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Abstract: We give a general integration prescription for finite dimensional braided
Hopf algebras, deriving the N-dimensional quantum superplane integral as an example.
The transformation properties of the integral on the quantum plane are found. We also
discuss integration on quantum group modules that lack a Hopf structure.

1. Introduction

The emergence of Hopf algebras, during the last decade, as a promising framework
within which new physical symmetries can be accomodated, has prompted an interest in
the theory and techniques of integration on them. Similar remarks hold for braided Hopf
algebras which, more recently, have provided a still further extension of the classical
concept of a group, marrying quantization with nontrivial statistics.

Integrals on (finite dimensional) Hopf algebras have been studied extensively, see for
example [12, 19] and references therein. For the braided case see the treatment in [13, 14]
for the basics of the theory – some examples appear in [3, 10]. From the point of view of
a physicist who is interested in the basic elements of the theory and in applications, the
situation presents certain problems. The results are generally scattered and when they do
become available, the disparity of the methods employed in them prohibits the formation
of a clear image of the minimum background required to explore thefield. When it comes
to applications, results are extracted (often ingeniously) from particular properties of
individual examples – no general integration prescription seems to be available for
the quantum space wanderers. The closest one can come to such a prescription in the
literature is perhaps the trace formula ofRadford andLarson [11] (and a braided analogue
of it in [18]) which, however, occasionally returns trivial (i.e. identically zero) results
(there doesn’t seem to exist a description of when exactly it fails either). Our purpose
in this paper is thus basically twofold. On the one hand, we aim at providing simple,
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2 C. Chryssomalakos

self contained proofs of basic results, using only the Hopf algebra axioms we assume
the reader to be familiar with, attempting in this way a demonstration of what can be
accomplished with a rather minimal set of tools. On the other hand, addressing the
problem of the missing integration prescription, we give an explicit formula for the
integral on any finite dimensional braided Hopf algebra (FDBHA) and show that it is
always nontrivial, commenting along the way on the conditions under which the trace
formula fails.

The paper is structured as follows: in Sect. 2 we present the notation we use and
collect some basic formulas we need in subsequent proofs. Section 3 starts with back-
ground information on integrals on (nonbraided) Hopf algebras. We then give a modified
trace formula for the integral and prove its nontriviality. We also introduce a “vacuum
expectation value” approach to integration, discuss properties of right Fourier transforms
and prove a number of useful formulas. Section 4 supplies the braided version of the
modified trace formula and the vacuum projectors and discusses, as an example, the
integral on the N-dimensional quantum superplane. Also included are some comments
on the transformation properties of the integral on the N-dimensional quantum plane.
The last section provides an integration prescription (with some modest assumptions)
for quantum group modules that lack a braided Hopf structure.

2. Hopf Algebras

The language used in the following is predominantly that of Hopf algebras – we refer
the reader to [1, 15, 22] for an introduction to the subject. Concerning the notation,
we denote by Δ, ε, S the coproduct, counit and antipode respectively and by ΔA, UΔ
the right A and left U-coactions respectively. Sweedler-like conventions are employed
throughout - thus Δa = a(1) ⊗ a(2), (Δ ⊗ id) ◦ Δ(a) = a(1) ⊗ a(2) ⊗ a(3) etc. . Also,
ΔA(x) = x(1) ⊗ x(2′), UΔ(a) = a(1̄) ⊗ a(2) and, for example, (id ⊗Δ) ◦ ΔA(x) =
x(1) ⊗ x(2′)

(1) ⊗ x(2′)
(2) = x(1) ⊗ x(2′) ⊗ x(3′) and so on. By A we will generally denote a

function type Hopf algebra (its elements will be denoted by a, b, etc. ) - U will stand for
its dual Hopf algebra (universal enveloping algebra type) with elements x, y etc. . The
duality is via a nondegenerate inner product 〈·, ·〉 that relates the algebra structure in A
with the coalgebra stucture in U and vice-versa. The universal R-matrix is denoted by
R = R(1) ⊗ R(2); R′ stands for τ (R) with τ (a ⊗ b) = b ⊗ a. R satisfies

Δ′(x) = RΔ(x)R−1, ∀x ∈ U . (1)

as well as

(Δ ⊗ id)R = R13R23, (2)

(id ⊗Δ)R = R13R12 (3)

(with R13 ≡ R(1) ⊗ 1U ⊗ R(2) etc.)
Given a pair of dual Hopf algebras, one can construct their semidirect product A×U

with A, U trivially embedded in it and cross relations

xa = a(1) 〈x(1), a(2)〉 x(2) , ax = x(2)
〈
x(1), S

−1(a(2))
〉
a(1) . (4)

The above commutation relations guarrantee that [24]

A ⊗ U 	 a ⊗ x 
= 0 ⇒ xa 
= 0 (5)
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with xa ∈ A×U . The action � of U on A is given by x � a = a(1) 〈x, a(2)〉. The same

symbol will denote the (adjoint) action of U on U : x�y = x(1)yS(x(2)) = y(1)
〈
x, y(2′)

〉
.

The canonical element in U ⊗ A is written like C = ei ⊗ f i with {ei}, {f i} dual (in the
sense that

〈
ei, f

j
〉

= δj
i ) linear bases in U , A respectively. It holds

(Δ ⊗ id)C12 = C13C23,

(id ⊗Δ)C12 = C12C13,

(ε ⊗ id)C = 1,

(id ⊗ε)C = 1,

(S ⊗ id)C = C−1,

(id ⊗S)C = C−1 , (6)

as well as

ΔA(a) ≡ Δ(a) = C(a ⊗ 1)C−1,

ΔA(x) = C(x ⊗ 1)C−1,

UΔ(a) = C−1(1 ⊗ a)C,

UΔ(x) ≡ Δ(x) = C−1(1 ⊗ x)C . (7)

Either of (4) encodes the information about the inner product 〈x, a〉. To make this
precise, we introduce U and A-right vacua, denoted by |ΩU 〉 and |ΩA〉 respectively,
which satisfy [3]

x|ΩU 〉 = ε(x)|ΩU 〉,
a|ΩA〉 = ε(a)|ΩA〉.

Left vacua 〈ΩU |, 〈ΩA| are defined analogously. In terms of these, the inner product
〈x, a〉 can be given as the “expectation value”

〈ΩA|xa|ΩU 〉 = 〈ΩA|a(1) 〈x(1), a(2)〉 x(2)|ΩU 〉
= 〈x, a〉 (8)

if we normalize the vacua so that 〈ΩA|ΩU 〉 = 〈ΩU |ΩA〉 = 1. Similarly, the adjoint
action of U on A can be written as

xa|ΩU 〉 = x � a|ΩU 〉. (9)

3. Integration on Hopf Algebras

3.1. Background. We list here known results about invariant integrals on Hopf algebras
that we will use later – more details can be found in [22, 1]. Some of the proofs are also
supplied in order to familiarize the reader with the usage of the tools presented in Sect. 2.
To prevent potential divergence problems from distracting the formulation of concepts,
we deal throughout with finite dimensional Hopf algebras – some of the results though
retain their validity in the infinite dimensional case as well.
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We start with two dually paired Hopf algebras U , A with (finite) dual bases
{ei}, {f j} respectively. We define a right (invariant) integral in A as a map 〈·〉R:
A → k with the property

〈a(1)〉Ra(2) = 〈a〉R1A (10)

for all a in A. We call 〈·〉R trivial if all 〈f i〉R are zero. Left (invariant) integrals are
similarly defined via

a(1)〈a(2)〉L = 1A〈a〉L. (11)

As we shall soon see, when 〈1A〉R 
= 0 (or 〈1A〉L 
= 0), left and right integrals are pro-
portional and can therefore be normalized so that they coincide. One can now introduce
the element δR

U ∈ U (the right delta function in U) which implements the right integral
in A via

〈δR

U , a〉 = 〈a〉R (12)

(so that ε(δR

U ) = 〈1A〉R). This allows us to write

δR

U = 〈f i〉Rei (13)

(in the mathematics literature δR

U is often called a right integral in U – we will not use
this terminology here). For arbitrary a in A we have

〈δR

Ux, a〉 = 〈δR

U , a(1)〉 〈x, a(2)〉
= 〈a(1)〉R 〈x, a(2)〉
= 〈a〉R 〈x, 1A〉
= ε(x)〈a〉R

= 〈δR

Uε(x), a〉 ,

therefore
δR

Ux = δR

Uε(x) ∀x ∈ U . (14)

Taking antipodes in the above equation we find (ε(x) = ε(S(x)))

S(x)S(δR

U ) = ε(S(x))S(δR

U ) (15)

which, for invertible S gives

xS(δR

U ) = ε(x)S(δR

U ) ∀x ∈ U , (16)

in other words, S(δR

U ) implements a left integral and we can therefore take S(δR

U ) = δL

U .
Since ε(S(x)) = ε(x), we find that 〈1A〉R = 〈1A〉L ≡ 〈1A〉 (〈·〉 denotes a bi-invariant
integral). Consider now the product δR

US(δR

U ). We have

δR

US(δR

U ) = δR

Uε(S(δR

U )) = δR

Uε(δR

U ) = δR

U , 〈1A〉
and also

δR

US(δR

U ) = ε(δR

U )S(δR

U ) = 〈1A〉S(δR

U ),

therefore, in the unimodular case where 〈1A〉 
= 0 (so that we can normalize 〈1A〉 = 1),
it holds

δR

U = S(δR

U ), (17)

xδR

U = ε(x)δR

U ∀x ∈ U , (18)

〈a〉 = 〈S(a)〉 ∀a ∈ A . (19)
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Concerning uniqueness, assume that a second right integral 〈·〉R
′
exists and let δR

U
′
be the

element of U that implements it. We then get δR

US(δR

U
′
) = 〈1A〉S(δR

U
′
) and δR

US(δR

U
′
) =

δR

U 〈1A〉′
. For 〈1A〉 = 1 we conclude that 〈1A〉′

= 1 implies δR

U = S(δR

U
′
) = δR

U
′
while

〈1A〉′
= 0 implies that 〈·〉′

is trivial.
Radford and Larson [11] have shown that

〈a〉R

tr ≡ 〈
S2(ei), f

ia
〉

(20)

defines a right integral on A which though, in some cases (as [11] warns), is trivial.
It is this shortcoming of (20) that (among other things) motivated our formula for the
integral of the next section, which is shown to be nontrivial for any FDHA. One can
derive from (20) that

〈
S−2(ei), f ia

〉
,
〈
S−2(ei), af i

〉
define left and right (again, in some

cases trivial) integrals respectively. For σ ≡ 〈
S2(ei), f i

〉 
= 0 and σ′ ≡ 〈
S−2(ei), f i

〉
we conclude 〈

S−2(ei), f
ia

〉
=

〈
S−2(ei), af i

〉
=

σ′

σ
〈a〉R

tr. (21)

We summarize the main points: when 〈1A〉 = 1, 〈·〉 is bi-invariant, unique and Eq. (19)
holds. Equation (20) defines a (sometimes trivial) right integral and when σ 
= 0, (21)
holds. Considerably more is known about integrals on Hopf algebras – in the interest of
self containment we have only mentioned above what we can prove here.

3.2. A modified trace formula. We want to present now a modified version of the trace
formula (20) that overcomes the limitations mentioned above. It is given by

〈a〉RδR

A =
〈
ejS

−2(ei), af i
〉
f j (22)

(for the remainder of this paper, 〈a〉RδR

A is defined by the rhs of (22)). Notice that (22)
also defines (for some nonzero 〈a〉R which we can normalize to 1) the right delta function
in A. By pairing both sides of (22) with x in U we conclude

〈x〉R〈a〉R =
〈
xS−2(ei), af i

〉
. (23)

The proof of invariance is quite analogous to that of (20). What is interesting is the
following

Lemma 1. The integral 〈·〉R defined by (22) is nontrivial for any FDHA A.

Proof. Set Θk
l ≡ 〈

elS
−2(ei), fkf i

〉
and compute

A×U 	 S−2(ei)f
i = f i

(1)

〈
S−2(ei(1) ), f

i
(2)

〉
S−2(ei(2) )

= f i
(1)f

j
(1)

〈
S−2(ei), f

i
(2)f

j
(2)

〉
S−2(ej)

= S−2(f i)f j
〈
eiS

−2(ek), fkf l
〉
S−2(ej)S

−2(el)

= Θl
iS

−2(f i)f jS−2(ej)S
−2(el). (24)

We now employ (5) to conclude that not all Θl
i are zero (since S−2(ei) ⊗ f i 
= 0 in

U ⊗ A). Alternatively, one can compute directly the integral [23]
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〈S−1(δR

A)〉R = 〈ei〉R〈S−1(f i)〉R

=
〈
eiej , S

−1(f i)S−2(f j)
〉

=
〈
ei, S

−1(f i
(1))S

−2(f i
(2))

〉
=

〈
ei, ε(f

i)1A
〉

= 〈1U , 1A〉
= 1 , (25)

which shows nontriviality in both U and A (of course, 〈ei〉R〈S−1(f i)〉R = 1 is a stronger
statement). �

Defining Θ = Θ(1) ⊗ Θ(2) = Θl
kfk ⊗ el we get

〈a〉RδR

A = Θ(1)
〈
Θ(2), a

〉 〈x〉RδR

U =
〈
x,Θ(1)

〉
Θ(2) . (26)

Related to the above proof is

Lemma 2. For A a FDHA, it holds (a in A)

〈af i〉R = 0 ∀i ⇒ a = 0 (27)

Proof. Assuming 〈af i〉R = 0 for all i we get

0 = 〈S−1(ei)〉R〈af i
(1)〉RS(f i

(2))

= 〈S−1(ei)〉R〈a(1)f
i
(1)〉Ra(2)f

i
(2)S(f i

(3))

= 〈S−1(ei)〉R〈a(1)f
i〉Ra(2)

= 〈S−1(ei)〉R〈f i〉Ra

= a

where, in the last line, use was made of (25). �

There exist formulas similar to (23) for other combinations of invariance properties

〈x〉L〈a〉L ∼ 〈
eix, S−2(f i)a

〉
,

〈x〉L〈a〉R ∼ 〈
xS2(ei), f

ia
〉
,

〈x〉R〈a〉L ∼ 〈
eix, aS2(f i)

〉
. (28)

We could have used any of these formulas as our basic definition of the integral. When
we deal with braided Hopf algebras we use in fact the analogue of the second of (28) as
our starting point. The coefficient of proportionality in the above formulas depends on
which function’s integral we normalize to 1. The relation with the trace formula (20) is
illuminated by the following

Lemma 3. For A, U dually paired FDHAs, it holds (a in A, x in U)

〈x〉R

tr〈a〉R

tr = σ
〈
xei, S

2(f i)a
〉
. (29)



Remarks on Quantum Integration 7

Proof.

〈x〉R

tr〈a〉R

tr =
〈
eix, S2(f i)

〉 〈
ek, S2(fk)a

〉
=

〈
eix(1), S

2(f i)
〉 〈

x(2)ek, S2(fk)a
〉

=
〈
ei, S

2(f i
(1))

〉 〈
x(1), S

2(f i
(2))

〉 〈
x(2)ek, S2(fk)a

〉
=

〈
ei, S

2(f i
(1))

〉 〈
x(1)ek(2)S

−1(ek(1)), S
2(f i

(2))
〉 〈

x(2)ek(3), S
2(fk)a

〉
=

〈
ei, S

2(f i
(1))

〉 〈
S−1(ek(1)), S

2(f i
(3))

〉 〈
xek(2), S

2(f i
(2))S

2(fk)a
〉

=
〈
eiejel, S

2(f i)
〉 〈

ek(1), S(f l)
〉 〈

xek(2), S
2(f j)S2(fk)a

〉
=

〈
eiejS(ek(1)), S

2(f i)
〉 〈

xek(2), S
2(f j))S2(fk)a

〉
=

〈
eiej (1)S(ej (2)), S

2(f i)
〉 〈

xej (3), S
2(f j)a

〉
=

〈
ei, S

2(f i)
〉 〈

xej , S
2(f j)a

〉
.

�

As a corollary, we infer that, when σ = 0, 〈·〉R
tr is trivial in U or A (or both); when σ 
= 0,

it is nontrivial in both U and A.

3.3. Vacuum Projectors. We give here a formulation of invariant integration in which
the integral of a function is regarded as its “vacuum expectation value”. First, notice that
right invariance can also be expressed as (x in U , a in A)

〈x � a〉 = ε(x)〈a〉 . (30)

Recall now the U and A-vacua introduced in Sect. 2. We could define, in terms of these,
our “vacuum” integral via an equation like (a ∈ A) [26]

〈a〉v ∼ 〈ΩU |a|ΩU 〉; (31)

invariance in the form (30) is automatically satisfied. However, as we shall soon see, it
is more natural, in this case, to work instead with quantities like |ΩA〉〈ΩA|, |ΩA〉〈ΩU |
etc. , i.e. with operators rather than states. The reason is that the former can be realized
in A×U and hence their properties can be derived while those of the latter have to be
introduced “by hand”. We aim therefore at a definition like

〈a〉v ∼ |ΩA〉〈ΩU |a|ΩU 〉〈ΩA|. (32)

We expect the rhs of (32) to be proportional to δA (at least, under certain conditions),
consistent with its property to return counit when multiplied by functions either from
the left or from the right. What we need next is to find quantities in A×U that represent
the operators |ΩA〉〈ΩU |, |ΩU 〉〈ΩA|. We recall at this point a result of [2]: the vacuum
projectors E, Ē defined by

E = S−1(f i)ei , Ē = S2(ei)f
i (33)

satisfy
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Ea = S−1(f i)eia

= S−1(f i)a(1)
〈
ei(1) , a(2)

〉
ei(2)

= S−1(f j)S−1(f i)a(1) 〈ei, a(2)〉 ej

= S−1(f j)S−1(a(2))a(1)ej

= ε(a)E (34)

for all a in A, as well as

xE = xS−1(f i)ei

= S−1(f i
(2))

〈
x(1), S

−1(f i
(1))

〉
x(2)ei

= S−1(f j)
〈
x(1), S

−1(f i)
〉
x(2)eiej

= S−1(f j)x(2)S
−1(x(1))ej

= ε(x)E (35)

for all x in U , while we can similarly show that

Ēx = ε(x)Ē ∀x ∈ U , (36)

aĒ = ε(a)Ē ∀a ∈ A. (37)

Furthermore, E2 = E and Ē2 = Ē which allows us to write E = |ΩU 〉〈ΩA|, Ē =
|ΩA〉〈ΩU |. With an eye on (32), we now compute

ĒaE = S2(ei)f
iaE

= f i
(1)a(1)

〈
S2(ei), f

i
(2)a(2)

〉
E

= fn
〈
en, f i

(1)a(1)
〉 〈

S2(ei), f
i
(2)a(2)

〉
E

= fn
〈
enS2(ei), f

ia
〉
E

= 〈a〉RδL

AE . (38)

This simplifies further when δL

A = δR

A ≡ δA – we then get

ĒaE = 〈a〉δA . (39)

3.4. Fourier Transforms. We work again with a general (i.e. not necessarily unimodular)
FDHA. We define a right Fourier transform ·̂R : A → U in terms of a right integral as
follows

âR ≡ 〈aS−1(f i)〉Rei, (40)
so that (b in A)

〈âR, b〉 = 〈aS−1(b)〉R. (41)
We show now that the right Fourier transform is invertible

〈ej â
R〉Rf j = 〈aS−1(f i)〉R〈ejei〉Rf j

= 〈aS−1(f i
(2))〉R〈ei〉Rf i

(1)

= 〈a(1)S
−1(f i

(3))〉R〈ei〉Ra(2)S
−1(f i

(2))f
i
(1)

= 〈a(1)S
−1(f i)〉R〈ei〉Ra(2)

= 〈a(1)S
−1(δR

A)〉Ra(2)

= 〈S−1(δR

A)〉Ra

= a . (42)
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In the language of the previous section, when σ′ 
= 0, the Fourier transform allows the
switching between |ΩU 〉 and |ΩA〉. Indeed, we find

aE = aS−1(f i)ei

= ei(2)

〈
ei(1) , S

−1(a(2)S
−1(f i

(1)))
〉
a(1)S

−1(f i
(2))

= ei(2)

〈
S−2(ei(1) ), f

i
(1)S(a(2))

〉
a(1)S

−1(f i
(2))

= ej

〈
S−2(ei), f

i
(1)f

j
(1)S(a(2))

〉
a(1)S

−1(f j
(2))S

−1(f i
(2))

= ej

〈
S−2(ei)S

−2(ek), f if j
(1)S(a(2))

〉
a(1)S

−1(f j
(2))S

−1(fk)

= ej〈S−2(ek)〉〈f j
(1)S(a(2))〉a(1)S

−1(f j
(2))S

−1(fk)

= ej〈a(2)S
−1(f j

(1))〉a(1)S
−1(f j

(2))〈S−3(ek)〉fk

= ej〈aS−1(f j)〉〈ek〉fk

= âδA , (43)

which, in terms of the action on right vacua, corresponds to

a|ΩU 〉 = â|ΩA〉 . (44)

One can easily check that (a in A, x in U)

x̂ � a
R = xâR . (45)

Another familiar, in the unimodular case, property that survives when 〈1A〉 = 0, is

̂f 
R g
R

= f̂RĝR , (46)

where the right convolution 
R of f, g in A is given by

f 
R g = g(1)〈fS−1(g(2))〉R (47)

( (46), together with the invertibility of ·̂R, guarantee the associativity of 
R). On the
other hand, the following property that is easily seen to hold in the unimodular case,

ˆ̂a = S(a) (48)

does not hold, in general, for ·̂R when 〈1A〉 = 0.

3.5. Further properties. We give now the proof of a number of interesting formulas,
valid for unimodular FDHAs. First, notice that

Ŝ2(a) = ei〈S2(a)S−1(f i)〉
= ei〈aS−3(f i)〉
= S−2(ei)〈aS−1(f i)〉
= S−2(â), (49)

where, in the second line, we used (19). Two useful lemmas follow
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Lemma 4. For A a FDHA and σ′ 
= 0, it holds

S−2(a) =
〈
a(1̄), S−2(a(2)

(2))
〉

a(2)
(1) (50)

for all a in A.

Proof. We have (the notation is introduced in Sect. 2)

a(1̄) ⊗ a(2)
(1) ⊗ a(2)

(2) = (id ⊗Δ)(S(ei)ej ⊗ f iaf j)

= S(ek)S(ei)ejel ⊗ f ia(1)f
j ⊗ fka(2)f

l,

which gives〈
a(1̄), S−2(a(2)

(2))
〉

a(2)
(1) =

〈
S(ek)S(ei)ejel, S

−2(fk)S−2(a(2))S
−2(f l)

〉
f ia(1)f

j

= 〈S(ek)S(ei)ej〉〈S−2(fk)S−2(a(2))〉f ia(1)f
j

= 〈S(ei)ej〉〈S−2(f i
(2))S

−2(a(2))〉f i
(1)a(1)f

j

= 〈S(ei)ej〉〈f ia〉f j

= 〈S(ei)ej〉〈S−1(a)S−1(f i)〉f j

= 〈S( ̂S−1(a))ej〉f j

= 〈ejS
2( ̂S−1(a))〉S(f j)

= 〈ej
̂S−3(a)〉S(f j)

= S−2(a) , (51)

where, in the last line, we used the formula for the inverse Fourier transform, Eq. (42).
�

Lemma 5. For A a FDHA, it holds

a(2)S−1(a(1̄))b = ba(2)S−1(a(1̄)) (52)

for all a, b in A.

Proof. We have

a(2)S−1(a(1̄))b = a(2)b(1)

〈
S−1(a(1̄)

(2)), b(2)

〉
S−1(a(1̄)

(1))

= b(1)

〈
a(2)(1̄), b(2)

〉
a(2)(2)

〈
S−1(a(1̄)

(2)), b(3)

〉
S−1(a(1̄)

(1))

= b(1)

〈
a(2)(1̄)S−1(a(1̄)

(2)), b(2)

〉
a(2)(2)S−1(a(1̄)

(1))

= b(1)

〈
a(1̄)

(3)S
−1(a(1̄)

(2)), b(2)

〉
a(2)S−1(a(1̄)

(1))

= ba(2), S−1(a(1̄)) (53)

where, in the first and second line, we used the first and second of (4) respectively. �

At this point, we have enough machinery at our disposal to prove the following
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Proposition 1. For A a FDHA and σ′ 
= 0, it holds

〈ba〉 = 〈S−2(a)b〉 (54)

for all a, b in A.

Proof. We have

ĒbaE = Ēba(2)ε(S−1(a(1̄)))E

= Ēba(2)S−1(a(1̄))E

= Ēa(2)S−1(a(1̄))bE

= ĒS−1(a(1̄)
(1))

〈
S−1(a(1̄)

(2)), S
−1(a(2)

(2))
〉

a(2)
(1)bE

= Ē
〈
S−1(a(1̄)), S−1(a(2)

(2))
〉

a(2)
(1)bE

= ĒS−2(a)bE,

where in the third line we used (52) and in the last one, (50). The proposition follows
now from (39). �

It is interesting to compare (54) with the formula one can derive in the presence of
a universal R-matrix R in U . The result in this case is contained in

Proposition 2. Let A be a dual quasitriangular Hopf algebra and 〈·〉 a bi-invariant
integral on it. It holds

〈ba〉 = 〈S2(a � s)b〉 (55)

for all a, b in A, where

s = cu−2, u = S(R(2))R(1), c = uS(u) (56)

( s, u, c in U ∼ A∗) and a � s ≡ 〈s(1), a〉 s(2).

Proof. The commutation relations in A can be written in the form

ba = 〈R, a(1) ⊗ b(1)〉 a(2)b(2)
〈R−1, a(3) ⊗ b(3)

〉
(57)

(this is the dual version of (1)). It can also be shown that the element u defined above
implements the square of the antipode in U acccording to

S2(x) = uxu−1 (58)

for all x in U [7] – its inverse is given by u−1 = R(2)S2(R(1)). We can then write

〈ba〉 = 〈R, a(1) ⊗ b(1)〉 〈a(2)b(2)〉
〈R−1, a(3) ⊗ b(3)

〉
= 〈R, a(1) ⊗ b(1)S(b(2))S(a(2))〉 〈a(3)b(3)〉

〈R−1, a(5) ⊗ b(5)S
−1(b(4))S

−1(a(4))
〉

= 〈R, a(1) ⊗ S(a(2))〉 〈a(3)b〉
〈R−1, a(5) ⊗ S−1(a(4))

〉
= 〈S(u), a(1)〉 〈a(2)b〉

〈
u−1, a(3)

〉
. (59)

However,

S(u)xu−1 = S(u)u−1uxu−1

= sS2(x).
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Then, for arbitrary x in U , we have

〈S(u), a(1)〉 〈x, a(2)〉
〈
u−1, a(3)

〉
=

〈
S(u)xu−1, a

〉
=

〈
sS2(x), a

〉
=

〈
x, S2(a � s)

〉
,

therefore
〈S(u), a(1)〉 a(2)

〈
u−1, a(3)

〉
= S2(a � s); (60)

substituting in (59) we get (55). �

Comparison with (54) and use of (27) leads to the relation S4(a) = a � s−1 which in
the dual implies S4(x) = s−1x and therefore (by taking x = 1U )

S4(x) = x (61)

for all x in U (a different proof of this has been given in [20]). Equations (54) and (61)
have been proven above only in the finite dimensional case (the latter assuming quasi-
triangularity as well). On the other hand, (55) and the following versions of it which are
proved similarly, hold for all quasitriangular Hopf algebras with bi-invariant integral

〈ba〉 = 〈aS2(s−1 � b)〉
= 〈S−2(s � a)b〉
= 〈(u−1 � b)(a � u)〉. (62)

We close this section with the remark that 〈ba〉 = 〈S2(a)b〉 has been shown to hold for
unimodular, finite dimensional ribbon Hopf algebras (see [19]). Using (61) in (54) we
conclude that it actually holds for (the wider class of) quasitriangular FDHAs.

4. Integration on Braided Hopf Algebras

We transcribe here the main results of Sect. 3 to the case of FDBHAs, using the N-
dimensional quantum superplane as a concrete example.

4.1. Preliminaries.

4.1.1. The quantum superplane. Let us review briefly the basics of the construction of the
quantum superplane [25, 27]. As is typical in the study of quantum spaces, one deals with
the associative, noncommutative algebraX generated by 1X and the coordinate functions
ξi, i = 1, . . . , N on the quantum superplane satisfying the commutation relations

ξ2ξ1 = −qR̂12ξ2ξ1 (63)

(we work with the “q−1” version [4] – we remind the reader that R̂12(q−1) = R̂−1
21 (q)).

The derivatives σi, i = 1, . . . , N , dual to the above coordinates, generate (together with
1D) the algebra D with commutation relations

σ1σ2 = −qσ1σ2R̂12. (64)

The coordinate-derivative duality is encoded in the cross relations
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σiξj = δij − qR̂−1
mj,niξnσm . (65)

We denote the combined coordinate – derivative algebra by P . In analogy with the treat-
ment of the quantum plane in [3], one can enlarge P by the introduction of displacements
ηi, τi, i = 1, . . . , N for the coordinates and derivatives respectively, satisfying

η2η1 = −qR̂12η2η1 , τ1τ2 = −qτ1τ2R̂12 , τiηj = δij−qR̂−1
mj,niηnτm ,

(66)
ξ2η1 = −qR̂−1

12 η2ξ1 , σiηj = −q−1R̂kj,liηlσk , (67)

ξiτj = −q−1DlaR̂ia,bkD−1
bj τlξk , σ1τ2 = −qτ1σ2R̂

−1
12 . (68)

As seen from above, the η’s are taken to be just a second copy of the ξ’s but are endowed
with nontrivial statistics with both the ξ’s and the σ’s – analogous remarks hold for
the τ ’s. The remarkable property of (68) is that the displaced coordinates ξi + ηi and
derivatives σi+τi still satisfy (63) and (64) respectively while the entire enlarged algebra
is covariant under the GLq(N )-coaction,

ξi �→ ξ′
i = ξj ⊗ S(Aij), (69)

ηi �→ η′
i = ηj ⊗ S(Aij), (70)

σi �→ σ′
i = σj ⊗ S2(Aji), (71)

τi �→ τ ′
i = τj ⊗ S2(Aji). (72)

We will often drop the tensor product sign in the following.

4.1.2. Braiding. Suppose U is a quasitriangular Hopf algebra (with universal R-matrix
R) that acts from the left on two algebras V, W . One can, in this case, form the braided
tensor product W⊗V in which V, W are trivially embedded as subalgebras but have
nontrivial statistics, given by (v in V , w in W )

(1⊗v)(w⊗1) ≡ Ψ (v ⊗ w)

= τ ◦ (R(1) � v ⊗ R(2) � w)

= w(1)⊗v(1)
〈
R, v(2′) ⊗ w(2′)

〉
. (73)

We have expressed above the action of U on V, W in terms of the dual coaction of A ∼
U∗. The first line of (73) also defines the braided transposition Ψ : V ⊗ W → W ⊗ V
for which it holds in general Ψ 2 
= id (due to R′R 
= 1). For a detailed discussion of the
properties of Ψ , see e.g. [17].

4.1.3. The quantum superplane as a braided Hopf algebra. The concept of braided
tensor products provides a natural framework for an elegant description of the quantum
superplane as a braided Hopf algebra. We give here, for completeness, an outline of this
approach – more details can be found in [17]. Essential to this description is the use
of diagrams which encode neatly the braiding information. The maps Ψ and Ψ−1 are

represented by the diagrams and respectively. For the algebra X , the map
ξi �→ ξi⊗1 + 1⊗ξi ≡ ηi + ξi is regarded as a braided coproduct Δ : X → X⊗X
(extended (braided) multiplicatively on the whole X ). Diagramatically this appears as
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ξ η ξ ξ η

where the first two vertices denote the product and coproduct in X and the third diagram
expresses the braided multiplicativity of Δ (ξ, η etc. denote generic elements of X ). One
also has a matching counit and antipode with ε, S, S2, S−1, S−2 denoted respectively
by

and satisfying braided versions of the familiar Hopf algebra identities, e.g.

(74)

A particularly important requirement on the braiding, which Ψ of (73) satisfies, is that
one should be able to move crossings past all vertices and boxes, e.g.

(75)

should hold. Exactly analogous treatment is possible for D, the algebra of derivatives.
The braided coproduct is given by Δ(σi) = σi⊗1+1⊗σi ≡ τi+σi and the corresponding
diagrams are an exact copy of those for X (we will use in them the letters σ, τ etc. to
denote generic elements of D). One can now combine X and D to form a braided
semidirect product X×D. We need for this a braided action of D on X which is given
by the second of the following diagrams

〈σ, ξ〉 ∼
ξσ
,

ξσ ξ σ

(76)

while the first one simply depicts the pairing between a derivative and a function (defined
as the counit of the derivative of the function). When viewed upside-down, the first
diagram stands for the canonical element φi⊗εi ∈ X⊗D (notice the reversal of order in
the tensor product) with

〈
εi, φ

j
〉

= δj
i . Both the inner product and the canonical element

are assumed invariant under ΔA:
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〈
p(1), x(1)

〉
p(2′)x(2′) = 〈p, x〉 1A (77)

φi(1)⊗εi
(1) ⊗ φi(2

′)
εi

(2′) = φi⊗εi ⊗ 1A . (78)

The product-coproduct duality between X and D is taken to be

σ ξ η σ ξ η ξσ τ ξ σ τ

(79)

Notice that this differs from the standard convention in the unbraided case. As a result,
to get the unbraided version of any diagrammatic equation that appears in the following,
one should translate the diagrams, ignoring the braiding information, into the language
of Sect. 2 and then set Δ → Δ′, S → S−1. Again, viewing the diagrams upside-down
reveals additional (dual) information – in the case of the diagrams above, one discovers
two basic properties of the canonical element (compare with the first two of (6)).

The commutation relations in the semidirect product (i.e. the braided analogue of (4))
are

σ ξ σ ξ ξξ σ σ

(80)

We close this review with a technical remark. If one computes the ξ − ξ braiding given
by (73) (with V = W = X ), using the coaction (69), one fails to reproduce the ξ − η
commutation relations of (67) – the result is off by a q factor (similarly for the rest
of (67), (68)). To remedy this, one can enlarge A by a grouplike central element g (the
dilaton, see [16]), the inner product of which with R is given by〈R, ga ⊗ gb

〉
= (−q)−ab, 〈R, ga ⊗ Aij〉 = 〈R, Aij ⊗ ga〉 = δij . (81)

We will call the enlarged algebra Ã. Setting A → gA in the rhs of (69)– (72) gives an
Ã-coaction on the quantum superplane which reproduces, via (73), the commutation
relations (67), (68).

4.2. The invariant integral.

4.2.1. First definition and problems. The integral we are looking for is a linear map
〈·〉 : X → C which is translationally invariant in the following sense [25]:

〈σif (ξ)〉 = 0, i = 1, . . . , N ∀f ∈ X . (82)
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An equivalent formulation of invariance is [3]

〈f (ξ + η)〉 = 1X 〈f (ξ)〉 ∀f ∈ X (83)

or, in braided Hopf algebra language,

f(1)〈f(2)〉 = 1X 〈f〉 ∀f ∈ X . (84)

Representing the integral with a rhombus, we want it to satisfy

ξ η ηξ

(85)

a requirement which, as one can easily see, cannot, in general, be satisfied. Indeed, we
only need consider the classical fermionic line with coordinate ξ and displacement η
satisfying ξ2 = η2 = 0, ξη = −ηξ. Taking ξ, η to stand for themselves in the diagram
above, we find that the lhs is η〈ξ〉 (since 〈ξ〉, being a number, braids trivially), while the
rhs is η〈−ξ〉 = −η〈ξ〉, implying 〈ξ〉 = 0 which contradicts the known Berezin result.
We conclude that 〈f (ξ)〉, assumed invariant (and nontrivial), cannot both be a number
and satisfy the property expressed in the diagram above.

4.2.2. An improved definition. Our treatment, in Sect. 3, of the integral on FDHAs points
to a simple solution to the above problem. We recall that there, the quantity that naturally
emerged, in our algebraic formulation in terms of the modified trace formula, was the
numerical integral 〈·〉 times a delta function (as in the lhs of (22)). Motivated by this, we
define a new integral 〈〈·〉〉L : X → kδR

X (with k, in our case, the complex numbers) as
follows

〈〈ξ〉〉L = 〈ξ〉LδR

X . (86)

The output braid of the integration rhombus in our diagrams will stand accordingly for
a numerical multiple of δR

X . The rhombus’ inner workings are exposed in the diagram
below

(87)

To get the product 〈σ〉R〈ξ〉L one should pair the output braid with σ. Whether (87), in its
present or a suitably modified form, applies to the infinite dimensional case (and under
what conditions), is a direction for future work (one can easily see that, in certain such
cases, the rhs of (87) diverges).

Lemma 6. The integral 〈〈·〉〉L defined by (87) is nontrivial for every FDBHA.
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Proof. Using (S−1 ⊗ id) ◦ Ψ−1(φi ⊗ εi) as input to the braided version of Θ (shown
below), we find

1

from which nontriviality follows. �

4.2.3. Braided vacuum projectors. We denote in the following by E , Ē the braided
analogues of E, Ē. They are given by

E = , Ē = (88)

Proof. The proof of the (analogue of) (34) is as follows:

�
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As before, ĒaE is a multiple of δR

X E – when δR

X = δL

X ≡ δX , it becomes a multiple
of δX . Notice that, with δR

X defined via 〈τ, δR

X 〉 = 〈τ〉R, one gets ξδR

X = ε(ξ)δR

X – the
difference in the order of multiplication, compared to (14), is due to the second of (79).

The explicit computation of Ē is simplified by the following identity:

Ψ−1(φi ⊗ εi) = S(u−1) � εi ⊗ φi , (89)

which is easily proved using the invariance of the canonical element.
Inspection of our definition reveals the braided version of the trace formula (20) for

the numerical integral 〈ξ〉R
tr - it is given by

〈ξ〉R

tr =

ξ

(90)

Proof. The proof of invariance is as follows:

�

To find out under what conditions it becomes trivial, we have to derive the braided
version of (29). Omiting the somewhat lengthy diagrammatic proof, which parallels that
of Lemma 3, we state

Lemma 7. For X , D dually paired FDBHAs, it holds

ξσ ξ σ

(91)
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In analogy with the unbraided case, when σ ≡ 〈1X 〉R
tr = 0, 〈·〉R

tr is trivial; when σ 
= 0,
〈·〉R

tr provides a nontrivial integral in X . For the existence of integrals on FDBHAs and
properties of them, see also [13, 14]. An analogous definition for the numerical braided
integral (and a different proof of its invariance) can be found in [18].

4.2.4. Braided Fourier transforms. Transcribing (40), we define the Fourier transform
f̂ of the element ξ of a FDBHA X by the equation

ξ̂ ≡ 〈ξS(φi)〉εi (92)

or, in pictures,
ξξ

(93)

(this differs from earlier definitions [10] by the use of the nonbosonic integral 〈〈·〉〉). The
output braid on the right stands for what one usually calls the Fourier transform of ξ (an
element of D, the dual of X ) while the one on the left stands for the delta function in X
that is produced by the integration and which ensures the correct braiding behavior of ·̂.
There is also a notion of braided convolution of functions, defined by

ηξ η ξ

(94)

Again, the output braid on the left only carries a delta function in X . The following basic
properties can be shown to hold

ξ ξη ξ η σ ξ σ

4.3. Integration on the quantum superplane. We apply now the general formalism
developed above to the problem of integration on the quantum superplane. Our starting
point will be the vacuum projector construction of Sect. 4 – notice that although 〈1A〉 = 0
in this case, the integral is nevertheless bi-invariant so we expect (39) to hold. For the
canonical element we find

φi⊗εi = eq−1 (ξi⊗σi), (95)
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where

eq(x) =
∞∑
k=0

1
[k]q!

xk , [k]q =
1 − q2k

1 − q2
, [k]q! = [1]q[2]q . . . [k]q , [0]q ≡ 1

(96)
(compare with the vacuum projectors for the quantum plane in [3]). The commutation
relations (63), (64) imply ξ2

i = σ2
i = 0 for i = 1, . . . , N which gives (ξi⊗σi)N+1 = 0.

Using the braiding relations (67), the second of which can also be written as

Ψ (σi ⊗ ξj) = −q−1R̂kj,liξl ⊗ σk , (97)

we can expand (ξi⊗σi)k in (95) to find

φi⊗εi =
N∑

k=0

q−k(k−1)

[k]q−1 !
ξi1 . . . ξik

⊗σik
. . . σi1 . (98)

With the antipode being given by

S(ξi1 . . . ξik
) = (−1)kqk(k−1)ξi1 . . . ξik

(99)

and using (89) we find

E =
N∑

k=0

(−1)k

[k]q−1 !
ξi1 . . . ξik

σik
. . . σi1 , (100)

Ē =
N∑

k=0

(−1)kqk

[k]q!
Di1j1 . . . Dikjk

σik
. . . σi1ξj1 . . . ξjk

. (101)

It will be convenient in the following to express Ē in the alternative form:

Ē =
N∑

k=0

(−1)kqk(k−2N+1)

[k]q!
([N ]q −ξ·σ)([N −1]q −ξ·σ) . . . ([N −k+1]q −ξ·σ), (102)

where ξ·σ ≡ ξiσi (this formmakes the invariance underΔA evident - a similar expression
exists for E). Using the commutation relation ξ ·σξj = ξj(1 + q2ξ ·σ) and the fact that
ξ·σE = 0, we can now compute the integral of an arbitrary monomial ξi1 . . . ξir (r < N )
,

Ēξi1 . . . ξir
E = (

A∑
k=0

(−1)kqk(k−2A+1)[A]q!
[k]q![A − k]q!

)ξi1 . . . ξir
E , (103)

where A ≡ N − r. For the sum in parentheses, one can set

S(z) =
A∑

k=0

(−1)kqk(k−2A+1)[A]q!
[k]q![A − k]q!

zk . (104)

Introducing a Jackson derivative ∂z , satisfying ∂zz = 1 + q2z∂z , we find from (104)

∂zS(z) =
1

q−2 − 1
S(z) − q−2A

q−2 − 1
S(q2z) . (105)
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On the other hand, it holds

∂zS(z) =
S(q2z) − S(z)

q2 − 1
;

comparison with (105) shows that

S(q2z)
S(z)

=
1 − q2z

1 − q−2(A−1)z
,

from which we find

S(z) = (1 − z)(1 − q−2z) . . . (1 − q−2(A−1)z) , (106)

implying that S(1) = 0 and therefore that

〈ξi1 . . . ξir
〉 = 0 0 ≤ r < N . (107)

For r = N , the integrand is (a multiple of) a delta function and its numerical integral
is evidently (a multiple of) 1. We conclude that the quantum Berezin integral in N
dimensions is essentially undeformed. As expected, 〈·〉R

tr is trivial in this case, as the
reader can easily verify.

4.4. Remarks on the integral on the quantum plane. We make here a few remarks about
the transformation properties of the invariant integral on the quantum plane [25]. We
denote by xi, i = 1, . . . , N the coordinate functions on it and by ∂i, i = 1, . . . , N the
dual derivatives, satisfying

x1x2 = q−1R̂12x1x2 , ∂2∂1 = q−1R̂12∂2∂1 , ∂ixj = δij + qR̂jl.ikxk∂l . (108)

The above algebra is covariant under the transformation x → ΔA(x) = xA, ∂ →
ΔA(∂) = ∂S(AT ) with A a GLq(N ) matrix (we omit the tensor product symbol). We
assume an integral 〈〈·〉〉 exists, defined on a suitable class of functions, satisfying trans-
lational invariance (in the spirit of (82)) and braiding correctly, i.e. according to (85). In
the classical case of integration on the N-dimensional plane, one finds the transformation
property ∫

f (xA)dx =
1

det(A)

∫
f (x)dx, (109)

where A is a GL(N ) matrix. We now show that a similar property holds in the quantum
case. We remark first that (85) implies

ΔA(〈〈f (x)〉〉) = 〈〈f (xA)〉〉 = 〈〈f (1)(x)〉〉f (2′)(A), (110)

where f (xA) ≡ f (1)(x)f (2′)(A). Consider now the dual action of the generators Yij ≡
L+

imS(L−
mj) of Uq(gl(N )) on the integrand

〈〈Yij � f〉〉 = 〈〈f (1)〉〉
〈
Yij , f

(2′)
〉

. (111)

The above action can be represented in terms of differential operators on the plane as
follows [4, 5]:

Yij ∼ q−2δij + q−1λ∂ixj , (112)
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which gives, making use of the invariance of the integral

〈〈Yij � f〉〉 = 〈〈(q−2δij + q−1λ∂ixj)f〉〉
= q−2δij〈〈f〉〉.

Repeating the calculation for products of Y ’s acting on f , we find

〈〈f (1)〉〉 ⊗ f (2′) = 〈〈f〉〉 ⊗ z (113)

with Δ(z) = z⊗z and 〈Yij , z〉 = q−2δij , 〈1U , z〉 = 1. The above information completely
determines z. Since 〈Yij , detq(A)〉 = q2, ε(detq(A)) = 1 and detq(A) is grouplike, we
conclude

〈〈f (xA)〉〉 = 〈〈f (x)〉〉(detq(A))−1. (114)

As in the case of the quantum superplane, to obtain the correct q factors for the braiding
(so that, for example, x → x⊗1+ 1⊗x is a homomorphism of the first of (108)) one has
to introduce a grouplike, central dilaton g (extending this way A to Ã) with〈R, ga ⊗ gb

〉
= qab , 〈R, ga ⊗ Aij〉 = 〈R, Aij ⊗ ga〉 = δij (115)

and use the Ã coaction x → xAg, ∂ → ∂S(AT )g−1 in (73). We obtain in this way the
braiding relations

Ψ (〈〈f (x)〉〉 ⊗ xi) = q−(N+1)xi ⊗ 〈〈f (x)〉〉,
Ψ (〈〈f (x)〉〉 ⊗ ∂i) = qN+1∂i ⊗ 〈〈f (x)〉〉,

Ψ (〈〈f (x)〉〉 ⊗ 〈〈g(x)〉〉) = qN (N+1)〈〈g(x)〉〉 ⊗ 〈〈f (x)〉〉 . (116)

We point out that a translationally invariant integral on the quantum plane cannot be also
invariant under the coacting quantum group – an assumption to the contrary is made
in [10].

5. Integration on Quantum Group Modules

We present here an approach to integration on quantum spaces that are covariant under a
quantumgroup transformation,which does not rely on the braidedHopf algebra structure
we have assumed so far. The only necessary ingredients are

– a coaction ΔA : X → X ⊗ A, where A, X are the algebras of functions on the
quantum group and the quantum space respectively

– a map η : X → C that respects the algebra structure of X
– a (left) invariant integral on A.

Given the above data, an invariant (under ΔA) integral on X can be defined by

〈α〉 = η(α(1))〈α(2′)〉 (117)

(we denote by 〈·〉 the integral on both X and A). Notice that our notion of invariance in
this section is different from the one employed so far in this paper. Indeed, in the absence
of a (possibly braided) Hopf structure, no concept of translation exists (as codified by
the coproduct) and therefore (10) cannot serve as our starting point. We illustrate the
above procedure taking for X the quantum Euclidean space (for detailed treatments of
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this case see [8, 21]). An example of a function algebra the integral on which eludes all
methods presented so far in this paper appears in [6].

5.1. Integration on the quantum Euclidean space. In the following we use the nota-
tion and conventions of [9]. The algebra of functions on the N -dimensional quantum
Euclidean space is generated by the coordinates xi, i = 1, . . . , N satisfying

x1x2P
(−)
12 = 0, (118)

where P (−) is the antisymmetric projector in the spectral decomposition of the SOq(N )
R̂ matrix. The center of the algebra is generated by 1 and the squared length L2 = xT Cx,
where C is the quantum metric. For A an SOq(N ) matrix, it holds

S2(A) = DAD−1, D = CCT , A = CT S(AT )(C−1)T . (119)

The algebra of the x’s admits the coaction ΔA : x �→ xA while the map η : xi �→ ui ≡
u1δi1 + uNδiN , with u1, uN numbers, respects (118). L2 is ΔA-invariant.

The integral Ii1...im ≡ 〈xi1 . . . xim〉 is given by

Ii1...im = η(xj1 . . . xjm )〈Aj1i1 . . . Ajmim〉. (120)

Notice that the function xj1 . . . xjm〈Aj1i1 . . . Ajmim〉 is ΔA-invariant. Assuming that all
ΔA-invariant functions are functions of the invariant length, we conclude

xj1 . . . xjm〈Aj1i1 . . . Ajmim
〉 =

{
fi1...im

(Lm) m even
0 m odd , (121)

and therefore

Ii1...im =

{
η(fi1...im

(L2)) m even
0 m odd

. (122)

We treat, as an example, the case m = 2. Setting

Fni,mj ≡ 〈S(Aim)Anj〉 (123)

and invoking invariance in the form S(a(1))〈a(2)〉 = 1〈a〉, we get

ArbFbi,aj = ArbS(Abm)S2(Ani)Fma,nj

⇒ A1F12D1 = F12D1A1. (124)

Since only multiples of the identity matrix commute with A, we conclude

F12 = M2D
−1
1 . (125)

However,

AkiFbi,aj = AkiS(Ain)ArjFbn,ar

⇒ A2F12 = F12A2

⇒ M2 = ρI2 , (126)

with ρ a number. With the normalization 〈1A〉 = 1, we find ρ = (Tr D−1)−1 and therefore

Fbi,aj =
1

Tr D−1
D−1

ba δij . (127)

Using now the third of (119) in (120) and substituting the above result, we find, with the
help of (119),

Ii1i2 =
η(L2)

Tr D−1
Ci1i2 . (128)
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