

"The pursuit of truth and beauty is a sphere of activity in which we are permitted to remain children all our lives." <u>Albert Einstein</u>

auty in Physics Theory and Experiment

Hacienda Cocoyoc, Morelos, May 14-18, 2012

Inclusion Colleges in No. Society

An Docasion to Geleticate the 60th Birthday of Francesco Lachello

Andrea Vittari and Richard E Cent.

My personal Journey

Beauty in Physics Theory and Experiment

auty in Physics Theory and Experiment

Hacienda Cocoyoc, Morelos, May 14-18, 2012

SYMMETRY TRIANGLE

uty in Physics Theory and Experiment

Hacienda Cocoyoc, Morelos,

First Observation of a Near-Harmonic Vibrational Nucleus

A. Aprahamian

Clark University, Worcester, Massachusetts 01610, and Lawrence Livermore National Laboratory, Livermore, California 94550

D. S. Brenner

Clark University, Worcester, Massachusetts 01610

and

R. F. Casten, R. L. Gill, and A. Piotrowski^(a) Brookhaven National Laboratory, Upton, New York 11973 (Received 4 May 1987)

SYMMETRY TRIANGLE

UNIVERSITY OF NOTRE DAME

Trail

Institute for Structure and Nuclear Astrophysics

Nuclear Properties Along the r-Process Path

A. APRAHAMIAN Lawrence Livermore National Laboratory Livermore, California 94550 USA

Effective Boson Number

The uniformity of different nuclear regions as number of valence protons and neutrons (counted closed shell) has been exploited for the parameterization of calculations for nuclei far from stability within the IBA model. Predictions are given for low lying levels, E2 transition rates, and binding errories for nuclei is the process path in the A = 150 and A 110 hass regions

nuclei that have been calculated.

1988

Fig. 4 The relevant portion of the N-Z plane. The shaded parts indicate known nuclei. The x's show the calculated nuclei.

ORIGIN AND DISTRIBUTION OF THE ELEMENTS

World Scientific

Sensitivities of the r-process to ...masses, β -decay rates, cross-sections nuclear structure

Institute for Structure & Nuclear Astrophysics University of Notre Dame, Notre Dame, IN (USA)

Masses β-decay rates n- capture

Major Shells and evolution of shells...

Experimental & Theoretical Challenges

Available online at www.sciencedirect.com

BGIENCE DIRECT*

Progress in Particle and Nuclear Physics

Progress in Particle and Nuclear Physics 54 (2005) 535-613

www.elsevier.com/locate/ppnp

Review

Nuclear structure aspects in nuclear astrophysics

A. Aprahamian^a, K. Langanke^b, M. Wiescher^{a,*}

^aDepartment of Physics and the Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556, USA

How do you decide which nuclei to measure???

Nucleosynthesis in the r-process

Masses beta-decay half-lives

First experiment: r-process in the Ni region Hosmer et al. PRL 94, 112501 (2005)

Impact of ⁷⁸Ni half-life on r-process models

 \rightarrow need to readjust r-process model parameters

Can obtain Experimental constraints for r-process models from observations and solid nuclear physics

N=56 subshell with Z=34???

Fragmentation of 120 MeV/u ¹³⁶Xe beam

	inplantations		ividximum Likelinoou iviethou (ms)
^{87}As	27	12	$1450(550)^{+3900}_{-1250}$
^{88}As	16	8	$200(10)^{+200}_{-90}$
⁸⁸ Se	144	74	$650(35)^{+175}_{-140}$
89 Se	180	90	$345(25)^{+95}_{-80}$
90 Se	70	30	$195(10)^{+95}_{-65}$

Quinn et al., Phys. Rev. C 85, 035807 (2012)

r-process sensitivities...masses

More quantitative approach to choosing to measure nuclei that would have the greatest impact on

What?

Brad Meyer code modified by R. Surman various mass models-

FRDM, Duflo-Zuker, ETFSIQ, HFB-21, F-spin

Method:

Adjusted the separation energy of each nucleus ± 25% (3010 nuclei twice....)

Calculated the max and fractional change from final abundances

What did we find?

Some consistent set of nuclei that are the most important to measure

So, What did we do?

Simulations..... Varied astrophysical conditions varied seed nuclei varied mass models

Input initial astrophysical conditions

Temperature/density neutron/seed ratios Freeze-out times

Input nuclear physics

masses n-capture rates beta decay half-lives (fission recycling, alpha recycling, neutrino interactions off)

Why 25%

ΔY for FRDM ΔY for ETFSI-Q ΔY for DZ

Nucleus		Nucleus		Nucleus	
¹³⁶ Cd	20.2	¹⁴⁰ Sn	20.1	⁸⁰ Ni	13.63
¹⁴⁰ Sn	12.1	¹³⁶ Cd	19.0	⁷⁹ Ni	9.96
¹³⁵ Cd	8.80	¹⁴² Sn	17.3	¹³⁸ Cd	7.08
⁸³ Cu	8.42	¹³⁷ Cd —	15.3	¹³⁷ Cd	5.49
¹³⁹ Sn	8.19	⁷⁹ Ni	12.5	⁸³ Cu	4.27
¹⁴² Sb	5.64	⁸⁰ Ni	12.0	¹³¹ Pd	3.54
¹³⁵ Sn	5.44	¹³⁵ Cd	11.5	⁸² Cu	3.36
¹³³ Cd	5.38	134Cd	11.5	¹³² Pd	3.12
¹⁴⁰ Sb	5.25	¹³⁸ Cd	8.57	¹³⁶ Cd	3.00
¹³⁴ Cd	5.23	¹³² Pd	7.66	¹³⁰ Pd	2.97
⁸² Cu	4.14	¹³⁰ Pd	7.34	⁸⁶ Zn	2.84
¹³⁴ In	4.14	¹³² In	7.33	¹²⁹ Pd	1.88
¹³¹ Pd	3.29	¹²⁹ Pd	5.12	⁸⁵ Zn	1.81
¹³⁷ Sn	2.94	¹³⁹ Sn	4.63	¹³⁴ Ag	1.49
¹⁴¹ Sn	2.91	¹³¹ Pd	4.37	¹⁴² Sn	1.42
⁸³ Zn	2.89	¹³⁸ In	3.98	¹³⁵ Ag	1.39
⁸⁵ Zn	2.71	¹³⁹ In	3.95	¹³⁵ Cd	1.36
⁸⁵ Cu	2.66	⁸⁶ Zn	3.21	¹³³ Cd	1.10
¹³⁰ Pd	2.39	¹⁴¹ Sn —	2.92	¹⁴¹ Sn	1.08
¹³² Pd	2.39	⁸⁵ 7n	2.86	¹⁴⁴ Sn	1.07

- The same isotopes are present in each evaluation:
 - Sn, Sb, and In,
 - Cd,
 - Pd,
 - Cu, Zn, and Ni.

So, What are we doing?

Simulations.... Varied astrophysical conditions varied seed nuclei varied mass models varied beta-decay rates

Input initial astrophysical conditions

Temperature/density neutron/seed ratios Freeze-out times

Input nuclear physics

masses n-capture rates beta decay half-lives (fission recycling, alpha recycling, neutrino interactions off)

r-process sensitivities...beta-decay rates

J. Cass, G. Passucci, R. Surman, A. Aprahamian

To start...

Vary one beta decay rate by an order of magnitude, rerun the simulation, and compare the final abundance pattern to the baseline

White to black = 0-10% change in the final abundance patterns

Beta decay rate sensitivity study

conclusions

We have carried out the first Nal quantitative/comprehensive sensitivity Ret study of an r-process simulation to masses, A² beta decay rates, neutron capture cross sections. Sensitivity

- we varied mass models
- we varied decay rates
- consistent set of nuclei that we A^2

Sensitivity Study Masses Samuel Brett Ian Bentley

Nancy Paul

Rebecca Surman

Sensitivity Study $\beta\text{-decay}$ rates

Julie Cass

Giuseppe Passucci

Rebecca Surman

COLLABORATORS (Experiment)

Notre Dame Mathew Quinn Andreas Woehr Sergio Almaraz Boris Skorodumov A² MSU

Jorge Pereira

Paul Mantica

Hendrik Schatz

Ana Becerril

Thom Elliot

Alfredo Estrade

Daniel Galaviz

Giuseppe Lorusso

Milan Matos

Fernando Montes

Mainz

Stefan Hennrich Karl-Ludwig Kratz Bernd Pfeiffer Ruben Kessler

Florian Schertz

Univ. of Maryland

SE

W. Walters

The role of neutron separation energies in a hot *r*-process

ΔY for FRDM ΔY for ETFSI-Q ΔY for DZ

Nucleus		Nucleus		Nucleus	
¹³⁶ Cd –	20.2	¹⁴⁰ Sn	20.1	✓ ⁸⁰ Ni	13.63
¹⁴⁰ Sn -	12.1	136Cd	19.0	⁷⁹ Ni	9.96
135Cd 🔨	8.80	¹⁴² Sn	17.3	¹³⁸ Cd	7.08
⁸³ Cu	8.42	¹³⁷ Cd –	25.3	¹³⁷ Cd	5.49
¹³⁹ Sn	8.19	⁷⁹ Ni -	12.5	⁸³ Cu	4.27
¹⁴² Sb	5.64	⁸⁰ Ni	12	/ ¹³¹ Pd	3.54
¹³⁵ Sn	5.44	135Cd	1.5	⁸² Cu	3.36
¹³³ Cd	5.38	¹³⁴ Cd	11.5	¹³² Pd	3.12
¹⁴⁰ Sb	5.25	¹³⁸ Cd	857	¹³⁶ Cd	3.00
¹³⁴ Cd -	5.23	/ ¹³² Pd -	7.66	¹³⁰ Pd	2.97
⁸² Cu	4.14	/ ¹³⁰ Pd -	7.34	/ ⁸⁶ Zn	2.84
¹³⁴ In	4.14	¹³² In	7.38	¹²⁹ Pd	1.88
¹³¹ Pd ~	3.29	¹²⁹ Pd	5.12	⁸⁵ Zn	1.81
¹³⁷ Sn	2.94	139Sn	4.63	¹³⁴ Ag	1.49
¹⁴¹ Sn	2.91	131Pd	4.37	142Sn	1.42
⁸³ Zn	2,89	¹³⁸ In	3.98	¹³⁵ Ag	1.39
85Zn 🔍	2.71	¹³⁹ In	3,95	135Cd	1.36
⁸⁵ Cu	2 66	⁸⁶ Zn	3.21	¹³³ Cd	1.10
¹³⁰ Pd	2.39	¹⁴¹ Sn —	2.92	¹⁴¹ Sn	1.08
¹³² Pd /	2.39	85Zn	2.86	¹⁴⁴ Sn	1.07

- The same isotopes are • present in each evaluation:
 - Sn, Sb, and In, •
 - Cd, •
 - Pd, •
 - Cu, Zn, and Ni.

CARIBU possibilities

¹³⁰ In	104	900
¹³³⁻¹³⁴ Sn	104	10 ³
¹²⁸⁻¹³⁶ Sb		
¹¹³⁻¹¹⁹ Pd		
¹²⁰⁻¹²¹ Ag		

 $\Delta Y_{\pm 25\%}(N,Z) = \sum_{A} |Y(A) - Y(A, \pm \Delta S_n(N,Z))|.$

Absolute differences

Heavy Ion Accelerator at Notre Dame

Sta. ANA: Stable beam Accelerator for Nuclear Astrophysics

Delivery of Sta. ANA

GANIL, France (2013)

Elemental history of the universe

Anna Frebel (2006)

Hot *r*-process: (n, γ) - (γ, n) equilibrium

Hot *r*-process: (n, γ) - (γ, n) equilibrium

Hot *r*-process: (n, γ) - (γ, n) equilibrium

Hot *r*-process: freezeout from $(n, \gamma)-(\gamma, n)$ equilibrium

Individual neutron capture and photodissociation rates become important in shaping the final abundance pattern.

Cold *r*-process: equilibrium between (n, γ) and β decay

Interplay between beta decay, neutron capture, and betadelayed neutron emission sets the final abundance pattern.

Neutron separation energy sensitivity study

S. Brett, I. Bentley, N. Paul, A. Aprahamian

Start with a baseline simulation

(here, the H-event conditions from Qian et al were used)

Vary one separation energy by 25% and rerun the simulation

Repeat 6957 times

(twice for each heavy nucleus in the network)

$$\Delta Y_{S_n(Z_i,A_i) \pm 25\%} = \sum_{A} \left[Y_{baseline}(A) - Y_{S_n(Z_i,A_i) \pm 25\%}(A) \right]$$

Neutron separation energy sensitivity study

S. Brett, I. Bentley, N. Paul, A. Aprahamian

The role of neutron separation energies in a hot *r*-process

The role of neutron separation energies in a hot *r*-process

Beta decay rate sensitivity study

J. Cass, G. Passucci, R. Surman, A. Aprahamian

To start, proceed as in neutron separation energy study: Vary one beta decay rate by an order of magnitude, rerun the simulation, and compare the final abundance pattern to the baseline

Beta decay rate sensitivity study

The role of beta decay rates in a hot *r*-process

Steady beta flow in the baseline simulation

 $\lambda_{\beta}(Z, A_{path})Y(Z, A_{path}) \sim \text{constant}$

The role of beta decay rates in a hot *r*-process

where N' is the number of neutrons required to return to the path at Z + 1 following decay

Input Parameters for the Neutrino-less H-event from Qian et. al

Description	Value
Seed Nucleus	⁹⁰ Se
$N_{neutron}/N_{seed}$	86
*Seed Nucleus	⁷⁰ Fe
$*N_{neutron}/N_{seed}$	67
Initial Density ($ ho_5 = 10^5 g/cm^3$)	0.0034
Initial Temperature ($T_9 = 10^9 K$)	1.5
Freeze-out Time	0.86s

* ⁹⁰Se was replaced with ⁷⁰Fe in order to allow for the dependence on the masses of nuclei between $70 \ge A \ge 90$ to be investigated. This was done in such a way that the electron fraction remains constant (Y_e =.19).

ΔY for FRDM ΔY for ETFSI-Q ΔY for DZ

 ΔY

20.1

19.0

17.3

15.3

12.5

12.0

11.5

11.5

8.57

7.66

7.34

7.33

5.12

4.63

4.37

3.98

3.95

3.21

2.92

2.86

ΔY for HFB21

Nucleus	ΔY	Nucleus
136 Cd	20.2	¹⁴⁰ Sn
¹⁴⁰ Sn	12.1	¹³⁶ Cd
¹³⁵ Cd	8.80	¹⁴² Sn
⁸³ Cu	8.42	¹³⁷ Cd
¹³⁹ Sn	8.19	⁷⁹ Ni
¹⁴² Sb	5.64	⁸⁰ Ni
¹³⁵ Sn	5.44	¹³⁵ Cd
¹³³ Cd	5.38	¹³⁴ Cd
¹⁴⁰ Sb	5.25	¹³⁸ Cd
¹³⁴ Cd	5.23	¹³² Pd
⁸² Cu	4.14	¹³⁰ Pd
¹³⁴ In	4.14	¹³² In
¹³¹ Pd	3.29	¹²⁹ Pd
¹³⁷ Sn	2.94	¹³⁹ Sn
¹⁴¹ Sn	2.91	¹³¹ Pd
⁸³ Zn	2.89	¹³⁸ In
⁸⁵ Zn	2.71	¹³⁹ In
⁸⁵ Cu	2.66	⁸⁶ Zn
¹³⁰ Pd	2.39	¹⁴¹ Sn
¹³² Pd	2.39	⁸⁵ Zn

Nucleus	ΔY
⁸⁰ Ni	13.6
⁷⁹ Ni	9.96
¹³⁸ Cd	7.08
¹³⁷ Cd	5.49
⁸³ Cu	4.27
¹³¹ Pd	3.54
⁸² Cu	3.36
¹³² Pd	3.12
¹³⁶ Cd	3.00
¹³⁰ Pd	2.97
⁸⁶ Zn	2.84
¹²⁹ Pd	1.88
⁸⁵ Zn	1.81
¹³⁴ Ag	1.49
¹⁴² Sn	1.42
¹³⁵ Ag	1.39
¹³⁵ Cd	1.36
¹³³ Cd	1.10
¹⁴¹ Sn	1.08
144Sn	1 07

Nucleus	ΔY
¹³⁶ Cd	22.7
¹³⁷ Cd	10.8
¹³⁸ Cd	10.4
¹³⁵ Cd	6.97
¹⁴⁰ Sn	5.97
¹³⁰ Pd	5.46
⁸³ Cu	5.23
¹⁴² Sn	4.66
¹³⁴ Cd	4.57
¹⁴¹ Sn	4.21
⁸⁶ Zn	3.82
¹³³ Cd	3.52
¹³² Cd	3.04
¹³⁷ Sn	2.86
⁸² Cu	2.63
¹³⁸ ln	2.47
¹³⁹ In	2.23
¹²⁹ Pd	1.95
¹³¹ Pd	1.81
¹³¹ Ag	1.69

Run 23: H-Event with Iron-70 Seed (Z≤50)

Run #	Description	Seed	Nseed	Nn	Т9	density [g/cm^3]	time [sec.]	Source
23	H Qian's neutrinoless model (Iron)	Fe70	0.511	0.489	1.5	3.4x10^2	1.68	Qian et al. ApJ 494 (1998) with Fe70

Run 62: H-Event with Iron-70 Seed

DUZU mass model

Run #	Description	Seed	Nseed	Nn	Т9	density [g/cm^3]	time [sec.]	Source
62	H Qian's neutrinoless model (Iron)	Fe70	0.511	0.489	1.5	3.4x10^2	1.68	Qian et al. ApJ 494 (1998) with Fe70

141Sn

82Cu

9.33E-01

2.19E+00

2.15E+00

8.38E-01

Run 63: H-Event with Iron-70 Seed

ETFSI-12 mass model

Run #	Description	Seed	Nseed	Nn	Т9	density [g/cm^3]	time [sec.]	Source
63	H Qian's neutrinoless model (Iron)	Fe70	0.511	0.489	1.5	3.4x10^2	1.68	Qian et al. ApJ 494 (1998) with Fe70

143Sb

135In

136In

1.26E+00

1.56E+00

9.28E-01

3.47E+00

2.87E+00

3.16E+00

Run 64: H-Event with Iron-70 Seed

Run #	Description	Seed	Nseed	Nn	Т9	density [g/cm^3]	time [sec.]	Source
64	H Qian's neutrinoless model (Iron)	Fe70	0.511	0.489	1.5	3.4x10^2	1.68	Qian et al. ApJ 494 (1998) with Fe70

136Sb

2.28E+01

1.24E+01

Runs 23, 63, 64

- These runs use the same astrophysical parameters (Qian's H-Event with a ⁷⁰Fe seed).
- Varied mass models
- The following nuclei are in all three top 20 tables:

¹³⁰Pd, ¹³²Cd, ¹³⁴Cd, ¹³⁵Cd, ¹³⁶Cd and ¹⁴⁰Sn.

Run 24: L-Event with Iron-70 Seed

Run #	Description	Seed	Nseed	Nn	Т9	density [g/cm^3]	time [sec.]	Source
24	L Qian's neutrinoless model (Iron)	Fe70	0.672	0.328	1.5	5.1x10^2	0.78	Qian et al. ApJ 494 (1998) with Fe70

Run 67: L-Event with Iron-70 Seed

DUZU mass model

Run #	Description	Seed	Nseed	Nn	Т9	density [g/cm^3]	time [sec.]	Source
67	L Qian's neutrinoless model (Iron)	Fe70	0.672	0.328	1.5	5.1x10^2	0.78	Qian et al. ApJ 494 (1998) with Fe70

6.44E-01

5.29E-01

131Ag 87Ga 6.54E-01

7.25E-01

Run 68: L-Event with Iron-70 Seed

ETFSI-12 mass model

Run #	Description	Seed	Nseed	Nn	Т9	density [g/cm^3]	time [sec.]	Source
68	L Qian's neutrinoless model (Iron)	Fe70	0.672	0.328	1.5	5.1x10^2	0.78	Qian et al. ApJ 494 (1998) with Fe70

93As

84Ga

96Br

7.53E-01

1.00E-02

8.68E-01

8.39E-01

1.53E+00

6.06E-01

Run 69: L-Event with Iron-70 Seed

F-spin mass model

Run #	Description	Seed	Nseed	Nn	Т9	density [g/cm^3]	time [sec.]	Source
69	L Qian's neutrinoless model (Iron)	Fe70	0.672	0.328	1.5	5.1x10^2	0.78	Qian et al. ApJ 494 (1998) with Fe70

4.32E-01

8.71E-03

95As

91As

4.66E-01

8.89E-01

Runs 24, 67, 68

- same astrophysical parameters
- Varied mass models
- The following nuclei are in all three top 20

⁷⁹Ni, ⁸²Cu, ⁸⁵Zn, ⁸⁶Zn, ¹³⁰Pd, ¹³¹Ag, and ¹³⁴Cd.

TESTING FOR SENSITIVITY

TESTING FOR SENSITIVITY

TABLE I: MOST IMPORTANT NUCLEAR MASSES FOR H-SCENARIO WITH $^{70}\mathrm{Fe}$ SEED

	Rank			Rank		
^{A}X	$\sum \Delta_{\pm 25}$	$\Delta_{\pm 25}$	Δ_{-25}	$\sum \Delta Y_{\pm 25}$	$\Delta Y_{\pm 25}$	ΔY_{-25}
¹⁴⁰ Sn	1	6.77	262	1	1.34	24.4
134 Cd	2	15	119	2	8.39	5.78
²⁰² Hf	3	36.4	42.5	165	0.07	0.12
²⁰¹ Hf	4	43.9	34.2	179	0.08	0.09
²⁰³ Hf	5	39.4	33.9	187	0.07	0.09
133 Cd	6	8.62	62.7	6	1.94	3.6
¹³⁶ Cd	7	46.6	8.03	5	5.67	0.69
⁸² Cu	8	17.5	27.8	16	1.12	1.31
⁸³ Cu	8	13.6	37.6	12	1.31	1.59
²⁰⁴ Hf	10	1.96	41.3	256	0	0.11
¹³⁹ Sn	11	8.21	33	4	1.38	5.78
135 Cd	12	32.8	7.31	9	3.24	0.63
²⁰¹ Lu	13	37.2	1.81	273	0.1	0.01
¹³² Cd	14	0.29	38.2	3	0.11	11.5
142 Sb	15	11.7	24.9	15	0.92	1.58
86	1.0	0.04	64 F	10	0.01	0.00

ΔY

- Various mass model neutron separation energies (*S↓n*) were varied by ±25% for each nucleus individually.
- The change in the total abundance curve is then calculated using:

 $\Delta Y \downarrow \pm 25\% (N,Z) = \sum A \uparrow W Y(A) - Y(A, \pm \Delta S \downarrow n$ (N,Z)).

⁷⁸Ni , ⁷⁷Ni first measurement of half-lives ⁷⁶Ni , ⁷⁵Ni more precise measurements

110^{+100/-60} ms; 128^{+27/-33} ms

238^{+15/-18} ms; 344^{+20/-24} ms

