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Abstract: We introduce normal coordinates on the infinite dimensional g@untro-

duced by Connes and Kreimer in their analysis of the Hopf algebra of rooted trees. We
study the primitive elements of the algebra and show that they are generated by a simple
application of the inverse Poincaré lemma, given a closed left invariant 1-foré. on

For the special case of the ladder primitives, we find a second description that relates
them to the Hopf algebra of functionals on power series with the usual product. Either
approach shows that the ladder primitives are given by the Schur polynomials. The rele-
vance of the lower central series of the dual Lie algebra in the process of renormalization
is also discussed, leading to a natural conceptpfimitiveness, which is shown to be
equivalent to the one already in the literature.
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1. Introduction

The process of renormalization in quantum field theory has been substantially elucidated
in recent years. In a series of papers (see, e.g., [11,7,2,9] and references therein), a Hopf
algebra structure has been identified that greatly simplifies its combinatorics. This, in
turn, has led to the development of an underlying geometric picture, involving an infinite
dimensional group manifold:, the coordinates of which are in one-to-one correspon-
dence with (classes of) 1PI superficially divergent Feynman diagrams of the theory.
The latter are indexed by a type of graphs known as (decorated) rooted trees, which
capture the subdivergence structure of the diagram. The forest formula prescription for
the renormalization of a diagram then is translated into a series of operations on the
corresponding rooted tree and the latter have been shown to deliver standard Hopf alge-
braic quantities, like the coproduct and the antipode of the rooted tree. The above results
were obtained using a powerful mixture of algebraic and combinatoric techniques that
brought to light unexpected interconnections with noncommutative geometry, among
several other fields.

The complexity of the full Hopf algebra of decorated rooted trees is, in many respects,
overwhelming. Even in the simplest cases, one is confronted with an infinite set of
available decorations for the vertices of the rooted trees, originating in the infinite number
of primitive divergent diagrams appearing in the underlying theory. It is rather fortunate
then that the considerably simpler algebra of rooted trees with a single decoration seems
to capture many of the features of realistic theories. It is for this reason that it has
been studied extensively, as a first step towards an understanding of the full theory.
Of primary importance, given their réle in renormalization theory, is the study of the
primitive elements of the above Hopf algebra. These correspond to sums of products
of diagrams with the property that their renormalization involves a single subtraction.
In Ref. [3], an ansatz is presented for a (conjectured) infinite family of such elements,
corresponding to the ladder generators of the algebra, i.e., to trees whose every vertex
has fertility at most one. Furthermore, dealing with the general case, a set of vertex-
increasing operators is constructed that generates new primitive elements from known
ones. As the number of primitive elements increases rapidly with increasing number of
vertices, this approach necessitates the introduction of new operators in each step, a task
that has not yet been systematized.

Our motivation in this paper is two-fold. On a general, methodological level, we
argue that the above algebraic/combinatoric approach, with all its multiple successes,
should nevertheless be complemented by a differential geometric one, which, we feel,
has not been sufficiently considered in the literature. On a second, more concrete level,
we provide support for our claim, by showing how a simple application of the inverse
Poincaré lemma reduces the search for primitive elements to that of closed, left invariant
(LI) 1-forms onG. For the case of the ladder primitives, we give a simple generating
formula that identifies them with the Schur polynomials. Our discussion uses the normal
coordinates on the group, a choice that leads naturally to a concegirohitiveness,
associated with the lower central series of the dual Lie algebra — we prove that this
coincides with thé&-primitiveness introduced in Ref. [3]. We discuss the role of the new
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coordinates in renormalization, using the toy model realization of Ref. [10], while also
commenting on similar results obtained for the more realistic heavy quark model of [2].

2. Differential Geometry & la Hopf

We will be dealing with differential geometric concepts expressed in Hopf algebraic
terms. We opt for this formulation having in mind the transcription of our results for
the non-commutative case — Hopf algebras are ideally suited to this task. We start
by providing a short dictionary between the two languages and establish the notation,
assuming nevertheless familiarity with the basic definitions.

Two algebras will be of main interest to us: on the one hand we have the (commu-
tative, non-cocommutative) algehrhof functions on a (possibly infinite dimensional)
group manifold, generated Ky}, with A ranging in an index set — we denote by
b, ... general elements of. On the other hand, we have the (non-commutative, cocom-
mutative) universal enveloping algekidaof the Lie algebra of the group. We actually
work with a suitable completion @f, so as to allow exponentials of its generatérs
which we identify with the points of the manifdid- we denote by, y, ... general
elements ot/ (we useg, ¢/, . .. if we refer to group elements in particular).

Both algebras are Hopf algebras. Bérthecoproduct A(a) = a1y ® a(2) codifies
left and right translations

Le(@)() = aw(@ae(), )

and similarly for right translations. Féf, it expresses Leibniz'srulé(Z) = Z® 1+
1® Z, for the left-invariant generatdf. The two Hopf algebras adal , via theinner
product (also calledpairing)

(,V:U®A— C, x®ar> (x,a), (2)

which, whenx stands for a generatdt, amounts to taking the derivative afalongx
and evaluating it at the identity. Fer= g, the above definition produces a Taylor series
expansion of: at the identity which gives, far analytic, the valua(g) of a at the point

g. The coproduct in4 is dual to the product ity via

(xy,a) = (x ® y, a1 Qae) (3)

andvice-versa. We usually work withdual bases, so thatZ 4 only gives 1 when paired
with ¢4, while its inner product with all othep’s, as well as with all products af’s,
vanishes. Given a Poincaré—Birkhoff-Witt bagsis} for A,

(Y =1{Lo" ¢"9% ...}, 4

one can build a dual basfi } for the entire/ by adjoining to the abov&’s polynomials
in them, {¢;} = {1, Z4, quadratic, cubic, ..}, with (¢;, f/) = 8] — this, in general,
involves a non-trivial calculation.

To every elemend of A we can associate a LI 1-fori,, given by

M, = S(a@)dac), (5)
1 The particular group we deal with in Sect. 3 is hon-compact and infinite dimensional. Nevertheless, in

this paper, we only consider elements that correspond to exponentials of linear combinations of the generators.
For a readable account of what we might be missing in doing so, see Ref. [12].
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d being the exterior derivative arfdthe antipode ind. IT is linear, while on products it
gives

Mapy = Mued) + €(a)p, A commutative (6)

wheree is the counit inA. We take all generators” of A to be counitless, i.e., we
choose functions that vanish at the identity of the group, except for the unit function
1 4 (which we often write as just 1). This implies thdtonly returns a non-zero result
when applied to the generators and vanishes on all products, as well ag. dméd
Maurer-Cartan (MC) equations take the form

dlly; = =gy o, - @)

Using (6), one sees that only the bilinear part of the coproduct contributes to the MC
equations.

3. The Hopf Algebra of Rooted Trees and Its Dual

3.1. Functions. We specialize the general considerations of the previous section to the
Connes—Kreimer algebra of renormalization. For a detailed exposition we refer the
reader to [10, 6, 8] and references therein, we give here only a brief account of the basic
definitions and some illustrative examplekis now the Hopf algebré{ z of functions
generated by’ , whereT is a rooted tree. This means that the group maniig, in

this case, infinite dimensional, with one dimension for every rooted tree ¢'share
coordinate functions on this manifold. The group law is encoded in the coproduct

AP =9 @1+10¢7 + > ¢" D @R D, ®
cutsC

The sum in the above definition is ovaamissible cuts, i.e., cuts that may involve more
than one edges{mple cuts) but such that there is no more than one simple cut on any
path from the root downward®¢ (T is the part that is left containing the root f
while P€(T) is the product of all branches cut, e.g.

where we let a tre@ itself denote the corresponding functigf, a convention freely

used in the rest of the paper. The factor 2 on the r.h.s. appears because there are two
possible cuts or™s generating the corresponding term. A convenient way to recast (8)

as a single sum, is to introducefl and anempty cut, above and below any tree
respectively, e.g.,

~~~~~ full cut
A VAN 10
~~~~~ empty cut. (10)
We rewrite (8) in the form
A(¢T) — Z ¢Pc/(T) R ¢Rc/(T)’ (11)

cutsc’
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where the above two extra cuts, includedn produce the primitive part of the coprod-
uct. Notice thatA respects the grading given by the numbéF) of vertices of a tred .

We call this thev-degree ofp”, denote it by degi¢”), and extend it to monomials as
the sum of the-degrees of the factors. The polynomial degree will be cahtetbgree

to avoid confusion — it is obviously not respected by the coproduct. We will use the

notationAl(”) for the subspace od of v-degree: andp-degresd, e.g.,A(ln) is the linear
span of the generators withvertices.

3.2. \ector fields. The réle ofl/ is now played byH%, generated byZr}, with T a
rooted tree and we take thEs dual to thep’s, in the sense of the previous sectiah.

is a left invariant vector field oi7. The Lie algebra of such vector fields is found by
computing, using (3), the pairing &4 Zp — Z Z 4 with all basis functiong f'}.

Example 1. Computation of Z,, Z;]. We have

A(})=.®I+I®., Aly=2.0l+.9., (12)
ACD =@+ Q@ctee®ete®ee,

whereA (@) = A7) —¢” ® 1— 1® ¢”. These are the only functions that contain
the term. ® { in their coproduct. We find therefore, using (3),

<z,z;, }> =1 (z.z,N)=2  (z.z;.0)=1 (13)
Similarly, one computes
<ZIZ,, }> =1, (z12,,.0) =1, (14)

the pairings with all other functions being zero. It follows that the only non-zero pairing
of the commutator is

(1Z.. z11. /\) =2 (15)

But the element Z », of U/ has exactly the same pairings, therefore, in order for the inner
product betweetf and.A to be non-degenerate, one must[s&t Z1] = 2ZA,.

Proceeding along these lines, one arrives at the general expression [7]
_ T _ T _ T
(Zn. Zr) =3 (nTlTZ "1omy ) Zr =3 I, 21 (16)
T T

wherenT TT is the number of simple cuts dhthat producd’y, 7>, with 7> containing

the root é)fZT (denoted by (T, T, T) in [6]) and the last equation defines the structure
constantsf. T of the Lie algebra. We introduce, following [7],saoperation among

the Z's, defined by
Tzr. (17)

n
T2

Notice that this i:iot the product i/ but, nevertheless, it gives correctly the commutator
when antisymmetrized (cf. (16)). The above Lie bracket conserves the number of vertices.

Zy xZr, =
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3.3. 1-forms. We turn now to LI 1-forms. Starting from (5) and using the particular form
of the coproduct in (8), we find

c’ c’ c C
Myr = Y @5 M agR M = ggT 13" ¢SETD ggRM), (18)
C’ C

For the MC equations we may use directly (7) and the comment that follows it to find

dlyr =— Y My peq Myrcor- (19)

simpleC

The restriction to simple cuts is possible since cuts that involve more than one edge pro-
duce non-linear terms in the first tensor factor of the coproduct and these are annihilated
by IT. This is probably the easiest way to derive the structure constants.

Example 2. Maurer—Cartan equation faf » . Using (18) we find
M, =de, TMy=dl—ede, Tp=dd\—2edl+ eede. (20)
Direct application off to the above expression for» , or use of (19), gives
dllp, = —2T1.103, (21)
in agreement with the commutatiot,, Z;] = 2Z, of Ex. 1.

General vector and 1-form fields are obtained as linear combinations of the above, with
coefficients inA.

4. Normal Coordinates

4.1. Anew basis. We introduce new coordinatég 4} on G, defined by
<g, 1/1A> =a?, where g = ®'Za, (22)

i.e., they’s are normal coordinates centered at the origin and, likeptheare indexed
by rooted trees. Of fundamental importance in the sequel will beahenical element
C (see, e.g., [4]), given by

C=e®f = a0V (23)

{e;} and{ f} above are dual basesigfand.A respectively (see (4)). In contrast with (4),
we fix now the{e;} tobe{l, Z4, Z4Zp, ...} and define thg’s by the second equality
above (the tensor product sign ensures thatAlsedo not act on the)’s). C may be
regarded as an “indefinite group element” — whenjfgeget evaluated on some specific
point go of the group manifoldC becomesg. One may also vievC as an “indefinite



Normal Coordinates and Primitive Elements in Hopf Algebra 471

function” on the group — when th&’s get evaluated on some particular (analythg)
the resulting Taylor series delives, i.e.,

<eZA®‘/’A, id ®go) = g0, <eZA®‘“, $o ® id) = ¢o. (24)

In the abovego, ¢o stand forany element in the corresponding universal enveloping
algebra, not just the generators. The second of (24) gives the relation between the two
linear baseg f(’¢)} and{ f(’w)}, generated by the’s and they’s respectively. Indeed,

taking¢go = ¢4 and expanding the exponential we find

— 1
o Z%<zgl...zBm,¢A>¢Bl...1//Bm
m=0""

(25)

1
s (zglzgz, ¢A>w31¢32 I

Lemma 1. The change of linear basisin .4 generated by (25) isinvertible.

Proof. Notice that the linear part af“ (v) is ¥4 and also, that the above expansion
preserves the-degree. We choose a linear basisdinwith the following ordering

{ ¢, ¢ ¢o, ¢>E, o, dler, (9%, ..., (26)
7;-1/ v=2 v=3

namely, in blocks of increasing-degree and, within each block, non-decreasing
degree. The above remarks then show that the matrdefined by

Figy = AT 1Sy 27)
Where{f(iw} is also ordered as in (26), is upper triangular, with units along the diagonal
and hence invertible. o

Notice thatA is in block-diagonal form, with each block, actingond™,v = 1,2, .. ..
The computation o4 (), via (25), reduces essentially to the evaluation of the inner
product of¢#4 with monomials in theZ’s — this is facilitated by the following

Lemma 2. Theinner product (Z, ... Zg, . $*) isgiven by

(zB1 .. Zg,, ¢A> - <ZBl % xZp . ¢A> =n, A (28)
where
A _ A Ry Rm—2
nBl...Bm - nBlRl ntRg o 'an,le (29)
(Zp, * ... * Zp, aboveiscomputed starting from the right, e.9., Zp, * Zp, * Zp, =

ZBl % (ZB2 * ZB3)).
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Proof. We have
<zB1 ...zBm,¢A> = <ZBl ®...®Zs,, A’"*l(¢>")>. (30)

In the above inner product, only the-linear terms inA”~1(¢4) contribute, since the
Z'’s vanish on products and the unit function. One particular way of evaluating the
(m — 1)-fold coproduct is to applyA always on the rightmost tensor factor. It is then

clear that, in this case, we may instead appjy, since(]‘[’/’gl(id@f—1 ®A)) (¢*) and

(]‘[(’}1:1(id®f‘l ®A"n)) (¢*) only differ by terms containing products of thés or units

(this is only true ifAji, is applied in the rightmost factor). Notice now that thproduct
of the Z's is dual toAji,,

(28, Zb,. 0") = (25, ® Zg,, Bin(9)). (31)

Repeated application of this equation and use of the definitien®§. (17), completes
the proof. O

A concise way to express the relation between the two sets of generators is via the
x-exponential (x € Uy)

o0 o
=> Lo 5 . (32)
i! i! bv—/
i=0 i=0 " factors
Combining (25) and (28) we find
efA@l//A =7z ®¢B’ (33)

where the conventiofZ, @ v*) * (Zg @ 8) = Z4 % Zp @ vy B is understood and
the sum on the r.h.s. starts withgl1.

4.2. The Hopf structure. We derive now the Hopf data for the new basis. A standard
property ofC is

(A ®id)C = C13C23, (id ®A)C = C12C13, (34)

where, e.g.C1z = ¢Z4®18¥" _ this is just the product-coproduct duality in (3). The
second of (34) permits the calculation of the coproduct ofitlséby applying the Baker—
Cambell-Hausdorff (BCH) formula to the product on its r.nagy4) is the coefficient
of Z, in the resulting single exponential
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exp(Za ® A(Y™))
—exp(Za @ v @ L) exp(Zp ® 1@ v F)

1
:exp(zA®wA®1+ZB®1®¢B+§[zA, ZB]®1/fA®wB+...)

1
— A
—ep[zie(Wiel+iyt+5s, WPev . ) (@39)

so that

1
AP =y @141yt + 21 Ayblrgyliy . (36)
2" B1B

Higher terms in the coproduct can be computed by using a recursion relation for the
BCH formula (see, e.g., Sect. 16 of [1]). The counit of/afl vanishes. AlthougiA (v 4)

can be complicated§(y#) never is. UsingS(g). ¥4) = (g, S(¥*)) and the fact that

S(g) = g1, itis easily inferred that

Sty = -y, (37)

which extends as(p,(¥)) = (—1)" p, () on homogeneous polynomials pfdegree
r. We see the first of the many advantages of working imtHeasis: the antipode is
diagonal.

Example 3. Computation ofy ™, n < 4. A straightforward application of (25) gives

.

b by o 2, 2.0 14
hmvbaytiyn s 2ptia Ly

!
F PSS S

_ . 102 1 2. 1 4
=yt gt 4 Sy Sy

ookt 1 o4 12 5. 2.9 1 4
}\.—1// +§1ﬁ1/f+§1ﬁ1/f +§1/f +élﬂ 1/f+§1ﬂ,

3 1
Bo=vh oSyt vy yle gt (38)
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Inverting the above expressions we find

Y=,

- —%.2,

1/1} =£—.I+%.3,

ph= A da g

wi J—.}—%IZ A2
phohodaalale

Gobolilata le 1s

yh = /l\.—g.f\.+%.21. (39)

Concerning the coproduct, Eq. (36) shows that all ladidsrare primitive. For the rest
of they’s, we get (omitting the primitive part)

At =v v -viey
~ 1 1
Forviey ey - plevi - ey
6 6 6 6 '
TS0 TS S S VRIS S S
Ay ) =svev -Svtey+sy eyt -Sytey
1 ‘® .I_}.I® oyt 2g 1y 1 e el
s evy - v ey + Lyt eyt ey
A(ud) = 2 vt — 2P v — T 2 v u! — tueul @
M) =Sy evt-Svtev —Syeyvi-Syviey
rvtevitoviey’ (40)
One can easily verify that(y4) = —y4.

5. Primitive Elements

We turn now to the study of the primitive elements.4f These are of fundamental
importance in any Hopf algebra, but acquire even more privileged status in our case, given
their rble in renormalization. Apart from this, they are also of interest in representation
theory: given a primitive element € A, A(a) = a ® 14 + 14 ® a, one obtains a
one-dimensional representatipn of I/ via

Pa(x) = <x, ea). (41)
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Indeed¢“ is group-like,A(e?) = ¢* ® €4, so that
Pa(xy) = (xy, ) = (x ® y, e ® &) = pa(x)pa(y). (42)

Conversely, every one-dimensional representatidd f associated to some primitive
elementinA.

Primitive elements are typically rare, but the algebra of rooted trees is quite excep-
tional in this respect: there is an infinite number of therdinwith a non-trivial index
set. We start our discussion with the easiest case, that of the ladder generators, for which
our Theorem 1 below supplies a complete answer. We then turn to the considerably more
complicated general case which Theorem 2 reduces to the problem of finding all closed
LI 1-forms onG.

5.1. Ladder generators. We consider the subalgebvaof Hz generated by the ladder
generatord;,,, wheren counts the number of vertices. Their coproduct is

A(T) =) Ti ® Tys. (43)
k=0

making 7 a sub-Hopf algebra ol i (notice though that fop not in 7, A(¢) may
involve terms in7T ® 7). Experimenting a little we find that, for the first fews, each
T, gives rise to a primitive® ™. The general case is handled by the following

Theorem 1. Toeachladder generator 7,,,n = 1, 2, . .., correspondsa primitive element
P™ with T,, asitslinear part, given by

(44)

Proof. Consider the algebr& of formal power serieg (x) = Y o2 o cnx”, co = 1, with
the usual product. Define abasgis, n =0, 1, 2,...} of 7*, the dual ofF, via

(Ens (X)) = cu, (45)
i.e., &, reads off the coefficient of” in f andgg = 1. For f”(x) = f'(x) f (x) we havé

o n
f(x) = Zci{x", o= Zc,’{cn,k, (46)
n=0 k=0
which implies the coproduct
AE) =) & Q& (47)
k=0

2 Notice that primes only distinguish functions here, they do not denote differentiation.
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in 7*. EndowingF* with a commutative product, we arrive at the isomorphisire 7,
as Hopf algebras, with, < T,,. Define a new basigr,, n =0,1,2,...}in F* by

(o7, f(X)) = ¢, with  f(x) = erilﬁrx’ (48)
andog = 1. Then
f//(x) — eZSilf'ffx” with E;/ — E; TG (49)

implying the coproduch\ (o,) = 0, ® 1+ 1®0,. Theo'’s, under the above isomorphism,
correspond to th@™ in 7. Solving the equation

o0
eXrsa PO Z T,x" (50)
n=0

for P, one arrives at (44). o

We read offP™, for the first few values ofi, as the coefficient of” in the Taylor
series expansion

()

n=0

1 1
Tix+ (T2 — ETf)x2 + (T3 - T2 + éTf)x3

1 1
+ (Ta — T1T5 — ET22 + T2T> — ZTf) x4
1
+ (Ts — TTa — ToT3 + TET3 + TiT§ — T35 + ngs) x5
B B Ll 2 3
+ (To = TaTs — ToTa — ST5 + T¢Ta+ 2N T5T3 — T9Ts

1 3 1
+§T23—§T12T22+T14T2—6T16)x6+.... (51)

The polynomialsP ™ (T;) are known aschur polynomials.

5.2. Thegeneral case. Givenaclosed Ll 1-forrx onG,there exists alinear combination
¢"' of the generatorg* such thatr = I, Applying the inverse Poincaré lemma, we
may write (locally)

My =dy’, (52)

for some functions’’ in A. Requiring additionally that"’ vanish at the origire (v'') =

0, fixes the constant left arbitrary by (52) to zeyd. can be expressed in terms of the
¢'s. Sincell,, reduces tal¢’ at the origin, the linear pattj, of v (¢) is¢'. But then
My =T, sincell projects to the linear part. Comparing the r.h.s. of (52) with the
general expression foralLl 1-form, Eq. (5), we concludetHais primitive. Conversely,
every primitive functiony’ gives rise to a closed LI 1-f0rnail‘[w,/ =ddy" =0=

drl yi -
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Equation (7), and the comment that follows it, show ma{(qﬁ"’) is symmetric under
the interchange of its two tensor factors. This observation leads to a particularly simple
way to identify primitive elements. One first looks for linear combinatighsof the
4 with symmetric Ay, (¢') (notice thatAy, is given by simple cuts). The explicit
expression for the corresponding primitiyé then is given by the standard formula for
the (local) potential of a closed form. We find that the result is simplified considerably
due to the particular form of the coproduct of #é, namely the linearity of\ (¢*) in
its second tensor factor.

Theorem 2. Given ¢’ € A1, such that dT1,» = 0. Then the element v’ of A, given by

v = —o o s(p"), (53)

isprimitive and has ¢ asits linear part (® aboveisthe p-degree operator for the ¢'s,

D(pAL. .. pAr) = roAL .. ).

Proof. We apply the inverse Poincaré Iemma‘tg,-/. For a giverv-degreer, only ¢4 of
v-degree up ta enter in the formulas — we denote them collectivelyhie.g.,5(¢)(x)
denotes the standard expressiors Gf) in terms of thep4 while S(¢)(zx) denotes the
same expression with evepy' multiplied byz). Consider the family of diffeomorphisms
¢ 2 x = (1—1x,0<1t < 1. Theng; is the identity map whiley; is the zero map.
The corresponding velocity field is

d 1
- — . 4
v dth(x) x = v(y,1) 1 ty, (54)

wherey = ¢, (x). We havé

0

d
My (x) = 5 (M (9o(x))) — @1 (M (@1(x))) =/1 di —¢; (Mg (v)). (55)

However,[;’—tgo,* = gL, = ¢/ (di, +i,d) and, taking into account the closuremy;i/,
we find

0
My ) = d [ i (i Ty (). (56)

This is the inverse Poincaré lemma. We concentrate now on the acliipnrmf‘[¢,-/ »).
We have

. 1 L
= — 1—1t¢ y] la)-j ’ Hd;i’ (y) = S(¢(1))d¢(2)(y) (57)

In this latter (implied) sum, all terms in the coproducigéf appear except the first one,
¢ ® 1, which is annihilated byl. Notice now thaty’ ia dy' = y'. SinceA(¢") is
linear in its second factor we conclude that

Via ; S@ly) ddln(y) = S@(1) (0 = S@H) = =S@ ). (58)

3 We ignore in the sequel the singularitywfits = 1 — it is easily shown to be harmless.
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Substituting back into (56) and putting-1r = z we find
1 dZ i
Myx) =—d | —S@")x), (59)
¢ 0 z

which, upon performing the integration over gives My = —d® 1o S(¢"). The
remarks preceding the theorem complete the proaf.

5.3. Thelower central seriesand k-primitiveness. We extend here the notion of primi-
tiveness to that of-primitiveness. Our starting point is our BCH-based prescription for

calculating the coproduct of thg's, Eq. (36). Suppose we identify all generatZrl[é]
of G that cannot be written as commutators (ﬁf@ are, in general, linear combinations
of the Z4). Then we may perform a linear change of basi§ iand split the generators

into two classes, one made up of the abZ)[/Jé and the other spanning the complement
—we denote the latter byZ;/}. Writing the canonical element in the new basis,

C= ezz[l]@”flj*zﬂ@kbi/’ (60)

we are led to the identification of thﬁ[il] with the primitive y’s. This is so since, in

the BCH formula, theZl.[” are never produced by the commutators, so that the only
contribution toA(w["l]) is the primitive part. Consider now the lower central series of
G, consisting of the series of subspa¢B¥, G2, . ... A particularZ in G belongs to

Gkl if it can be written as @& — 1)-nested commutator. This implies thatfbelongs

to Gl it also belongs to a1, with » < k. This is the standard definition ¢! —

we actually need a slightly modified one, according to whidbelongs only to the GI¥!

with the maximum k. With this definition,g!*! N GI"l = ¢ wheneverk # r. We may
now perform a linear change of basigjrsuch that each generawy‘] in the new basis
belongs tag!¥l. Writing the canonical element in the form

[k] i
C =% ®Vin, (61)

defines thet-primitiveness for the v, dual to the abovez!*!. Since thez!*! are linear
combinations of theZ 4, the wfk] will be linear combinations of thez4. A splits ac-
cordingly to a direct sumd = ;2 ; Al —the primitivey’s, in particular, spapA!*!.
Notice thaty’s with n vertices may belong t6¥! with k < n — 1. This is so because the
“longest” nested commutator withvertices iS[Z_, [Z,,... [Z,, Z:]]...], withn — 2
entries ofZ,.

The above concept éfprimitiveness arose naturally in our study of the primiijk{@l.
Some time afterwards, we became aware of Ref. [3], where a condejtrivhitiveness
is also defined, as follows: given an elemgndf .4, one computes successive powers
of the coproductA*(x). There is a minimunt for which all terms inA*(x) contain
a unity in at least one of the tensor factors — this definegpemitiveness ofy. Our
definition is intrinsically defined only on the generatazrl"?j], while the above makes

sense in all ofA. We now show that, fofi/,,, the two definitions coincide.

Lemma 3. The minimumvalue of r for which A" (‘ﬁfk]) contains at |east one unit tensor
factor in each of itsterms, isr = k.
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Proof. The various powers of the coproduct@ﬁk] can be computed by iteration of the
second of (34),

A (i) = coeff. of I in |og(cc,1c02...c0r). (62)

This shows that imk(lﬂfk]), the(k +1)-linear term can only be produced by tha@ested
commutator

(Zir, [Zigs [ Zig, Zig ()] 1@ YL@ ... @ ¢kt

The latter, however, has rig)*! component, sincg!*! can be written as & — 1)-nested

commutator at most. Itis also clear, for the same reason, that there are no terms of higher
p-degree in the/'s, as those would correspond to even longer nested commutators.
A"(x//[’kl) then must have at least one unit tensor factor in each of its terms. On the

other hand, the-linear term inA"*l(t/f["k]) is not zero, because, by definition, the
correspondingk — 1)-nested commutator haszr;{k] component. O

As shown in [3], thek-degree satisfies

deg (i, Wik, = k1+ k2. (63)

We use the two definitions of thedegree interchangeably in what follows. We may
now clarify the relation between the primitive elements given by the inverse Poincaré
formula, Eg. (53), and the ones introduced above via the lower central seges of

Lemmad. Given ¢/ = c4¢4, with ¢4 constants, such that dM,; = 0. Then the
primitive element v of (53) isequal to ¢!, ¥4, i.e,

vl = oo S@") = cayt. (64)
All primitive elements of A can be obtained in this form.

Proof. Any linear combination of thw["l] is primitive, while (sums of) products of them
are not, due to (63). Therefore, thj%] constitute a linear basis in the vector space of

primitive elements of4. To the giveny’’, Eq. (53) associates a primitive elemerit,
with ¢/ as its linear part. The unique linear combination of ¢ht (and, hence, of the
Yly) with this linear part iy = A o

We give an example illustrating the above.

Example 4. Construction ofG ™ AWK for n < 4. To identify the generators of
Gkl we construct allk —1)-nested commutators withvertices -G ™! is determined
as the complement @®—3 G"* in g™ (below we use the orthogonal complement
but this is not essential, one simply has to complete the basis df’'f)eThis gives

a matrix that effects the transition from the balsts }, indexed by rooted trees, to the
basis{Zi[k]}, of definitek-primitiveness. The inverse matrix then gives ng] in terms

of they 4.
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¢gOW = gD js generated by,. @M = G s generated by, since the only
commutator with two verticed,Z,, Z.] is zero. Forn = 3, we have the only non-

zero commutatdrzP®? = [z, 7;] = 27, The complement ig® is spanned by

Zf) = £ Next we look at the case = 4. We find the only non-zero commutators
(2., 21=©0.2.1.0 = ", [Z.. Zp1= (0. -1.1.3) = 2P (65)

in the basis{Z{, Z}\, Z}\, Z A} The orthogonal complement §#H? is spanned by

z"M = (1,0,0,0), z?PM = (0,1, -2,1). (66)
Writing the above change of basis symbolically%{é] MZ 4, with M a matrix of

numerical coefficients, the dual change of basis fonfttss given byw[k] =yAmM1
We find

1
Vhm =V Vhm=v. V= ‘ﬁi’ Vi =507 (67)

while, forn = 4,

Vi =V
1 1 1
1ﬂ(24)[1] = éﬂﬁ}\ - :—,)WP + BWJI\,

7 1
Vi = lslﬁk-i' Y +E1lfm,

1 I 5

1 N

W = + = 1// + =y, 68
@l 18 18w (68)
Referring to, e.g.wa)[l], one easily verifies that

i’_lk 1}& 1 4
o} —6¢ —§¢ +6¢ (69)

has symmetrid\;, and, when inserted in (53), delivay‘/ﬁ)[l].

To continue the above construction to the cases 5, 6, we developed a REDUCE
program, incorporating some of the procedures of [2]. The numBggof k-primitive
Y’'swith n < 6 vertices that we find coincide with the ones in Table 4 of [3], as expected.
In what refers to the primitivg:’s, the procedure presented above, starting wistwith
symmetricAji, and then using (53), should be considerably more efficient than the one
used in [3] — it would be interesting to quantify this statement. Notice that an equivalent
procedure involves expanding the primitiybés asy1 = cay4 and then determining

the constants, from the set of equatlonﬁ (ZT, Y1 ) = 0 (the latter is the statement
thatq) is invariant under the coadjoint coactlon).

4 We remind the reader of our notatioiii(")[k] is thei™h element in the subspace lofprimitive, n-vertex
Z'’s. The same notation is used for tiés, with the position of the indices (upper—lower) interchanged.
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6. Normal Coordinates and Toy Model Renormalization

We turn now to what, in some sense, is our main objective, namely, the application
of the formalism presented so far in the problem of renormalization in perturbative
guantum field theory. The scope of our considerations in this section can only be modest,
since realistic quantum field theories involve rooted trees with an infinite number of
decorations. Nevertheless, a toy model exists (see [10]) that realize€ the nested
divergentintegrals, regulated by a paramet&Ve find this an extremely useful construct
that captures many of the most important features of realistic renormalization — again,
we refer the reader to [10, 6] for a detailed presentation. What we are interested in here,
is the réle of the new coordinatgsin the renormalization of divergent quantities. We
start with a brief review of the basics.

6.1. Thetoy model. The elementary divergence in the toy model we deal with is given
by the integral

o0 y—é
I1(c; €) :/ dy , (70)
0 y+c¢

which diverges as goes to zerac above will be referred to as tlegternal parameter of
the integral. We associate the functignwith 11 (c; €). To the funcuon;b corresponds
the nested integral

o0 y_€ y—€ o0 y_€
Ix(c; €) = / dy1—r—I1(y1; €) = / dy1 / dy,—2—.  (71)
0 yi1+c 0 yit+ec y2+y1

Notice that the external parameter of the subdivergénéey;. To d)i, ¢A correspond,
respectively,

—€

(L1 ),
(72)

o0 o0
I31(c; 6)=/0 dy1 I(y1; €), I32(c; €) Z/o dy1

1 1
yi+c yi+c

it should be clear how this assignment extends t@all In this way, eaclp? can be
associated with the Laurent seriesithat corresponds to its associated integral, e.g.

. o0 y*E _ T 76_1_
¢ _/o dyy+c_sin(n6)c € a+0(), (73)

wherea = log(c) and, similarly (using MAPLE),

1 a 5m2

¢I—?—;+a +§+O(e)

- g (- ) gt s
¢A:%_:_2 (3“;+11_1’;2)-——(9 +117%) + O(e),
¢{=2Tl€4_% (“_:+52L:>6_12_E(8a2+15712) +0@%,  (74)
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¢k=%—%+<2132+3%>;2—1—8<16a2+27n> +0(),
2

¢}&=¥14_%+<2+%)———(8a2+11712) +0(0),

¢Jh:$_: (2 +1;_9Jf)__é(16a2+19712) +0O(Y),

and so on. Itis easily seen thgs with n vertices give rise to Laurent series with leading
pole of orden. The process of renormalization assigns to egth finite “renormalized”
vaIue:f:;‘2 (see, e.g., [5]). In Hopf algebraic terms, the latter is given by [2]

S = SR(B(1))2)- (75)
where thetwisted antipode Sy, is defined recursively by
Sr(6") = —R(6") = R(SR (60,0, ). (76)

R above is arenormalization map that we choose here to give the pole part of its
argument, evaluated at the external parameter equal to ]RQ@I) = 1/2¢? (compare

with the first of (74)). The primed sum in the second term of (76) excludes the primitive
part of the coproduct. The magic of renormalization lies in the fact that, forgdny

the renormalizeab% in (75) has no poles ia — what makes this statement non-trivial

is that all terms subtracted iteratively frapd', to giveq’)%, are independent of external
parameters. We conclude our brief review with the following statement, proven in [11]:
if R satisfies thenultiplicative constraint

R(xy) = R(R(x)y) = R(x*R(»)) + R()R(y) =0, (77)

then Sz is multiplicative, Sk (xy) = Sr(x)Sr(y) — our choice ofR above does sat-

isfy (77).

6.2. Renormalization in the ¥ -basis. For a given numbes of vertices, the renormal-
ization of every generat@s gives rise to 2 counterterms, for a total of,2", wherer,

is the number of rooted trees withvertices. To renormalize thg'’s, one can always
express them in terms of tlygs and then proceed as above. However, for renormaliza-
tion scheme® that satisfy (77), a much more efficient possibility arises. Equation (75),
in this case, is valid foany function in .4, and, in particular, for the/’s. Notice that
although the action of the antipodeis trivial on they4, that of the twisted antipode
S is not, in general. The advantage of working in the baﬁfﬁ} is that the complexity

of the renormalization of a generatmfn)[k] is governed by, notn, which entails, in
general, significant savings. As an extreme example, a primjtiveith one hundred
vertices is renormalized by a simple subtraction — this should be compared witf%he 2
counterterms necessary for the renormalization of each aftfag’s. How significant
can the savings be in, e.g., CPU time, depends on the distribution aﬁf;pe’n the
variousk-classes. As proved in [3], the numbeis; of k-primitive y’s with n vertices

are generated by

Pe(x) = ZPnkx =M (- TTa-m)) " (78)

slk n=1
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a rather non-trivial result. The sum in the r.h.s. above extends over all divisirs,
including 1 andk. u(s) is the Mdbius function, equal to zerossifs divisible by a square,
and to(—1)?, if s is the product ofp distinct primes(u(1) = 1). Of particular interest
to us is the asymptotic behavior & , for large values of [3],

fio= lim Pk _ 1 (1— })k g (79)
n—o0o ry c c

wherec = 2.95. .. is the Otter constant. This is encouraging, as the population of the

CPU-intensive high1/'s is seen to be exponentially suppressed. A realistic estimate of

the complexity of renormalization in thie-basis is outside the scope of this article, as it

would probably entail implementation-dependent parameters. Nevertheless, we attempt

a first-order estimation by assigning a computational cost‘afo2a k-primitive 1/,

while theg,) are assigned the cost.ZThe ratio of the total costs of renormalizing all

generators with vertices in the two bases then is

2"

Pn= ST, o
Z:l Pn,kzk

~ (c - 2)(6%1)"_1, (80)

with p33 ~ 6x 10° making the difference between a week and a second. We consider (80)
as a loose upper bound on the potential savings.

Another feature of thé's that is worth pointing out is their toy model pole structure.
As mentioned above, each of tlpg,) corresponds to a Laurent series with maximal pole

ordern. We find that the behavior of thﬁén) is much milder. We list the series expansion

of the first fewy 4, which should be compared with the analogous expressions for the
¢*, Eq. (74),

1
lﬁ'zg—a‘f‘O(G),
2

T
yh= 7 0.
} 7'[2 7T2(l
Y= I + O(e),
2 Tr2a
At re
Yot = 36 7 + O(e),
Pt
vl=o O(e), (81)
1974
W}' == + O(e),
b n? 7 0
VS e PO
2 2
A . T _ mTa 0
V=12 T e TOE)

Notice that, e.g., the primitive&% is actually finite, as i$’f}\ which is not primitive. We

emphasize thaéw )R is still given by (75) (with¢® — ¢*) and does not coincide
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with the finitew}\ (see Ex. 5 below). The other twig/, are of order 1¢?, even though

they haveG'®! components. These initial observations point to a general feature of the

Y¥’s: the pole order does not specify the complexity of their renormalization, as is the

case with thep’s. The cancellations of the higher-order poles observed point to rather

non-trivial underlying combinatorics that, we believe, deserve further investigation.
The series expansion of tlw'n)[k] s

4
2
Vi = 4—8 +0(),
7T2 712
Vi = 7oz~ g T O(€Y), (82)
2 2
1 b4 ma
¢(4)[3] = _3662 - 9_ + O(E )

(the rest are essentially identical to thé). We also point out that some of the= 6
primitive /’s are of order 13 —nevertheless, the coefficients of all poles are independent
of ¢ and their renormalization is accomplished by a simple subtraction, in agreement
with (75).

Example 5. Renormalization o/ &, 1), ¥/ (32 W/L'. For the primitivey:é, ;. Egs. (76),
(82) give

SR (Vi) = —R(Vaym) =0, (83)

; 2 2 2 . 2
so that the renormalized vall(|$(4)[1])R =Y+ SR(I//(4)[1]) coincides ity ;.-
For the 2-primitivew(14)[2], the first of (65) and (36) give

A 1 _ .1 1 1 1 1 1 1 1 1 1
(Vaz) = Yz © 1+ 1@ Y + S¥am @ Yew ~ 5¥em ® Vo
(84)

so that

1 1
(Vim2)r = Vinr + SrWiaz) + 5= Vaw)Vew - 35 VeV

(85)
For the (non-trivial) twisted antipode we find
1 1
SR (Vi) = —R(Viay2) + R( (Vivn )Wls)[l]) - ER(R(¢(13)[1])¢(11)[1]>'
(86)
Substituting above we get
7
(V) r = gz7" +O(©). (87)

96
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Finally, for ¢k, we use the coproduct given in (40) and, proceeding along the same
lines, we find

13, 1
(Wk)n =57~ 547 @°+ 0, 88)

which is different, as mentioned above, from the firuté}.

The remarkable pole structure of tihés observed above, persists for other, more realistic
models as well. For example, we have repeated the above analysis for the heavy-quark
model of [2]. We find that, forn < 4, the maximal pole order appearing is onl 1

with all ladderyr’s, except the first one, finite.
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