(1) 300 300
0(0) — O(=1) 000 000
0(0)—O(=2) 000 000
O(-2)— O 600 006
O(-1)—O(1) 600 006
O(-1)— O 300003
O0)— O(-3) 001 100.

The last of these is computed using Serre duality, which states that
HP(P?,E) = H?> P(P?, E* ® O(-3)).

These results show a simple pattern and can be summarized by the fol-
lowing rule. Let us introduce a notation where we put the gradings of the
morphisms into the objects, as so:

Ext"(A, B) = Hom(A, B[n]) = Hom(A[m], B[m + n])

Then, to go from Ext to Ext*, all the branes O(n) with n > 0 become
O(n)[1], while all the branes O(n) with n < 0 become O(n)[—1].

The explicit shifts +1 and —1 are determined by the following rule. Let
the BPS central charges of a brane E at large volume be Z(FE;1) and at
the orbifold point be Z(E;2) (we could compare any two points in stringy
Kahler moduli space). We define the “grade” of the brane E at a point z as

1
o(E;z) = —Im log Z(FE; x). (62)
s
The “flow of grading” E — E[A¢] from 1 to 2 is then determined as
Ap = p(E;2) — (B3 1).

In this formula, the branches of the logarithm are determined by analytic
continuation; defining this in (62) requires some additional discussion.

In the example, all of these branes have Z, real and positive, while Z; =
(—n +14V)? is approximately real and negative, but with positive imaginary
part for n < 0 and negative imaginary part for n > 0 (the case n = 0 is
actually n > 0 as we are taking a path with decreasing V and B > 0 to
avoid the conifold point). Furthermore the central charges for the two types
of branes stay on their respective sides of the origin, positive or negative
imaginary part, which leads to the rule we cited.
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Although this rule may seem as if it was pulled out of a hat, it not
only describes these explicit results but can be justified by a combination of
physical and mathematical arguments.

The physical interpretation of the grading ¢ of a morphism Ext?(A, B) is
that it is in fact the world-sheet U(1) charge of the corresponding (bosonic)
open string. Its most direct physical consequence is to determine the mass
squared of the boson, which by conformal field theory arguments must be

1
2
= (¢g-1
m 2(q )

in string units.

This leads to a very direct conformal field theory generalization of the
type of stability argument we gave in our discussion of D-flatness conditions,
and the necessary and sufficient conditions found there [15]. When we bring
two branes (or a brane-antibrane pair) A and B together, we need to check
the gradings of all of the morphisms Ext?(A4, B). If any satisfy ¢ < 1, then
bound state formation may be possible. Conversely, one can show that an
object E goes unstable if the grading ¢ of an Ext?(A, B) between any of its
quotient and subobjects goes above 1. This is because one of the Hom’s in
the triangle (18) would have its degree become negative, but negative U(1)
charges for chiral operators in unitary SCFT are not allowed, a contradiction
which can only be resolved by the decay of F.

12 Antibranes and the derived category

The considerations of variation of central charge we made above have an
even more striking consequence: namely, the distinction between “branes”
and “antibranes” is not universal but in fact depends on where one is in
Kahler moduli space.

This is not to say that there is any ambiguity in claiming that a particular
B is “the” antibrane which annihilates B. However this is the only case
in which there is no ambiguity. In other cases, the only clear distinction
between brane and antibrane is the relative phase of the BPS central charge:
for branes these are aligned or roughly aligned, while for brane and antibrane
they are antialigned or roughly antialigned.

However, the central charges vary drastically as we move around the
moduli space. Let us illustrate this with our example of C;/Z3. We saw
that Z changes sign for O(n) as we go from large volume to orbifold point, so
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in some sense these branes become antibranes. The other fractional brane Ss
of course started out as an antibrane (meaning negative D4 charge) at large
volume and indeed the phase of its central charge does not change during the
flow, Ay = 0, so it stays an antibrane. Thus we have a consistent picture in
which all three fractional branes are simultaneously “branes” at the orbifold
point. However, they are brane-antibrane pairs at large volume, and indeed
using flow of gradings the bosons in S§; — S2 — S3 can all be seen to be
standard brane-antibrane tachyons which one expects at large volume.

Having realized that this distinction is so fluid, we now see that any
description of all of the holomorphic objects which could make sense every-
where in moduli space had better treat branes and antibranes on a very equal
footing, and indeed allow continuous evolution between them. It would seem
rather hard to imagine such a thing, but as it turns out such a formalism
already exists in mathematics, the formalism of the derived category. In-
deed the observation that this should be relevant in describing D-branes on
Calabi-Yau goes back to Kontsevich’s homological mirror symmetry proposal
of 1993 [24], so in some sense this part of the story predates D-branes!

It is possible to motivate (and in some sense “derive”) the derived cate-
gory as a systematic extension of the framework of topological open string
theory to allow the BRST operator to have a general matrix (Chan-Paton)
structure, as is done in [15, 3]. We will not get into this here but instead just
describe the resulting formalism as it will appear in our primary application,
that of finding the spectrum of BPS branes.

One starts with an abelian category of the sort we have been implicitly
describing, of coherent sheaves, quiver representations, or whatever. One
can think of the exact sequences (17) and the associated triangles (18) as
the primary structure of interest. Since the last arrow in (18) was an Ext!,
however, we write it as

B—FE— A— B[l].

Furthermore, since Hom(X,Y) = Hom(X|[n],Y[n]), this sequence can be
continued in both directions indefinitely:

—B—FE—A—B[l] - E[1l]—.... (63)

This is called a “distinguished triangle” and it plays the role of the exact
sequence in the derived category. Note that it contains less information,
however: the exact sequence picked out one object as special (the one in the
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middle), while the distinguished triangle does not. This is an advantage and
a disadvantage for our purposes. It is an advantage because it unifies the
various processes we discussed before of brane-brane and brane-antibrane
bound state formation. It is also a disadvantage because one does not know
which of the objects is the bound state and which are the constituents.
This shows up mathematically in the statement that one cannot define a
notion of “subobject;” indeed every morphism B — E can be completed to
a distinguished triangle (63) for some A (called the “cone” of the morphism).

However, this is the universal structure which remains invariant under
variations of Kahler moduli. The precise statement of the theorem of Beilin-
son we referred to, and many similar results on Calabi-Yau monodromies and
Fourier-Mukai transforms, is that the natural equivalences and monodromy
actions in general do not take sheaves to sheaves, or any other known subclass
of holomorphic objects into itself, but instead act on the derived category.

Variation of the Kahler moduli has only two effects on this structure.
First, it induces the flow of gradings we discussed. This preserves the only
essential constraint on the gradings of the morphisms in (63), namely that
they sum to 1, and the two ideas fit very naturally together. Second, it
changes the stability of objects, in some way generalizing the orbifold point
and large volume phenomena we discussed. We now turn to this.

13 II-stability

The construction of the derived category now gives a precise meaning to the
decoupling statement, at least on the holomorphic side. On the other hand,
the flow of gradings we discussed only depended on BPS central charges, and
since these are geometric in the A picture, if we could base our discussion
of stability only on these, we would have effectively implemented it on the
other side.

Let us say a bit more about this. We have a good (though still some-
what abstract) description of the set of all possible F-flat configurations for
orbifolds and Calabi-Yaus with a Gepner model realization, as the derived
category of representations of a McKay quiver. We could go on to try to
formulate and solve analogous stringy D-flatness conditions. However, the
discussion we gave of how to find N' = 1 supersymmetric vacua suggests a
simpler strategy. The procedure we ended up with was to find F flat config-
urations or objects, but then instead of solving the D flatness conditions, we
instead found a necessary and sufficient criterion for such a solution to exist,
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the #-stability condition. Furthermore, the DUY theorem shows that the
problem of describing BPS branes at large volume can be stated in precisely
the same paradigm, we first find holomorphic bundles or objects and then
check their stability. Finally, we have now discussed the sense which the
holomorphic objects in the B picture are the same in these two limits and
indeed everywhere in Kahler moduli space.

All this suggests that we rephrase the problem. Instead, we will try
to find a stringy version of the stability condition, which reduces to the
conditions we already saw in the large volume and orbifold limits.

Such a condition can be found and is called “II-stability.” We will just
state it without the detailed definitions and arguments, which can mostly
be found in [13, 15, 1].

We start with a simplified version of II-stability which was proposed in
[13] and is adequate for problems not involving both branes and antibranes.
It is essentially to replace the stability conditions (24) at the orbifold point
and (40) with the single condition that F is stable if for every subobject E’
of E,

o(E') < (E). (64)

All of the dependence on Kéhler moduli is contained in (62).

This is good when one can define subobject, but there is no concept of
subobject in the derived category. Furthermore, comparison of the defini-
tions of subobject in large volume and at the orbifold point shows that they
are different (for example, O is a subobject of O(—3) at the orbifold point).
Thus we must get by without it.

A refined version of Il-stability which can treat this problem was pro-
posed in [15, 1]. One has to start with a list of stable objects, which might be
found at large volume or at the orbifold point using the previous definitions.
The stability condition is then the following: two stable objects A and B
cannot participate in morphisms of negative degree. Taking into account the
definition of flow of gradings, this is essentially equivalent to (64), but the
difference comes when we cross a line on which this condition is violated.

One can check that the definition of ¢ in terms of the phases of central
charges means that if one of the morphisms in (63) has grade 0, the others
must be integral. If the three objects involved were stable, one will be grade
0 and the other will be grade 1. The rule is then that the object between
the 0’s decays. This is always the heaviest of the three objects, so physically
there is no doubt that this is the correct rule.
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Conversely, if a morphism between two stable objects drops in degree
below 1, the third element of the corresponding distinguished triangle (the
“cone”) becomes stable. This corresponds to a massless boson becoming
tachyonic.

13.1 Examples

A number of examples of these rules are worked out in [15, 16, 1]. Another
simple example can already be understood at large volume, namely the decay
of a high degree Dn — 2-brane. Consider a compact CY3 and the following
exact sequence:

O—)O(—%)LO(%)—)OE—)O. (65)

The map f is a polynomial of degree N and generically vanishes on a non-
singular hypersurface of degree N, i.e. a brane with D4 charge N. The total
charge is eN//2 — e=N//2 and one sees that this brane has zero D2 charge
but DO charge of order N3.

According to the central charge formula (39), such a brane has central

charge
3

Z=-3NV?+ NT.
Although it is large at large volume, Z = 0 at V = N/+/12 in string units.
If N is large, this is clearly a nonsingular point in moduli space, so the
brane must decay before reaching it. Furthermore, world-sheet instantons
are clearly unimportant at this scale, so there is no loophole in this.
The natural exact sequence which might govern the decay of this brane
is just (65) as we don’t know of any others in general. The map f, as a
Hom, has degree 0 in large volume (this is the brane-antibrane tachyon of
m? = —1/2). However, as we decrease V, the central charges (—N/2 + V)3
and (N/2 + V)3 will vary in precisely the same way we described above for
the line bundles O(n) in C?/Z3, and with the same effect: the morphism f
will increase in degree until it reaches 1, at which point the D4 will decay.
This will happen when these two central charges antialign (so the brane and
antibrane charges align), i.e.

0 = (—N/2+iV)3+(N/2+iV)3 (66)
= @) +3v (), (67)
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which is at V' = v/3N/2, long before the problematic point.

The same thing happens in the known examples with instanton correc-
tions; the “mysterious brane” in the quintic Gepner model, and even the D2
on C?/Z3, are very similar examples.

14 Parting words

In these lectures, we have given an introduction to a framework for study-
ing and classifying BPS branes in string theory compactified on Calabi-Yau
manifolds which, although not complete, has achieved a definite form in
which concrete problems can be solved. This work has also shed new light
on the structure of ' = 1 supersymmetry and provides new methods for
studying N/ = 1 theories, inspired both by the physics of branes and by
modern mathematics.

Developments continue in the various directions we discussed; let us men-
tion a few. First, one should be able to get a much better picture of the
geometry of string-scale Calabi-Yaus from the behavior of the spectrum of
stable BPS branes, and particularly from the D0-brane, in the spirit of “D-
geometry” [11, 12]. A good example of this is that the connections between
topologically distinct Calabi-Yaus which were visible from the linear sigma
model and toric geometry [29, 2] could be rederived by seeing how DO0-brane
moduli spaces change under variation of stability. Second, one should be
able to completely understand Seiberg duality, at least as an equivalence
between classical moduli spaces of dual N' = 1 effective field theories, along
the lines of [4, 18, 9], as examples of Fourier-Mukai transforms, which are
the general symmetries of the category of branes on a Calabi-Yau, and thus
fit them into a larger, stringy framework.

We feel that a very promising longer term direction for this work is
to extend it to describe N/ = 1 compactifications with branes which make
sense as quantum theories (i.e. cancel anomalies), either in type I theory, in
type II orientifold theories, or eventually in more general contexts and with
quantum corrections, perhaps by using dualities with these constructions.
Given our experience with duality, it does not seem unreasonable to hope
that a classical moduli space of D-brane configurations could be equivalent
to the exact quantum moduli space of some (perhaps very different looking)
dual theory. We might look at these constructions as providing “solvable”
N =1 models, somewhat analogous to the role Calabi-Yau compactification
has played in the study of ' = 2 models.



D-Branes on Calabi- You Manifolds 269

It seems to us that systematic exploration of N’ = 1 vacua is the central
problem for string/M theory in the coming years, and it seems to us that this
is the first framework which gives any usable description at all of complete
nontrivial moduli spaces of N' = 1 supersymmetric theories arising from
string theory, so it will be exciting to see if these ideas can be extended in
these ways.
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1 Introduction

Though noncommutative field theories have been explored for several years,
a resurgence of interest in it was sparked off after it was realised that they
arise very naturally as limits of string theory in certain background fields [1].
It became more plausible (at least to string theorists) that these nonlocal
deformations of usual quantum field theories are consistent theories in them-
selves. This led to a detailed exploration of many of their classical and quan-
tum properties. I will elaborate further on the string theory context in the
next section.

One of the consequences of this exploration was the discovery of novel
classical solutions in noncommutative field theories [2]. Since then much
work has been done in exploring many of their novel properties. My lectures
focussed on some specific aspects of these noncommutative solitons. They
primarily reflect the topics that I have worked on and are not intended to
be a survey of the large amount of work on this topic. Some reviews that
give a more comprehensive list of references are [3],[4].

2 The context

Here we will try to provide the context in which the study of noncommutative
field theories and their classical solutions assume importance.

The Importance of Open Strings: The understanding of the role
of open strings in string theory via D-branes, has proven to be a develop-
ment of overwhelming importance. This understanding was instrumental in
correctly counting black hole microstates, one of the dramatic successes of
string theory. One of the surprises was the manner in which a purely gravi-
tational phenomenon, like black hole entropy, was described in terms of open
strings, which at least classically don’t contain closed string excitations like
the graviton.

This connection between open and closed strings was sought to be fur-
ther exploited in the Matrix theory proposal for a DLCQ description of
M-Theory. But it’s most striking manifestation was the AdS/CFT duality
of Maldacena relating large N gauge theories to purely closed string theo-
ries. This conjecture is a reflection of an underlying duality between open
and closed strings which is yet to be completely understood.

Decoupling limits: In the AdS/CFT duality, one takes a certain scal-
ing limit of open string theories living on D-branes in which only the mass-
less gauge theory modes survive and are described by a (super) Yang-Mills
lagrangian. The massive open string states are effectively decoupled by tak-
ing the string scale to infinity. This scaling limit of open string theories is
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conjectured to describe pure closed strings propagating in the near horizon
geometry of the D-branes. The fact that one can gain nontrivial informa-
tion from studying a simple field theory limit of string theory has led one
to examine more closely the various decoupling limits of string theory. (Cf.
Kutasov’s lectures.) Taking decoupling limits of different sorts also help one
to focus more sharply on various aspects of string theory. The idea is to get
a limit which is easier to analyse than the full theory, but which nevertheless
retains enough of the complexity.

Noncommutativity and String Field Theory: In parallel with these
developments, and at first sight unrelated to it, is an ambitious program ini-
tiated by Sen which attempts, among other things, to understand closed
strings in terms of open strings. The idea is to use the formulation of open
string interactions in terms of a cubic string field theory as a complete de-
scription of string theory. This formulation relies on a representation of
open string interactions which consists of gluing them in a fundamentally
noncommutative way [5]. This defines an associative but noncommutative
product of string fields in terms of which the string field action is expressed.
D-branes are nontrivial classical solutions of this action while closed strings
could arise as some kind of quantum excitations.

Since noncommutativity is thus in some sense intrinsic to string theory
(and not just a property of some backgrounds) and perhaps plays a cru-
cial role in understanding the notions that replace classical geometry, it is
worthwhile to try and understand it better.

However, when one takes the conventional field theory limit of open string
theory, the remnant of the noncommutativity is the somewhat trivial matrix
algebra of the Chan-Paton indices. It does not involve the noncommutativity
that comes from the extended nature of the open string.

Noncommutative Field theories: One might therefore ask if there is
a limit of string theory which has the relative simplicity of keeping only a
field theoretic number of degrees of freedom and yet displays the extended
nature of strings. In particular, it should capture some of the nontrivial
noncommutativity of open string interactions. It turns out that the answer
is yes. One can obtain a nonlocal deformation of field theories by taking a
decoupling limit of open strings in a large magnetic field [1], [6]. The massive
string modes decouple leaving a kind of elastic dipole object.

These resulting noncommutative field theories will be the main topic of
these lectures.

Noncommutative solitons: More specifically, we will study the classi-
cal limit of these noncommutative field theories and find finite energy soliton
solutions that have no counterpart in local field theories. Among the nice
features of these solitons is that they are fairly universal and more or less
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insensitive to the details of the theory. They exhibit various novel features
like nonabelian enhancement of symmetry when they are coincident.

In fact, these solitons are really the D-branes of string theory manifested
in a field theory. This is somewhat surprising as it does not happen that
you can find D-branes as finite energy excitations in a conventional field
theory limit of string theory. The simplicity of noncommutative solitons
implies that one can study many properties of D-branes very explicitly in
this context.

Therefore the motivation for studying these solitons will be to use them as
a simple set of probes of stringy behaviour in a well controlled manner. Much
of the applications have been in the context of issues of tachyon condensation
in open string theory. We can however also use these solitons to probe issues
of how D-branes see space time, for instance.

Finally, the field theoretic aspects of these solitons are interesting in
themselves and might perhaps have applications in very different contexts
such as in the Quantum Hall effect.

3 Strings in a large magnetic field

As a prelude to studying strings in a large magnetic field, let us look at point
particles in a large magnetic field.
The action for (nonrelativistic) point particles reads as

1
S = /dt (me'uab“ + eB,w:v“:i:”> . (3.1)
The conjugate momentum II, to z* is
0, =mz, +eB,,z". (3.2)

In the limit where the energy w < %, the canonical commutation relations
become simply

[z#,2] = «(B~ L)y, (3.3)
e
Thus at energies much less than the cyclotron frequency M, when one is

m
in the lowest Landau level, one effectively has noncommuting coordinates.

This is why the physics of the quantum hall effect displays some features of
noncommutativity.
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Now write the action for an open string in a constant magnetic field. We
assume that the open string ends on a p brane in some of whose worldvolume
directions the magnetic field is switched on.

S =

1
inc /E d’o (guuaaX HOUXY — 2mic! B, e 8, X" 0 X”) . (3.4)

The additional term involving B is really a boundary term which couples to
the charges at the end of the open string like a constant magnetic field.

It leads to boundary conditions in the directions along the brane which
are mixed.

(9O X" + 2mic! B8, X") |9z = 0. (3.5)

One can write down the Green’s functions on the disc worldsheet with these
boundary conditions. What we will need is the particular case when the X’s
are at on the boundary of the disc (parametrised by 7).

< XH(1)XY (1) >= —/G* In(T — 7')® + %@’WG(T - 7). (3.6)
Here
uv
o _ L
g+ 2na’!B” g — 2wa'B
ow - —@ray(—Lt p L )" (3.7)
B g+2nd’B g—2nd'B ’

are usually called the open string metric and the noncommutativity param-
eter [6]. The open string metric is what determines the mass shell condition
for open string states. © is called the noncommutativity parameter since
the above OPE essentially implies that

[XH(r), X" (7)] = 1O, (3.8)

Note that © has dimensions of length?.

There is one more ingredient, namely that the effective coupling of open
string modes is also rescaled by a factor that depends on the magnetic field.
We will not need the exact expression until later.

The noncommutativity parameter leads to an extra term in the OPE of
open string vertex operators etk X

eikl-X (T)eikQ-X(TI) ~ (7_ _ TI)Qa’G””klp,kQ,/e*i%@"“’kl“kzy ei(k1+k2)-X (7_/) + ...
(3.9)
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-1 v . o,
The additional term e *29""%1:k20 can be understood in position space as
giving a nonlocal interaction which is expressed in terms of the Moyal prod-
uct.

(f % g)(x) = &30 %% f(2)g(a") g (3.10)

In general, there will be such a phase factor for all vertex operators implying
that the effect of the magnetic field on the effective action for open string
modes in spacetime is completely captured by replacing all local products
by the Moyal products, if we additionally remember to make all metric con-
tractions with the open string metric (note that it is the open string metric
that appears in (3.9) in the anomalous dimension of the vertex operators).

We can now take the equivalent of the limit of a large magnetic field,
namely take o/|B| > 1. Here |B|? = By, B,;g*?g*?. We will in addition
demand that this limit is taken keeping the open string metric G*¥ and ©*
finite. This requires taking the string scale to infinity (o/ — 0). In the
absence of the magnetic field this would mean decoupling all the massive
string modes giving a field theory of the zero mode (if we keep the coupling
constant finite).

With the magnetic field, as we have seen the only effect is to replace local
products with the moyal product. The terms involving massive modes (both
open and closed) then decouple for the same reason as in the case without
a magnetic field. The lowest open string modes then interact via a nonlocal
deformation of ordinary field theory.

4 Scalar noncommutative solitons

With these motivations we will start our study of semiclassical noncommu-
tative field theories. This section closely follows the discussion in [2]. The
simplest example is a theory of a single scalar field in 2 4+ 1 dimensions with
noncommutativity in the two spatial directions. Though this does not nec-
essarily arise as any decoupling limit of string theory, the classical solutions
we find are generic to noncommutative field theories.

We will parametrize the spatial R? by complex coordinates z,z. The
energy functional for static configurations is

1
EF / P2 (0,60:6 + V(D)) (4.1)

where d%z = dzdy. Fields in the action are multiplied using the Moyal star
product (which reads in complex form as),

(F % 9) (2,7) = e3P0 =099 § (5 2)g (2, 2')]_or. (4.2)
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Note that since [ f*g = [ fg, the Moyal product drops out of the quadratic
term in the action.

Before we look for classical solutions to this action, let us recall that the
scalar theory without noncommutativity does not have any lump solutions.
This is actually true for any bounded potential in spatial dimension greater
than one, and follows from a simple scaling argument of Derrick [7]. If ¢o(z)
be an extremum of the energy functional (4.1) (with 6 = 0), then consider
the energy of the field configurations ¢ (z) = ¢o(Az).

B = = [ a% (G0m00) + V()
= 5 [ as (52 POR@Y A PV (@) 4

Since ¢g(z) is an extremum, we require agg\)\) Ia=1 = 0. that is,

[ 472 (50 = 2@ (@) + DV (ga(o)) =0,

For spatial dimension D > 2, for a potential bounded from below by zero,
the only way this can be true is for the kinetic and the potential terms to
separately vanish. There are therefore no nontrivial configurations. Note
that this argument fails once one includes higher derivative terms.

We now seek finite energy (localized) solitons of (4.1) for nonzero 6. Since
no solutions exist for # = 0 (4.3), we begin our search in the limit of large
noncommutativity, —oc. It is useful to non-dimensionalize the coordinates
2—2V0, 7—7zv0. As a result, the x product will henceforth have no 6; i.e.
it will be given by (4.2) with § = 1. Written in rescaled coordinates, the
dependence on 8 in the energy is entirely in front of the potential term:

B= glg / 22 (%(8(;5)2 + 6V(¢)*) (4.4)

In the limit 6—o00, with V held fixed, the kinetic term in (4.4) is negligible
in comparison to V (¢), at least for field configurations varying over sizes of
order one in our new coordinates.

Our considerations apply to generic potentials V(¢), but we will, for
definiteness, mostly discuss those of polynomial form

T be
V(g) = %m%ﬁ2 +) 7.’¢J. (4.5)
j=3
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4.1 Solutions in the § = co limit

After neglecting the kinetic term, the energy

0
E = . / 22V (¢, (4.6)

is extremised by solving the equation

(g—‘;)* = 0. (4.7)

For instance, for a cubic potential one has to solve an equation of the form
m2¢+ bypxp = 0. (4.8)

If V(¢) were the potential in a commutative scalar field theory, the only
solutions to (4.7) would be the constant configurations

where \; € {A\1, g, -+, A} are the various real extrema of the function
V(z). The derivatives in the definition of the star product allow for more
interesting solutions of (4.7).

In order to find all solutions of (4.7) we will exploit the connection be-
tween Moyal products and quantization. Given a C* function f(g,p) on
R? (thought of as the phase space of a one-dimensional particle), there is

a prescription which uniquely assigns to it an operator f(?j, D), acting on
the corresponding single particle quantum mechanical Hilbert space, H. It
is convenient for our purposes to choose the Weyl or symmetric ordering

prescription

F@m = s [ EEFkye it (4.10)
where
Fio) = [ dtactartion p(q.p), (411)
and

[q,p] = 1. (4.12)
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With this prescription, it may be verified that

% / dpdgf(q,p) = Trf, (4.13)

and that the Moyal product of functions is isomorphic to ordinary operator
multiplication

Fa="rx*g. (4.14)

In order to solve any algebraic equation involving the star product, it
is thus sufficient to determine all operator solutions to the equation in .
The functions on phase space corresponding to each of these operators may
then be read off from (4.10). We will now employ this procedure to find all
solutions of (4.7).

It is easy to see that ¢ = AP is a solution to V'(a) =0, if P is an
arbitrary projection operator on some subspace of H and if ); is an extremum
of V(z). The energy of this solution is, using (4.13),

270 ~ 270

E= g—Q’I‘rV(qﬁ) = 7V(AZ-)TIP. (4.15)

Thus the energy is finite if P is projector onto a finite dimensional subspace
of H.

In fact, you can convince yourself that the most general solution to (4.7)
takes the form

$=1 a;P; (4.16)
i

where {P;} are mutually orthogonal projection operators onto one dimen-
sional subspaces,

PPj=6;jP;; TryPi=1, (4.17)

with a; taking values in the set {);} of real extrema of V(x).

From now on we will restrict ourselves to a potential with one nontrivial
minimum A other than the one at the origin.

We have a huge infinity of solutions of the form AP. To see what they
mean, let us translate them into position space. It will be convenient for
this purpose to choose a particular basis in H. Let |n) represent the energy
eigenstates of the one dimensional harmonic oscillator whose creation and
annihilation operators are defined by
q—}—zp; at =172 (4.18)

V2 V2
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Note that a|n) = \/n|n — 1) and af|n) = v/n + 1|n + 1). Any operator may
be written as a linear combination of the basis operators |m)(n|’s, which, in
turn, may be expressed in terms of a and a' as

tm n

@ eate 2. (4.19)
vm! vn!

where double dots denote normal ordering. We will first describe operators
of the form (4.16) that correspond to radially symmetric functions in space.

[m){n| =:

As ata ~ g, operators corresponding to radially symmetric wavefunctions
are functions of aa. From (4.19), the only such operators are linear com-
binations of the diagonal projection operators |n)(n| = 2 : afme=a'agn ..
Hence all radially symmetric solutions of (4.7) correspond to operators of
the form ¢ = A > ap|n)(n|, where the numbers a,, can take values 0 or 1.

It is not difficult to translate these operators back to position space [2].
One finds

[n)(n| = ﬁ / d2kean(%2)e—i(kza+kz“*) (4.20)

where L, (z) is the n'* Laguerre polynomial. The field ¢, (z,y) that corre-
sponds to the operator ¢, = |n)(n| is, therefore,

2 2 . 9
(2 = 2% + ) = ﬁ /koean(%)e—lk-m (1) e L, (22).
(4.21)

r2

Note that ¢o(r?) is the simple gaussian 2e~
infinite number of real radial solutions, given by

In summary, (4.7) has an

Z anPn (7_2) (4'22)
n=0

where ¢, (r?) is given by (4.21) and each a,, takes values either 0 or 1. These
solutions will have finite energy if only a finite number of the a,, are nonzero,
as is evident from (4.15).

We also see from (4.15) that the action at § = co has a large symmetry
a — UaUT, where U is any unitary operator acting on H. This U(o0)
global symmetry generates new nonradially symmetric solutions out of the
radially symmetric ones. The most general projection operator ¢ = AP, of
rank k, is unitarily related to a projection operator which is diagonal (in the
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SHO basis), that is of the form )\(Zi-:ol li >< i|). And the corresponding
solutions are all degenerate in energy. In fact, their energy E = 2§—§9V(/\)
is k times the energy of the minimal energy soliton k = 1. This suggests an
interpretation as k solitons which will become clearer as we proceed.

It is remarkable that the energy of the soliton is completely insensitive
to the value of the scalar potential at any point except ¢ = A. Thus the
mass of the soliton is unchanged if the height of the barrier in V' (¢) (between
¢ = X and ¢ = 0) is taken to infinity while V'(}) is kept fixed. This is true
even though ¢¢(r), the solitonic field configuration corresponding to A|0)(0|,
decreases continuously from ¢ =2\ at r =0 to ¢ = 0 at r = oo! It is also
striking that the form of the solutions themselves are remarkably universal
too, more or less independent of the details of the potential.

4.2 Stability and Moduli Space at § = oo

Because of the U(oco) symmetry it suffices to examine the stability of radial
solutions of the form

k—1
$(r?) =X ¢n(r?) (4.23)
n=0

to small fluctuations. Since any U(oo) rotation does not change the energy of
our solution (4.23) it is sufficient to study the stability to radially symmetric
fluctuations. These are most conveniently parameterized as deformations
of the eigenvalues. The energy for an arbitrary radially symmetric state

P(r?) = Yorto Cntn(r?) is

The solutions with ¢, € {\,0} are manifestly local minima of E, as A and 0
are minima of the function V(z). Thus the solution of the form (4.23) (and
all solutions unitarily related to it) are stable to small fluctuations. (If any
of the ¢y, took the value of a local maximum of V' (z), then it is equally easy
to see that while the corresponding ¢(r2) would be a solution to (4.7) it is
not stable to small radial fluctuations.)

The stability of the gaussian soliton Agg(r?) may qualitatively be under-
stood as follows. Since Agg(r?) = 2Xe " is a Gaussian of height 2, far away
from the origin, ¢o(x) = 0, but near x = 0, it is in the vicinity of the second
vacuum. In other words, the static solution corresponds to a bubble of the
“false” vacuum. The area of the bubble is of order one (or 6 in our original
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coordinates), the non-commutativity scale. In a commutative theory such a
bubble would decay by shrinking to zero size. Noncommutativity prevents
the bubble from shrinking to a spatial size smaller than v/#. In order to
decay, ¢o actually has to scale to zero - but that process involves going over
the hump in the potential and so is classically forbidden.

The U(oco) symmetry of (4.7) results in there being an infinite num-
ber of zero modes for a given solution with energy 27kV(A). This infinite
dimensional moduli space can be mathematically characterised as follows.
The rank k hermitian projection operators on H (or equivalently, the k-
dimensional hyperplanes in H) form a manifold known as the Grassmannian
Gr(k,H), which can also be described as the coset space

U(o0)
U(k) x U(co — k)’

(4.24)

where U(oo) acts on the entire space, while U(co — k) acts only on the
orthogonal complement of a k-dimensional hyperplane.

5 Scalar solitons at finite 6

So far, by working at infinite #, we have found an infinite number of solutions.
This is because we have neglected the kinetic energy. As we will now see, the
kinetic energy breaks the U(co) symmetry that the potential term possessed.
Including it in a systematic expansion in powers of %, we will find that most
of the solutions no longer remain. However, we will find to leading order
in %, that there is an interesting finite dimensional (approximate) moduli
space. These will in some limits correspond to separated gaussian solitons.
Apparent singularities in this moduli space are resolved in a very stringy
way. The discussion in this section is largely based on [8].

The kinetic term can also be written in terms of operators if we use the

Weyl-Moyal correspondence for derivatives

L
0, — \/9[ - (5.1)

The energy functional then reads as

E= z_gm (1a. BB +0V(D)) (5.2)

This no longer has the symmetry under $ — U@UT.
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5.1 The expansion in

S

If m? is a typical mass scale of the theory one can define a perturbation
expansion in 1/(#m?) for the energy and solutions of the equations of motion
of (5.2),

~ ~ 1 ~
¢ = ¢0+W¢1+"'a

1
E = 0m2E0+E1+WE2+---, (5.3)

where $0 = AP is a solution at infinite 6. The first correction to the energy
is just the kinetic term:

E1[¢o] = 27 Tx[a, do][o, a']. (5.4)

Due to the fact that V' (GEO) = 0, F, is independent of the correction $1.

A reasonable guess would be that a minimum of the kinetic energy is
achieved only by rotationally symmetric solutions. However, the story is not
so simple. It turns out that there are non-rotationally symmetric minima of
E; [8]. Indeed, the full moduli space M, has an interesting structure, large
enough to allow non-trivial dynamics. This unexpected fact is a consequence,
not of any symmetry possessed by E1, but rather of a Bogomolnyi-like bound
that it satisfies:

B1[§o] = 272 Tx(a, P)[P,af) = 2002 T (P + 2F(P)F(P) ) > 27Xk (5.5)
where
F(P) = (1 - P)aP. (5.6)

The bound is saturated when F(P) = 0, in other words when the image
of P is an invariant subspace of the operator a. The projection operators
satisfying this condition define a finite dimensional subspace M, of the space
of all projection operators. The field configurations corresponding to these
projection operators will have a natural interpretation in terms of separated
solitons.

Starting with the simplest case of kK = 1, it is clear that any 1-dimensional
invariant subspace of ¢ must be spanned by an eigenstate of that operator,
i.e. by a coherent state. We’ll use an unnormalised version of coherent
states defined by |z) = expa!z|0) obeying a|z) = z|z). The corresponding
projector az = |z)(z| is a gaussian soliton localised around z when viewed in
position space.
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For higher k£ the one can similarly construct invariant subspaces spanned
by k different coherent states |z;). We can think of this as k solitons, each
with independent collective coordinate z;. (Indeed, if the z; are far from
each other, then the respective coherent states are nearly orthogonal and
the corresponding field configuration is approximately the sum of distant
Gaussian solitons.) And the moduli space is, at least naively, the k-fold
symmetric product of the single-soliton moduli space, Sym*(C) = C*/S;
(symmetric because permuting the z; leaves the configuration unchanged;
the solitons are like identical particles).

Examining the potential singularities when the solitons come together
will give us some intuition about how these solitons see space time. Consider
the case k = 2 after factoring out the centre of mass degrees of freedom. The
description in terms of coherent states {|z),|—z)} becomes bad when z — 0.
But this is the fault of our description. A basis which has a smooth limit as

z — 01is {|z), %} which approaches {|0),af|0) = |1)}. Thus there is no
singularity when two solitons come together — one ends up in the radially
symmetric configuration |0)(0] + |1)(1|. One can study the metric on the
k soliton moduli space and find that it is Kahler. An explicit form of the
Kahler potential can also be given.

The situation becomes more interesting in higher dimensions. For in-
stance, consider noncommutativity in four spatial directions. Then the
Moyal-Weyl correspondence maps the fields in four dimensions to opera-
tors in the hilbert space of a particle in 2d. Again the SHO basis spanned
by the 2d oscillators aj{, a% is the useful one to work in.

As before, projection operators (in this 2d hilbert space), are solutions to
the equations of motion at § = co. Inclusion of the kinetic energy at leading
order in i leads to a lifting of the degernacy. Nevertheless, a bogomolnyi
bound similar to (5.5) implies that there is a finite dimensional moduli space
parametrised by projection operators satisfying Pa,P = a,P (r = 1,2).

Again, such projectors can be parametrised by the subspaces spanned by
{1Z:)} (i = 1... k). The moduli space is naively Sym*(C?). What happens at
the coincidence locus is very interesting. When two solitons come together,

|2

lim span{|7),| — Z)} = span {\0,0),7 . &'T|O,O)} , where ¥ = lim
zZ—0 Z

70 |

— Ny

5.7)

Thus the “origin” of the relative moduli space is not a single point, but
rather a IP! parametrized by the complex direction 4 along which the two
solitons came together. This is in contrast to the d = 1 case. This is also
exactly how string theory resolves the C?/Z, singularity. Namely, by intro-
ducing an S? at the singular point. Here we see that the geometry seen by
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the noncommutative algebra of projection operators is very different from
that seen by functions. Somehow, this is perhaps a hint of how noncommu-
tative structures in string theory will modify our notion of geometry. Before
closing this discussion, it should be mentioned that going to higher than
4 spatial dimensions introduces even more weird behaviour. The moduli
spaces seen by the solitons are not even smooth — they are spaces known to
mathematicians as Hilbert schemes.

The moduli space My, is also useful in constructing solitons on quotient
spaces. For example, in two dimensions one can write down stable solitons
on IR?/Z;, the cylinder and torus. One small surprise is that stable non-
commutative solitons do not exist when the area of the torus is smaller than
276. The torus becomes too small for the solitons to fit on.

6 Noncommutative solitons as D-branes

In this section we provide a brief sketch of how noncommutative solitons
in the scalar theories show up as D-branes in studies of tachyon condensa-
tion [9], [10].

In the bosonic string theory there are D-branes of all dimensions which
are however unstable — they have a real tachyon on their world volume. In
particular, the space filling D25 brane is unstable and reflects the instability
of the bosonic open string theory in 26 dimensions. Ashoke Sen has made a
series of definite conjectures [11],[12] about the fate of the tachyon. Firstly,
the vacuum that the tachyon rolls down to, is expected to contain no open
strings. Secondly, the difference in energy per unit volume of this vacuum to
the original unstable one is expected to be equal to the tension of the D — 25
brane. Thirdly, the lower dimensional D-branes are solitonic excitations of
the tachyon potential.

To make the connection with the noncommutative scalar field theories
we have studied thus far, we consider the effective action for the tachyon
field, obtained by integrating out the massive string fields. It is expected to
take the form

S = g/d%x\/ﬁ (%f(T)g’“jauTa,,T —V(T) +-- ) : (6.1)

S

Here V(T) is a general potential having an unstable extremum at 7' = T
(the unstable vacuum) and a minimum chosen to be V(0) = 0. The constant
C = gsT55 is independent of g;. Sen’s conjecture then requires V(1) = 1.
The terms that are omitted are higher derivative terms and terms involving
the massless modes.
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Let us now turn on a B field in some of the spatial directions of the
theory. In the presence of a B-field, as mentioned in section 3, the action is
modified to

S = GQ / d*zV @ (% f(T)G*™8,Td,T —V(T) + -- ) . (6.2)
s *

Here it is understood that there is noncommutativity only in the directions
where the B field has been turned on. Now, the advantage of taking the limit
of a large B-field is that derivative terms can be neglected. The solitons of
this theory are precisely the noncommutative solitons we constructed earlier.
According to Sen’s conjecture, these should be the D-branes of the bosonic
string theory.

The simplest NC soliton solution takes the form of T' = Ty¢o(r?). Where
¢o(r?) is the gaussian localised in two of the noncommutative directions.
This would be a codimension two object and a candidate D23 brane. It’s
energy is given by QZCV(TO) [ d**2v/G. We can now use Sen’s conjecture
which implies, in our convention, that V(7p) = 1. In terms of this, using
the dictionary between open and closed string quantities, it is then possible
to verify that the energy density of the above solution is exactly that of the
D23 brane. It is lucky that the only information needed to obtain the energy
of the noncommutative soliton is the value of V' at the extremum T which is
one piece of the potential which we have some information about from Sen’s
conjecture. Using noncommutativity in additional spatial directions, it is
also possible to obtain branes of all even codimensions as noncommutative
solitons, together with the right tension.

Moreover, by considering a projector of rank k£ one obtains multiple soli-
tons which have the interpretation as multiple D-branes. The fact that their
energy is k times that of a single soliton is a reflection of the fact that, in
classical open string theory, D-branes exert no force on each other.

The structure of multiple noncommutative solitons now gives a nice re-
alisation of the nonabelian spectrum of fluctuations around coincident D-
branes. This essentially follows from the fact that a projector like P, =
Zf:_ol i) (7| leaves an unbroken U (k) group. The reader is referred to [10] for
details.

The noncommutative solitons also exhibit the instability of the corre-
sponding D-branes. Since the solitons correspond to an extremum of V(T')
which is a maximum, one finds for a rank k soliton, a tachyonic mode which
transforms in the adjoint of U(k). It’s mass can again be compared with
that on the D23 brane and one finds agreement.

Thus the identification of D-branes in the bosonic, as also in the type 11
theories, with noncommutative solitons provides a potentially powerful tool
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to study many properties of D-branes in a easily controlled manner. In the
next section we will see another application of this philosophy.

7 Noncommutative solitons in gauge theories

We will now consider noncommutative Yang-Mills theories in which there
are unstable solitons which have no counterpart in the commutative theory.
The simplest theory to study will again be one in (2 + 1) dimensions. The
soliton in this system will have an interpretation as a D0 brane localised
on a noncommutative D2 brane worldvolume. The process of the D0 brane
dissolving into the D2 brane can be explicitly studied in the NCYM the-
ory. There is a quartic tachyon potential which allows one to follow the
condensation of the tachyon.

7.1 Noncommutative Yang-Mills

The noncommutative version of Yang-Mills theory (we will restrict ourselves
to the U(1) version for simplicity) can be written as

1 von B
S=- v / G" GV F,y % By, (7.1)

where
Fu = 0,4, —8,A, +i(A,x A, — A, A,) (7.2)

is the noncommutative field strength, expressed in terms of 21\, the noncom-
mutative gauge field. This theory has noncommutative gauge transforma-
tions

JA, = Oue+i(ex A, — A, % e). (7.3)

Note the similarity to nonabelian gauge theories and the fact that the U(1)
noncommutative theory is not free.

This Lagrangian can be written in terms of operators using the Weyl-
Moyal correspondence. In the (241) dimensional case, it is useful to define

~ af
C.=C =i+ o,

These shifted gauge fields have the nice property that they transform covari-
antly under gauge transformations 6C = i[e, C] (just like covariant deriva-
tives).

c,=C. (7.4)
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The action takes the simple form (fixing temporal gauge Ay = 0)

_g= 2 / diTr

(7.5)
9% M

2
— 8,00,C + ([C O]+ ;)

The field strength component F,; is proportional to the combination ([C, C]+
%). We have “shifted away” the spatial derivative terms and obtained a ma-
trix model-like action.

7.2 Flux lumps

The equation of motion for (7.5), for static solutions, is simply
[C,[C,CT=0. (7.6)

In the gauge that we are working in, we should also ensure that the Gauss’
law constraint is satisfied

(€, 8,0 + [C,8,C] = 0 (7.7)

obtained by varying (7.5) with respect to Ay prior to gauge fixing, and then
setting Ag = 0. A trivial solution to both is C = a!. This corresponds to
the vacuum with zero gauge field. We would like to find nontrivial solutions.
A class of such solutions labelled by a positive integer m > 0 were found
in [13] and [14].
C =Cy=(SHmals™. (7.8)
where the shift operator S = >"°,[i)(i + 1]. S obeys
sst=1, sfs=1-p
smshm =1, (shymsm =1-pP,_, (7.9)

where P, 1 = E;"Bl 1)(i| is the rank m projector. One can actually can

easily see that there is a generalisation of (7.8) where one adds Y /" ' @la){al
to Cy. The ¢, are arbitrary complex numbers. The matrix Cy then takes

the block form
. Co 0
a- (2 9) o0

where ¢y is an m x m diagonal matrix with eigenvalues c®.
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The flux operator —iF,; = Fy evaluated on Cj is given by
OFy =1+ 0[Cy, Co] = 1 +0(SH™[al,a]S™ = P,_y. (7.11)

For an arbitrary configuration, the normalized integral of the flux over the
z plane may be rewritten as a trace over the operator F'

c1 = i F =0TyF; (7.12)
2w

from (7.11) and (7.12) Cy carries m units of flux. Since S™|a) = 0 = (a|(ST)™
(a=0...m-1)

[Co, Fo] =0, (7.13)
and Cj is a static solution to the equation of motion (7.6). Its energy is

B 270 mm

_ —rI\I_FQ _
203 s ’

= . .14
20 (7.14)
(If one has a nontrivial open string metric G = Gz, then there is an addi-
tional factor of G in the denominator.) Thus the solution we have found is
finite energy with m > 0 units of flux.

The solution can be generalised to the supersymmetric version of the
noncommutative gauge theory. The fermions are not excited in the solu-
tion. The additional scalars corresponding to transverse fluctuations can
take arbitrary diagonal values. See [15] for details (also [16]), [17]).

7.3 Fluctuation spectrum

The spectrum of quadratic fluctuations about the solution Cj is easy to
compute. It is useful to parametrise the fluctuation dC in C = Cy 4 6C as

AW
o= (A1) -
We then expand (7.5) to quadratic order in the fields A, W, T, D and diag-
onalize this quadratic form. We find that A is a massless field, while the
spectrum of D is exactly that of the vector about the vacuum — these can
be identified with the bulk modes on the D2-brane.

The interesting case is that of the offdiagonal fluctuations. One set of
linear combinations of the of the W and T are pure gauge, and are set to
zero by the Gauss Law constraint. The other set form a tower of states.
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Each energy level of the tower has m complex fields in the fundamental
of U(m). The base of the tower is tachyonic with the m complex modes
(a|T|m) (a=0...m —1) of m®> = —1. Thus the solution is unstable as one
might intuitively have guessed from the fact that flux prefers to be spread
out to reduce energy.

The rest of the tower has a harmonic oscillator spectrum, with energies

mi:@, k=1,2,... (7.16)

All these modes can be identified with the modes of 0-2 strings.

Again, the transverse scalars and fermions in the supersymmetric case
can also be taken into account.

7.4 Comparison with string theory

Since the (2 + 1) dimensional noncommutative Yang-Mills theory describes
the worldvolume theory of a D2 brane in the presence of a large B field, we
expect a flux solution to be a zero brane. We can make precise tests of this
hypothesis.

Firstly, one can compare the energy of a localised zero brane on the two
brane with (7.14) obtained from the gauge theory. We will determine the
difference between the energy of this configuration and one in which the 0-
brane is completely dissolved in the 2-brane. For this purpose we work in
commutative variables. Let the constant value of F' be equal to B after the
0-brane has dissolved into the 2-brane. The energy of this dissolved state is

E = ;3 / d*z+/det (g + 27/ B)
gstr (27)2 ()2

= ;I)?’/d%;\/g?—l— (2wa/ B)?. (7.17)

(27T)295tr(a

In the limit of large B field (7.17) may be expanded as

[ i/dZB 1+1972+ (7.18)
gy ] O 2(2ra’'B)? )" '

Removing a unit of D0-brane charge from the constant value of the back-
ground F field on the brane, (% [ d?zAF = —1) lowers the energy of the

2-brane by
1 1 ¢
AE=—"_(1-—2__). 7.19
vl (RETEE ) (719
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Thus
Bona = B(DO) — A= —_ _aB—— 1 __9 (1)
gstrVo! 295V (2T B)?
On using the dictionary between open and closed string quantities,
1
"= 3
G = M (7.21)
g
2y = gstr27r(o/)%B.

9

one finds (7.20) is precisely the same as (7.14).
In fact, the spectra of fluctuations we found in the previous subsection
can be exactly matched to string theory as well. The free 0-2 conformal field
theory has a hagedorn spectrum of stringy states. The moding of the 0 — 2

oscillators is shifted by
1 2wa’ B

=1-— b=
Y b’ g

(7.22)

in the scaling limit of a large B-field. Most of the oscillator states have
masses of order the string scale and thus decouple. There is however a single
tower of massive string states generated by the oscillator a_;, whose energy
spacing ﬁ = ﬁ, is the spacing of the states we found in the gauge theory.
A careful analysis reveals a tachyon of exactly the expected mass, as well as

the massive tower m? = (gl;:,lb) which matches with (7.16).

7.5 Tachyon condensation

The 0-2 system we have studied in this paper also has a world-volume
tachyon, and can be regarded as a toy laboratory for the more difficult
and interesting D D system. In the 0-2 context there is a small parameter,
namely the ratio of the string scale to the noncommutativity scale, which
can be used to control the analysis. A similar logic was used in [18] to study
tachyon condensation of a large number of D0 branes in a D2 brane.

Let us consider the case of a single flux m = 1. The initial state C =
(S1)a'S decays to the final state C = a! on exciting the tachyonic mode
T = C1p. Note that the tachyonic mode and the nonzero matrix elements
in the initial and final state are all of the form Cj;;;. One might thus
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suspect that it is possible to set all C' matrix elements not of this form to
zero through the entire process of tachyon condensation. This is indeed the
case!, as (7.5) admits a consistent truncation to these modes.

We can then easily expand the action out in terms of the fluctuations T
and the 2 — 2 modes Cjy1,; = D;;—1 (in the notation of (7.15)). Since the
gauge theory action is quartic in the fields, the potential for 7" and D’s will
also be quartic. In fact, it takes the relatively simple form (setting § = 1
temporarily for convenience: we can reinstate it at the end using dimensional
analysis)

Voo T

2
9y m

2
+> [|Di,i—1 + Vi’ = |Dijri +Vi+ 1P + 1]
im1

(TP =1 + [|T2 = | D1 + 11 + 1)

(7.23)

An unstable extremum of (7.23) that corresponds to an undissolved 0-brane
on the 2-brane is

T=D;;—1=0. (7.24)
It decays into the stable extremum

IT|=1, Dii1=+i+1-i. (7.25)

It is easy to see that (7.25) corresponds to C' = af, the 2-brane vacuum.
It is possible to integrate out the fields D;;_; and obtain the potential

V as a function of the tachyon alone. Minimizing V' w.r.t D;; 1 we find
|Dji1 + Va2 =T +i (7.26)

which sets all except the first term (7.23) to zero. Restoring 6, the potential
thus takes the simple form?

2
V:%ﬁ[ﬁﬁ—q. (7.27)
9y m 0

Tn order to demonstrate this we assign the the fields C;; and Cj,, ‘angular momentum’
quantum numbers i—j and m—k respectively. With this assignment the potential conserves
angular momentum. All terms in the potential are the product of an equal number of C
and a C” fields. Angular momentum conservation prohibits linear coupling of ‘other fields’
to C ( C*) fields of angular momentum 1 (—1).

2A quartic tachyon potential was also obtained in [18], (see equation 2.8) using scatter-
ing calculations in string theory, strengthening our identification of the fluctuation modes
of subsection 2.3 with 0-2 strings.
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Thus we can accurately study tachyon condensation in this decoupling limit
of string theory.

But as a caveat we should note that the 2-2 string modes in the CFT
after tachyon condensation include all the 0-0, 0-2, 2-0, and 2-2 strings of
the CFT prior to tachyon condensation. Thus, in the process of tachyon
condensation, 0-0 and 0-2 modes are absorbed into the 2-2 continuum. In
this respect tachyon condensation in the 0-2 system appears qualitatively
different from tachyon condensation in a p p system. In the latter case there
appears to be no continuum for the p —p modes to disappear into. Restated,
the decay of the 0-brane into ‘nothing’ in the 0-2 system is not mysterious
once the 0-brane is constructed as a soliton on the 2-brane.

8 Conclusion

We have tried to give a flavour of the physics that can be captured by the rel-
atively elementary classical solutions of noncommutative field theories. We
have seen in different contexts how these solitons are really simple manifes-
tations of D-branes, possessing many of their important features. Though
they have been primarily studied in the context of tachyon condensation,
we saw that they can also shed some light on the resolution of singularities
in spacetime by D-brane probes. In addition to other applications in string
theory it is important at this stage to explore their presence in other systems
with a strong magnetic field like the quantum hall effect.
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