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Introduction

@ Nucleus (A, Z) decays to nucleus (A, Z & 2) by emitting
two electrons (or positrons) + other light particles

@ Modes of interest to this talk: 2v3— 3~ TWO NEUTRINO
mode: (A,Z) — (A, Z 4+ 2) 4+ 2e~ + 20 f

@ Allowed by the standard model

@ and the process Ov3—3:
(A, Z) - (A, Z 4+ 2) + 2e~
o Decay probability proportional to the
square of the average light neutrino mass
(my ), or in case of heavy neutrinos to the .
lepton nonconserving parameter |7|

NEUTRINOLESS
p p
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Introduction

@ For processes allowed by the standard model the half-life is
-1
[71272} = qugﬁ‘|mec2M(2”)|2
@ and for neutrinoless modes

-1
|:T{)72:| = Goygle(Oy)Flf(mi, Uei)lz

©

G2, and Gy, are the phase space factors

©

ga is the axial vector coupling constant (effective value
essentially model dependent!)

M@¥) and M%) are the nuclear matrix elements

©

©

f(mg;, Ug;) contains the physics beyond standard model

For both processes, two crucial ingredients are the phase space
factors and the nuclear matrix elements!
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Introduction

@ Light neutrinos:

f(m;,Ue;) = (m.) = mi Z (Uer)>mi

Me

€ k=light
1
o Advance: The average light > o1
neutrino mass is now well g pveRTED
constrained by — o0.01
. BN IORMAL
atmospheric, solar, reactor =5
. =~ 0.001
and accelerator neutrino
oscillation experiments -4

104 0.001 0.01 0.1 1

lightest neutrino mass in ¢
@ Heavy neutrinos:

Fmi,Uet) = [nl = mp (mz}) = my S (Uekmmi“

k=heavy
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Calculation of PSF: Electron wave functions

@ The key ingredient for the evaluation of phase space factors
(and thus double beta decay) are the electron wave
functions

@ We use positive energy Dirac central field wave functions

o) = (T ) y

ifn(e, T)X’in,

@ x* = spherical spinors, g, (€, r) and fi (€, r) = radial
functions

@ gx(e,7) and fi (€, r) satisfy the radial Dirac equations:

€ —V 4+ mgc?
ch

dg.(e,r K
M - __gn(ear) +
dr r

df.(e,r e —V —mgc? K
% = — gn(e,r) + _fn(ear)
T ch T

fr(e,T)
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Calculation of PSF: Electron wave functions

@ General analytical solution does not exist for screened potential BUT

@ numerical solution by Salvat et al., Comput. Phys. Commun. 90, 151
(1995)

@ Radial equations solved using piecewise exact power series expansion
of the radial functions

@ Radial wave functions are normalized so that they asymptotically
oscillate with

< 9w (€, 1) ) N e—i‘sni . % sin(kr — 15 — nln(2kr) 4 0.)

fu(em) pr \/$cos(kﬂ'—l§ — nln(2kr) + 6.)

@ €= /(mec?)? + (pc)?
_ _ e2+(mec2)2
0 k=12 = Vilmeeh)?

ch

is the electron wave number
® 1 = Ze?/hwv is the Sommerfeld parameter

@ g is the phase shift
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Calculation of PSF: Electron wave functions

@ Electron scattering wave function can be expanded in
terms of spherical waves

es(e,r) = essl/2 (e,r) + 65Pl/2 (e,r) + 63P3/2 (e,1) + ...

where

e = (e ) |

P1/2 _ ( t91(&;7)(F-G)(D- F)Xs

en = (e )

(e = ((8HETIBED) €202 )
T inEnBeE-p)6- ) - ¢ .
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Calculation of PSF: Potential

@ To simulate realistic situation, we take into account the
finite nuclear size and the electron screening

@ Thomas-Fermi screening function, ¢(r) = Zeff/Za,
obtained by Majorana solution of Thomas Fermi equation
(Esposito, Am. J. Phys. 70, 852 (2002))

dz? ~ v
e x = r/b with
b=1(2m)% 1 775 ~ 0.8858a02; /°

4 mee?
2

¢ boundary conditions: ¢(0) =1, ¢(c0) = £

@ The screened potential is then written as

—Zg4(ahe) r> R

V(r) = p(r) X T RV
=M X | _za(aney(=¢2%), r<R
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Calculation of PSF: Radial wave functions

Example of obtained radial wave functions: °9Nd decay,
Zg = 62 at € = 2.0MeV, R(150) = 6.38fm

2.5 2

150Nd 150N d
2.4 1.9
19-1(en [fuenl
2.3 1.8 WF1
efl/2 (e, )22 WF1 | 1.7]
2.1 \\ 1.6] ~WF2|
2. U2 15 WS
WF3
1.9 1.4
0.7 0.7
od Ifaenl WA 0d 1ouenl
WE
0.5 0.5
“E WE2
Py /o 0. WF3 0.4
€s / (e’r)oa 0.3 m
0.2} 0.2}
0.1} 0.1}
0. 0.
0 2 4 6 8 0 2 4 6 8
r[fm] r[fm]
WF1 = Leading finite size Coulomb (previous studies)
WF2 = Exact finite size Coulomb
WEF3 = Exact finite size Coulomb & electron screening J
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e Example decay scheme for 2v3~3~: 190Mo —100Ry

—
O Bo;
qﬁ;o.lsas) MeV. I . Qs=3.202817) MeV . - === (En) (CA)
Oim 50 =2.0724827) MeV A 01100 <
42 MOsg 42Mosg
Wo (Ei+Ep)/2
Qp=3.0344Q17) MeV Qpp=3.0344Q17) MeV
20 N 20
12 Russ 12 Ruso

@ Possible decays: 07 — 01 and 0T — 271
@ Qppg is the reaction Q-value

@ Separation of PSF and NME can be done for:
@ Closure Approximation (CA)

~ 1 1
A = SWo+(En)—FEr = 2 (Qpp+2mec®)+(En)—Ey ~ 1.12A%/2

¢ Single State Dominance hypothesis:
~ 1 1
A= Wo+E + = —(Qps +2mec?)+ E 4 — Ep
2 1y 2 1y
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o Differential rate for 0% — 01 203~ 3~ -decay is given by
dWs, = (a(o) + a™® cos 012) w2y dwiderdezd(cos 612) J

4
o way, = %wfu%(plc)(pgc)elez
o a© and a™ are functions of (Kn) and (L) (functions
of €1, €2, W1, W2, A7 Q,@ﬁ)7 |M(2u)| and f1((1)) and f](.i)
(products of g_1(e, R) and f1(e, R))
@ All quantities of interest are obtained by integration of
dWZu
o All quantities are separated into a phase space factor
(independent of NMEs) and NMEs

@ Phase space factor of interest

A2 Tn,ec2 mecz—e —e1—€
Gan — 1 24 Qpp+ Qpp+ 1 Qpp—e€1—e2 f(o)
Y7 (mec2)231In2 o 1

X ((Kn)? 4+ (Ln)? + (KN) (Ln)) w2y dwidezder

mec? mec?
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From these, we obtain:

3.5¢10°

@ The halflhfe 309N i
2v 27 (2v) 5 e
[7'1/2] = G294 |m "M | o 1o oa
@ The differential decay rate 05a0°]
dW2V J— dG2lI %8005 10 15 20 25 30
dey Nz" dey e-mc?MeV]
2 3.5¢10°!
where N2, = g% |meczM(2u)| . 200
@ The summed energy spectrum of the two 2000
electrons B rowr 7
dW2lI _ dG 2y 0.5¢10°7]
d(€1+€2) Nzu d(€1+€2) 8o os 10 1:18;0 25 30
€1+€-2 [MeV]
@ The angular correlation between the two iy
electrons 079
a(6 ) _ G2],;)/d€1 — gzz
VT G /de €
where G( ) is also obtained from dWs,, b
B approximat
( (1) term) 71'00.0 05 10 15 20 25 30

e—me?[MeV]
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2v[3~ [~ Results

156310 @ Closure energ\=1.12A"2=11.75 MeV
15x10 4 Single state dominano=1.893 Mev @ G2, as a function of A

5 aseion o Stays almost constant, which

= means CA good approximation

) % 10°1)

E . o EXCEPT near the threshold
135107 (EN), which case SSD good
Lax10 approximation

2 3 4 5 6 7 8 9 10 11 12
A[MeV]
m approximat o Current 2v3~ (3~ phase
1000(¢ @ this work(CA) 16 B p
o  this work(SSD) space factors (red: CA
' 100( () decay observe
i and black: SSD)
L 100 .
=] compared to previous
= 1 .
) calculations (blue)
1 -
@ Marked nuclei: Decay
40 60 80 100 12C 140 160 180 20C 220 24G Observed
Mass numbe
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2vEB~ 67 M;,ff from experiments

Nucleus Tfuz(lols y) exp™ 0.25
m M (CA

a8, 44T8 Mo o g tss)u
76 o 1500 4 100 0.2 ® ‘ v
825, 92+ 7 jMo-Ru(o;)
967, 23+ 2 018
100, 7.1+ 0.4 Ge cd
1001, 100, (07 ) 590*_’33 0.4] Se 7
116 g 28 + 2 | Nd
128 Te [ ]
' Te 1900000_':!:1;1(())0000 00%tcs ® . ENd-SMO})

30Te 680_17,
136
150 Xe 2110 =+ 250 90 60 80 100 120 140 16C 180 200 220 240

Nd 8.2+ 0.9 Mass numbe

1501505 m (07 ) 133*_“;2
238y 2000 + 600

o Extracted dimensionless

@ |MZI7|? is obtained from the
measured half-life by

quantity

MG = g (mec®) M3
|MEIF|? = [+, X Ga] ™"

Smallest Mze,ff for 136Xe, just
recently measured!

* A.S. Barabash, Phys. Rev. C 81, 035501
(2010).
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2B~ 37 M;ff from experiments

@ Now, if we add to the same figure the theoretical IBM-2 matrix

(2v) 2 (2v)
elements |M3¥)| = |% — (Z—X) N;LF| which DO NOT include

the factor g%...
@ ... but they are still much larger than MgS7*

@ gaerr < 1.0, at least in the case of 2vE3~ 37!

1.2
m MEM (cA
11 Ee M3y | (CA)

1. ® |M5T| (SSD
0.9 o o[M®@Y| (CA)
0.8 ,

e) M(ZH SS
07 cd [ | (SSD
0.6 x 9
0.5 O Nd
0.4 Ge

OSe
b O Te U
0.2 Ca %P(e »
o O
0of® wy dow
o .  me ®,
40 60 80 100 120 140 16C 180 200 22C 240

Mass numbe
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2v3~ (3 : Determination of effective gy

@ g4 is renormalized in nuclei

@ renormalization depends on the size of the model space
e IBM-2: small model space
o ISM: large model space

@ ga,eff can be extracted comparing |M2e,ff| and |Ma, |

1.4
O from experimentaty, (ISM)
1.2
m/a from experimentaty, (IBM -2 CA/SSD
1.0
= 0.8
L7
<
D 0.6
Nd
0.4
0.2
0.
40 60 80 100 120 140 16C * ISM NMEs from E. Caurier et al.,
Mass numbe Int. J. Mod. Phys. E 16, 552 (2007).

'
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2v3~ (3 : Determination of effective gy

@ g4 is renormalized in nuclei
@ renormalization depends on the size of the model space

e IBM-2: small model space
o ISM: large model space

@ ga,eff can be extracted comparing |M§lff| and | Mz, |
@ Assumption: ga efy is a smooth function of A

1.4 0 0
o from experlmentafl/z (ISM) @ Parametrization:
1.2 O gie=1.269A"0* . —
m/A from exper|menta+1/z(IBM 2 CA/SSD gA,eff = 1.269A
1.0 IBM-2_
® gRei *=1.260°° o IBM-2: v = 0.2
508 © o ISM: v = 0.12
<
D 0.6
0.4
0.2
0'40 60 80 100 120 140 16C * ISM NMEs from E. Caurier et al.,
Int. J. Mod. Phys. E 16, 552 (2007).
Mass numbe

'
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@ The differential rate dWpy, for the decay is essentially a function of
electron energies and radial wave functions

@ By integration of dWoy, we get

1 2 [Qpptmec®
GOU = / (

W 3 fli)wgudel, R = r0A1/3 = 1.2A1/3,
A

mec?

4 (G cos 0)4
where wo, = MI‘;%C)(mecz)2(ﬁcz)(plc)(pzc)elez

@ The half-life is then
-1 2 2
|:T](,)72] = GOuQi (%) |MC(§)’IIf) — (%) MI(:‘OV) + ]\4_};10,/)|2

@ The single electron spectrum

dWo, _ dGo,, _ (0)
de ~Nov g = Nov [2f11 (61)“’0"(61)]
2 v 2 ” v
where Nov = g% (<:—Z>> MO0 — (Z_X> MO 4 MOV

() _ acl) /des

@ and the angular correlation: a(e1) = =
(€1) 7O () dGo, /der
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OvB~ 37 : Results

o Current Ov3— 3~
PSFs (red) compared
to previous
calculations (blue)

=
o
o

Nd m approximat
@ this work T

a
(@]

=N
o O

o Influence of using the
exact electron wave

Go, (1075 yr Y
(4]

2
1 functions is seen
especially for heavier
40 60 80 100 120 140 160 180 200 220 24Q isotopes
Mass Numbe
.

soa0 s 1o o Example of single
3.5x10°"9) 0.79
sod0” o8 electron spectrum:
2.5x10 0.2

/der
a(er)

76Ge —76Se decay

&3 20x10%

995 151019 -0.24
1.0x10°%9 ~0.5(
050 o 7E\¥J @ Example of angular
85 05 10 15 2.0 e o5 10 15 ac . .
. meiMeV] M) correlations:

76Ge —76Se decay
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OvB3~ B~ : Nuclear matrix elements

@ Most used models:

@ QRPA: Results depend on fine-tuning of the interaction,
especially near the spherical- deformed transition, for
example 19ONd.

@ ISM: Cannot address nuclei with many particles in the
valence shells, for example '°°Nd, due to the exploding size
of the Hamiltonian matrices (> 109).

@ Recent advances
o Development of a program to compute Ov33 and 2v33
nuclear matrix elements in the closure approximation
within the framework of the microscopic Interacting Boson
Model (IBM-2)
@ Can be used in any nucleus and thus all nuclei of interest
can be calculated within the same model
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OvB3~ 3~ : Nuclear matrix elements

MO = ) _ (91)2 MO 1 O o Comparison of QRPA*, ISM**
ga and IBM-2 matrix elements for
§ el T light neutrinos with Jastrow
1 3 3 IBM—2 SRC
5 1 ISiE Te 1 = QRPA
4 L Te | © Y @ The ISM is a factor of
_ | g Sﬂ.)q: ¢ (approximately) two smaller
9§ 3 } - & S than both the IBM-2 and
2 C;a ‘oi o NG Pt QRPA
) . ‘ o This could suggest that
. gAa,ezs is the same for
T E—T 50 100 120 both modes
Neutron numbe

o

@ The agreement between IBM-2 and QRPA is not only for the overall
matrix element but also for the individual pieces, F, GT, T

* F. Simkovic et al., Phys. Rev. C 77, 045503 (2008).
** B. Caurier et al., Phys. Rev. Lett. 100, 052503 (2008).
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OvB~ B :Results with g4 and ga,err

@ Predictions for OvB~ (3~ half-lives with (m,) = 1eV J
gA,eff = 1.269A~7

ga = 1.269
100G 1004
Te
@ IBM -2 ga=1.26¢ OS.W o
I Nd?
_1.26¢ Il N\ 1
10 ©ISM gx=1.26¢ 1ode . o o “‘\‘//// Pt
=R = |\
< ° < ca G © d‘ﬁ | &
é ° Te k=i Xe
< 10 ° . = 10 Se Mo d
8% e S5
- s ~ @ IBM -2 gpeft=1.269A02
e *Wﬁ’* 1 @ 1SM ga c1=1.2604 012
I\id
50 100 150 200 50 100 150 200
Mass numbe Mass numbe
@ good agreement between IBM-2
) reemen n IBM-2
bad agreement betwee and ISM
and ISM ) )
@ Half-lives over ten times longer!
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OvB~ (37 : Results w

h ga and gAeff

@ Limits on average light neutrino mass from current experimental
Ov(B~ B~ half-life limits™

Kmy)| in eV

ga = 1.269

100.(
50.¢
10.0 zr
5.0 Ca Nd
cq Te
Se
1.0
Mo
0.5] T
Ge
1 [t
40 60 80 100 120 140 16C
Mass numbe

Km,)| in eV

gA,efy = 1.269A77

100.G
Zr
50.
Nd
Ca
cq Te
10.0 N
5.0 Mo
-
ol e
X
1.0
0.5
40 60 80 100 120 140 16C
Mass numbe

@ Best candidates at the moment “¢Ce, 1°°Mo, 13°Te and *3¢Xe
* A.S. Barabash, Phys. Atom. Nucl. 74, 603 (2011).
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OvB~ B : Results with g4 and gaeff

@ Current limits to (m,) from CUORICINO, IGEX, NEMO-3 and
KamLAND-Zen
ga = 1.269 gA,efy = 1.269A77
1 1
—NEMO-:
:l‘;g’mmw KamLAND-ZerT e
1
F—NEMO- 1
= CUORICING———
[ IGEX
3 ol 3z 01
£ £
= INVERTED = INVERTED
3 £
= 0.0 = 0.0
NORMAL NORMAL
0.007 0.001
1074 1074
104 0.001 0.01 0.1 1 104 0.001 0.01 0.1 1 10

lightest neutrino mass in € lightest neutrino mass in ¢

IGEX: C. E. Aalseth et al., Phys. Rev. D 65, 092007 (2002).
NEMO-3: R. Arnold, et al., Nucl. Phys. A 765, 483 (2006).
CUORICINO: C. Arnaboldi et al., Phys. Rev. C 78, 035502 (2008).
KamLAND-Zen: A. Gando et al., arXiv:1201.4664vi [hep-ex] (2012).
. o> . . B 98 4
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Conclusions

o

© 6 6 ¢

Complete and improved calculation of phase space factors
for 2v8~ (3~ and OvB3— B~ decay
o including half-lives, single electron spectra, summed
electron spectra and electron angular correlations

Improvement: exact Dirac wave function with finite nuclear
size and electron screening

Improvement: first excited 0% state, not just ground state
Error analysis included to maximize the feasibility

The analysis of the g4, ey 5 for the case of IBM-2 NMEs
Predictions for half-lives and limits for average light
neutrino masses using IBM-2 matrix elements

Outlook

[+

[+

Complete and improved calculations for 2v8+ 3+ and
OvB1 31 decay phase space factors, as well as for
2vECBYT, 2vECEC and OvECB are ready, OvECEC
needs more work

Similar analysis to these modes that was done for 3~ 3~
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Kmy)l in eV

1
f—NEMO.

Qng |N§ m
[FIGEX e

0.1

INVERTED
0.0

NORMAL
0.007

1074

104 0.001 0.01

0.1 1

lightest neutrino mass in €

JdA,eff = 1.269A—7

1
[-NEMO-
s KamLAND—Zert =1
1]
> 0.1
()
=
752 INVERTED
>~ 0.0
NORMAL
0.00]
1074
104 0.001 0.01 0.1 1 1c

lightest neutrino mass in €
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Estimate of uncertainties introduced to PSF

2v Q-value 10 X 6Q/Q
Radius 0.5%
Screening 0.10%
(EN) model dependent

Ov Q-value 3 xXiQ/Q

Radius 7%
Screening 0.10%
(En) -
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Limits on || with g4 and ga,efy

1x10° 1x10°
5%1079 5109 ©? zr
Te
Se d
cd
1x10¢t €@ 2 1x10°9
5x107) Te 5x107 (;,(e Teye
— p— Mo
= Se Nd =
cd
1x1077] Ge 1x1077]
Mo e
5x10°9 5x10°9
1x10" 1x10-
40 60 80 100 120 140  16C 40" 60 80 100 120 140  16C
Mass numbe Mass numbe
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Limits on (m,,) with g4 and ga ef¢

M 2 m
w P
n=_4ma - 2 (Vekn) )
WR k=heavy Mkp,
where My, is the mass of the W-boson, My, = 80.41 & 0.10GeV, My, g is the mass of
W R-boson, assumed* to be Myy g = 3.5TeV and V = (M r/Mw )? U. The ratio
(Myy /My g)? is then 2.75 X 10~ 7
10.G | 10.G
5.0 I Mo ‘ I 5.0
X Xe
Ge G
2.0 2.0
> >
& 19 cd & 10
P Se Nd IS Mo
= = X
E‘ 05 Te E‘ 05 Ge e
= 7 =
0.2 Ca 0.2 cd
Se
0.1 ! Nd
Te
Ca zZr
40 60 80 100 12¢ 140 16C 40 60 80 100 12¢ 140 16C
Mass numbe Mass numbe
* V. Tello et al., Phys. Rev. Lett. 106, 151801 (2011).
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2.0x107%9)

1.5x10°19

V/dé]_

(0)

1.0x10°19

d

0.5x10719)

0'0.0 0.5 1.0 15 2.0
e1—-mc[MeV]
.
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© Lna § D

The functions fy, 11 are defined as

FO = 1 N P TR T 0
D = —2Re[f~ g £ AL
with
T =g a1 (e1)g_1(e2),
fi11 = f1(e1) f1(e2),
1 @)
f771 =g_1(e1) f1(e2),
F171 = fi(e1)g—1(e2).
910 = [T w(rg (e rr2ar,
0 (3)

fi(e) = _/0°° w(r) f1 (e, r)r2dr.
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In approximation (I) we use the weighing function w(r) = &§(r — R)/72 in which case

g_1(e) =g_1(e, R)

I 4
f1(e) = f1(e, R) ® @
that is the electron wave functions are evaluated at the nuclear radius » = R. This is the
simplest approximation and is commonly used in single-8 decay. In approximation (II) we use
the weighing function w(r) = 3/R3 for » < R and w(r) = 0 for » > R (an uniform
distribution of radius R). This is not a good approximation, since the inner states cannot
decay due to Pauli blocking and the decay occurs at the surface of the nucleus.

3 (R
91 =— [ g i(emriar
11 e . (1 (5)
160 = 5 [ e, myrar

The third and most accurate approximation (III) is that in which the weighing function is the
square of the wave function, R,; (), of the nucleon undergoing the decay,

9-1() = [T 1Ru @I g (e,mr?ar
. (I11) (6)
fi(e) = /0 | Rt ()12 f1 (e, 7)r2dr

The approximation (III) essentially amounts to an evaluation of g_; (€) and f1(€) at a radius

’/<T2>nl' For harmonic oscillator wave functions one has
3
2 2
=b 2 4 — . 7
(%) =0 (2414 3) @

This approximation has the disadvantage that it must be done separately for each nucleus.
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