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Abstract

We present a formulation of covariant translations in the quan-
tum plane. We are led to an extension of the algebra of the coordi-
nate functions and their dual derivatives by the quantum analogue of
their eigenvalues. Jackson exponentials emerge as the corresponding
eigenfunctions. An integral invariant under quantum translations is
introduced and is used to define quantum Fourier transforms.
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1 Introduction

Since its inception, the quantum plane has been envisioned by many as a

paradigm for the general program of q-deformed physics. Such an endeav-

our presupposes the availability of adequate mathematical tools, integration

being one of the most indispensable among them. The aim of this paper is

to address aspects of the problem of integration in the quantum plane in a

manner that will keep the results accessible to physicists.

We begin, in section 2, by specifying the meaning of a translation in the

quantum plane. We find that consistency requires non-trivial commutation

relations between the variables that describe translations and the coordinates

on the plane as well as the derivatives with respect to these coordinates. We

are then able to generate finite translations by q-exponentiating a translation

generator. We introduce next, translations for the derivatives and interpret

them, together with the ones introduced earlier, as (non-commuting) eigen-

values of the coordinate and derivative operators.

In section 3 we define, along the lines of [1], an integral on the plane

essentially by the requirements of linearity and its vanishing when evaluated

on a derivative of a function. We are then able to show, using a prescription

about how to treat displacements in the integrand, that the above properties

imply invariance under finite translations as well.

Section 4 contains a definition of the quantum Fourier transform which is

seen to retain, in a q-deformed way, basic properties of its classical analogue.

We end the paper by introducing, in section 5, “vacuum projectors”. Using

them we recover the integration prescription of section 3 in a constructive

way.

2 Translations in the q-plane

We recall now the construction of the quantum plane [1] . We deal in the

following with the (non-commutative) algebra of functions on the quantum

plane enlarged so as to also include derivatives that operate on these func-

tions. We choose as generators of A the coordinate functions xi, i = 1, . . . , n

(together with the unit function 1x) and the derivatives dual to them, ∂j, j =

1, . . . , n (together with the unit 1∂). A set of consistent commutation rela-

tions among the above generators is known:

xixj = q−1R̂ij
klx

kxl
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∂l∂k = q−1R̂ij
kl∂j∂i

∂kx
i = δi

k + qR̂ij
klx

l∂j. (1)

Here, R̂ is an invertible solution of the quantum Yang-Baxter equation:

R̂12R̂23R̂12 = R̂23R̂12R̂23

and satisfies the characteristic equation:

R̂2 − λR̂− 1 = 0, λ ≡ q − q−1 (2)

Explicitly, R̂ij
kl = Rji

kl where R is the GLq(n) R-matrix of [2], given by:

R = q
∑

i

eii ⊗ eii +
∑
i6=j

eii ⊗ ejj + λ
∑
i>j

eij ⊗ eji

where i, j = 1, · · · , n and eij is the n× n matrix with single nonzero element

(equal to 1) at (i, j). The above commutation relations permit unambiguous

ordering of an arbitrary monomial in the x’s and ∂’s into any desired order.

One can now write down, if one wishes, differential equations for functions

of the x’s and study for example quantum mechanical systems by solving

Schroedinger’s equation in deformed space. In doing so, as well as in many

other applications, one is sooner or later bound to be confronted with the

problem of (spatially) translating functions of the x’s. One place, in par-

ticular, where this question would certainly manifest itself, would be in the

statement of finite translation invariance of any sort of integral one adopts

for the quantum plane. One has then to first make more precise the notion of

translation - it is natural, for example, to require a certain covariance. In its

simplest form, that would be the requirement that the translated coordinates

obey the same algebra as the original ones (we would also need, of course,

reduction to the correct classical limit xi 7→ xi + ai as the deformation para-

meter approaches its classical value). In bialgebra language, we are in search

of a coproduct for the algebra of the x’s, namely a map ∆ : Ax → Ax ⊗Ax

that is an algebra homomorphism: ∆(xy) = ∆(x)∆(y), x, y ∈ Ax, and sat-

isfies some standard additional conditions (see for example [3] - here Ax is

the subalgebra of A generated by the coordinates). Such a map has been

sought for for quite some time now, without success. Faced with this fact, we

elect to pursue a different approach. We introduce a set of “displacements”

ai, i = 1, . . . , n and require that the x + a ’s obey the same commutation

relations as the x’s. We would also like the displacements to be of “coordi-

nate nature” i.e. we postulate a−a commutation relations identical to those
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of the x’s. We are then forced to introduce non-trivial a − x commutation

relations. The resulting algebra is:

aiaj = q−1R̂ij
kla

kal

xiaj = qR̂ij
kla

kxl. (3)

We check for covariance:

(x1 + a1)(x2 + a2) = x1x2 + a1x2 + x1a2 + a1a2

= x1x2 + (q−1R̂−1
12 + 1)x1a2 + a1a2.

Also:

q−1R̂12(x1 + a1)(x2 + a2) = q−1R̂12x1x2 + q−2x1a2

+q−1R̂12x1a2 + q−1R̂12a1a2. (4)

Using now the characteristic equation (2) in the form:

q−1R̂−1 + 1 = q−1R̂ + q−2

and comparing the two expressions above we find:

(x1 + a1)(x2 + a2) = q−1R̂12(x1 + a1)(x2 + a2)

as desired. It is interesting to compare (3) with the commutation relations

between coordinates and differentials introduced in [1] :

x1ξ2 = qR̂12ξ1x2 ;

the displacements ai are the bosonic analogue of the ξ’s (the algebra (3) has

been introduced by Majid, in the context of braided Hopf algebras, in [4]).

We can also give consistent ∂ − a commutation relations:

∂ka
i = q−1(R̂−1)ij

kla
l∂j (5)

(again, similar to the ∂ − ξ ones). Consider now the translation generator T

defined by:

T ≡ ai∂i ≡ a · ∂.

Using (3), (5), we easily find:

[T, xi] = ai, T∂i = q2∂iT, Tai = q−2aiT . (6)
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These allow us to build a finite translation operator by “q-exponentiation”.

We have:

T nxi = xiT n + [n]qT
n−1ai (7)

where [n]q ≡ (1− q2n)/(1− q2) and therefore:

xieq(T ) = eq(T )(xi − ai) (8)

where:

eq(T ) ≡
∞∑

n=0

1

[n]q!
T n, [n]q! ≡ [1]q[2]q . . . [n]q

is the Jackson exponential (see for example [5] and references therein). Al-

ternatively, we can write (7) in the form:

T nxi = xiT n + [n]q−1aiT n−1

which gives:

eq−1(T )xi = (xi + ai)eq−1(T ) (9)

or, more generally:

eq−1(T )f(x) = f(x + a)eq−1(T ). (10)

One can regard (8) (or (9)) as an eigenvalue equation for the operator xi.

To make this more precise, we introduce coordinate and derivative vacua,

denoted by |Ωx〉 and |Ω∂〉 respectively, which satisfy:

xi|Ωx〉 = 0, 1x|Ωx〉 = |Ωx〉, ∂i|Ω∂〉 = 0, 1∂|Ω∂〉 = |Ω∂〉

with similar relations for x, ∂ acting from the right:

〈Ωx|xi = 0, 〈Ωx|1x = 〈Ωx|, 〈Ω∂|∂i = 0, 〈Ω∂|1∂ = 〈Ω∂|.

The action of xi on a function f(∂, a), denoted by xi(f(∂, a)), is expressed

in terms of the coordinate vacuum as:

xi(f(∂, a))|Ωx〉 = xif(∂, a)|Ωx〉. (11)

In words, to compute the left hand side of (11), we order it with all the x’s

on the right, where they anihilate the vacuum, and what remains is termed

“the action of xi on f(∂, a)”. We can define the (more familiar) action of the

derivatives on functions of x, a in a similar manner. Actions from the right

are also obviously defined via “left vacua” 〈Ωx|, 〈Ω∂|. With these (standard)

definitions, (8) gives:

(eq(T ))xi = eq(T )ai (12)
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which suggests the interpretation of ai as the eigenvalue of xi (xi acts here

from the right). In the classical limit q → 1, the a’s commute with everything.

Notice that eq(T ) is a common eigenfunction for all xi, the noncommutativity

of the latter being reflected in the non-trivial a − a commutation relations.

It is interesting to note that one can interpret the derivatives ∂i the way one

does in classical analysis: ∂i(f(x)) is the coefficient of ai in the expansion of

f(x + a) around x [6]. Indeed, from (10) we have:

eq−1(T )(f(x)) = f(x + a) (13)

which, by expanding the Jackson exponential, gives:

f(x + a) = f(x) + ai∂i(f(x)) +O(a2), (14)

the only difference in the quantum case being that one has to specify an

ordering before identifying the derivative (above, we took the a’s to stand to

the left of the x’s).

The interpretation given to the ai above naturally leads to the question

whether a similar construction is possible for the derivatives. To this end, we

introduce the momentum-space analogue of the a’s, which we call pi, i =

1, . . . , n and find that the following commutation relations are consistent with

the rest of the algebra:

plpk = q−1R̂ij
klpjpi

pl∂k = qR̂ij
kl∂jpi

pkx
i = q−1(R̂−1)ij

klx
lpj

pka
i = q−1(R̂−1)ij

kla
lpj. (15)

A host of useful identities can now be computed. We give a list involving

invariant bilinears (α · β ≡ αiβi):

Tpi − piT = 0

x · ∂ xi = xi + q2xi x · ∂
x · ∂ ai − ai x · ∂ = 0

∂i x · ∂ = ∂i + q2x · ∂ ∂i

x · ∂ pi − pi x · ∂ = 0

x · p xi = q−2xi x · p
x · p ai − ai x · p = 0

∂i x · p = x · p ∂i + pi
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x · p pi = q2pi x · p
a · p xi = q−2xi a · p− q−1λai x · p
a · p ai = q−2ai a · p
∂i a · p = q−2a · p ∂i − q−1λTpi

pi a · p = q−2a · p pi

(1 + qλx · ∂) xi = q2xi(1 + qλx · ∂)

∂i(1 + qλx · ∂) = q2(1 + qλx · ∂) ∂i

(x · p)(a · p) = q2(a · p)(x · p). (16)

We easily find now how ∂i commutes with eq(x · p):

∂ieq(x · p) = eq(x · p)∂i + pieq(x · p). (17)

Also:

∂ieq−1(x · p) = eq−1(x · p)∂i + eq−1(x · p)pi. (18)

We can therefore interpret the p’s as (non-commuting) eigenvalues of the

derivatives:

∂i(eq(x · p)) = pieq(x · p) , (19)

Notice that being eigenvalues of derivatives, rather than momenta, the p’s

become real commuting quantities in the classical limit.

A couple of remarks are in order here. The first regards the covariance of

the scheme described above under the coaction of GLq(n). The commutation

relations given in (1), (3), (5) and (15) go into themselves when x, ∂, a and

p transform according to:

xi 7→ (x′)i = T i
jx

j

ai 7→ (a′)i = T i
ja

j

∂i 7→ (∂′)i = ∂jM
j
i

pi 7→ (p′)i = ∂jM
j
i

where T i
j is a GLq(n) matrix, M t = (T t)−1 (M t denotes the transpose of M)

and we take, as in [1], the elements of T to commute with all the variables

and derivatives above. A second point that deserves attention is the fact that

derivations do not commute with translations. In general:

∂i(f(x + a)) 6= ∂i(f(x))|x 7→x+a. (20)
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This can be traced to the fact that ∂i does not commute with a · ∂. Indeed,

in order for (20) to be an equality, we would need (using (14)):

∂i(f(x) + a · ∂(f(x))) = ∂i(f(x)) + a · ∂(∂i(f(x))) ⇒
⇒ ∂i(a · ∂(f(x))) = a · ∂(∂i(f(x))) ⇒

⇒ ∂i a · ∂ = a · ∂ ∂i

while, in our case, (6) holds: a · ∂ ∂i = q2∂i a · ∂ (one can make a different

choice of commutation relations which will make (20) into an equality but

then (14) is not satisfied - we will not explore this further here).

3 Invariant Integration

We wish now to turn our attention to the problem of integration. The integral

we are looking for is a linear map from functions on the quantum plane to

complex numbers. Keeping in mind the classical limit, we expect it to be

defined only for a class AI
x of elements of Ax - we will use the notation 〈f〉

for the average, or integral, of f in that class. Such a map acquires interest

when endowed with specific covariance properies. In our case, it is natural to

require invariance under translations. This can be expressed in infinitesimal

form as the requirement that the integral of a derivative vanish:

〈 ∂i(f(x)) 〉 = 0, f ∈ AI
x. (21)

A prescription for computing such an integral is known [1] . One first expands

f(x) in a sum of monomials in the x’s and uses the commutation relations

to bring each such monomial into some standard ordering (the same for all

monomials). Then one performs the classical integral (from minus infinity to

plus infinity) of the ordered function - the result is the quantum integral 〈f〉.
Different standard orderings of the x’s change only the overall normalization

and the result satisfies (21)(notice that ∂i is the quantum derivative). We

would like though to be able to talk about finite translation invariance, i.e.

we would like our integral to satisfy an equation like

〈f(x + a)〉 = 〈f(x)〉. (22)

To make this precise, we ought to generalize the prescription for integra-

tion given above to the case of a function of x and a (since x, a do not

commute, such a generalization is not trivial). Nevertheless, the natural ap-

proach works: to compute 〈f(x + a)〉, expand in monomials of x, a, use the
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commutation relations to move all the a’s, say, to the left of each monomial

and out of the integral, and then compute the quantum integral of the x’s

as before (notice that the a’s need not be brought into any standard order).

That such an integral satisfies (22) can easily be seen as follows. From (13)

we have:

〈f(x + a)〉 = 〈eq−1(a · ∂)(f(x))〉

=
∞∑

n=0

1

[n]q−1 !
〈(a · ∂)n(f(x)) .

We may now use the commutation relations given in (5) to move all the a’s in

(a·∂)n to the left (and then out of the integral). The form of (5 ) ensures that

each term left in the integrand, except for n = 0, will be the derivative of some

function of the x’s and the integral of these vanishes by (21); (22) then follows.

We should emphasize here that the integral of f(x, a) is not, in general,

translationally invariant (i.e. while 〈f(x+a)〉 = 〈f(x)〉 holds, 〈f(x+a, a)〉 6=
〈f(x, a)〉 in general). In the same spirit, we define the integral 〈f(x, a, p)〉:
we move a and p to the left and then perform quantum integration on the

x’s - we ’ll need this in defining the Fourier transform in the next section.

We close this section with a formula for integration by parts, valid when the

Jackson exponential of x · p is in the integrand. From (17) we get:

∂i(eq(x · p)f(x)) = eq(x · p)∂i(f(x)) + pieq(x · p)f(x)

which, upon integration, gives:

〈eq(x · p)∂i(f(x))〉 = −pi〈eq(x · p)f(x)〉
= −〈∂i(eq(x · p))f(x)〉 (23)

4 Fourier Transform

Armed with the tools developed in the previous section, we are now (al-

most) ready to discuss Fourier transforms in the quantum plane. The only

ingredient missing is the observation that

〈f(x + a, p)〉 = 〈f(x, p)〉. (24)

To see this, write f(x, p) in the form:

f(x, p) =
∑

i

gi(p)fi(x)
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to get:

eq−1(T )(f(x, p)) =
∑

i

eq−1(T )(gi(p)fi(x))

=
∑

i

gi(p)eq−1(T )(fi(x))

=
∑

i

gi(p)fi(x + a) (25)

where, in the second line, we used the fact that p commutes with T . A look

at (15) shows that the commutation relations of p, x+a are identical to those

of p, x which allows us to sum the last line of (25):

eq−1(T )(f(x, p)) = f(x + a, p). (26)

Integrating both sides of (25) and using (26) we then get:

〈f(x + a, p)〉 =
∑

i

gi(p)〈fi(x + a)〉

=
∑

i

gi(p)〈fi(x)〉

= 〈f(x, p)〉.

We define now the Fourier transform f̃(p) of a function f(x) by:

f̃(p) ≡ 〈eq(−ix · p)f(x)〉 . (27)

We will need the following properties of the Jackson exponential

eq(α + β) = eq(β)eq(α) for αβ = q2βα (28)

and

eq(α)eq−1(−α) = 1 (29)

to derive the analogue of a property of Fourier transforms, familiar in the

classical case. Setting f(x + a) ≡ fa(x) we have:

f̃(p) = 〈eq(−ix · p)f(x)〉
= 〈eq(−i(x + a) · p)fa(x)〉
= 〈eq(−ia · p)eq(−ix · p)fa(x)〉
= eq(−ia · p)f̃a(p) ⇒

⇒ f̃a(p) = eq−1(ia · p)f̃(p) (30)

(where in the third line we used the last of (16)). Notice that, as in the

classical case, the factor in front of f̃(p) is actually a one dimensional repre-

sentation of translations. Under x 7→ x + a:

eq−1(ix · p) 7→ eq−1(ix · p + ia · p)

= eq−1(ix · p)eq−1(ia · p).

9



5 Vacuum Projectors

In this section we introduce a “vacuum projector” E which realizes the oper-

ator |Ω∂〉〈Ωx| (up to a possible normalization factor) in terms of coordinates

and derivatives (a similar object, in a Hopf algebra context, has been intro-

duced in [7]). It is given by the formal expansion:

E =
∞∑

k=0

(−1)k

[k]q−1 !
xi1 . . . xik∂ik . . . ∂i1 . (31)

We scetch the proof. Setting:

Ek ≡ xi1 . . . xik∂ik . . . ∂i1

we find:

Ekx
i = [k]qx

iEk−1 + q2kxiEk

(xi is the i-th coordinate). We then have:

Exi =
∞∑

k=0

(−1)k

[k]q−1 !
Ekx

i

=
∞∑

k=1

(−1)k

[k]q!
qk(k−1)[k]qx

iEk−1 +
∞∑

k=0

(−1)k

[k]q!
qk(k−1)q2kxiEk

= −
∞∑

k=0

(−1)k

[k]q!
qk(k+1)xiEk +

∞∑
k=0

(−1)k

[k]q!
qk(k+1)xiEk

= 0.

As a result, E2 = E. One similarly checks that ∂iE = 0.

We can now easily realize the projector |Ωx〉〈Ω∂| as well. We know from [1]

that A admits the ∗-involution (which we denote by a bar):

x̄i = xi, ∂̄i = −q2(n+1−i)∂i, q̄ = q−1

(corresponding to a real quantum plane). It then follows immediately that

Ē, given explicitly by:

Ē =
∞∑

k=0

1

[k]q−1 !
q2k(n+1)q−2(i1+i2+...+ik)Ēk (32)

where Ēk ≡ ∂i1 . . . ∂ikx
ik . . . xi1 , realizes the operator |Ωx〉〈Ω∂|. An alterna-

tive form for Ek, as a function of x · ∂, is:

Ek = q−k(k−1)(x · ∂)(x · ∂ − [1]q)(x · ∂ − [2]q) . . . (x · ∂ − [n− 1]q).
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One can easily show that Ēk can also be expressed in terms of x · ∂.

The above objects allow us to approach the problem of integration from

an alternative point of view. We can use the vacua introduced earlier to

define the integral of a function f(x) via:

〈f(x)〉 = 〈Ω∂|f(x)|Ω∂〉. (33)

This definition automatically satisfies 〈∂i(f(x))〉 = 0 and therefore it also

satisfies 〈f(x + a)〉 = 〈f(x)〉. Notice however that in deriving this last in-

variance property we do not need any ad-hoc rules about how to commute

a’s (or, for that matter, p’s) through the “integral sign”. Indeed, choosing

the normalization E = |Ω∂〉〈Ωx|, Ē = |Ωx〉〈Ω∂| (which, in turn, implies

〈Ωx|Ω∂〉 = 1) (33) gives:

Ēf(x)E = |Ωx〉〈Ω∂|f(x)|Ω∂〉〈Ωx|
= 〈f(x)〉|Ωx〉〈Ωx|
≡ 〈f(x)〉δ(x).

However, as we have seen, Ek and Ēk can be expressed as functions of x · ∂
only. Refering back to the list given in (16), we see that ai, pj commute

with x · ∂ and this justifies postulating the integration procedure described

in section 3.
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Quantum plane commutation relations, n = 2

We give here explicitly, the full set of commutation relations for the two-

dimensional case. The R̂-matrix in this case is:

R̂ =


q 0 0 0

0 λ 1 0

0 1 0 0

0 0 0 q

 (34)

from which we get, in obvious notation:

x− x xy = qyx

x− ∂ ∂xx = 1 + q2x∂x + qλy∂y

∂xy = qy∂x

∂yx = qx∂y

∂yy = 1 + q2y∂y

x− a xa = q2ax

xb = qbx + qλay

ya = qay

yb = q2by

x− p pxx = q−2xpx

pxy = q−1ypx

pyx = q−1xpy

pyy = q−2ypy − q−1λxpx

∂ − ∂ ∂x∂y = q−1∂y∂x

∂ − a ∂xa = q−2a∂x

∂xb = q−1b∂x

∂ya = q−1a∂y

∂yb = q−2b∂y − q−1λa∂x

(35)
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∂ − p px∂x = q2∂xpx

px∂y = q∂ypx

py∂x = q∂xpy + qλ∂ypx

py∂y = q2∂ypy

a− a ab = qba

a− p pxa = q−2apx

pxb = q−1bpx

pya = q−1apy

pyb = q−2bpy − q−1λapx

p− p pxpy = q−1pypx

(36)
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