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A number of problems in theoretical physics share a commatena of a combinatoric nature. Itis argued here that Hagladaic concepts
and techiques can be particularly efficient in dealing witbrsproblems. As a first example, a brief review is given ofréeent work of
Connes, Kreimer and collaborators on the algebraic stredithe process of renormalization in quantum field thedhen the concept of
k-primitive elements is introduced — these are particuleedir combinations of products of Feynman diagrams — andstiaésvn, in the
context of a toy-model, that they significantly reduce thepatational cost of renormalization. As a second examplekiS's proposal for

a family of generalizations of quantum mechanics, indexedrbintegerk > 2, is reviewed (classical mechanics corresponds te 1,
while quantum mechanics o = 2). It is then shown that the quantum measures of okdproposed by Sorkin can also be described as
k-primitive elements of the Hopf algebra of functions on aprapriate infinite dimensional abelian group.

Keywords:Hopf algebras; renormalization; primitive elements; gatized quantum mechanics; quantum measures.

Una serie de problemas en fisica tedrica comparte ureal@min de indole combinatério. Es la tesis de esteutatjue conceptos y
técnicas de algebras de Hopf pueden ser particularméaientes en el tratamiento de este tipo de problemas. Conpoinner ejemplo, se
presenta un resumen del trabajo recien de Connes, Kreinusrgotaboradores sobre la estructura algebraica delspatserenormalizacion
en teoria cuantica de campos. Despues, se introduceamonde elementds-primitivos — estos son combinaciones lineales partiadar
de productos de diagramas de Feynman — y se demuestra, aniettoale un modelo de juguete, que reducen de manera dssrgato
computacional de la renormalizacion. Como un segundom@Era propuesta de Sorkin de una familia de generalizasiate mecanica
cuantica, indexada por un enteko> 2, es presentada (mecéanica clasica corresponkle=al, mientras mecanica cuanticaka= 2).
Se muestra en continuacion que las medidas cuanticasdée bmpropuestas por Sorkin pueden también ser descritas ceentertos
k-primitivos del algebra de Hopf de funciones sobre un graipeliano de dimension infinita apropiadamente definido.

Descriptores:Algebras de Hopf; renormalizacion; elementos primitjiyogcanica cuantica generalizada; medidas cuanticas.

PACS: 02.10.De; 02.20.Tw; 02.40.Hw; 03.65.Ca; 11.10.Gh

1. Introduction 2. A Hopf Algebra Primer

This paper deals with cases where combinatoric problem&n€ amount of Hopf algebraic machinery needed in the se-
arising in physics may be efficiently handled by geometricquel is qwtg modest. In faf:t, itis no more than What the con-
means. Two particular examples are used to illustrate th§€Pt of & Lie group supplies, appropriately dualized. Thus,
point: the quest for primitive elements in the Hopf algekira o IN Principle, everything in this paper could be cast in faanil
renormalization of Connes and Kreimer [5, 6], on one hand!—'e group language, but at the_ cost of sgmﬁcant_notauonal
and the classification of possible generalizations of quaninconvenience. | opt for a quick translation of Lie groups
tum mechanics, proposed by Sorkin [13, 14], according tdnto Hopf algebraic termg — the reader will find that it is
the additivity properties of the corresponding “quantuname Well worth the modest initial investment.

sure”, on the other. In both cases, an underlying infinite- 1 ne definition of a Lie groug- entails the concepts of
dimensional Lie group structure permits the geometrizatio & Product-, aunit ¢, and an|nyerseg‘1, together with ap-

of the problem, as a result of which combinatoric operationg"oPriate smoothness conditions. These are operations de-
are handled by differential geometric machinery, bothlifaci fined in terms of theointsof the group manifold: given two
tating and illuminating its solution. In the first case, thegp ~ POINtS, one can associate whit them their product, there is a
is the non-abelian group of renormalization schemes, introSP€cial point which is neutral with respect to multiplicati
duced by Connes and Kreimer, while in the second, it is th&tc: Admitting linear combinations of group elements, with
abelian group of characteristic functions of subsets ottite €@l coefficients, one obtains tigeoup algebraR(G), with

of histories of a quantum particle, introduced in Ref. 3. Thethe product inherited from that of the group, and defined to
renormalization problem is presented in Sec. 3, the sourc@istribute over the addition, so thatg,

of the results being [4]. Generalized quantum mechanics ap-

pears in Sec. 4, the exposition following [3]. Before that, i (A1g1+A2g2) - g3 = M1 - gs) + Aalg2 - gs),

Sec. 2, a Hopf algebra primer translates some familiar Lie X\ €R, gi € G.

group concepts into a language suitable for the application

at hand. A final section of conclusions is there to transmit a Dual to the vector space generated by the points iis
sense of order. the vector space F&') of functions onG. The duality is
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via a bilinear inner product,-): R(G) ® FunNG) — R,  where the last equatiodefinesthe inner product between
given simply by the evaluation of the function at the point, R(G) ® R(G) and FuiG) ® Fun(G). A general function

g® f— {g,f) = f(g9). Notice that the space of functions of two arguments though, and, in particular /), does not

is endowed with an algebra structure as well, given by fresmecessarily factorize like this but involves instead a susro
commutativity. Now, one has learned in quantum mechansuch tensor products, written aboveE,%f(il) ® f(g) for the

ics that, given an inner product between two vector spacesase of A(f). To further enhance confusion, one usually
and an operator acting on one of them, one can define itdrops the summation symbol and the associated index and
adjoint, acting on the other. In an analogous fashion, onevrites simplyA(f) = f1) ® f(2), a powerful notation due to
may dualize the above defining operations of a Lie groupSweedler.

to corresponding operations on the functions on the group. An example might be needed to illustrate the above. Con-
To make this look nice, everything is expressed as mapsider the groupi(1) of affine transformations of the real line,
The product inG is then a bilinear map: G ® G — G,  i.e.of maps(a,b): z — ax+0b, witha,brealandz > 0. The
m(g1 ® g2) = g1 - g2 (We may definen on G ® G, rather  group law is given by composition,

than G x G because of bilinearity). Similarly, the unit is

formalized into a map : R — R(G), A — n(\) = Ae, (a,0) - (a',b) = (a,b) o (d, V') = (ad’,ab +b), (3)

i.e,, n sends every number to that same number times the unit
of the group. Finally, the inverse is promoted to the map”/
S:R(G) — R(G), g — S(g9) = g, extended byinearity

to the entireR(G). This last feature may sound weird for an
inverse map, and indeed it is as it implies, for example, thafoquce coordinate functiong, % on the group manifold

S(g1 + g2) = S(g1) + S(g2) = g1 ' + g5 ', or, even worse, (the right half-plane), such that
S(\g) = A\g~!. To avoid confusion$ is called theantipode

ith the unit being the pointl, 0) and the inverse given by

(a,b)™' = (a1, —a™'b). 4)

map, with the property that it returns the group inverse when {(a,b), f) = f((a, b)) =aq,
evaluated on the group elements themselves.
The stage is now set for dualizing everything. One may ((a,),h) = h((“’ b)) =0 (%)

start with the easiest, the unit map Its dual is thecounit
mape: Fun(G) — R, f — €(f) = f(e), i.e. the counit of
a function is a number, its value at the identity (notice how

What is the coproduct of ? A glance at (3) shows that
A(f) = f® f.Indeed,

d_uglizing reverses the direction of the arrows in the map defi £ (a,b) - (@, b)) = ((a,b) - (d, V), f)
nitions). Next comes the dual of the antipode, also called th
antipode, and also denoted By = ((a,b) ® (a',0"), A(f))
(S(9), ) = (97", 1) = {9, S(/), (1) = ((a,0) ® (@), f ® f)
i.e, the antipodeS(f) of a function f, is a function that, = ((a,b), f){(a’,0), f)
when evaluated on a poigt returns the value of ong~!. — ad
Just like its dual,S extends by linearity to the whole of
Fun(G). Finally, dual to the product map is tleproduct = f((ad',ab’ +)). (6)
map
Similarly, one findsA(h) = f ® h + h ® 1, where the unit
A: Fun(G) — Fun(G) ® Fun(G), denotes the constant unit function difi1). The counits are
fr A =30 @ fiy = Ty @ fooy, «(f)=F(1L0) =1, eh)=h((10)=0. (7)
such that Finally, from (4) one infers the antipode,
(m(91® 92), f) = (91 ® 92, A())) S(f) = % S(h) = _% ®)
= (g1 ® 92, f(1) @ f(2))
= (g1, f)){92, fr2))- (2) 3. Primitive Elements in the Hopf Algebra of

Some remarks on the notation used might be helpful. The Renormalization

coproduct of a functionf is A(f), a function oftwo ar- 31 The need for renormalization

guments, such tha®\(f)(g1,92) = f(g192) (I will oc-

casionally drop the dot from the group product). Now, Imagine playing an underwater bowling game. Any accel-
the tensor product of two functions, of a single argu-eration of the ball entails the acceleration of part of the wa
ment each, can be considered as a function of two arguer surrounding it, so that the masgame that you observe
ments,(f ® f')(g1,92) = (g1 ® g2, f @ 'Y = f(91)f'(g2), is the massn, of the ball plus a correctiod\m,, due to
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its interaction with the water. Or, consider a spherical-conto some finite size. Second, rewrite the Lagrangian in terms
ductor of massng. A chargeq is added to the conductor, of the observable parameters and remove the regularization
which is now subjected to acceleration. The electricalself The expression of the observable parameters in terms of the
interaction results in a net force opposing the accelaratio bare ones will now involve (unobservable) infinities, bu th
proportional (approximately) to the acceleration. Agdive  functional dependence of the Lagrangian on the former will
observed mass will contain correctionsrtg due to the in-  not. If this can be done consistently to all orders, the theor
teraction with the electromagnetic field. is renormalizable

Physicists studying these systems have the option of writ-
ing their dynamical equations in terms of the originzdye ~ 3.2. A toy model
quantities {no), or the observed onesngamgd — the pas-
sage between the two constitutesemormalizationof the
theory. Using either set of quantities makes sense physical
because the interaction, in the above examples, can bedturn
off (playing bowling in the air, or discharging the condugto

Illustrating the above in the context of a realistic fieldahe
involves rather hideous algebra. A good deal of the intrica-
8ies of the process though is captured by the following toy
model [1]. There is a single primitive divergent integfé&t),

so that either quantity is, at least in principle, measgabl 91VeN by
Notice also that in both cases the correctiim is finite, 7 dy
showing that renormalization is not intrinsically relatedn- I(c) = / —, (10)
finities. yte

Renormalization also appears in quantum field theory, bufyhere ¢ will be referred to as thexternal parameter We
thereitis a neceSSIty, not an Opt|0n This is due to two rearepresent this graph|ca”y by a S|ng|e dﬁ(c) . Nested

sons: fII’St the self-interactions of the quantum fields o&nn d|VergenceS are obtained by nestﬁg) The S|mp|est case
be turned off, so that the bare quantities, corresponding tg

the free field case, are fictitious, measurable only in thbugh

experiments. Second, the corrections to these fictitioas-qu /
tities due to self-interactions are often infinite. Peraiike

guantum field theory, nevertheless, treats the interasten
perturbations to the free field case. For exampleZitheory,
where the Lagrangian density is given by

y+ c z+y’ (11)
where the nesting is effected by Iettlng the external patame
of the second appearance t) be the integration variable
of the first — the corresponding graphlisvhere the top dot
refers to the first integral in (11) and the bottom one to the
one nested inside it. When nesting twice, two possibilities

exist
o0 o0
/ dz / dw
c) z+y ) w4tz
0 0

o0

1 1 A
L= 50" 406 — gmis* — 576°, 9)

the last term is the self-interaction and its effects areical -
lated perturbatively. 1f\, were zero, the observed mass of /
Y
0

+|&

the corresponding particle would be,, the constant that ap-

pears explicitly inZ. But )\ is not zero, and the amplitude

for propagation from evemt to eventB involves a sum over oo oo

all possible trajectories compatible with the initial anafi / dy dz / dw 7 (12)
0 0

_|_
_|_

positions, including intermediate processes of emissiuh a Y+ €J # ty) wty
the subsequent reabsorption of virtual particles. Graglyic

this looks like with corresponding grapk{s J\ respectively. Clearly, an in-

finite family of divergent integrals is produced, indexed by
graphs known asooted trees(trees because there are no
4@7 _ n /N closed circuits in thenrpotedbecause the top vertex(oot)
is special in that it has no parents) — these are the Feynman
diagrams of our toy model.
We now apply a renormalization procedure to the above

+ AN\ + L\ + ... integrals. The regularization is done by modifying the mea-

sure,dy — y~—°dy. The resulting convergent integrals can

Each of the diagrams on the r.h.s. above stands for a particse expanded in a Laurent seriescjrthe poles of which are
lar, usually divergent, integral, which contributes to thass  recursively removed. Faf(c), one gets

correction. Infinities (in one-particle-irreducible diams) oo

can beprimitive (e.g. second term on the r.h.s. above) or I(e) = I(e;c) = / y~dy

nested(e.g. last term). The renormalization procedure con- ’ y+ec

sists of two steps: firgiegularize i.e. find a (totally artifi-

cial) method to make all integrals converge, for example, by _ 1 a+O(e) (13)

truncating the integration domain in momentum space down €
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wherea = Inc. The renormalized integral is obtained by Call G the space of characters & You can think of they's
subtracting from/ (¢; ) its pole part and letting go to zero:  as functions o, the value ofp” € H on a particular point
x € G being given byp” (x) = x(¢*). Then the charac-
I'®"(¢) = lim <](€; ) — 1) = —q. (14)  ter property (16) corresponds to pointwise multiplicatafn
=0 € theg's, i.e, (71 ¢72)(x) = ¢7 (x)9™2(x). Now, the renor-
For the nested integrals, things are a little more comp@itat malized value, in a certain renormalization scheme, of the
Regularization proceeds as before, but the pole subtractioProduct of two divergent integrals is defined to be the prod-
must be done recursively, starting with the innermost (“bot uct of the renormalized values (in the same scheme) of the
tom”, in the tree representation) divergences and Workingactors. This means that renormalization schemes aregoint
one’s way up the tree towards the root. The renormalized G- The value of” on a point (scheme) s the renormal-
value of the integra| is given by a sum ?f terms, wherex ized value of the integral Corresponding to the tréa the
is the number of nested subdivergences, equal to the numb&gheme corresponding go Furthermore, the's are coordi-
of vertices of the corresponding tree — a very clear algerith Nate functions o, since, to completely specify a character,
mic description of the process can be found in Ref. 1. one needs only its values on thé — the character property
As one can appreciate a|ready from the above Sketchgplus “nearity) then gives its values in the whole7f The
presentation’ the renormalization process is far from Lum|q beautiful diSCOVGry of Connes and Kreimer, who introduced
One may clearly regularize the integrals in an infinite numbethe above setting [6], is that is actually a (non-abelian) Lie
of ways and even the pole subtraction procedure can involvéroup. Giving the group law consists in giving the coordi-
for example, subtracting a finite part along with the polesnatess™ (gs) of the producys = g1g2, as smooth functions
The resulting renormalized values of the integrals depend oOf the coordinates™ (g1 ), ¢”2(g2) of the factors. First, two
these choices — it is one of the subtleties of the subject thatimple examples:

the physics does not. To make this a little more plausible, . — e + b
consider an infinite homogeneous linear charge density and ¢"(9192) = ¢ (9n) + 9*(92)
compute the electrostatic potential a radial distapce c ¢I(9192):¢I(gl)+¢l(92)+¢’(gl)¢’(92);

away from the charge. Proceeding naively, one puts the zert% ; imol le:
of the potential ap = oo and integrates (minus) the electric €n, a not-so-simple example-

field from infinity to ¢ to find, in appropriate units ¢A(9192) _ ¢A(g1) 4 ¢A(92)
f 7 I
d d +2
Vie) = — / dp _ / fc’ (15) ¢ <gl>¢2<gz>
=t + (¢°(91)) ¢ (92);

our old friend! The problem is not in the physics, but in the finally, the general formula:

choice of the reference point for the potential. To deal with T T T

it, one may choose a regularizatidf{e; ¢) (as we did with " (9192) = ¢"(91) + & (92)
I(c) above), and then move the reference point to some finite + Z D (gl)¢RC M(gy). (A7)
distancepy by forming the differencé (¢; p) — V (¢; po) and cutsC

taking the limite — 0. In so doing, one is essentially sub-
tracting the pole fron¥ (¢; p), plus an arbitrary finite amount
which depends opy. The physics, of course, lies in differ-
ences in the potential and, hence, is unaffected by changes
the subtraction procedure. A particular choice of regaéari
tion plus pole-removal procedure is referred to asrrmal-
ization schemeWe summarize:

The sum is over alhdmissible cut€” of the treeT’. An ad-
missible cut can be eithersimple cubr acomposite cutThe
former involves cutting an edge of the tree and discardiag th
ﬁalf-edges produced (babt the vertices to which these are
attached). In this way, the tree is separated into two sebtre
one that contains the root (denoted B§ (T') above), and
one that “falls to the floor” after the cut (denoted b§“ (T)

e there are infinitely many renormalization schemes toabove). A composite cut, on the other hand, involves cutting

chose from k > 1 edges, with the constraint that there is at most one cut
) ) on any path from the root downwards. In this caB&(T')
» the physics does not depend on the choice again denotes the subtree containing the rootF{tT") now
o denotes the collectiofiT; }, 1 < i < k of subtrees that fall to
33. Geometrization, part | the floor, with¢” (T) denoting the produat™ ¢ . .. ¢T%.

Consider the commutative algebta generated by an infi- It can be shown that the above group law is associative. It is
nite family of functions{¢” }, with 7" ranging over all rooted €28y t0 read off the coproduct of from (17):
trees. Acharacteron’H is a linear mapy : H — R that AT =T @1+1®¢T

respects the algebra structure, Z o) RO (1)
+ @ ® ¢ . (18)
X(¢T1 ¢T2) = X(¢T1)X(¢T2)- (16) cutsC

Rev. Mex. Fis. §3 (2) (2007) 31-40



PHYSICS, COMBINATORICS AND HOPF ALGEBRAS 35

The units appearing on the r.h.s. denote the constant ungb that, finally,
function onG. From this expression one finds a recursive
formula for the antipode, !

ren — % + . (28)
S@") = —¢" = Y ST D)t D (19)
cutsc 3.4. Primitivedementsin H

The counit of allp’s is zero, while that of the unit functionis, ag the last example probably makes clear, renormalizing
of course, one. Given then any two characters (in particulat’mu|tip|y nested integrals can be heavy work. A glance at (21)
two renormalization schemes), one may form their productpows that the complexity of the task, for a particulr de-
according to the above formulas to obtain a new one. Th%ends on the number of terms in the coproductdf In
counitjust given implies that the unit character, wrtthis®  fact, one realizes that this dependence is even stronger by
uct, assigns the value zero to all divergent integrals, evhil taking into account (20),e. the fact that the complexity of
assigning 1 to the unit function. This completes the Hopfine twisted antipodes produced by (21) depends itself dn tha
algebra structure df{, dual to the Lie group structure 6f. of the coproduct. It would be nice then if the coproduct of the
But, apart from aesthetics, what is it good for? The an-ys were simpler. But it isn't. The next best thing is to look
swer lies, partly, in the following observation [1]. Define a for 3 new set of coordinates aii with simpler coproducts.

map R that encodes the subtraction procedw®,. by as- gqr example, one cannot ask for anything more frm
signing to eachy” the pole part of its Laurent expansion,

evaluated at = 1. UseR to define awisted antipodeSp AlP)=¢"®1+1® ¢, (29)
via

(such a coproduct will be callet-primitive) but ngI isn't as
) (20) innocent, see (22) (and Ex. 1 for the consequences). A little

SR<¢>T)——R<¢T>—R< 3" Sa(el"M)pR @

cutsc experimentation though shows that
(notice the similarity of the recursive structure with that ' po1
of (19)). Then all of renormalization’s recursive comptgxi Yt =9t — §(¢‘)2 (30)
is encoded neatly in the formula
also has a 1-primitive coproduct (notice that the coprodfict
bren = Sr(D(1)) (2 : (21)  aproduct is the product of the coproducts). To renormalize
MW@ _, P
- 1* then, two options are available. The first one is to write
Example 1 Renormalization o&l )
From the COpI’OdUCt eren = ¢Een - §(¢Fen)2a (31)
A =¢@l+1a¢ +¢ ®¢ (22)

and renormalize the’s on the r.h.s.. Since
and Eq. (21), one gets

Pren= 9" — R(¢")| = —a, (32)
Gen=Sr(@) + ¢ + Sn(6*)e", (23) =0

the limite — 0 being implied. For the twisted antipodes, (20) one finds, using the result of Ex. 1, Eq. [283,28,1 = 7t/4.
gives The second option is to use directly (21), which holds for
functions of the coordinates as well, since both the coprbdu

Sr(¢*) = —R(¢*) and theItWistedI antipodIe are algebra homomorphisms I_ this
I pialy Pl Pl e givesyy,, = ¥* — R(y*). But a Laurent expansion af
Substituting these in (23) giveﬁen as a sum of 4 22) 2
terms, W= - 00, (33)

11 ! o) Lo
Sren=¢" —R(¢")—R(9")¢ i.e. ¢ does not even have poles, so tiw)!) = 0, and
+R(R(¢4°)9*). (25) one immediately recovers the above result. Clearly, there
are good reasons to further investigate the applicability o
Evaluating the regularized integrals and expanding inhe second option. Consider, for example, renormalizing a
Laurent series im, one finds (with some abuse of notation) 4 with ten vertices. The analogue of (25) would then contain

1 a2 72 ) 210 = 1024 terms. On the other hand, imagine that appropri-
¢ =——at (7 + g) e+ 0(e7) (26)  ate additions to that turn it into a 1-primitiveyy. Then only
, two terms would appear in its renormalization. Too good to
1_ 1 _a o, 51 O 27 be true? Read on. Some pertinent questions then are: Can
¢ 2¢2 ¢ et 12 +0(e), @7) one find other)’s with 1-primitive coproduct? Can afi’s be
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traded for 1-primitivey’s? The answer is yes and no, in that details, see [4]). First, renormalization schemes aretevrit
order. A little more experimentation, for example, shovatth as exponentials of elementsgfthe Lie algebra ot

= eXre7r 40

G i 36’ (34) ’ | )

whereZ; are the generators gf Then new coordinateg”
is also 1-primitive. On the other hand, if a set of 1-pringtiv are introduced, such that
coordinates could be chosen 6hthenG would be abelian, T T
which it is not. The most one can hope for then is to make an (g97) =c. (41)
optimal choice of coordinates that best adapts to the “abeli These are, of course, thermal coordinatesn G. Their
directions” onG. coproduct is computed from the Baker-Cambell-Hausdorff

(BCH) formula,

A =vro1+10¢p4

3.5. Geometrization, part Il

“Ladder” (linear) trees provide a convenient point of ertry
the problem of primitive elements iH. It is easy to see that + lfB 5 AyBrg B2 4 (42)
their coproduct is given by A

n wherefp, BZA are the structure constantsgf Some of the
A(p™) = Z o*) @ p(n=Fk) (35)  9generators ofy cannot be written as commutators. For the
=0 dual’s, the third term above, and all higher ones, are zero,
i.e, they are 1-primitive. This observation points to a natural
whereg(") denotes the ladder tree wittvertices ¢(°) stands  generalization of the concept of 1-primitiveness. Thees ar
for the unit function). But this form of the coproduct rings a for example, some other generatorggahat can be written
bell. Consider the commutative algebra of power series ohs commutators, but not as double commutators. The dual
the formg = 1+ 1z + cpa® + ..., with the usual product. 4's will have the third term on the r.h.s. of (42) present, but
Introducing coordinate§s,, } on the space of such power se- all higher terms equal to zero — they are to be called, ac-
ries, with (g, &,.) = cn, one easily finds that the dual to the cordingly, 2-primitive. What enters naturally then in teth

product of power series is the coproduct discussion of:-primitiveness is the lower central seriesgof
n which classifies its generators in clasggsaccording to the
A(&n) = Z £ ® En (36)  maximal numbek of nested commutators by which they can
=0 be produced.

) _ But there is more to be gained from our geometric ap-
(compare with (35)). But series of the above form can alsgyrgach. For any functioi on G, one may extend the exterior
be written as exponentials, differential of f at the identityf ., to a left-invariant 1-form
 adae. Il on G. If f is quadratic or of a higher degree in this,
g=er e ' (37) df|., and hencdly, vanishes. Given that the linear part of
¢T is ¢T, one concludes thdl,r = I,r. For a primitive

Change now the coordinates fr ', such thatyg, &) =
g o g, &) T, on the other hand, the general formula

¢,,. Under multiplication of series, the constamrtssimply
_add up, implying the_ C(_)_produait(g;l) = 5;1_ @1+1 5;1,_ My = S(fa)df2) (43)
i.e.the¢], are all 1-primitive. The obvious isomorphism with

the Hopf algebra of ladder trees implies that &) defined ~ shows that II,»=dy”, and hence, Il;r=dy” is

by closed. Application of the inverse Poincaré lemma to
. Iy = S(¢{,))dé(y) then provides an expression of the 1-

oS, ™M _ Z ) g7 (38) primitive /)" as the co-cone (potential) of the clodég-. A

= little further trickery, which takes into account the fabat

o . _ the coproduct of the's is linear in theg's in the right tensor
are all primitive. (38) may be inverted to give factor, results in an elegant formula,

n 19 § m), .m
m=0 Where (I) counts the IIIOﬂOllial Order Of teﬁ’s,

putting the problem of the ladder 1-primitives, includil@t & (¢ ... ¢7k) = k¢t ... ¢Tk.

ten-vertex one, to rest. Somevery rough estimate of the savings in, say, CPU
This may look, so far, like a happy combinatorial acci- time, from switching to the normal coordinates can be ob-

dent. But it actually points to the deeper geometrical arigi tained by assigning a cost af to a k-primitive element,

of 1-primitiveness. There is no space here to delve into theegardless of the number of vertices of its index, while as-

details, but a sketch of some of the ideas will be given (forsuming that ap with » vertices cost@”. The numbers’,

(@) YT =~ 5(67), (44)
x=0
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of k-primitive elements witlm > & vertices are given by the open, the union of the corresponding (disjoint) subsets is t

generating function [2] be takenge.g. P, = u(A L B) (U denotes disjoint union).
- Physical theories are distinguished by the measures they em
Pu(z) = Z P, 2" ploy, for exgmple, classical mechanics uses a “linear” mea-
— sureyy, satisfying the sum rule

N A(s) = nsyre ) F/° 1J9(A, B) = pa(AU B) — pai(A) — pat(B) =0, (48

_;;k(l_g(l_x)) . (45) 5 (A, B) = pal( ) — tel(A) — pa(B) (48)
and hence fails to predict any interference. Quantum mechan

The sum on the r.h.s. above extends over all divisabk, ics, on the other hand, usgs, satisfyingZ,“(A, B) # 0.

including1 andk. p(s) is the Mobius function, equal to zero, The interesting observation by Sorkin is that in a threeesdit

if s is divisible by a square, and fe-1)?, if s is the product periment (with eight possibilities for blocking the slitshe

of p distinct primegu(1) = 1). The asymptotic behavior of probabilities predicted by quantum mechardessatisfy the

P, 1, for large values of:, is [2] sum rule
k—1 L
fo=m Do 20T ag) LA BLO) = pe(AUBUC)
n—oo T, c c

, , — pg(AU B) — (AU C) = p(BUC)
wherec = 2.95. .. is the Otter constant ang, is the num-

ber of rooted trees with vertices. This is good news, as the + tg(A) + pg(B) + pq(C)

population of the CPU-intensive high«)’s is seen to be ex- —0. (49)
ponentially suppressed. The ratio of the total costs ofreno
malizing all generators with vertices in the two bases then

i It is easy to show that also satisfies (49), as a result

of (48). There is an obvious generalization to fhslit ex-
rp2" periment, involving the symmetric functiongf, given by

n—1
k=1 Pn,k2k

pn = ~e-9(-5)" @

c—1
I;j(Al,,Ak) E/L(Al L. .. |_|A]C)
which soars t05.4 x 10°, a year’s worth of minutes, for

n— 33, = AU UAUL U A)
More insights, from a geometrical point of view, can be i
found in [4]. Very significant progress has been made also by + Z p(A U ..U AU

mostly algebraic means, see [9] and, more recently, [7, 8]. i<

4. Primitive Elements in the Hopf Algebra of U UL U Ag)
Quantum Measures

4.1. Quantum mechanics as a quantum measure theory + (=DM (A, (50)

A second example where geometry, in the guise of Hopf alge- _ _
bras, illuminates problems of an algebraic/combinatosic n Where symbols with hats are omitted and-a/lare mutually

ture is furnished by Sorkin's proposal of a generalizatién o disioint. Due to the recursion refation
guantum mechanics [12-14] — Ref. [3] is followed closely in

. L. H ]
the sequel. Consider the standard two-slit interferenperex Dy (Ao, Av, o Ag) = I (Ao U Ay, A, . Ay)
iment and callH the set of all electron histories (worldlines) _qn
. .. 1 (A03A27 aAk)
leaving the electron gun and arriving at the detector at-spec
ified time instants (to avoid technicalities, considérto be —I/(A1, Ay, ..., Ay), (51)

measurable). Denote by (B) the subset of/ consisting of

all histories in which the electron passes througheslfp),  the sum rulel;’ ; = 0 follows from I}’ = 0. It is natu-
ignoring the possibility of the electron winding around ot ral now to contemplate a family of theories, indexed by a
slits. There are four possible ways of blocking the two slits ~ positive integerk, defined by the sum rulg’, , = 0, with
denote byP,;, P,, P, and P, = 0 the corresponding proba- I} # 0 for the corresponding measure. In this scheme, clas-
bilities of arrival at the detector, the last one correspogtb  sical mechanics is & = 1 theory while quantum mechanics
both slits being blocked off. Sorkin’s approach is to coasid corresponds té = 2.

these probabilities as the values of a certain measureifunct ~ The above formulas fof}' need to be extended to the
u defined on the set of subsets®f e.g. P, = u(A). When  general casd,e. when the arguments are possibly overlap-
mutually exclusive alternatives exist, as when both slies a ping sets. For thé& = 2 case, Sorkin shows that bilinearity
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implies the following equivalent forms (LFf)(e,-,...) = (LFf)(e), e.q,
I¥ = (AU B) + (AN B) — u(A\B) — u(B\A) (Lf)(e) =f —e(f)
= (A A B) + u(A) + u(B) L) =f)®fay—fe®l-1af
— 2u(A\B) — 2u(B\A). (52) +e(fel (57)

The symbol\ above denotes a set-theoretic difference whilelt IS now possible to introduce formally the notion &f
A denotes a symmetric difference. primitivenessa functionf will be calledk-primitiveif all its

coderivatives of order at the identity(L" f)(e), withr > k,
4.2. Coderivatives are equal to zero, whileC* f)(e) is not.

A brief excursion further into Hopf algebraic territory isey ~ 4.3.  Quantum measures and k-primitiveness
essary at this point. One way of looking at the coproduct of ) o

a function is as an indefinite translation. The right tratista.~ 4-3-1-  The abelian group of histories

R, on the group is defined bi,(¢') = ¢’g. Its pullback on

functionsk’ (f) = f, is given by Referring back to thé-slit experiment, calH the set of his-

N i) — / simplicity. One may deal with a given subsdtof H in
Ja9) = 1(g'9) = T (9) ) (9)- terms of itscharacteristic functiondefined byya(z) = 1
One infers thaff1 () f(2 (9) is the right-translate of by g,  If # € A, xa(x) = 0if = € H\A. Denote by the set of
while f(1)(-") f(2)(-), @ function of two arguments, is the in- all linear combinations of characteristic functions of siga
definitely translated': its second argument defines the trans-able subsets off***. A typical elemeny of G is of the form
lation while the first evaluates the translated functiorit (le 9 = A1Xa, +A2x4, +. .., where thed; are measurable sub-
translations can be similarly handled exchanging the twe te S€ts ofH and; € C. G may be turned into an abelian group
sor factors of the coproduct). Introduce now the operatotith the group law given by addition. Then the identitys

L£:A— A® A, defined by the zero functiong = xy = 0, and the inverse qf is —g.
As in Sorkin's approach, a physical theory derives its
Lf=A(f)-f®1. (53)  probabilities from a measure functign defined now orG,

e.g. P, = p(xa) in the two-slit experiment. In the presence
The above way of interpreting the coproductshowsthean  of mutually exclusive alternatives, tlseim of the character-
be considered an indefinite discrete derivativeaderivative  istic functions of the corresponding subsist$o be taken —

for short: this corresponds to the disjoint union in terms of the subset
themselves, as in Refs. 11 and 12. What is attractive though
(LN 9)=fn @ fe—feld g in working with characteristic functions is that, by extergl
— f(d'9) — f(d). (54) this definition {.e., addition of the characteristic functions) to

non-disjoint subsets, we recover the rather complicated-in

Whenyg is close to the identityy = e + X + ..., with X ference term (52) and its generalizations. Consider fomexa

in the Lie algebra of the groupLf)(/, g) is approximately ple a quadratic functional?, with » additive, evaluated on

(proportional to) the derivative of along the left invariant two overlaping subsetd and B — the resulting interference
vector field corresponding t&. Higher order coderivatives termis

L* f can similarly be defined, with the understanding that the

w? 2 2 2
successive applications a@f are to be taken at the leftmost Iy = p(xa+xp)” — nlxa)” - nlxs)

tensor factor, = 2u(xA)p(xB)
ff=(Leidolr'f,  k=23,..., (55 =2(u(xa\8)(xB\a) + 1(xa\B) (X ANB)
so that, for example, + u(xanB)u(x\a) + 1(xans)?), (58)

where, in the last step, the substitutipn = x 4\ s + XanB

2 :
L£f=(LoidoLf was used, and similarly fogz. On the other hand, the first,

=(L®id)(f1) ® fo) — f®1) for example, of (52) becomes
=f) @ fo) @ fa) = fy® 1@ f) 1Y = p(xaus)® + w(xans)® — w(xas)?
- fy®foel+felel (56) _M(XB\A)Q- (59)

Of particular interest is the evaluation of &- Substitutingy aus = xa\B +XB\4 + XanB and expanding,
th order coderivative at the identity of the group, one recovers the right hand side of (58).
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The quantum measures considered up to now are elmplies that the function is a polynomial of ordérin the
ements of the commutative Hopf algebrh = C*°(G)  coordinates, g.e.d.
of smooth functions orG. Their counit vanishes, since
(D) = 0. The linearity of the classical measure, Eq. (48),5 Condlusions
implies thatue (x4 + xB) = ftai(xa) + pa(x ), or, interms =

of the coderivative, It has been argued that a geometric setting, cast in Hopf alge
9 braic language, might be efficient in dealing with problerhs o
0= (£7p)(€) = Hei (1) @ Hei(2) = Hat @ 1 a combinatoric nature. Two examples were used to illustrate

1@ p+e(pa)l ®1,  (60)  the point:

e Atoy-model renormalization is simplified significantly
by introducing normal coordinates on the infinite di-
mensional Lie group of renormalization schemes of
Connes and Kreimer, while 1-primitive functions on
the group are shown to correspond to closed left-

the last term being zero. Henge, is a 1-primitive element
of A. More generally, the following lemma holds:

Lemma 1 The symmetric functionalg,, defined in Eq. (50),
coincide with thek-th order coderivatives £*u)(e) of

Eq. (55). invariant 1-forms

The straightforward inductive proofis left as an exercidee ’

main result of this section may now be stated: e Quantum measures &fth order, proposed by Sorkin
Proposition 1 In the algebra4 of functions onG, everyk- as generalizations of quantum mechanics, are de-
primitive element is &-th degree polynomial in 1-primitive scribed ask-primitive functions on the group of his-
elements. tories associated whit a particular experiment. As a
The proof can be given in a number of ways. For example, it result, they are shown to be polynomials of orédleén

is easily established that is a cocommutative graded con- additive {.e., classical-like) measures.

nected Hopf algebra. This means that the coproduct is sym- ) o

metric under exchange of the two tensor factors, that tteere ilt would be nice to see this list grow longer fast.

a grading respected by the coproduetpfimitiveness), and

that the only elements with zero grade are numbers. Them cknowledgements
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