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Abstract. We present a covariant form for genetic dynamics and show
how different formulations are simply related by linear coordinate trans-
formations. In particular, in the context of the simple genetic algorithm,
we show how the Vose model, in either the string or Walsh bases, is
related to recent coarse-grained formulations that are naturally inter-
preted in terms of the Building Block basis (BBB). We also show that
the latter is dual to the Taylor basis. The tensor product structure of
the dynamical equations is analyzed, permitting the factorization of the
N-bit operators in 1-bit factors.

1 Introduction

There has been a recent trend [1-3] in evolutionary computation (EC) towards
a unified point of view, wherein different branches of EC, such as genetic al-
gorithms (GA’s) and genetic programming (GP), have been given a common,
rigorous, theoretical foundation and previously, seemingly antagonistic elements,
such as Holland’s Schema theorem and the Building Block hypothesis, have been
reconciled with exact formulations, such as the Vose model [4]. In particular,
coarse grained models have led to exact schema theorems, both in GA’s [5]
and GP [6], that generalize the traditional Schema theorem for GA’s and show
exactly when the Building Block hypothesis is valid.

This new unified formulation is, at heart, a coarse-grained one, where evolu-
tion of a string/program is written in terms of schemata/hyperschemata. How-
ever, it remains an exact description with no loss of precision. For GA’s, this
coarse-grained description was derived [5,7] from the underlying microscopic,
string-based model, thus showing that the Vose and coarse-grained models were
just different representations of the former. It was later shown [8] that this change
of formulation could be described as a coordinate transformation, passing from
the basis of strings to that of building block schemata. In this paper we present
a manifestly covariant form of the evolution equations for a canonical GA, show-
ing how to pass between the three important bases: string, Walsh and building
block, using linear coordinate transformations and describing the properties of
the different operators - selection, mutation and recombination - in the different
bases, paying particular attention to recombination in the BBB. We also show
how the BBB is related to the Taylor basis.
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2 Mathematical Preliminaries

We first consider some mathematical preliminaries. Readers unused to some of
the notation familiar from linear algebra and tensor analysis may consult an
appropriate introductory reference such as [9]. Consider a discrete, finite set A
and the commutative algebra F4 of real-valued functions on A. We will refer
to the elements of A as points. To each subset B of A there corresponds the
characteristic function (CF) fg € Fa, which takes the value 1 on each element
of B and is zero elsewhere. Conversely, every function f € Fy4, with values in
{0, 1}, defines a subset of A as the locus of the points where it takes the value 1.
Thus, one can denote subsets of A by listing the collection of points that make
up the subset or by giving the corresponding characteristic function.

Given an n-dimensional vector space V, with basis By = {f!,..., f"}. The
set V* of real-valued linear functionals on V is also an n-dimensional vector
space, called the dual of V. The duality is via a bilinear inner product, (-,"') :
V*@V =R, 2®a— (r,a) = z(a). A basis By« = {e1,...,e,} is called dual
to By if (ei, fj> = 07. The element C = ¢; ® f* € V*®V is called the canonical
element and satisfies

(C,a®id) = (ej,a) ff =a, (idoz,C) = (z,f')e; =, (1)

for all @ in V, z in V*. Under a linear change of basis of V', associated with a
coordinate transformation matrix A, f and its dual basis e transform as

f— ' =Af e—se =ed !, (2)

where f is the column vector (f!,..., f")? and e is the row vector (e, ...,e,).

3 Bases in the Space of Characteristic Functions

We now consider a number of bases in the configuration space of fixed-length,
binary strings'. In this case the natural configuration space is an N-dimensional
unit cube Cy, which can be embedded in RY | with coordinates {z1,...,zn},
so that the points (0,0,...,0) and (1,1,...,1) are antipodal points of the cube.
Then, restricted to Cy, each z;, 1 < i < N, takes the values 0 and 1. Define
Z; = e — x;, where e is the unit function on C}, taking the value 1 on each
vertex. In what follows, unless explicitly mentioned otherwise, all functions are
considered restricted to C'n. In that case, one may impose algebraic relations on
the coordinate functions, compatible with their allowed numerical values,
:L‘?::L‘i, f?:i‘i, z; %; =0. (3)
! Generalizations to higher cardinality alphabets are rather straightforward, e.g., for
a 2M_cardinality alphabet one may simply consider a block of M consecutive bits as
a single “letter”. Also, much of what is presented below should be generalizable to
the case of variable-length strings and GP.
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Notice that z; is the CF for half of the cube (all vertices with x; = 1) while
Z; corresponds to the other half — then e corresponds to the entire cube, in
accordance with x; +Z; = e. To specify lower dimensional k-cubes (hyperplanes),
k < N, one needs products of the coordinates, e.g., for N = 3, z1 x5 specifies the
edge connecting the points (1,1,0) and (1,1, 1), while 21 Z2Z3 specifies the point
(1,0,0). In general, there exists a one-to-one correspondence between monomials
of degree N — k in z;, &; and k-cubes.

3.1 The §-basis

The standard basis in F¢, is the §-basis Bs, consisting of the CF’s of all 2V
vertices of Cy, i.e., of delta-like functions with support on the vertices of the
cube,

Bgz{flfg...fN,fl.fQ...xN,...,371562...37]\[}. (4)

We have singled out above the point (1,1, ..., 1), its CF being the last element of
the basis. The same construction can be based on an arbitrary vertex by defining

Bf:{dldg...dN,dldg...aN,...,011042...041\{}, (5)

where the CF of the vertex P is ajas ... ay, with each of the «; being either x;
or Z;, and defining the bar operation to be involutive (Z = x).

The particular ordering we choose above is “odometer”-like: referring to the
choice P = (1,1,...,1), we start at the origin (the antipode of P in the cube),
with CF Z1Z2 ... Zn, and let the last factor take on all possible values (Zn and
x N, in this case), then the next-to-last factor advances etc.. This is the standard

ordering for tensor products of vector spaces: if {vy,...,v,} and {wy,...,wy}
are bases for V' and W respectively, the basis for the tensor product V @ W is
taken to be {v; ® wy, v1 ® wa, ..., V1 @ Wy, V2 @ Wy, ..., Uy @ Wy}, where, in

our case, a k-cube is considered as a k-fold tensor product of 1-cubes.

3.2 The monomial basis

We introduce here the monomial basis BL, associated to the vertex P of the unit
cube. It consists of the CF’s of all k-cubes containing P — these are all mono-
mials in the variables that appear in the CF of P. Anticipating the discussion of
recombination in Sect. 5.1, we point out that the monomial basis is isomorphic
to the BBB which, as was shown in [8], most naturally enters in the description
of recombination. We clarify the construction of BY with a couple of examples.

Example 1 The § and monomial bases for N =1 and N = 3

For N = 1, the J-basis of the previous subsection (corresponding to the vertex
with CF z;) is Bj' = {Zi, 1}, while the monomial basis (corresponding to
the same vertex) is B*! = {e, z;}. Arranging the basis elements in columuns,

x5t = (z1,21)7, x% = (e,x1)” we have,

xpl = Ax§, (6)

m
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01
For N = 3, the vertex (1,0,0), with CF z1Z2Z3, induces the basis

where A = (1 1) does not depend on the chosen vertex P.

T1T2T = = = = = = =
BEy2%s = fe T3, To, Tols, T1, T1T3, T1T2, T1T2T3}, (7)

consisting of the CF’s of all k-cubes, with 0 < k& < N = 3, containing the
above vertex, ranging from the entire 3-cube to the vertex itself. The use of
the standard tensor product ordering for the basis elements, mentioned earlier,
becomes clear if one substitutes e’s for the missing coordinates in each of the
above monomials, i.e., writing the basis as {eee, eeZs, eZse,...}. The matrix A3
effecting the transition between the two bases is clearly the tensor cube of A,
A3 = A®3 = A @ A @ A, where, in general, (A ® B);ju = AixBji, giving in the
special case of 2 x 2 matrices

ax ay bx by
__(aBbB\ | azaw bz bw _f(ab _(zy
A®B_<chB>_ cr cy dr dy |’ A:<cd>’ B:<2w>'(8)
cz cw dz dw
O
In the general case, a vertex P with CF ajas - - - apn, induces the monomial basis
BN ={e,an, ooy Q1 . . ON_2QN, O] ... AN_1, Q1 ...AN_1QN}, (9)
with
xP = Anxt | Ay = A%V, (10)

An does not depend on P as long as the two bases are chosen according to
Egs. (5) and (9). From Eq. (10) we have

Ap Ay,
An+1:A®An:<0 An) - (11)

The matrix elements, Ay, are such that Ay; = 1 if the vertex .J is contained in
the k-cube I, and is zero otherwise.

3.3 The Walsh basis

The other basis that has been extensively studied is the Walsh basis. As in the
previous section, the IV-bit case can be obtained by tensoring up the 1-bit one,
the latter being illustrated by the following example.

Example 2 The § and Walsh bases for N =1

For N = 1, the d-basis of subsection 3.1 (corresponding to the vertex with CF
x1) is Bf' = {Z1, 1}, while the corresponding Walsh basis is Byy = {(Z1 +

r1)/V2, (£1 — z1)/v/2}. Thus we have,

xw = Awxs', (12)
where Ay = 271/2 (} _}) does not depend on P. m]
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4 The Dual Description: Bases in the Space of Points

We turn now from the space Fun(Cy), of real valued functions on Cy, to its
dual (as a vector space), whose elements are naturally identified with (linear
combinations of) the vertices of the cube, viewed as geometrical points in RV .
The duality is via pointwise evaluation, i.e., given a function f and a vertex
g, their inner product is simply the value of f at g, (g,f) = f(g), extended
by linearity in each of the arguments. We now consider the duals of the d and
the monomial bases of Fun(C") — we do not include the Walsh basis since
Ayt = Aw.

4.1 The vertex basis

We define the vertex basis By, as the dual of By — it clearly consists of the
vertices gr of the cube, appropriately ordered, By = B; = {gr}. R here is a
composite index, R = (ry ...r,), with each r; being either 0 or 1. Taking for
concreteness the reference point P = (11...1), we arrange the vertices in a row
vector, gy = (900...05 §00...015 -+ g11...1)-

4.2 The Taylor basis
Dual to the basis By, of the k-cube CF’s (arranged in the column vector x, =
Anxs) is the Taylor basis By = B, given in (row) vector form by gr = gv/l;,l.

To illustrate its geometrical meaning consider the following?

Example 3 0, monomial, vertex and Taylor bases for N=2

We have
i‘li’g 1111 i’li‘Q e
_ T1Z2 _ _ 0101 122 _ Hip)
X5 = Q?l.’iQ 5 Xm = A2X5 - 0 0 11 .leQ - x1 ) (13)
T1T2 0001 12 T1T2

while, for the dual bases, we compute

gv = (900, go1, gio, g11)

1-1-1 1
_ 0 1 0-1
gT:gvA21 = (900,9017910,911) 00 1-1
0 0 0 1

= (900, go1 — oo, 910 — goo, gi1 — gio — go1i +900) . (14)

2 The Taylor basis was considered, in a different context, by Weinberger in [10].
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Apply now the first of (1) to an arbitrary function f € Fun(Cx), using the pair
of dual bases By, Br,

f={(gr)i, f) (%m)*
= f(goo) e + [f(gm) - f(goo)] T2 + [f(glo) - f(goo)] Ty
+ [f(g11) = f(g10) — f(go1) + f(goo)] 15 - (15)

Thus, one obtains the Taylor expansion of f around the origin, with

01 = 910 — Yoo » 0> = go1 — Yoo » 012 = 911 — 910 — go1 + goo,  (16)

being discrete derivative operators which, given that f is at most linear in the
x;’s, coincide with the exact ones. O
Since, for higher N, By, still consists of all monomials in the z;’s, it is easy to
see that the above interpretation of the elements of Bt persists for all N.

5 Genetic dynamics in the different coordinate systems

We now consider dynamical evolution in the different bases in the presence of the
genetic operators of selection, mutation and recombination, focusing primarily,
due to lack of space, on the latter. The state of the system is described by the
2N _component vector P, the physical interpretation of which is basis-dependent.
The equation governing its time evolution is

Pr(t+1) = M;”Pj(t) (17)
J

where (M;”) is the mutation matrix and P§(t) is given by?
PIc:(l_pc)PII+pc(PII+GI_LI)) (18)

p. being the probability that recombination takes place. In the é-basis, Py is
the probability to find the string I after selection and recombination and Pj
is the probability to select I. The gains term G counts the total number of
children of type I produced while disappearing parents of type I are counted by
the losses term L; — this organization of terms is different from the one used in
past work [5,7] but we find that it facilitates the counting. Indeed, L; is clearly
equal to Py, since, by our definition, every parent participating in recombination
is lost, while Gy can be written as

Gr =33 2 (p(0) + p(D) A< (M) P P (19)
M JK

where \;7E (M) is an interaction term between objects I, Jand K, M is arecom-
bination mask, occuring with probability p(M), and M denotes the conjugate

3 Henceforth all time-dependent quantities are evaluated at time ¢, unless explicitly
shown otherwise.
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mask, i.e., such that M + M = (11...1) — we explain further the form of (19)
in Sect. 5.1 below. Substituting the expressions for Gy and Ly, (17) becomes

Prli+1) = My [ (1= po) P49 303 3 (M) + p()A, () Pl P
M K,L

(20)
Despite the covariance of (20), the facility of its analysis as well as its physical
interpretation are basis-dependent. The dynamics is governed by the mutation
matrix M, 7, the tensor ;7K (M), the mask probability distribution p(M) and
the fitness values fr, hidden inside Pj. In this sense the evolutionary algorithm
is a “black box” whose output depends on a large set of parameters. It therefore
behooves us to look for symmetries and regularities that may be exploited to
effect a natural coarse graining, making manifest the effective degrees of freedom
of the dynamics.

5.1 Recombination

We will now consider recombination in the §- and BB bases. For a discussion of
recombination in the Walsh basis, in a much different context, see [11].

Recombination in the § (“string”) basis. In this basis, Ps is the probability
(relative population) of the string I. For each mask M, there are generally several
pairs of parent strings {.J, K} that produce I as their child. The tensor A(M) in
Eq. (19) is given by

N
MK M) =[] 1L+ in + e + me(ir + k)] mod 2 (21)
r=1

which is 1 if the first child of the recombination of .J, K, with mask M, is
I, and zero otherwise (we use the convention that a 0 in the mask denotes
that the first child obtains the corresponding bit from the first parent). Then
MES(M) = A\7E(M) checks whether I is being produced as a second child.
One may define a mask-independent average A\; by A\;7% =", p(M)X7K (M)
whereupon (19) becomes, in matrix notation,

Gr(t) =PTR,P, Ri=-(\r+27). (22)

N | =

Notice that the second of (22) is valid in all bases, since both matrix indices of
As are contravariant (upper). For reasons explained in Sect. 5.2, A\; is a more
convenient object to work with than R;. Again, the covariance of (22) guarantees
its validity in all bases, with R;”¥ transforming, along with ;7 as a rank-
three tensor (see Ex. 5 below). Ignoring selection and mutation, Eq. (20) then
becomes

Pr(t+1) = (1—p.)Pr +p.PTR/P. (23)
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Example 4 N = 2 recombination in the §-basis

We fix I = (11) and take p(M) = 1/4 (independent of M). From (21) we compute

0000 0000
0000 0000
1111 0101

while A(11)((10)) = Ay ((01)) " and Aqpy) (1)) = Ay ((00)) . Then

0001
1{0012
4 .
Ain=7 10102 (25)
1224

where we have reinstated a (so far suppressed) superscript ¢ to remind us of the
basis, and Rf),) = A(};). Eq. (23) then gives

Dc
Puy(t+1) = Py + 5 (PaaoyPo1y — PanyPoo)) - (26)

The equations for the other strings are obtained by renaming the indices. o

Recombination in the monomial (“building block”) basis. As the above
example shows, recombination is rather complicated in the §-basis. A more effi-
cient organization of the various terms that contribute to Gy(t) can be achieved
if one thinks in terms of Building Block schemata. For example, (11) can be
obtained by recombining the schemata (1%) and (1), where a * denotes any bit.
Each string gives rise to 2V schemata associated with it, by all possible substitu-
tions of its bits by *’s — the corresponding set of schemata constitutes the BBB
for that string. For example, (11) generates the basis {(xx), (x1), (1x), (11)}.
Recombination involves the interaction of conjugate schemata only?, so one ex-
pects some sort of “skew diagonalization” of the process in this basis. To connect
with the discussion in Sect. 3.2, notice that substitution of a particular bit by
a x corresponds, at the level of CF’s, to substitution of a coordinate x; (or ;)
by the unit function e. It is then clear that the CF’s of the Building Blocks are
exactly the elements of the monomial basis of Sect. 3.2. We conclude that the
Taylor basis is dual to the BBB.

The CF corresponding to a schema is the sum of the CF’s of all vertices
(strings) that the schema matches. On the other hand, it is clear that the prob-
ability of a certain schema is likewise the sum of the probabilities of all strings

* We define the conjugation = of schemata: the string R = (ri72...7~5) generates the
basis {(*%...%), (**...7rn), ..., (rir2...ry)} and 7; = * while * = r;, if the * is
in position ¢ — the conjugate of a schema is the schema with conjugate bits.
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that the schema matches. This implies that, in going from one basis to another,
probabilities transform like CF’s — in particular

P™ = AyP?. (27)
Example 5 N = 2 recombination in the monomial basis

One can calculate the mask-averaged interaction term in the BBB, (A™),;”K by
transforming \? as a rank-three tensor,

’

™) 75 = (0 175 (M) (A7) 57 (AT ) ™ (28)
to find, for example, for /\E‘h)
0001
=3 {0100 29
1000
As expected, it is skew diagonal. The dynamical equation for Py1)(t) is
Pay(t+1)=(1- %)P(n) + %P(*1)P(1*) ; (30)

which by substituting P(.;) = P11y + Po1), and analogously for Py, can be
seen to coincide with (26). m|
The above result generalizes to arbitrary N (see Sect. 5.2 below)

— N —
Xy, )" = 27N ERE (31)

In the 0-basis, the equations for the other elements of the basis can be obtained
from the one for (11...1) by renaming the indices. In the monomial basis, the
situation is even simpler: one obtains, for example, the equation for (11x) from
the one for (11) simply by attaching an extra * to all indices - this generalizes
in the obvious way to any number of x’s in any position, so that (31), inserted
in (23), gives essentially the equations for all basis elements, for all N.

5.2 The tensor product structure of recombination

As we have seen above, the dynamics of recombination is controlled by the tensor
A(M), which contains the information about which parents may give rise to a
particular child. In deciding this, one needs to perform a bit-by-bit test, the
outcome for the entire string being the logical AND of the individual bit tests
(see Eq. 21, where AND corresponds to multiplication). The fact that the value
of A\(M) factorizes in this manner, reflects itself in that A;/% (M), for a length-N
string, is the tensor product of the A’s of its bits,

N
M) =TT A, 9 (my)), (32)
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or, in matrix notation,
AT (M) = Nay) (1)) @ Aiiy) ((m2)) ® ... @ iy (M) - (33)

A simple calculation then shows that the same is true for the mask-independent
A, d.e., in matrix notation, Ay = A;,) ®...® A(y). Finally, given that Ay is itself
the N-th tensor power of the 1-bit A;, we conclude that the above statements
about A are valid in all bases. Notice that R;/% does not factorize in this manner
— this is because checking for the first or the second child, for V > 1, is not a
bit-wise operation.

Example 6 The tensor product structure in the string and Building Block bases

Consider N = 1 recombination in the string basis. We find

1/21 1/01
I J— [
A(°>_§<1 0)’ A<1>_§<1 2)' (34)

Transforming to the BBB we find

m 10 m _1/01
Al = (00)’ <1)_§<1 0)' (35)

The second equation above clearly shows that A?il...l) = (/\?}))®N is skew-
diagonal for all N. Notice also that the /\‘(511) given in Eq. (25) is just the tensor
square of )\‘gl) given in Eq. (34) above. i
Much of our discussion so far referred to the case of equally probable masks. The
above results however are also valid for the case of uniform crossover, where the
first child gets the i-th bit from the first parent with probability p;, resulting in
the mask probability distribution p(M) = [[;c; pill;er, (1 — p;), where I, is
the subset of indices in I with value a. For example, for N = 2, we get

Poo) =P1P2, P =pP1(1=p2), paoy = (1=p1)p2, pa1) = (1-p1)(1—p2).

Then the average A still factorizes, with the string basis 1-bit factors

5 1 pi s _(01—p;

and their BBB counterparts

m 10 m 0 ]-_pi

where ¢ denotes the position of the bit. We see again that A%}, ,, is skew-
diagonal. It is easy to see that this generalizes to any probability distribution
p(M) since Ay, ;)(M) itself is skew-diagonal (a fact that does not depend on
p(M)) and A\;7X is a sum over such matrices. It is for this reason that BBB makes

manifest the effective degrees of freedom for recombination — the Building Block
schemata themselves.
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5.3 Selection and mutation

In Eq. (20), selection is “hidden” inside Pj(t). In the absence of any further
information, all that can be said is that P’ transforms like a vector. When P’
is given in terms of a fitness matrix, Py =~ ; F J Py, we may infer that, under
a change of basis, F — AFA~'. In the §-basis, F is taken to be diagonal. In
the Walsh basis, F' is complicated, the number of non-zero elements depending
on the degree of epistasis in the landscape. In the BBB, F™ = AF%A~! is not
diagonal, however, it can be shown that F™ = F™' 4+ A, where F™' is diagonal
and AP™ = 0, hence the dynamics is given essentially by a diagonal matrix, as
in the d-basis.

For proportional selection, (F™'),/ = (fi(t)/f(t))d;”, where fi(t) is the
fitness of the Building Block I and is population- (and hence time-) dependent.
Interestingly enough, AP™ = 0, hence the dynamics is given essentially by a
diagonal matrix, as in the é-basis. However, the algebraic relation between the
two sets of diagonal elements is non-trivial. Note also that only in the very
restrictive case of a multiplicative fitness landscape can one generate the IN-bit
problem from the tensor product of N 1-bit problems.

The mutation matrix transforms like M — AMA~'. When the mutation
probability p; of the i-th bit is independent of the other bits, the N-bit mutation
matrix factorizes in 1-bit factors,

My =M(p1) @ M(p2) ®...® M(pn), (38)

where M (p;) = <(1 ;p’) (1 f’p) ) . The factorizability of My is then preserved
in all bases,

My — AN]M'NA]\I_1 = AlM(pl)Al_l ®...Q AlM(pN)Al_l . (39)

1 0 1 0

. W _ . . _

In the Walsh basis, M{" = (0 1_ 2pi> , while in the BBB, M{" = (pi 1_ 2Pi>'
Thus, as is well known, in the Walsh basis the N-bit mutation matrix is diago-
nal, while in the BBB it is triangular. In both cases the eigenvalues can simply

be read off from the diagonal.

6 Conclusions

We presented GA dynamics in a covariant form, showing how different existing
formulations — string, Walsh mode, Building Block schemata — can be related
by linear coordinate transformations. It was shown that the IV-bit transforma-
tion matrices are the N-th tensor power of the corresponding 1-bit matrix. The
manifest covariance of the dynamical equations guarantees their validity in all
bases — nevertheless, the analysis and its interpretation can be greatly simpli-
fied by choosing the basis best adapted to the genetic operator under study. The
string basis is convenient for selection-dominated dynamics, while that of Walsh
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is natural for dynamics dominated by mutation. In this paper we concentrated
on the most complicated operator — recombination — showing how the BBB
offered the most natural description, the effective degrees of freedom of recom-
binative dynamics being Building Block schemata. Introducing a description in
terms of characteristic functions in configuration space, we showed that the BBB
is dual to the standard Taylor basis — the presented mathematical framework,
we believe, clarifies several conceptually obscure points. A thorough analysis of
the factorizability of the various operators was given, resulting in an enormous
simplification of their calculation in the different bases. With the unification
program for EC in mind, straightforward generalizations to the case of higher
cardinality alphabets and variable-length strings have been alluded to. Given the
great similarity between the coarse-grained formulations of GA’s and GP, it is
reasonable to expect that the above coordinate transformations have analogues
in the GP case.
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