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Point of This Talk

..Using Fermion algebras to test many body approximations in
calculation of double-beta-decay matrix elements

.
Algebras and Methods
..

.

. Multi-level SO(5) for testing truncations of shell-model
spaces

. SO(8) for testing mean-field based methods: HFB, QRPA,
large-amplitude approximations



Neutrinoless Double-Beta Decay

If energetics are right (ordinary
beta decay forbidden)…

and neutrinos are Majorana…

can observe two neutrons turning
into protons, emitting two
electrons and nothing else.

Different from already observed
2ν process.

.

...

Z, N

Z+1, N-1

Z+2, N-2
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Usefulness of Neutrinoless Double-Beta Decay

..

!!

If it’s observed, neutrinos are
Majorana particles

and

.
Light-ν-exchange amplitude
proportional to “effective mass”
..

.

mee ≡
∑
i

miU
2
ei

If lightest neutrino is light:
. mee ≈

√
∆m2

sol sin
2 θsol (normal)

. mee ≈
√

∆m2
atm cos 2θsol (inverted)

But rate is also proportional to
nuclear matrix element…
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Nuclear Matrix Element

.

.
M0ν = MGT

0ν −
g2V
g2A

MF
0ν + . . .

with

..
MGT

0ν =⟨f|
∑
a,b

H(rab)σ⃗a · σ⃗bτ
+
aτ

+
b |i⟩+ . . .

MF
0ν =⟨f|

∑
a,b

H(rab)τ
+
aτ

+
b |i⟩+ . . .

H(r) ≈ R

r

Operators for 2ν decay (in closure approx.) are similar but
don’t contain H(r).
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“Exact” Shell-Model Calculations
Partition of Full Hilbert Space

..

P̂HP̂

.

P̂HQ̂

.

Q̂HP̂

.

Q̂HQ̂

.

P

.

Q

.

P

.

Q

.

Shell model done here

P = valence space (dimension d)
Q = the rest

P̂ =

d∑
i=1

|i⟩ ⟨i| Q̂ =

∞∑
i=d+1

|i⟩ ⟨i|

Task: Find unitary transformation
to make H block-diagonal in P

and Q, with Heff in P reproducing
d most important eigenvalues.

For transition operator M, must
apply same transformation to get
Meff.

..As difficult as solving full problem. But the idea is that A-body
effective operators may not be important for A > 2 or 3.

..

A version of this (plus phenomenology) used to get shell-
model interactions, but not decay operators. Bare operators
generally used.
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Formulation

Q: Take d full eigenstates |k⟩ of your choice. How do you map
these onto normalized P-space states |k̃⟩ in a way that
maximizes

∑d
k=1 ⟨k|k̃⟩ ?

A: Lee-Suzuki mapping:

..|k̃⟩ ≡ 1√
1+ω†ω

(P +ω†) |k⟩

ω† takes Q to P with

ω†
p,q =

∑
k=1,d

⟨p|k⟩ ⟨k|q⟩ , {⟨p|k⟩} = inverse{⟨k|p⟩}

..

Entirely in P space

.
Mapping of operators follows:

⟨k̃|Oeff |k̃ ′⟩ = ⟨k|O |k ′⟩

whether O is an interaction H or decay operator M.
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Application to Two-Shell SO(5)
.
Generators..

.

Pair creation operators for each shell:

S†ipp =
∑
α∈i

p†
αp

†
ᾱ S

†i
nn =

∑
α∈i

n†
αn

†
ᾱ S

†i
pn =

∑
α∈i

n†
αp

†
ᾱ

where α runs over all levels in shell i.

Other generators:
Sipp Sinn Sipn T⃗i

.
Hamiltonian..

.
H =ϵN̂2 −G

2∑
i,j=1

(
S†ippS

j
pp + S†innS

j
nn + gppS

†i
pnS

j
pn + gphT⃗i · T⃗j

)
gpp controls strength of np pairing, which is isovector here
but plays same role here as isoscalar pairing in real life.
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ββ (Closure) Matrix Element in SO(5)
.
Simplified Fermi transition operators
..

.
MF

2ν(cl.) =
∑
i,j

τ+i τ
+
j ∝ T+T+ MF

0ν =
∑
i,j

τ+i τ
+
j

|⃗ri − r⃗j|
,

MF
2ν(cl.) is product of generators, but MF

0ν contains radial
dependence that has nothing to do with SO(5).

But it can be decomposed into SO(5) tensors and evaluated
with help of generalized Wigner-Eckardt Theorem:

..
⟨Ωi,Ni, Ti,Mi|M

(ω1,ω2)
N0,T0,M0

∣∣Ωi,N
′
i, T

′
i,M

′
i

⟩
=

⟨(Ωi, 0)||M
(ω1,ω2)||(Ωi, 0)⟩

×
⟨
T ′
iM

′
i; T0M0

∣∣ TiMi

⟩ ⟨
(Ωi, 0)N

′
iT

′
i; (ω1,ω2)N0T0

∥∥ (Ωi, 0)NiTi
⟩
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How Well Does Mapping Work at 2-Body Level?

..

-2

0

2

4

0 0.5 1
g

pp

-2

0

2

4M
0ν

 (
fm

-1
)

ε=10G

ε=20G

.

bare operator

.

2-body effective operator

.

exact result

.

bare operator

.

2-body effective operator

.

exact result

Answer: Leaves
room for
imporovement



Phenomenological QRPA
Start with Wood-Saxon potential, G-matrix interaction, usual
BCS procedure.

Ansatz for intermediate states:

|ν⟩ = Q†
ν |0⟩ where Q†

ν =
∑
pn

Xν
pnα

†
pα

†
n − Ypnαpαn

yields matrix equations:(
A B

−B∗ −A∗

)(
Xν

Yν

)
= Ων

(
Xν

Yν

)
with
Apn,p ′n ′ = Esingle quasipart. + V

ph
pn,p ′n ′(upvnup ′vn ′ + vpunvp ′un ′)

+ V
pp
pn,p ′n ′(upunup ′un ′ + vpvnvp ′vn ′)

Bpn,p ′n ′ = (similar expression)

V
pp
pn,p ′,n ′ usually contains the adjustable multiplier gpp.



Fiddling with the QRPA

for 76Ge and a five orbits (d5/2, d3/2, s1/2, g7/2, h11/2) for
130Te and 136Xe. These s.p. sets are free of the spurious
center-of-mass states, but obviously miss a large part of
the GT strength as well as of the strength corresponding
to the higher multipoles. In order to describe GT transi-
tions between low-lying states in the NSM, it is necessary
to quench the corresponding strength. This is most con-
veniently formally achieved by using gA = 1.0 instead of
the free nucleon value of gA = 1.25. We follow this pre-
scription in our attempt to use this smallest s.p. space,
and only there.

It appears that it is impossible to describe the 2νββ

decay in such s.p. space using QRPA or RQRPA, and the
nucleon-nucleon potentials employed in this work. One
would have to renormalize the particle-particle block too
much, with gpp ∼ 2.0, unlike the rather modest renor-
malization shown in Table I. With such large value of
gpp the interaction is too far removed from the G-matrix
used in the rest of this work. Therefore, one cannot ex-
pect to obtain sensible 0ν matrix elements. In fact, we
obtained very small matrix elements in this case for 130Te
and 136Xe, while, perhaps accidentally, for 76Ge they are
in a crude agreement with the NSM result [24].

0.7 0.8 0.9 1.0 1.1 1.2 1.3
-0.25

0.00

0.25

9 levels

21 levels

-3.90

3.90

0.00

76Ge

 M
0 ν

M
2 ν

 (
M

eV
 -1

)

g
pp

FIG. 1. Dependence of the matrix elements M2νββ (left
scale, dashed lines) and M0νββ (right scale, full lines) on the
parameter gpp. Calculations were performed for 9 and 21
s.p. levels for 76Ge as indicated; the Nijmegen potential and
RQRPA method were used. The thin dotted horizontal line
indicates that by fixing gpp to reproduce the experimental
value M2νββ = 0.15 MeV−1 the value of M0νββ is also stabi-
lized.

We list the results with the three larger single-particle
bases in Table II which represents the most significant
part of the present work. As one can see by inspecting
the entries, one can draw two important conclusions:

• The resulting M0ν do not depend noticeably on the
form of the nucleon-nucleon potential used. That
is not an unexpected result.

• Even more importantly, with our choice of gpp the
results are also essentially independent on the size
of the s.p. basis. This is a much less obvious and
rather pleasing conclusion. It can be contrasted
with the result one would get for a constant gpp

independent on the size of the s.p. basis. The val-
ues of M0ν differ then between the small and large
bases by a factor of two or more.

The effect of the gpp adjustment is illustrated in Fig.
1, showing that our procedure leads to almost constant
M0ν matrix elements. On the other hand, by choosing a
fixed value of gpp the resulting M0ν matrix elements for
9 and 21 s.p. levels would differ substantially.

The entries in Table II are relatively close to each
other. To emphasize this feature, each calculated value is
treated as an independent determination and for each nu-
cleus the corresponding average 〈M0ν〉 matrix elements
(averaged over the three potentials and the three choices
of the s.p. space) is evaluated, as well as its variance σ

σ2 =
1

N − 1

N
∑

i=1

(M0ν
i − 〈M0ν〉)2, (N = 9). (5)

These quantities (with the value of σ in paretheses) are
shown in Table III. Not only is the variance substantially
less than the average value, but the results of QRPA, al-
beit slightly larger, are quite close to the RQRPA values.
The averaged nuclear matrix elements for both methods
and their variance are shown in Fig. 2.

Combining the average 〈M0ν〉 with the phase-space
factors listed in Table II the expected half-lives (for
RQRPA and 〈mν〉 = 50 meV, the scale of neutrino masses
suggested by oscillation experiments) are also shown in
Table III. These predicted half-lives are a bit longer (par-
ticularly for the last three nuclei on our list) then vari-
ous QRPA calculations usually predict. They are faster,
however, then the shell model results of Ref. [24].

TABLE III. Averaged 0νββ nuclear matrix elements
〈M0ν〉 and their variance σ (in parentheses) evaluated in the
RQRPA and QRPA. In column 4 the 0νββ half-lives evalu-
ated with the RQRPA average nuclear matrix element and
for the 〈mν〉 = 50 meV are shown.

Nucleus RQRPA QRPA T1/2 (in 1027 y for 〈mν〉 = 50 meV

76Ge 2.40(0.07) 2.68(0.06) 2.3
100Mo 1.16(0.11) 1.28(0.09) 1.4
130Te 1.29(0.11) 1.35(0.13) 1.1
136Xe 0.98(0.09) 1.03(0.08) 1.9

4

..

From Simkovic
et al.



Generalized HFB

Generalized BCS mixes proton and neutron quasiparticles:

α
†
1 = u

(1)
i,pp

†
i + v

(1)
i,ppī + u

(1)
i,nn

†
i + v

(1)
i,nnī

α
†
2 = u

(2)
i,pp

†
i + v

(2)
i,ppī + u

(2)
i,nn

†
i + v

(2)
i,nnī

α1 = . . .

α2 = . . .

Generalized HFB combines this with (generalized) Hartree
Fock in usual way.

Not much point in generalized QRPA (will see why shortly).



Application to SO(8)
.
Generators..

.

Pairing operators:

..S†ν =
[
a†ã

]S=0,T=1

MT=ν

..P†
µ =

[
a†ã

]S=1,T=1

MS=µ

Sν Pµ

Particle-hole operators:

S⃗ T⃗ Fµ
ν ≡ ..

∑
i

σ(i)µτ(i)ν

.
Hamiltonian..

.

H = −
g(1+ x)

2

∑
ν

S†νSν −
g(1− x)

2

∑
µ

P†
µPµ + gphF

µ†
ν Fµ

ν

(1− x)/(1+ x) (ratio of ioscalar/isovector pairing) is gpp

..

SO(5) pairing
operators

.
..

isoscalar pair-
ing operators

.
..

Gamow-Teller
operators

.



2νββ (Closure) Matrix Element in SO(8)

...

RQRPA

.

QRPA

.

Exact

...

Generalized BCS

.

Exact

Ordinary BCS + QRPA or RQRPA
(with ph interaction)

Generalized BCS
(no ph interaction)

..

. RQRPA doesn’t work in “isoscalar-pairing” phase (right of
each fig.)

. Generalized QRPA pointless in “isovector-pairing” phase
(left of each fig.)
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Beyond QRPA: GCM and Large-Amplitude Motion
For 0ν decay, only need initial and final ground states.
Rodgriguez and Martinez-Pinedo have done sophisticated
Gogny generator-coordinate calculaton; mix mean fields with
different shapes, pairing fields:

CONTENTS

Tomás R. RodríguezNuclear structure aspects of neutrinoless double beta decayMEDEX‘11Prague, June 2011
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- GT strength greater than Fermi.
- Similar deformation between mother and granddaughter is favored by the transition operators
- Maxima are found close to sphericity although some other local maxima are found
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- Final result depends on the distribution of probability of the corresponding initial and final collective 
states within this plot
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Results: NME Deformation and mixing

..But no explicit np pairing/spin-isospin correlations here.
SO(8) says they should be important.
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Matrix elements in different schemes

Results of recent calculations, references and comments on request..

From P. Vogel

GCM numbers tend to be on the high side.



Curent Work: Alternative Large-Amplitude Approx.
Until Now: Induce deformation with constraint operatator Q.
Calculate deformed kinetic, potential energies, inertial parameters.
Determine most collective Q. Determine equivalent Bohr Hamiltonian.

..

�φ(q)|Q̂(q − δq)|φ(q)� = δq

Moving-frame HFB eq. Moving-frame QRPA　eq.

Double iteration for each q

Algorithm to construct the collective path

HFB state (oblate)

HFB state (prolate)

moving-frame HFB state (vibrating state)
δq

Small amplitude vibrational mode around moving-frame HFB state 

large-amplitude shape vibration

po
te

nt
ia

l e
ne

rg
y

 local direction of collective coordinate is determined by moving-frame QRPA mode

|φ(q=0)>

|φ(q=δq)>

..

Application to shape
coexistence from talk
by N. Hinohara

Procedure maps maps adiabatic TDHFB dynamics in collective
subspace to 5-d Bohr Hamiltonian.



Now: Inclusion of Collective np Pairing

. Start with generalized moving HFB that includes np

mixing.
. Add collective np pair-creation operator to set of

constrained operators.
. Map to generalized 6-d Bohr Model (usual 5 plus new

collective mode)
. In SO(8) 6-d reduces to 1-d.



Results So Far
M2ν

GT (cl.)

Wave functions (not yet calculated) will sample this entire
space for all gpp.



Final Question:

IBM also being used to calculate double beta decay. Can we
use a fermion algebra to test it?

..Many thanks to Franco for starting me off in this beautiful
field.
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