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Challenging a common belief

“The liquid-drop energy of a spherical nucleus 1s
described by a Bethe-Weizsidcker mass tormula.”

“It 1s common practice to describe nuclear masses
and radu of spherical closed-shell nuclei 1n terms of
a mean field and add deformation and other shell
effects as corrections.”




Nuclear Mass is the most fundamental
property of nuclei

Nuclear Landscape

Some methods to predict

nuclear masses:
The liquid drop model (LDM).
Algebraic extensions of the LDM.
"he Duflo-Zuker microscopic mass formula.
"he finite range droplet model (FRDM).
- HFB methods.
- Density functional theory.

- The Garvey-Kelson relations and their
integration.




The models

- The Liquid Drop Model (LDM)
- The Duflo-Zuker model (DZ)
- The Modified DZ model




The reference set
Atomic Mass Evaluation 2003 (AMEOS3)

G. Audi, A.H. Wapstra y C. Thibault,
Nucl. Phys. A 729, 337 (2003)

2149 nuclei with N =8, Z =8
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Liquid Drop Model 1

A.E.L. Dieperink and P. Van Isacker, Eur. Phys. J. A42 269279 (2009).

ELDMI(N, Z) = —a,A+ a,SA2 /3 + S A(l -+ yA_l/B)

A’U4T(T+1)
Z(Z—-1 N,Z
T0c (1—(A)A1)/3 — Qp 1511/3 )

A= 62(1JJF\;_IZA1/3), A=2(ee),1(odd A), 0 (0-0)

6 parameters

Bulk and surface effects are treated consistently




Liquid Drop Model 2

N. Wang, M. Liu and X. Wu, Phys. Rev. C81 044322 (2010)

Erpm2(N,2) = —ayA+a,A?3 + Cquzl/Sl) (1—Z~2/3)

Ornio
—I-Clsym(N Z) /A + Qpair A1/3

Onp 2— | I|(e-e),1(odd A), | I | (0-0)

N—-Z)/A
Asym = Csym {]— — ’%/141/3 + (2—|—|N—)/Z|}

6 parameters

Isospin dependence of the symmetry term and
pairing




Liquid Drop Model 3

G. Royer, M. Guilbaud and A. Onillon, Nucl. Phys. A847 (2010) 24.

Erpms(N,Z) = —a,(1 = ko I?) A+ a,(1 — ks I?) A2/

CEEN (A~ a2 AV

_ak(l — kklz)Al/g - Epair - EWz'gner

1= (V-2)/4

11 parameters
Cuadratic isospin corrections,
proton form factor f, + charge exchange acexc ,

curvature terms (ax, k)




9 fits were performed
employing the 3 LDM formulas.

1st fit: global of all the nuclei in AMEO3
with N = 8, Z = 8.

2nd-8th fit: 7 regions with different
quadrupole deformations, taken from

FRDM, (P. Méller, J.R. Nix, W.D. Myers, W.J.
Swiatecki, At. Data Nucl. Data Tables 59 (1995) 185.)

9th fit: Only semi-magic nuclei.
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The rms (in keV) in each region

C. Barbero, J. G. Hirsch, A. Mariano, Nucl. Phys. A84 (2012) 81-97

semi
magic

global 4

2387 | 1313 2063 | 1746 2113

2374 | 1254 2069 | 1762 838 | 656 | 2056

2422 | 1183 2151 | 1517 819 | 629 | 1967

oblate spherical prolate




The three Liquid Drop Models
give very similar results:

- spherical nuclei have an rms close to
2000 keV

- deformed prolate nuclei have an rms
around 600-900 keV.

- The same effect is observed when pairing
effects are removed.

The more prolate the nuclel,
the best the LDM fits them.




LDM, global fit

RMS = 2.40 MeV, N,Z > 8
RMS = 2.42 MeV, N,Z > 28
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Differences between experimental and fitted masses



The major challenge in the
construction of an algebraic
microscopic mass formula is

the proper description of the
shell effects.




The shell effects
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On the microscopic derivation of a mass formula

Andrés P. Zuker

Physique Théorique, Centre de Recherches Nucléaires, IN2P3-CNRS / Université Louis Pasteur, BP 20,
F-67037 Strasbourg Cedex 2, France

10.1. Implementing the minimal-mass formula
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Microscopic mass formulas

J. Dufio! and A.P. Zuker?
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DZ, global fit

RMS = 0.35 MeV, N,Z >38
RMS = 0.31 MeV, N.Z > 28
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How does DZ work?

J. Mendoza Temis, J.G. Hirsch and A. Zuker,
Nucl. Phys. A 843 (2010) 14

* The monopole part (J=0) of the many-body
Hamiltonian can be factorized

H.: = ZE” (zk: miUk, Zﬁ:mﬁUﬁ“) s M= azak
I

U is a unitary transformation which
diagonalize the monopole Hamiltonian,
with eigenvalues E.




Numerical studies of realistic interactions (chiral N3LO)
show that only one eigenvalues dominates.
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D, = (p+1)(p + 2) is the degeneracy of the
major HO shell of principal qguantum number p




The master term M

* This is the basic building bock of the DZ
model.

* Asymptotically, M scales with A,
represents a proper volume term.




The master term minus its
asymptotlc behavior
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* HO shell closures, maximum scales with Al/3




The HO-EI transition: Duflo’s magic
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* The evolution from
HO (dots) to El
(squares) shell
effects for N-Z=24

even-even nucleil.

Shell effects for N-Z
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The macroscopic DZ
mass formula

M
(Hm)=a1(M—|—S)—a27—a3VC—a4VT+a5VT5—|—a6Vp.

Ve = ZZ-D+07612(z-1)*%) T~

even even
Te

2 even odd
Te = A1/3 1 — (%) odd even

AT (T—I— 1) even odd
— odd even
Vo A2/3p add odd
AT (T+1) AT (T—3
A2/3p2 T Ap y
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Differences between the binding energies predicted
by DZ10 macro, and the experimental ones.

Even-even nuclei (RMSD=2.86 MeV).
Lines join points at constant t=N-Z.
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Microscopic terms and
deformation effects

if Z < 50
(Hpy) + max ((Hg) ,(Hg)) if Z > 50




DZ10 deformed and spherical binding energies
subtracted from the experimental ones for Yb
Isotopes.

The crossings signal the onset of deformation,
which reproduces perfectly the N=90 transition
region.

>
D
=
o
O
p
—
o
L aand
©
O
| .
D
" =
O
2
2]
s
(@
D
=
—
2
D
3




The master term revisited

J.G. Hirsch and J. Mendoza-Temis,
J. Phys. G: Nucl. Part. Phys. 37 064029

MCL — % (6%1/ _I_ 6%77)

11/ P ] ].7T P ]
\/ D \/ D
Do Pv Dr P

Dy, . = 0ux+1)(pvx +2)+2

* The major shells are El instead of HO
* |t directly provides the observed shell
closures




Difference between ¢4, and different
approximations to describe its asymptotic
behavior as a function of N
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The rms (in keV) in each region employing the
macroscopic sector of the two DZ models

global 1 2 3 4 5 6 7

2852 | 994 1557 | 1392 2562 | 1529

3443 | 1425 2167 | 1717 2047 | 2107

oblate spherical prolate

- The ability of both models to describe masses of nuclei in spherical, prolate
and semi-magic groups are now comparable.

- The global RMS are larger than those obtained with the LDM formulas.

- The RMS are in nearly all cases smaller using DZ1 (except in region 6).

- It is hard to find any correlation between the RMS and the regions with
different deformations.




Combining LDM and DZ, val

ELDMl—l—DZ = LDM]1 + af’uol(Ma — Ma,asym) + asurf(Ma — Ma,asym)/p-
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Erpmitvar = LDM1 + by (n, + z,) + ba(n, + 24)2.

A.E.L. Dieperink and P. Van Isacker, Eur. Phys. J. A42 269279 (2009).
J. Mendoza-Temis, et al, Nucl. Phys. A799 , 84 (2008).




Combining LDM and DZ, val

semi
global 1 2 3 4 5 6 7 magic
LDDN; *| 1407 | 668 907 | 1026 | 755 784 791 647 952
-OM1*1 1075 | 796 | 981 | 1006 | 828 | 711 | 836 | 615 | 1037
oblate spherical prolate

* The inclusion of shell effects reduces the global RMS from 2387 keV to
1407 (1075) keV when the LDM1+DZ (LDM1+val) model is used.

 Still show a visible tendency to describe better the deformed than
spherical nuclel,

* The results obtained with both formulas look very similar, with a
smaller global RMS in the valence model and some advantage of

the LDM1+DZ model to describe semi-magic nuclei.




Combining LDM and DZ, val

The relative stability of the parameters b, and b. in the LDM1 +val
model, is behind the comparatively small global RMS.

The shell surface and volume coefficients asurt and avoi of the
LDM1+DZ model vary both in magnitude and in sign from one
deformation region to another.

Being a limitation for a good global t, it offers at the same time
the opportunity to relate these parameters with the deformation,
a challenge which is left for future work.




Differences between
experimental binding
energies (Bexp) and
theoretical results
(Bth) for the thee
models
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Conclusions

* Liquid Drop Models fits deformed nuclei far
better than spherical ones.

 The DZ model is based in a microscopic
description of shell effects.

* An alternative DZ inspired master term was
introduced.

* Adding two microscopic terms reduces
noticeably the RMS of the fits.

* I[mproved master terms are still required for a
good description of shell effects.

» Accurate mass formulas remain a challenge.




The shell corrections must be
removed.

The LDM cannot describe them.

* A simple parameterization of shell effects:
linear and quadratic dependence in the
number of valence nucleons (F-spin)




Modified LDM (LDMM)

J. Mendoza-Temis, J. Barea, A. Frank, J.G. Hirsch, J.C. Lopez Vieyra, I.
Morales, P. Van Isacker, V. Velazquez, Nucl. Phys. A799 , 84 (2008).

Z(Z -1) (N, 2)
A1/3 t dp A1/2
dysym 47(T + r)

2
1 + dwsym A-1/3 A —arFmax + drrFipax -

assym

BE(N,Z) = a,A-aA?3 - a,

Includes two microscopic terms, linear and
quadratic 1in the number of valence nucleons

Fma:r: — Tl TLy




LDMM, global fit
RMS = 1.33 MeV, N,Z > 8
RMS = 1.21 MeV, N,Z > 28

Z

8 -
814 28 50 126
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Modified Liquid Drop Model

A.E.L. Dieperink and P. Van Isacker, Eur. Phys. J. A42 269279 (2009).

Erpmi = —ay,A+a;A%?3+ S, A(Ai—T%EyZJr—ll)/s)
Z(Z-1) A

QcT-A)A1/3 — @pai/s

Erpyym = Erpyi +bi(n+ 2) + ba(n + 2)?

Erpmmr = Erpymm +a1S2 + a2(S2)? + azSs + anpSnyp

SS __ nn(n—n)

Dn

_z’

and D,,, D, the degeneracy of the major valence shell.



The rms (in keV) in each region

global

2387

1075 | 796 1006 | 828 792 | 615

887 | 627 902 | 634 619 | 574

oblate spherical prolate




