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ABSTRACT: We study the motion of a quantum charged particle, constrained on the surface of a cylinder,
in the presence of a radial magnetic field. When the spin of the particle is neglected, the system essentially
reduces to an infinite family of simple harmonic oscillators, equally spaced along the axis of the cylinder.
Interestingly enough, it can be used as a quantum Fourier transformer, with convenient visual output. When
the spin 1/2 of the particle is taken into account, a non-conventional perturbative analysis results in a recursive
closed form for the corrections to the energy and the wavefunction, for all eigenstates, to all orders in the
magnetic moment of the particle. A simple two-state system is also presented, the time evolution of which
involves an approximate precession of the spin perpendicularly to the magnetic field. A number of plots
highlight the findings while several three-dimensional animations have been made available on the web.
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1 Introduction

The quantum mechanical description of the motion of charged particles in a magnetic field is a classic appli-
cation of the theory, having given rise to some of its most striking results. Among them, the seminal analysis
by Dirac [5], of the motion in the field of a magnetic monopole, continues to inspire decades after its incep-
tion, and motivates the study of similar quantum systems that share the characteristic of providing insights
into the fundamentals without too much distraction by analytical complexity. Such systems are invaluable
pedagogically, as they furnish a manageable, yet captivating testing ground of the fundamentals of the theory.

The problem of the motion of a non-relativistic quantum particle in a plane, in the presence of a per-
pendicular homogeneous magnetic field is presented in several textbooks (see, e.g., [13], ch. XV, p. 456) —
nevertheless, it seems to be the only standard example of this type available. The main purpose of this paper
is to draw attention to the fact that the analogous problem for the cylinder is also manageable, even when
augmented to include a spin 1/2. In this latter case, we also show how the use of the creation and anihilation
operator machinery greatly simplifies the perturbative analysis of the problem, in comparison to the standard
textbook procedure. We emphasize that, although a cylindrically radial magnetic field inevitably brings to
mind a monopole distribution as its source, it can actually be approximated in the laboratory by a particular
current distribution (see Sect. 2.1).

Despite the simplicity of the problem and it being an obvious variation on the monopole theme, we have
not been able to find a treatment in the literature. It is then our hope that the use of the above simple system
will help enhance the exposition of this fascinating part of the theory. It should also be of interest in practical
applications, such as constrained quantum mechanics and carbon nanotube physics.

Consider a classical charged particle, constrained to move on the surface of an infinite cylinder, in the
presence of a radial magnetic field,

—

B(p:aad):z):BOﬁ) (1)

where a is the radius of the cylinder and By is the field strength on its surface. As mentioned above, such a
radial field can be thought to be produced by a homogeneous linear magnetic charge density or by an infinite
solenoid with a particular surface current distribution. The equations of motion for the particle imply that

mv, = —qBy vy, mvy = qBov , (2)
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where m, ¢ are the mass and charge of the particle respectively and {p, (;3, z} is a right-handed orthonormal
basis. The solutions to (2) are two simultaneous oscillations: the momentum p, of the particle oscillates like,
say, cos(wt) (with w = ¢By/mc) while its angular momentum along the z-axis oscillates like sin(wt). Thus,
the particle’s kinetic energy oscillates between a linear and a rotational form, becoming, for example, purely
rotational at the turning points of the oscillation along z.

We study, in this paper, the quantum mechanical version of the above problem, adding, at a later stage,
a spin-1/2 to the particle. The treatment of the spinless case, contained in Sect. 2, is exact — the problem
separates and reduces to an infinite collection of harmonic oscillators along z. We find, nevertheless, the
resulting quantum system particularly rich and with surprising properties — it functions, for example, as a
quantum Fourier transformer with convenient visual output (see Sec. 2.3). The addition of spin is treated
perturbatively in Sect. 3, with a non-conventional method that greatly simplifies the calculations. We are
able to give recursion relations for the corrections to the wavefunctions and the energy to all orders, for
all unperturbed eigenstates, and apply the results to compute second-order corrections to the ground state.
Several plots highlight the findings. We also make available on the web several three-dimensional color
animations of the time evolution of the wavefunction, with or without spin, and corresponding to various initial
conditions. An appendix shows how the standard perturbation theory treatment of the problem reproduces,
albeit laboriously, our first order results.

2 The Spinless Case: Reduction to the Harmonic Oscillator

2.1 The magnetic field

Before analyzing the problem presented above, we would like to point out that, apart from the obvious (but
experimentally unattainable) realization of the magnetic field (1) by a linear magnetic monopole distribution,
there exists actually an experimental setup that can approximate this field in the laboratory. Indeed, consider
a cylindrical solenoid in the interior of the cylinder where the particle lives, with its axis along Z, carrying a

surface current distribution J given by
2Bga ~

J:—MORQZQS, (3)

where R < a is the radius of the solenoid. The field produced by the above J is

B
R_02a (p, 0, —22) forp< R
B(r) = ; (4)

Bga(%, 0, 0) for p > R

coinciding with the one in (1) at p = a. That the field outside of the solenoid is radial can be deduced from
symmetry arguments and the principle of superposition alone — we invite the reader to construct such a proof,
considering the above current distribution as the superposition of an infinite sequence of semi-infinite solenoids,
each carrying an infinitesimal uniform current density and displaced infinitesimally w.r.t. the previous one
along 2.

The corresponding vector potential /_f, such that B = V x /f, is

. —% (0, Pz, 0) forp< R
A(F) = : (5)
—Bya (0, %, 0) forp>R

The second line of (5) gives the functional form of A in the vicinity of the surface of the cylinder and is therefore
the one that should be used in the hamiltonian. Notice that the line integral of A around a constant-z circle is
nonzero and equal to the flux of the magnetic field through the disc bounded by the circle, the latter coming
entirely from the field in the interior of the solenoid. Had we worked with a linear monopole density, instead
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of a current distribution, we could still have used the above form of /_f, everywhere except along the z-axis,
but then it would not be clear how to account for the non-zero line integral mentioned above.

The above might be mathematically sound, but infinite solenoids are hard to come by in a laboratory.
What is still left to show is that truncating the solenoid down to a (sufficiently long) finite size does not alter
essentially the above results. More precisely, we need consider the contribution to the field at, say, z = 0,
of the semi-infinite parts of the solenoid with |z| > L and show that it can be made arbitrarily small for L
sufficiently large. This follows easily from the fact that the field produced at the origin by a circular ring of
small width Az, located at z, falls off like z—2, for z large enough (being the field of a dipole with current
that increases like z). Integrating from 2z = +L to oo we find that the above contributions fall off like L~*
and hence a sufficiently long solenoid can approximate arbitrarily well, near its center, the field given in (4).

2.2 The spectrum

The Hamiltonian for a quantum spinless particle constrained to move on the surface of the cylinder is given
by

N 1 -
H = —(F—q¢A4)y?
5 (= ¢4)
R o1 q*B? hqBg
= _— —82 82 0 2 - 8 - 6
Qm(a2 ot 0:)+ om © ma ¢ (6)
The wavefunction ¥(¢, z) = \/%ein (z) is an eigenfunction of H, with eigenvalue E, provided Z(z) satisfies

(primes denote differentiation w.r.t. z)

—:—mZ”(z) + %mwz(z +0b)*Z(2) = EZ(2), (7

where we have set

B
w:q—o, b h

m - qBoa’

(8)

and, in what follows, we take i = m = w = 1. This is the equation for a simple harmonic oscillator (SHO),
centered at z = —(b. We conclude that, for each integer value of ¢, one obtains a copy of the usual SHO
spectrum, with the eigenfunctions centered at z = —/b, i.e., the eigenfunctions and eigenvalues of H are given
by

(¢, z|n, £) = N, Hp(z + éb)e_(sz)z/Qieiw , Eyn=E,=n+ L

Nor: 5 N, = (2"nly/7)" 2,

(9)
where |n, £) denote the corresponding eigenkets (n = 0,1,2,...; £ € Z) and H,(z) are the Hermite polyno-
mials. Notice that from the second of (8) it follows that

ab =z}, (10)

where 29 = (h/mw)'/? is the ground state gaussian width. In the above units then, zo = 1 and b = 1/a.

2.3 A quantum Fourier transformer

Suppose that the wavefunction of the particle, at ¢t = 0, is given by’

2y 1
Uy(h, 2, t =0) = (¢, 2]0, 0, £) = Nye™* ﬂﬁel“’. (11)

'We use the notation (¢, z|n, £, m) = Ny Hp(z + Eb)e_(z+‘1b)2/2\/;2_ﬂeim¢ (not to be confused, hopefully, with the standard

spherical symmetry notation)— these wavefunctions are eigenfunctions of H only when m = £, in which case they will be denoted
by |n, £), as above.
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If £ = 0, we have one of the infinitely many ground states of the system and the time evolution is by a phase

factor. Consider now the case £ # 0. Then the z-part “sees” a quadratic potential centered at z = —£b but
the initial wavefunction is a gaussian centered at the origin. This is a coherent state and its time evolution is
an oscillation around z = —/b, with the frequency w = 1 of the oscillator,
1 .
T, ¢’ 2, t NOe—zt/Q 2282 gin 2t e—z(z—i—lb)lbsmt —(z4£b(1—cos t))?/2 ez(qﬁ_ 192
(6.2, 8) = 5 (12)

As long as one is interested in the physical characteristics of a single W, the first two phase factors, being
z-independent, are irrelevant and are often omitted in the literature. In our case though, we will be dealing
with superpositions of ¥,’s for various £’s, so the second (¢-dependent) phase factor will be important. We
may now exploit linearity to write down the time evolution of a gaussian (in z), centered at the origin, with
arbitrary ¢-dependence,

o0
U(p, 2, t = 0) = Noe = /2f(9), with f(¢) = D fee'™. (13)
{=—00
We obtain
¥(9, 2, 1) Z fe¥e(9, 2, 1), (14)
{=—o0
e., each Fourier mode of f(¢) gives rise to a gaussian in z, oscillating like a coherent state around z = —/£b

with frequency w = 1. Taking b > 1, so that the various gaussians separate after half a period, converts
the system to a quantum Fourier transformer with convenient visual output: looking at the wavefunction at
time ¢t = 7 (a half-period), one sees the above gaussians at the (second) turning point of their oscillation, at
z = —2/b, with their amplitudes proportional to the Fourier amplitudes f;. In Fig. 1, we plot nine frames of
the time evolution of ¥, when f(¢) = cos¢, with a time increment At = 7/8 — the last frame, at ¢t = T,
clearly displays the Fourier content of f. Fig. 2 corresponds to the initial wavefunction ¥ (¢, z, ¢t = 0) ~
e 2" /2(1 + 26719 4 3¢~ 120 4 4e39),

3 The Spin-1/2 Case

3.1 Separation of variables

For a spin-1/2 particle, the wavefunction has two components, ¥ (¢, z), ¥_(¢, z), which we arrange in a

column vector. The spin interacts with the magnetic field via f:fint -\S-B B, which, for the field given in (4)
becomes "

o 1 0 e 94

Hlnt - _§>\BO ( ei¢ 0 > ) >\ - %a (15)

where ¢ is the gyromagnetic factor of the particle. In order to achieve separation of variables now, we need
to take

1 1 .
U, (¢, 2) = —e?Z, (), T_(¢, 2) = ——eHD27_(2). 16
The resulting equation for the Z’s is
HiZ,(2)+€eZ_(z) = EZ.(2)
HeniZ-(2) +€Z4(2) = EZ_(2), (17)
where Hy is a SHO hamiltonian centered at z = —0b,

Hy = ——32 1(z+éb) (18)
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Figure 1: Time evolution of the initial wavefunction ¥ (¢, z, t = 0) = Noe—2"/2 cos ¢. The modulus
of ¥ is indicated by the radial distance of the surface from that of the cylinder while its phase is color-coded, with
1, 4, —1, —i corresponding to red, green, blue, purple (several animations in color, including the above, can be
seen at http://www.nuclecu.unam.mx/~chryss). The time ¢ is equal to zero at the top left and increases to
the right and downwards, reaching ¢t = 7 (half a period) at the bottom right.

and € = —ABy/2 = —g/4, as follows from (8), (15). We see that the problem reduces to that of two SHO’s,
a distance b apart, coupled by the € terms in (17). Our task is to solve (17) perturbatively in €. Once the
solutions are known, to a certain order in €, we can form the spinor

il
U, (¢, 2) ) \/1—6 Z1(2)
T(p, 2) = R = 2 , 19
@9=( %) Loz, (z) 19
from which the probability density and spin direction can be extracted as
|Z—| v
p=VIZ:2+1Z-|%, o = 2arctan ;—— B =1Im (log —), (20)
1Z4]” L&

where the spin direction 7 is given by # = (sinacosf, sinasin 3, cosa), in Cartesian coordinates. The
solutions of (17) have no relative (complex) phase and can be taken real. Then, on the ¢ = 0 plane, the
spin lies in the z — z plane. The extra e!® factor in ¥_ guarantees that when we change our position on the
cylinder by ¢, the spin also rotates by the same angle and its direction is therefore obtained by revolution of
the ¢ = 0 configuration, in other words, 8 = ¢ in (20). These remarks are of course valid only for the energy
eigenstates — the time evolution of general states results in the spin pointing outside of the radial plane as
well, even if they start within it.
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Figure 2: Time evolution of the initial wavefunction ¥ (¢, z, t = 0) ~ =% /2(1 4 2e~% 4 3e~i2% 4
4e~%3%).  Conventions are as in Fig. 1. Notice how the amplitudes of the gaussians in the last frame correspond
to the Fourier components of the initial wavefunction.

3.2 Perturbative solution

One may treat the system of the two coupled differential equations in (17) by standard perturbation theory
methods — we give the first-order analysis along these lines in the appendix. It is instructive though, as
well as much more efficient, to exploit the SHO machinery of raising and lowering operators. We begin
by transforming (17) into a single differential-difference equation. The solutions of (17) can be taken to
satisfy Z_(z) = £Z,(—z — b) (we will refer to the two possibilities as symmetric (Zs) and antisymmetric
(Za) respectively). This follows from the fact that the second of (17) is the mirror image, w.r.t. the point
z = —b/2, of the first one. More formally, we may introduce the operator M, which acts on functions of z
according to Mh(z) = h(—z — b). Notice that M? = 1 and that MHy, = H; M, MH, = HyM. Taking £ =0,
we write egs. (17) in matrix form as

( gj ) ) (21)

Now observe that the hamiltonian H commutes with M = ( ]8[ J\04 ) Since M? = 1, its eigenvalues are

+1, with the corresponding projectors being given by Py = (1 4+ M)/2 and satisfying PL = P,, P,P_ =0,
P, +P_ = 1. From (21) we then get HP, + P_)Z = EZ. Multiplying from the left by P and using

_ _ HO €
HZ = EZ, H:( ) H1>, y/
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the fact that H commutes with Py, we find H(P,.Z) = E(P,Z) (similarly for P_). This shows that any
solution Z of (21) can be written as the sum of two eigenfunctions of M, each of which is also a solution
of (21). Therefore, without loss of generality, we may assume Z to be an eigenvector of M, leading to the
above mentioned symmetry between Z,, Z_.

With symmetry considerations taken into account, we now turn to the solution of (17). Taking £ = 0 and
restricting to the symmetric case, the first of (17) becomes

IA{OZH-(Z) +eZsi (=2 —b) = EZs (2) . (22)

The form of this equation suggests treating the e-term as a perturbation to the SHO hamiltonian Hy. Notice
however that this perturbation is not of the usual form of a potential function multiplying the wavefunction
— rather, it involves the operator M introduced above (write the e-term as eM Zs,(z)). Dealing, as we are,
with a perturbative expansion, we would like to have e small, the scale being set by the energy difference
between neighboring (unperturbed) eigenstates®. Since for SHO this energy difference is 1, for all eigenstates,
we would like to have a system with € < 1. On the other hand, as it has been already mentioned, substituting
for A in (15) the value gq/(2m), with g depending on the particle, one finds e = —g/4. For an electron then,
with ¢ = 2, we get € & —1/2, which seems to imply that a perturbative analysis would be questionable in
this case. One possibility is to leave it to our experimental colleagues to come up with a particle (system)
with small enough g. As we will discuss at the end of Sect. 3.3 though, this seems not to be necessary, due to
the fact that the matrix elements of M can be made small by increasing b. As a result, in our perturbative
expansion for the ground state in Sect. 3.3, using b = 2, cubic corrections amount to less than 1% of the
zeroth-order results, despite the fact that the value of € used is 1/2.
Write now Hy = a'a + % and introduce the ket whose wavefunction is Zg4 (2),

o0

Zor(2) = (2| Zst) » 1 Zss) =) cala)"]0)o = f(ah)[0)o, (23)

n=0

where |0)¢ is the ground state for ¢ equal to zero (i.e., centered at the origin) and f(a') is defined by the last
equation. The idea is that any ket can be obtained by some function of a applied to the ground state —

this follows from the fact that the set {|n)} forms a basis and |n) = %M) The wavefunction Zgsy (—z — b)

is obtained from Zs (z) by first reflecting around the origin and then effecting the translation z — 2 + b.
Reflecting around the origin an eigenfunction of Hy introduces a sign given by the parity of the state, which
shows that the reflected state is produced by f(—a') applied to the ground state. Using the identity

ecla—al) — g=c’g—cal gea ) (24)

valid for any constant ¢, and the fact that the above translation in z is effected by the operator e?=, we find
for the reflected and translated state
o _ bt b
e f(—ahj0) = e P/te E e vE" f(—al) |0}

b
— —)|0)o . 25
\/ﬁ)l )o (25)
The last step above follows from the fact that the a — a’ commutation relations are identical to the 8, —

ones, so that the operator e%a, applied on functions of a', effects the translation at + at +b/1/2. Then (22)
is brought into the form

= e ¥/ vm f(—al

(a'a + %)f(aT)lwo + 6671)2/467%&]‘](-(_(” — —=)|0)o = Ef(a®)[0) . (26)

b
2

S

From the above algebra isomorphism and the fact that 0, f(x)

f'(z) + f(x)0,, we may also infer that
af(a’) = f'(a') + f(a")a. Using additionally the fact that a|n) = 0

, (26) implies a differential - difference

2We thank the (anonymous) editor for a clarifying remark on this point.
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equation for the function f(z),

1 2 _ b b
of (z) + = f(z) + ee ¥ /te” B f(—x — —) = Ef(z). 27
fi(@) + 5 f(2) f( \/5) f(z) (27)
We now specify to the case where the unperturbed state is the n-th excited state of the SHO. The perturbed
state will be denoted by f,(a')|0)o, with energy E,, where

() = £ ()", En =3 Ee". (28)
k=0 k=0

Notice that ) )

0)(p) = —z" (0) — -
i (x) \/ma: , E, n+ 5" (29)

Substituting these expansions in (27) we obtain
20, fP (2) —nfW(z) = —e~Ple Va1 (_y 0y LEUc)
k—1

+ 2 BN @), (30)

where we separated the m = 0, k terms in the sum on the r.h.s. and used (29). Notice that the r.h.s. above
only contains fr(Lm) with m < k, so (30) can be used recursively to determine any fy(Lk) (z).

The requirement that the perturbed eigenket be normalized implies that the corrections, order by order in
€, have to be orthogonal to the unperturbed eigenket |n)g. This in turn implies that, for & > 0, the coefficient
of ™ in fy(Lk) (z) must vanish. Then so does the coefficient of " in x0, fr(Lk) (z). Finally, the coefficient of z™

the first term on the r.h.s. above can be computed by expanding both the exponential and fflkfl) (—x — \%)
in a Taylor series around z = 0 and then multiplying the two series. Using the above, we can extract the

coefficient of 2™ on both sides of (30) — the resulting equation fixes recursively the energy corrections E(k)

_p2 n T Aar 1 b
B = e "/42() - )@ ). (31)

This is an appropriate point to comment on the antisymmetric solutions. The difference in this case is that
the € term in (27) appears with a minus sign. Since this is the only place where € appears explicitly, we
conclude that one gets the antisymmetric solutions from the symmetric ones by the substitution € — —e. As
we will see later on, symmetric solutions have their spin parallel, more or less, with the magnetic field while
antisymmetric ones have it antiparallel. Since € is proportional to the magnetic moment of the particle, the
above statement about the relation between the two kinds of solutions essentially says that the symmetric
solution for a particle coincides with the antisymmetric solution for the same particle but with the opposite
magnetic moment.

3.3 Corrections to the ground state

For n = 0, Egs. (30), (31) simplify considerably,

k—1
—b2 —— b ke —m m
20, f\P(x) = b/ag= Ve flh 1 (g E) + B+ 3 B A (@) (32)
m=1
k —p2/4 p(k— b
Eé ) = b /4f(§ 1)(_5)- (33)
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The unitarity argument given above implies in this case that fék) (0) =0, for all k greater than zero — this
fixes the lower integration limit in the solution of (32) equal to zero. The change of variable z}, — sy and
the substitution of (33) finally give

1 k—1
(k)N _ 71,2/4/ dsg | k—1), b . —Lasy p(k=1),_ b N (k=m—1), b (m) ‘
0 () =e o Sk 0 ( \/5) € 0 (—wsy \/5) mz;lfo (- \/5) (zs)

(34)
Notice that the (apparent) pole of the integrand at s = 0 cancels out.
We look in some detail now at the wavefunctions and resulting spin configurations, including up to
quadratic corrections. For the first three f(*), Eqs. (29), (34) give

@ = 1 %)
d -
@) = e / ) (36)
féz)(x) — b2/2/ / szjsl eb2s1/2 _67%”2 _{_6%516*%”(1*51” e fszslm} , (37)
291

while for the corresponding energy corrections we get

1
EY = 1 EMN =/t E® = e_b2/2/ ds1 (1 - e§31) : (38)
0o 51

In order to find the corrections to the wavefunctions, we need apply the above f’s (with z replaced by af)

to the ground state and project the resulting ket onto the position eigenket |z), Z(k (2) = (= | (aT)|0). For
terms like the second one in the integrand in (36), we use the identity (24) and the fact that a|0) =0 — the
results are

Z0(z) = Noe =/ (39)
1
Zil)(z) = Nye —b2/4/ d31 (6—22/2 b23f/4e—(2+b31)2/2) (40)
(2) 472/2/ / d52d51 b2/2 —22/2 _ b%s2/4 —(z+bs2)?/2
Z(z) = —e Sl)ez — eV P2/t (FT052
+ S9S51
+e b2s1/24+b%52(1—s1)> /4 —(z+bs2(1—51))%/2 _ eb2s§sf/4ef(z+bszsl)2/2} . (41)

In terms of these, the symmetric solution for the spinor has components (we ommit an overall normalization
factor)

Zsy(2) = Z_(i_o) (2) + eZ_(i_l)(z) + 62Z_(,_2) (2), Zs—(2) = Zsy (=2 = b) (42)
and energy
ESO = E(EO) + EEél) + €2E(g2) 5 (43)
while the antisymmetric solution is given by
Zoi(2) = =29(2) + €2 (2) - 20(2), Za(2) = —Zay(~2 — ) (44)
with energy
Ea = EY — B + EP . (45)

Plots of Z., for both cases, as well as the corresponding spin configurations, are given in Figs. 3, 4. Notice
that the effect of the perturbation is small, despite the rather large value of € = 0.5. Roughly speaking, this
can be traced to the fact that the value b = 2 used gives rise to a small overlap of two neighboring ground state
gaussians. To clarify this point, we need recall that, in standard perturbation theory, k-th order corrections
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z

Figure 3: The spin components Z;,, Z;_ and the corresponding spin configuration. The dotted curves
give the zeroth-order result, i.e., two gaussians, centered at z = 0 and z = —b = —2. The dashed curves include
corrections up to first order while the solid ones up to second (¢ = 0.5 — a rather large value was used to make
the effect visible). The integrals in Egs. (40), (41) have been evaluated numerically. The spin configuration shown
includes quadratic corrections. Due to the symmetry, the spin points always along p (upwards in the figure) at
z = —b/2 = —1, while it tends to £2 as z tends to +0o0. The perturbation causes a zero in each component (for
finite z) — the spin crosses the z axis at those points. As a result, the two gaussians are pushed apart while the
width of the central region, where the spin points up, is reduced.

are given as sums of products of k¥ matrix elements of the perturbation in the unperturbed eigenkets. In our
case, these matrix elements are

Mun= [ d2tn@)ta(=2-1), (46)
where 9, (2) = (z|m). Using f(a') = (a")"/v/n!in (25), we find

My = ﬂe**/‘l(mw«%“* (at + )"0y (47)
TVl v2i o
Expanding the exponential and the binomial and inspecting the terms that contribute to the matrix element,
we conclude that M,,, is of the form M,,, ~ e‘b2/4Qm+n(b), where @, (b) denotes a polynomial of order
r in b. It is clear then that limy_,oo M, = 0, so that, in the above limit, corrections of all orders tend to
zero (for those values of € for which the corrections are finite, for finite b). The precise way in which this
happens, namely, the asymptotic expansion of the corrections for large b requires a detailed analysis which
is beyond the scope of this article. Since each matrix element is proportional to e’b2/4, one might suppose
that the k-th order corrections are proportional to the k-th power of this exponential, which would suggest
that the effective “small parameter” of the perturbative expansion is ce=b’/4, This, however, is not the case:
the infinite sums involved in the corrections, once the above exponentials are factored out, may themselves
behave exponentially®. For example, in the expressions (38) for the corrections to the ground state energy,

E(()l) does behave like e*b2/4, but the appearance of the square of this factor in the expression for Eé2) is
misleading: an asymptotic expansion of the integral that multiplies it shows that E(()Z) ~ —=2/b?, as b — co. In
the absence of any estimation for the higher order contributions, the possibility that we are actually dealing
with an asymptotic series cannot be ruled out — the much weaker dependence of E(()Q) on b, compared to that
of Eél), certainly does not provide evidence to the contrary. In that case, the approximation is optimized by
truncating the series while it is still converging — one then obtains arbitrarily high precision as b — oo.

3.4 A two-state system

Consider a state that, at ¢ = 0, is the sum of the symmetric and antisymmetric n = 0 states found above,
for, say, £ = 0. The spin-down component of this state is of order 1 while the spin-up component is of order

3Notice that in our results (36), (37), (38), the above mentioned infinite sums appear transformed into integrals, preceded by

the expected power of eb°/4 _ the details of how this happens in the first order case can be found in the appendix.
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Figure 4: The spin components Z,;, Z,_ and the corresponding spin configuration. Notation and
parameter values are as in Fig. 3. Due to the antisymmetry, the spin points always along —p (downwards in the
figure) at z = —b/2 = —1, while it tends to +£ as z tends to +oo. The perturbation pushes the two gaussians
together while the width of the region where the spin points downwards is increased.

e. Roughly speaking, the particle is localized at z = —b and its spin points along the negative z-axis. Then
the standard two-state system analysis shows that the amplitudes to be in the spin-up and spin-down states
at later times behave like —i sin(Qt) and cos(€2t) respectively, where €2 ’s expansion in powers of € starts with
eE(()l) /2. The spin precesses in the tangent plane to the cylinder (i.e., perpendicularly to the magnetic field)
while the particle oscillates from —b to zero and back.

4 Concluding Remarks

We have studied the problem of the motion of a spin-1/2 particle on a cylinder, in the presence of a radial
magnetic field. A non-standard perturbative analysis, applicable to any perturbation of the harmonic oscil-
lator, led to a recursion relation for the wavefunction and energy corrections, Eqgs. (30) and (31) respectively,
with explicit results for the ground state in Eqs. (38) — (41) and Figures 3, 4. It is worth emphasizing that
the radial magnetic field of the problem can be approximated in the laboratory, as explained in detail in Sect.
2.1.

As mentioned in the introduction, we have not been able to find a treatment of this problem in the
literature. The motion of a spin-1/2 particle in the field of a magnetic monopole has been studied in detail,
both in the non-relativistic [1, 7, 8, 15, 9] and relativistic [12] cases. Symmetry aspects of the problem have
also been considered extensively (see, e.g., [11]), with the discovery of an underlying supersymmetry among
the most notable results [4, 2, 10]. On the other hand, quantum spinless particles moving on curves or surfaces
have been extensively studied (see, e.g., [3, 16, 14] and references therein) with a general discussion of the
effects of a vector potential given in [6].

We end with a comment on the form of the unperturbed hamiltonian used, Eq. (6). When dealing with
the motion of a quantum particle on a surface, one can use a 3-D Laplacian in the hamiltonian and constrain
the motion of the particle on the surface using a steep confining potential in the normal direction. It is well
known that in this approach, which seems to be the one appropriate for practical applications, there is an
induced potential for the motion along the surface, proportional to the square of the difference between the
two principal curvatures of the surface (see, e.g., [3, 14] and references therein). In our case, this is a constant
which only shifts the energy eigenvalues. Nevertheless, an obvious extension of our problem here would be the
study of the motion on the surface of a slightly curved cylinder, in which case the above mentioned induced
potential would have to be taken into account.
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A First Order Corrections to the Ground State: the Standard
Treatment

We outline here the standard first order perturbative analysis of the problem, deriving the corrections to
the ground state. Given that the zeroth order spectrum is degenerate, we need to first diagonalize the
interaction hamiltonian in each degenerate subspace. One easily sees that the interaction only connects the
pairs of eigenstates |n, £, +), |n, £+ 1, —). The appropriate zeroth order basis is given by the symmetric and
antisymmetric linear combinations

1

|TL2> = |TL2> = \/5(|TL, K, +> + |n7 é + lv _>)
n3) = [nd) = %(—In, 04+l 0+ 1, ). (48)

Notice that we use the label £ for states that are equally localized at —¢b and —(¢+1)b. The reason for renaming
the states with numerical superscripts, instead of letters, will become apparent below. The expectation value
of Hiyt in these states reproduces our result (38) for the first order correction to the energy. It is interesting
to see how the first order correction to the wavefunction, conventionally given by an infinite sum, is brought
into the closed form (40). The matrix elements of H, in the above basis are

(nd|Hing|m®) = €(ng|mes1) SeeSnm
<”2|Hint|m112’> = €e(ne|meg1) 0er O mt1
(ng|Hinelmp) = —e(ne|megr) deebim (49)

where (ng|me41) is the overlap between SHO eigenstates |n), |m), at a distance b apart and 7 is the parity
of n. Specifying to the symmetric ground state and taking ¢ = 0, we find the first order correction

oy =y Lok (50)
k=1

We see that only states with / = 0 contribute. Furthermore, when k is even, only the symmetric state
contributes while for £ odd, only the antisymmetric one does. Using the fact that

_ 1 b \k -
(0o | k1) = ﬁ(_ﬁ) e T, (51)
we find for the spin-up component of the correction
o0 (—l)k b k a2
09, +)V =" — ) e Tk, (52)
= kVE \V2

which implies

22 0 1 — (-1* ¢
o (k) = 2 (55)

k=1
= e (j01) - [00)) - (53)

Integrating back w.r.t. b and changing integration variable we recover our earlier result (36) (similarly for the
spin-down component).
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