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Abstract

We argue that a description of supersymmetric extended objects from a unified geometric point
of view requires an enlargement of superspace. To this aim we study in a systematic way how
superspace groups and algebras arise from Grassmann spinors when these are assumed to be the
only primary entities. In the process, we recover generalized space-time superalgebras and
extensions of supersymmetry found earlier. The enlargement of ordinary superspace with new
parameters gives rise to extended superspace groups, on which manifestly supersymmetric actions

Žmay be constructed for various types of p-branes, including D-branes given by Chevalley-Eilen-
.berg cocycles with their Born-Infeld fields. This results in a fieldrextended superspace democ-

racy for superbranes: all brane fields appear as pull-backs from a suitable target superspace. Our
approach also clarifies some facts concerning the origin of the central charges for the different
p-branes. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

As is well known, the existence of consistent classical actions for extended supersym-
metric objects of spatial dimension p is restricted to certain dimensions D of space-time.

w xThis is, e.g., the case of the p-branes of the minimal or ‘old’ branescan 1 , which
Ž . Ž .restricts the actions to certain values D, p for which there exists a Wess–Zumino WZ

term. This is needed for the k-symmetry of the full action that matches the physical
bosonic and fermionic degrees of freedom on the world-volume W, and the WZ term is

Ž . w xgiven by a closed pq2 -form which can be interpreted 2 as a Chevalley–Eilenberg
w x Ž . Ž . w x3 CE pq2 -cocycle on superspace. The first classification of p-branes 1 was
restricted to fields forming a scalar supermultiplet on W, consisting of scalars and
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spinors after gauging the k-symmetry. The restriction to superspace coordinates x m,u a

on W was later removed with the addition of higher spin fields, vectors or antisymmetric
tensors, forming vector or antisymmetric tensor supermultiplets on W. This, together

Žwith the Bose-Fermi matching conditions led to an enlargement of the possibilities see
w x .Refs. 4,5 and earlier references therein for the classically allowed supermembranes.

Recently, p-branes including an abelian vector gauge field on W have been interpreted
Ž . w x Ž w x .as Dirichlet D-branes 6 see Ref. 7 for a review . Their kinetic term is described by

a Born–Infeld type Lagrangian which replaces the usual Nambu–Goto one to accommo-
w xdate the vector potential; in similarity with the p-branes in 1 , there also exists a

w xk-symmetric world-volume action 8 for them. The introduction of other objects such as
Ž . w xL-branes which have linear supermultiplets on W 9 etc., have enlarged the number

and types of p-branes. Finally, the emergence of a web of dualities among the five
consistent ten-dimensional string theories, all presumably subsumed, together with

Ž w x.Ds11 supergravity, in the eleven-dimensional M-theory see, e.g., Ref. 10 has led to
the ‘second superstring revolution’ and to a change of the conventional views of

w xsupersymmetry. One version of the M-theory, M-atrix theory 11 , even reinterprets
space-time coordinates as non-commuting matrices.

The existence of various extended objects for which there is no unified description
suggests that, in the same way as Minkowski space was enlarged to the superspace S to
treat bosons and fermions simultaneously, it may be necessary to extend S further to
accommodate from a unified point of view a number of the physical aspects mentioned
above. In particular, one might hope to remove the need for defining fields directly on

˜W if an extended superspace S is introduced, as will be seen to be the case. This
&

extension of S is tantamount to enlarging the D-dimensional superPoincare sP to sP´&
˜ Ž .and to defining the extended superspace S by the quotient sPrSpin 1, Dy1 . Endow-

˜ing S with a supergroup structure means that there must exist new superalgebras going
beyond the ordinary supersymmetry algebra, and several of them have been discussed in

w xvarious contexts 12–22 . Our point of view, however, will be to assume that fermions
Ž . Ž .in the form of odd abelian spinor translations are the only basic i.e. initial entities.
We shall then look for the most general superspace groups that are allowed by group
extension theory and discuss their consequences for a unified picture of superbranes. We
find this path rather natural, but it is not the only one. Another possibility is to take the
world-volume supersymmetry of the p-branes into account by elevating the target

w x Ž w xsuperspace coordinates to world-volume superfields 23,24 see also Ref. 9 and
.references therein , but we shall not follow this superembedding or ‘double supersym-

metry’ approach.
As stated above, the problem is first a mathematical one. In much the same way as

rigid superspace is itself a group extension, and hence supersymmetry is the result of the
w xnon-trivial cohomology of a certain odd superstranslation group sTr 25,26 , it is worthD

Ž �looking for all the possible group extensions of the various sTr i.e. sTr s Ns1,D D
4.sTr , sTr , IIA, IIB, etc. to explore their role in more general theories. At the algebraˆ11 10

w xlevel, the possible supersymmetry algebras were already investigated in 27 and,
w x Žallowing tensor ‘central’ charges, in 28 tensorial charges were also considered in

w x.29–31 . But there is also a physical reason behind the mathematical extension problem.
It is known that the quasi-invariance of a Lagrangian under a symmetry indicates that

Ž .the second cohomology group is non-trivial, and that the symmetry group may hence
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1 w xbe extended. This was exploited in 12 to extend the supersymmetry algebra for the
supersymmetric extended objects by topological charges. For Lagrangians containing a

) Ž .quasi-invariant piece f b constructed from a form b on a group S by pulling it back
to a manifold W by f ) , where f:W™S, the extension may allow us, as is the case

˜ 2with the WZ terms b of supersymmetric objects, to obtain manifestly invariant terms b
˜ w xby defining them on an extended group manifold S. In fact, it was shown in 16 that to

w xevery free differential algebra in 2 corresponds a new space-time superalgebra, from
which invariant forms can be found to define new WZ terms3. We shall take the analysis

w x Ž w x.of Refs. 2,16,19 further see also Ref. 18 by considering various superbrane types
and by emphasizing the supergroup manifold point of view. Thus, we shall look for and

˜ Žintroduce extended superspace groups S in a systematic way we restrict our attention
.here to rigid superspaces . The additional variables in these will determine symmetries

Ž .to which topological charges may correspond via the standard Noether theorem. For
the branes of the old branescan, these new variables will appear only in the WZ term
and as a total differential. This will be different for the D-branes, for which we will
obtain, nevertheless, that it is also possible to find an action defined on an extended

Ž .superspace thus removing the necessity of introducing directly world-volume fields
Ž .with a WZ term given by a CE pq2 -cocycle. By showing that all these structures and

˜extended superspaces S follow from a basic odd translation group sTr defined by theD
˜ ŽGrassmann spinors of the specific theory, we may conclude that the S ’s and the

&
.corresponding extended superPoincare groups sP are in a way as fundamental as the´

standard one, and necessary for a proper description of the physics involved around
M-theory and its six weak coupling limit corners. The new variables may be relevant in
the search for superbrane actions, in the description of dualities or in the quantisation
process.

This paper is organised as follows. Section 2 contains all central extensions of sTr ,D

including ordinary superspace, for various dimensions, and its results are summarised in
a table. Section 3 considers in general the inclusion of additional non-central generators.

˜Section 4 is devoted to the structure of the new superspaces S and provides a compact
expression for the contribution to the Noether charges coming from the WZ terms of the

˜various possible actions, once they are formulated on S. Section 5 shows how the
simplest Ds10,11 extended superspaces are relevant to construct a manifestly invariant

w x ŽWZ term, both for the Green–Schwarz superstring 13,33 which we will complete with
.an additional contribution , and for the supermembrane. We shall recover there the

w xresults of 16 and compute the topological charges which, in our approach, correspond
to the new group variables. The question of the linearity of the group action is seen in
Section 5.1 to be associated with a coboundary election. Sections 6 and 8 show how the
case of the IIA Dp-branes and M5-brane may also be treated within the same
framework, i.e. how branes containing vector and tensor fields on W may be defined

1 w xFor a detailed account of quasi-invariance, Noether currents, cohomology and extensions, see Ref. 26,32 .
2 This is not always possible. When the group G is simple, the extension appears only at the loop algebra

Ž . Ž .of charge densities level, as for the su 2 Kac–Moody algebra for a WZW model, and disappears for the
algebra of charges, as required by Whitehead’s lemma.

3 Although it may be argued that these invariant terms should no longer be called WZ terms, we shall retain
this name for them.
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directly on suitably extended superspaces. We shall argue, in fact, that the picture is
general and that suitable target superspaces exist on which to define all the fields

Ž w x.appearing in the p-brane actions, including the various vector see also Ref. 22 ,
tensor, etc., world-volume fields. This is tantamount to establishing a general fieldsrex-
tended superspace democracy in which the world-volume fields and the extended
superspace variables are on the same footing, as was already the case for the minimal
branescan. Indeed this correspondence between coordinates and fields has occasionally

Ž w x.been discussed in the past in other contexts see Refs. 34–37 . Section 7 contains a
brief discussion of the origin of the contributions to the Noether charges in the D-branes

w xcase 38 in our approach. Finally, an appendix complements the general theory of
non-central extensions of superspace in Section 3 and gives the proof of some needed
G-matrix identities.

2. Central extensions and their superspaces

2.1. Standard superspace as a central extension

Let u be an arbitrary Grassmann spinor in a D-dimensional space-time. Its compo-
a Ž w D r2x w x ŽD r2.y1nents u 2 where Dr2 denotes the integer part of Dr2, or 2 in the Weyl

.case determine an abelian group of supertranslations, generically denoted sTr , withD

group composition law

u
XX a su

X a qu a . 1Ž .
Ž .When the Lorentz part is considered explicitly, there is an action r of Spin 1, Dy1 on

Ž .sTr and the relevant group becomes sTr (Spin 1, Dy1 , where ( indicates semidi-D D
Ž .rect product. Then 1 is replaced by

u
XX su

X qr A u , AXX sAXA , 2Ž . Ž .
Ž . Ž .where AgSpin 1, Dy1 and r A is the appropriate spin representation. The spinor u

Ž Ž .is often restricted to be of some specific type, usually minimal e.g., Majorana M ,
Ž . Ž . .Weyl W or Majorana–Weyl MW , when possible ; it may carry an additional index

Ž .is1, . . . , N if there is more than one supersymmetry. Associated with 1 is the abelian
� 4 4Lie superalgebra D , D s0 , which can also be described in terms of the left-in-a b

Ž . a a Ž .variant LI one-forms P sdu and the trivial Maurer–Cartan MC equation

dP a s0. 3Ž .
Extending sTr by the Minkowski translations x m, ms0, . . . , Dy1 leads to standardD
Ž . w x Ž .5rigid superspace 25,26 . Let us adopt the free differential algebra FDA point of

4 Ž . ŽSince we shall be considering left-invariant LI generators and forms, we shall use here D’s rather than
. Ž Ž .Q’s to denote the generators of the right translations the Q’s being realized as the right-invariant RI

. Ž .generators of the left translations . This distinction is of course irrelevant for an abelian group such as 1 but it
Žis not so when non-abelian parts are added nevertheless, the corresponding structure constants differ only in a

. � 4sign . Furthermore, LI and RI generators commute, Q, D s0. We may look at the D’s as covariant
Ž .derivatives and at the Q’s as the generators of the left supersymmetry transformations; see Section 4.

5 w xThe term refers to an algebra generated by differential forms which is closed under the action of d 39 .
w xFor early physical applications of FDA in supersymmetry see 40,41 and references therein.
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view to discuss the extension problem, since forms are especially convenient in the
construction of actions for extended objects.

a Ž m. a bLet u be Majorana, and consider the two-form CG P nP on sTr . Itab D

defines a non-trivial CE two-cocycle on the superalgebra of sTr , i.e. it is left-invariantD
Ž .LI , closed and not given by the differential of a LI one-form. Since by construction the

Ž .two-cocycle transforms as a Lorentz vector, it is consistent to extend the FDA 3 by a
one-form P m such that

1m m a bdP s CG P P 4Ž . Ž .ab2

Ž .we omit the wedge product henceforth . The above extension immediately implies
� 4 Ž m.D , D s CG X , with X central. One still has to relate the newly introduceda b a b m m

one-form to the coordinate x m. We define

1m m m a bP sdx q CG u du 5Ž . Ž .ab2

and choose the transformation law for x m so that P m is LI

XX m X m 1 X am m bx sx qx y CG u u . 6Ž . Ž .ab2

Ž a m.This gives rigid superspace S, parametrized by u , x and with group law given by
Ž . Ž .1 and 6 .

The above simple example exhibits already the key features of the extension
algorithm. Given a particular FDA to be extended, one identifies in general a non-trivial
two-cocycle of a desired Lorentz covariant nature and introduces a new LI one-form, the

Ž Ž ..differential of which is given by the cocycle. The new form here, 5 together with the
Ž Ž . Ž ..MC equations here, Eqs. 3 and 4 automatically define by duality an extended Lie

algebra. The new LI one-form is given by the sum of the differential of the new group
parameter and the potential one-form of the CE two-cocycle on sTr , which is not LI.D

Finally, the transformation properties of the new coordinate are fixed so as to guarantee
the left invariance of the new one-form, while those of the original manifold are
unmodified. The additional one-form can be made LI only if it is defined on the

˜ Ž .extended superspace manifold S. The new central generator, associated with transla-
tions along the new coordinates, modifies the r.h.s. of the original commutators of the

Ž . Ž .algebra. Since adding 4 to 3 involves a central extension, we could have introduced
6 Ž .a dimensionful constant as a factor in the r.h.s. of 4 . By not doing so, the dimensions

m a 2 a 2 a 1 2w x w x w xof P are fixed to be P s u . We shall, as usual, take u sL so that
w mxP sL.

Ž .If we add the Lorentz group, the result must reflect the action s of Spin 1, Dy1 on
Ž w x .the extension cocyle see, e.g., Ref. 26 , Section 5.3 , but we shall not consider

explicitly the effect of the simple part of the algebra which, apart from extracting the
Ž .various tensor-valued second cohomology groups from that of the trivial ss0 action

2Ž . Ž .H sTr see below , plays no essential role in our discussion once only Lorentzˆ0 D

covariant objects are used. Thus, central means, where appropriate, central up to
Lorentz transformations.

6 The value of this constant determines the specific element in cohomology space that characterizes the
central extension.
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The extension procedure described above can be applied more than once – there are
two basic patterns one may follow in this case. One can start in each step with the same
original manifold sTr , and keep adding two-cocycles and central generators or, in eachD

step, one can consider the result of the previous extension as the starting manifold. In
Ž .the first case Section 2.2 all new generators remain central and appear only at the r.h.s.

� 4of the original D, D anticommutator. In the second case, a richer structure emerges
since the generators introduced at each step can, in principle, modify all previous
commutators. We shall give the details of this second construction in Section 3.

2.2. Maximal central extensions of superspace

Let u a be Majorana. We may obtain additional Lorentz tensors, leading to new
central charges, by considering

1m . . . m m . . . m a b1 p 1 pdP ' CG P P ,Ž . ab2

1
w xm . . . m m m m m . . . m n n1 p 1 2 p 1 p 1 pG sG G . . . G ' e G . . . G , 7Ž .n . . . n1 pž /p!

where7 CG mCy1 syG mT. The antisymmetry in the Lorentz indices is needed to rule
� m n 4 mnout trivial dependences coming from the fact that G ,G s2h . The left invariance

Ž . m1 . . . m p Ž Ž ..of the new forms in 7 requires new group parameters w so that cf. 5

1m . . . m m . . . m m . . . m a b1 p 1 p 1 pP sdw q CG u P . 8Ž . Ž .ab2

Ž . m1 . . . m pThe superalgebra generator LI vector field Z , corresponding to P , ism . . . m1 p

realized by Z sErEw m1 . . . m p on the extended group manifold.m . . . m1 p

At this stage there are no restrictions coming from the Jacobi identity, equivalent to
Ž m1 . . . m p. ad dP s0, which follows trivially from dP s0. This is an alternative way of

stating that the p-tensor-valued mapping on sTr msTr ,D D

j m1 . . . m p u
X ,u su

X a CG m1 . . . m p u b , 9Ž . Ž . Ž .ab

satisfies trivially the two-cocycle condition

j u ,u X qj uqu
X ,u XX sj u ,u X qu

XX qj u
X ,u XX . 10Ž . Ž . Ž . Ž . Ž .

Ž m1 . . . m p. Ž .The symmetry of CG is needed to prevent the two-cocycle 9 from beingab

Ž . Ž . a Ž m1 . . . m p. btrivial i.e. a two-coboundary , since h u su CG u on sTr , which mightab D
Ž X . Ž X . Ž X. Ž .generate j through j u ,u 'h u qu yh u yh u , is identically zero. Thus,cob

Ž .9 defines a non-trivial extension. For a given space-time dimension D, the symmetry
Ž .condition restricts the rank of the tensors that are allowed in 7 . Hence, the problem of

� 4 Ž Ž ..finding all central extensions of the algebra D , D s0 or of the Lie FDA 3 isa b

reduced to finding a basis of the symmetric space P Ža mP b . in terms of tensors
Ž m1 . . . m p.CG symmetric in a ,b ; they define the Lie algebra CE two-cocyclesab

a Ž m1 . . . m p. bP CG P .ab

7 We adopt C'C for simplicity. By not considering C G mCy1 s G mT we rule out, e.g., they q q
w x Ž w x.pseudoMajorana spinors that exist for Ds8,9 mod8 see Ref. 42 .
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Ž . DWhen D is eÕen, the space of matrices with indices ab is 2 -dimensional. Since
DD D DŽ .2 sÝ , a basis for this space is provided by the 2 y1 matrices given by theps0 pž /

Lorentz tensors G m1 . . . m p of rank 1(p(D plus the unit matrix. For D odd, the spinors
DŽDy1.r2 Dy1 ŽDy1.r2have dimension 2 and, since 2 sÝ , a basis is provided by theps0 pž /

Ž Dy 1 . m1 . . . m p Ž .2 y1 matrices given by the tensors G of rank 1(p( Dy1 r2 plus the
unit matrix. The difference is a consequence of the fact that, for any D,

G m1 . . . m pG Dq 1 Ae m1 . . . mDG , 11Ž .m . . . mpq 1 D

where G Dq 1 is the chirality matrix. For D odd, G Dq 1 A1, and only the tensors of rank
Ž .0(p( Dy1 r2 are linearly independent.

m1 . . . m p Ž w x.For D eÕen, CG satisfies see, e.g., Ref. 43

Ž .Ž . Tpy1 py2 r2m . . . m m . . . m1 p 1 pCG se y1 CG , ms0,1, . . . , Dy1Ž . Ž . Ž .
p 12Ž .'esy 2 cos Dq1 .Ž .
4

Ž . Ž . w x Ž m1 . . . m p.Thus, es1 y1 for Ds2,4 6,8 mod 8 so that CG is symmetric forab

w x w x w xps1,2 mod 4 if Ds2,4 mod 8 and for ps3,4 if Ds6,8 mod 8 . For D odd, it
Ž .Ž py1.Ž py2.r2 w xturns out that the same condition, e y1 s1, holds for Ds3 mod 4 with

p' Ž .e s y 2 cos D. We have excluded here somewhat arbitrarily the Ds5,9 cases4

because in these dimensions no C such that CG mCy1 syG mT exists.
2Ž Ž ..The number of cohomology spaces H sTr (Spin 1, Dy1 for various sTrs D D

groups is given in the table. As a two-form, the various CE two-cocycles are given by
Ž m1 . . . m p.du CG du . The corresponding new generators Z are all central, as is Xm . . . m m1 p

itself. They are on the same footing and may be thought of as generalised momenta.
Each of the resulting extensions defines an extended superspace group; we will denote

˜them generically by S.
The table also includes the cases in which the spinor is Majorana–Weyl or complex

Ž . 0 m1 . . . m pDirac and Weyl . If the spinor is complex the independent tensors G G may
appear. The effect of considering Weyl spinors is taken into account by introducing a

Ž .chiral projector PP , say .q
The different extended supersymmetry algebras can be easily found from the results

in the table. We shall only give below two examples which contain formulae that will be
explicitly used later on. To avoid cumbersome factorials, we use a normalization of the

m1 . . . m pŽ .generators which is tantamount to defining the duality relations by P Zn . . . n1 p1 m . . . m m . . . m n . . . n m . . . m1 p 1 p 1 p 1 pŽ .s e so that P CG Z sCG .n . . . n n . . . np! 1 p 1 p

2.3. Applications

2.3.1. Ns1 theory extended superspace
Ž . D r2y1For D even, the basic spinors in 1 may be reduced to 2 -dimensional Weyl

2Ž Ž ..spinors, and the discussion of the possible H sTr (Spin 1, Dy1 spaces must takes D
w x athis into account. Let Ds2 mod 8 and let u be MW. The symmetry of
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Ž m1 . . . m p . m1 . . . m p m1 . . . m p Dq 1 ŽCG PP is now achieved if both CG and CG G or, on" a b

Ž . m1 . . . mDy p.account of 11 , CG are symmetric. Hence, there are central charges for
Ž w x.Ds2, ps1 and Ds10, ps1,5,9 i.e. ps1 mod 4 . As a result, the Ds10, Ns1

extended superspace algebra has the form

Dq, Dq s CG m PP X q CG m1 . . . m5 PP Z� 4 Ž . Ž .ab a ba b q m q m . . . m1 5

q CG m1 . . . m 9 PP Z . 13Ž .Ž . abq m . . . m1 9

Ž .Due to PP and to 11 , the first and last term in the r.h.s may be grouped into a singleq
Ž m .Ž .one, CG PP X qZ ; classically, Z may be absorbed by redefining X and theq m m m m

previous analysis shows that the vector-valued cohomology space is one-dimensional.
Ž m1 . . . m5. q qThe second term may be rewritten as CG Z where Z is a self-dualm . . . m m . . . m1 5 1 51q m . . . m6 10w x Ž .5-tensor 28 , Z s Z qe Z , with half the number of compo-m . . . m m . . . m m . . . m m . . . m21 5 1 5 5 6 10

16Ž .nents of Z . As a result, the degrees of freedom in Eq. 13 match: q16sm . . . m1 5 ž /2
101 Ž .136s10q see Table 1 . But in general Z cannot be reabsorbed, since them2 ž /5

Green–Schwarz action for the heterotic superstring produces such a contribution to the
w xalgebra 12 , of an origin different from that of X . Mathematically, this corresponds tom

Ž m. Ž m.the fact that the group parameters are different for X translations x and Z w ;m m

they are locally equivalent, much in the same way R;S1 locally, but they are different
globally. We may, however, achieve the symmetry under the exchange of X and Z9 9
Ž .say when the 9-direction is a circle of radius R. Then the spectra of X and Z are9 9

Ž w x.isomorphic under the T-duality exchange R™1rR see Refs. 44,45 .
Ž .The FDA form of the Ds10, Ns1 superalgebra 13 is given by the MC relations

1a m m a bdP s0 , dP s CG P P ,Ž . ab2

1m . . . m m . . . m a b1 5 1 5dP s CG P P , 14Ž . Ž .ab2

a m m1 . . . m5 Ž .where P , P and P are defined as as1, . . . ,32
1a a m m m a bP sPP du , P sdx q CG u P ,Ž . abq 2

1m . . . m m . . . m m . . . m a b1 5 1 5 1 5P sdw q CG u P . 15Ž . Ž .ab2

If Z is included separately, this introduces a further extension which requires adding am
1Žw . Žw . a bŽ . Žnew LI form associated with it, P , dP s CG PP du du we have writtenm m m q a b2

.the index down for consistency with later notation, as in Section 5.1 . At the group level
this means that the MW translations generate two types of transformations i.e. one has to
distinguish between the translations x m and the w , some of which may be compact, inm

which case the corresponding group law expression should be understood locally.

2.3.2. IIA theory centrally extended superspace
2Ž Ž . Ž ..Let us consider now the H sTr (Spin 1,9 , IIA spaces. The IIA superalgebra iss 10

the Ds10 algebra associated with two 16-dimensional spinors of opposite chiralities
Ž .which may be combined into a Majorana spinor. Then see Table 1 , the IIA theory

w xmaximally extended algebra 28 is found to be

D , D s CG m X q CG m1 m2 Z q CG m1 . . . m5 Z� 4 Ž . Ž . Ž .ab a b a ba b m m m m . . . m1 2 1 5

q CG 11 Zq CG mG 11 Z q CG m1 . . . m4G 11 Z ,Ž . Ž . Ž .ab a b a bm m . . . m1 4

16Ž .
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Table1
Ž .Some Lie algebra second cohomology groups for sTr minimal spinors are in boldface . n is the complex dimension of a Dirac spinor, equal to the real dimension ofD

w xMajorana spinors for Ds2,3,4 mod8 . The fourth column gives the dimension of the spinor indicated. The fifth and sixth column give the ranks for which
Ž m1 . . . m p. Ž Ž m1 . . . m p . . Ž Ž .. w xCG or CG PP are symmetric as deduced from 12 and the dimension of these Lorentz tensors; C itself is symmetric in Ds6,7,8 mod8 .ab q a b

Ž 0 m1 . . . m p. Ž 0 m1 . . . m p . ŽThe seventh and eigth columns do the same for the additional tensors G G G G PP appearing in the complex spinor case. These hermitian addingq
1. Ž Ž .. Ž .i when needed tensors are limited by duality Eq. 11 in the odd Ds7 case and to odd rank by the presence of PP in the Weyl case. The indicates halvingq 2

2Ž Ž ..due to self-duality. The number of real cohomology groups H sTr (Spin 1, Dy1 is given by the first number in the last column. These spaces are the relevants D
Ž . Ž . Ž .i.e. tensorial ones, once the Lorentz symmetry is considered since in this case sTr (Spin 1, Dy1 rather than sTr is the group to be extended. The action s ofD D

Ž .Spin 1, Dy1 on the extension cocycles is automatically taken into account by using only Lorentz covariant objects for them. The bracketed number in the last
nX

X X2Ž . Žcolumn ignores the Lorentz part and, as a result, dim H sTr s q n since the elements of sTr are odd for an ordinary n -dimensional abelian group0 D Dž /2
nX nX

X2 .dim H s . The number q n is given nevertheless since it serves as a check on the degrees of freedom: it is equal to the sum of the total real dimensions in0 ž / ž /2 2
the sixth and eigth columns
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� m1 . . . m p4 � m1 . . . mDy p 114 Ž .since the tensor spaces G and G G are isomorphic by Eq. 11 .
ŽNotice that X and Z belong to different cohomology classes their correspondingm m

11 .two-cocycles are not cohomologous due to the presence of G in the Z term . The
Ž .associated IIA Lie FDA, involving the LI one-forms dual to the generators in 16 , is

given by

dP a s0 ,
1m m a bdP s CG P P ,Ž . ab2

1m m 11 a bdP s CG G P P ,Ž . abŽ z . 2

1m m m m a b1 2 1 2dP s CG P P ,Ž . ab2

1m . . . m m . . . m a b1 5 1 5dP s CG P P ,Ž . ab2

1m . . . m m . . . m 11 a b1 4 1 4dP s CG G P P ,Ž . ab2

1 11 a bdPs CG P P . 17Ž . Ž .ab2

The new group parameters define the IIA theory centrally extended superspace,
Ž a m m m1 m2 m1 . . . m5 m1 . . . m4 .parametrized by the coordinates u , x ,w ,w ,w ,w ,w .

a i a i Ž .The IIB case with P 'PP du is1,2 is treated similarly by noticing that theq
presence of e allows for CG m1 m2 m3 PP , which is skew-symmetric.i j q

3. Non-central extensions and their superspaces

Ž . Ž .We start now from standard rigid superspace, Eqs. 3 , 4 for real, odd translations.
To keep the discussion as general as possible, we rescale P m, P by an arbitrarym . . . m1 p

Ž . Ž .dimensionless constant a , so that 4 , 7 becomes

dP m sa CG m P aP b , dP 'a CG P aP b. 18Ž . Ž .Ž .abs m . . . m 0 m . . . m1 p 1 p ab

Let us fix p and consider the resulting extended superspace, parametrized by
Ž a m .u , x ,w , as our starting group manifold. We look for a non-trivial CE two-m . . . m1 p

cocycle with p indices on the above extended superspace. This may now involve any of
the LI forms available, P m,P a or P . Inspection of the possible Lorentz tensorsm . . . m1 p

shows that the external Lorentz indices of this two-cocycle have to be of the type
Ž .m . . .m a and, hence, the only available LI two-forms are1 py1 1

r Ž1. s CG P nP b ,Ž .m . . . m a nm . . . m1 py1 1 1 py1 ba1

r Ž2. s CG n P P b. 19Ž . Ž .bam . . . m a nm . . . m11 py1 1 1 py1

Ž Ž1. Ž2.. 8For ps1, both are closed. For p02, d r ql r s0 gives l sa a provided2 2 s 0

CG n X X CG s0, 20Ž . Ž .Ž . X Xa b nm . . . m1 py1 g d

Ž . w x Žwhich holds only for certain values of D, p 1 for ps1, Ds3,4,10 and, with the
.appropriate modifications for complex spinors, Ds6 . The existence of such a con-

8 Ž .Primed indices are understood to be symmetrised with unit weight .
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Ž .straint, on both D and p, is a new feature – the non-triviality of 9 only restricted p.
We introduce now a new one-form P withm . . . m a1 py1 1

asn b n bdP sa CG P P q CG P PŽ . .Ž . bam . . . m a 1 nm . . . m nm . . . m11 py1 1 1 py1 1 py1baž /1 a0

21Ž .

Ž . 9for ps1 the coefficient of the second term can be arbitrary, see Section 5.1 . The
m1 . . . m p xw x wabove MC equation implies that both D , X and D,Z are modified by a term

proportional to Z m1 . . . m py 1a1, the latter being the only central generator at this stage
Ž m1 .. . m py 1a1Z is central because, by construction, P cannot appear at the r.h.s.m . . . m a1 py1 1

.of a MC equation expressing the differential of a LI form . This is a general feature of
the extension scheme in this section: at any stage in the chain of extensions, the only
central generator present is the last one introduced. Thus, each extension is central, but
the resulting algebrargroup is not a central extension of superspace: all generators but
the last one have non-zero commutators as a consequence of the subsequent extensions.
A second feature here is that successive extensions substitute one spinorial index for a
vectorial one, preserving the total number of indices. The chain ends with the introduc-
tion of a generator with p spinorial indices.

Repeating the above procedure, one finds that the next three extensions are in some
Ž Ž . .sense exceptional see 22 below , while the one introducing five spinorial indices and

all others after it follow a pattern which can be used to derive a recursion formula.
Ž .Skipping the somewhat involved algebra see Appendix A , we first list the results for

the next three extensions:

asn r n rdP sa CG P P q CG P PŽ .Ž . a am . . . m a a 2 nrm . . . m nrm . . . m1 21 py2 1 2 1 py2 1 py2a až 1 2 a0

as n by CG P PŽ . a a nm . . . m b1 2 1 py2a1

as n bX Xy8 CG P P ,Ž . a b nm . . . m a1 1 py2 2 /a1

dP sa CG n X X P X P rŽ . a am . . . m a a a 3 nrm . . . m a1 21 py3 1 2 3 1 py3 3ž
5a1 n bX X Xq CG P PŽ . a b nm . . . m a a1 1 py3 2 34a2

a1 n bX X Xq CG P P ,Ž . a a nm . . . m ba1 2 1 py3 3 /4a2

9 Ž . a ŽFor ps1, the one-form in the l.h.s. of 21 becomes P – notice that this is unrelated to P so that,a

.e.g., dP is non-zero . In general, we will not raise or lower the Lorentz indices of forms, their position beinga

w xused to distinguish between different types of them as in 19 .
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dP sa CG n X X P X X P rŽ . a am . . . m a a a a 4 nrm . . . m a a1 21 py4 1 2 3 4 1 py4 3 4ž
48a as 2 n bX X X Xy CG P PŽ . a b nm . . . m a a a1 1 py4 2 3 45a a1 3

12 a as 2 n bX X X Xy CG P P 22Ž . Ž .a a nm . . . m ba a1 2 1 py4 3 4 /5a a1 3

Ž .the a ’s in the r.h.s. normalise the P ’s with k spinorial indices . For the remainingk

extensions, which introduce one-forms with five or more spinorial indices, one estab-
lishes the following recursion formula:

dP sa CG n X X P X X P rŽ . a a½m . . . m a . . . a kq2 nrm . . . m a . . . a1 2 Ž .kq21 py Ž kq2. 1 kq2 1 py 3 kq2

Ž .kq2 n bX X Xql CG P PŽ . a b2 nm . . . m a . . . a1 Ž .kq21 py 2 kq2

Ž .kq2 n bX X X Xql CG P P , 23Ž . Ž .a a 53 nm . . . m ba . . . a1 2 Ž .kq21 py 3 kq2

where

a 2 k a kq1s sŽkq2. Žkq2.l sy q , l sy . 24Ž .2 3Žkq1. Žkq1.Ž .kq1ž /a al llkq1 kq13 22

Notice that the above recursion starts at ks3, which implies p05. On the other hand,
Ž . Ž . Ž .the maximum value of p of interest to us for which 20 holds true is ps5, i.e. 23

l1q 2is relevant here only for ks3, ps5. It is easily checked that P sL .m . . . m a . . . a1 py l 1 l

We give related explicit results, for ps1,2, in Section 5.

4. Structure of the new superspaces and Noether currents

4.1. Fibre bundle structure

All extended superspaces have a natural bundle structure, in which the basis is the
group to be extended and the fibre is the group by which we extend. For instance,

˜superspace S itself and the various extensions S in Section 2.2 may be considered as
the total spaces of principal bundles over the sTr ’s of the specific theory. TheD

two-forms which define the extensions are curvatures of invariant connections valued on
the central algebras by which sTr is extended. The D’s are then the horizontal lifts ofD

the vector fields E Eu a on the specific base manifold sTr ; this justifies the ‘covariantD
˜derivative’ name which may be given to the D’s in the algebra of the S ’s. Similar

considerations apply at any step in the chain of extensions in Section 3. From this point
of view, after the last step, one has a bundle structure with the last coordinate in the
fibre and all the rest in the base. As we show below, there is also another relevant
bundle structure with S in the base and all new coordinates in the fibre.

˜Let us now discuss the general case treated in Section 3. S is parametrised by the
Ž a m .coordinates u , x ,w ,w , . . . ,w . We will denote them collectivelym . . . m m . . . m a a . . . a1 p 1 py1 1 1 p
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Ž a . Ž .by the row vector fs z ,w where z parametrizes the base superspace S and w theA
Ž .fibre the space of all new coordinates . Referring to this block form, we will say that

the superspace part is ‘two-dimensional’ while the fibre part has ‘dimension’ pq1. The
LI one-forms that reduce to the differentials of these coordinates at the identity will be

Ž a .denoted by Ps H ,Q and the dual LI vector fields by the column vector ZsA
Ž A. t Ž .D ,Y t denotes matrix transposition . The corresponding RI objects will carry ana

additional hat.
Under a right group transformation, g™ggX, Z transforms like Z™T X tZ, T X being a

Ž .matrix of primed functions on the group, called the adjoint representation. We have
XX X <T sT T , ZPT sr Z , 25Ž . Ž .e adj

Ž .r Z being the adjoint representation of Z, given by the structure constants. Inspectionadj

of the MC equations then reveals that T is a lower triangular matrix with units along the
diagonal. We put accordingly

y1 y1 y1 y1A yA CBA Ct tT s , T s 26Ž . Ž .y1ž / ž /0 B 0 B

Ž .with A, B upper triangular matrices. The dimensions of A, B, C in block form are
Ž . Ž . Ž . Ž .2=2, pq1 = pq1 , 2= pq1 respectively. 26 shows that the fibre is a

subgroup, with adjoint representation given by Bt. In this notation, the LI vector fields
transform like

D AX DqCX Y
™ . 27Ž .Xž / ž /Y B Y

Ž X t.y1The LI forms similarly transform according to P™P T , i.e.

™ Xy1 Xy1 X Xy1 Xy1 . 28H , QŽ . Ž .Ž .H A , yH A C B qQ B
ˆ t y1 ˆ tŽ .For the RI objects it holds Zs T Z, PsP T , i.e.

ˆ y1 y1 y1D A DyA CB Ys , s .ˆ ˆ H A , H CqQ BŽ .Ž .H , Qy1ž /ž /ˆ B YY
29Ž .

The Lie algebra valued one-form vsQ Y serves as a connection in the bundle. Indeed,
Ž . Ž .one easily verifies that v is invariant under 27 , 28 when T is restricted to the

Ž .subgroup of the fibre As I, Cs0 . The horizontal subspace is spanned by the kernel
of v, i.e. by the components of D, the latter being the horizontal lifts of the standard

1Ž s. a Ž s. m b aŽ .superspace generators D sE Eu , X sE E x q CG u E Eu .a m m a b2

In later applications, in Section 5, the explicit form of the matrix By1 is needed – we
present here a few remarks that facilitate its computation. Inspection of the r.h.s. of the
MC equations for the new one-forms, in Section 3, shows that they always contain one
new one-form, multiplied by a P a or P m. For the dual Lie algebra this implies that the
new generators commute among themselves and only have, in general, non-zero
commutators with the superspace generators D , X . In other words, the group bya m

Ž .which we extend S is abelian to begin with and its generators acquire, as a result of
the extension, non-zero commutators only with the superspace generators. The structure
of the resulting Lie algebra is, in symbolic form,

w x w x w xD , D ;DqY , D , Y ;Y , Y , Y s0, 30Ž .
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in the notation introduced earlier. For T , the expression

Tsef A radjŽZA.'e z a radjŽDa.qwA radjŽY
A. 31Ž .

Ž . Ž .is well known. From the third of 30 though, we infer that the restriction of r Y toadj
Ž t.the fibre i.e. to the sub-block corresponding to B is zero. Denoting this sub-block by

Ž f . Ž .r Y we find for Badj

Bse z a r Ž f .
adj ŽDa.

t

'eu a r Ž f .
adj ŽDa .

tqx m r Ž f .
adj Ž Xm.

t

, 32Ž .
Ž f . Ž . Žwhere the matrices r D are given by the structure constants that appear in theadj a

. Ž .explicit form of the second of 30 . The interesting point here is that B depends on
Ž .u , x only – the new variables enter in T only through A, C.

4.2. InÕariant actions for the minimal branescan

As already mentioned, part of the motivation for studying superspace extensions
comes from their relevance in the construction of manifestly invariant p-brane actions.
For the branes of the old branescan, WZ terms on S have the form

S s d pq1j LL sl f ) b , 33Ž . Ž .H HWZ WZ
W W

10 Ž .where b is defined as the potential of the closed pq2 -form h on superspace

hs CG P m1 . . . P mpP aP b , dbsh. 34Ž .Ž .m . . . m1 p ab

Ž . Ž .W in 33 is the pq1 -dimensional world-volume swept out by the p-brane,
� i4 Ž 1 p. )parametrized by j s t ,s , . . . ,s ,is0,1, . . . , p and f is the pullback of the

embedding f:W™S. The constant l is fixed by the requirement of k-invariance of the
w x Ž . w x Ž w x.total action 1 we will ignore l henceforth . As is well known 1 see also Ref. 2 ,

Ž .the closure of h is equivalent to the condition 20 which we have seen to guarantee the
existence of the non-central extensions of Section 3. Using the new LI one-forms

˜ ˜available we may obtain a LI potential b for h on S. Its general form is
p

m m a a C1 pyk 1 kb̃s P b P . . . P P . . . P 'Q L , 35Ž .Ž .Ý m . . . m a . . . a k C1 pyk 1 k
ks0

where the last equation uses the notation of Section 3 and defines LC. The b ’s arek
Ž .numerical constants, determined by the second equation in 34 . We check that

k k1q pyk pq12 2˜w xb sL L L sL .
˜Ž . ŽWe compute now the explicit form for an invariant LL in 33 i.e. with b insteadWZ

. ) Ž . iof b . For a general one-form P we put f P 'P dj , so thati

P a sE u a , P m sE x m qa CG m u aE u b. 36Ž . Ž .abi i i i s i

Ž . Ž .Eqs. 35 and 33 give for the Lagrangian

LL sQ LC i , 37Ž .WZ C i

10 w xFor an explicit form of the quasi-invariant b on S see Ref. 46 .
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where, expanding multi-indices and using the above notation,

L m1 . . . m py k a1 . . . a k i 'b e i j1 . . . j pP m1 . . . P mpy kP a1 . . . P ak . 38Ž .k j j j j1 pyk pykq1 p

4.3. Noether currents for the new symmetries

The invariance under translations of the action of the supersymmetric objects implies
the existence of conserved currents. The integrals of the charge densities over a
spacelike section of the world-volume give constants of the motion for the p-brane.
When the action contains the standard WZ term b, the Noether current includes a term

w xD coming from the quasi-invariance of b, d bsdD. This was used in 12 to find
topological extensions of the supersymmetry algebra. When b is replaced by the

˜ Ž .invariant b in 35 , D is no longer present. However, the Noether current receives now a
) Ž .contribution from the additional fields f w , which leads to the same result.A

One can derive general expressions for the currents associated with the new genera-
tors. In the present case, where the relevant part of the Lagrangian is obtained by pulling

˜back to W forms initially defined on S, it is convenient to work on the extended
superspace, where quantities have a direct geometrical interpretation, and to pull the
result back to W at the end. To keep the discussion general, consider a manifold M
which can serve as world-volume and a target space N, of dimensions m, n respectively
Ž . Ž . � i4 Ž� j4.m-n and an embedding f of M into N, f: x¨y x where x y are local

Ž .coordinates on M N . Consider furthermore an action S given by

Ss f ) a , 39Ž . Ž .H
M

where a is a k-form on N and f ) is the pullback map associated with the embedding.
We assume that the submanifolds x 0 sx 0 , x 0 sx 0 of M form its boundary E M –init fin

their embeddings in N are the initial and final configuration, respectively. The equations
of motion are

d Ss f ) L a s0, 40Ž . Ž .HY Y
M

Ž .where Y is an arbitrary vector field on N which vanishes on f E M – we denote their
solutions generically by f . Proceeding along the lines of the standard derivation, withcl

inner derivations taking up the role of the partials E Ef , one finds the equations of, i

motion in the form

f ) i da s0, 41Ž . Ž .Y

where now Y is an arbitrary vector field, not necessarily vanishing on E M. For a
symmetry generated by Y one obtains0

d f ) J s0 , J ' i a , 42Ž .Ž .Ž .cl Y ŽY . YŽ .0 0 0

) Ž .which is the current conservation equation. For a quasi-invariant Lagrangian, f L aY0
) Ž . ) Ž . ) Ž .sf dD , the conserved current picks up a term in D, f J sf i ayD .ŽY . Y0 0˜ ˜Ž . Ž .In the present case, M, N,a correspond to W, S,b . The variation of the total

Ž .action from that of the new coordinates comes only from LL so that 41 givesWZ

) ˜ )0sf i db sf i h , 43Ž . Ž .Ž .Y Y
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where Y is an arbitrary vector field along the fibre. Since h is horizontal, the above
equations of motion obtained from variations of the w ’s, are satisfied trivially,A

consistent with the appearence of the w ’s in the Lagrangian through exact differentials.A

For the Noether currents associated to translations along the new coordinates we have
ˆ A Ž .Y ™Y and 42 gives0

) A A ˜Ad f J s0, J s i b. 44Ž . Ž .Ž . ˆcl Y

˜ ˆ A y1 A C AŽ . Ž . Ž Ž .. Ž .With b as in 35 and Y s B Y see 29 , the second of 44 gives for JC

A AA y1 C y1 C
DJ s B i P L s B L , 45Ž . Ž . Ž .D CY C

D A ˜Ž .Dsince i P sd . Notice that J is, in this case, a form on S rather than S .Y C C
Ž . 11Effecting explicitly the pullback in the first of 44 we find

AAi Ai y1 C iE j s0, j j ' B j L j . 46Ž . Ž . Ž . Ž . Ž .Ci

A Ž .Finally, the conserved charges Q are given by expanding multi-indices
p

m . . . m a . . . a1 pyk 1 km . . . m a . . . a 1 p y1 0 j . . . j1 pyk 1 k 1 pQ s ds . . . ds B b eŽ . n . . . n b . . . bÝH 1 pym 1 m mms0
Wt

=P n1 . . . P n py mP b1 . . . P bm , 47Ž .j j j j1 pym pymq1 p

Ž .where W is a hypersurface of constant t . Notice that since BsB u , x , the integrandt

above involves only superspace variables.

5. Applications: ps1,2

5.1. Ds10, Ns1 and the Green–Schwarz superstring

The case of the superstring is somewhat special, from the point of view of the
extension algorithm of Section 3: the first additional generator to be introduced, Z m, is a
vector, as X . We shall keep it here separate and denote by w the associated parameter.m m

1 1 12Ž . Ž . Ž . Ž .Fixing a ,a ,a s , ,1 in 18 , 21 , we find for the FDAs 0 1 2 2

1a m m a bŽ .dP s0 , dP s CG P P ,ab2
48Ž .1m b m b Žw . a bŽ .dP s CG P P q CG P P , dP s CG P P ,Ž . Ž .aba m m m m2ab a b

Ž . Ž .where m s 0, . . . ,9. Notice that d dP s 0 is implied by 20 for p s 1,a

Ž m. Ž . Žw .
X X X XCG CG s0. P in the above equation is the one obtained from thea b m g d m

Ž .second of 18 for ps1 – we have added a superscript to avoid any confusion with

11 Ž . AiEqn. 46 for j also follows from the standard expression for the current associated with an ‘internal’
Ai A Ž .symmetry of a Lagrangian LL , j sd w j E LL E w j . However, for the currents considered here theŽ .i

˜relevant part of LL is just LL . Since LL is obtained from a form on S, the above derivation allows us toWZ WZ
˜exploit the geometry of S. The above expression for the current also makes clear that, within the canonical

formalism, the integrated charge operators will reproduce the original symmetry algebra.
12 Ž a Ž .a .In Section 5.1 all spinors are Majorana–Weyl u ' PP u , etc. .q
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P m, since they have similar differentials; recall also that P and P a are unrelated. Asa

Ž .mentioned in Section 3, the two terms in the r.h.s. of the last of 48 are individually
Ž .closed and hence their relative normalization cannot be fixed by requiring d dP s0.a

We have nevertheless chosen the above symmetric normalization for convenience – the
Ž .results that follow, and in particular 59 that involves cancellations, do not depend

essentially on this choice.
The corresponding Lie algebra is given by

m m bD , D s CG X q CG Z , D , X s CG Z ,� 4 Ž . Ž . Ž .aba b m m a m ma b a b

m m bD ,Z s CG Z , 49Ž . Ž .aba

w x mwhich reduces to the Green algebra 13 if one omits Z . The associated group manifold
˜ a mŽ . Ž .extended superspace S is parametrized by u , x ,w ,w viam a

g u a , x m ,w ,w seu a Daqx m Xmqwm Z mqwa Z a

. 50Ž .Ž .m a

Ž .Making use of the Baker–Campbell–Hausdorff BCH formula, where, for the algebra
˜Ž .49 , terms of order four and higher vanish, we find the S group law

XX a X a XX m X m 1 X aa m m bu su qu , x sx qx y CG u u ,Ž . ab2

XX X 1 X b 1 X m 1 X bm b mw sw qw q CG u x y CG x u q CG u wŽ .Ž . Ž . aba a a m m m2 2 2ab a b

1 X 1 Xg X b X dm b m d g by CG w u q CG CG u u u qu u u ,Ž . Ž . Ž .Ž .ab gdm m2 6 ab

XX X 1 X a bw sw qw y CG u u 51Ž .Ž .m m m m2 ab

The bilinear terms in the expression for w
XX are the ones that give rise to the fourth of thea

Ž .MC equations 48 – the trilinear terms are required by the associativity of the group
law. Their sum gives the spinor valued two-cocycle j associated with the centrala

˜ a mŽ .extension of S u , x ,w by w .m a

One can now relate the LI one-forms to the coordinate differentials

P a sdu a ,
1m m m a bP sdx q CG u du ,Ž . ab2

1 1 1b m m b m bP sdw y CG u dx y CG u dw q CG x duŽ .Ž . Ž .aba a m m m2 2 2ab a b

1 1m b m gq CG w du q CG CG u ,Ž . Ž .Ž .ab gdm m2 3 ab

1Žw . aP sdw q CG u . 52Ž .Ž .m m m2 ab

Ž w x Žw .see also Ref. 20 although, omitting P , we disagree with the correspondingm

. Ž . Ž .expressions there . One may check that the LI forms in 52 satisfy the FDA 48 . From
Ž .the group composition law, one can compute the LI vector fields dual to 52 satisfying

Ž .49
1 1 1m b b m m bD sE q CG u E q CG u E y CG x EŽ . Ž . Ž .aba a m m m2 2 2ab a b

1 1m b m b d gy CG w E q CG CG u u E ,Ž . Ž . Ž .ab a bm m2 6 gd

1 b aX sE q CG u E ,Ž .m m m2 ab

1m m m b aZ sE q CG u E ,Ž . ab2

Za sE a note E m 'E Ew , E a 'E Ew . 53Ž .ž /m a



( )C. Chryssomalakos et al.rNuclear Physics B 567 2000 293–330310

Ž .Effecting a right group translation in 52 and reexpressing the result in terms of the
Ž . Ž t.y1P ’s, or computing the exponential in 31 , one finds for T

a Ž m. d d l Ž n . l e dd y CG u y CG u CG x q CG w q CG CG u uŽ .Ž . Ž . Ž .gd gb gegd gb bdg k l n l

m d0 d 0 y CG uŽ . bdn ny1tT s 54Ž . Ž .
r r dŽ .0 0 d y CG ubdk� 0

z0 0 0 d
b

Ž r z a m . Ž .the matrix indices are for the rows and for the columns . When Eqs. 51g n k b

Ž .are linearized in the primed variables viewed as the parameters of the transformation ,
Ž . Ž .they provide a realization of the algebra 49 , acting on the coordinate unprimed

Ž .variables. For our particular choice of parametrization 50 , this action is rendered
non-linear by the last term in the expression for w

XX. This term can be eliminated bya

modifying the two-cocycle by a two-coboundary, the latter being generated by a suitable
1a m m b˜ Ž . Ž .spinor-valued function h on S u , x ,w . Indeed, with h ' CG x ua m a m a b6

1 X X Xm b cobŽ . Ž . Ž . Ž .q CG w u we find for the coboundary j g , g 'h g g yh g yab m a a a6

Ž .h g , the expressiona

1 X m X b 1 X X bcob b m m bj s CG x u qu x q CG w u qu wŽ .Ž .Ž . ab ž /a m m m6 6ab

1 Xg X b X dm d g bq CG CG u u u yu u u . 55Ž . Ž .Ž .Ž . gdm6 ab

cob Ž .The new cocycle j sj qj modifies the last equation in 51 to reada a a

XX X X b X m X b X2 1 2 1m b m bw sw qw q CG u x y x u q CG u w y w uŽ .Ž . Ž . ab ž /a a a m m m3 3 3 3ab

1 Xg X bm dq CG CG u u u , 56Ž . Ž .Ž . gdm3 ab

which is linear in the unprimed variables although the definite symmetry properties
Ž .under exchange of primed and unprimed variables are now lost. The terms in 56 linear

Ž . Ž . w xin the primed coordinates agree omitting w with the first-order results of Ref. 20 ,m

Ž .where the equivalent coordinate redefinition w ™w 'w qh is given. For the LIa a a a

one-form associated with the new coordinate we find
2 2 1b m m b mP sdw y CG u dx y CG u dw q CG xŽ .Ž . Ž .ab žŽw . a m m m3 3 3ab a ba

q CG m w q CG CG m u gu d du b. 57Ž . Ž . Ž .Ž .ab bg /m m ad

The manifestly invariant WZ term for the superstring action is given by

1) ) Žw . m a˜S s f b s f P P q P P , 58Ž .Ž . Ž .H HWZ m a2
W W

w x Žw . mwhich differs from the one in 33 by the term in P P . It is immediately checked,m

˜ m a b ) ˜Ž . Ž . Ž . Ž .using 48 , 52 , that dbsdbs CG P P P and hence that f b and them a b
) Ž .standard WZ term f b are equivalent, differing only by an exact differential. Since

w x y1 w Žw .x w x 3r2the string tension T has dimensions T sML and P sL, P sL , them a

products TP P a, TP Žw .P m, have the dimensions ML of an action.a m

Ž .To compute the conserved Noether currents, we start from 45 which gives the
A ˜ y1 t y1Ž . Ž Ž .closed forms J on S. With B given by the lower right block of T see 54 ,

Ž ..26 we get
m m1 1m y1 n y1 b m m g b mJ s B P q B P sP y CG u du sdx ,Ž . Ž . Ž .b bgn 2 2

a1 1a y1 b aJ s B P s du 59Ž . Ž .b2 2
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m Ž Ž ..which, after pulling back on the world-volume, gives for the charge Q see 47

E x m
2p

mQ s ds , 60Ž .H
Es0

a Ž .Q being zero because we assume that u is periodic in s . The integral 60 may lead to
w xa non-zero result if the topology is non-trivial 12 .

5.2. Ds11 and the case of the supermembrane

Our starting point is the FDA of Section 3 with ps2. We fix the normalisation of
1 1 1Ž . Ž .the forms by setting a ,a ,a ,a s , ,1,y so that the dual Lie algebra becomess 0 1 2 2 2 2

D , D s CG m X q CG Z mn ,� 4 Ž . Ž .aba b m mn a b

nbX , D sy CG Z ,Ž .m a mn a b

abX , X s CG Z ,Ž .m n mn a b

1lt w l t x a bX ,Z s d CG Z ,Ž . abm m2

mn w m n x bD ,Z s CG Z ,Ž . aba

1nb n b n b gdD ,Z s CG d q2 CG d Z , 61Ž . Ž . Ž .� 4 Ž .gd gaa a d4

w xcoinciding with that given in Ref. 16 . The associated extended superspace group
Ž a m . 13manifold is parametrized by the coordinates u , x ,w ,w ,w viamn ma a b

gseu a Daqx m Xmqwmn Z mnqwma Z maqwab Z ab

, 62Ž .
where w , w are antisymmetric and symmetric, respectively, in their indices.mn a b

Ž .Application with the help of FORM of the BCH formula, where now terms of order
five and higher vanish, results in the following group law:

u aXX su aX qu a 63Ž .
XX X 1 Xm m m a a m2 3x sx qx y u u CG , 64Ž . Ž .a a2 2 3

XX X 1 Xa a3 4w sw qw y u u CG , 65Ž .Ž .m m m m m m m m2 a a1 2 1 2 1 2 1 2 3 4

XX X 1 X 1 Xa m a m3 4 3 4w sw y u CG w y u CG xŽ . Ž .a am a m a m m m m2 23 2 a a1 2 1 2 1 4 1 4 3 2

1 X Xa a a m3 4 5 6q u u u CG CGŽ . Ž .a a m m12 3 2 a a1 6 4 5

1 X Xa a a m3 4 5 6q u u u CG CG " 1 l 2 , 66Ž . Ž . Ž . Ž .Ž .Ž .a a m m12 4 5 a a1 6 3 2

XX X 1 X 1 Xm m m m3 4 3 4w sw y CG x w q CG x xŽ . Ž .a aa a a a m m m m4 21 2 a a1 2 1 2 3 4 3 4 1 2

1 X Xa a m m3 4 5 6q u u CG CG wŽ . Ž .a a a a m m6 3 1 4 2 5 6

1 X Xa a m m3 4 5 6q u u CG CG xŽ . Ž .a a m m6 3 1 a a5 6 4 2

13 w xWe use a parametrization different from the one in Ref. 16 .
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1 X Xa a a a m m3 4 5 6 7 8y u u u u CG CG CGŽ . Ž . Ž .a a a a m m24 3 1 4 6 a a7 8 5 2

1 X Xa a a a m m3 4 5 6 7 8y u u u u CG CG CGŽ . Ž . Ž .a a a a m m24 3 1 5 2 a a7 8 4 6

1 X Xa a m m3 4 5 6y u u CG CG wŽ . Ž .a a a a m m24 1 2 3 4 5 6

1 X Xa a m m3 4 5 6q u u CG CG xŽ . Ž .a a m m48 1 2 a a5 6 3 4

1 X Xa a m m3 4 5 6y u u CG CG wŽ . Ž .a a a a m m6 3 1 4 2 5 6

1 X Xa a m m3 4 5 6y u u CG CG xŽ . Ž .a a m m6 3 1 a a5 6 4 2

1 X Xa a m m3 4 5 6q u u CG CG wŽ . Ž .a a a a m m48 3 4 1 2 5 6

1 X Xa a m m3 4 5 6q u u CG CG xŽ . Ž .a a m m12 3 4 a a5 6 1 2

yu a3Xw CG m4Ž . a am a 3 24 1

1 Xa m3 4y u w CG " 1 l 2 67Ž . Ž . Ž . Ž .Ž .a am a8 1 24 3

Žin the expression for w , the r.h.s. is assumed to be symmetrised, with unit weight, ina a1 2

. ŽŽ . Ž ..a , a . The " 1 l 2 instruction in the last two expressions means that for each1 2
Ž .term displayed, one has to add subtract a similar term, with the primed and unprimed

Ž . Ž .variables exchanged taking into account statistics , if the order of the term is odd even
Ž X a ŽŽ . Ž .. X a Ž X a ..in the coordinates e.g. u w " 1 l 2 su w y yw u . This symmetrymb mb mb

property can be seen to hold in general: from the BCH formula e AX

e A se f Ž AX , A. it
Ž X. Ž X .follows that f yA,yA syf A , A and hence, terms of order n in the coordinates
Ž . Ž .are symmetric n odd or antisymmetric n even under the above exchange of the two

Ž .spaces. The linearized in the primed variables form of the previous expressions has
w x Ž . Ž .been given in 20 . Starting from 67 , we find for the LI vector fields of 61

1 a a m2 3 4D sE q u u CG CGŽ . Ž .a aža a m m12 2 5 a a1 1 6 4 3 1

1m m a a m m4 6 5 2 3 4q CG CG E q u w CG CGŽ . Ž . Ž .ŽŽ . a a a a a a/m m m m123 1 2 5 1 6a a4 6 3 42 5

1m m a a a m m3 4 5 6 2 3 4q CG CG E y u x CGŽ . Ž . Ž ..a a a a a a35 6 2 1 2 5

= 1a a a m m a a5 6 2 3 4 5 6CG E q u x CG CG EŽ .Ž . Ž .a am m m m8 5 6a a a a3 4 3 46 1 2 1

1 a m a m m2 3 2 3 4q u CG E qu CG EŽ . Ž .a a m m m2 2 1 a a3 3 4 2 1

1 1m m a m m a2 3 4 2 3 4y x CG E y w CG EŽ .Ž . a am m m m2 2 1 4a a2 3 2 31 4

1 m a a m a a2 3 4 2 4 3q w CG E qw CG E , 68Ž . Ž . Ž .a a a am a m a8 3 4 1 42 1 2 3

1 1a a m a a a m a2 3 4 5 6 2 3 4X sE y u u CG CG E q u CG EŽ . Ž . Ž .a am m m m m m6 22 5 a a a a1 1 1 4 1 36 3 2 4

1 1m a a m a a2 3 4 2 3 4q x CG E y w CG E , 69Ž . Ž .Ž . a am m m m2 4 3 4a a2 1 1 23 4

1m m m m a a m m a a1 2 1 2 3 4 1 2 5 6Z sE q u u CG CG EŽ . Ž .a a a a12 3 5 4 6

1 1a a m m a a a m m a3 4 2 1 5 6 3 1 2 4y u u CG CG E q u CG EŽ . Ž . Ž .a a a a a a12 43 5 4 6 3 4

1 1a m m a m m a a3 2 1 4 1 2 3 4y u CG E q x CG E , 70Ž . Ž . Ž .a a a a4 43 4 3 4
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1m a m a a m a a a m a a1 2 1 2 2 1 3 4 3 1 4 2Z sE q u CG E qu CG E , 71Ž . Ž . Ž .a a a a8 3 4 3 4

Za1a2 sE a1a2 72Ž .
Žantisymmetrisation with unit weight in m , m is understood in the r.h.s. of the1 2

m1 m2 ˜.expression for Z . The manifestly invariant WZ term on the extended superspace S

w xis given by 16

2 3 2m n m a a bb̃s P P P y P P P y P P P 73Ž .mn ma a b3 5 15

˜ 3Žw x w x .b sL , Tb sML . It depends on the additional w variables through total differen-
˜ m n a bŽ .tials since dbsdbshs CG P P P P .mn a b

The computation of the full T matrix for the supermembrane is rather tedious. For the
Ž . y1Noether currents though corresponding to the new variables we only need B .

Ž .Reading off the relevant structure constants from 61 , we find

0 0 0
w xm n1 1CG d 0 0Ž f . Ž . aa k2r D s ,2Ž .adj a

1 k a k a1 1 1 1� 0X X0 CG d q2 CG d 0Ž . Ž .b g b aa g4 2 2 2 2

0 0 0
Ž f . 0 0 0r X s . 74Ž .Ž .adj r

1 w xm n1 1� 0d CG 0 0Ž . b gr2 2 2

Ž . y1Using these in the exponential in 32 we get for B

1w x w x w xm n a m n m n a b m nX1 1 1 1 1 1 1 1 XŽ . Ž . . Žd yu CG d y x CG qu u CG CGŽ .aa b g ag b b2 2 2 2m n k 2 22 2 2

1k a a k a k aXy1 1 1 1 1 1 1XŽ . Ž .0 d y u CG y2u CG db g b aB s 2 2 2k a g42 2 2� 0b g1 10 0 db g2 2

75Ž .

Ž m1n1 k1a1 b1g1 .the external indices are for the rows and for the columns .m n k a b g2 2 2 2 2 2

Ž . ASubstituting now in 45 we find for the forms J on S

2 1 1m n m n a wn m x b w m n x a b1 1 1 1 1 1 1 1J s dx dx q u CG dx du q x CG du du. ŽŽ .ab3 15 15 ab

2 1 w xw xm d xn a m n b1 1 1 1sd x q u x CG du ,Ž .Ž .3 15 ab

3 1k a k a k a a a1 1 1 1 1 3 2 1J sy dx du y CG u du duŽ . a a5 30 3 2

1 k a a a1 1 3 2q CG u du duŽ . a a30 3 2

3 1k a k a a a1 1 1 3 1 2sd dx u y CG u u du ,Ž .Ž .a a5 30 3 2

2 2b g b g b g1 1 1 1 1 1J sy du du sd y u du . 76Ž .Ž .15 15

The above locally exact expressions result from rather non-trivial cancellations. The
Ž .currents are obtained by pulling back to W the forms 76 . For periodic u ’s the charges

k1a1 b1g1 Ž m1n1 w x.Q , Q but not Q for a non-trivial two-cycle 12 turn out to be zero. Thus,
Ž . m1n1this case provides a realization of the algebra 61 where only the Q term is

non-zero.



( )C. Chryssomalakos et al.rNuclear Physics B 567 2000 293–330314

6. The case of D-branes

Let us consider first a bosonic background for which all forms of the RmR sector
and the dilaton vanish so that the two-form FF'FyB, where FsdA and B is the
NSmNS two-form, reduces to F; A is the Born-Infeld one-form on the world-volume
Ž . Ž . iA j sA j dj . Then the action of the Dp-brane reduces toi

pq1 mIs d j ydet E x E x qF . 77Ž .( Ž .H i j m i j

Let us look for a manifestly supersymmetric generalisation of this action on a suitable
Ž .extension of flat superspace we shall consider here only Ds10, IIA D-branes . For the

ordinary p-branes the supersymmetrisation is achieved by substituting first P m fori
m w xE x and then by adding a WZ term b, dbsh, with h characterised 2 by being ai

Ž .non-trivial CE cohomology pq2 -cocycle on superspace S. It was shown in the
previous sections how to make these WZ terms manifestly invariant. We shall extend
this to the Dp-branes case by showing first that the WZ terms may be characterised and
classified by CE-cocycles as well, and then by finding manifestly supersymmetric

˜ ˜potentials b on the superspaces S which are obtained by the techniques of Section 3 or
by dimensional reduction from these. We shall restrict ourselves here to the D2-brane

˜ a mŽ .case, and hence to its associated S parametrised by u , x ,w ,w ,w ,w ,w ,w .m a mn ma a b

6.1. CE-cocycle classification of D-branes

Ž .The new feature in the Dp-brane case is the field A j directly defined on thei

world-volume. The one-form A transforms under supersymmetry in such a way that
FF'dAyB is invariant, where B is a two-form on superspace such that

dBsyP m CG G P aP b. 78Ž .Ž .m 11 a b

Let us now consider A as an abstract form. In our approach, the possible WZ terms will
Ž . Žbe some non-trivial pq2 -cocycles of the cohomology of a certain FDA here, of IIA

. a mtype . This FDA is generated by the supersymmetric invariant P , P and FF and
defined by the structure relations

1a m m a b m a bdP s0 , dP s CG P P , dFFsP CG G P P .Ž . Ž .ab m 112 ab

79Ž .
Ž m . Ž .X X X XNote that dd'0 because the identity CG G CG s0 is valid in Ds10. The11 a b m d e

Ž . Ž . mnon-trivial pq2 -cocycles are given by closed pq2 -forms h constructed from P ,
a Ž .P , FF that cannot be written as the differential of a pq1 -form constructed from

w x pq1them, and with the same dimensions as the kinetic Lagrangian, i.e. h sL . This
second requirement is necessary to avoid introducing dimensionful constants in the

w x ypaction other than the tension, T sML .
Since FF is a two-form, h can be expanded in powers of FF as

pq2

2 1
Ž pq2y2 n. m a nhs h P ,P FF , 80Ž . Ž .Ý

n!ns0
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where hŽk . is a form of order k'pq2y2n and, since Ds10, p(8 excluding the
w Ž pq2y2 n.x pq1y2 n Žk .degenerate case pq1s10. Moreover, since h sL , the k-forms h ,

w Žk .x ky1h sL , must be

hŽk .saŽk .P m1 . . . P mky 2 CG G P aP b , ks2, . . . , pq2 , 81Ž .Ž .m . . . m a b1 ky2

Ž . Žwhere Gs1 or G so that CG G is symmetric i.e, ky2s1,2,5,6,9,1011 m . . . m a b1 ky2

.for 1 and 0,1,4,5,8,9 for G . Since11

pq2

2 1
Ž pq2y2 n. ndhs dh FFÝ

n!ns0

pq2

2 1 p Ž pq2y2 n. m a b ny1q y1 h CG G P P P FF , 82Ž . Ž .Ž .Ý m 11 a bny1 !Ž .ns1

the required closure of h is equivalent to the following set of equations:

pq2
Ž py2w pr2x.dh s0 , for ns

2
ppŽ pq2y2 n. Ž py2 n. m a bdh q y1 h P CG G P P s0 , for ns , . . . ,0 .Ž . Ž .m 11 a b 2

83Ž .
At this point it is convenient to examine separately the p odd and p even cases.

( )a p eÕen
Ž . Ž0. Ž0. Ž0.The first equation in 83 gives dh s0. This means h s0 because h /0 would

Ž . w Ž0.x y1 Žw x 2 .imply by 80 having an additional dimensionful constant, h sL FF sL . For
p Ž2. Ž2.Ž . Ž .ns the second of 83 gives dh s0. Inserting h from Eq. 81 , we obtain an2 py 2Ž2. 14 Ž .identity, so a is arbitrary. The remaining equations for ns , etc. are equiva-2

lent, by factoring out products of forms P m and P a, to

aŽ4. CG m2 X X CG yaŽ2. CG X X CG G s0,Ž . Ž .Ž . Ž .X X X Xa b a bm m 11 m 111 2 1d e d e

2 aŽ6. CG m4 X X CG G yaŽ4. CG X X CG G s0,Ž . . ŽŽ . X X X XŽ .a b a bm . . . m 11 w m m m x 111 4 1 2 3d e d e

3aŽ8. CG m6 X X CG yaŽ6. CG G X X CG G s0,Ž . . ŽŽ . X X X XŽ .a b a bm . . . m w m . . . m 11 m x 111 6 1 4 5d e d e

4aŽ10. CG m8 X X CG G yaŽ8. CG X X CG G s0 .Ž . . ŽŽ . X X X XŽ .a b a bm . . . m 11 w m . . . m m x 111 8 1 6 7d e d e

84Ž .
Ž .Note that the number of identities from 84 that are necessary to show that h is closed

depends on the values of p since 2(k(pq2, k even. Specifically, for the D2-brane

14 Ž a . Ž2.We note in passing that in the heterotic case, for which Ns1 P is MW , a s0 because
Ž . a b a b Ž .a b aCG P P sC P P s0 since G P s P . So the chain of equations that follows does not11 a b a b 11 b

appear and there are no non-trivial WZ terms. This shows, as expected, that there are no D-branes in the
heterotic case.
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only the first identity is used, for the D4-brane the first two identities are relevant and
Ž . Ž .the first three four identities are required for the existence of the D6- D8- branes.

Ž .Eqs. 84 have to be identically satisfied for certain values of the a’s to be
Ž n y1. bd Ždetermined. To find them, one may multiply the equations by G C although the

.resulting system is not equivalent to the original one . This procedure gives some
equalities between gamma matrices that are only satisfied if aŽ2.syaŽ4., aŽ4.sy6aŽ6.,
Ž6. Ž8. Ž8. Ž10. Ž .a sy15a and a sy28a . These values are the solution of Eqs. 84 and

Ž . Ž .determine closed forms h by 80 , 81 provided that the following identities are
satisfied:

CG m2 X X CG q CG X X CG G s0,Ž . Ž .Ž . Ž .X X X Xa b a bm m 11 m 111 2 1d e d e

CG m4 X X CG G q3 CG X X CG G s0,Ž . . ŽŽ . X X X XŽ .a b a bm . . . m 11 w m m m x 111 4 1 2 3d e d e

CG m6 X X CG q5 CG G X X CG G s0,Ž . . ŽŽ . X X X XŽ .a b a bm . . . m w m . . . m 11 m x 111 6 1 4 5d e d e

CG m8 X X CG G q7 CG X X CG G s0 , 85Ž . . Ž Ž .Ž . X X X XŽ .a b a bm . . . m 11 w m . . . m m x 111 8 1 6 7d e d e

Ž .as is indeed the case see Appendix B . Therefore we have shown that, for p even, there
Ž .exist closed pq2 -forms h with the required dimensions for all even values of p,

p(8.
Ž . Žk .To prove that the h’s obtained from Eq. 81 for the appropriate values of a are not

Ž m a .CE-trivial, it is sufficient to note that if there were a potential form b P ,P ,FF ,
Ž .dbsh, then this form would be a Lorentz-invariant pq1 -form with physical

dimensions L pq1, which does not exist for pq1-10 since p is even.

( )b p odd
Ž . Ž1. Ž1.In this case, the first equation in 83 gives dh s0. Again, this means h s0

because obviously there are no Lorentz-scalar one-forms that can be constructed from
P m, P a and FF. On the other hand, k in hŽk . has now the range 3(k(pq2, k odd.
Of these hŽk ., those corresponding to ks5 and ks9 vanish independently of the type

Ž . Ž3. Ž7. Ž .of the matrix G see Table 1 . This leaves us with h and h and the second of 83
leads to

aŽ3. CG m1 X X CG G s0 , aŽ3. CG G X X CG G s0,Ž . . ŽŽ . X X X XŽ .a b a bm w m m x 111 1 2d e d e

aŽ7. CG m7 X X CG G s0 , aŽ7. CG G X X CG G s0 .Ž . . ŽŽ . X X X XŽ .a b a bm . . . m w m . . . m m x 111 5 1 5 6d e d e

86Ž .
Ž3. ŽIn the a equations, G has to be G the other possibility, 1 , may be shown to be11 32

Ž n y1. bd .inconsistent by multiplying the second expression by G C . Multiplying the
Ž n y1. bd Ž7.fourth equation by G C shows that a s0 for both Gs1, G . Thus we have11

shown that the only candidate for a WZ term in the odd p case is obtained from hŽ3., i.e.
from

py1

2m a bhsP CG G P P FF , p01. 87Ž .Ž .m 11 a b
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2 Ž pq1.r2Ž . Ž .But then hsd FF by 79 , and hence is a trivial CE cocycle. Therefore inpq 1

the Ds10, IIA theory there are no non-trivial WZ terms for the D-branes with p odd.
The other values for p found in our discussion are precisely those for which D-branes of

w xtype IIA are known to exist. Thus the IIA D-branes are, as the scalar p-branes 2 ,
characterized by non-triÕial CE cocycles.

6.2. D-branes defined on extended superspace

As we saw, one reason for considering superspace extensions associated with
˜extended objects is that it is possible to find on S manifestly invariant WZ terms since

˜then h may be expressed as the differential of a LI form b. We shall now show that this
Ž .is also possible for the D2-brane. The starting point is now the FDA given in Eq. 17

with the generators with more than two vector indices absent, plus the equation for dFF,
i.e.

1a m m a bdP s0. dP s CG P P ,Ž . ab2

1 1a b a bdPs CG P P dP s CG P P ,Ž . Ž .ab 8811 mn mn2 2 Ž .ab

1Ž z . a b m a bdP s CG G P P , dFFs CG G P P P .Ž . Ž .m m 11 m 112 ab a b

Ž .The reason one should start from 88 is that the dual of the algebra defined by the first
five equations is the one obtained when one computes the algebra of the Noether

Žcharges associated with the supertranslations in the case of the type IIA D2-brane see
w x.Ref. 38 .

The next step, as was done in Section 3, is extending this algebra with the generators
obtained by replacing vector indices by spinorial ones. In the case of the D2-brane this is
not difficult to do because, apart from the equation for dFF, the free differential algebra
one starts with is actually the-dimensional reduction of the eleven-dimensional one

1 1m m a b a b˜ ˜dP s CG P P , dP s CG P P , 89Ž . Ž .Ž .ab mn mn2 2˜ ˜ ˜ ˜ ab

m̃ m 10 Ž z .Ž . Ž .in which one sets P ' P ,P sP , P ' P ,P sP . Since this Ds11mn mn m10 m˜ ˜
algebra has already been extended recursively in Section 3 by the new one-forms Pma˜
and P , the extended algebra in Ds10 is simply its-dimensional reduction, for whichab

Ž Ž z .. Ž .P ' P ,P . The result is given by Eqs. 88 plusma ma a˜

dP s CG P nP b q CG G PP b q CG n P P bŽ .Ž . Ž . abma nm 11 m nma b a b

y CG P Ž z .P b ,Ž . ab11 m

dP Ž z .s CG G P nP b q CG n P Ž z .P b ,Ž . Ž . aba ba n 11 n

1 1m n m m ndP sy CG P P y CG G P Py CG P PŽ .Ž . Ž . aba b mn m 11 mn2 2ab a b

1 1 1Ž z . m m Ž z . m dq CG P P y CG P Pq CG P PŽ . Ž . Ž .ab a ba b11 m m md2 2 4

1 Ž z . d m d Ž z . d
X X XXq CG P P q2 CG P P q2 CG P P ,Ž . Ž . Ž .ab da11 d mb 11 b4 da

90Ž .
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Ž .which, apart from the dFF equation, corresponds to the-dimensional reduction of 61
Ž m m10.with Z s2Z

D , D s CG m X q CG Z mn q CG Zq CG G Z m ,� 4 Ž . Ž .Ž . Ž .ab a ba b m mn 11 m 11a b a b

mn nb bX , D sy CG Z y CG G Z ,Ž . Ž .abm a m 11 a b

w x bmZ, D s CG G Z ,Ž .a 11 m a b

mn a bX , X s CG Z ,Ž . abm n

abZ, X s CG G Z ,Ž .m 11 m a b

1 wlt l a bX ,Z s d CG t x Z ,Ž . abm m2

1n n a bX ,Z s d CG Z ,Ž . abm m 112

1m m a bw xZ,Z sy CG Z ,Ž . ab2

wmn mD ,Z s CG Z n x b ,Ž . aba

m mb m bD ,Z sy CG Z q CG Z ,Ž . Ž . aba ba 11

1nb n b n b gdD ,Z s CG d q2 CG d Z ,Ž . Ž .� 4 Ž .gd gaa a d4

1b b b gdD ,Z s CG d q2 CG d Z . 91Ž . Ž . Ž .� 4 Ž .gd gaa 11 a 11 d4

Ž .We can now show, using the new forms in 90 , that it is possible to find an invariant
˜ ˜ Ž Ž .WZ term b, hsdb, on the extended superspace. In our case h is given by Eqs. 80 ,

Ž . .81 ; ks2,4

hs CG P mP nP aP b y CG P aP bFF. 92Ž . Ž .Ž . abmn 11a b

˜ ˜ Ž3. Ž1. ˜Again, it is possible to expand b as bsb qb FF. Using this expression in hsdb,
Ž1. Ž . a band identifying the result with h, yields db sy CG P P , from which follows11 a b

that bŽ1.sy2 P . Similarly,

dbŽ3.sy2 CG G PP mP aP b q CG P mP nP aP bŽ . Ž .m 11 mna b a b

m̃ ñ a bs CG P P P P 93Ž .Ž .mn˜ ˜ ab

where in the last equality we have rewritten the expression using the eleven-dimensional
notation. This has the advantage that the expression for bŽ3. in Ds11 was given in
Ž .73 ,

2 2 3Ž3. m n a b m a˜ ˜ ˜b s P P P y P P P y P P P . 94Ž .mn a b ma3 15 5˜ ˜ ˜

Ž . Ž1.Reducing 94 to Ds10 and adding b FFsy2 PFF we find the invariant WZ term,

2 4 2 3 3m n Ž z . m a b m a Ž z . ab̃s P P P q P P Py P P P y P P P y P PPmn m a b ma a3 3 15 5 5

y2 PFF. 95Ž .
Ž . Ž .This shows that on the extended superspace corresponding to Eqs. 88 and 90 , the WZ

term of the type IIA D2-brane can be made invariant, as was the case for the ordinary
p-branes. We expect that this result holds for the other values of p.
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In contrast with the case of ordinary p-branes, the extended free differential algebra
is not the dual of a Lie algebra because of the equation for the two-form dFF. However,
it is easy to check that

1 a Ž z . m Ž z . m a bd P P yP P s CG G P P P 96Ž .Ž .Ž .a m m 112 ab

so that, on the extended superspace, we may set
1 a Ž z . m Ž z .FFs P P yP P , 97Ž .a m2

Ž . Ž . Ž .in accordance with 88 , 90 . This is not a surprising fact since from 88 we see that
dFF is equal to the h corresponding to the WZ term of the type IIA superstring on a flat
background. So it has to be possible to write it as the differential of an invariant form
˜ ˜ m a Ž z . Ž z . ˜Ž .bsb P ,P ,P ,P on the fully extended superspace S of the IIA superstring.m a

˜Since FFsdAyB and B is defined on S, dA may be written on S. Making use of its
LI forms, i.e. of

P a sdu a ,
1m m m a bP sdx q CG u du ,Ž . ab2

1Ž z . a bP sdw q CG G u du ,Ž .m m m 112 ab

1Ž z . m b m b mP sdw y CG G dx u y CG dw u y CG G CGŽ . Ž .Ž . Ž .ab dea a m 11 m m 116ab a b

m b d eq CG G CG u u du , 98Ž . Ž .Ž . abm 11 de

˜it is easy to identify A as the one-form on S

1m aAsw dx q w du . 99Ž .m a2

( ) ) ( )In this way, the customary Born-Infeld world-Õolume field A j becomes here f A ,i
˜ Ž .with A on S given by 99 , and its existence may be looked at as a consequence of

extended supersymmetry.
The previous discussion shows that it is natural to rewrite the action of the D-branes

on a flat background by using only objects that are initially defined on the appropriately
Ž .extended superspace. We show now that the Euler–Lagrange EL equations are still the

Ž .same provided a rather natural condition is met and that the gauge transformations of
Ž .A j can be reinterpreted in the new language. So at this point it seems that thei

geometric difference between the ordinary p-branes and the Dp-branes is that while the
action of the former may be defined from forms on ordinary superspace S, the action of
the latter requires the extended superspace of the IIA superstring if one whishes to avoid
objects that only have a meaning on the world-volume. In the IIA superstring case the
extended superspace was also considered, but the new variables appeared only in the

Ž .WZ term and as total derivatives Section 5.1 and thus had trivial EL equations. In the
D-brane case, in contrast, these variables have non-trivial EL equations.

Let us now see how the EL equations change by making the substitution A™w dx m
m

1 a m aw xq w du . Let I x ,u , A be the action before making the subtitution, where A area i i2

Ž i.the coordinates of the form A AsA dj . The EL equations arei

d I d I d I
s0 , s0 , s0 . 100Ž .

m ad x du d Aj
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When the substitution is made, there are new terms in the equations, and they read

d I d A j
X

d I d I d IŽ .jX pq1 mdj q s0 , s E x s0H X jm md A j d x j d x dw d AŽ . Ž .j m j

X
d I d A j d I d I d IŽ .jX pq1 1 adj q s0 , s E u s0 ,H X j2a ad A j du j du dw d AŽ . Ž .j a j

101Ž .
where the additional contributions come from the partial functional derivative terms. If

d I d I d Im aE x and E u were zero without being zero, this would imply the collapse ofj jd A d A d Aj j j
d Ione world-volume dimension. Thus, we must have s0 which in the first equation of

d A j

Ž . Ž .each set in 101 implies Eqs. 100 . Hence both actions are equivalent. In fact, it may
be shown that there is an additional gauge freedom which accounts for the difference of

Ž Ž .. Ž .degrees of freedom between A Eq. 99 and A j , but we shall not discuss thisi
15 ˜here . This seems to indicate that, when the action on W is obtained from entities on S,

there is an additional gauge freedom which in our formulation plays a role complement-ˆ
ing that of k-symmetry.

Ž . Ž . Ž .Finally, the U 1 gauge field A j on W has a gauge transformation d A j si i
Ž .E L j . The question now is what is the gauge transformation of the component fields ifi

i ) Ž . Ž .one writes A dj as f A . In other words, for a given L j , there should be ai
Ž .transformation of w and w in 99 reproducing d L. This may be obtained by meansm a i

) Ž m a . Ž .of a superfield l such that f l x ,u sL j . Then, if under a gauge transformation
) Ž .one defines dw sE l and dw s2E l, f A behaves as expected since thenm m a a

1) m aw xdf w dx q w du sE L. The fact that when the supersymmetry transformationsm a i2

of a field close only modulus a gauge transformation one obtains an extension of a FDA
is not restricted to Dp-branes. In fact, one may achieve manifest invariance by
introducing an electromagnetic potential on the world-sheet in the Green–Schwarz
superstring action, in which case the string tension is the circulation of the potential

w x Ž w x.around the string 48 see also Ref. 49 and a similar result applies to the other scalar
w xp-branes 50 . Clearly, the world-volume fields introduced there could be defined on our

appropriate extended superspaces as well. As for the IIB Dp-brane, an analysis similar
to that in this section for the IIA case would classify them by first showing that WZ
terms exist for odd p. In a second stage, the world-volume gauge field A may be
expressed as the pull-back of a IIB superspace one-form. In fact, this last point for the A

w xin the ps1 IIB D-string case has been discussed very recently in 22 by introducing an
appropriate extended group manifold. We may conclude, then, that the different
world-volume fields may be expressed in terms of forms defined on suitably extended
superspaces.

7. Noether charges and D-brane actions

Ž .It follows from the discussion of Section 6 that the world-volume field A j that
appears in the D2-brane action may be written on the superstring extended superspace

15 We thank P. Townsend for discussions on this point.
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Ž m a .parametrized by x ,u ,w ,w . On the other hand, the D2-WZ term, which ism a

quasi-invariant in these coordinates, can be made strictly invariant by further extending
˜ a mŽ .the previous superspace to Ss u , x ,w ,w , w ,w ,w ,w . In this way, the wholem a mn ma a b

action is invariant.
Ž .If one now computes the canonical commutators or Poisson brackets of the charges

corresponding to the symmetries of the action, the resulting algebra is exactly the RI
Ž . Ž . Ž . Ž .version of the Lie algebra dual to 88 removing its last line plus 90 , given in 91 .

Ž� 4 . Ž .The RI generator algebra Q,Q , etc. is the same as 91 with an additional minus sign
� 4on the r.h.s. Let us concentrate on the Q ,Q commutator,a b

m ˆm ˆmn ˆQ ,Q s CG P q CG G Z q CG Z q CG Z� 4 Ž . Ž .Ž . Ž .ab a ba b m m 11 mn 11a b a b

102Ž .

Ž � 4 m .there has been a redefinition of the generators so that Q,Q sqCG P etc. . Let usm

Ž m a .assume that we had written the action, as is customary, in terms of x ,u , A alone,
Ž .with AsA j directly defined on W. In this case, the CG and CG contributionsmn 11

would come from the quasi-invariance of the WZ Lagrangian, while CG G would be11 m

Ž . w x Žthe result of the contribution of the A j field to the Noether current 38 see also Ref.
w x.47 . This follows easily from the appropriate definition of the conserved Noether

Ž w x.currents and charges see, e.g., Ref. 26 which include an additional piece when the
Lagrangian is quasi-invariant, a common feature of the conventional actions for p-branes
w x12 . In the present D-branes case, there is an additional contribution due to the

Ž .world-Õolume field A j since its transformation properties, d AsD, are postulated to
compensate for those of the composite object B, dBsdD, so that FFsdAyB is
invariant. As a result, the supersymmetry transformations do not close on A, and this
produces an additional term by a mechanism similar to the one in the standard
quasi-invariance case.

These modifications become evident in our context, i.e. by formulating the action on
the extended superspace. Let us consider the D2-brane Lagrangian with the quasi-in-

Ž m a .variant WZ term bsb x ,u ,w ,w . The conserved Noether currents then have tom a

include the quasi-invariance piece. If we wrongly ignored this additional term, the
Ž . Ž .canonical formalism algebra of the corresponding non-conserved, non-Noether
charges would be the algebra of the symmetries x m,u a,w ,w of the Lagrangian, i.e.m a

m ˆmQ ,Q s CG P q CG G Z . 103� 4 Ž . Ž .Ž .aba b m m 11 a b

Ž .The algebra of the conserved Noether charges is not 103 , however, because these must
include the quasi-invariance contribution. We may find the correct algebra immediatley

˜ ˜ m aŽ .by replacing the quasi-invariant WZ term b, by bsb x ,u ,w ,w ,w ,w ,w ,w ,m a mn ma a b

which is manifestly invariant since the transformation properties of the additional
Ž .variables w ,w ,w ,w remove the quasi-invariance of b. By definition, the trans-mn ma a b

formation properties of all the coordinates obviously close into the group law or algebra.
Hence, it follows that the algebra of charges computed using the canonical formalism

ˆmn ˆŽ .reproduces 102 , and that the contributions to Z and Z are entirely due to the WZ
˜ m aŽ Ž . .term b or to the quasi-invariance of b x ,u ,w ,w if we used b instead .m a
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8. Branes with higher order tensors: the case of the M5-brane

We shall now show that the previous analysis can be applied also to other extended
objects that are neither ordinary p-branes nor D-branes. We shall consider here the case
of the Ds11 M5-brane, which contains a world-volume two-form field A in the action
Ž w x.see Ref. 51 . The action in a flat bosonic background depends on A trough
HsdAyC, where C is a background three-form. We shall take as our starting point
the case with Cs0 and with all other forms of rank higher than one in that action

Ž .vanishing. We do not need to worry about the generalized self-duality condition for A
on the world-volume, since this condition may arise as a field equation for an auxiliary

Ž w x.field see Refs. 51,52 . The supersymmetric action of the M5-brane is obtained in two
steps. First, one substitutes HsdAyC for dA, where C is a form on ordinary flat
superspace such that

dCsy CG P mP nP aP b , 104Ž .Ž .mn a b

and the transformation properties of the world-volume field A are fixed so that H is
invariant. Secondly, a WZ term is added to obtain k symmetry.

Let us now find the WZ term in our framework. It should be obtained from the FDA
generated by the abstract invariant forms P a, P m, H,

1a m m a b m n a bdP s0 , dP s CG P P , dHs CG P P P P ,Ž . Ž .ab mn2 ab

105Ž .

Ž a m .and be given by a CE-non-trivial potential b of a closed form h P ,P , H . Thus, we
Ž . Ž .have to solve the problem of finding non-trivial pq2 -cocycles of the FDA 105 . We

shall find that there is no solution unless ps5.
Ž . Ž .A general pq2 -form on 105 can be written as

hshŽ pq2.qhŽ py1.H ; 106Ž .
there are no further powers of H since H 2 'HnHs0. The closure of h gives

pŽ pq2. Ž py1. Ž py1. m n a bdh qdh Hy y1 h CG P P P P s0, 107Ž . Ž .Ž .mn a b

which is equivalent to

dhŽ py1.s0,
pŽ pq2. Ž py1. m n a bdh s y1 h CG P P P P . 108Ž . Ž .Ž .mn a b

w x pq1 w x 3Now, since h sL and H sL ,

hŽ pq2.saŽ pq2. CG P m1 . . . P mpP aP b ,Ž .m . . . m1 p ab

hŽ py1.saŽ py1. CG P m1 . . . P mpy 3P aP b , 109Ž .Ž .m . . . m1 py3 ab

Ž pq2. Ž py1. Ž . Ž py1.for some constants a and a . The first equation in 108 requires a s0
unless p y 3 s 2, in which case aŽ py1. is arbitrary due to the identity
Ž . Ž n . Ž py1. Ž py1.

X X X XCG CG s0, valid in Ds4,5,7,11. If p/5, a s0 and h s0,mn a b d e

Ž . Ž pq2. Ž pq2.and the second equation of 108 gives dh s0, which again implies a s0
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Ž2q2. Ž . m n a bunless ps2. But if ps2, we have hsh A CG P P P P sdH, inmn a b

which case h is the differential of a LI form and hence CE-trivial. Thus we are just left
Ž5y1. Ž . Ž .with the case ps5, a arbitrary. Inserting 109 in 108 gives, factoring out the

P a ’s and P m’s,
5 Ž5q2. m Ž5y1.5 X X X Xa CG CG qa CG CG s0. 110Ž . . Ž Ž .Ž . X X X XŽ .a b a bm . . . m w m m m m x2 1 5 1 2 3 4d e d e

2Ž7. Ž4.Ž .The second identity in B.1 gives a sy a . The resulting closed form15
15m m a b m m a b1 5 1 2hA CG P . . . P P P y CG P P P P H 111Ž .Ž . Ž .m . . . m m m2ab a b1 5 1 2

is not CE-exact, as may be seen by an argument analogous to that used in the IIA
D-branes case: a LI potential form b would have to be a scalar six-form depending on
P a, P m and H with dimensions L6, which does not exist.

It is possible to see, however, that a LI expression for H exists on the appropriate
extended superspace. Since H is a three-form, it has formally the same properties as the

˜invariant WZ term b of the M2-brane, the extended superspace of which is the one
Ž . Ž . Ž .corresponding to the Lie FDA obtained by the methods of Section 3. Eqs. 3 , 18 , 21

1 1 1Ž . Ž . Ž .and the first of 22 with a ,a ,a ,a s , ,1,y give, respectively,s 0 1 2 2 2 2

dP a s0 ,
1m m a bdP s CG P P ,Ž . ab2

1 a bdP s CG P P ,Ž .mn mn2 ab

1 1 1m n m n m ddP sy CG P P y CG P P q CG P PŽ . Ž .Ž . ab a ba b mn mn md2 2 4ab

q2 CG m
X P X P d ,Ž . da mb

dP s CG P nP b q CG n P P b , 112Ž . Ž .Ž . abma nm nma b

Ž .. Ž .i.e. the dual of 61 . Using again 73 we may then write
2 3 2m n m a a bHs P P P q P P P y P P P . 113Ž .mn ma a b3 5 15

˜ ˜We might now go on and show that there exists a LI b such that hsdb on a suitably
w xextended superspace; we shall omit its expression 19 since it is not needed below.
Ž .What we wish to show is that now we may use 113 to replace the world-volume

Ž .two-form A j by the pull-back of the two-form A on extended superspace given by
2 3 2 1m n m a a b m n a bAs w dx dx y w dx du y w du du q w x CG du duŽ . abmn ma a b mn3 5 15 30

11 13m n a b m n a b d eq w dx CG u du y w CG CG u du u duŽ . Ž . Ž .ab a b demn mn30 180

1 1m d e a m d e aq w CG u du du q w CG du du u . 114Ž . Ž . Ž .de dema ma10 20

Ž .Again, this expression may also be used to find the gauge transformation d A j s
Ž . m a ) Ž .dL j . This is achieved by the one-form on superspace lsl dx ql du , f lm a

Ž .sL j . Then, if
3

dw s E l ,mn w m n x2

5 11 n bdw sy E l qE l q E l CG u ,Ž .Ž . abma m a a m w m n x3 12

15 15 m d
X Xdw sy E l q CG u E l qE lŽ . Ž .aba b a b m d d m2 21

15 139m d m n d e
X X Xq CG u E l qE l y CG CG u u E lŽ . Ž . Ž .Ž . dbda aem b b m w m n x12 240

1 m nq x CG E l 115Ž . Ž .ab w m n x20

) Ž . Ž .one obtains df A sdL j .
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As in the previous D-brane case, the EL equations derived from the action
w m a xI x ,u , A ,i j

d I d I d I
s0, s0, s0 , 116Ž .

m ad x du d Ai j

Ž .are equivalent to the ones corresponding to the new action in which A j is the
d I a bŽ .pull-back of 114 . Indeed, the equation for w gives E u E u s0, and substitutingab i jd A i j

it into that of w ,ma

d I
3 1 1m a m d e a m a d ey E x E u q CG u E u E u q CG u E u E u s0,Ž . Ž .Ž .de dei j i j i j5 10 20

d Ai j

117Ž .
d I m agives E x E u s0 and so on. Therefore one obtainsi jd A i j

Ž X .d A jd I d I d Ii jX pq1 1 m ndj q s0 , E x E x s0 ,H X i j2 m mŽ . Ž .d A j d x j d x d Ai j i j

XŽ .d A jd I d I d I d Ii jX pq1 1 m a a bdj q s0 , E x E u s0 , E u E u s0 .H X i j i j2 a aŽ . Ž .d A j du j du d A d Ai j i j i j

118Ž .
d I mThe second equation implies E x s0 for all m if one wants to avoid the possibilityid A i j

d Iof one dimension of the object collapsing. This in turn implies s0 for the same
d A i j

Ž . Ž .reason, and inserting this equation into 118 gives 116 .

9. Conclusions

We have provided in this paper a unified approach to the study of various p-branes
by defining them on suitably extended superspaces. All of these are supergroup
manifolds, extensions of the basic odd abelian groups sTr determined by the spinors ofD

the specific theory considered. The extension algorithms in Sections 2.2 and 3 show how
they depend, when they do, on specific identities for G-matrices. The central extensions

Ž .do not need any G-identities, but the non-central ones require the identities 20 ,
precisely the ones needed to define the WZ terms of the old branescan.

Ž .The centrally extended superspaces are associated with topological charges, but the
introduction of manifestly supersymmetric WZ terms requires the addition of non-central
variables, already for the branes of the old branescan. When the procedure is applied to
Dp-branes, it is seen that all the fields in their action may also be defined by pullbacks
of entities on the previously introduced superspaces. In the language of FDA’s, our
results show that all the FDA’s involved in the formulation of the p-branes considered
here become Lie FDA’s on suitably extended superspaces. We conjecture, in view of
the previous discussion, that this is the case in general and that there exists an extended
superspace definition for all fields appearing in the action of the various p-branes. In
other words, there exists a kind of fieldrextended superspaces democracy by which all
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˜brane world-volume fields are pullbacks from some target superspace S. The appropri-
˜ ˜ate S of the theory is given by an extension of a certain sTr and, using S, the actionD

can be defined in a manifestly invariant form. In fact, in this fieldrextended superspace
democracy context, the invariance properties seem to characterize essentially the super-
brane actions. It should not come then as a suprise that k-symmetric actions may also be

w xintroduced for Dp-branes, as in 8 for D-branes with rigid IIA and IIB superPoincaré
symmetry. As is the case for ordinary p-branes, k-symmetry is achieved when the
relative coefficient of the kinetic and WZ-like part is such that the Bogomol’nyi bound
is saturated.

Our extensions provide at the same time a connection between the CE cocycles and
Ž .the mechanism of partial breaking of supersymmetry. The CE pq2 -cocycles lead to

Ž . Ž w x.extended loop-type or world-volume current algebras see, e.g., Refs. 12,15,53–55
and the two-cocycle to the corresponding algebra of charges defining the extended
superspace algebra. The new variables in the extended superspaces are also essential to

Ž .define invariant actions. They may also be relevant in the problem of quantisation, the
Ž .formulation of dualities see Section 2.3.1 and in the formulation of the additional

gauge freedom hidden in the definition of some superbrane fields, the world-volume
definition of which reflects an election of gauge. We suspect that the mathematical
existence of the extensions considered here has a deeper meaning beyond the aspects
discussed in this paper.

Note added

w xAfter completion of this paper an article 56 has appeared, where an approach similar
to that in Section 6.2 for the field A is given for the IIB D-brane case.
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Appendix A. Non-central extensions

Ž .We give here some details of the derivation of 22 . After introducing Pm . . . m a1 py1 1

Ž .satisfying 21 , we look for non-trivial CE 2-cocycles with external indices
Ž .m . . . m a a . There are four available LI two-forms with these indices,1 py2 1 2

r Ž1.s CG P nP r ,Ž .nrm . . . m1 py2 a a1 2

r Ž2.s CG n P P r ,Ž . a a nrm . . . m1 2 1 py2

r Ž3.s CG n P P b ,Ž . a a nm . . . m b1 2 1 py2

r Ž4.s CG n X P X P b , A.1Ž . Ž .a b nm . . . m a1 1 py2 2
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none of which is closed. Looking for a linear combination r'r Ž1.ql r Ž2.ql r Ž3.q2 3
Ž4. Žl r that is closed, we compute making use of the MC equations for the available4
.P ’s

drs 2 a CG CG m ql a CG m CGŽ . Ž .Ž . Ž .a agd½ s mnm . . . m 2 0 mnm . . . m1 21 py2 1 py2a a gd1 2

ql a CG n CGŽ . Ž .a a3 1 mnm . . . m1 2 1 py2 gd

yl a CG m X CG P nP gP dŽ . Ž . Xa g 54 1 mnm . . . m1 1 py2 a d2

a as 1m n n mq yl a CG CG ql CG CGŽ . Ž . Ž . Ž .a a a agd gd2 1 31 2 1 2½ a0

a as 1 n mX Xql CG CG P P P . A.2Ž . Ž . Ž .a g a d4 mnm . . . m g d1 2 5 1 py2a0

Inside the first curly brackets above, one can combine the third term with the second,
Ž .changing at the same time its sign the G ’s are antisymmetric in the vector indices . In

Ž .the fourth term, one can also symmetrise over g , d since P and P commute .g d

Ž .Effecting explicitly this symmetrisation, as well as the indicated one by the primes
over a , a , one gets four terms, which, together with the other two, give exactly the1 2

Ž . Žsix permutations of 20 the G ’s are symmetric in the spinorial indices, so that the
Ž . .twenty-four permutations of 20 reduce to six . The sum of all six terms will be zero

Ž Ž ..due to 20 if their coefficients are equal – this gives the equations

1a l ya l s2 a , y a l s2 a . A.3Ž .0 2 1 3 s 1 4 s4

Ž .Inside the second curly brackets in A.2 , the last term is zero because of antisymmetry
Ž .in m, n . The sum of the first two will be zero for the same reason if their coefficients

are equal, i.e. if

a as 1
a l q l s0. A.4Ž .s 2 3a0

Ž . Ž .Solving the linear system of A.3 , A.4 one gets

a a as s s
l s , l sy , l sy8 , A.5Ž .2 3 4a a a0 1 1

Ž .which leads to the first of 22 .
Ž .For the next extension, looking for LI two-forms with indices m . . . m a a a1 py3 1 2 3

we find

r Ž1.s CG n X X P X P r ,Ž . a a nrm . . . m a1 2 1 py3 3

r Ž2.s CG n X P X X P b ,Ž . a b nm . . . m a a1 1 py3 2 3

r Ž3.s CG n X X P X P b , A.6Ž . Ž .a a nm . . . m ba1 2 1 py3 3
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Žnone of which is closed we use, for simplicity, the same symbols r, l as in the
. Ž1. Ž2. Ž3.previous extension . For their linear combination r'r ql r ql r we com-2 3

pute

drs CG n X X a CG P lP bŽ . Ž . Xa a 1 lnrm . . . m1 2 ½ 1 py3 ba 3

as s b rXq CG P P PŽ . .ba snrm . . . m3 51 py3a0

ya CG n X X CG n P X P gP dŽ . Ž .a a gds nrm . . . m a1 2 1 py3 3

ql a CG n X CG P s P rŽ . Ž . X Xa b2 4 srnm . . . m1 ½ 1 py3 a a2 3

a as ss r s gX X X Xq CG P P y CG P PŽ . Ž .a a a asrnm . . . m snm . . . m g2 3 2 31 py3 1 py3a a0 1

as s g bX Xy8 CG P P PŽ . a g snm . . . m a2 51 py3 3a1

ql a CG n X X CG P sP rŽ . Ž . X Xa a3 2 srnm . . . m1 2 ½ 1 py3 a a2 3

a as ss r s gX Xq CG P P y CG P PŽ . Ž .ba basrnm . . . m snm . . . m g3 31 py3 1 py3a a0 1

as Xs g by8 CG P P P A.7Ž . Ž .bg snm . . . m a 51 py3 3a1

Žthe barred indices in the last term denote a second symmetrisation, besides the one over
.the primed indices . There is a novelty here compared with the previous extension: there

are four different types of terms in the P ’s, the coefficients of which must separately
Žvanish, giving rise to four linear equations for the two unknowns l , l care must be2 3

taken of the fact that when the second symmetrisation in the last term above is effected,
corresponding to the barred indices, one obtains contributions to two different types of

. Ž .terms in the P ’s . Making use of 20 and of the symmetry properties of the G ’s, as in
Ž .the previous extension, one arrives at the overdetermined linear system

a a a1 s 2
l yl s , 4 l sa , l y5l s0 A.8Ž .2 3 3 s 2 3a a2 1

Ž .the first equation appears twice which nevertheless admits the solution

5a a1 1
l s , l s , A.9Ž .2 34a 4a2 2

Ž . Ž . Ž .leading to the second of 22 . The last of 22 , as well as 23 , are proved similarly.
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Appendix B. Ds10 G-matrix identities

16 Ž .We prove here the G-identities needed in Section 6.1 . The first two identities in 85
follow by dimensional reduction from the known Ds11 relations

m̃2 X XCG CG s0,Ž . X XŽ .a b m m˜ ˜1 2 d e

m̃5 X X X XCG CG y3 CG CG s0, B.1Ž . . Ž Ž .X X X XŽ . Ž .a b a bm . . . m w m m m m x˜ ˜ ˜ ˜ ˜ ˜1 5 1 2 3 4d e d e

where the tilded indices ms0,1, . . . ,10.˜
The third identity can be proved as follows. First, using that

G sG G y5G h B.2Ž .m . . . m m . . . m m w m . . . m m x m1 6 1 5 6 1 4 5 6

and the fact that G 2 s1, we see that11

lm m6 6X X X XCG CG s CG CG G G G B.3Ž . Ž . Ž .Ž . Ž . Ž .X X X Xa b a bm . . . m m . . . m 11 11 m1 6 1 5 6d e d l e

Ž . Ž .since the second term in B.2 does not contribute because CG is antisymmet-m . . . m de1 4

Ž . Ž . Ž m.X X X Xric primed indices are symmetrised . Now, due to the identity CG CG G sm a b 11 d e

Ž . Ž m.l Ž .l Ž m.X X X X X X0, we have CG G G sy G G G so thatm a b 11 e m a 11 b e

CG m6 X X CG sy CG G G m6 G GŽ . X XŽ . Ž .Ž .X X X Xa b m . . . m m . . . m 11 11 m b e1 6 1 5 6d e d a

s5 CG G X X CG G , B.4. Ž Ž .X XŽ .d aw m . . . m 11 11 m x b e1 4 5

Ž . Ž .where in the second equality use has been made of B.2 and the fact that CG Gm . . . m 11 da1 6

is antisymmetric.
Ž .Finally, the fourth equation in 85 may be shown to be equivalent to the second.

Indeed, by multiplying the fourth identity by e m1 . . . m 7n1n 2 n 3 and using that

1
r . . . r1 10yqG G A e G ,m . . . m 11 m . . . m r . . . r1 q 1 q 1 10yq10yq !Ž .

one obtains

7!3! 6!4!7
wn n n x m n n n1 2 3 7 1 2 3X X X XX XCG CG q CG G CG G s0,. Ž Ž . Ž . X XŽ .a b a b11 m 11d e 7 d e2 4!

B.5Ž .
Ž .which is equivalent to the second equation in B.1 due to the fact that iG G realizem 11

the same Clifford algebra as G .m
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