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Abstract: We introduce normal coordinates on the infinite dimensional groupG intro-
duced by Connes and Kreimer in their analysis of the Hopf algebra of rooted trees. We
study the primitive elements of the algebra and show that they are generated by a simple
application of the inverse Poincaré lemma, given a closed left invariant 1-form onG.
For the special case of the ladder primitives, we find a second description that relates
them to the Hopf algebra of functionals on power series with the usual product. Either
approach shows that the ladder primitives are given by the Schur polynomials. The rele-
vance of the lower central series of the dual Lie algebra in the process of renormalization
is also discussed, leading to a natural concept ofk-primitiveness, which is shown to be
equivalent to the one already in the literature.
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1. Introduction

The process of renormalization in quantum field theory has been substantially elucidated
in recent years. In a series of papers (see, e.g., [11,7,2,9] and references therein), a Hopf
algebra structure has been identified that greatly simplifies its combinatorics. This, in
turn, has led to the development of an underlying geometric picture, involving an infinite
dimensional group manifoldG, the coordinates of which are in one-to-one correspon-
dence with (classes of) 1PI superficially divergent Feynman diagrams of the theory.
The latter are indexed by a type of graphs known as (decorated) rooted trees, which
capture the subdivergence structure of the diagram. The forest formula prescription for
the renormalization of a diagram then is translated into a series of operations on the
corresponding rooted tree and the latter have been shown to deliver standard Hopf alge-
braic quantities, like the coproduct and the antipode of the rooted tree. The above results
were obtained using a powerful mixture of algebraic and combinatoric techniques that
brought to light unexpected interconnections with noncommutative geometry, among
several other fields.

The complexity of the full Hopf algebra of decorated rooted trees is, in many respects,
overwhelming. Even in the simplest cases, one is confronted with an infinite set of
available decorations for the vertices of the rooted trees, originating in the infinite number
of primitive divergent diagrams appearing in the underlying theory. It is rather fortunate
then that the considerably simpler algebra of rooted trees with a single decoration seems
to capture many of the features of realistic theories. It is for this reason that it has
been studied extensively, as a first step towards an understanding of the full theory.
Of primary importance, given their rôle in renormalization theory, is the study of the
primitive elements of the above Hopf algebra. These correspond to sums of products
of diagrams with the property that their renormalization involves a single subtraction.
In Ref. [3], an ansatz is presented for a (conjectured) infinite family of such elements,
corresponding to the ladder generators of the algebra, i.e., to trees whose every vertex
has fertility at most one. Furthermore, dealing with the general case, a set of vertex-
increasing operators is constructed that generates new primitive elements from known
ones. As the number of primitive elements increases rapidly with increasing number of
vertices, this approach necessitates the introduction of new operators in each step, a task
that has not yet been systematized.

Our motivation in this paper is two-fold. On a general, methodological level, we
argue that the above algebraic/combinatoric approach, with all its multiple successes,
should nevertheless be complemented by a differential geometric one, which, we feel,
has not been sufficiently considered in the literature. On a second, more concrete level,
we provide support for our claim, by showing how a simple application of the inverse
Poincaré lemma reduces the search for primitive elements to that of closed, left invariant
(LI) 1-forms onG. For the case of the ladder primitives, we give a simple generating
formula that identifies them with the Schur polynomials. Our discussion uses the normal
coordinates on the group, a choice that leads naturally to a concept ofk-primitiveness,
associated with the lower central series of the dual Lie algebra – we prove that this
coincides with thek-primitiveness introduced in Ref. [3]. We discuss the rôle of the new
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coordinates in renormalization, using the toy model realization of Ref. [10], while also
commenting on similar results obtained for the more realistic heavy quark model of [2].

2. Differential Geometry á la Hopf

We will be dealing with differential geometric concepts expressed in Hopf algebraic
terms. We opt for this formulation having in mind the transcription of our results for
the non-commutative case – Hopf algebras are ideally suited to this task. We start
by providing a short dictionary between the two languages and establish the notation,
assuming nevertheless familiarity with the basic definitions.

Two algebras will be of main interest to us: on the one hand we have the (commu-
tative, non-cocommutative) algebraA of functions on a (possibly infinite dimensional)
group manifold, generated by{φA}, with A ranging in an index set – we denote bya,
b, . . . general elements ofA. On the other hand, we have the (non-commutative, cocom-
mutative) universal enveloping algebraU of the Lie algebra of the group. We actually
work with a suitable completion ofU , so as to allow exponentials of its generatorsZA,
which we identify with the points of the manifold1 – we denote byx, y, . . . general
elements ofU (we useg, g′, . . . if we refer to group elements in particular).

Both algebras are Hopf algebras. ForA, thecoproduct �(a) ≡ a(1) ⊗ a(2) codifies
left and right translations

L∗
g(a)(·) = a(1)(g)a(2)(·), (1)

and similarly for right translations. ForU , it expresses Leibniz’s rule,�(Z) = Z ⊗ 1+
1⊗Z, for the left-invariant generatorZ. The two Hopf algebras aredual , via theinner
product (also calledpairing)

〈· , ·〉 : U ⊗ A → C, x ⊗ a �→ 〈x, a〉 , (2)

which, whenx stands for a generatorZ, amounts to taking the derivative ofa alongx
and evaluating it at the identity. Forx = g, the above definition produces a Taylor series
expansion ofa at the identity which gives, fora analytic, the valuea(g) of a at the point
g. The coproduct inA is dual to the product inU via

〈xy, a〉 = 〈
x ⊗ y, a(1) ⊗ a(2)

〉
(3)

andvice-versa. We usually work withdual bases, so thatZA only gives 1 when paired
with φA, while its inner product with all otherφ’s, as well as with all products ofφ’s,
vanishes. Given a Poincaré–Birkhoff–Witt basis{f i} for A,

{f i} = {1, φA, φAφB, . . . }, (4)

one can build a dual basis{ei} for the entireU by adjoining to the aboveZ’s polynomials
in them,{ei} = {1, ZA, quadratic, cubic,. . . }, with

〈
ei, f

j
〉 = δ

j
i – this, in general,

involves a non-trivial calculation.
To every elementa of A we can associate a LI 1-form�a , given by

�a = S(a(1))da(2), (5)

1 The particular group we deal with in Sect. 3 is non-compact and infinite dimensional. Nevertheless, in
this paper, we only consider elements that correspond to exponentials of linear combinations of the generators.
For a readable account of what we might be missing in doing so, see Ref. [12].
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d being the exterior derivative andS the antipode inA. � is linear, while on products it
gives

�(ab) = �aε(b) + ε(a)�b, A commutative, (6)

whereε is the counit inA. We take all generatorsφT of A to be counitless, i.e., we
choose functions that vanish at the identity of the group, except for the unit function
1A (which we often write as just 1). This implies that� only returns a non-zero result
when applied to the generators and vanishes on all products, as well as on 1A. The
Maurer-Cartan (MC) equations take the form

d�a = −�a(1)�a(2) . (7)

Using (6), one sees that only the bilinear part of the coproduct contributes to the MC
equations.

3. The Hopf Algebra of Rooted Trees and Its Dual

3.1. Functions. We specialize the general considerations of the previous section to the
Connes–Kreimer algebra of renormalization. For a detailed exposition we refer the
reader to [10,6,8] and references therein, we give here only a brief account of the basic
definitions and some illustrative examples.A is now the Hopf algebraHR of functions
generated byφT , whereT is a rooted tree. This means that the group manifoldG is, in
this case, infinite dimensional, with one dimension for every rooted tree – theφ’s are
coordinate functions on this manifold. The group law is encoded in the coproduct

�(φT ) = φT ⊗ 1 + 1 ⊗ φT +
∑

cutsC

φPC(T ) ⊗ φRC(T ). (8)

The sum in the above definition is overadmissible cuts, i.e., cuts that may involve more
than one edge (simple cuts) but such that there is no more than one simple cut on any
path from the root downwards.RC(T ) is the part that is left containing the root ofT
while PC(T ) is the product of all branches cut, e.g.

�(
b

b b) = b

b b ⊗ 1 + 1 ⊗ b

b b + 2 b ⊗ b

b + b b ⊗ b, (9)

where we let a treeT itself denote the corresponding functionφT , a convention freely
used in the rest of the paper. The factor 2 on the r.h.s. appears because there are two
possible cuts on

b

b b generating the corresponding term. A convenient way to recast (8)
as a single sum, is to introduce afull and anempty cut, above and below any treeT
respectively, e.g.,

b

b b

full cut
b

b b

empty cut.
(10)

We rewrite (8) in the form

�(φT ) =
∑

cutsC′
φPC′

(T ) ⊗ φRC′
(T ), (11)
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where the above two extra cuts, included inC′, produce the primitive part of the coprod-
uct. Notice that� respects the grading given by the numberv(T ) of vertices of a treeT .
We call this thev-degree ofφT , denote it by degv(φ

T ), and extend it to monomials as
the sum of thev-degrees of the factors. The polynomial degree will be calledp-degree
to avoid confusion – it is obviously not respected by the coproduct. We will use the
notationA(n)

i for the subspace ofA of v-degreen andp-degreei, e.g.,A(n)
1 is the linear

span of the generators withn vertices.

3.2. Vector fields. The rôle ofU is now played byH∗
R, generated by{ZT }, with T a

rooted tree and we take theZ’s dual to theφ’s, in the sense of the previous section.ZT

is a left invariant vector field onG. The Lie algebra of such vector fields is found by
computing, using (3), the pairing ofZAZB − ZBZA with all basis functions{f i}.
Example 1. Computation of[Z

b
, Z b

b
]. We have

�̃(

b

b

b) = b ⊗ b

b + b

b ⊗ b, �̃(
b

b b) = 2 b ⊗ b

b + b b ⊗ b,

�̃( b

b

b) = b ⊗ b

b + b

b ⊗ b + b b ⊗ b + b ⊗ b b,

(12)

where�̃(φT ) ≡ �(φT ) − φT ⊗ 1 − 1 ⊗ φT . These are the only functions that contain
the term b ⊗ b

b in their coproduct. We find therefore, using (3),〈
Z

b
Z b

b
,

b

b

b

〉
= 1,

〈
Z

b
Z b

b
,

b

b b

〉 = 2,
〈
Z

b
Z b

b
, b

b

b

〉 = 1. (13)

Similarly, one computes〈
Z b

b
Z

b
,

b

b

b

〉
= 1,

〈
Z b

b
Z

b
, b

b

b

〉 = 1, (14)

the pairings with all other functions being zero. It follows that the only non-zero pairing
of the commutator is 〈[Z

b
, Z b

b
], b

b b

〉 = 2. (15)

But the element 2Z b

b b
of U has exactly the same pairings, therefore, in order for the inner

product betweenU andA to be non-degenerate, one must set[Z
b
, Z b

b
] = 2Z b

b b
.

Proceeding along these lines, one arrives at the general expression [7]

[ZT1, ZT2] =
∑
T

(
n
T1T2

T − n
T2T1

T
)
ZT ≡

∑
T

f
T1T2

T ZT , (16)

wheren
T1T2

T is the number of simple cuts onT that produceT1, T2, with T2 containing

the root ofT (denoted byn(T1, T2, T ) in [6]) and the last equation defines the structure
constantsf

T1T2

T of the Lie algebra. We introduce, following [7], a∗-operation among

theZ’s, defined by

ZT1 ∗ ZT2 = n
T1T2

T ZT . (17)

Notice that this isnot the product inU but, nevertheless, it gives correctly the commutator
when antisymmetrized (cf. (16)).The above Lie bracket conserves the number of vertices.
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3.3. 1-forms. We turn now to LI 1-forms. Starting from (5) and using the particular form
of the coproduct in (8), we find

�φT =
∑
C′

φS(PC′
(T )) dφRC′

(T ) = dφT +
∑
C

φS(PC(T )) dφRC(T ). (18)

For the MC equations we may use directly (7) and the comment that follows it to find

d�φT = −
∑

simpleC

�
φPC(T ) �φRC(T ) . (19)

The restriction to simple cuts is possible since cuts that involve more than one edge pro-
duce non-linear terms in the first tensor factor of the coproduct and these are annihilated
by �. This is probably the easiest way to derive the structure constants.

Example 2. Maurer–Cartan equation for� b

b b
. Using (18) we find

�
b
= d b, � b

b
= d

b

b − bd b, � b

b b
= d

b

b b − 2 bd
b

b + b bd b. (20)

Direct application ofd to the above expression for� b

b b
, or use of (19), gives

d� b

b b
= −2�

b
� b

b
, (21)

in agreement with the commutator[Z
b
, Z b

b
] = 2Z b

b b
of Ex. 1.

General vector and 1-form fields are obtained as linear combinations of the above, with
coefficients inA.

4. Normal Coordinates

4.1. A new basis. We introduce new coordinates{ψA} onG, defined by〈
g,ψA

〉
= αA, where g = eα

AZA, (22)

i.e., theψ ’s are normal coordinates centered at the origin and, like theφ’s, are indexed
by rooted trees. Of fundamental importance in the sequel will be thecanonical element
C (see, e.g., [4]), given by

C = ei ⊗ f i = eZA⊗ψA

. (23)

{ei} and{f i} above are dual bases ofU andA respectively (see (4)). In contrast with (4),
we fix now the{ei} to be{1, ZA, ZAZB, . . . } and define theψ ’s by the second equality
above (the tensor product sign ensures that theZ’s do not act on theψ ’s). C may be
regarded as an “indefinite group element” – when theψ ’s get evaluated on some specific
point g0 of the group manifold,C becomesg0. One may also viewC as an “indefinite
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function” on the group – when theZ’s get evaluated on some particular (analytic)φ0,
the resulting Taylor series deliversφ0, i.e.,〈

eZA⊗ψA

, id ⊗g0

〉
= g0,

〈
eZA⊗ψA

, φ0 ⊗ id
〉
= φ0. (24)

In the above,g0, φ0 stand forany element in the corresponding universal enveloping
algebra, not just the generators. The second of (24) gives the relation between the two
linear bases

{
f i
(φ)

}
and

{
f i
(ψ)

}
, generated by theφ’s and theψ ’s respectively. Indeed,

takingφ0 = φA and expanding the exponential we find

φA =
∞∑

m=0

1

m!
〈
ZB1 . . . ZBm, φ

A
〉
ψB1 . . . ψBm

= ψA + 1

2

〈
ZB1ZB2, φ

A
〉
ψB1ψB2 + . . . .

(25)

Lemma 1. The change of linear basis in A generated by (25) is invertible.

Proof. Notice that the linear part ofφA(ψ) is ψA and also, that the above expansion
preserves thev-degree. We choose a linear basis inA with the following ordering

{ φ
b︸︷︷︸

v=1

, φ
b

b

, φ
b

φ
b︸ ︷︷ ︸

v=2

, φ

b

b

b

, φ
b

b b

, φ
b

b

φ
b

, (φ
b

)3︸ ︷︷ ︸
v=3

, . . . }, (26)

namely, in blocks of increasingv-degree and, within each block, non-decreasingp-
degree. The above remarks then show that the matrixA, defined by

f i
(φ) = Ai

jf
j

(ψ), (27)

where{f i
(ψ)} is also ordered as in (26), is upper triangular, with units along the diagonal

and hence invertible. ��
Notice thatA is in block-diagonal form, with each blockAv acting onA(v),v = 1,2, . . . .
The computation ofφA(ψ), via (25), reduces essentially to the evaluation of the inner
product ofφA with monomials in theZ’s – this is facilitated by the following

Lemma 2. The inner product
〈
ZB1 . . . ZBm, φ

A
〉

is given by〈
ZB1 . . . ZBm, φ

A
〉
=
〈
ZB1 ∗ . . . ∗ ZBm, φ

A
〉
= n

B1...Bm

A, (28)

where

n
B1...Bm

A = n
B1R1

A n
B2R2

R1 . . . n
Bm−1Bm

Rm−2 (29)

(ZB1 ∗ . . . ∗ ZBm above is computed starting from the right, e.g., ZB1 ∗ ZB2 ∗ ZB3 ≡
ZB1 ∗ (ZB2 ∗ ZB3)).
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Proof. We have

〈
ZB1 . . . ZBm, φ

A
〉
=
〈
ZB1 ⊗ . . . ⊗ ZBm,�

m−1(φA)
〉
. (30)

In the above inner product, only them-linear terms in�m−1(φA) contribute, since the
Z’s vanish on products and the unit function. One particular way of evaluating the
(m − 1)-fold coproduct is to apply� always on the rightmost tensor factor. It is then

clear that, in this case, we may instead apply�lin , since
(∏m

j=1

(
id⊗ j−1 ⊗�

))
(φA) and(∏m

j=1

(
id⊗ j−1 ⊗�lin

))
(φA) only differ by terms containing products of theφ’s or units

(this is only true if�lin is applied in the rightmost factor). Notice now that the∗-product
of theZ’s is dual to�lin ,

〈
ZB1 ∗ ZB2, φ

A
〉
=
〈
ZB1 ⊗ ZB2,�lin(φ

A)
〉
. (31)

Repeated application of this equation and use of the definition of∗, Eq. (17), completes
the proof. ��

A concise way to express the relation between the two sets of generators is via the
∗-exponential (x ∈ U1)

ex∗ ≡
∞∑
i=0

1

i!x
∗i =

∞∑
i=0

1

i! x ∗ · · · ∗ x︸ ︷︷ ︸
i factors

. (32)

Combining (25) and (28) we find

e
ZA⊗ψA

∗ = ZB ⊗ φB, (33)

where the convention(ZA ⊗ψA) ∗ (ZB ⊗ψB) = ZA ∗ZB ⊗ψAψB is understood and
the sum on the r.h.s. starts with 1⊗ 1.

4.2. The Hopf structure. We derive now the Hopf data for the new basis. A standard
property ofC is

(� ⊗ id)C = C13C23, (id ⊗�)C = C12C13, (34)

where, e.g.,C13 ≡ eZA⊗1⊗ψA
– this is just the product-coproduct duality in (3). The

second of (34) permits the calculation of the coproduct of theψ ’s by applying the Baker–
Cambell–Hausdorff (BCH) formula to the product on its r.h.s.,�(ψA) is the coefficient
of ZA in the resulting single exponential
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exp
(
ZA ⊗ �(ψA)

)
= exp

(
ZA ⊗ ψA ⊗ 1

)
exp

(
ZB ⊗ 1 ⊗ ψB

)
= exp

(
ZA ⊗ ψA ⊗ 1 + ZB ⊗ 1 ⊗ ψB + 1

2
[ZA, ZB ] ⊗ ψA ⊗ ψB + . . .

)
= exp

{
ZA ⊗ (

ψA ⊗ 1 + 1 ⊗ ψA + 1

2
f
B1B2

AψB1 ⊗ ψB2 + . . .
)}
, (35)

so that

�(ψA) = ψA ⊗ 1 + 1 ⊗ ψA + 1

2
f
B1B2

AψB1 ⊗ ψB2 + . . . . (36)

Higher terms in the coproduct can be computed by using a recursion relation for the
BCH formula (see, e.g., Sect. 16 of [1]). The counit of allψA vanishes.Although�(ψA)

can be complicated,S(ψA) never is. Using
〈
S(g), ψA

〉 = 〈
g, S(ψA)

〉
and the fact that

S(g) = g−1, it is easily inferred that

S(ψA) = −ψA, (37)

which extends asS(pr(ψ)) = (−1)rpr(ψ) on homogeneous polynomials ofp-degree
r. We see the first of the many advantages of working in theψ-basis: the antipode is
diagonal.

Example 3. Computation ofψ(n), n ≤ 4. A straightforward application of (25) gives

b = ψ
b

〈
Z

b
, b

〉 = ψ
b

,

b

b = ψ
b

b

〈
Z b

b
,

b

b

〉+ 1

2
ψ

b

ψ
b

〈
Z

b
Z

b
,

b

b

〉 = ψ
b

b + 1

2
ψ

b
2
,

b

b

b = ψ

b

b

b + ψ
b

ψ
b

b + 1

6
ψ

b
3
,

b

b b = ψ
b

b b + ψ
b

ψ
b

b + 1

3
ψ

b
3
,

b

b

b

b = ψ

b

b

b

b + ψ
b

ψ

b

b

b + 1

2
ψ

b

b
2 + 1

2
ψ

b
2
ψ

b

b + 1

24
ψ

b
4
,

b

b

b b = ψ

b

b

b b + ψ
b

ψ

b

b

b + 1

2
ψ

b

ψ
b

b b + 2

3
ψ

b
2
ψ

b

b + 1

12
ψ

b
4
,

b

b

b

b = ψ

b

b

b

b

+ 1

2
ψ

b

ψ

b

b

b + 1

2
ψ

b

ψ
b

b b + 1

2
ψ

b

b
2 + 5

6
ψ

b
2
ψ

b

b + 1

8
ψ

b
4
,

b

bb b = ψ
b

bb b + 3

2
ψ

b

ψ
b

b b + ψ
b
2
ψ

b

b + 1

4
ψ

b
4
. (38)
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Inverting the above expressions we find

ψ
b = b,

ψ
b

b = b

b − 1

2
b

2
,

ψ

b

b

b =
b

b

b− b

b

b + 1

3
b

3
,

ψ
b

b b = b

b b − b

b

b + 1

6
b

3
,

ψ

b

b

b

b =

b

b

b

b− b

b

b

b− 1

2

b

b

2 + b

2 b

b − 1

4
b

4
,

ψ

b

b

b b =
b

b

b b− b

b

b

b+ 5

6
b

2 b

b − 1

2
b

b

b b − 1

6
b

4
,

ψ

b

b

b

b

=
b

b

b

b− 1

2
b

b

b

b − 1

2
b

b

b b + 2

3
b

2 b

b − 1

2

b

b

2 − 1

12
b

4
,

ψ
b

bb b = b

bb b − 3

2
b

b

b b + 1

2
b

2 b

b. (39)

Concerning the coproduct, Eq. (36) shows that all ladderψ ’s are primitive. For the rest
of theψ ’s, we get (omitting the primitive part)

�̃
(
ψ

b

b b

)
= ψ

b ⊗ ψ
b

b − ψ
b

b ⊗ ψ
b

,

�̃
(
ψ

b

b

b b

)
= ψ

b ⊗ ψ

b

b

b − ψ

b

b

b ⊗ ψ
b + 1

2
ψ

b

b b ⊗ ψ
b − 1

2
ψ

b ⊗ ψ
b

b b

+ 1

6
ψ

b

ψ
b

b ⊗ ψ
b + 1

6
ψ

b ⊗ ψ
b

ψ
b

b − 1

6
ψ

b
2 ⊗ ψ

b

b − 1

6
ψ

b

b ⊗ ψ
b
2
,

�̃
(
ψ

b

b

b

b
)

= 1

2
ψ

b ⊗ ψ

b

b

b − 1

2
ψ

b

b

b ⊗ ψ
b + 1

2
ψ

b ⊗ ψ
b

b b − 1

2
ψ

b

b b ⊗ ψ
b

− 1

6
ψ

b ⊗ ψ
b

ψ
b

b − 1

6
ψ

b

ψ
b

b ⊗ ψ
b + 1

6
ψ

b
2 ⊗ ψ

b

b + 1

6
ψ

b

b ⊗ ψ
b
2
,

�̃
(
ψ

b

bbb

)
= 3

2
ψ

b ⊗ ψ
b

b b − 3

2
ψ

b

b b ⊗ ψ
b − 1

2
ψ

b ⊗ ψ
b

ψ
b

b − 1

2
ψ

b

ψ
b

b ⊗ ψ
b

+ 1

2
ψ

b
2 ⊗ ψ

b

b + 1

2
ψ

b

b ⊗ ψ
b
2
. (40)

One can easily verify thatS(ψA) = −ψA.

5. Primitive Elements

We turn now to the study of the primitive elements ofA. These are of fundamental
importance in any Hopf algebra, but acquire even more privileged status in our case, given
their rôle in renormalization. Apart from this, they are also of interest in representation
theory: given a primitive elementa ∈ A, �(a) = a ⊗ 1A + 1A ⊗ a, one obtains a
one-dimensional representationρa of U via

ρa(x) ≡ 〈
x, ea

〉
. (41)
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Indeed,ea is group-like,�(ea) = ea ⊗ ea , so that

ρa(xy) ≡ 〈
xy, ea

〉 = 〈
x ⊗ y, ea ⊗ ea

〉 = ρa(x)ρa(y). (42)

Conversely, every one-dimensional representation ofU is associated to some primitive
element inA.

Primitive elements are typically rare, but the algebra of rooted trees is quite excep-
tional in this respect: there is an infinite number of them inA, with a non-trivial index
set. We start our discussion with the easiest case, that of the ladder generators, for which
our Theorem 1 below supplies a complete answer. We then turn to the considerably more
complicated general case which Theorem 2 reduces to the problem of finding all closed
LI 1-forms onG.

5.1. Ladder generators. We consider the subalgebraT of HR generated by the ladder
generatorsTn, wheren counts the number of vertices. Their coproduct is

�(Tn) =
n∑

k=0

Tk ⊗ Tn−k, (43)

makingT a sub-Hopf algebra ofHR (notice though that forφ not in T , �(φ) may
involve terms inT ⊗ T ). Experimenting a little we find that, for the first fewn’s, each
Tn gives rise to a primitiveP (n). The general case is handled by the following

Theorem 1. To each ladder generatorTn,n = 1,2, . . . , corresponds a primitive element
P (n), with Tn as its linear part, given by

P (n) = 1

n!
∂n

∂xn
log

( ∞∑
m=0

Tmx
m

) ∣∣∣∣
x=0

. (44)

Proof. Consider the algebraF of formal power seriesf (x) = ∑∞
n=0 cnx

n, c0 = 1, with
the usual product. Define a basis{ξn, n = 0,1,2, . . . } of F∗, the dual ofF , via

〈ξn, f (x)〉 = cn, (45)

i.e.,ξn reads off the coefficient ofxn in f andξ0 = 1. Forf ′′(x) = f ′(x)f (x) we have2

f ′′(x) =
∞∑
n=0

c′′
nx

n, c′′
n =

n∑
k=0

c′
kcn−k, (46)

which implies the coproduct

�(ξn) =
n∑

k=0

ξk ⊗ ξn−k (47)

2 Notice that primes only distinguish functions here, they do not denote differentiation.
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in F∗. EndowingF∗ with a commutative product, we arrive at the isomorphismF∗ ∼= T ,
as Hopf algebras, withξn ↔ Tn. Define a new basis{σn, n = 0,1,2, . . . } in F∗ by

〈σr, f (x)〉 = c̃r , with f (x) = e
∑∞

r=1 c̃r x
r

(48)

andσ0 = 1. Then

f ′′(x) = e
∑∞

r=1 c̃
′′
r x

r

, with c̃′′
r = c̃′

r + c̃r , (49)

implying the coproduct�(σr) = σr ⊗1+1⊗σr . Theσ ’s, under the above isomorphism,
correspond to theP (n) in T . Solving the equation

e
∑∞

r=1 P
(r)xr =

∞∑
n=0

Tnx
n (50)

for P (r), one arrives at (44). ��
We read offP (n), for the first few values ofn, as the coefficient ofxn in the Taylor

series expansion

log

( ∞∑
n=0

Tnx
n

)
= T1 x + (

T2 − 1

2
T 2

1

)
x2 + (

T3 − T1T2 + 1

3
T 3

1

)
x3

+ (
T4 − T1T3 − 1

2
T 2

2 + T 2
1 T2 − 1

4
T 4

1

)
x4

+ (
T5 − T1T4 − T2T3 + T 2

1 T3 + T1T
2
2 − T 3

1 T2 + 1

5
T 5

1

)
x5

+ (
T6 − T1T5 − T2T4 − 1

2
T 2

3 + T 2
1 T4 + 2T1T2T3 − T 3

1 T3

+ 1

3
T 3

2 − 3

2
T 2

1 T
2
2 + T 4

1 T2 − 1

6
T 6

1

)
x6 + . . . . (51)

The polynomialsP (n)(Ti) are known asSchur polynomials.

5.2. The general case. Given a closed LI 1-formα onG, there exists a linear combination
φi′ of the generatorsφA such thatα = �

φi′ . Applying the inverse Poincaré lemma, we
may write (locally)

�
φi′ = dψi′ , (52)

for some functionψi′ in A. Requiring additionally thatψi′ vanish at the origin,ε(ψi′) =
0, fixes the constant left arbitrary by (52) to zero.ψi′ can be expressed in terms of the
φ’s. Since�

φi′ reduces todφi′ at the origin, the linear partψi′
lin of ψi′(φ) isφi′ . But then

�
φi′ = �

ψi′ , since� projects to the linear part. Comparing the r.h.s. of (52) with the

general expression for a LI 1-form, Eq. (5), we conclude thatψi′ is primitive. Conversely,
every primitive functionψi′ gives rise to a closed LI 1-form,d�

ψi′ = ddψi′ = 0 =
d�

ψi′
lin

.
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Equation (7), and the comment that follows it, show that�lin(φ
i′) is symmetric under

the interchange of its two tensor factors. This observation leads to a particularly simple
way to identify primitive elements. One first looks for linear combinationsφi′ of the
φA with symmetric�lin(φ

i′) (notice that�lin is given by simple cuts). The explicit
expression for the corresponding primitiveψi′ then is given by the standard formula for
the (local) potential of a closed form. We find that the result is simplified considerably
due to the particular form of the coproduct of theφA, namely the linearity of�(φA) in
its second tensor factor.

Theorem 2. Given φi′ ∈ A1, such that d�
φi′ = 0. Then the element ψi′ of A, given by

ψi′ = −+−1 ◦ S(φi′), (53)

is primitive and has φi′ as its linear part (+ above is the p-degree operator for the φ’s,
+(φA1 . . . φAr ) = rφA1 . . . φAr ).

Proof. We apply the inverse Poincaré lemma to�
φi′ . For a givenv-degreen, onlyφA of

v-degree up ton enter in the formulas – we denote them collectively byx (e.g.,S(φ)(x)
denotes the standard expression ofS(φ) in terms of theφA while S(φ)(zx) denotes the
same expression with everyφA multiplied byz). Consider the family of diffeomorphisms
ϕt : x �→ (1 − t)x, 0 ≤ t ≤ 1. Thenϕ∗

0 is the identity map whileϕ∗
1 is the zero map.

The corresponding velocity field is

v = d

dt
ϕt (x) = −x ⇒ v(y, t) = − 1

1 − t
y, (54)

wherey = ϕt (x). We have3

�
φi′ (x) = ϕ∗

0

(
�

φi′ (ϕ0(x))
)− ϕ∗

1

(
�

φi′ (ϕ1(x))
) =

∫ 0

1
dt

d

dt
ϕ∗
t

(
�

φi′ (y)
)
. (55)

However, d
dt
ϕ∗
t = ϕ∗

t Lv = ϕ∗
t (d iv + iv d) and, taking into account the closure of�

φi′ ,
we find

�
φi′ (x) = d

∫ 0

1
dt ϕ∗

t

(
iv �φi′ (y)

)
. (56)

This is the inverse Poincaré lemma. We concentrate now on the action ofiv on�
φi′ (y).

We have

iv = − 1

1 − t
yj i∂

yj
, �

φi′ (y) = S(φi′
(1)) dφ

i′
(2)(y). (57)

In this latter (implied) sum, all terms in the coproduct ofφi′ appear except the first one,
φi′ ⊗ 1, which is annihilated byd. Notice now thatyj i∂

yj
dyi = yi . Since�(φi′) is

linear in its second factor we conclude that

yj i∂
yj
S(φi′

(1)) dφ
i′
(2)(y) = S(φi′

(1)) φ
i′
(2)(y) − S(φi′)(y) = −S(φi′)(y). (58)

3 We ignore in the sequel the singularity ofv at t = 1 – it is easily shown to be harmless.
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Substituting back into (56) and putting 1− t ≡ z we find

�
φi′ (x) = −d

∫ 1

0

dz

z
S(φi′)(zx), (59)

which, upon performing the integration overz, gives�
φi′ = −d+−1 ◦ S(φi′). The

remarks preceding the theorem complete the proof.��

5.3. The lower central series and k-primitiveness. We extend here the notion of primi-
tiveness to that ofk-primitiveness. Our starting point is our BCH-based prescription for
calculating the coproduct of theψ ’s, Eq. (36). Suppose we identify all generatorsZ

[1]
i

of G that cannot be written as commutators (theZ
[1]
i are, in general, linear combinations

of theZA). Then we may perform a linear change of basis inG and split the generators
into two classes, one made up of the aboveZ

[1]
i and the other spanning the complement

– we denote the latter by{Zi′ }. Writing the canonical element in the new basis,

C = e
Z

[1]
i ⊗ψi[1]+Zi′⊗ψi′

, (60)

we are led to the identification of theψi[1] with the primitiveψ ’s. This is so since, in

the BCH formula, theZ[1]
i are never produced by the commutators, so that the only

contribution to�(ψi[1]) is the primitive part. Consider now the lower central series of

G, consisting of the series of subspacesG[1], G[2], . . . . A particularZ in G belongs to
G[k] if it can be written as a(k − 1)-nested commutator. This implies that ifZ belongs
to G[k], it also belongs to allG[r], with r < k. This is the standard definition ofG[k] –
we actually need a slightly modified one, according to whichZ belongs only to the G[k]
with the maximum k. With this definition,G[k] ∩ G[r] = ∅ wheneverk �= r. We may
now perform a linear change of basis inG such that each generatorZ

[k]
i in the new basis

belongs toG[k]. Writing the canonical element in the form

C = e
Z

[k]
i ⊗ψi[k] , (61)

defines thek-primitiveness for theψi
[k] dual to the aboveZ[k]

i . Since theZ[k]
i are linear

combinations of theZA, theψi
[k] will be linear combinations of theψA. A splits ac-

cordingly to a direct sum,A = ⊕∞
k=1 A[k] – the primitiveψ ’s, in particular, spanA[1].

Notice thatψ ’s with n vertices may belong toG[k] with k ≤ n−1. This is so because the
“longest” nested commutator withn vertices is[Z

b
, [Z

b
, . . . [Z

b
, Z b

b
]] . . . ], with n − 2

entries ofZ
b
.

The above concept ofk-primitiveness arose naturally in our study of the primitiveψi[1].
Some time afterwards, we became aware of Ref. [3], where a concept ofk-primitiveness
is also defined, as follows: given an elementχ of A, one computes successive powers
of the coproduct,�k(χ). There is a minimumk for which all terms in�k(χ) contain
a unity in at least one of the tensor factors – this defines thek-primitiveness ofχ . Our
definition is intrinsically defined only on the generatorsψi

[k], while the above makes

sense in all ofA. We now show that, forψi
[k], the two definitions coincide.

Lemma 3. The minimum value of r for which �r(ψi
[k]) contains at least one unit tensor

factor in each of its terms, is r = k.
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Proof. The various powers of the coproduct ofψi
[k] can be computed by iteration of the

second of (34),

�r−1(ψi
[k]) = coeff. of Z[k]

i in log
(

C01C02 . . .C0r

)
. (62)

This shows that in�k(ψi
[k]), the(k+1)-linear term can only be produced by thek-nested

commutator

[Zi1, [Zi2, . . . [Zik , Zik+1]] . . . ] ⊗ ψi1 ⊗ . . . ⊗ ψik+1.

The latter, however, has noZ[k]
i component, sinceZ[k]

i can be written as a(k−1)-nested
commutator at most. It is also clear, for the same reason, that there are no terms of higher
p-degree in theψ ’s, as those would correspond to even longer nested commutators.
�k(ψi

[k]) then must have at least one unit tensor factor in each of its terms. On the

other hand, thek-linear term in�k−1(ψi
[k]) is not zero, because, by definition, the

corresponding(k − 1)-nested commutator has aZ[k]
i component. ��

As shown in [3], thek-degree satisfies

degk(ψ
i
[k1]ψ

j
[k2]) = k1 + k2. (63)

We use the two definitions of thek-degree interchangeably in what follows. We may
now clarify the relation between the primitive elements given by the inverse Poincaré
formula, Eq. (53), and the ones introduced above via the lower central series ofG.

Lemma 4. Given φi′ = ci
′
Aφ

A, with ci
′
A constants, such that d�

φi′ = 0. Then the

primitive element ψi′ of (53) is equal to ci
′
Aψ

A, i.e.,

ψi′ = −+−1 ◦ S(φi′) = ci
′
Aψ

A. (64)

All primitive elements of A can be obtained in this form.

Proof. Any linear combination of theψi[1] is primitive, while (sums of) products of them

are not, due to (63). Therefore, theψi[1] constitute a linear basis in the vector space of

primitive elements ofA. To the givenφi′ , Eq. (53) associates a primitive elementψi′ ,
with φi′ as its linear part. The unique linear combination of theψA (and, hence, of the
ψi[1]) with this linear part isψi′ = ci

′
Aψ

A. ��
We give an example illustrating the above.

Example 4. Construction ofG(n)[k], A(n)[k], for n ≤ 4. To identify the generators of
G(n)[k], we construct all(k−1)-nested commutators withnvertices –G(n)[1] is determined
as the complement of

⊕n−1
k=2 G(n)[k] in G(n) (below we use the orthogonal complement

but this is not essential, one simply has to complete the basis of theZ’s). This gives
a matrix that effects the transition from the basis{ZA}, indexed by rooted trees, to the
basis{Z[k]

i }, of definitek-primitiveness. The inverse matrix then gives theψi
[k] in terms

of theψA.
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G(1)[1] = G(1) is generated byZ
b
. G(2)[1] = G(2) is generated byZ b

b
, since the only

commutator with two vertices,[Z
b
, Z

b
] is zero. Forn = 3, we have the only non-

zero commutator4 Z
(3)[2]
1 ≡ [Z

b
, Z b

b
] = 2Z b

b b
. The complement inG(3) is spanned by

Z
(3)[1]
1 = Z b

b

b

. Next we look at the casen = 4. We find the only non-zero commutators

[Z
b
, Z b

b

b

] = (0,2,1,0) ≡ Z
(4)[2]
1 , [Z

b
, Z b

b b
] = (0,−1,1,3) ≡ Z

(4)[3]
1 , (65)

in the basis
{
Z b

b

b

b

, Z b

b

b b

, Z b

b

b

b
, Z b

bbb

}
. The orthogonal complement inG(4) is spanned by

Z
(4)[1]
1 = (1,0,0,0), Z

(4)[1]
2 = (0,1,−2,1). (66)

Writing the above change of basis symbolically asZ
[k]
i = MZA, with M a matrix of

numerical coefficients, the dual change of basis for theψ ’s is given byψi
[k] = ψAM−1.

We find

ψ1
(1)[1] = ψ

b

, ψ1
(2)[1] = ψ

b

b

, ψ1
(3)[1] = ψ

b

b

b

, ψ1
(3)[2] = 1

2
ψ

b

b b

, (67)

while, for n = 4,

ψ1
(4)[1] = ψ

b

b

b

b

,

ψ2
(4)[1] = 1

6
ψ

b

b

b b − 1

3
ψ

b

b

b

b

+ 1

6
ψ

b

b bb

,

ψ1
(4)[2] = 7

18
ψ

b

b

b b + 2

9
ψ

b

b

b

b

+ 1

18
ψ

b

bbb

,

ψ1
(4)[3] = − 1

18
ψ

b

b

b b + 1

9
ψ

b

b

b

b

+ 5

18
ψ

b

bb b

. (68)

Referring to, e.g.,ψ2
(4)[1], one easily verifies that

φi′ = 1

6
φ

b

b

b b − 1

3
φ

b

b

b

b

+ 1

6
φ

b

bbb (69)

has symmetric�lin and, when inserted in (53), deliversψ2
(4)[1].

To continue the above construction to the casesn = 5,6, we developed a REDUCE
program, incorporating some of the procedures of [2]. The numbersPn,k of k-primitive
ψ ’s with n ≤ 6 vertices that we find coincide with the ones in Table 4 of [3], as expected.
In what refers to the primitiveψ ’s, the procedure presented above, starting withφ’s with
symmetric�lin and then using (53), should be considerably more efficient than the one
used in [3] – it would be interesting to quantify this statement. Notice that an equivalent
procedure involves expanding the primitiveψ ’s asψ[1] = cAψ

A and then determining
the constantscA from the set of equationsf

RS

T
〈
ZT ,ψ[1]

〉 = 0 (the latter is the statement
thatψ[1] is invariant under the coadjoint coaction).

4 We remind the reader of our notation:Z
(n)[k]
i

is theith element in the subspace ofk-primitive, n-vertex
Z’s. The same notation is used for theψ ’s, with the position of the indices (upper–lower) interchanged.
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6. Normal Coordinates and Toy Model Renormalization

We turn now to what, in some sense, is our main objective, namely, the application
of the formalism presented so far in the problem of renormalization in perturbative
quantum field theory. The scope of our considerations in this section can only be modest,
since realistic quantum field theories involve rooted trees with an infinite number of
decorations. Nevertheless, a toy model exists (see [10]) that realizes theφA as nested
divergent integrals, regulated by a parameterε.We find this an extremely useful construct
that captures many of the most important features of realistic renormalization – again,
we refer the reader to [10,6] for a detailed presentation. What we are interested in here,
is the rôle of the new coordinatesψ in the renormalization of divergent quantities. We
start with a brief review of the basics.

6.1. The toy model. The elementary divergence in the toy model we deal with is given
by the integral

I1(c; ε) =
∫ ∞

0
dy

y−ε

y + c
, (70)

which diverges asε goes to zero.c above will be referred to as theexternal parameter of
the integral. We associate the functionφ b with I1(c; ε). To the functionφ

b

b corresponds
the nested integral

I2(c; ε) =
∫ ∞

0
dy1

y−ε
1

y1 + c
I1(y1; ε) =

∫ ∞

0
dy1

y−ε
1

y1 + c

∫ ∞

0
dy2

y−ε
2

y2 + y1
. (71)

Notice that the external parameter of the subdivergenceI1 is y1. Toφ

b

b

b, φ
b

b b correspond,
respectively,

I3,1(c; ε) =
∫ ∞

0
dy1

y−ε
1

y1 + c
I2(y1; ε), I3,2(c; ε) =

∫ ∞

0
dy1

y−ε
1

y1 + c

(
I1(y1; ε)

)2
,

(72)

it should be clear how this assignment extends to allφA. In this way, eachφA can be
associated with the Laurent series inε that corresponds to its associated integral, e.g.

φ
b =

∫ ∞

0
dy

y−ε

y + c
= π

sin(πε)
c−ε = 1

ε
− a + O(ε), (73)

wherea ≡ log(c) and, similarly (using MAPLE),

φ
b

b = 1

2ε2 − a

ε
+ a2 + 5π2

12
+ O(ε),

φ

b

b

b = 1

6ε3 − a

2ε2 +
(3a2

4
+ 7π2

18

)1

ε
− a

12

(
9a2 + 14π2)+ O(ε),

φ
b

b b = 1

3ε3 − a

ε2 +
(3a2

2
+ 11π2

18

)1

ε
− a

6

(
9a2 + 11π2)+ O(ε),

φ

b

b

b

b = 1

24ε4 − a

6ε3 +
(a2

3
+ 5π2

24

) 1

ε2 − a

18

(
8a2 + 15π2

)1

ε
+ O(ε0), (74)
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φ

b

b

b b = 1

12ε4 − a

3ε3 +
(2a2

3
+ 3π2

8

) 1

ε2 − a

18

(
16a2 + 27π2

)1

ε
+ O(ε0),

φ

b

b

b

b

= 1

8ε4 − a

2ε3 +
(
a2 + 11π2

24

) 1

ε2 − a

6

(
8a2 + 11π2

)1

ε
+ O(ε0),

φ
b

bb b = 1

4ε4 − a

ε3 +
(
2a2 + 19π2

24

) 1

ε2 − a

6

(
16a2 + 19π2

)1

ε
+ O(ε0), ,

and so on. It is easily seen thatφ’s with n vertices give rise to Laurent series with leading
pole of ordern. The process of renormalization assigns to eachφA a finite “renormalized”
valueφA

R (see, e.g., [5]). In Hopf algebraic terms, the latter is given by [2]

φA
R = SR

(
φA
(1)

)
φA
(2), (75)

where thetwisted antipode SR is defined recursively by

SR
(
φA
) = −R(φA

)− R
(
SR
(
φA
(1′)
)
φA
(2′)

)
. (76)

R above is arenormalization map that we choose here to give the pole part of its
argument, evaluated at the external parameter equal to 1, e.g.,R(φ b

b

) = 1/2ε2 (compare
with the first of (74)). The primed sum in the second term of (76) excludes the primitive
part of the coproduct. The magic of renormalization lies in the fact that, for anyφA,
the renormalizedφA

R in (75) has no poles inε – what makes this statement non-trivial
is that all terms subtracted iteratively fromφA, to giveφA

R, are independent of external
parameters. We conclude our brief review with the following statement, proven in [11]:
if R satisfies themultiplicative constraint

R(xy) − R(R(x)y
)− R(xR(y)

)+ R(x)R(y) = 0, (77)

thenSR is multiplicative,SR(xy) = SR(x)SR(y) – our choice ofR above does sat-
isfy (77).

6.2. Renormalization in the ψ-basis. For a given numbern of vertices, the renormal-
ization of every generatorφA gives rise to 2n counterterms, for a total ofrn2n, wherern
is the number of rooted trees withn vertices. To renormalize theψ ’s, one can always
express them in terms of theφ’s and then proceed as above. However, for renormaliza-
tion schemesR that satisfy (77), a much more efficient possibility arises. Equation (75),
in this case, is valid forany function inA, and, in particular, for theψ ’s. Notice that
although the action of the antipodeS is trivial on theψA, that of the twisted antipode
SR is not, in general. The advantage of working in the basis{ψi

[k]} is that the complexity

of the renormalization of a generatorψi
(n)[k] is governed byk, notn, which entails, in

general, significant savings. As an extreme example, a primitiveψ with one hundred
vertices is renormalized by a simple subtraction – this should be compared with the 2100

counterterms necessary for the renormalization of each of theφ(100)’s. How significant
can the savings be in, e.g., CPU time, depends on the distribution of theψi

(n) in the
variousk-classes. As proved in [3], the numbersPn,k of k-primitiveψ ’s with n vertices
are generated by

Pk(x) ≡
∞∑
n=1

Pn,kx
n =

∑
s|k

µ(s)

k

(
1 −

∞∏
n=1

(
1 − xns

)rn)k/s, (78)
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a rather non-trivial result. The sum in the r.h.s. above extends over all divisorss of k,
including 1 andk.µ(s) is the Möbius function, equal to zero, ifs is divisible by a square,
and to(−1)p, if s is the product ofp distinct primes(µ(1) ≡ 1). Of particular interest
to us is the asymptotic behavior ofPn,k, for large values ofn [3],

fk ≡ lim
n→∞

Pn,k

rn
= 1

c

(
1 − 1

c

)k−1
, (79)

wherec = 2.95. . . is the Otter constant. This is encouraging, as the population of the
CPU-intensive high-k ψ ’s is seen to be exponentially suppressed. A realistic estimate of
the complexity of renormalization in theψ-basis is outside the scope of this article, as it
would probably entail implementation-dependent parameters. Nevertheless, we attempt
a first-order estimation by assigning a computational cost of 2k to a k-primitive ψ ,
while theφ(n) are assigned the cost 2n. The ratio of the total costs of renormalizing all
generators withn vertices in the two bases then is

ρn = rn2n∑n−1
k=1 Pn,k2k

≈ (c − 2)
( c

c − 1

)n−1
, (80)

withρ33 ≈ 6×105 making the difference between a week and a second.We consider (80)
as a loose upper bound on the potential savings.

Another feature of theψ ’s that is worth pointing out is their toy model pole structure.
As mentioned above, each of theφA

(n) corresponds to a Laurent series with maximal pole

ordern. We find that the behavior of theψi
(n) is much milder. We list the series expansion

of the first fewψA, which should be compared with the analogous expressions for the
φA, Eq. (74),

ψ
b = 1

ε
− a + O(ε),

ψ
b

b = π2

4
+ O(ε),

ψ

b

b

b = π2

18ε
− π2a

6
+ O(ε),

ψ
b

b b = 7π2

36ε
− 7π2a

12
+ O(ε),

ψ

b

b

b

b = π4

8
+ O(ε), (81)

ψ

b

b

b b = 19π4

72
+ O(ε),

ψ

b

b

b

b

= π2

24ε2 − π2a

6ε
+ O(ε0),

ψ
b

bb b = π2

12ε2 − π2a

3ε
+ O(ε0).

Notice that, e.g., the primitiveψ

b

b

b

b is actually finite, as isψ

b

b

b b which is not primitive. We

emphasize that
(
ψ

b

b

b b

)
R is still given by (75) (withφa → ψ

b

b

b b) and does not coincide
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with the finiteψ

b

b

b b (see Ex. 5 below). The other twoψi
(4) are of order 1/ε2, even though

they haveG[3] components. These initial observations point to a general feature of the
ψ ’s: the pole order does not specify the complexity of their renormalization, as is the
case with theφ’s. The cancellations of the higher-order poles observed point to rather
non-trivial underlying combinatorics that, we believe, deserve further investigation.

The series expansion of theψi
(n)[k] is

ψ2
(4)[1] = π4

48
+ O(ε),

ψ1
(4)[2] = π2

72ε2 − π2a

18ε
+ O(ε0), (82)

ψ1
(4)[3] = π2

36ε2 − π2a

9ε
+ O(ε0)

(the rest are essentially identical to theψA). We also point out that some of then = 6
primitiveψ ’s are of order 1/ε3 – nevertheless, the coefficients of all poles are independent
of c and their renormalization is accomplished by a simple subtraction, in agreement
with (75).

Example 5. Renormalization ofψ2
(4)[1],ψ

1
(4)[2],ψ

b

b

b b. For the primitiveψ2
(4)[1], Eqs. (76),

(82) give

SR
(
ψ2
(4)[1]

) = −R(ψ2
(4)[1]

) = 0, (83)

so that the renormalized value
(
ψ2
(4)[1]

)
R = ψ2

(4)[1]+SR
(
ψ2
(4)[1]

)
coincides withψ2

(4)[1].
For the 2-primitiveψ1

(4)[2], the first of (65) and (36) give

�
(
ψ1
(4)[2]

) = ψ1
(4)[2] ⊗ 1 + 1 ⊗ ψ1

(4)[2] + 1

2
ψ1
(1)[1] ⊗ ψ1

(3)[1] − 1

2
ψ1
(3)[1] ⊗ ψ1

(1)[1],
(84)

so that

(
ψ1
(4)[2]

)
R = ψ1

(4)[2] + SR
(
ψ1
(4)[2]

)+ 1

2
SR
(
ψ1
(1)[1]

)
ψ1
(3)[1] − 1

2
SR
(
ψ1
(3)[1]

)
ψ1
(1)[1].

(85)

For the (non-trivial) twisted antipode we find

SR
(
ψ1
(4)[2]

) = −R(ψ1
(4)[2]

)+ 1

2
R
(
R(ψ1

(1)[1]
)
ψ1
(3)[1]

)
− 1

2
R
(
R(ψ1

(3)[1]
)
ψ1
(1)[1]

)
.

(86)

Substituting above we get

(
ψ1
(4)[2]

)
R = 7

96
π4 + O(ε). (87)
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Finally, for ψ

b

b

b b, we use the coproduct given in (40) and, proceeding along the same
lines, we find

(
ψ

b

b

b b

)
R = 13

96
π4 − 1

24
π2a2 + O(ε), (88)

which is different, as mentioned above, from the finiteψ

b

b

b b.

The remarkable pole structure of theψ ’s observed above, persists for other, more realistic
models as well. For example, we have repeated the above analysis for the heavy-quark
model of [2]. We find that, forn ≤ 4, the maximal pole order appearing is only 1/ε,
with all ladderψ ’s, except the first one, finite.
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