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Abstract

Using previous results we construct the g-analogues of the left invariant vector fields of the
quantum enveloping algebra corresponding to the complex Lie algebras of type A,—1, B,
Cr and Dy. These quantum vector fields are functionals over the complex quantum group
A. In the special case A, it is shown that this Hopf algebra coincides with U,si(2, @).



1. Introduction

We work with the ¢-deformed function algebras over the complexified groups associated
to An—1, By, Cp and D,, where ¢ > 0 is a real parameter. I. e. we consider Hopf algebras
which are generated by the matrix functions of the fundamental representation and its her-
mitian conjugate such that dividing out the unitarity condition yields the quantum groups
SUg(N), SO¢(N,R), USpy(N). In [DSWZ] a dual Hopf algebra has been constructed
thus leading to a g-deformation of the corresponding universal enveloping algebra. ,
In [SWZ, OSWZ] the g-deformed universal enveloping algebra of si(2, €) was found as an
operator algebra on the complex spinor quantum plane. This was also constructed in [CW]
by analyzing the differential calculus on the complex quantum groups Sl,(n, T).

In the real case it is known that the Hopf algebra of regular functionals is generated in
some sense by the vector fields which appear in the bicovariant differential calculus on
quantum groups [Wor,_ Jur, Zum, CSWW). This is proved in [Bur] using the fact that the

matrices L**; and L—* j generating the algebra of regular functionals are upper and lower
triangular respectively.

In the complex case the corresponding matrices L' 7 introduced in [DSWZ] violate this
triangularity. In this paper we prove for the case of A that the *-Hopf algebra of regular
functionals is generated by the vector fields. .

In section 2 we define the vector fields, find some relations between them and construct the
Casimir operators of the algebra of regular functionals Uz on the complex quantum group
A. In section 3 we concentrate on the case A; and show that the vector fields generate
a sub-+-Hopf algebra of Uz. The equivalence of these Hopf algebras is then derived in
section 4.

2. Vector Fields on Complexified Quantum Groups

Throughout this paper We are using the notations and conventions of [DSWZ].
Set (I) := (3,1), I := (3,7) = (3, 1), (3,1=1,...,N) where N = n for Apn1, N =2n+1for
By, and N = 2n for C,,, D,. Define then the 2N x 2N —matrix

I
cft 0 ;
TIJ = ( .) (2.1)
0 ¢ 7
and the R —matrix
OioRg 0 0 0
3 0 0 ok, 0
IJ — . — .
RPaw=| 4 Wr o (2.2)



with the corresponding ﬁq~matrix [FRT] and with a; € @ defined through

(@)™ = (a1)™" = (e2)" = (a3)" = ¢ (2.3)

for An—l;
(a0)* = (1)’ = (@2)* = (@3)? =1 (24)
in the cases of B, C,, D, and

Qg3 =g -0; =1. d (25)

We are considering the following quantum group

A=C<T! ;> / (I&7,(2.8),(2.9)) . (2.6)
where the ideal is generated by
ILf = Ry kL TK s TLp — T1y Ty, RYWsr, (2.7)
i _ (=t 2 kyekn 4y I
det(t;) — 1 = T leboknghy oty e o~ 1 for A, 238)
L (CT)* 0 -1, (Y, Cist’; — 6:1 for By, Cy, Dy,
o -1 . . .
det(t*;) -1 = (————q_(z)sk""k“ AT S L 1oodw —1 for Ap_y,
J) [n]q' k kn &1, 1 (2.9)
F (0T ey -6, (CTYE{, ¢, ;- 6;1 for B,, C,, D,
where ¢;,.;, = (=1)""1gh-in — (—9)"?), I(c) is the length (minimal number of
transpositions)} of the permutation o = 2.1 in y [nlg = (¢" = a7") /(g — ¢™),
1 - n

[la! = [1lq - ... - [nly [CSWW] and C; is the usual metric [FRT].

With the involution ‘ -
;)" = k(#)) (2.10)
A becomes a *-Hopf algebra with comultiplication ®, counit e and antipode & [DSWZ].

The dual space A" of the Hopf algebra A is an algebra with the convolution product. One
can introduce an antimultiplicative involution ”t” on A*: For f € A* one sets

Vae A:  fl(a) = f(e~1(a")). (2.11)
In the following we are working mostly with the l;lultiplicative involution ” ~”:
f:=flox™1. (2.12)
We define functionals L' ; ¢ A4* through their action on the generators of A:
L 5(1) =67,

) (2.13)
L J(TX ) = REVK ),



and their cornuitiplication

Va,be A: L* j(ab) = L¥ (o) 1 ,(2). (2.14)

The algebra Ur of regular functionals on A is the unital algebra generated by {L:‘:IJ}
[DSWZ]. It is shown in [DSWZ] that Ug is a *-Hopf algebra with comultiplication A,
counit € and antipode S.

Now we introduce the matrices
— 7+ —~_f(y ©
Y:=L7S5(L )-(0 'Q)’

Y=l .= L-S(I+) = (y: 3-,91) (2.15)

with the matrix entries Y7 ; and Y_IIJ € Ux.

It follows from the commutation relations of L*! ; derived in the preceding paper [DSWZ]
that

R(1QY)R, (1Y) = (10 Y)R,(1® Y)R,. (2.16)
For convenience we set for any matrix M , M1 ; € Ug the hermitian involution ” * ” with

M= (MY )t. Using the involution properties of the L7 (see (3.13) of [DSWZ]) one
obtains C

vy, =y, (2.17)
The Y ; have the comultiplication
AYT)=0"K, 9V, (2.18)
where .
O, =L s~ % ). (2.19)

A priori the algebra generated by the ¥/ is not » *-Hopf subalgebra of Uz. However in
section 3 we prove the *-Hopf algebra structure in the special case A;. In section 4 we
even show that the Y/ generate Ux.

Similarly as in [CSWW, Jur, Zum)] for the real case we define

X:(g g):=§(1-1f), (2.20)

where A = (g — ¢7'). These elements are the analogues to the linear functionals in [Wor]
which correspond to a g-generalization of the left invariant vector fields of the complex Lie
group. Now (2.16), (2.17) and (2.20) give

R,(1® X)R, (10 X) - (1@ X)R,(19 X)R, = ATHRI(19X) -~ (1 X)RI} (2.21)

and
*+E=Az"%=Aiz*. (2.22)



In the next step we investigate the Casimir operators for Ug. We restrict to the Apn_1-type.
For B,,, C, and D, the results are quite similar. We observe the following.

i (2.23)

From (2.23) we derive the Casimir operators in the same way as in [FRT]. We obtain the
Proposition 1.

The elements :
Ck = Tr(Q yk) ’

) . (2.24)
& :=Tr(Q %)
with k=1,...,n-1 and Q= diag (qn—l,qn_a’- . .,q—(n—l))

are the Casimir operators in Ug.

3. The Y-Hopf Algebra in U,sl(2,C)

In section 3 and 4 we restrict the above developed formalism to A;. In the following we -

are using the definitions
ooy - g+ :
= 3 = - ~ 3-1
v (y_ Y2 ) Y (y- Y2 ) (3.1)

and analogously for the matrices y !, §~!, z and %.
For y and § we obtain a determinant condition

Y1z — q2y+y_ =1,
- —2. - (3.2)
iz —q “J-j4+ =1

which is easily derived from the definition of the Y J in terms of the L*IJ. Inserting
(2.20) in (3.2) yields

T1+ 22 — Az122 + ¢* Az z_ =0, (3 3)
Ty + Ty — AE139 + q_2)\.’i:_£'+ =0. )



The commutation relations (2.21) for the X/ read explicitly

[z1,22] = 0,

[z1,24] + Ag7 242y = ¢ M2y,
[£1,2-] - Ag7 202 = —¢7'2_,
I2T4 ~ q2$+5’»‘2 = 49T,

ToT_ —q lx_z, = g 'z_,

[—"3-}:-'5-] - Aq_l(l‘z - $1)-'172 = —q_l(-'52 - 31),

[31’:&2] =0,

P 2~ - -
14 —qQ T4y = —qT4,
#18- —q P2 8 =q¢ i_,

[22,24] + Ag 8184 = q 24,

[f2,8_] — Agé_21 = —qi_.

[24,3] + Agi1(22 — £1) = q (&2 — 1),
[z1,21] = M 'E42,

[z1,24] =0,

(1,E_] = Ag™ (&, — &)z,

(3.4)

[21,£2] = —Aq &4z,
[24,21] = Ag ' 24 (22 — 1),
(24, 82] = =Agd4 (22 — 71),
[z-,21] =0,

[‘75—3552] =0,

[z2,%1] = —Agz4z_,
[22,2_] = —Aq(E2 — &)z,
[z2,24] =0,

[22,%2] = Ad’242_.

There are more relations among the Y/ ; but in the limit ¢ — 1 the commutation relations
(3.4) yield the Lie algebra si(2,). This can be seen easily with the help of (2.22) and
(3.3).



Y1; and Y11 7 are linearly related. It holds

(¥ =,
(v e =—" v,
(v ™)-=—¢"y_,
W e=n+(1- ¢y,
' (3.5)
G )2 =41,
G+ =—a 244,
(57)-=-q"%4_,

T h=¢"9+10-g2g.

This fact guarantees that the algebra generated by the Y/ ; closes under the action of
the ” T "_involution. Like in the comultiplication (recall (2.18)) the antipode of the Y7
involves the OfY 1. One first observes that the algebra generated by the O’k is a
sub-*-Hopf algebra of Ux and contains the algebra generated by the Y7/ ;. In the next step
the O/ 5 are expressed in terms of the Y7 ; thus showing that the Y-algebra itself is a
*-Hopf algebra.

The following results are proven by inserting the explicit expansion of the above elements in
terms of the L’ 7 and using their properties. From the definition of the O g1 it follows
directly that all the 077k can be written as linear combinations of the 16 elements 0%*y,,
0%y, 0'4,, 0?21, and OV, (z £ k) which can be rewritten as functions of the YZ; and
Y!, only.

oMy =i,

01221 = (1 — ff_l) )
0 = ¢ 7T,
0%y =yy —*§_,
0y =y,

0%y =1,

Oy =41,

032 =4y,

— (3.6
01211 =q_zy+: ( )

0%y =4~ a5,

=

OV =9-—¢ % g4,
02 = ¢ (y491 — ¢ 29+ ) 7,
0%%1 = ¢ (§-y2 — ¢ 2y-) ¥ -

— 7 =



There is an additional dependence between the ¥ ; and Y7 7

G2 =v+a -h), (3.7)
W=+ (H—7).
All the OV g can now be written in terms of Y, ¥, 7=, U2, G, 9+ and §_ .
y2 and ¢; are invertible in Ux and
(y2)7' = -’:+11(L—11)_1
o
n=] (38)

() =LY (L%
y‘(HZ ¢*(y-77)) )

where we have used results from [DSWZ] with ¢*(y_y=) = L~'L~% = A Thus
one sees with the help of (3.2) that the Y-algebra is generated by the six elements
Y+>Y-> 42,01, §+,§— and the inverses of y» and §;.

Now we are able to express all YI; J in terms of Y7 ; and the inverses of y2 and §; :

For 77 and §; we obtain by a simple calculation

vz =(01)"" (1+¢*y-37) (3.9)
and . |
91 =(y2)"" (1+¢Py-77) . (3.10)
With the help of (3.9) and (3.10) the relations
Ri-=9"'hn (3.11)

and
[7=v-1=0 (3.12)

obtained from the commutation relations of the L*’ 7 lead to
—_ 4 —15 (a1
yay-=q (y2)” 9+(ih) (3.13)

with the definition .
' va:=1—(y2) 94 (51) y-. : (3.14)

The element y 4 is invertible since
ya(1+¢*y-97) = I+ ¢'y_¥-)ya = 1. (3.15)

— 8 —



It can be expanded as a power series in (y;)~ 14 (91)"'y- which converges (compare the
discussion in [DSWZ] for the element A). Thus

7= =g (wa) " (v2) M (5n) (3.16)

Using ya we can rewrite (3.9) and (3.10)

V2= (1) (ya)™" (3.17)

and .
B =91(y2) " (51)  (ya) " (3.18)
In the next step (L1'})? is calculated.

(L) = LY L7257 0) L4 = ()™ (1)~ (wa) (3.19)

and thus we obtain

- 1 ISP _
B =)y = (1) (31) " wa) My . (3:20)
Expanding (7x ) in LiIJ and using their commutation relations one arrives at

¥ = (v2d- +y-dh — (§1) 7 (wa) " ty=) (31) 7. (3.21)

In a similar manner we obtain

9- = (hiys + Gpve - g1(y2) ™ (51) 7 (ya) 1y ) (w2) ! (3.22)
and therefore the O-algebra can be expressed by the Y7 only.

We have now shown that the Y-algebra! is a sub-+-Hopf algebra in Uysl(2,€). In this
approach we mainly used the algebraic properties of Ux.

A second approach uses the convolutive action of the V¢ J as differential operators on A.
"This is presented in the following.

From [DSWZ] one obtains the fundamental commutation relations between the generators
of A and the Y-algebra

Y TVw =RMABsRER ;0w TV 4 Y55 (3.23)

For convenience we introduce a new index notation:
() = (w,») = (11,21,12,22,11,21,12,22) = (1,-,+,2,1,—,+,2). Having introduced
the operators Og through

AYH =0 Y™ (3.24)

(compare (2.18)) one tries to express them in terms of the Y'2. In the first step we restrict
only to the action on the subalgebras of A generated by either (t* i) or (t';) because

I e. the algebra generated by the Y/ ; and by the convergent power series in V! 7 introduced
above,



L"i_,- = 0 for 1 < 5 and 7 > j respectively and A vanishes on both of these sectors
[DSWZ]. In order to construct the O from its restricted operators it 1s sufficient to find
a decomposition of the operators Qg into

OHQ = 6HR5RQ (3.25)

such that . . - . . - .
Vo €< () >,0 e<(3)>: O0"g(aB) = 0"q(a)e(d),
5119(0!6) = f(a) 5119(&),

i. e. into factors which act nontrivially only on one of these subalgebras. To make the fol-
lowing more transparent we restrict the action of ¥/ ; to monomials of the form (t1)%(¢2,)
and (£'4)™(#'3)". For (t'1)*(#!2)! we use the abbreviation (k,1) and for (11)™(£15)* we
use (m,n). From (3.23) we obtain

(3.26)

n(k, 1} = qk—‘(k,l)yl + Alk]g(k - 1,14 y- + ’\qk-H-l [Hg(k +1,1 - 1)y,
+ X7k + [T (k, Dye,
y-(k, 1) = (k,Dy— + Mg [{]g(k + 1,1 — 1)ys,
y+(k: D) = (K, Dya + Ag' 5 [k]g(k — 1,14 1)y2,
y2(k, 1) = ¢' 5 (k, Dy2
yi(m,n) = (m,n)y1 + A¢" "™ m]y(m - 1,n + 1)y,
y-(m,n) =q"""(m,n)y_,
v(m,n) = ¢" 7" (m,n)ys — Amlg(m — 1,7 + 1)1 — 42)
= X g" T ] [m — 1g(m - 2,n + 2)y_,
y2(m,n) = (m,n)y2 — Ag" ™ *2[m),(m — 1,n + y—,
(3.27)
Gk, ) = (k, Dy + Ag7 [l (R + 1,1 - )94,
-k, 1) = ¢* 7'k, Y — A" Tg(k + 1,1 = 1)1 — 1)
= A gFTI2 (11—~ 1k + 2,1 - 2)iy
g (k1) = ¢ (k, gy,
2(k, 1) = (k,Dg2 — Agllg(k + 1,1 - 1), ,
g1(m,n) = ¢"""(m, )i,
§—(m,n) = (m,n)j- — Ag[n]y(m + 1,n — 1§,
g+(m,n) = (m,n)jz — Ag" "™ ?[m],(m — 1,n + 1)§1,
g2(m,n) = ¢ (m, )z — A" ] (m + 1,1 — 1)§4
= Almlg(m —1,n +1)j- + Ngq [mgln + 1]g(m,n)j1 .
It is now possible to express the above introduced convolutive action by eight opera-

tors A,B,C,D,K,L,M,N where A,B,K,L only operate on the < (t';) >-sector and
C,D, M, N only operate on < (F;) >. They are defined on ordered monomials as follows

— 10 —



(Set (k,LE,I',mnm' n'):=(#)k1,) (t2)F (tzg)"(fll)m({lg)"(Pl)m' (£22)™ ):

Ak, LKV myn,m! 0’y = ¢ (kLK + 1,0 — 1,m,n,m!, n')
+ qm""f_k"_l[l]q(k +1L1-1LK,I'mn,m',n"),
Bk, L,K',I'ym,n,m'",n") = q2k+k'_l—1[k']q(k, LE-1,I'+1,m,n,m',n"
+ qk+kl_1[k]g(k ~LI+1,K,I'm,n,m' n'),
K(k,LE, I, mn,m',n') = (k + K'Yk, LE, I'\m,n,m',n"),
Lk, LE U ymyn,m!,n') = 1+ )k, LK, I',m,n, m',n'),

Clk,LE',I',m,n,m',n') = q""’“'"’l[n']q(k,l, E U mn,m' + 1,0 —1) (3.28)
4 g2 Hn—m'-1 [nle(k, LE I',m+1,n—1,m' n'),
D(k,l,k',l',m,n,m',n') = q2m+"?'_"‘1[m']g(k LEW U, mon,m' —1,n' +1)
4 gt mlg(k, LE fym —1Ln+1,m' yn'),
Mk LEU m,n,m' ') =(m+m)k,LE I, m,n,m' n'),
Nk, LE U mn,m' n') = (n+n Nk LEL T myn,m! n'),
where [n]; = (¢" — ¢™"}/(g — ¢™1) as defined in section 2.
In (3.28) only the action of the operators on monomials is presented.
Using these definitions we rewrite the Y as
yp = gK+D 4 (K414 _ L-K—2 ,
y- = Aqg~" = Ag7 I 4,
yy = ABg~2KHL+L _ ,\q_ZK"'L_zB_,
y2 =g ¥,
(3.29)

gl — qN—M _ AZADq—L—2M+N+3,
:f;'— —_ _,\CqK—L'-N-F? + A3A2Dq-—3L+K—2M+N+8

4 AAQK L2 ((MAN42 | =M-N _ N-M(q 4 ),
,&,+ — __/\DqL—K—2M+N+3 ,
G = MR g MEN gty

The restrictions of O™ on the separate sectors (see (3.27) where the coefficients correspond
to the action of these restricted operators) can be expressed in terms of either 4, B, K, L
or C, D, M, N respectively. We have thus found the decomposition of O%g into OHQ and

OHQ (compare (3.25) and (3.26)). After reexpressing A,B,C,D,K,L,M,N in Y® by

— 11 —



mverting (3.29) we arrive at

(¥2)™' ya(w2)™' Py—(12)™"' 1 — (y2)!
Aoy 0 1 0 ' Y-
(O w) - 0 0 1 'y+ !
O 0 0 y2
1 0 Y 0
(0%) = <12} () —¢*(v-)(r) ! Py—(3e)
0 0 yz 0 ?
0 0 —q%y_ 1
1 =g {p)™ 0 0 (3.30)
(5”9;): 0 YAl 0 0 -
yo —9 %0+(w2) e (yath)™' —ye |
0 G+ (y2) ! 0 1
YAl 0 0 0
O7.) = _ ym 1 0 0
(073) s () o 1 o |

U2 + ¢ — *yain — (yad)™' yo yB(yadi)t (yagr)™
(070) = (073) = (0™) = (075) = 0
where y4 is given by (3.14) and

yB = —y~f2 + Y- + y2f- — ¢*(y-) 2G4 (v2) ", (3.31)
yo = G+ (v2) " (yadh) .

The O™ constructed with the help of (3.25) and (3.30) coincide with the results from the

algebraic approach. )

- Having found the OMg in terms of the YT it is now possible to construct the antipode
S(Y'T) as function of the Y. There are two possibilities to derive that. The first derivation

starts from the Hopf relation

mo(id®S)oA=noe (3.32)

where m is the multiplication and 5 is the unit map of the algebra and uses invertible
elements of the algebra to solve (3.32) for the S(¥YT). For the second derivation one
expands 5 (YH) into products L_IJ L"'K 1 and uses the commutation relations of L*’ J

[DSWZ] to express the -1 gLt K ¢ in terms of the Olg,

— 12 —



Both derivations yield
S(y1) =vy2 +y-yn(yaty:)?,
S(y-) = ~y—(yadryz) ",
S(y+) = =94 — hyp(yathy2) ",
- S(y2) = h(yathy)™',

(3.33)
S(4) = y2(yathy2) ™",
S5(§-) = —y- — y2ye(yathy) ™',
S(H+) = =i+ (yathy)™?,
S(%2) = + drye(yathy) ™}
with
= M —a tuyy i
YD=Y+¥1 —q¢ “ny+, (3.34)

VE = §-Y2 — ¢°Tay_ .

4. Uysl(2,C) in the Y-Hopf Algebra

In this section we demonstrate the equivalence of the Y-algebra and Ug. For that purpose
we consider (3.19)

1 ~ —_
(LY'1)? = (yathy2)~L.

We define the functional y/(L+';)? as follows

VI =1,
VIR (T ) = J@ 2T ), (4.1)
Va,be A: (L)) (ab) = (L+ 1) (a)y/(L+1)2 ()

where the root is taken such that \/(L"’ll)2 (T1;) = L+11(TIJ). Then we have the

following

Proposition 2.

X }(L+11)2 defined above as a function of the Y{ 7 is a well defined algebra homomorphism
on A and equals L+';.



From the definition of V! ; one obtains

2 .1 . -1 .
LY LY = qyidh — ¢ 'yady
2 2 -1 - .
Lt LY = ¢ Y ye — g gou_,
L+22L_]1 =y,
2 __1 1. '
LY L™y = —q gy, (4.2)
2 __2
L+ 2L 1= —qYy—,
2 . _2 .
Lt 2L77 = ,

2 _.2 . . .
LY LY s = yathys = VY2 —y-U4 -

Applying L+, to (4.2) from the left yields all functionals generating Ug as functions of
the Y7 ; thus proving the equivalence of Ugr and the Y-algebra. In particular we found
again the g-deformed Lorentz algebra. ‘

Throughout the paper we considered the algebra generated by the Y7 as a subset of
Ux. Certainly there are more relations in the Y-algebra than (2.16), (2.17), (3.2), (3.5)
- we used such additional relations in the case of 4; in order to show the equivalence to
Ur. We did not investigate whether the Y-algebra can be abstracted from Uz such that
C<yY’;> / ((2.16),(2.17),(3.2),(3.5)) becomes a +-Hopf algebra if the comultiplication
for the generators Y’ ; is given through (2.18) with the 07 &, as functions of the V"1 7
Then the above presented Y -algebra is a *-Hopf algebra representation of the Y'-algebra.
It is interesting whether one can find a general scheme to obtain the results of the sections
3 and 4 to show the Hopf structure of the ¥-algebra introduced in section 2 and its
equivalence to Ug in general for the cases An_q, B,, C, and D,,.

We thank Julius Wess, Satoshi Watamura, Achim Kempf and O. Ogievetsky for helpful
discussions.
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