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A number of problems in theoretical physics share a common nucleus of a combinatoric nature. It is argued here that Hopf algebraic concepts
and techiques can be particularly efficient in dealing with such problems. As a first example, a brief review is given of therecent work of
Connes, Kreimer and collaborators on the algebraic structure of the process of renormalization in quantum field theory.Then the concept of
k-primitive elements is introduced — these are particular linear combinations of products of Feynman diagrams — and it isshown, in the
context of a toy-model, that they significantly reduce the computational cost of renormalization. As a second example, Sorkin’s proposal for
a family of generalizations of quantum mechanics, indexed by an integerk > 2, is reviewed (classical mechanics corresponds tok = 1,
while quantum mechanics tok = 2). It is then shown that the quantum measures of orderk proposed by Sorkin can also be described as
k-primitive elements of the Hopf algebra of functions on an appropriate infinite dimensional abelian group.
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Una serie de problemas en fı́sica teórica comparte un núcleo común de ı́ndole combinatório. Es la tesis de este artı́culo que conceptos y
técnicas de álgebras de Hopf pueden ser particularmente eficientes en el tratamiento de este tipo de problemas. Como unprimer ejemplo, se
presenta un resumen del trabajo recien de Connes, Kreimer y sus colaboradores sobre la estructura algebráica del proceso de renormalización
en teorı́a cuántica de campos. Despues, se introduce el concepto de elementosk-primitivos — estos son combinaciones lineales particulares
de productos de diagramas de Feynman — y se demuestra, en el contexto de un modelo de juguete, que reducen de manera esencial el costo
computacional de la renormalización. Como un segundo ejemplo, la propuesta de Sorkin de una familia de generalizaciones de mecánica
cuántica, indexada por un enterok > 2, es presentada (mecánica clásica corresponde ak = 1, mientras mecánica cuántica ak = 2).
Se muestra en continuación que las medidas cuánticas de orden k propuestas por Sorkin pueden también ser descritas como elementos
k-primitivos del álgebra de Hopf de funciones sobre un grupoabeliano de dimensión infinita apropiadamente definido.

Descriptores:Algebras de Hopf; renormalización; elementos primitivos; mecánica cuántica generalizada; medidas cuánticas.
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1. Introduction

This paper deals with cases where combinatoric problems
arising in physics may be efficiently handled by geometric
means. Two particular examples are used to illustrate the
point: the quest for primitive elements in the Hopf algebra of
renormalization of Connes and Kreimer [5, 6], on one hand,
and the classification of possible generalizations of quan-
tum mechanics, proposed by Sorkin [13, 14], according to
the additivity properties of the corresponding “quantum mea-
sure”, on the other. In both cases, an underlying infinite-
dimensional Lie group structure permits the geometrization
of the problem, as a result of which combinatoric operations
are handled by differential geometric machinery, both facili-
tating and illuminating its solution. In the first case, the group
is the non-abelian group of renormalization schemes, intro-
duced by Connes and Kreimer, while in the second, it is the
abelian group of characteristic functions of subsets of theset
of histories of a quantum particle, introduced in Ref. 3. The
renormalization problem is presented in Sec. 3, the source
of the results being [4]. Generalized quantum mechanics ap-
pears in Sec. 4, the exposition following [3]. Before that, in
Sec. 2, a Hopf algebra primer translates some familiar Lie
group concepts into a language suitable for the applications
at hand. A final section of conclusions is there to transmit a
sense of order.

2. A Hopf Algebra Primer

The amount of Hopf algebraic machinery needed in the se-
quel is quite modest. In fact, it is no more than what the con-
cept of a Lie group supplies, appropriately dualized. Thus,
in principle, everything in this paper could be cast in familiar
Lie group language, but at the cost of significant notational
inconvenience. I opt for a quick translation of Lie groups
into Hopf algebraic terms — the reader will find that it is
well worth the modest initial investment.

The definition of a Lie groupG entails the concepts of
a product ·, a unit e, and aninverseg−1, together with ap-
propriate smoothness conditions. These are operations de-
fined in terms of thepointsof the group manifold: given two
points, one can associate whit them their product, there is a
special point which is neutral with respect to multiplication
etc. Admitting linear combinations of group elements, with
real coefficients, one obtains thegroup algebraR(G), with
the product inherited from that of the group, and defined to
distribute over the addition, so that,e.g.,

(λ1g1 + λ2g2) · g3 = λ1(g1 · g3) + λ2(g2 · g3),

λi ∈ R, gi ∈ G.

Dual to the vector space generated by the points inG is
the vector space Fun(G) of functions onG. The duality is
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via a bilinear inner product〈·, ·〉 : R(G) ⊗ Fun(G) → R,
given simply by the evaluation of the function at the point,
g ⊗ f 7→ 〈g, f〉 ≡ f(g). Notice that the space of functions
is endowed with an algebra structure as well, given by free
commutativity. Now, one has learned in quantum mechan-
ics that, given an inner product between two vector spaces
and an operator acting on one of them, one can define its
adjoint, acting on the other. In an analogous fashion, one
may dualize the above defining operations of a Lie group
to corresponding operations on the functions on the group.
To make this look nice, everything is expressed as maps.
The product inG is then a bilinear mapm : G ⊗ G → G,
m(g1 ⊗ g2) ≡ g1 · g2 (we may definem onG ⊗ G, rather
thanG × G because of bilinearity). Similarly, the unit is
formalized into a mapη : R → R(G), λ 7→ η(λ) = λe,
i.e., η sends every number to that same number times the unit
of the group. Finally, the inverse is promoted to the map
S : R(G) → R(G), g 7→ S(g) = g−1, extended bylinearity
to the entireR(G). This last feature may sound weird for an
inverse map, and indeed it is as it implies, for example, that
S(g1 + g2) = S(g1) + S(g2) = g−1

1 + g−1
2 , or, even worse,

S(λg) = λg−1. To avoid confusion,S is called theantipode
map, with the property that it returns the group inverse when
evaluated on the group elements themselves.

The stage is now set for dualizing everything. One may
start with the easiest, the unit mapη. Its dual is thecounit
mapǫ : Fun(G) → R, f 7→ ǫ(f) = f(e), i.e. the counit of
a function is a number, its value at the identity (notice how
dualizing reverses the direction of the arrows in the map defi-
nitions). Next comes the dual of the antipode, also called the
antipode, and also denoted byS,

〈S(g), f〉 = 〈g−1, f〉 ≡ 〈g, S(f)〉, (1)

i.e., the antipodeS(f) of a functionf , is a function that,
when evaluated on a pointg, returns the value off on g−1.
Just like its dual,S extends by linearity to the whole of
Fun(G). Finally, dual to the product map is thecoproduct
map

∆ : Fun(G) → Fun(G) ⊗ Fun(G),

f 7→ ∆(f) ≡
∑

i

f i(1) ⊗ f i(2) ≡ f(1) ⊗ f(2),

such that

〈m(g1 ⊗ g2), f〉 = 〈g1 ⊗ g2,∆(f)〉

≡ 〈g1 ⊗ g2, f(1) ⊗ f(2)〉

≡ 〈g1, f(1)〉〈g2, f(2)〉. (2)

Some remarks on the notation used might be helpful. The
coproduct of a functionf is ∆(f), a function of two ar-
guments, such that∆(f)(g1, g2) = f(g1g2) (I will oc-
casionally drop the dot from the group product). Now,
the tensor product of two functions, of a single argu-
ment each, can be considered as a function of two argu-
ments,(f ⊗ f ′)(g1, g2) = 〈g1 ⊗ g2, f ⊗ f ′〉 = f(g1)f

′(g2),

where the last equationdefinesthe inner product between
R(G) ⊗ R(G) and Fun(G) ⊗ Fun(G). A general function
of two arguments though, and, in particular,∆(f), does not
necessarily factorize like this but involves instead a sum over
such tensor products, written above as

∑

i f
i
(1) ⊗ f i(2) for the

case of∆(f). To further enhance confusion, one usually
drops the summation symbol and the associated index and
writes simply∆(f) = f(1) ⊗ f(2), a powerful notation due to
Sweedler.

An example might be needed to illustrate the above. Con-
sider the groupA(1) of affine transformations of the real line,
i.e. of maps(a, b): x 7→ ax+b, with a, b real anda > 0. The
group law is given by composition,

(a, b) · (a′, b′) ≡ (a, b) ◦ (a′, b′) = (aa′, ab′ + b) , (3)

with the unit being the point(1, 0) and the inverse given by

(a, b)−1 = (a−1,−a−1b). (4)

Introduce coordinate functionsf , h on the group manifold
(the right half-plane), such that

〈(a, b), f〉 = f
(

(a, b)
)

= a,

〈(a, b), h〉 = h
(

(a, b)
)

= b. (5)

What is the coproduct off? A glance at (3) shows that
∆(f) = f ⊗ f . Indeed,

f ((a, b) · (a′, b′)) ≡ 〈(a, b) · (a′, b′), f〉

= 〈(a, b) ⊗ (a′, b′),∆(f)〉

= 〈(a, b) ⊗ (a′, b′), f ⊗ f〉

= 〈(a, b), f〉〈(a′, b′), f〉

= aa′

= f ((aa′, ab′ + b)) . (6)

Similarly, one finds∆(h) = f ⊗ h + h ⊗ 1, where the unit
denotes the constant unit function onA(1). The counits are

ǫ(f) = f
(

(1, 0)
)

= 1, ǫ(h) = h
(

(1, 0)
)

= 0. (7)

Finally, from (4) one infers the antipode,

S(f) =
1

f
, S(h) = −

h

f
. (8)

3. Primitive Elements in the Hopf Algebra of
Renormalization

3.1. The need for renormalization

Imagine playing an underwater bowling game. Any accel-
eration of the ball entails the acceleration of part of the wa-
ter surrounding it, so that the massmgame that you observe
is the massm0 of the ball plus a correction∆m0, due to
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its interaction with the water. Or, consider a spherical con-
ductor of massm0. A chargeq is added to the conductor,
which is now subjected to acceleration. The electrical self-
interaction results in a net force opposing the acceleration,
proportional (approximately) to the acceleration. Again,the
observed mass will contain corrections tom0 due to the in-
teraction with the electromagnetic field.

Physicists studying these systems have the option of writ-
ing their dynamical equations in terms of the original,bare
quantities (m0), or the observed ones (mgame) — the pas-
sage between the two constitutes arenormalizationof the
theory. Using either set of quantities makes sense physically,
because the interaction, in the above examples, can be turned
off (playing bowling in the air, or discharging the conductor)
so that either quantity is, at least in principle, measurable.
Notice also that in both cases the correction∆m is finite,
showing that renormalization is not intrinsically relatedto in-
finities.

Renormalization also appears in quantum field theory, but
there it is a necessity, not an option. This is due to two rea-
sons: first, the self-interactions of the quantum fields cannot
be turned off, so that the bare quantities, corresponding to
the free field case, are fictitious, measurable only in thought
experiments. Second, the corrections to these fictitious quan-
tities due to self-interactions are often infinite. Perturbative
quantum field theory, nevertheless, treats the interactions as
perturbations to the free field case. For example, inφ3 theory,
where the Lagrangian density is given by

L =
1

2
∂µφ∂µφ−

1

2
m2

0φ
2 −

λ0

3!
φ3, (9)

the last term is the self-interaction and its effects are calcu-
lated perturbatively. Ifλ0 were zero, the observed mass of
the corresponding particle would bem0, the constant that ap-
pears explicitly inL. But λ0 is not zero, and the amplitude
for propagation from eventA to eventB involves a sum over
all possible trajectories compatible with the initial and final
positions, including intermediate processes of emission and
the subsequent reabsorption of virtual particles. Graphically
this looks like

= +

+ + + . . .

Each of the diagrams on the r.h.s. above stands for a particu-
lar, usually divergent, integral, which contributes to themass
correction. Infinities (in one-particle-irreducible diagrams)
can beprimitive (e.g. second term on the r.h.s. above) or
nested(e.g. last term). The renormalization procedure con-
sists of two steps: firstregularize, i.e. find a (totally artifi-
cial) method to make all integrals converge, for example, by
truncating the integration domain in momentum space down

to some finite size. Second, rewrite the Lagrangian in terms
of the observable parameters and remove the regularization.
The expression of the observable parameters in terms of the
bare ones will now involve (unobservable) infinities, but the
functional dependence of the Lagrangian on the former will
not. If this can be done consistently to all orders, the theory
is renormalizable.

3.2. A toy model

Illustrating the above in the context of a realistic field theory
involves rather hideous algebra. A good deal of the intrica-
cies of the process though is captured by the following toy
model [1]. There is a single primitive divergent integralI(c),
given by

I(c) =

∞
∫

0

dy

y + c
, (10)

wherec will be referred to as theexternal parameter. We
represent this graphically by a single dot,I(c) = b. Nested
divergences are obtained by nestingI(c). The simplest case
is

I2(c) =

∞
∫

0

dy

y + c

∞
∫

0

dz

z + y
, (11)

where the nesting is effected by letting the external parameter
of the second appearance ofI(c) be the integration variable
of the first — the corresponding graph is

b

b, where the top dot
refers to the first integral in (11) and the bottom one to the
one nested inside it. When nesting twice, two possibilities
exist

I31 =

∞
∫

0

dy

y + c

∞
∫

0

dz

z + y

∞
∫

0

dw

w + z

I32 =

∞
∫

0

dy

y + c

∞
∫

0

dz

z + y

∞
∫

0

dw

w + y
, (12)

with corresponding graphs

b

b

b,
b

b b respectively. Clearly, an in-
finite family of divergent integrals is produced, indexed by
graphs known asrooted trees(trees because there are no
closed circuits in them,rootedbecause the top vertex (= root)
is special in that it has no parents) — these are the Feynman
diagrams of our toy model.

We now apply a renormalization procedure to the above
integrals. The regularization is done by modifying the mea-
sure,dy → y−ǫdy. The resulting convergent integrals can
be expanded in a Laurent series inǫ, the poles of which are
recursively removed. ForI(c), one gets

I(c) → I(ǫ; c) =

∞
∫

0

y−ǫdy

y + c

=
1

ǫ
− a+ O(ǫ), (13)
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wherea ≡ ln c. The renormalized integral is obtained by
subtracting fromI(ǫ; c) its pole part and lettingǫ go to zero:

I ren(c) = lim
ǫ→0

(

I(ǫ; c) −
1

ǫ

)

= −a. (14)

For the nested integrals, things are a little more complicated.
Regularization proceeds as before, but the pole subtraction
must be done recursively, starting with the innermost (“bot-
tom”, in the tree representation) divergences and working
one’s way up the tree towards the root. The renormalized
value of the integral is given by a sum of2n terms, wheren
is the number of nested subdivergences, equal to the number
of vertices of the corresponding tree — a very clear algorith-
mic description of the process can be found in Ref. 1.

As one can appreciate already from the above sketchy
presentation, the renormalization process is far from unique.
One may clearly regularize the integrals in an infinite number
of ways and even the pole subtraction procedure can involve,
for example, subtracting a finite part along with the poles.
The resulting renormalized values of the integrals depend on
these choices — it is one of the subtleties of the subject that
the physics does not. To make this a little more plausible,
consider an infinite homogeneous linear charge density and
compute the electrostatic potential a radial distanceρ = c
away from the charge. Proceeding naı̈vely, one puts the zero
of the potential atρ = ∞ and integrates (minus) the electric
field from infinity to c to find, in appropriate units

V (c) = −

c
∫

∞

dρ

ρ
=

∞
∫

0

dy

y + c
, (15)

our old friend! The problem is not in the physics, but in the
choice of the reference point for the potential. To deal with
it, one may choose a regularizationV (ǫ; c) (as we did with
I(c) above), and then move the reference point to some finite
distanceρ0 by forming the differenceV (ǫ; ρ)− V (ǫ; ρ0) and
taking the limitǫ → 0. In so doing, one is essentially sub-
tracting the pole fromV (ǫ; ρ), plus an arbitrary finite amount
which depends onρ0. The physics, of course, lies in differ-
ences in the potential and, hence, is unaffected by changes in
the subtraction procedure. A particular choice of regulariza-
tion plus pole-removal procedure is referred to as arenormal-
ization scheme. We summarize:

• there are infinitely many renormalization schemes to
chose from

• the physics does not depend on the choice

3.3. Geometrization, part I

Consider the commutative algebraH generated by an infi-
nite family of functions{φT }, with T ranging over all rooted
trees. Acharacteron H is a linear mapχ : H → R that
respects the algebra structure,

χ(φT1φT2) = χ(φT1 )χ(φT2). (16)

CallG the space of characters onH. You can think of theφ’s
as functions onG, the value ofφT ∈ H on a particular point
χ ∈ G being given byφT (χ) ≡ χ(φT ). Then the charac-
ter property (16) corresponds to pointwise multiplicationof
theφ’s, i.e., (φT1φT2)(χ) = φT1(χ)φT2 (χ). Now, the renor-
malized value, in a certain renormalization scheme, of the
product of two divergent integrals is defined to be the prod-
uct of the renormalized values (in the same scheme) of the
factors. This means that renormalization schemes are points
in G. The value ofφT on a point (scheme)g is the renormal-
ized value of the integral corresponding to the treeT in the
scheme corresponding tog. Furthermore, theφ’s are coordi-
nate functions onG, since, to completely specify a character,
one needs only its values on theφT — the character property
(plus linearity) then gives its values in the whole ofH. The
beautiful discovery of Connes and Kreimer, who introduced
the above setting [6], is thatG is actually a (non-abelian) Lie
group. Giving the group law consists in giving the coordi-
natesφT3(g3) of the productg3 = g1g2, as smooth functions
of the coordinatesφT1(g1), φT2(g2) of the factors. First, two
simple examples:

φ b(g1g2) = φ b(g1) + φ b(g2)

φ
b

b(g1g2)=φ
b

b(g1)+φ
b

b(g2)+φ
b(g1)φ

b(g2);

then, a not-so-simple example:

φ
b

b b(g1g2) = φ
b

b b(g1) + φ
b

b b(g2)

+ 2φ b(g1)φ
b

b(g2)

+
(

φ b(g1)
)2
φ b(g2);

finally, the general formula:

φT (g1g2) = φT (g1) + φT (g2)

+
∑

cutsC
φP

C(T )(g1)φ
RC (T )(g2). (17)

The sum is over alladmissible cutsC of the treeT . An ad-
missible cut can be either asimple cutor acomposite cut. The
former involves cutting an edge of the tree and discarding the
half-edges produced (butnot the vertices to which these are
attached). In this way, the tree is separated into two subtrees,
one that contains the root (denoted byRC(T ) above), and
one that “falls to the floor”i after the cut (denoted byPC(T )
above). A composite cut, on the other hand, involves cutting
k > 1 edges, with the constraint that there is at most one cut
on any path from the root downwards. In this case,RC(T )
again denotes the subtree containing the root, butPC(T ) now
denotes the collection{Ti}, 1 ≤ i ≤ k of subtrees that fall to
the floor, withφP

C(T ) denoting the productφT1φT2 . . . φTk .
It can be shown that the above group law is associative. It is
easy to read off the coproduct ofφT from (17):

∆(φT ) = φT ⊗ 1 + 1 ⊗ φT

+
∑

cutsC

φP
C(T ) ⊗ φR

C(T ). (18)
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The units appearing on the r.h.s. denote the constant unit
function onG. From this expression one finds a recursive
formula for the antipode,

S(φT ) = −φT −
∑

cutsC
S(φP

C(T ))φR
C(T ). (19)

The counit of allφ’s is zero, while that of the unit function is,
of course, one. Given then any two characters (in particular,
two renormalization schemes), one may form their product
according to the above formulas to obtain a new one. The
counit just given implies that the unit character, wrt this prod-
uct, assigns the value zero to all divergent integrals, while
assigning 1 to the unit function. This completes the Hopf
algebra structure ofH, dual to the Lie group structure ofG.

But, apart from aesthetics, what is it good for? The an-
swer lies, partly, in the following observation [1]. Define a
mapR that encodes the subtraction procedure,e.g. by as-
signing to eachφT the pole part of its Laurent expansion,
evaluated atc = 1ii. UseR to define atwisted antipodeSR
via

SR(φT )=−R(φT )−R

(

∑

cutsC
SR(φP

C(T ))φR
C (T )

)

(20)

(notice the similarity of the recursive structure with that
of (19)). Then all of renormalization’s recursive complexity
is encoded neatly in the formula

φTren = SR(φT(1))φ
T
(2)

∣

∣

∣

ǫ=0
. (21)

Example 1 Renormalization ofφ
b

b

From the coproduct

∆(φ
b

b) = φ
b

b ⊗ 1 + 1 ⊗ φ
b

b + φ b ⊗ φ b (22)

and Eq. (21), one gets

φ
b

b

ren = SR(φ
b

b) + φ
b

b + SR(φ b)φ b, (23)

the limit ǫ→ 0 being implied. For the twisted antipodes, (20)
gives

SR(φ b) = −R(φ b)

SR(φ
b

b) = −R(φ
b

b) −R(−R(φ b)φ b). (24)

Substituting these in (23) givesφ
b

b

ren as a sum of 4 (= 22)
terms,

φ
b

b

ren=φ
b

b−R(φ
b

b)−R(φ b)φ b

+R(R(φ b)φ b). (25)

Evaluating the regularized integrals and expanding in
Laurent series inǫ, one finds (with some abuse of notation)

φ b =
1

ǫ
− a+

(

a2

2
+
π2

6

)

ǫ+ O(ǫ2) (26)

φ
b

b =
1

2ǫ2
−
a

ǫ
+ a2 +

5π2

12
+ O(ǫ), (27)

so that, finally,

φ
b

b

ren =
a2

2
+
π2

4
. (28)

3.4. Primitive elements in H

As the last example probably makes clear, renormalizing
multiply nested integrals can be heavy work. A glance at (21)
shows that the complexity of the task, for a particularφT , de-
pends on the number of terms in the coproduct ofφT . In
fact, one realizes that this dependence is even stronger by
taking into account (20),i.e. the fact that the complexity of
the twisted antipodes produced by (21) depends itself on that
of the coproduct. It would be nice then if the coproduct of the
φ’s were simpler. But it isn’t. The next best thing is to look
for a new set of coordinates onG with simpler coproducts.
For example, one cannot ask for anything more fromφ b:

∆(φ b) = φ b ⊗ 1 + 1 ⊗ φ b, (29)

(such a coproduct will be called1-primitive) but φ
b

b isn’t as
innocent, see (22) (and Ex. 1 for the consequences). A little
experimentation though shows that

ψ
b

b = φ
b

b −
1

2
(φ b)2 (30)

also has a 1-primitive coproduct (notice that the coproductof
a product is the product of the coproducts). To renormalize
ψ

b

b then, two options are available. The first one is to write

ψ
b

b

ren = φ
b

b

ren−
1

2
(φ b

ren)
2, (31)

and renormalize theφ’s on the r.h.s.. Since

φ b

ren = φ b −R(φ b)
∣

∣

∣

ǫ=0
= −a, (32)

one finds, using the result of Ex. 1, Eq. [28],ψ
b

b

ren = π4/4.
The second option is to use directly (21), which holds for
functions of the coordinates as well, since both the coproduct
and the twisted antipode are algebra homomorphisms — this
givesψ

b

b

ren = ψ
b

b − R(ψ
b

b). But a Laurent expansion ofψ
b

b

shows that

ψ
b

b =
π2

4
+ O(ǫ), (33)

i.e. ψ
b

b does not even have poles, so thatR(ψ
b

b) = 0, and
one immediately recovers the above result. Clearly, there
are good reasons to further investigate the applicability of
the second option. Consider, for example, renormalizing a
φ with ten vertices. The analogue of (25) would then contain
210 = 1024 terms. On the other hand, imagine that appropri-
ate additions to thatφ turn it into a 1-primitiveψ. Then only
two terms would appear in its renormalization. Too good to
be true? Read on. Some pertinent questions then are: Can
one find otherψ’s with 1-primitive coproduct? Can allφ’s be
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traded for 1-primitiveψ’s? The answer is yes and no, in that
order. A little more experimentation, for example, shows that

ψ

b

b

b = φ

b

b

b − φ bφ
b

b +
1

3
(φ b)3 (34)

is also 1-primitive. On the other hand, if a set of 1-primitive
coordinates could be chosen onG, thenG would be abelian,
which it is not. The most one can hope for then is to make an
optimal choice of coordinates that best adapts to the “abelian
directions” onG.

3.5. Geometrization, part II

“Ladder” (linear) trees provide a convenient point of entryto
the problem of primitive elements inH. It is easy to see that
their coproduct is given by

∆(φ(n)) =

n
∑

k=0

φ(k) ⊗ φ(n−k) , (35)

whereφ(r) denotes the ladder tree withr vertices (φ(0) stands
for the unit function). But this form of the coproduct rings a
bell. Consider the commutative algebra of power series of
the formg = 1 + c1x + c2x

2 + . . ., with the usual product.
Introducing coordinates{ξn} on the space of such power se-
ries, with〈g, ξn〉 = cn, one easily finds that the dual to the
product of power series is the coproduct

∆(ξn) =
n
∑

k=0

ξk ⊗ ξn−k (36)

(compare with (35)). But series of the above form can also
be written as exponentials,

g = ec
′

1x+c
′

2x
2+.... (37)

Change now the coordinates fromξ to ξ′, such that〈g, ξ′n〉 =
c′n. Under multiplication of series, the constantsc′ simply
add up, implying the coproduct∆(ξ′n) = ξ′n ⊗ 1 + 1 ⊗ ξ′n,
i.e. theξ′n are all 1-primitive. The obvious isomorphism with
the Hopf algebra of ladder trees implies that theψ(n) defined
by

e
∑

∞

n=1 ψ
(n)xn

=

∞
∑

r=0

φ(r)xr (38)

are all primitive. (38) may be inverted to give

ψ(n) =
1

n!

∂n

∂xn
log

(

∞
∑

m=0

φ(m)xm

)

∣

∣

∣

∣

x=0

, (39)

putting the problem of the ladder 1-primitives, including the
ten-vertex one, to rest.

This may look, so far, like a happy combinatorial acci-
dent. But it actually points to the deeper geometrical origin
of 1-primitiveness. There is no space here to delve into the
details, but a sketch of some of the ideas will be given (for

details, see [4]). First, renormalization schemes are written
as exponentials of elements ofg, the Lie algebra ofG:

g = e
∑

T
cTZT , (40)

whereZT are the generators ofg. Then new coordinatesψT

are introduced, such that

〈g, ψT 〉 = cT . (41)

These are, of course, thenormal coordinatesonG. Their
coproduct is computed from the Baker-Cambell-Hausdorff
(BCH) formula,

∆(ψA) = ψA ⊗ 1 + 1 ⊗ ψA

+
1

2
f A
B1B2

ψB1 ⊗ ψB2 + . . . , (42)

wheref A
B1B2

are the structure constants ofg. Some of the
generators ofg cannot be written as commutators. For the
dualψ’s, the third term above, and all higher ones, are zero,
i.e., they are 1-primitive. This observation points to a natural
generalization of the concept of 1-primitiveness. There are,
for example, some other generators ofg thatcanbe written
as commutators, but not as double commutators. The dual
ψ’s will have the third term on the r.h.s. of (42) present, but
all higher terms equal to zero — they are to be called, ac-
cordingly, 2-primitive. What enters naturally then in to the
discussion ofk-primitiveness is the lower central series ofg,
which classifies its generators in classesgk, according to the
maximal numberk of nested commutators by which they can
be produced.

But there is more to be gained from our geometric ap-
proach. For any functionf onG, one may extend the exterior
differential off at the identity,df |e, to a left-invariant 1-form
Πf onG. If f is quadratic or of a higher degree in theφ’s,
df |e, and henceΠf , vanishes. Given that the linear part of
ψT is φT , one concludes thatΠψT = ΠφT . For a primitive
ψT , on the other hand, the general formula

Πf = S(f(1))df(2) (43)

shows that ΠψT =dψT , and hence, ΠφT =dψT is
closed. Application of the inverse Poincaré lemma to
ΠφT = S(φT(1))dφ

T
(2) then provides an expression of the 1-

primitiveψT as the co-cone (potential) of the closedΠφT . A
little further trickery, which takes into account the fact that
the coproduct of theφ’s is linear in theφ’s in the right tensor
factor, results in an elegant formula,

ψT = −
1

Φ
S(φT ), (44)

where Φ counts the monomial order of theφ’s,
Φ(φT1 . . . φTk) = k φT1 . . . φTk .

Somevery rough estimate of the savings in, say, CPU
time, from switching to the normal coordinates can be ob-
tained by assigning a cost of2k to a k-primitive element,
regardless of the number of vertices of its index, while as-
suming that aφ with n vertices costs2n. The numbersPn,k
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of k-primitive elements withn > k vertices are given by the
generating function [2]

Pk(x) ≡
∞
∑

n=1

Pn,kx
n

=
∑

s|k

µ(s)

k

(

1 −
∞
∏

n=1

(

1 − xns
)rn

)k/s

. (45)

The sum on the r.h.s. above extends over all divisorss of k,
including1 andk. µ(s) is the Möbius function, equal to zero,
if s is divisible by a square, and to(−1)p, if s is the product
of p distinct primes(µ(1) ≡ 1). The asymptotic behavior of
Pn,k, for large values ofn, is [2]

fk ≡ lim
n→∞

Pn,k
rn

=
1

c

(

1 −
1

c

)k−1

, (46)

wherec = 2.95 . . . is the Otter constant andrn is the num-
ber of rooted trees withn vertices. This is good news, as the
population of the CPU-intensive high-k ψ’s is seen to be ex-
ponentially suppressed. The ratio of the total costs of renor-
malizing all generators withn vertices in the two bases then
is

ρn =
rn2

n

∑n−1
k=1 Pn,k2

k
≈ (c− 2)

( c

c− 1

)n−1

, (47)

which soars to5.4 × 105, a year’s worth of minutes, for
n = 33.

More insights, from a geometrical point of view, can be
found in [4]. Very significant progress has been made also by
mostly algebraic means, see [9] and, more recently, [7,8].

4. Primitive Elements in the Hopf Algebra of
Quantum Measures

4.1. Quantum mechanics as a quantum measure theory

A second example where geometry, in the guise of Hopf alge-
bras, illuminates problems of an algebraic/combinatoric na-
ture is furnished by Sorkin’s proposal of a generalization of
quantum mechanics [12–14] — Ref. [3] is followed closely in
the sequel. Consider the standard two-slit interference exper-
iment and callH the set of all electron histories (worldlines)
leaving the electron gun and arriving at the detector at spec-
ified time instants (to avoid technicalities, considerH to be
measurable). Denote byA (B) the subset ofH consisting of
all histories in which the electron passes through slita (b),
ignoring the possibility of the electron winding around both
slits. There are four possible ways of blocking the two slits—
denote byPab, Pa, Pb andP0 = 0 the corresponding proba-
bilities of arrival at the detector, the last one corresponding to
both slits being blocked off. Sorkin’s approach is to consider
these probabilities as the values of a certain measure function
µ defined on the set of subsets ofH , e.g.Pa = µ(A). When
mutually exclusive alternatives exist, as when both slits are

open, the union of the corresponding (disjoint) subsets is to
be taken,e.g. Pab = µ(A ⊔ B) (⊔ denotes disjoint union).
Physical theories are distinguished by the measures they em-
ploy, for example, classical mechanics uses a “linear” mea-
sureµcl, satisfying the sum rule

I µcl
2 (A,B) ≡ µcl(A ⊔B) − µcl(A) − µcl(B) = 0, (48)

and hence fails to predict any interference. Quantum mechan-
ics, on the other hand, usesµq, satisfyingI µq

2 (A,B) 6= 0.
The interesting observation by Sorkin is that in a three slitex-
periment (with eight possibilities for blocking the slits), the
probabilities predicted by quantum mechanicsdo satisfy the
sum rule

I
µq

3 (A,B,C) ≡ µq(A ⊔B ⊔ C)

− µq(A ⊔B) − µq(A ⊔C) − µq(B ⊔C)

+ µq(A) + µq(B) + µq(C)

= 0. (49)

It is easy to show thatµcl also satisfies (49), as a result
of (48). There is an obvious generalization to thek-slit ex-
periment, involving the symmetric functionalIµk , given by

Iµk (A1, . . . , Ak) ≡ µ(A1 ⊔ . . . ⊔Ak)

−
∑

i

µ(A1 ⊔ . . . ⊔ Âi ⊔ . . . ⊔Ak)

+
∑

i<j

µ(A1 ⊔ . . . ⊔ Âi ⊔ . . .

. . . ⊔ Âj ⊔ . . . ⊔Ak)

. . .

+ (−1)k+1
∑

i

µ(Ai), (50)

where symbols with hats are omitted and allAi are mutually
disjoint. Due to the recursion relation

Iµk+1(A0, A1, . . . , Ak) = Iµk (A0 ⊔A1, A2, . . . , Ak)

− Iµk (A0, A2, . . . , Ak)

− Iµk (A1, A2, . . . , Ak), (51)

the sum ruleIµk+1 = 0 follows from Iµk = 0. It is natu-
ral now to contemplate a family of theories, indexed by a
positive integerk, defined by the sum ruleIµk+1 = 0, with
Iµk 6= 0 for the corresponding measure. In this scheme, clas-
sical mechanics is ak = 1 theory while quantum mechanics
corresponds tok = 2.

The above formulas forIµk need to be extended to the
general case,i.e. when the arguments are possibly overlap-
ping sets. For thek = 2 case, Sorkin shows that bilinearity
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implies the following equivalent forms

Iµ2 = µ(A ∪B) + µ(A ∩B) − µ(A\B) − µ(B\A)

= µ(A△B) + µ(A) + µ(B)

− 2µ(A\B) − 2µ(B\A). (52)

The symbol\ above denotes a set-theoretic difference while
△ denotes a symmetric difference.

4.2. Coderivatives

A brief excursion further into Hopf algebraic territory is nec-
essary at this point. One way of looking at the coproduct of
a function is as an indefinite translation. The right translation
Rg on the group is defined byRg(g′) = g′g. Its pullback on
functionsR∗

g(f) ≡ fg is given by

fg(g
′) = f(g′g) = f(1)(g

′)f(2)(g).

One infers thatf(1)(·′)f(2)(g) is the right-translate off by g,
while f(1)(·′)f(2)(·), a function of two arguments, is the in-
definitely translatedf : its second argument defines the trans-
lation while the first evaluates the translated function (left
translations can be similarly handled exchanging the two ten-
sor factors of the coproduct). Introduce now the operator
L : A 7→ A⊗A, defined by

Lf = ∆(f) − f ⊗ 1. (53)

The above way of interpreting the coproduct shows thatL can
be considered an indefinite discrete derivative orcoderivative
for short:

(Lf)(g′, g) = 〈f(1) ⊗ f(2) − f ⊗ 1, g′ ⊗ g〉

= f(g′g) − f(g′). (54)

Wheng is close to the identity,g = e+X + . . ., withX
in the Lie algebra of the group,(Lf)(·′, g) is approximately
(proportional to) the derivative off along the left invariant
vector field corresponding toX . Higher order coderivatives
Lkf can similarly be defined, with the understanding that the
successive applications ofL are to be taken at the leftmost
tensor factor,

Lkf ≡ (L ⊗ id) ◦ Lk−1f , k = 2, 3, . . . , (55)

so that, for example,

L2f ≡ (L ⊗ id) ◦ Lf

= (L ⊗ id)(f(1) ⊗ f(2) − f ⊗ 1)

= f(1) ⊗ f(2) ⊗ f(3) − f(1) ⊗ 1 ⊗ f(2)

− f(1) ⊗ f(2) ⊗ 1 + f ⊗ 1 ⊗ 1. (56)

Of particular interest is the evaluation of ak-
th order coderivative at the identity of the group,

(Lkf)(e, ·, . . .) ≡ (Lkf)(e), e.g.,

(Lf)(e) = f − ǫ(f)1

(L2f)(e) = f(1) ⊗ f(2) − f ⊗ 1 − 1 ⊗ f

+ ǫ(f)1 ⊗ 1. (57)

It is now possible to introduce formally the notion ofk-
primitiveness: a functionf will be calledk-primitive if all its
coderivatives of orderr at the identity,(Lrf)(e), with r > k,
are equal to zero, while(Lkf)(e) is not.

4.3. Quantum measures and k-primitiveness

4.3.1. The abelian group of histories

Referring back to thek-slit experiment, callH the set of his-
tories available to a particle, taken as a measurable set for
simplicity. One may deal with a given subsetA of H in
terms of itscharacteristic function, defined byχA(x) = 1
if x ∈ A, χA(x) = 0 if x ∈ H\A. Denote byG the set of
all linear combinations of characteristic functions of measur-
able subsets ofHiii. A typical elementg of G is of the form
g = λ1χA1 +λ2χA2 + . . ., where theAi are measurable sub-
sets ofH andλi ∈ C. Gmay be turned into an abelian group
with the group law given by addition. Then the identitye is
the zero function,e = χ∅ = 0, and the inverse ofg is−g.

As in Sorkin’s approach, a physical theory derives its
probabilities from a measure functionµ, defined now onG,
e.g.Pa = µ(χA) in the two-slit experiment. In the presence
of mutually exclusive alternatives, thesum of the character-
istic functions of the corresponding subsetsis to be taken —
this corresponds to the disjoint union in terms of the subsets
themselves, as in Refs. 11 and 12. What is attractive though
in working with characteristic functions is that, by extending
this definition (i.e., addition of the characteristic functions) to
non-disjoint subsets, we recover the rather complicated inter-
ference term (52) and its generalizations. Consider for exam-
ple a quadratic functionalµ2, with µ additive, evaluated on
two overlaping subsetsA andB — the resulting interference
term is

Iµ
2

2 = µ(χA + χB)2 − µ(χA)2 − µ(χB)2

= 2µ(χA)µ(χB)

= 2
(

µ(χA\B)µ(χB\A) + µ(χA\B)µ(χA∩B)

+ µ(χA∩B)µ(χB\A) + µ(χA∩B)2
)

, (58)

where, in the last step, the substitutionχA = χA\B + χA∩B

was used, and similarly forχB. On the other hand, the first,
for example, of (52) becomes

Iµ
2

2 = µ(χA∪B)2 + µ(χA∩B)2 − µ(χA\B)2

−µ(χB\A)2. (59)

SubstitutingχA∪B = χA\B+χB\A+χA∩B and expanding,
one recovers the right hand side of (58).
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The quantum measures considered up to now are el-
ements of the commutative Hopf algebraA ≡ C∞(G)
of smooth functions onG. Their counit vanishes, since
µ(∅) = 0. The linearity of the classical measure, Eq. (48),
implies thatµcl(χA+χB) = µcl(χA)+µcl(χB), or, in terms
of the coderivative,

0 = (L2µ)(e) = µcl (1) ⊗ µcl (2) − µcl ⊗ 1

−1 ⊗ µcl + ǫ(µcl)1 ⊗ 1, (60)

the last term being zero. Hence,µcl is a 1-primitive element
of A. More generally, the following lemma holds:
Lemma 1 The symmetric functionalsIµk , defined in Eq. (50),
coincide with thek-th order coderivatives(Lkµ)(e) of
Eq. (55).
The straightforward inductive proof is left as an exercise.The
main result of this section may now be stated:
Proposition 1 In the algebraA of functions onG, everyk-
primitive element is ak-th degree polynomial in 1-primitive
elements.
The proof can be given in a number of ways. For example, it
is easily established thatA is a cocommutative graded con-
nected Hopf algebra. This means that the coproduct is sym-
metric under exchange of the two tensor factors, that there is
a grading respected by the coproduct (k-primitiveness), and
that the only elements with zero grade are numbers. Then,
application of the Milnor-Moore theorem [10] gives thatA is
isomorphic to the universal enveloping algebra of its subal-
gebra of 1-primitive elements, which establishes the propo-
sition. Alternatively, and closer to the spirit of this paper,
one may introduce normal coordinates onH . BecauseH is
abelian the normal coordinates are 1-primitive. Then the van-
ishing at the identity of all coderivatives, of order higherthan
k (but not that of orderk), of a function of the coordinates

implies that the function is a polynomial of orderk in the
coordinates, q.e.d.

5. Conclusions

It has been argued that a geometric setting, cast in Hopf alge-
braic language, might be efficient in dealing with problems of
a combinatoric nature. Two examples were used to illustrate
the point:

• A toy-model renormalization is simplified significantly
by introducing normal coordinates on the infinite di-
mensional Lie group of renormalization schemes of
Connes and Kreimer, while 1-primitive functions on
the group are shown to correspond to closed left-
invariant 1-forms.

• Quantum measures ofk-th order, proposed by Sorkin
as generalizations of quantum mechanics, are de-
scribed ask-primitive functions on the group of his-
tories associated whit a particular experiment. As a
result, they are shown to be polynomials of orderk in
additive (i.e., classical-like) measures.

It would be nice to see this list grow longer fast.
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i. A mental picture borrowed from D. Kreimer.

ii. In general,R must satisfy

R(xy)− R(R(x)y)− R(xR(y)) + R(x)R(y) = 0

— this guarantees thatSR (see below) is multiplicative.

iii. These are known assimplefunctions onH .
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