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Instituto de Matemáticas, Universidad Nacional Autónoma de México,
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We study Sorkin’s proposal of a generalization of quantum mechanics and find that
the theories proposed derive their probabilities from kth order polynomials in additive
measures, in the same way that quantum mechanics uses a probability bilinear in the
quantum amplitude and its complex conjugate. Two complementary approaches are
presented, a C∗ and a Hopf-algebraic one, illuminating both algebraic and geometric
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1. Introduction

In a series of papers,9,10 Sorkin has put forward a view of quantum mechanics as

a “quantum measure theory”. His approach views the transition from classical to

quantum mechanics as a generalization of the additivity properties of the classical

measure function on a set of histories. This generalization has a natural extension,

producing a whole family of theories, indexed by a positive integer k, each defined

by a particular “sum rule” imposed on the measure function. Our purpose in this

paper is to show that the various theories thus obtained can be characterized by

the fact that the corresponding measure is a polynomial of degree k in primitive

(i.e. additive) functionals.

The structure of the paper is as follows. In the rest of the Introduction we

summarize earlier results by Sorkin. In Sec. 2, we approach the problem from an

algebraic point of view. Section 3 complements the analysis in a geometrical spirit,

using the language of Hopf algebras. Section 4, somewhat independent from the rest

197



January 6, 2004 16:45 WSPC/146-MPLA 01300

198 C. Chryssomalakos & M. Durdevich

of the paper, sketches the relevance of these matters to theories designed to over-

come the obstacles to locality imposed by Bell’s inequalities. A concluding section

suggests that experiments should be done to establish the k of nature and points to

formal interconnections with an already existing concept of k-primitiveness in the

literature.

We start with a description of the two-slit interference experiment, following

closely the exposition in Refs. 8 and 9. Referring to the standard two-slit setup,

we call H the set of all electron histories (worldlines) leaving the electron gun and

arriving at the detector at specified time instants (to avoid technicalities we consider

H to be measurable). We call A (B) the subset of H consisting of all histories in

which the electron passes through slit a (b) (we ignore the possibility of the electron

winding around both slits). Consider the four possible ways of blocking the two slits

and denote by Pab, Pa, Pb and P0 = 0 the corresponding probabilities of arrival at

the detector, the last one corresponding to both slits being blocked off. The idea now

is to consider these probabilities as the values of a certain measure function µ defined

on the set of subsets of H , e.g. Pa = µ(A). When mutually exclusive alternatives

exist, as when both slits are open, the union of the corresponding (disjoint) subsets

is to be taken, e.g. Pab = µ(AtB) (t denotes disjoint union). Physical theories are

distinguished by their measures, for example, classical mechanics uses a “linear”

measure µcl, satisfying the sum rule

Iµcl

2 (A, B) ≡ µcl(A t B) − µcl(A) − µcl(B) = 0 , (1)

and hence fails to account for any interference. Quantum mechanics uses µq, satis-

fying I
µq

2 (A, B) 6= 0, as is well known. Sorkin’s observation was that in a three-slit

experiment (with eight possibilities for blocking the slits), the probabilities pre-

dicted by quantum mechanics do satisfy the sum rule

I
µq

3 (A, B, C) ≡ µq(A t B t C) − µq(A t B) − µq(A t C) − µq(B t C)

+ µq(A) + µq(B) + µq(C)

= 0 , (2)

arguably a lesser known fact. It is easy to show that µcl also satisfies (2), as a result

of (1). There is an obvious generalization to the k-slit experiment, involving the

symmetric functional Iµ
k , given by

Iµ
k (A1, . . . , Ak) ≡ µ(A1 t · · · t Ak) −

∑

i

µ(A1 t · · · t Âi t · · · t Ak)

+
∑

i<j

µ(A1 t · · · t Âi t · · · t Âj t · · · t Ak) · · ·

+ (−1)k+1
∑

i

µ(Ai) , (3)
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where the hats denote omission and all Ai are mutually disjoint. These functionals

satisfy the recursion relation

Iµ
k+1(A0, A1, . . . , Ak) = Iµ

k (A0 t A1, A2, . . . , Ak)

− Iµ
k (A0, A2, . . . , Ak) − Iµ

k (A1, A2, . . . , Ak) , (4)

which implies that the sum rule Iµ
k+1 = 0 follows from Iµ

k = 0. One may now

contemplate a family of theories, indexed by a positive integer k, defined by the

sum rule Iµ
k+1 = 0, with Iµ

k 6= 0 for the corresponding measure. Classical mechanics

is seen to be a k = 1 theory while quantum mechanics corresponds to k = 2.

The above formulas for Iµ
k need to be extended to the general case, i.e. when

the arguments are possibly overlapping sets. For the k = 2 case, Sorkin gives the

following equivalent forms

Iµ
2 = µ(A ∪ B) + µ(A ∩ B) − µ(A\B) − µ(B\A)

= µ(A 4 B) + µ(A) + µ(B) − 2µ(A\B) − 2µ(B\A) , (5)

derived by demanding bilinearity (the symbol \ above denotes set-theoretic differ-

ence while 4 denotes symmetric difference).

2. The Formalism of Nonlinear Measures

2.1. Preliminary considerations

In the spirit of the functional theoretic formulation of the classical measure theory,

we are now going to introduce an algebraic setup. The idea is to move from the

language of sets to the language of functions, replacing the notion of measure by

that of integral.

Let us consider a unital Q-algebra A. We shall deal with certain nonlinear

functionals

µ: A → C

defined by a hierarchy of interesting algebraic relations.

For each n ∈ N, let Mn(A) be the space of all maps µ satisfying

µ(a1 + · · · + an+1) =
∑

S

(−)n−|S|µ

(
∑

i∈S

ai

)

, (6)

where the S ⊂ {1, . . . , n + 1} runs over all subsets satisfying 1 ≤ |S| ≤ n.

It is easy to see that each Mn(A) is an A-bimodule, in a natural manner. The

additive structure is trivial, while the left and right multiplications are given by

(xµy)(a) = µ(yax) , x, y ∈ A .

Also, every Mn(A) allows multiplications by complex numbers (it is a complex

vector space). Let us denote by Σn(A) the space of multiadditive maps

Φ:

n
︷ ︸︸ ︷

A × · · · × A → C
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which are totally symmetric. The elements of Σn(A) are naturally interpretable as

homogeneous polynomials of order n over A.

2.2. Quadratic measures

We shall first analyze a special case of quadratic measures (corresponding to n = 2).

As mentioned in the Introduction, this completely covers probability aspects of

standard quantum mechanics. Because of the importance of this special case, we

shall present all calculations independently of the general setting, which will be

discussed in the next subsection.

Let us consider an arbitrary µ ∈ M2(A). The elements µ are characterized by

the following identity

µ(a + b + c) = µ(a + b) + µ(a + c) + µ(b + c)

−µ(a) − µ(b) − µ(c) , ∀ a, b, c ∈ A . (7)

As the first elementary consequence, it is worth observing that

µ(0) = 0 .

Furthermore, the group Z2 naturally acts on the space M2(A). The action is

induced by right multiplication by −1 ∈ A. It follows immediately that the space

M2(A) is naturally decomposed into a direct sum

M2(A) = M−
2 (A) ⊕M+

2 (A) (8)

of “even” and “odd” subspaces:

M−
2 (A) = {µ|µ(a) = −µ(−a)} ,

M+
2 (A) = {µ|µ(a) = µ(−a)} ,

∀ a ∈ A . (9)

Let us first analyze the odd part. As the following lemma shows, there is nothing

very exciting about M−
2 (A).

Lemma 2.1. The space M−
2 (A) is the set of Q-linear maps µ: A → C.

Proof. It is obvious that all Q-linear µ belong to M−
2 (A). Let us observe that Q-

linearity is equivalent to additivity. Therefore what remains is to prove that every

µ ∈ M−
2 (A) is additive. Indeed, replacing c = −b in (7) and using the imparity

assumption, we obtain

µ(a + b) + µ(a − b) = 2µ(a) .

Interchanging a and b in the above identity, we obtain

µ(a + b) − µ(a − b) = 2µ(b) .
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Now summing the two equations we finally conclude

µ(a + b) = µ(a) + µ(b)

which completes the proof.

The space M+
2 (A) possesses a much more interesting structure. For a given

µ ∈ M+
2 (A) let us define a map Φ: A × A → C by

Φ(a, b) =
1

4
(µ(a + b) − µ(a − b)) . (10)

It follows immediately that

Φ(a, b) = Φ(b, a) , (11)

i.e. the map Φ is symmetric.

Lemma 2.2. (i) The map Φ is Q-bilinear. In other words,

Φ(λa + b, c) = λΦ(a, c) + Φ(b, c) , ∀ a, b, c ∈ A, λ ∈ Q . (12)

(ii) We can reconstruct µ from Φ by

µ(x) = Φ(x, x) . (13)

The correspondence µ ↔ Φ is a natural isomorphism between the space Σ2(A) of

symmetric bilinear functionals over A and the space of even quadratic measures

M+
2 (A).

Proof. Let us observe that Q-bilinearity is equivalent to biadditivity. Using (7)

and performing elementary transformations we obtain

Φ(a, b + c) =
1

4
(µ(a + b + c) − µ(a − b − c))

=
1

4
(µ(a + b) + µ(a + c) + µ(b + c) − µ(a − b) − µ(a − c) − µ(b + c))

= Φ(a, b) + Φ(a, c) ,

which proves (i). Now using the bilinearity property of Φ we find

Φ(x, x) = 4Φ(x/2, x/2) = µ(x) − µ(0) = µ(x) .

Finally, it is straightforward to see that every Φ ∈ Σ2(A) gives rise, via (13), to

an even element µ ∈ M2(A).
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2.3. Higher-order generalizations

In this subsection we shall generalize the previous analysis for arbitrary degrees

n ∈ N. Let us introduce, in an algebraic analogy with Ref. 9, functionals

Iµ
k (a1, . . . , ak) =

∑

S

(−)k−|S|µ

(
∑

i∈S

ai

)

, (14)

where k ≥ 2, the summation is over all nonempty subsets S ⊆ {1, . . . , k} and µ:

A → C is an arbitrary map. By definition, all the maps Ik are symmetric.

Lemma 2.3. Let us assume that µ is arbitrary. We have

Iµ
k+1(b, c, a2, . . . , ak) = Iµ

k (b + c, a2, . . . , ak) − Iµ
k (b, a2, . . . , ak) − Iµ

k (c, a2, . . . , ak)

for each ai, b, c ∈ A and k ≥ 2.

Proof. This is just a straightforward combinatorial calculation, involving sums

over different types of index subsets S: those that “contain” both b and c, subsets

containing only symbol b or c, and those S excluding symbols b and c.

It is easy to see that the following equivalences hold,

µ ∈ Mn(A) ⇔ Iµ
n+1 = 0 , Iµ

n+1 = 0 ⇔ Iµ
n ∈ Σn(A) . (15)

Taking into account the previous lemma, we conclude that µ ∈ Mn(A) if and

only if the functional Iµ
n is multiadditive (and hence Q-multilinear). Hence, in this

case we have Iµ
n ∈ Σn(A). Furthermore, we find

Mn−1(A) ⊆ Mn(A) , (16)

in other words, Mk(A) form a monotonically increasing family of A-modules.

From now on, let us assume that µ ∈ Mn(A) and define a map Φ: A×n → C by

Φ(a1, . . . , an) =
1

2nn!

∑

z

(−)zµ(z1a1 + · · · + znan) , (17)

where zi ∈ {1,−1} and z = (z1, . . . , zn).

Lemma 2.4. The following identity holds

Iµ
n (a1, . . . , an) = n!Φ(a1, . . . , an) . (18)

Proof. A direct calculation gives

2nIµ
n (a1, . . . , an) =

∑

z

(−)zIµ
n (z1a1, . . . , znan)

=
∑

z,S

(−)z+n−|S|µ

(
∑

i∈S

ziai

)

=
∑

z

(−)zµ

(
n∑

i=1

ziai

)

= 2nn!Φ(a1, . . . , an)
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and hence (18) holds. We have applied the multilinearity property of In in the above

calculation.

Let us denote by Πn: Mn(A) → Σn(A) a linear map defined by Πn(µ) = Φ.

Using the previous lemma, and (16) we find

ker(Πn) = Mn−1(A) . (19)

The map Πn is really a projection, and it admits a natural right section. Let us

define ιn: Σn(A) → Mn(A) by

µ(x) = Φ(

n
︷ ︸︸ ︷
x, . . . , x) , µ = ιn(Φ) . (20)

Before going further, we have to verify that the image of ιn is indeed within the

space Mn(A). A direct calculation gives

∑

S

(−)n−|S|µ

(
∑

i∈S

ai

)

=
∑

S

(−)n−|S|Φ

(
∑

i∈S

ai, . . . ,
∑

i∈S

ai

)

=
∑

S

(−)n−|S|
∑

α

Φ(ai1 , . . . , ain
)

=
∑

α

Φ(ai1 , . . . , ain
) = µ(a1 + · · · + an+1) ,

where α = (i1, . . . , in). The sumation is over subsets S ⊂ {1, . . . , n + 1} satisfying

1 ≤ |S| ≤ n. The last equality is obtained as follows. Let us focus on an index

term (i1, . . . , in) having exactly k different elements. The coefficient of this term is

calculated by counting all the enveloping subsets S, with the corresponding signs.

We arrive at
n∑

l=k

(−)n−l

(
n + 1 − k

l − k

)

= (−)n−k

n−k∑

l=0

(−)l

(
n + 1 − k

l

)

= −(−)n−k(−)n−k+1 = 1 .

Hence, im(ιn) ⊆ Mn(A). It is easy to see that

Πnιn(Φ) = Φ , ∀ Φ ∈ Σn(A) . (21)

Indeed, for µ = ιn(Φ) we have

Πn(µ)(a1, . . . , an) =
1

2nn!

∑

z

(−)zµ(z1a1 + · · · + znan)

=
1

2nn!

∑

z

(−)zΦ

(
∑

i

ziai, . . . ,
∑

i

ziai

)

=
1

2nn!

∑

z

(−)z
∑

α

zi1 · · · zin
Φ(ai1 , . . . , ain

) = Φ(a1, . . . , an) .
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The last equality is obtained by observing that only multi-indices α = (i1, . . . , in)

that are permutations count, as other terms would cancel each other. The factor

2nn! emerges as we sum over Zn
2 × Sn.

Summarizing our considerations we can now formulate

Proposition 2.1. For every n ≥ 2, there is a natural split short exact sequence

0 → Mn−1(A) ↪→ Mn(A)
Πn−→ Σn(A) → 0 , ιn: Σn(A) → Mn(A) (22)

which allows us to introduce a canonical decomposition

Mn(A) ↔ Mn−1(A) ⊕ Σn(A) . (23)

The elements of Mn(A) are nothing but polynomial functions of order (less

than or equal to) n. In terms of the above identification, the elements of Σn(A)

correspond to homogeneous polynomials of order n.

3. Hopf Algebras and Generalized Measures

3.1. Hopf algebras

We give here a few basic definitions about Hopf algebras and some intuitive com-

ments concerning their content. We keep the discussion informal, our basic aim

being to point out the relevance of Hopf algebraic concepts to the problem at hand.

Restricted to the cocommutative case (we explain the term below), which is the

one of interest here, the axioms for a Hopf algebra are just dual to those for a group.

The duality is the one between points of the group manifold G and functions on

the manifold and is formally expressed via an inner product,

〈· , ·〉: A⊗ G → C , f ⊗ g → 〈f, g〉 ≡ f(g) , (24)

extended by linearity to the group algebra. A ≡ C∞(G) is the (commutative)

algebra of smooth complex valued functions on G while the last equation above

simply states that the duality mentioned is by pointwise evaluation. The definition

of a group involves the notions of a product m: G⊗G → G, an identity e ∈ G and

an inverse, which dualize, via the above inner product, to the notion of a coproduct

∆,

∆:A → A⊗A , f 7→ ∆(f) ≡
∑

i

f i
(1) ⊗ f i

(2) ≡ f(1) ⊗ f(2) , (25)

a counit ε,

ε:A → C , f 7→ ε(f) , (26)

and a coinverse or antipode S,

S:A → A , f 7→ S(f) , (27)
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respectively. The defining relations are

〈f, m(g ⊗ g′)〉 = 〈f, gg′〉 ≡ 〈f(1) ⊗ f(2) , g ⊗ g′〉 = 〈f(1) , g〉〈f(2) , g′〉 ,

ε(f) ≡ 〈f, e〉 ,

〈S(f) , g〉 ≡ 〈f, g−1〉 ,

(28)

i.e. the Hopf algebraic operations are the adjoints, with respect to the above inner

product, of those of a group.a When the group is Abelian (as in our case), the

coproduct satisfies f(1) ⊗ f(2) = f(2) ⊗ f(1) — in this case the Hopf algebra is called

cocommutative. Notice that

∆(fh) = ∆(f)∆(h) , ε(fh) = ε(f)ε(h) , S(fh) = S(h)S(f) , (29)

where the product in A⊗A is defined by (f ⊗ h)(f ′ ⊗ h′) = ff ′ ⊗ hh′ (the primes

distinguish functions here, they do not denote differentiation). Dual to the associa-

tivity of the group product is the coassociativity of the coproduct,

(∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆ . (30)

Then the notation ∆k is unambiguous, since it does not matter to which tensor

factor are the successive ∆’s applied to — the resulting function of k+1 arguments

will be denoted by f(1)⊗· · ·⊗f(k+1) and it is invariant, in the cocommutative case,

under exchange of any two tensor factors. Notice finally that dual to the property

of the unit ge = eg = g is the property of the counit

ε(f(1))f(2) = f(1)ε(f(2)) = f . (31)

3.2. Coderivatives

One way of looking at the coproduct of a function is as an indefinite translation.

Indeed, defining the right translation Rg on the group by Rg(g
′) = g′g, its pullback

on functions R∗
g(f) ≡ fg is given by fg(g

′) = f(g′g) = f(1)(g
′)f(2)(g), which shows

that f(1)(·
′)f(2)(g) is the right-translated f (by g), while f(1)(·

′)f(2)(·), a function of

two arguments, is the indefinitely translated f , with the second argument defining

the translation and the first evaluating the translated function (one obtains a left

version of the above exchanging the two tensor factors of the coproduct). With this

in mind, one recognizes the operator L: A 7→ A⊗A, defined by

Lf = ∆(f) − f ⊗ 1 , (32)

as a (dualized) indefinite discrete derivative or coderivative for short,

(Lf)(g′, g) = 〈f(1) ⊗ f(2) − f ⊗ 1 , g′ ⊗ g〉

= f(g′g) − f(g′) . (33)

aThe above, although suitable for our purposes, is not the standard definition of a Hopf algebra.
The latter can be consulted in, e.g. Ref. 11.
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When g is close to the identity, g = e + X + · · ·, with X in the Lie algebra of the

group, (Lf)(·′, g) is (proportional to) the derivative of f along the left-invariant

vector field corresponding to X . One may define higher order coderivatives Lkf ,

with the understanding that the successive applications of L are to be taken at the

leftmost tensor factor,

Lkf ≡ (L ⊗ id) ◦ Lk−1f , k = 2, 3, . . . , (34)

so that, for example,

L2f ≡ (L ⊗ id) ◦ Lf

= (L ⊗ id)(f(1) ⊗ f(2) − f ⊗ 1)

= f(1) ⊗ f(2) ⊗ f(3) − f(1) ⊗ 1 ⊗ f(2) − f(1) ⊗ f(2) ⊗ 1 + f ⊗ 1 ⊗ 1 . (35)

Of particular interest to us will be the evaluation of the above kth order coderivative

at the identity of the group, (Lkf)(e, · , . . .) ≡ (Lkf)(e), e.g.

(Lf)(e) = f − ε(f)1 ,

(L2f)(e) = f(1) ⊗ f(2) − f ⊗ 1 − 1 ⊗ f + ε(f)1 ⊗ 1 ,
(36)

where (31) was used. We are now ready to introduce the basic notion of k-

primitiveness

D1 A function f will be called k-primitive if all its coderivatives at the

identity (Lrf)(e), r > k are equal to zero, while (Lkf)(e) is not.

3.3. Generalized quantum mechanics and k-primitiveness

3.3.1. Group structure on the set of histories

Consider the set of histories H associated to some given experiment, taken as a

measurable set for simplicity. For a subset A of H , let χA be the characteristic

function of A, defined by χA(x) = 1 if x ∈ A, χA(x) = 0 if x ∈ H\A. It is clear

that one may deal with the subsets of H in terms of their characteristic functions,

as we do in the following. Denote by G the set of all simple functionsb on H , i.e.

a typical element g of G is of the form g = λ1χA1
+ λ2χA2

+ · · · , where the Ai

are measurable subsets of H and λi ∈ C. We may turn G into an Abelian group

defining the group law by addition. Then for the identity e we have e = χ∅ = 0 and

the inverse of g is −g.

Just like in the Introduction, a physical theory derives its probabilities from a

measure function µ, defined now on G, e.g. Pa = µ(χA) in the two-slit experiment.

When mutually exclusive alternatives exist, the sum of the characteristic functions

of the corresponding subsets is to be taken. Notice that, in terms of the subsets

themselves, this corresponds to disjoint union, in accordance with the operation

bThese are all linear combinations of characteristic functions of measurable subsets of H.
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used in Refs. 8 and 9. The important point is that simply by extending this definition

(i.e. addition of the characteristic functions) to non-disjoint subsets we recover

the rather complicated interference term (5) and its generalizations, as we now

show. Indeed, consider a quadratic functional µ2, with µ additive, evaluated on two

overlapping subsets A and B — the resulting interference term is

Iµ2

2 = µ(χA + χB)2 − µ(χA)2 − µ(χB)2

= 2µ(χA)µ(χB)

= 2(µ(χA\B)µ(χB\A) + µ(χA\B)µ(χA∩B)

+ µ(χA∩B)µ(χB\A) + µ(χA∩B)2) , (37)

where, in the last step, we wrote χA = χA\B + χA∩B and similarly for χB . On the

other hand, the first, for example, of (5) becomes

Iµ2

2 = µ(χA∪B)2 + µ(χA∩B)2 − µ(χA\B)2 − µ(χB\A)2 . (38)

Substituting χA∪B = χA\B + χB\A + χA∩B and expanding one recovers the right-

hand side of (37).

3.3.2. k-primitive functions on G

We focus now on the commutative and cocommutative Hopf algebra A ≡ C∞(G) of

smooth functions on G. Among its elements are the quantum measures µ we have

been considering so far. The fact that µ(∅) = 0 translates, in the Hopf algebraic

language of this section, into the statement that the counit of all measures vanishes,

µ(e) = ε(µ) = 0. The linearity of the classical measure, Eq. (1), becomes here the

statement that µcl(χA + χB) = µcl(χA) + µcl(χB), which is easily seen to dualize

to

0 = (L2µ)(e) = µcl (1) ⊗ µcl (2) − µcl ⊗ 1 − 1 ⊗ µcl + ε(µcl)1 ⊗ 1 , (39)

the last term being zero. Hence, according to (D1), µcl is a one-primitive element

of A. More generally, we have the following:

Lemma 3.1. The symmetric functionals Iµ
k , defined in Eq. (3), coincide with the

kth order coderivatives (Lkµ)(e) of Eq. (34).

We omit the straightforward inductive proof. We may now state the main result of

this section:

Proposition 3.1. In the algebra A of functions on G, every k-primitive element

is a kth degree polynomial in one-primitive elements.

Proof. G, being an infinite-dimensional Abelian Lie group, admits one-primitive

normal coordinates {ξi}i∈Λ, where Λ is an infinite index set. Any element of A,

in particular a k-primitive measure µ, is a function of the ξi, µ = µ(ξi). From
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the vanishing of (Lk+1µ)(e), with (Lkµ)(e) 6= 0, one may infer, by evaluating on

arguments infinitesimaly close to the identity of G, that (Xi1 · · ·Xik+1
)(µ)(e) = 0,

for all Xi in the Lie algebra of G, while (Xi1 · · ·Xik
)(µ)(e) 6= 0 for at least one

index set. Given that G is Abelian and the ξi are normal coordinates, one may

choose the Xi to correspond to partial derivatives w.r.t. the ξi, Xi = ∂
∂ξi

. Then, the

above property of µ implies that ∂k+1µ
∂ξj1

···∂ξjk+1

(e) = 0, for all ji, while at least one

kth-order partial derivative is nonzero at the identity. The proposition then follows

from elementary calculus.

The same conclusion can be reached by establishing that A is a cocommutative

graded connected Hopf algebra and hence, by applying the Milnor–Moore theorem,7

isomorphic to the universal enveloping algebra of its subalgebra of one-primitive

elements. We point out that in Ref. 8, it has been observed that if µ is the kth

power of a “linear” functional then Iµ
r = 0, for r > k.

4. A C
∗-Algebraic Formulation

We are going to touch upon some interesting issues related to a C∗-algebraic formu-

lation of the algebraic setup of Sec. 2. A special emphasis will be given to possible

relationships between the introduced formalism, the theory of contextual hidden

variables,5 and a corresponding non-Kolmogorovian probability framework as a

way of overcoming obstacles to locality, given by Bell’s inequalities. In order to

keep this section reasonably short, we will only sketch basic ideas, and leave de-

tailed presentations with proofs for another article.

We will assume here that A is a C∗-algebra. By definition,1 this means that A

is a Banach algebra, equipped with a *-structure (antilinear and antimultiplicative

involution), so that

|aa∗| = |a|2 , ∀ a ∈ A .

A remarkable property of C∗-algebras is that the norm is uniquely fixed by the

algebra structure. In other words, for a given *-algebra A, there is at most one

C∗-algebraic norm. In such a way C∗-algebras form a full subcategory of complex

*-algebras.

The algebra A is called unital if there is a (necessarily unique) unit element

1 ∈ A. We will deal with unital algebras only.

From the point of view of our considerations, we can think of A as consisting of

physical observables.c Two special cases are the most interesting here:

• Classical case — A is a commutative algebra, generated by certain functions on

the system’s phase space Γ. For example, we can assume A = L∞(Γ). That is, A

is the algebra of (classes of) essentially bounded measurable functions on Γ.

cMore precisely, hermitian elements of A are viewed as physical observables.
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• Quantum case — A is a noncommutative algebra, generated by operators acting

in the Hilbert state space H . For example, we can assume A = B(H). In other

words, A is the algebra of all bounded operators acting in H .

However, all our considerations apply to general C∗-algebras. Let us begin by

recalling the concept of a state. This is any functional ρ: A → C satisfying

ρ(a∗a) ≥ 0 , ∀ a ∈ A ,

ρ(1) = 1 .

In other words, a state is a positive and normalized functional on A. It is easy to

see that the set of all states on A is convex, and compact in the *-weak topology

of the dual space A∗. According to Krein–Millman theorem, S(A) is the closure of

the convex hull of its extremal elements. These extremal elements are called pure

states.

The theory of states generalizes the classical probability theory, to the level of

noncommutative (quantum) spaces. Indeed, if A is commutative, then according to

the classical Gelfand–Naimark theorem, we have a natural identification

A ↔ C(X) ,

where X is a compact topological space — the spectrum of A (the set of all char-

acters κ: A → C, equipped with the *-weak topology of the dual space A∗). In this

commutative case, states on A correspond, according to the classical Riesz repre-

sentation theorem, to probability measures on X . The correspondence is given by

the Lebesgue integral.

Taking into account the considerations of Sec. 2, it is natural to formulate:

Definition 4.1. A generalized, order-n, state on A is a map ρ ∈ Σn(A) satisfying

ρ(a∗a) ≥ 0 , ∀ a ∈ A ,

ρ(1) = 1 .

Let us denote by Sn(A) the set of such order-n states on A. It is easy to see that

Sn(A) is convex, and can be equipped with a natural *-weak topology, converting it

into a compact topological space. Applying the Krein–Millman theorem, it follows

that Sn(A) is the closure of the convex hull of its extremal elements.

Definition 4.2. The extremal elements of Sn(A) are called pure (order-n) states

on the algebra A.

Let us assume that A is generated by its projectors (hermitian idempotents

p = p∗ = p2). Such elements correspond to elementary yes/no situations, and

can be viewed as the simplest possible physical observables. We can also identify

projectors with events. In the classical case projectors correspond to the appropriate

subsets of the phase space.
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So, given a projector p ∈ A and a higher-order state ρ: A → C, we want to

interpret the number ρ(p) ∈ [0, 1] as the probability of the event p in the state ρ,

just as in the standard case (otherwise, it would not be much of a sense to formulate

the above definitions).

However, higher-order states contain an additional obstacle for such an inter-

pretation. Let us consider two events p, q ∈ A that are realizable simultaneously

(within the same experimental context, this implies that pq = qp). Let us also as-

sume that p and q are mutually exclusive. This means that pq = qp = 0 so we

have orthogonal projectors. If our higher-order state ρ represents something really

meaningful, then we must have

ρ(p + q) = ρ(p) + ρ(q) . (40)

The above condition is automatically fulfilled for standard states (due to linearity).

For all higher-order states, the condition is actually a condition for p and q. In

particular, if we put q = 1 − p we get a nontrivial algebraic condition on a single

event p. In other words, not all events are allowed. Of course, it might happen

that for a given ρ there are no nontrivial projectors p satisfying the consistency

condition. In this case, the state ρ is basically useless, from the point of view of the

statistical interpretation of its values on projectors. On the other hand, the states

that always satisfy the consistency condition (for every orthogonal events p and

q) are, in all non-perverted scenarios, just the standard linear states. This follows

from the generalized Gleason theorem by Maeda.6

Therefore, in order for a higher-order state ρ to be reasonable, it should have

sufficiently many “good” projectors p. This motivates our next definition.

Definition 4.3. Let us consider a higher-order state ρ ∈ Sn(A). A projector p ∈ A

is called ρ-compatible if

ρ(p) + ρ(1 − p) = 1. (41)

The state ρ is called A-compatible if the set of all ρ-compatible projectors generates

the whole C∗-algebra A. Finally, for a given A-compatible state ρ, a unital C∗-

subalgebra B ⊆ A is called ρ-compatible, if (40) holds for all mutually orthogonal

projectors from B.

Let us assume that ρ is an arbitrary A-compatible higher-order state. Then it

gives rise to a nice short exact sequence of C∗-algebras:

0 → K ↪→ Â
π
→ A → 0 . (42)

Here Â is the free C∗ algebra generated by all ρ-compatible subalgebras B of A.

The map π: Â → A is the natural projection homomorphism and K = ker(π).

In a special case when A is commutative, the above exact sequence is very similar

to a class of contextual subquantum extensions considered in Ref. 5. Indeed, we can
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write A = C(Ω) where Ω is the spectrum of A (interpreted here as the subquantum

space of the system) and our extension becomes:

0 → com(A) ↪→ Â
π
→ C(Ω) → 0 . (43)

The ρ-compatible subalgebras B correspond to allowed measurement contexts in

Ω. We see that the probability theory on Ω is a non-Kolmogorovian one, in the

case of higher-order states ρ: the additivity of the measure holds only within the

measurement contexts. The noncommutative algebra Â corresponds to the full sub-

quantum algebra. The kernel of π is simply the commutant of A. Such models over-

come obstacles to locality given by Bell’s inequalities, because they are based on

the appropriate non-Kolmogorovian statistics. The composite systems are simply

described by taking tensor products of the introduced extensions.

5. Conclusions and Final Remarks

We have studied Sorkin’s hierarchy of generalizations of quantum mechanics and

found that the kth-order generalized measures are necessarily kth degree polynomi-

als in one-primitive functionals, in the same sense that standard quantum mechanics

derives its probabilities from a bilinear expression in a one-primitive (i.e. additive)

quantum amplitude and its (also one-primitive) complex conjugate. The question

of how is positivity to be attained in a, for example, cubic theory is still open. On

the other hand, one may envisage a k = 4 theory as a small quartic correction to

the standard quantum mechanical probability, showing up as a small deviation of

Iµ
4 from zero in a four-slit experiment. What we find remarkable is the immediacy

with which the sum rules Iµ
k = 0 connect to a simple k-slit experiment, a point that

might be worth bringing to the attention of our experimental colleagues.

On a more formal level, a very important subject is the study of interrelations be-

tween states and representations of C∗-algebras generated by physical observables.

According to the GNS construction,1 there is a natural one-to-one correspondence

{Standard states ρ on A} ⇔ {equivalence classes of cyclic representations of A} .

In terms of this correspondence, pure states translate into irreducible represen-

tations. The generalization of the GNS construction for the higher-order states

introduced in this paper is a subject for further research.

It is worth mentioning that the extensions of commutative C∗-algebras of Sec. 4

by noncommutative ones play a central role in algebraic K-theory and noncommu-

tative geometry.2,12 For example, noncommutative extensions similar to (43) can

be used to build a K-homology theory for metrizable compact topological spaces Ω.

Another interesting question, suggested by the referee, would be to study possible

generalizations of the Riesz representation theorem to the higher-order formalism

studied in this paper.

We end this paper by pointing out that a concept of k-primitiveness has

appeared recently in the study of the Hopf algebra structure in the process of renor-

malization in quantum field theory (see Ref. 3). A second, esssentially equivalent,
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definition was given and the concept was further analyzed in Ref. 4. In those works

it refers to the much more complicated case of the Hopf algebra of rooted trees but

these earlier definitions can be shown to be identical with the one presented here,

although, we feel, the latter clarifies the underlying geometrical content. We plan

to further elucidating these interconnections in an upcoming publication.
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