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Abstract

We argue that a description of supersymmetric extended objects from a unified geometric point
of view requires an enlargement of superspace. To this am we study in a systematic way how
superspace groups and algebras arise from Grassmann spinors when these are assumed to be the
only primary entities. In the process, we recover generalized space-time superalgebras and
extensions of supersymmetry found earlier. The enlargement of ordinary superspace with new
parameters gives rise to extended superspace groups, on which manifestly supersymmetric actions
may be constructed for various types of p-branes, including D-branes (given by Chevalley-Eilen-
berg cocycles) with their Born-Infeld fields. This results in a field /extended superspace democ-
racy for superbranes: al brane fields appear as pull-backs from a suitable target superspace. Our
approach aso clarifies some facts concerning the origin of the central charges for the different
p-branes. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Asiswell known, the existence of consistent classical actions for extended supersym-
metric objects of spatial dimension p isrestricted to certain dimensions D of space-time.
This is, e.g., the case of the p-branes of the minimal or ‘old’ branescan [1], which
restricts the actions to certain values (D, p) for which there exists a Wess—Zumino (WZ)
term. This is needed for the x-symmetry of the full action that matches the physical
bosonic and fermionic degrees of freedom on the world-volume W, and the WZ term is
given by a closed ( p + 2)-form which can be interpreted [2] as a Chevalley—Eilenberg
[3] (CE) (p+ 2)-cocycle on superspace. The first classification of p-branes [1] was
restricted to fields forming a scalar supermultiplet on W, consisting of scalars and
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spinors after gauging the k-symmetry. The restriction to superspace coordinates x*,6“
on W was later removed with the addition of higher spin fields, vectors or antisymmetric
tensors, forming vector or antisymmetric tensor supermultiplets on W. This, together
with the Bose-Fermi matching conditions led to an enlargement of the possibilities (see
Refs. [4,5] and earlier references therein) for the classically allowed supermembranes.
Recently, p-branes including an abelian vector gauge field on W have been interpreted
as (Dirichlet) D-branes [6] (see Ref. [7] for areview). Their kinetic term is described by
a Born—Infeld type Lagrangian which replaces the usual Nambu—Goto one to accommo-
date the vector potential; in similarity with the p-branes in [1], there also exists a
k-symmetric world-volume action [8] for them. The introduction of other objects such as
L-branes (which have linear supermultiplets on W) [9] etc., have enlarged the number
and types of p-branes. Finaly, the emergence of a web of dualities among the five
consistent ten-dimensional string theories, all presumably subsumed, together with
D = 11 supergravity, in the eleven-dimensional M-theory (see, e.g., Ref. [10]) has led to
the ‘second superstring revolution’ and to a change of the conventional views of
supersymmetry. One version of the M-theory, M-atrix theory [11], even reinterprets
space-time coordinates as non-commuting matrices.

The existence of various extended objects for which there is no unified description
suggests that, in the same way as Minkowski space was enlarged to the superspace 3 to
treat bosons and fermions simultaneously, it may be necessary to extend 3 further to
accommodate from a unified point of view a number of the physical aspects mentioned
above. In particular, one might hope to remove the need for defining fields directly on
W if an extended superspace 3 is introduced, as will be seen to be the case. This
extension of 3 is tantamount to enlargi ng the D-di mensonal superPoincare sP to P
and to defining the extended superspace S by the quotient sP/ Spin(1,D — 1). Endow-
ing S witha supergroup structure means that there must exist new superalgebras going
beyond the ordinary supersymmetry algebra, and several of them have been discussed in
various contexts [12—22]. Our point of view, however, will be to assume that fermions
(in the form of odd abelian spinor translations) are the only basic (i.e. initial) entities.
We shall then look for the most general superspace groups that are allowed by group
extension theory and discuss their consequences for a unified picture of superbranes. We
find this path rather natural, but it is not the only one. Another possibility is to take the
world-volume supersymmetry of the p-branes into account by elevating the target
superspace coordinates to world-volume superfields [23,24] (see aso Ref. [9] and
references therein), but we shall not follow this superembedding or ‘double supersym-
metry’ approach.

As stated above, the problem is first a mathematical one. In much the same way as
rigid superspace is itself a group extension, and hence supersymmetry is the result of the
non-trivial cohomology of a certain odd superstrandlation group sTry, [25,26], it is worth
looking for al the possible group extensions of the various sTry, (i.e. sTrp = {N=1,
sTry, STry, 1A, 11B, etc.}) to explore their rdle in more general theories. At the algebra
level, the possible supersymmetry algebras were already investigated in [27] and,
allowing tensor ‘central’ charges, in [28] (tensorial charges were also considered in
[29-31]). But there is also a physical reason behind the mathematical extension problem.
It is known that the quasi-invariance of a Lagrangian under a symmetry indicates that
the (second) cohomology group is non-trivial, and that the symmetry group may hence
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be extended.! This was exploited in [12] to extend the supersymmetry algebra for the
supersymmetric extended objects by topological charges. For Lagrangians containing a
quasi-invariant piece ¢ *(b) constructed from aform b on agroup 3 by pulling it back
to a manifold W by ¢, where ¢:W — 3, the extension may alow us, as is the case
with the WZ terms b of supersymmetric objects, to obtain manifestly invariant terms b?
by defining them on an extended group manifold 3. In fact, it was shown in [16] that to
every free differential algebra in [2] corresponds a new space-time superalgebra, from
which invariant forms can be found to define new WZ terms®. We shall take the analysis
of Refs. [2,16,19] further (see also Ref. [18]) by considering various superbrane types
and by emphasizing the supergroup manifold point of view. Thus, we shall look for and
introduce extended superspace groups 3 in a systematic way (we restrict our attention
here to rigid superspaces). The additional variables in these will determine symmetries
to which (topological) charges may correspond via the standard Noether theorem. For
the branes of the old branescan, these new variables will appear only in the WZ term
and as a total differential. This will be different for the D-branes, for which we will
obtain, nevertheless, that it is also possible to find an action defined on an extended
superspace (thus removing the necessity of introducing directly world-volume fields)
with a WZ term given by a CE ( p + 2)-cocycle. By showing that all these structures and
extended superspaces 3 follow from a basic odd translation group sTr, defined by the
Grassmann spinors of the specific theory, we may conclude that the 3's (and the
corresponding extended superPoincaré groups sP) are in a way as fundamental as the
standard one, and necessary for a proper description of the physics involved around
M-theory and its six weak coupling limit corners. The new variables may be relevant in
the search for superbrane actions, in the description of dualities or in the quantisation
process.

This paper is organised as follows. Section 2 contains all central extensions of STrp,
including ordinary superspace, for various dimensions, and its results are summarised in
atable. Section 3 considers in general the inclusion of additional non-central generators.
Section 4 is devoted to the structure of the new superspaces 3 and provides a compact
expression for the contribution to the Noether charges coming from the WZ terms of the
various possible actions, once they are formulated on 3. Section 5 shows how the
simplest D = 10,11 extended superspaces are relevant to construct a manifestly invariant
WZ term, both for the Green—Schwarz superstring [13,33] (which we will complete with
an additional contribution), and for the supermembrane. We shall recover there the
results of [16] and compute the topologica charges which, in our approach, correspond
to the new group variables. The question of the linearity of the group action is seen in
Section 5.1 to be associated with a coboundary election. Sections 6 and 8 show how the
case of the IIA Dp-branes and M5-brane may also be treated within the same
framework, i.e. how branes containing vector and tensor fields on W may be defined

! For a detailed account of quasi-invariance, Noether currents, cohomology and extensions, see Ref. [26,32].

2 This is not adways possible. When the group G is simple, the extension appears only at the loop algebra
(of charge densities) level, as for the su(2) Kac—Moody algebra for a WZW model, and disappears for the
algebra of charges, as required by Whitehead's lemma.

3 Although it may be argued that these invariant terms should no longer be called WZ terms, we shall retain
this name for them.
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directly on suitably extended superspaces. We shall argue, in fact, that the picture is
general and that suitable target superspaces exist on which to define al the fields
appearing in the p-brane actions, including the various vector (see also Ref. [22]),
tensor, etc., world-volume fields. This is tantamount to establishing a general fields/ex-
tended superspace democracy in which the world-volume fields and the extended
superspace variables are on the same footing, as was already the case for the minimal
branescan. Indeed this correspondence between coordinates and fields has occasionally
been discussed in the past in other contexts (see Refs. [34—37]). Section 7 contains a
brief discussion of the origin of the contributions to the Noether charges in the D-branes
case [38] in our approach. Finally, an appendix complements the general theory of
non-central extensions of superspace in Section 3 and gives the proof of some needed
I'-matrix identities.

2. Central extensions and their superspaces

2.1. Sandard superspace as a central extension

Let 6 be an arbitrary Grassmann spinor in a D-dimensional space-time. Its compo-
nents ¢ (2[°/2 where[ D /2] denotes the integer part of D /2, or 2(°/?~1 in the Weyl
case) determine an abelian group of supertranslations, generically denoted sTry, with
group composition law

0" =0""+0°. (2)
When the Lorentz part is considered explicitly, there is an action p of Spin(1,D — 1) on

sTrp and the relevant group becomes sTry o Spin(1,D — 1), where o indicates semidi-
rect product. Then (1) is replaced by

0"=6"+p(A)6, A= AA, (2)
where A€ Sin(1,D — 1) and p( A) is the appropriate spin representation. The spinor 6
is often restricted to be of some specific type, usually minimal (e.g., Majorana (M),
Weyl (W) or Majorana—Weyl (MW), when possible); it may carry an additional index
i=1,...,N if there is more than one supersymmetry. Associated with (1) is the abelian
Lie superalgebra {D,,Dz} = 0%, which can also be described in terms of the left-in-
variant (L1) one-forms IT* =d#* and the trivial Maurer—Cartan (MC) equation

dI1*=0. (3)

Extending sTrp by the Minkowski trandations x*, uw=0,...,D — 1 leads to standard
(rigid) superspace [25,26]. Let us adopt the free differential algebra (FDA)® point of

“ Since we shall be considering left-invariant (L1) generators and forms, we shall use here D’s (rather than
Q’s) to denote the generators of the right trandations (the Q's being realized as the right-invariant (RI)
generators of the left trandations). This distinction is of course irrelevant for an abelian group such as (1) but it
is not so when non-abelian parts are added (nevertheless, the corresponding structure constants differ only in a
sign). Furthermore, LI and RI generators commute, {Q,D}=0. We may look at the D's as covariant
derivatives and at the Q's as the generators of the (left) supersymmetry transformations; see Section 4.

® The term refers to an algebra generated by differential forms which is closed under the action of d [39].
For early physical applications of FDA in supersymmetry see [40,41] and references therein.
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view to discuss the extension problem, since forms are especialy convenient in the
construction of actions for extended objects.

Let 6¢ be Majorana, and consider the two-form (CI'*),, II* A IT* on sTrp,. It
defines a non-trivial CE two-cocycle on the superalgebra of sTrp, i.e. it is left-invariant
(L), closed and not given by the differential of a Ll one-form. Since by construction the
two-cocycle transforms as a Lorentz vector, it is consistent to extend the FDA (3) by a
one-form IT* such that

dIT*=35(CI'*) W IT“IIP (4)

(we omit the wedge product henceforth). The above extension immediately implies
{D,,Dg} =(CI'*"),z X,, with X, central. One still has to relate the newly introduced
one-form to the coordinate x*. We define

m*=dx*+ 3(CIr'*),z0°de*? (5)
and choose the transformation law for x* so that I1* is LI
X' =X+ xF = F(CIT*) .50 0°. (6)

This gives rigid superspace 3, parametrized by (6%, x*) and with group law given by
(1) and (6).

The above simple example exhibits aready the key features of the extension
algorithm. Given a particular FDA to be extended, one identifies in general a non-trivial
two-cocycle of a desired Lorentz covariant nature and introduces a new LI one-form, the
differential of which is given by the cocycle. The new form (here, (5)) together with the
MC equations (here, Eqgs. (3) and (4)) automatically define by duality an extended Lie
algebra. The new LI one-form is given by the sum of the differential of the new group
parameter and the potential one-form of the CE two-cocycle on sTry, which is not LlI.
Finally, the transformation properties of the new coordinate are fixed so as to guarantee
the left invariance of the new one-form, while those of the original manifold are
unmodified. The additional one-form can be made LI only if it is defined on the
extended superspace manifold 3. The new (central) generator, associated with transla-
tions aong the new coordinates, modifies the r.h.s. of the origind commutators of the
algebra. Since adding (4) to (3) involves a central extension, we could have introduced
adimensionful constant® as a factor in the r.h.s. of (4). By not doing so, the dimensions
of IT* are fixed to be [IT*]?=[6°]2. We shall, as usual, take [0%]=LY? so that
[IT*]=L.

If we add the Lorentz group, the result must reflect the action o of Sin(1,D — 1) on
the extension cocyle (see, e.g., Ref. [26], Section 5.3), but we shall not consider
explicitly the effect of the simple part of the algebra which, apart from extracting the
various tensor-valued second cohomology groups from that of the trivial (o= 0) action
HZ(sTr,) (see below), plays no essential role in our discussion once only Lorentz
covariant objects are used. Thus, central means, where appropriate, central up to
Lorentz transformations.

® The value of this constant determines the specific element in cohomology space that characterizes the
central extension.
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The extension procedure described above can be applied more than once — there are
two basic patterns one may follow in this case. One can start in each step with the same
original manifold sTry, and keep adding two-cocycles and central generators or, in each
step, one can consider the result of the previous extension as the starting manifold. In
the first case (Section 2.2) all new generators remain central and appear only at the r.h.s.
of the original {D,D} anticommutator. In the second case, a richer structure emerges
since the generators introduced at each step can, in principle, modify al previous
commutators. We shall give the details of this second construction in Section 3.

2.2. Maximal central extensions of superspace

Let 6 be Majorana. We may obtain additional Lorentz tensors, leading to new
central charges, by considering

dnul-uupz%(C[‘mmup)aﬁﬂuﬂﬁ,
1

[Hbp=[lrawe F/Lp]__ep‘l Mp[‘h_ I, (7)
pl

where’ CI'*C~1 = —I'*T. The antisymmetry in the Lorentz indices is needed to rule
out trivial dependences coming from the fact that {I"#,I"”} = 2n*". The l€eft invariance
of the new forms in (7) requires new group parameters ¢ *1-- #» so that (cf. (5))

Hul--.u,,=d(pm---up_;_l(crﬂl---“p)aﬁeaﬂﬁ. (8)

The superalgebra generator (L1 vector field) z, p corresponding to IT#1#», is
redizedby Z, , =d/dp"*r onthe extended group manifold.

At this stage there are no restrictions coming from the Jacobi identity, equivalent to
d(dIT#--#») = 0, which follows trivialy from dIT* = 0. This is an alternative way of
stating that the p-tensor-valued mapping on STry ® STrp,

gp.l...,u,p(gl'g) — Gra(crpl...,up)aﬁoﬁ' (9)
satisfies trivially the two-cocycle condition
E(0,0)+E(0+0,0")=¢€(0,00+0")+£(60,0"). (10)

The symmetry of (CI"#1+#¢),_; is needed to prevent the two-cocycle (9) from being
trivid (i.e. atwo-coboundary), smce () = 0*(CI #1--#v) BGB on sTry, which might
generate ¢ through &.,,(6',0) = n(0' + 6) — n(8') — n(6), is identically zero. Thus,
(9) defines a non-trivial extension. For a given space-time dimension D, the symmetry
condition restricts the rank of the tensors that are allowed in (7). Hence, the problem of
finding all central extensions of the agebra {D,,D,} =0 (or of the Lie FDA (3)) is
reduced to finding a basis of the symmetric space II*® ITP in terms of tensors
(CI#a- “#0),p Symmetric in «,B; they define the Lie algebra CE two-cocycles
IT(CI ¥ ) o TP,

"we adopt C=C_ for simplicity. By not considering C, I'*C;'=T*T we rule out, eg., the
pseudoM ajorana spinors that exist for D = 8,9 [mod8] (see Ref. [42]).
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When D is even, the space of matrices with indices (a8) is 2P-dimensional. Since
Zp 0( D ) abasis for this space is provided by the (2° — 1) matrices given by the
Lorentz tensors I"#+--#r of rank 1 < p < D plus the unit matrix. For D odd, the spinors

have dimension 2(°~Y/2 and, since 2°~1 = Z(p[’zz,l)/z( B) a basis is provided by the
(2P~ 1 — 1) matrices given by the tensors I"#+--#» of rank 1 < p< (D — 1) /2 plus the
unit matrix. The difference is a consequence of the fact that, for any D,

[Hmp DL o g MDFHpH e (11)
where I'°* 1 isthe chirality matrix. For D odd, I"'°*! o 1, and only the tensors of rank

p<(D—1)/2 are linearly independent.
For D even, CI'*# satisfies (see, e.g., Ref. [43])

(CF;Ll...,up) _ 6(_1)(P—l)(P—2)/2(CF,UL1...up)T' w= 01,....D—1
™ 12
—\/ECOSZ(DJrl). 12

Thus, e=1 (—1) for D=2,4(6,8)[mod8] so that (CI"*-#»),, is symmetric for
p=12[mod4] if D=24[mod8] and for p= 3,4 if D=6,8[mod8]. For D odd, it
turns out that the same condition, e(—1)(P~Y(P~2/2 =1 holds for D = 3[mod4] with
e = —V2cosZD. We have excluded here (somewhat arbitrarily) the D =59 cases
because in these dimensions no C such that CI'*C™ ! = —I'*T exigts.

The number of cohomology spaces HZ2(sTrpe Spin(1,D — 1)) for various STry
groups is given in the table. As a two-form, the various CE two-cocycles are given by
do(CI #---#v)df. The corresponding new generators Z, ., A€ al central, asis X,
itself. They are on the same footing and may be thought of as generalised momenta.
Each of the resulting extensions defines an extended superspace group; we will denote
them generically by 3.

The table also includes the cases in which the spinor is Majorana—\Weyl or complex
(Dirac and Weyl). If the spinor is complex the independent tensors I #t--#» may
appear. The effect of considering Weyl spinors is taken into account by introducing a
chiral projector (2, say).

The different extended supersymmetry algebras can be easily found from the results
in the table. We shall only give below two examples which contain formulae that will be
explicitly used later on. To avoid cumbersome factorials, we use a normalization of the
generators which is tantamount to defining the duality relations by H‘“"'“"(Zul...v.a)
= %evlil.::.vﬁ;p S0 that HMlm#p(CFVlmyqu...Vp) = CF:’-‘l---Mp

2.3. Applications

2.3.1. N = 1 theory extended superspace

For D even, the basic spinors in (1) may be reduced to 2°/2~ -dimensional Weyl
spinors, and the discussion of the possible H2(sTry, o Spin(1,D — 1)) spaces must take
this into account. Let D=2[mod8] and let 0% be MW. The symmetry of
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(CIr#a#2 ), is now achieved if both CI'##» and CI'*#I'°** (or, on
account of (11), CI'#---#o-») are symmetric. Hence, there are central charges for
D=2 p=1and D=10, p=159(@.e p=1[mod4]). Asaresult,the D=10, N=1
extended superspace algebra has the form

{Df.D5 )} = (CI'ta,) (g X, + (CI# s ) (5 Z,
+(CI ko ) (g7, (13)

Dueto £, and to (11), the first and last term in the r.h.s may be grouped into a single
one, (CI'*# )X, + Z,); classically, Z, may be absorbed by redefining X, and the
previous analysis shows that the vector-valued cohomology space is one-dimensional.
The second term may be rewritten as (CI"#++#5)Z;  where Z; s a self-dual
S5-tensor [28], Z; . = l(Z e T €SS I0Z, ) with half the number of compo-

nentsof Z, . Asa result the degrees of freedom in Eq. (13) match: (16) +16=

136=10+ 1 10 (see Table 1). But in general Z, cannot be reabsorbed, since the

Green—Schwarz action for the heterotic superstring produces such a contribution to the
algebra[12], of an origin different from that of X,. Mathematically, this corresponds to
the fact that the group parameters are different for X, (trandations x*) and Z, (¢*);
they are locally equivalent, much in the same way R ~ S1 locally, but they are dlfferent
globally. We may, however, achieve the symmetry under the exchange of Xy and Zg
(say) when the 9-direction is a circle of radius R. Then the spectra of X, and Zy are
isomorphic under the T-duality exchange R — 1/R (see Refs. [44,45)).

The FDA form of the D = 10, N = 1 superalgebra (13) is given by the MC relations

dIiI*=0, dII*=2(CI'*)apII°II",

dH”l"'”5=%(CF’”""‘S)QBH“HB, (14)
where IT*, IT* and IT*-#s are defined as (e =1,...,32)

He=2,do*,  II*=dx*+ 3(CI'*)a.p0°1",

HHI"'MS:dQDI‘Jl-HﬂS_i_l(CFﬂl---MS) 0°IIB . (15)

If Z, isincluded separately, this introduces a further extension which requires adding a
new LI form associated with it, 1), dI1{¥ = 3(CI},#,),,d6“d6 # (we have written
the index down for consistency W|th later notatlon as |n Sectlon 5.1). At the group level
this means that the MW trandlations generate two types of transformationsi.e. one has to
distinguish between the trandations x* and the ¢,, some of which may be compact, in
which case the corresponding group law expression should be understood locally.

2.3.2. l1A theory centrally extended superspace

Let us consider now the H2(sTr,, o Spin(1,9),(11A)) spaces. The IIA superagebra is
the D = 10 algebra associated with two 16-dimensional spinors of opposite chiralities
which may be combined into a Majorana spinor. Then (see Table 1), the IIA theory
maximally extended algebra [28] is found to be

{D,,Ds} = (CT#)upX, + (CI#1#2) (yZ, 4 (CTH#s) g7,
+(CF11)QBZ+(CFMF11)QBZM+(CF”l“"uAFll)aﬁzﬂl.”l‘%,
(16)



Tablel

Some Lie algebra second cohomology groups for sTry, (minimal spinors are in boldface). n is the complex dimension of a Dirac spinor, equal to the real dimension of
Majorana spinors for D = 2,3,4[mod8]. The fourth column gives the dimension of the spinor indicated. The fifth and sixth column give the ranks for which
(Crkate) 5 (or (CI'H1ko ) 5) are symmetric (as deduced from (12)) and the dimension of these Lorentz tensors; C itself is symmetric in D = 6,7,8[mod8].
The seventh and eigth columns do the same for the additional tensors (I" T #1-+#p) (I" T #1-+#e57 , ) appearing in the complex spinor case. These hermitian (adding
i when needed) tensors are limited by duality (Eqg. (11)) in the odd (D = 7) case and to odd rank by the presence of 2, in the Weyl case. The 3 indicates halving
due to self-duality. The number of real cohomology groups H2(sTrp ° Spin(1,D — 1)) is given by the first number in the last column. These spaces are the relevant
(i.e. tensorial) ones, once the Lorentz symmetry is considered since in this case sTrp  Sin(1, D — 1) (rather than sTrp) is the group to be extended. The action o of
Soin(1,D — 1) on the extension cocycles is automatically taken into account by using only Lorentz covariant objects for them. The bracketed number in the last

column ignores the Lorentz part and, as a result, dimHZ(sTrp) = +n' since the elements of sTry are odd (for an ordinary n-dimensional abelian group

n
2

dimHZ = g ). The number (g

) + n' is given nevertheless since it serves as a check on the degrees of freedom: it is equal to the sum of the total real dimensionsin
the sixth and eigth columns

1 2 3 4 5 6 7 8 9
real n’ [com- [ rank p of symmet- | dim(CTH #») rank of R real HZ(sTr o

D | n=2[P/2 ﬂ%l plex] dim. of | ric (CTH1#2) o5 | {dim(CT*1#2PL)} 5 total | (DODH1-#p) d{l?l(ro.gull".”i)‘ Spin(1, D—(l)) staces
spinor {(CTH+P ), 5} real [complex] dimension {(TOr#-#rpL )} {dim(TOr#1-#p )} (dim 12 (sTep)

2 2 3 1 MW {1} {32;1} 1 (1)

2 2 3 2 M 1,2 2,1; 3 do not contribute further 2 (3)

3 2 3 2 M 1 3;3 in the real case 1 (3)

1 | 10 |4 M 1,2 1,6, 10 2 (10)

6 S 36 (8 [ W {3} {%20; 20 [10]} {1,3,5} {6, 20 ; 16} 3 (36)

6 8 36 |16 [8] D 0,3.1 1,20,15 5 72 [36] 0,1,2,3,1,5,6 1,6,15,20,15,6,1 5 64 10 (136)

7 8 36 16 [8] D 0,3 1,35 ; 72 [36] 0,1,2,3, 1,7,21,35 ; 64 6 (136)

8 16 136 |16 8] W {0,4,8} {1, L 70 ; 72 [36]} {1,3,5,7} {8,56 ; 64} (136)

8 16 136 32 [16] D 0,3,1,7,8 1,56,70,8,1; 272 [136] 0,1,2,3,4,5,6,7,8 | 1,8,28,56,70,56,28,8,1 ; 256 | 14 (528)

0| 16 136 |16 MW 1,59} {10, I 252; 136} 2 (136)

10 32 528 | 32 M 1,2,5,6,9,10 10,45,252,210,10,1; 528 do not contribute further 6 (528)

11 32 528 |32 M 1,2,5 11,55,462; 528 in the real case 3 (528)

12 61 2080 | 64 M 1,2,5,6,9,10 12,66,792,924,220,66; 2080 6 (2080)

0£E—£62 (0002) 295 9S95AUd eajonN /e 18 Soxe fewossAiyd O

ToE
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since the tensor spaces {I"#t-#e} and {I"*+#o-»]" 1} are isomorphic by Eq. (11).
Notice that X, and Z, belong to different cohomology classes (their corresponding
two-cocycles are not cohomol ogous due to the presence of I''* in the Z term). The
associated I1A Lie FDA, involving the LI one-forms dua to the generators in (16), is
given by

dIT# = 3(CI™*) (e IT°T1*
dI1 = S(CTHT ™) (g ITTTP,
dIT##z = 1(CT##2) g ITITP
Al Fe i = J(CI#a ) (g ITTTP
dIT#e ot = 3(CT# L) G TTT P
M= 3(CT™) I . (17)

The new group parameters define the I1IA theory centrally extended superspace,
parametrized by the coordinates (6%, x*, ", @ #1#2 @t #s @pHi---Fa @)

The IIB case with IT*' =2, dg' (i = 1,2) is treated similarly by noticing that the
presence of €;; alows for CI’ o k2, which is skew-symmetric.

3. Non-central extensions and their superspaces

We start now from standard rigid superspace, Egs. (3), (4) for real, odd trandations.
To keep the discussion as general as possible, we rescale 1T+, I'IMMMp by an arbitrary
dimensionless constant a,, so that (4), (7) become

dHM:aS(CF/-L)aBHCYHB, dH/,Ll...,LLpEaO(C'I:,Ll.../.Lp)aBHaHB' (18)

Let us fix p and consider the resulting extended superspace, parametrized by
(Ba,x“,qom___”p), as our starting group manifold. We look for a non-trivial CE two-
cocycle with p indices on the above extended superspace. This may now involve any of
the LI forms available, IT*,IT* or I1, Inspection of the possible Lorentz tensors
shows that the external Lorentz |nd|ces oF this two-cocycle have to be of the type
(my...mp-1a;) and, hence, the only available L1 two-forms are

@ = I B
plh Mp—l‘ll_(Cr”#r--ﬂp—l)ﬁalnn !
2 _ v
plil) CBpo10y (Cr )Balnvul...up,lnﬁ' (19)

For p =1, both are closed. For p> 2, d(p™® + A, p®) = 0 gives A, = a /a, provided®
(CF )C’B ( Vi - I-Lp—l)y/s’ =0, (20)

which holds only for certain values of (D, p) [1] (for p=1, D = 3,4,10 and, with the
appropriate modifications for complex spinors, D = 6). The existence of such a con-

8 Primed indices are understood to be symmetrised (with unit weight).
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straint, on both D and p, is a new feature — the non-triviality of (9) only restricted p.

We introduce now a new one-form I1, P with
A, e =\ (CL, ) g TP+ —(cr YLy, 1TP)
(21)

(for p=1 the coefficient of the second term can be arbitrary, see Section 5.1).° The
above MC equation implies that both [ D, X] and [D,Z*+-*#¢] are modified by a term
proportional to Z#:--#e-1%1 the latter being the only central generator at this stage
(Z#1--#o-11 s central because by construction, I, ..u,_qa, CANNOL BDPEAr at ther.h.s.
of a MC equation expressing the differential of a LI form). Thisis a generd feature of
the extension scheme in this section: at any stage in the chain of extensions, the only
central generator present is the last one introduced. Thus, each extension is central, but
the resulting algebra,/group is not a central extension of superspace: al generators but
the last one have non-zero commutators as a consequence of the subsequent extensions.
A second feature here is that successive extensions substitute one spinorial index for a
vectorial one, preserving the total number of indices. The chain ends with the introduc-
tion of a generator with p spinoria indices.

Repeating the above procedure, one finds that the next three extensions are in some
sense exceptional (see (22) below), while the one introducing five spinorial indices and
al others after it follow a pattern which can be used to derive a recursion formula.
Skipping the somewhat involved algebra (see Appendix A), we first list the results for
the next three extensions:

dIl,, e =30 (CL,

M. VPM1---Mp72)ala2

e + —(cr ) asar, 11 i

VpUY .. BRp_2

as
_;(CFV)%UCZH e

1

M1---Mp—zﬁ

_8_(Cr )alﬁ

Vi - Mp—za,ZH !
p

dHI—‘fl---ﬂp—3a1a2a3 33((CF )"‘1“2 VP - upfsaén

Wy Hpo3ahal

S5a,
+ _(CFV)QiBHV
4a,

+ _(CF )0(10(2

vy Mp-aﬁaén ’

® For p=1, the one-form in the Lh.s. of (21) becomes IT, — notice that this is unrelated to I7* (so that,
eg., dI1, isnon-zero). In general, we will not raise or lower the Lorentz indices of forms, their position being
used to distinguish between different types of them as in [19].
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p
dHM1---Mp74‘¥1“‘2“3‘14 a, (CF )"‘1“2 Vpuy - P‘p74‘¥’3‘¥z’1H
48a.a, , p
- 5a1a3 (CF )aiBHV/,Ll...,u,p,4a'2a/3aﬁ1H
12a.a, , p
- 5a,a, (cr )“i“'zHVm---Mp-ABaéaAH (22)

(the a,’'s in the r.h.s. normalise the IT's with k spinorial indices). For the remaining
extensions, which introduce one-forms with five or more spinorial indices, one estab-
lishes the following recursion formula:

= v P
dnp.l...p,p,(“z)al...a“z ak+2{(cr )0"1“’2va,ul...p,p,(mz)aé...al’(+2H

+Agk+2)(cry)a’lﬁny ’ 7 HB

My Mp—(k+2) X2 Qfy2

+A(k+2)(CF )0510‘2 vy - #p,(k+2)ﬁa’3...a{<+zﬂﬁ}’ (23)
where

a, k+1
s AT

AJFD = — (24)

as( 2 k
+

k+1 k+1

)\5+) )\(3+)

) , /\(3k+ 2) — _
Notice that the above recursion starts at k = 3, which implies p > 5. On the other hand,
the maximum value of p (of interest to us) for which (20) holds trueis p=15, i.e. (2:?)
isrelevant hereonly for k=3, p = 5. It iseasily checked that [Hm---upf.al---a.] ="z,
We give related explicit results, for p= 1,2, in Section 5.

4. Structure of the new superspaces and Noether currents

4.1. Fibre bundle structure

All extended superspaces have a natural bundle structure, in which the basis is the
group to be extended and the fibre is the group by which we extend. For instance,
superspace Y itself and the various extensions 3 in Section 2.2 may be considered as
the total spaces of principal bundles over the sTry's of the specific theory. The
two-forms which define the extensions are curvatures of invariant connections valued on
the central algebras by which sTry is extended. The D’s are then the horizontal lifts of
the vector fields 6/86“ on the specific base manifold sTrp,; this justifies the ‘ covariant
derivative’ name which may be given to the D’s in the algebra of the S's. Similar
considerations apply at any step in the chain of extensions in Section 3. From this point
of view, after the last step, one has a bundle structure with the last coordinate in the
fibre and al the rest in the base. As we show below, there is also another relevant
bundle structure with 3 in the base and &l new coordinates in the fibre.

Let us now discuss the general case treated in Section 3. 3 is parametrised by the

coordinates (6%, x*,¢, o Py gyt 1 Pay ap). We will denote them collectively
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by the row vector ¢ = (z?,¢,) Where z parametrizes the base (superspace ¥) and ¢ the
fibre (the space of all new coordinates). Referring to this block form, we will say that
the superspace part is ‘ two-dimensional’ while the fibre part has ‘dimension’ p + 1. The
LI one-forms that reduce to the differentials of these coordinates at the identity will be
denoted by IT=(H?®,0,) and the dual LI vector fields by the column vector Z=
(D,,Y™M" (t denotes matrix transposition). The corresponding RI objects will carry an
additional hat.

Under a right group transformation, g — gg’, Z transforms like Z — T''Z, T’ being a
matrix of (primed) functions on the group, called the adjoint representation. We have

T =TT, Z-Tle=pu( 2), (25)

pai(Z) being the adjoint representation of Z, given by the structure constants. Inspection
of the MC equations then reveals that T is alower triangular matrix with units along the
diagonal. We put accordingly

. (A C n-1_[AY —AlCB?!
re(6 5 ™ —(0 g1 (26)
with A, B upper triangular matrices. The dimensions of A, B, C (in block form) are
2X2, (p+DX(p+1D, 2xX(p+1 respectively. (26) shows that the fibre is a

subgroup, with adjoint representation given by B'. In this notation, the LI vector fields
transform like

D AD+CY
(5)- (%) (27
The LI forms similarly transform according to IT— II(T'")7!, i.e.
(H, 0)—>(HA', —HA'CB '+60B ') (28)
For the RI objectsit holds Z=(T)"*z, I[T=M T, i.e
D A1D-AlCB 'Y A oA
~| = , =(HA, HC+6B).
(Y) ( Gy ) (H, 6)=( )

(29)

The Lie algebra valued one-form o = @ Y serves as a connection in the bundle. Indeed,
one easily verifies that o is invariant under (27), (28) when T is restricted to the
subgroup of the fibre (A =1, C=0). The horizontal subspace is spanned by the kernel
of w, i.e. by the components of D, the latter being the horizontal lifts of the standard
superspace generators DY = /a9, X(9 = 6/ax* + 3(CI},),;073/a0°.

In later applications, in Section 5, the explicit form of the matrix B~ is needed — we
present here a few remarks that facilitate its computation. Inspection of the r.h.s. of the
MC equations for the new one-forms, in Section 3, shows that they always contain one
new one-form, multiplied by a IT® or IT*. For the dual Lie algebrathisimplies that the
new generators commute among themselves and only have, in general, non-zero
commutators with the superspace generators D,, X,. In other words, the group by
which we extend 3 is abelian (to begin with) and its generators acquire, as a result of
the extension, non-zero commutators only with the superspace generators. The structure
of the resulting Lie algebrais, in symbolic form,

[D,D]~D+Y, [D,Y]~Y, [Y,Y]=0, (30)
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in the notation introduced earlier. For T, the expression
T= e‘f’A Padi(Za) = eZa Padj(Da) + op pMJ(YA) (31)

is well known. From the third of (30) though, we infer that the restriction of p,; (Y) to
the fibre (i.e. to the sub-block corresponding to B') is zero. Denoting this sub-block by
p&i) (Y) we find for B

B = 2" Padl (D) = @b phd) (Do) +x ¥ pl (X' (32)
where the matrices pg‘jj)(Da) are given by the structure constants that appear in (the
explicit form of) the second of (30). The interesting point here is that B depends on
(6,x) only — the new variables enter in T only through A, C.

4.2. Invariant actions for the minimal branescan
As dready mentioned, part of the motivation for studying superspace extensions

comes from their relevance in the construction of manifestly invariant p-brane actions.
For the branes of the old branescan, WZ terms on 3 have the form

S\szfdpﬂfng:)‘f‘b*(b)’ (33)
W W
where b is defined™® as the potential of the closed ( p + 2)-form h on superspace
h=(CL, ) " .. I™IP, db=h. (34)

W in (33) is the (p+ 1-dimensional world-volume swept out by the p-brane,
parametrized by {¢é'}=(r,0%,...,0P),i=01,...,p and ¢~ is the pullback of the
embedding ¢:W — 3. The constant A is fixed by the requirement of «-invariance of the
total action [1] (we will ignore A henceforth). As is well known [1] (see aso Ref. [2]),
the closure of h is equivaent to the condition (20) which we have seen to guarantee the
existence of the non-central extensions of Section 3. Using the new LI one-forms
available we may obtain a LI potential b for h on 3. Its general form is

p
b= Y I, e (BT T T TT) = O A, (35)
k=0

where the last equation uses the notation of Section 3 and defines A€. The b,’s are
numerical constants, determined by the second equation in (34). We check that
[b] = L1+ fLPkLi=LP*L,

We compute now the explicit form for an invariant %, in (33) (i.e. with b instead
of b). For a general one-form IT we put ¢ *(IT) = II,d¢', so that

1% =06, ITF = 9, x* + a(CI'*) 400,60 F. (36)
Egs. (35) and (33) give for the Lagrangian
Zwz = Oc; A, (37)

19 For an explicit form of the quasi-invariant b on 3 see Ref. [46].
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where, expanding multi-indices and using the above notation,
Abbpkaread =y gl do[Tr TRk [T JT%, (38)
k 1 Jp—k

Jp—k+1 Ip

4.3. Noether currents for the new symmetries

The invariance under trandations of the action of the supersymmetric objects implies
the existence of conserved currents. The integrals of the charge densities over a
spacelike section of the world-volume give constants of the motion for the p-brane.
When the action contains the standard WZ term b, the Noether current includes a term
A coming from the quasi-invariance of b, 6b=dA. This was used in [12] to find
topologica extensions of the supersymmetry algebra. When b is replaced by the
invariant b in (35), A isno longer present. However, the Noether current receives now a
contribution from the additional fields ¢ * (¢,), which leads to the same result.

One can derive general expressions for the currents associated with the new genera
tors. In the present case, where the relevant part of the Lagrangian is obtained by pulling
back to W forms initially defined on 3, it is convenient to work on the extended
superspace, where quantities have a direct geometrical interpretation, and to pull the
result back to W at the end. To keep the discussion general, consider a manifold M
which can serve as world-volume and a target space N, of dimensions m, n respectively
(m<n) and an embedding ¢ of M into N, ¢:x— y(x) where {x'} ({y'}) are local
coordinates on M (N). Consider furthermore an action S given by

S=[ ¢ (a), (39)

where « isa k-formon N and ¢ * isthe pullback map associated with the embedding.
We assume that the submanifolds x°=x2,,, x°=x?, of M form its boundary dM —
their embeddingsin N are the initial and final configuration, respectively. The equations
of motion are

5,S= [M¢*(|_Ya) -0, (40)

where Y is an arbitrary vector field on N which vanishes on ¢(dM) — we denote their
solutions generically by ¢.,. Proceeding along the lines of the standard derivation, with
inner derivations taking up the role of the partials 8/6c/>yi, one finds the equations of
motion in the form

¢ (iyda) =0, (41)
where now Y is an arbitrary vector field, not necessarily vanishing on dM. For a
symmetry generated by Y, one obtains

d( d)cy' ( J(Yo))) =0, ‘](Yo) = iYoa ! (42)
which is the current conservation equation. For a quasi-invariant Lagrangian, ¢ (L, @)
= ¢ "(d4), the conserved current picks up atermin 4, ¢*(Jy ) = ¢ (iy a— A).
In the present case, (M,N,a) correspond to (W, 3,b). The variation of the total
action from that of the new coordinates comes only from #,,, so that (41) gives

0=¢"(iydd) = ¢ (iyh), (43)
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where Y is an arbitrary vector field along the fibre. Since h is horizontal, the above
equations of motion obtained from variations of the ¢,’s, are satisfied trivialy,
consistent with the appearence of the ¢,’s in the Lagrangian through exact differentials.
For the Noether currents associated to translations along the new coordinates we have
Y, - Y* and (42) gives

d( g (3%)) = JA=igab. (44)
With b asin (35) and YA (B™HALYC (see (29)), the second of (44) gives for JA

=(B™ Y DiYDHCAC=(B_1) CAC, (45)

since iyoIl. = 8° . Notice that J* is, in this case, a form on 3 (rather than ).
Effecting explicitly the pullback in the first of (44) we find

4j4 =0, (€)= (BN c(€) A9(¢). (46)

Finally, the conserved charges Q* are given by (expanding multi-indices)
p
QMI...up,kal...ak:/Wda,l”.do_pzmzo(B—l)l‘ F‘pp kmaﬁll me € Ojy---Jp

><HJ-”1 va mHBl . _Hij, (47)
1 P

]p m+1

where W, is a hypersurface of constant . Notice that since B = B(#, x), the integrand
above involves only superspace variables.

5. Applications: p = 1,2

5.1. D =10, N =1 and the Green—Schwarz superstring

The case of the superstring is somewhat special, from the point of view of the
extension algorithm of Section 3: the first additional generator to be introduced, Z*, isa
vector, as X,. We shall keep it here separate and denote by ¢, the associated parameter.
Fixing (as,a0 a,) = (3,3, in (18),(2D), we find for the FDA™

dire=0, dIT* =3(CIr*)apl°II?,

dIl, = (CIL,) TP +(CT ") apIl, 117, Al =3(CIL) 1, (48)
where w=0,...,9. Notice tha d(dIl) =0 is implied by (20) for p=1,
(CI'*),5(CI), 5 =0. II{¥ in the above equation is the one obtained from the
second of (18) for p=1 — we have added a superscript to avoid any confusion with

n Eqn. (46) for jA adso follows from the standard expression for the current associated with an *internal’
symmetry of a Lagrangian ., jA = 5%(5)63/& ¢o(&). However, for the currents considered here the
relevant part of .# isjust #,y;. Since %}, is obtained from aform on S, the above derivation allows us to
exploit the geometry of S The above expression for the current also makes clear that, within the canonical
formalism, the integrated charge operators will reproduce the original symmetry algebra.

%2 |n Section 5.1 all spinors are Majorana—Weyl (0% = (2, ), etc.).
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IT#, since they have similar differentials; recall also that II, and I1“ are unrelated. As
mentioned in Section 3, the two terms in the r.h.s. of the last of (48) are individually
closed and hence their relative normalization cannot be fixed by requiring d(dII,)=0
We have nevertheless chosen the above symmetric normalization for convenience — the
results that follow, and in particular (59) that involves cancellations, do not depend
essentially on this choice.
The corresponding Lie algebra is given by

{Doz 'DB} = (CFM) aBX# + (Cl;)aﬁzﬂ ! [ Da ’X,u] = (CEL)aBZB !

[D,.Z"] = (CI'*) 42", (49)
which reduces to the Green algebra [13] if one omits Z*. The associated group manifold
(extended superspace) 3 is parametrized by (8¢, x*,¢,,¢,) via

g(ea,xulg%,goa)=e0“Da+x“XM+¢MZ/‘+qan“_ (50)

Making use of the Baker—Campbell-Hausdorff (BCH) formula, where, for the algebra
(49), terms of order four and higher vanish, we find the 3 group law

0" =0""+0°, X' =X 4+ xt—3(CIH*) .50 0P,

¢ = @+ @+ 3(CLL) 00 °x" = 3(CL) X "0P + 3(CT ") st
—3(CI'") up@, 0% + 5(CI,,) ., (CI*),5( 0700 + 6'%%67) ,

o=@ tTe— l(CF) 0’9" (51)

The bilinear terms in the expression for ¢!/ are the ones that give rise to the fourth of the
MC equations (48) — the trilinear terms are required by the associativity of the group
law. Their sum gives the spinor valued two-cocycle &, associated with the central
extension of 3(9,x x*,@,) by ¢,.

One can now relate the LI one-forms to the coordinate differentials

ne=do~,

IT*=dx* + 3(CI'*) ,p0°dOP,

II,=de, = 3(CI},) ;0 Pdx" — 3(CI'*) 40 "de, + 3(CI},) , , x*d6"
+%(Crﬂ)aﬁ¢#deﬁ+%(Cl;)aﬁ(crﬂ)yae :

I1¥ =dg, + 3(CI,) .4 (52)

(see also Ref. [20] athough, omitting I1¥), we disagree with the corresponding
expressions there). One may check that the L1 forms in (52) satisfy the FDA (48). From
the group composition law, one can compute the LI vector fields dual to (52) satisfying
(49)

D, =39, + 3(CI'*)ap6%, + 3(CI}) ;070" — 3(CI},) ., x"0*
—2(CI'*)apg, 0 + 5(CI'") ap (CI,,) ,0%0%7,

X, =3, +3(CI,),z0%°

ZH =" + 3(CI'*) 46057,

ze=0  (noted” =dfde,, 9°=dig,). (53)
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Effecting a right group translation in (52) and reexpressing the result in terms of the
II's, or computing the exponential in (31), one finds for (T*) !

3% —(CI'*)y0° —(CI),50°  (CI)ygX* + (CT")ype, + (CI}) g5 (CT' *)5e00°
_ 0 BXs 0 —(CrI,)gs6°
ol v v)B
(™ = ) e (54)
0 0 8,f (CI'?)pso
(0] 0 8¢

B

(the matrix indices are ., #¢ for therowsand “*, , for the columns). When Egs. (51)
are linearized in the primed variables (viewed as the parameters of the transformation),
they provide a realization of the algebra (49), acting on the coordinate (unprimed)
variables. For our particular choice of parametrization (50), this action is rendered
non-linear by the last term in the expression for ¢,. This term can be eliminated by
modifying the two-cocycle by a two-coboundary, the latter being generated by a suitable
splnor -valued function =, on S(6%x*, @,)- Indeed, with =, =g(CI),,x"P

+5(CIr*),z¢,0% we find for the coboundary EC(g,9)=n,(g99) — na(g )—
1,(9), the expression

faCOb — %(CI—/:L)C(B( X 1B + H'BX“) + %(Crﬂ)aﬁ(ﬂleﬁ + G'BQDM)
+5(CI,) s (CI*)15(076"%° — 6"976 7). (55)
The new cocycle &, = ¢, + £ modifies the last equation in (51) to read
@ =+ B+ (CL) ,(30Px# — 3x¥98) + (CT*) up (20", — 360"
+3(CL) 5 (CT") 450706, (56)

which is linear in the unprimed variables athough the definite symmetry properties
under exchange of primed and unprimed variables are now lost. The termsin (56) linear
in the primed coordinates agree (omitting ¢,) with the (first-order) results of Ref. [20],
where the (equivalent) coordinate redefinition ¢, — ¢, = ¢, + 1, is given. For the LI
one-form associated with the new coordinate we find

T, = dg, = 3(CI}) 0 fdx* — 5(CI'*) 10 Pdg, + 5((CI,),, , X"

@ ®

+(CI'*)ap@, + (CI),,(CT*) ,6°0° ) d6 *. (57)
The manifestly invariant WZ term for the superstring action is given by
Sug = [ &7 (b) = [ &" (111" + 311, 11%), (58)

which differs from the one in [33] by the term in H("’)H“ Itis |mmed|ately checked,
using (48), (52), that db=db= (CL), g ITHIT°TT g and hence that ¢ *(b) and the
standard WZ term ¢ * (b) are equwalent dlfferl ng only by an exact differential. Since
the string tension T has dimensions [T]=ML"* and [I1{*]=L, [II,]=L%?, the
products TII, IT*, TIL'®IT*, have the dimensions ML of an action.

To compute the cgnserved Noether currents, we start from (45) which gives the
closed forms J# on 3. With B~! given by the lower right block of (T*)~* (see (54),
(26)) we get

Je=(B Y, "+ 3(B YpIlP ="~ 1(CI'*)p,07d6# = dx*,
Je=1(B V)l = 1do" (59)
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which, after pulling back on the world-volume, gives for the charge Q* (see (47))

axm
Qr = d0'

0 (90'

(60)

Q* being zero because we assume that 6 is periodic in o. The integral (60) may lead to
a non-zero result if the topology is non-trivial [12].

5.2. D =11 and the case of the supermembrane
Our starting point is the FDA of Section 3 with p = 2. We fix the normalisation of

the forms by setting (ag,a,,a;,a,) = (3,3,1,— 3) S0 that the dua Lie algebra becomes
{D,.D,} = (crﬂ)aﬁx#Jr (CL,,) 2"

D,] = =(CI..) ., 2",
X,] = (CLL) 2,

Z)\T] — 16[A(CFT]) Bzaﬁ

[%

[ X
[%..
[D,.2%"] = (CI#) 42",

{D,.Z2"} = (3(CI'*),8f + 2(CI'"),.8£) 2", (61)

coinciding with that given in Ref. [16]. The associated extended superspace group
manifold is parametrized by the coordinates (6, X*,@,, @, 4+ @ap) Via>

g= @0 Dot XM X, 40, 2+ 0, ZH + 0 g 7P (62)
where ¢,,, ¢,z ae antisymmetric and symmetric, respectively, in their indices.

Application (with the help of FORM) of the BCH formula, where now terms of order
five and higher vanish, results in the following group law:

0% =0 + 9 (63)
XM =X 4 xH = 20°20°(CI*) ayays (64)
Puaps = (P%iﬂlz T P, 100{3/0 QA(CI:LWZ)%%’ (65)
Dy = Bna, — 20°7 (CT*) ey G, = 2077 (CLL ) g, X

+30%90° 0% (CI'*) aya, (CLiy) o,

+ 1000 (CI'"®) 005 (CL,) 0, T (1) © (2)), (66)

1 1

Qot;/laz = @z/xlaz - E(CF‘B)alaz XMA/@M.#’-A E(C[Zl-z# )011012 Xt Xk
+ %00@0 ay(CI‘Ms) 043041( CFMG) agar Puoug

XN’G

+ 50999 (CI'#s) o,0,(CI,

#5“6)0(40(2

3 We use a parametrization different from the one in Ref. [16].
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_ 2_3;‘ 030 24 s as( cr I-L7) a3a1( CF#B) ‘14“6(C1:L7M3)a5a2
_ 2_3;‘ 030 24 459 as( cr I-L7) a3a1( CF#B) asaz(C]:hMg)%%

_2_];‘0013’0“4(CF“s)alaz(CFMG)a3a4¢li5M6
+250°70*4(CI'*5) a,a,(CI,

) Mgl
Mstte /) azay

- %ang QA(CF MS) 013011( cr MG) agay (P},Ls/.LG
_ %0&3/0 “4(CF“5) a3al(CIZLsﬂs)a4a2 NG

+ 4_:]é 0a370 0(4(CF!’~5) a3a4(CF’L6) aja; (P’LS”G
+1_120a3/0a4(cl"“5) ‘13“4(CF )041“2)(“6/

Mstie
— 9a3,¢u4a1( C]"M4)a3a2
—50°6,,0(CI") a0, £ (1) © (2)) (67)

(in the expression for ¢, , , ther.h.s. is assumed to be symmetrised, with unit weight, in
a;, a,). The +((D) < (2)) instruction in the last two expressions means that for each
term displayed, one has to add (subtract) a similar term, with the primed and unprimed
variables exchanged (taking into account statistics), if the order of the term is odd (even)
in the coordinates (e.g. 0"°¢,; + (D) < (2) =0,z — (— ¢, ;07)). This symmetry
property can be seen to hold in general: from the BCH formula e®e” = efA» it
follows that f(—A,— A)= —f(A,A) and hence, terms of order n in the coordinates
are symmetric (n odd) or antisymmetric (n even) under the above exchange of the two
spaces. The linearized (in the primed variables) form of the previous expressions has
been given in [20]. Starting from (67), we find for the LI vector fields of (61)
1 paspaj 4
D,, = 4, + 15020 *((CI"**) u,as(CI, ) e

Heta
+(CL) o (CT ) g, )04 + 5020, |, ((CT#9) ay0g(CT) ayag
+(CFMB)asae(cru4)aza1)aa5a6_ %Gazxﬂs(crﬁu)azas

x(chM)asala“sasqLgeazw(crw)as%(cr )y,

M3ty

Az Qg

+%0a2(crﬂ3)aza1am+ gaz(C[‘ )azalaMM

M3tg

_ %XMZ(CF )a1a48#3a4 — %(’Dﬂzﬂa( CFMZ) al%a#z%

HMoks
+ %‘szal( CF’LZ) 0‘30‘46[13% + (Ppnza3( CFM2)01ﬂ4aa4a3' (68)
lpa,pa aga l1pga a
X,U~1 = aﬂl_ 60 20 3(CI_'I.M)‘)‘ZCVS(CI:J—]J-LA;)0160138 ste+ 50 Z(CI—ILll—Lg)ozzcuap"3 ¢
+ %XMZ(CI_;LzI-’-l)aga4aa3a4 B %‘pﬂv]}-‘z( CF“Z) a3a48a3a4’ (69)

ZHik2 = Jrik2 4 1_1200‘360‘4(C1_':U~1)agas(crﬁz)a4a6 9 %¥s%
_leeagead(crﬂz)asas(crﬂl)%ae 9% + %eas(crﬂl)aaa‘taﬂzw
— %gaa(crﬂz)%%am% + %XM(C]’M) gy 0939, (70)
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Z M = grids 4 %0“2(0[‘#1)&3%80‘3“4 + gas(cl’lh) a3a48a4a2, (71)
Zaluz = ) (72)

(antisymmetrisation with unit weight in w,;, w, is understood in the r.h.s. of the
expression for Z#1#2), The manifestly invariant WZ term on the extended superspace 3
is given by [16]

b=211, 41" — 211, 1111 — 211, , IT°IT* (73)

((b] = L3, [Tb] = ML). It depends on the additiona ¢ variables through total differen-
tials since do=do=h=(CI,,),, IT"1"II°IT".

The computation of the full T matrix for the supermembrane is rather tedious. For the
Noether currents though (corresponding to the new variables) we only need B~
Reading off the relevant structure constants from (61), we find

0 0 0
[u vq]
o) (D) = | (CT7 ") eerd 0 0|,
0 %(CFKl)BN’zSaal_'_2(CFK1)B'ZCV8;';1 0
0 0 O
(f) = 0 0 O
Padi (Xp) = . (74)
%6;;[”1(01_‘”1])3272 0 0

Using these in the exponential in (32) we get for B~
5:21»”21 _GH(CF[HI)OMXZ(SI,}(IZ] _%X[m(cl—vvll)ﬁzyz_‘_eaeﬁ(CF[#l)ay,z(CFn])ﬁ,zB
Bl=| O LR —20°%CI ") pyy, —20°(CI ") pya 83

Koo

0 0 3351*/1

272

(75)

(the external indices are #:*1 ¥ P for therowsand |, , .. .. sy,
Substituting now in (45) we find for the forms J on 3

for the columns).

Jrars = Zdxtrdx”s + 150 (CI") g dx#1dg P + fxt#1(CI ™), do“d6 P
= d(5xtmeenl 4 Lgoxtm(Ccrl), ,do’),
Jati= — 2dx 1df 1 — 5 (CI ") 4,0,0°dO*2dO
+55(CI' ") 40,0 *d0*3dO >
= d(2dx" 10 — 55(CI'**) a4a, 00 *1d6?),
JPm = — ZdoFrde™ = d(— {507:do™). (76)

The above locally exact expressions result from rather non-trivial cancellations. The
currents are obtained by pulling back to W the forms (76). For periodic s the charges
Q11 QA1 (but not Q#*1 for a non-trivial two-cycle [12]) turn out to be zero. Thus,
this case provides a redlization of the algebra (61) where only the Q**: term is
non-zero.
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6. The case of D-branes

Let us consider first a bosonic background for which all forms of the R ® R sector
and the dilaton vanish so that the two-form &% =F — B, where F=dA and B is the
NS ® NS two-form, reduces to F; A is the Born-Infeld one-form on the world-volume
A(E)=A(&)d¢'. Then the action of the D p-brane reduces to

I = [dP* ¥/~ det(3, x4 x, + F) . (77)

Let us look for a manifestly supersymmetric generalisation of this action on a suitable
extension of flat superspace (we shall consider here only D = 10, [IA D-branes). For the
ordinary p-branes the supersymmetrisation is achieved by substituting first II* for
d,x* and then by adding a WZ term b, db=h, with h characterised [2] by being a
non-trivial CE cohomology ( p + 2)-cocycle on superspace ¥. It was shown in the
previous sections how to make these WZ terms manifestly invariant. We shall extend
this to the D p-branes case by showing first that the WZ terms may be characterised and
classified by CE-cocycles as well, and then by finding manifestly supersymmetric
potentials b on the superspaces 3 which are obtained by the techniques of Section 3 or
by dimensional reduction from these. We shall restrict ourselves here to the D2-brane
case, and hence to its associated 3 parametrised by (0%, X", 0., 0, Puys Puas Paps P)-

6.1. CE-cocycle classification of D-branes

The new feature in the D p-brane case is the fiddd A,(¢) directly defined on the
world-volume. The one-form A transforms under supersymmetry in such a way that
& = dA — B isinvariant, where B is a two-form on superspace such that

dB = —II*(CI,I'y),  IT°I1P. (78)

Let us now consider A as an abstract form. In our approach, the possible WZ terms will
be some non-trivial ( p + 2)-cocycles of the cohomology of a certain FDA (here, of I1A
type). This FDA is generated by the supersymmetric invariant IT*, IT* and ¥ and
defined by the structure relations

dif®=0,  dIT*=3(CI'*)ull*I?,  dF =I1*(CI,Ty,), IT°I1" .
(79)

Note that dd = 0 because the identity (CI"#I'};),,5(CI, )5 = Oisvalid in D = 10. The
non-trivial (p + 2)-cocycles are given by closed ( p + 2)-forms h constructed from I7T#,
IT*, & that cannot be written as the differential of a (p + 1)-form constructed from
them, and with the same dimensions as the kinetic Lagrangian, i.e. [h] =LP*. This
second requirement is necessary to avoid introducing dimensionful constants in the
action other than the tension, [T] = ML™P.

Since ¥ is atwo-form, h can be expanded in powers of & as

p+2
=],

L M Ot S (20)
n=0 '
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where h™ is a form of order k=p+2—2n and, since D = 10, p < 8 excluding the
degenerate case p + 1 = 10. Moreover, since [h(PT272M] = | PT121 the k-forms h(,
[h®] = L*"1, must be

h& = gorrm waz(C[‘

Mg Pk-2

), is symmetric (i.e, k—2=1,2569,10

r), I, k=2,...p+2,  (81)
where I'=1 or I';; so that (CI,

My Mg

for 1 and 0,1,4,5,8,9 for I';;). Since

]

dh= Z idh(p+2 2n)yn

+ Y (=) hPrEE(Crn Iy TR Y, (82)
o1 (n=1)! ¢
the required closure of h is equivalent to the following set of equations:
dh(pfz[p/z])=o for n= iz
’ 2

dn(P*2720 4 (—1)Ph(P=20TH(CI Iy ) ITTP =0, forn= [B],...,o.
(83)

At this point it is convenient to examine separately the p odd and p even cases.

(a) p even
The first equation in (83) gives dh® = 0. This means h® = 0 because h® # 0 would
imply by (80) having an additional dimensionful constant, [®]=L"* (% ]=L?). For
= 5 the second of (83) gives dh® = 0. Inserting h® from Egq. (81), we obtain an
identity, so a® is arbitrary.’* The remaining equations (for n= -2, etc.) are equiva-
lent, by factoring out products of forms IT* and II¢, to

aY(CIr#2) up (C —a?(CI'y) ap (CF r,).. =o,

5’
2a(6)(CFH4)a,B,( M- Fll) a(4)(CF[#1M2)D‘B (C Ms] ) ‘e’ = 0'
3a(8)(CF“G)O‘,B'(CI:H---#B)S’ a a(G)(CF[P-l Mg 11)0‘3 (C #s]rll)é’ T O
4a(10)(CFM8) D‘,B’(CI:" l‘«srll) o a(s)(cr[ﬂl I-Ls) alp’ (C I-L7] )5’5’ = 0
(84)

Note that the number of identities from (84) that are necessary to show that h is closed
depends on the values of p since 2< k< p+ 2, k even. Specifically, for the D2-brane

M1M2) 5'e’

1 We note in passing that in the heterotic case, for which N=1 (II* is MW), a® =0 because
(CIyy)yp IT°11P = C,, 11 *I1P = 0 since (I'y;)g 117 = IT*. So the chain of equations that follows does not
appear and there are no non-trivial WZ terms. This shows, as expected, that there are no D-branes in the
heterotic case.
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only the first identity is used, for the D4-brane the first two identities are relevant and
the first three (four) identities are required for the existence of the D6-(D8-)branes.

Egs. (84) have to be identicaly satisfied for certain values of the a's to be
determined. To find them, one may multiply the equations by (I"*C~1)#° (although the
resulting system is not equivalent to the original one). This procedure gives some
equalities between gamma matrices that are only satisfied if a® = —a®, a® = —6a®,
a®=—15a® and a® = —28a'?. These values are the solution of Egs. (84) and
determine closed forms h by (80), (81) provided that the following identities are
satisfied:

(CI'*2) g (CI,,.) 5 + (CIy1) i (CI, Ty, = O,

(CI'*) ap(CL,, . T11) 50 +3(CI ) 0 (CL, T ) . =0,
(CT*) g (CL, ) o+ 5(CT sy T10) e (CL T ), = O
(CI'*) o (CL,, T, +7(CIy,, D) aw(CL Ty),, =0, (85)

asisindeed the case (see Appendix B). Therefore we have shown that, for p even, there
exist closed ( p + 2)-forms h with the required dimensions for all even values of p,
p<8.

To prove that the h's obtained from Eq. (81) for the appropriate values of a are not
CE-trivial, it is sufficient to note that if there were a potential form b(IT#,IT%,.7),
do=h, then this form would be a Lorentz-invariant ( p + 1)-form with physica
dimensions LP*1, which does not exist for p+ 1 < 10 since p is even.

(b) p odd

In this case, the first equation in (83) gives dh® = 0. Again, this means h®® =0
because obviously there are no Lorentz-scalar one-forms that can be constructed from
IT*, IT* and .%. On the other hand, k in h™® has now the range 3< k< p + 2, k odd.
Of these h®), those corresponding to k=5 and k = 9 vanish independently of the type
of the matrix I" (see Table 1). This leaves us with h® and h(” and the second of (83)
leads to

a(s)(crﬂl)“,ﬁl(crl‘ilr) = 0' a(s)(cr[.ulr) aB,(CI—I“'Z]F]-l)S'E’ = 0’

8’

a?(CIr'*) p(Cl, . T),. =0, aP(CI

8'e

---Msr) "‘,B,(CI;LS]FM)(S’E’ =0.
(86)

M5 My

In the a® equations, I" hasto be I'}; (the other possibility, 1,,, may be shown to be
inconsistent by multiplying the second expression by (I"*C~1)#?). Multiplying the
fourth equation by (I""C~*)#? shows that a” = 0 for both I'=1, I';;. Thus we have
shown that the only candidate for aWZ term in the odd p case is obtained from h®, i.e.
from

p—1

h=II%(CI,Ty), 1" * | p>1. (87)
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But then h=d(;27.7 (°*P/2) by (79), and hence is a trivial CE cocycle. Therefore in
the D = 10, IIA theory there are no non-trivial WZ terms for the D-branes with p odd.
The other values for p found in our discussion are precisely those for which D-branes of
type 1A are known to exist. Thus the IIA D-branes are, as the scalar p-branes [2],
characterized by non-trivial CE cocycles.

6.2. D-branes defined on extended superspace

As we saw, one reason for considering superspace extensions associated with
extended objects is that it is possible to find on 3 manifestly invariant WZ terms since
then h may be expressed as the differential of a LI form b. We shall now show that this
is also possible for the D2-brane. The starting point is now the FDA given in Eq. (17)
with the generators with more than two vector indices absent, plus the equation for d,
i.e.

dITe =0. dIT# = 3(CI'*) (s ITIT*,
dIT= 2(CIyy) op I1°T1° dIT,, = 3(CI,, ), IT°IT*, (88)
dI1(® = §(CI,, I'y) , I1°IT°, d7 = (CI, I'y), ITHI°ITP .

The reason one should start from (88) is that the dual of the algebra defined by the first
five eguations is the one obtained when one computes the algebra of the Noether
charges associated with the supertranglations in the case of the type IIA D2-brane (see
Ref. [38)).

The next step, as was done in Section 3, is extending this algebra with the generators
obtained by replacing vector indices by spinorial ones. In the case of the D2-brane thisis
not difficult to do because, apart from the equation for d., the free differential algebra
one starts with is actually the-dimensional reduction of the eleven-dimensional one

dIT#* = 3(CI'*) apIT°II#, dll;; = 3(Cliz) (17 (89)

s

inwhich onesets IT# = (I1*,11*° = IT), II; = (I1,,,11,,, = I1(?). Since this D = 11
algebra has aready been extended recursively in Section 3 by the new one-forms II; ,
and I1,,, the extended algebrain D = 10 is simply its-dimensional reduction, for which
IL,, = (I1,,,11{?). The result is given by Egs. (88) plus

na?

dfl,, = (CL,) TP+ (CI'yI,) G ITITP + (CI'Y) ap I, TP
_(Crll)uBH,fZ)Hﬁa

dIT,? = (CI, I,) aBHVHB +(CI'") ap I PITF,

dll,,= —3(CI,,,) "1 = (CI, I'y)  , 1T*11 = 3(CT*) ap 1, 1T

+3(Cly) g ILPI" = 3(CI'*) ap IL 21T + 3(CI' ™) ap 11,5 11°

+3(CIh) ap I PI° + 2(CT#) 50 I, IT° + 2(CTyy) 5, P12,
(90)
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which, apart from the d¥ equation, corresponds to the-dimensional reduction of (61)
(with Z* = 2Z7+19)

{D..Dg} = (CI'*)ap X, + (CI,, ) (2" + (CI'y) opZ + (CL, Iy) s 2,
[%..D.] = =(CI'*) (s 2" = (CI, I'y) ., 2",

[z,D,] =(C]"11[I‘L)aﬁzﬁu'

[ X X,] = (CT#") g2,

[Z.X,] =(CI'ul) .2,

[X..27] = 381(CT 1) 0pZ°*,

[X,.2"] = 38, (Cly) 2%,

[2,2#] = = 3(CI'*)apZ%*,

[D..Z#"] = (CI'™) (pZ v,

[D..Z¥] = = (CI'y)apZ"? + (CI'*) (s ZP,

{D. Z”‘*} (3(CT")508f +2(CI'7),08f )27,

{D ZB} (I(CF11)756B+Z(Crll)va‘sﬁ)zya- (91)

We can now show, using the new forms in (90), that it is possible to find an invariant
WZ term b, h = db, on the extended superspace. In our case h is given by (Egs. (80),
(81); k=24)

h=(CI},)  JTMIT"TT 1P — (CI'yy) o ITTT P57 (92)

Again, it is possible to expand b as b = b® + b®. Using this expression in h = db,
and identifying the result with h, yields db™ = —(CI',),z IT°IT?, from which follows
that b = —211. Similarly,

db® = —2(0111“11)&61717“1]“1]5 + (CI;V)aBH“H”H“HB
=(C1}L;)QBH*~LH‘7H“HB (93)
where in the last equality we have rewritten the expression using the eleven-dimensional

notation. This has the advantage that the expression for b®® in D =11 was given in
(73),

b® = 211, [T — 211, [T“[T% — &1, [T71°. (94)

Reducing (94) to D = 10 and adding b®% = — 21 we find the invariant WZ term,
b= 211, MY+ LITPNMT— 211, I141° — 210, [TH1* — 211111

— 2017 . (95)

This shows that on the extended superspace corresponding to Egs. (88) and (90), the WZ
term of the type IIA D2-brane can be made invariant, as was the case for the ordinary
p-branes. We expect that this result holds for the other values of p.
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In contrast with the case of ordinary p-branes, the extended free differential algebra
is not the dual of a Lie algebra because of the equation for the two-form d.&. However,
it is easy to check that

d(z 1P = TM1P) = (CI, Iyy) T 1T (96)
so that, on the extended superspace, we may set
F = %H“H;“—H“H;Z), (97)

in accordance with (88), (90). This is not a surprising fact since from (88) we see that
d isequal to the h corresponding to the WZ term of the type Il A superstring on a flat
background. So it has to be possible to write it as the differential of an invariant form
b=b(I1* 11 I1?,11?) on the fully extended superspace S of the I1A superstring.
Since 5 = dA— B and B is defined on 3, dA may be written on 3. Making use of its
LI forms, i.e. of

e =dg~,
IT* = dx* + 3(CI'*) 4506 *,
1I¥ = dg, + 3(CI, I';) ,,0°d6 7 ,
I? =dg, — (CI,I'y) a0 — (CT'*) 45 de, 0F — é[(cz;rn)aﬁ(crﬂ)&
+(CL, Iy, (CT*) o | 676°d0°, (98)
it is easy to identify A as the one-form on S
A= @, dx" + 3¢,do°. (99)

In this way, the customary Born-Infeld world-volume field A;(£) becomes here ¢ * (A),
with A on 3 given by (99), and its existence may be Iooked at as a consequence of
extended supersymmetry.

The previous discussion shows that it is natural to rewrite the action of the D-branes
on aflat background by using only aobjects that are initially defined on the appropriately
extended superspace. We show now that the Euler—Lagrange (EL) equations are still the
same (provided a rather natural condition is met) and that the gauge transformations of
A,(£) can be reinterpreted in the new language. So at this point it seems that the
geometric difference between the ordinary p-branes and the D p-branes is that while the
action of the former may be defined from forms on ordinary superspace 2, the action of
the latter requires the extended superspace of the I1A superstring if one whishes to avoid
objects that only have a meaning on the world-volume. In the IIA superstring case the
extended superspace was also considered, but the new variables appeared only in the
WZ term and as total derivatives (Section 5.1) and thus had trivial EL equations. In the
D-brane case, in contrast, these variables have non-trivial EL equations.

Let us now see how the EL equations change by making the substitution A — ¢, dx*

+ 2¢,d0 Let I[x*,0¢ A;] be the action before making the subtitution, where A are
the coordinates of the form A (A=A d¢'). The EL equations are

Sl ol ol

=0, =0, ——=0. (100)
Sx* R SA,
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When the substitution is made, there are new terms in the equations, and they read

L 8l sA(E) el sl 4l
Jder ———+ — =0, — = —4x*=0
SA(E) 8xH(&)  Bx 5g, OA
51 SA(&) 8l 51 sl
fdg'p“ , ;(5) +— =0, — =3-—860%=0,
SA(E) 80°(&) 86 5, 2 OA
(101)

where the additional contributions come from the partial functional derivative terms. If
aa 0 x* and 539,60 were zero without ;- being zero, this would imply the collapse of
one world-volume dimension. Thus, we must have % = 0 which in the first equation of
each set in (101) implies Egs. (100). Hence both actions are equivalent. In fact, it may
be shown that there is an additional gauge freedom which accounts for the difference of
degrees of freedom between A (Eq. (99)) and A;(é), but we shall not discuss this
here®. This seems to indicate that, when the action on W is obtained from entitieson 3,
there is an additional gauge freedom which in our formulation plays a role complement-
ing that of k-symmetry.

Finaly, the U(1) gauge field A(¢) on W has a gauge transformation §A,(£) =
9, AC£). The question now is what is the gauge transformation of the component fields if
one writes A;dé' as ¢ *(A). In other words, for a given A(¢), there should be a
transformation of ¢, and ¢, in (99) reproducing & A. This may be obtained by means
of asuperfield A such that ¢ “A(x*,0%) = A(£). Then, if under a gauge transformation
one defines 8¢, =9,A and S¢,=29,A, ¢ (A) behaves as expected since then
8¢ *[ g, dx* + 3¢,df*] = A. The fact that when the supersymmetry transformations
of afield close only modulus a gauge transformation one obtains an extension of a FDA
is not restricted to Dp-branes. In fact, one may achieve manifest invariance by
introducing an electromagnetic potential on the world-sheet in the Green—Schwarz
superstring action, in which case the string tension is the circulation of the potential
around the string [48] (see also Ref. [49]) and a similar result applies to the other scalar
p-branes [50]. Clearly, the world-volume fields introduced there could be defined on our
appropriate extended superspaces as well. As for the 1I1B D p-brane, an analysis similar
to that in this section for the IIA case would classify them by first showing that WZ
terms exist for odd p. In a second stage, the world-volume gauge field A may be
expressed as the pull-back of allIB superspace one-form. In fact, this last point for the A
inthe p=111B D-string case has been discussed very recently in [22] by introducing an
appropriate extended group manifold. We may conclude, then, that the different
world-volume fields may be expressed in terms of forms defined on suitably extended
superspaces.

7. Noether charges and D-brane actions
It follows from the discussion of Section 6 that the world-volume field A(&) that

appears in the D2-brane action may be written on the superstring extended superspace

%5 We thank P. Townsend for discussions on this point.
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parametrized by (x*,0%,¢,,¢,). On the other hand, the D2-WZ term, which is
quasi-invariant in these coordinates, can be made strictly invariant by further extending
the previous superspaceto 3 = (0%, X",¢,,0,, €., PuarPap¢)- In this way, the whole
action is invariant.

If one now computes the canonical commutators (or Poisson brackets) of the charges
corresponding to the symmetries of the action, the resulting algebra is exactly the RI
version of the Lie algebra dual to (88) (removing its last line) plus (90), given in (91).
The RI generator algebra ({Q,Q}, etc.) is the same as (91) with an additional minus sign
on the r.h.s. Let us concentrate on the {Q,,Q;} commutator,

{Qu.Qs} = (CI'*)upP, + (CI,I'yy) ,, 2" + (CI,,,) y 2" + (CI'yy) o Z
(102)

(there has been a redefinition of the generators so that {Q,Q} = +CI"*P, etc.). Let us
assume that we had written the action, as is customary, in terms of (x*,0¢, A) aone,
with A= A(¢) directly defined on W. In this case, the CI,, and CI';; contributions
would come from the quasi-invariance of the WZ Lagrangian, while CI';; I, would be
the result of the contribution of the A(¢) field to the Noether current [38] (see aso Ref.
[47]). This follows easily from the appropriate definition of the conserved Noether
currents and charges (see, e.g., Ref. [26]) which include an additional piece when the
Lagrangian is quasi-invariant, a common feature of the conventional actionsfor p-branes
[12]. In the present D-branes case, there is an additional contribution due to the
world-volume field A( &) since its transformation properties, A= A, are postulated to
compensate for those of the composite object B, 6B=dA, so that ¥ =dA—B is
invariant. As a result, the supersymmetry transformations do not close on A, and this
produces an additional term by a mechanism similar to the one in the standard
guasi-invariance case.

These modifications become evident in our context, i.e. by formulating the action on
the extended superspace. Let us consider the D2-brane Lagrangian with the quasi-in-
variant WZ term b =b(x*,6¢¢,,¢,). The conserved Noether currents then have to
include the quasi-invariance piece. If we wrongly ignored this additional term, the
(canonical formalism) algebra of the corresponding (non-conserved, non-Noether)
charges would be the algebra of the symmetries x*,0¢ ¢,,¢, of the Lagrangian, i.e.

{Q,.Qs) = (CT'*) P, + (cqul)aﬁz““. (103)

The algebra of the conserved Noether charges is not (103), however, because these must
include the quasi-invariance contribution. We may find the correct algebra immediatley
by replacing the quasi-invariant WZ term b, by b=b(X",0%¢,,0,: P+ PuarPap )
which is manifestly invariant since the transformation properties of the additional
variables (gow,gow,goaﬁ,go) remove the quasi-invariance of b. By definition, the trans-
formation properties of al the coordinates obviously close into the group law or algebra.
Hence, it follows that the algebra of charges computed using the canonical formalism
reproduces (102), and that the contributions to Z*” and Z are entirely due to the WZ
term b (or to the quasi-invariance of b(x*,0%,¢,,¢,) if we used b instead).
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8. Branes with higher order tensors: the case of the M5-brane

We shall now show that the previous analysis can be applied also to other extended
objects that are neither ordinary p-branes nor D-branes. We shall consider here the case
of the D = 11 M5-brane, which contains a world-volume two-form field A in the action
(see Ref. [51]). The action in a flat bosonic background depends on A trough
H = dA — C, where C is a background three-form. We shall take as our starting point
the case with C =0 and with all other forms of rank higher than one in that action
vanishing. We do not need to worry about the (generalized) self-duality condition for A
on the world-volume, since this condition may arise as a field equation for an auxiliary
field (see Refs. [51,52]). The supersymmetric action of the M5-brane is obtained in two
steps. First, one substitutes H = dA — C for dA, where C is a form on ordinary flat
superspace such that

dC= —(CI,,) 1M1 IT?, (104)

and the transformation properties of the world-volume field A are fixed so that H is
invariant. Secondly, a WZ term is added to obtain « symmetry.

Let us now find the WZ term in our framework. It should be obtained from the FDA
generated by the abstract invariant forms IT<, IT#, H,

dl1*=0,  dIT*=3(CI'*)II°II*,  dH=(CL,,), T"I"II*I"
(105)
and be given by a CE-non-trivial potential b of aclosed form h(IT1%,IT* H). Thus, we
have to solve the problem of finding non-trivial ( p + 2)-cocycles of the FDA (105). We

shall find that there is no solution unless p = 5.
A general (p + 2)-form on (105) can be written as

h=hPt2 4 hP-DY - (106)
there are no further powers of H since H2=H A H = 0. The closure of h gives

dn(P*2 4 dhP~YH — (= 1) "NP~D(CT,, ), T 1 F = 0, (107)
which is equivalent to

dh(P~b =0,

dn(P*? = (=1)"NP~D(CL,, ), T TI . (108)

Now, since [h] =LP** and [H] = L3,

h(Pt2 = a(p+2)(C[;leup)aBHm I ITeIT P,

hP=b=aP-b(CI, JTH T TTP (109)

1---#p—3)a
for some constants a'**? and aP~ Y. The first equation in (108) requires a'P~Y =0
unless p—3=2, in which case aP P is arbitrary due to the identity
(CI,)wp(CI)ye =0, valid in D=457,11 If p#5, aP Y=0and hP~Y =0,
and the second equation of (108) gives dn(P*? =0, which again implies aP*? =0
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unless p=2. But if p=2, we have h=h®"? o« (CI},), TMI'II*II? = dH, in
which case h is the differential of a LI form and hence CE-trivial. Thus we are just |eft
with the case p=5, a® ¥ arbitrary. Inserting (109) in (108) gives, factoring out the
IH*sand IT*'s,

ga(5+2)(CFM5) aB,(C[;‘Ll---ILs)S’e’ + a(s_l)(Cﬂ Mll’-z) a,B,(C[l‘LsIM])ﬁ’e’ =0. (110)
The second identity in (B.1) gives a” = — Za®. The resulting closed form
hot (CIL, ) % . ITPIT1P — $(CT,, ) JTITITTTPH - (111)

is not CE-exact, as may be seen by an argument analogous to that used in the IlA
D-branes case: a LI potential form b would have to be a scalar six-form depending on
IT*, IT* and H with dimensions L®, which does not exist.

It is possible to see, however, that a LI expression for H exists on the appropriate
extended superspace. Since H is a three-form, it has formally the same properties as the
invariant WZ term b of the M2-brane, the extended superspace of which is the one
corresponding to the Lie FDA obtained by the methods of Section 3. Egs. (3), (18), (21)
and the first of (22) with (ag,a,,a,,3,) = (3,3,1,— 3) give, respectively,

dIir«=o0,
dIT* = 3(CI'*) 4 II°II*,
dil,, = %(CI;V)QBH“HB ,

o

dIT,z= —3(CI,, ) I = 3(CI*) pll, 11" + (CI'*) apll, 5 11°
+2(CI'™) o IT, 5 1T°,
dHW=(CF,,#)QBH”Hﬁﬁ—(CF”)aBHmHﬁ, (112)
i.e. the dua of (61)). Using again (73) we may then write
H= 21", + SIT41°0,, — 210, IT°11°. (113)

We might now go on and show that there existsa LI b such that h = db on a suitably
extended superspace; we shall omit its expression [19] since it is not needed below.
What we wish to show is that now we may use (113) to replace the world-volume
two-form A(¢) by the pull-back of the two-form A on extended superspace given by

A= %gowdx“dx” - %gow dx“dg* — %%Bdeadeﬁ + 3—10% X*(CI'") 4pd6*do P
+ 550, IX*(CI'") 0p0°d0* — 150, (CI'*) o (CI'") 5.6 *d6 P0°d6 ©
+150,,(CI'*) 5.0°d0°d0* + % ¢,,(CI'*) 5.dO°dOD . (114)
Again, this expression may aso be used to find the gauge transformation §A(¢) =
dA(&). This is achieved by the one-form on superspace A = A, dx* + A, df¢, ¢ " (1)
= A(&). Then, if

8¢, = 301, Ay,
86,0=—3(9 2+ 3 A,) + 39, A (CI")apb?,
80,5 = — 50 Ag + 5 (CI*)ap°(9, A5+ G A,)
+35(CI#) 5,0°(d,Ag + G A,) = 230(CT*) 56 (CI™") 0 0%0°6, , A,

+ 20X (CI™") apd) , A, (115)
one obtains 8¢ “(A) = dA(£).
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As in the previous D-brane case, the EL equations derived from the action
|[X”|0a1Aij]l

ol ol ol

0, =0, —— =0, (116)
SxH 50° Y

are equivalent to the ones corresponding to the new action in which A(¢) is the
pull-back of (114). Indeed, the equation for ¢, gives %”ai 6°3,6* = 0, and substituting
it into that of ¢, ,,

6l
s (T 80X190 + 15(CT*)50°3,0°9,07 + 5(CI*)5.09,0°90°) =0,
i
(117)
gives %uai X*9,6“ = 0 and so on. Therefore one obtains
dg/PriL 5l 5Aij<§,)+ al o iﬂx”afoo
f 25Aij(§f) SXH(€) Sxt BAiji pXo =0,
8l 8A(E) 8l 3l Y
fdgrp+1% lj(§)+—=0, —HiX“0-0“=0, —(7,9“80ﬁ=0
OA;(€') 80°(&)  80° 3A ! 5A;

(118)

The second equation implies %uai x* =0 for al w if one wants to avoid the possibility

of one dimension of the object collapsing. This in turn implies %. =0 for the same
reason, and inserting this equation into (118) gives (116).

9. Conclusions

We have provided in this paper a unified approach to the study of various p-branes
by defining them on suitably extended superspaces. All of these are supergroup
manifolds, extensions of the basic odd abelian groups sTr, determined by the spinors of
the specific theory considered. The extension algorithmsin Sections 2.2 and 3 show how
they depend, when they do, on specific identities for I-matrices. The central extensions
do not need any I-identities, but the non-central ones require the identities (20),
precisely the ones needed to define the WZ terms of the old branescan.

The centrally extended superspaces are associated with (topological) charges, but the
introduction of manifestly supersymmetric WZ terms requires the addition of non-central
variables, already for the branes of the old branescan. When the procedure is applied to
D p-branes, it is seen that all the fields in their action may also be defined by pullbacks
of entities on the previoudy introduced superspaces. In the language of FDA'S, our
results show that all the FDA’s involved in the formulation of the p-branes considered
here become Lie FDA's on suitably extended superspaces. We conjecture, in view of
the previous discussion, that this is the case in general and that there exists an extended
superspace definition for all fields appearing in the action of the various p-branes. In
other words, there exists a kind of field /extended superspaces democracy by which all
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brane world-volume fields are pullbacks from some target superspace S The appropri-
ate 3 of the theory is given by an extension of a certain sTry and, using 3, the action
can be defined in a manifestly invariant form. In fact, in this field /extended superspace
democracy context, the invariance properties seem to characterize essentially the super-
brane actions. It should not come then as a suprise that k-symmetric actions may also be
introduced for D p-branes, as in [8] for D-branes with rigid 1A and 11B superPoincaré
symmetry. As is the case for ordinary p-branes, k-symmetry is achieved when the
relative coefficient of the kinetic and WZ-like part is such that the Bogomol’ nyi bound
is saturated.

Our extensions provide at the same time a connection between the CE cocycles and
the mechanism of partial breaking of supersymmetry. The CE ( p + 2)-cocycles lead to
(extended) loop-type or world-volume current algebras (see, e.g., Refs. [12,15,53-55])
and the two-cocycle to the corresponding algebra of charges defining the extended
superspace algebra. The new variables in the extended superspaces are also essentia to
define (invariant) actions. They may also be relevant in the problem of quantisation, the
formulation of dualities (see Section 2.3.1) and in the formulation of the additional
gauge freedom hidden in the definition of some superbrane fields, the world-volume
definition of which reflects an election of gauge. We suspect that the mathematical
existence of the extensions considered here has a deeper meaning beyond the aspects
discussed in this paper.

Note added

After completion of this paper an article [56] has appeared, where an approach similar
to that in Section 6.2 for the field A is given for the |1B D-brane case.
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Appendix A. Non-central extensions

We give here some details of the derivation of (22). After introducing I1, P

satisfying (21), we look for non-trivill CE 2-cocycles with external indices
(py.. pmy_paia,). There are four available LI two-forms with these indices,

p® = (CFV,,M_..,LP,Z)%MHVHP’

p?=(CI'") e, oy 7

pP=(CI'") a1, . 11"

p O =(CI'")apll,, 117, .
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none of which is closed. Looking for alinear combination p = p® + A, p@ + A, p® +
Ay p that is closed, we compute (making use of the MC equations for the available
II’'s)

dp={2a(CI, ) oo (CT )35+ A286(CT™) 0,0, (CT, ).

MV o p—2 MVRy - p—2

+A3al(CFV)alaz(CF )75

MV - 2

_)\4al(cru) aiV(Cl—;LV,u,l...Mpfz)a'zé}HVHyns

a.a
[T ()4 AT () T

a.a

+A4;;(crvym(crﬂyﬁﬁlgWrnh21@[@. (A.2)
Inside the first curly brackets above, one can combine the third term with the second,
changing at the same time its sign (the I"’s are antisymmetric in the vector indices). In
the fourth term, one can also symmetrise over y, & (since II, and II; commute).
Effecting explicitly this symmetrisation, as well as the indicated one (by the primes)
over a,, a,, one gets four terms, which, together with the other two, give exactly the
six permutations of (20) (the I''s are symmetric in the spinorial indices, so that the
twenty-four permutations of (20) reduce to six). The sum of al six terms will be zero
(due to (20)) if their coefficients are equal — this gives the equations

o\, —yA;=2a, —iaA,=2a,. (A.3)

Inside the second curly brackets in (A.2), the last term is zero because of antisymmetry
in w, v. The sum of the first two will be zero (for the same reason) if their coefficients
are equdl, i.e. if

as al

ad, + — A, =0. (A.4)

Solving the linear system of (A.3), (A.4) one gets

aS
A=—,  Ag=——, A=-8—, A5
2 a() 3 a-]_ 4 3-1 ( )

which leads to the first of (22).
For the next extension, looking for LI two-forms with indices (i, ... u,_3a;a,a3)
we find

p=(CI'") ajas I1, I,

PH - - 303

p® = (CI'*) s, 1",

ror
M1--- hp-3d2Q3

p(S) = (CFV) ajah Hv,u HB' (A6)

1--- Mp-3faj
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none of which is closed (we use, for simplicity, the same symbols p, A as in the
previous extension). For their linear combination p=p® + A, p@ + A, p® we com-
pute

dp=(CF")a'1a'Zal{(C1" JIRIL

Avpuy ... /'Lp73) Bal

a,
# (T Ty, )T

—a(CI'") a0y (CI'") o1, I

Py Hp-_323

+/\2a4(CF”)L,rIB{(CF ) AT ITP

TPV ... -3

+§(cr”) var IT m—ﬁ(cra) vy 1T m
A3 0Py ... 3 @203 "0V, ..
ay a

Mp - Mp-3Y

a'S
_8;(01—‘ )ﬂlz'ynavulu 'HY}HB

+Mp-3a3
1

+A3a2(CFV)a,1a,2{(CF )u'zaéna]]p

OpYpL .. hpo3

Mp s Mp-3Y

+—as(cr0) T Hf’——as(CF") i) I
Basopypy .oy g Baztdgyp, ..
a, a,

a. -
_8;:-(CFU)E'YH0{V;L1.../.L,)3a3HY}Hﬁ (A7)
(the barred indices in the last term denote a second symmetrisation, besides the one over
the primed indices). There is a novelty here compared with the previous extension: there
are four different types of terms in the I1's, the coefficients of which must separately
vanish, giving rise to four linear equations for the two unknowns A,, A, (care must be
taken of the fact that when the second symmetrisation in the last term above is effected,
corresponding to the barred indices, one obtains contributions to two different types of
termsin the IT's). Making use of (20) and of the symmetry properties of the I''s, asin
the previous extension, one arrives at the (overdetermined) linear system

= A= 2 2%
) &

As=a, A, —5A;=0 (A.8)

S

(the first equation appears twice) which nevertheless admits the solution
5a; =N
Ay=——, Ag=—, (A.9)
4a, 4a,

leading to the second of (22). The last of (22), as well as (23), are proved similarly.
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Appendix B. D =10 I-matrix identities

We prove here the I-identities needed in Section 6.1%°. The first two identitiesin (85)
follow by dimensional reduction from the known D = 11 relations

(CFMZ) B( Ml.wz)a's’zo’
() (O )= AT 5o (Ol = @

[ afnp Heafig]

where the tilded indices #=0,1,...,10.
The third identity can be proved as follows. First, using that

I:’-l---liszI;H---Ms[,;e_Sﬂﬂl---ﬂ4nﬂs]Ms (BZ)
and the fact that '3 = 1, we see that
A
(Crﬂs)a’ﬁ’(CF )Srer:(CFM)a'ﬁ’(CF Fn)ar(rllr ) (8-3)

since the second term in (B.2) does not contribute because (CI;, ), is antisymmet-
ric (primed indices are symmetrised). Now, due to the identity (CF )a 8 (CFMF M) =

0, we have (CT), (I, T*)* = —(L)* (T}, T'#),. O that
(Crﬂs)alﬁl( “1"'“6)6’6’ = _(CI—;‘Ll Fllr“ ) (Fllr )B’e’
n S(CF[ pr o 11) 50 (CIyy Ms])B’e” (B.4)

wherein the second equality use has been made of (B.2) and thefact that (CI,,  , I'11)s,
is antisymmetric.

Finaly, the fourth equation in (85) may be shown to be equivalent to the second.
Indeed, by multiplying the fourth identity by e*: #7*1*2"s and using that

1
1—’11""“(11—111 B Weﬂll”qul...p107qrpl"'p10—q,
one obtains
713! 61417
—(CF[vl) a'ﬁ’(CFV2V3])3//+ _(Cruwlvzuq—-ﬂ)aﬁ ( 1_,11)5 o,

(B.5)

which is equivalent to the second equation in (B.1) due to the fact that i I, I';; realize
the same Clifford algebraas I,.
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