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Point of This Talk

Using Fermion algebras to test many body approximations in
calculation of double-beta-decay matrix elements

Algebras and Methods

P Multi-level SO(5) for testing truncations of shell-model
spaces

b SO(8) for testing mean-field based methods: HFB, QRPA,
large-amplitude approximations
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Neutrinoless Double-Beta Decay

If energetics are right (ordinary
beta decay forbidden)...

and neutrinos are Majorana...

can observe two neutrons turning
into protons, emitting two
electrons and nothing else.

Different from already observed
2v process.
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If it's observed, neutrinos are
Majorana particles

and

Light-v-exchange amplitude
proportional to “effective mass”

— 2
mee = Zmiuei
i

If lightest neutrino is light:

P Mee = @/AmszOI sin? By

P Mee ~ \/AmZ,, cos20,, (inverted)

(normal)

But rate is also proportional to
nuclear matrix element...
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Nuclear Matrix Element

2
Moy = MST — YME, +...
9a

with

=(f| ZH Tab)Ga - CoTE T +

fIZH Tab)Ta T 1) +

H(r) =~ R
T

Operators for 2v decay (in closure approx.) are similar but
dont contain H(r).



“Exact” Shell-Model Calculations

Partition of Full Hilbert Space
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Task: Find unitary transformation
to make H block-diagonal in P
and Q, with Hggr in P reproducing
d most important eigenvalues.
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“Exact” Shell-Model Calculations
Partition of Full Hilbert Space

P = valence space (dimension d)
P Q Q = the rest

o

d
p H:ff P=>d Q= Y Rl

A version of this (plus phenomenology) used fo get shell- .
. . tion
model interactions, but not decay operators. Bare operators p

generally used. scing

Q Meff-Q d most important eigenvalues.

For transition operator M, must
apply same transformation to get
M.

sH As difficult as solving full problem. But the idea is that A-body
effective operators may not be important for A > 2 or 3.
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Formulation

Q: Take d full eigenstates |k) of your choice. How do you map
these onto normalized P-space states |k) in a way that
maximizes Y i, (k[k)?

A: Lee-Suzuki mapping: Entirely in P space

1

01
e V14 wlfw

(P + wf) k)

w' takes Q to P with

wl o= > (plk)(klg), {(plk)} = inverse{(klp)}
k=1,d

Mapping of operators follows:
(Kl Oerr k) = (KO [K")

whether O is an interaction H or decay operator M.



Application to Two-Shell SO(5)

Generators
Pair creation operators for each shell:

sii=> pipl  shi=> ninl  sh=> nipl

xEL xei xei

where « runs over all levels in shell i.

Other generators:
Spp Shn Spn

Su



Application to Two-Shell SO(5)

Generators
Pair creation operators for each shell:

Se=> plek  Shh=) ninl sh=3 nipl
xXE1 xEel x€el

where « runs over all levels in shell i.

Other generators:

Su

i i i
Spp Snn Spn

Hamiltonian

2
H=eN,-GY_ (s;;s{f,p + S5 ST + GppSEnShy + gpnT i?j)
i,j=1

gpp controls strength of np pairing, which is isovector here
but plays same role here as isoscalar pairing in real life.



BB (Closure) Matrix Element in SO(5)

Simplified Fermi transition operators
. T
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M} (cl.) is product of generators, but M{_, contains radial
dependence that has nothing to do with SO(5).



BB (Closure) Matrix Element in SO(5)

Simplified Fermi transition operators
F TELTJ‘
sz Cl ZT X ‘.T_|_‘.T_|_ MO‘V = Z m
. s 1 )
1]

M} (cl.) is product of generators, but M{_, contains radial
dependence that has nothing to do with SO(5).

But it can be decomposed into SO(5) tensors and evaluated
with help of generalized Wigner-Eckardt Theorem:

<Ql)Nl)T1)M |MNC‘;]'E'ZU]2\/[O ‘QI)N/ T/ M/> =
((Q3, 0)IM (@123, 0))
x (TIM4; ToMo | TiMy ) ((Q4, OON{TY; (w1, w2)NoTo || (Q1, 0)N;T; )




How Well Does Mapping Work at 2-Body Level?

| 2- -body eFFechve opera’ror exact result
B bare opera’ron: .
- €=10G
1 I 1
| 2-body effective operator

Answer: Leaves
room for
imporovement



Phenomenological QRPA

Start with Wood-Saxon potential, G-matrix interaction, usual
BCS procedure.

Ansatz for intermediate states:
V) =QL0) where QI = Z X%’n(x};ocil — Ypn&potn
pn

yields matrix equations:
A B XY XY
(5 x ) ()= (3)
with

— ph
Apn,pn’ = I:—sim_:jle quasipart. 1 Vpn‘p/n/(upvnup/vn’ + Vpuan/un’)

T ngw,p'n'(upunup’un/ + VpVnVpvn/)
Bpn,pm/ = (similar expression)
VIP o q usually contains the adjustable multiplier gpp.



Fiddling with the QRPA
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Generalized HFB

Generalized BCS mixes proton and neutron quasiparticles:

oﬂ-u vl 1T (1)nT+v(1)n

i pp1 1,pp1 1, i i,n' i
T vy (2) (2) . _
Xy = u'l pp1 i,ppi +u 1, TL + Vi ﬂ.n‘l,
X1 =
X2 = ...

Generalized HFB combines this with (generalized) Hartree
Fock in usual way.

Not much point in generalized QRPA (will see why shortly).



Application to SO(8)

Ge'n‘era’rors SO(5) pairing isoscalar pair-
Pairing operators: operators ing operators
$=0,T=1 S=1,T=1
T = T" ’ T = TN ’
sl = [a'al, _, Pl=[a'a],, .
Sv PP—
Gamow-Teller
Particle-hole operators: / operators
8 7 gt =Y o@utli)v
i
Hamiltonian

1+x 1—x
HZ_%ZSLSV_Q(T)ZPLPH—FQP}LSF&T Fy
W

v

(1—x)/(14x) (ratio of ioscalar/isovector pairing) is gpp



2vR B (Closure) Matrix Element in SO(8)
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15
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(with ph interaction) (no ph interaction)

» RQRPA doesnt work in “isoscalar-pairing” phase (right of
each fig.)

b Generalized QRPA pointless in “isovector-pairing” phase
(left of each fig.)




Beyond QRPA: GCM and Large-Amplitude Motion

For Ov decay, only need initial and final ground states.
Rodgriguez and Martinez-Pinedo have done sophisticated
Gogny generator-coordinate calculaton; mix mean fields with
different shapes, pairing fields:
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Beyond QRPA: GCM and Large-Amplitude Motion

For Ov decay, only need initial and final ground states.
Rodgriguez and Martinez-Pinedo have done sophisticated
Gogny generator-coordinate calculaton; mix mean fields with
different shapes, pairing fields:

But no explicit np pairing/spin-isospin correlations here.
SO(8) says they should be important.




Matrix elements in different schemes

8 ® [ RQRPA
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GCM numbers tend to be on the high side.



Curent Work: Alternative Large-Amplitude Approx.

Until Now: Induce deformation with constraint operatator Q.
Calculate deformed kinetic, potential energies, inertial parameters.
Determine most collective Q. Determine equivalent Bohr Hamiltonian.

Algorithm to construct the collective path

Moving-frame HFB eq. Moving-frame QRPA  eq.

Application to shape

coexistence from talk

by N. Hinohara

potential energy

(¢(@)|Q(q — 5a)|¢(q)) = g
HFB state (oblate)

O local direction of collective coordinate is determined by moving-frame QRPA mode

Procedure maps maps adiabatic TDHFB dynamics in collective
subspace to 5-d Bohr Hamiltonian.



Now: Inclusion of Collective np Pairing

P Start with generalized moving HFB that includes np
mixing.

» Add collective np pair-creation operator to set of
constrained operators.

» Map to generalized 6-d Bohr Model (usual 5 plus new
collective mode)

P In SO(8) 6-d reduces to 1-d.



Results So Far
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Wave functions (not yet calculated) will sample this entire
space for all gpyp.



Final Question:
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Final Question:

IBM also being used to calculate double beta decay. Can we
use a fermion algebra to test it?

[Many thanks to Franco for starting me off in this beautiful ]
field.




