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PREFACE 

TOT 

DITIO 

In the nine years since this book was first written, rapid progress has 
been made scientifically in nuclear fusion, space physics, and nonlinear 
plasma theory. At the same time, the energy shortage on the one hand 
and the exploration of Jupiter and Saturn on the other have increased 
the national awareness of the important applications of plasma physics 
to energy production and to the understanding of our space 
environment. 

I n  magnetic confinement fusion, this period has seen the attainment 
of a Lawson number n-rE of 2 x 1013 cm-3 sec in the Alcator tokamaks at 
MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 

6.5 keV; increase of average {3 to 3%-5% in tokamaks at Oak Ridge and 
General Atomic; and the stabilization of mirror-confined plasmas at 
Livermore, together with injection of ion current to near field-reversal 
conditions in the 2XIIB device. Invention of the tandem mirror has 
given magnetic confinement a new and exciting dimension. New ideas 
have emerged, such as the compact torus, surface-field devices, and the 
EBT mirror-torus hybrid, and some old ideas, such as the stellarator 
and the reversed-field pinch, have been revived. Radiofrequency heat
ing has become a new star with its promise of de current drive. Perhaps 
most importantly, great progress has been made in the understanding 
of the M HD behavior of toroidal plasmas: tearing modes, magnetic Vll 
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islands, and disruptions. Concurrently, the problems of reactor design, 
fusion technology, and fission-fusion hybrids have received serious atten
tion for the first time. 

Inertial confinement fusion has grown from infancy to a research 
effort one-fourth as large as magnetic fusion. With the 25-TW Shiva 
laser at Livermore, 3 X l 010 thermonuclear neutrons have been produced 
in a single pellet implosion, and fuel compressions to one hundred times 
liquid hydrogen density have been achieved. The nonlinear plasma 
processes involved in the coupling of laser radiation to matter have 
received meticulous attention, and the important phenomena of 
resonance absorption, stimulated Brillouin and Raman scattering, and 
spontaneous magnetic field generation are well on the way to being 
understood. Particle drivers-electron beams, light-ion beams, and 
heavy-ion beams-have emerged as potential alternates to lasers, and 
these have brought their own set of plasma problems. 

In space plasma physics, the concept of a magnetosphere has 
become well developed, as evidenced by the prediction and observation 
of whistler waves in the Jovian magnetosphere. The structure of the 
solar corona and its relation to sunspot magnetic fields and solar wind 
generation have become well understood, and the theoretical description 
of how the aurora borealis arises appears to be in good shape. 

Because of the broadening interest in fusion, Chapter 9 of the first 
edition has been expanded into a comprehensive text on the physics of 
fusion and will be published as Volume 2. The material originated from 
my lecture notes for a graduate course on magnetic fusion but has been 
simplified by replacing long mathematical calculations with short ones 
based on a physical picture of what the plasma is doing. It is this task 
which delayed the completion of the second edition by about three years. 

Volume 1, which incorporates the first eight chapters of the first 
edition, retains its original simplicity but has been corrected and 
expanded. A number of subtle errors pointed out by students and 
professors have been rectified. In response to their requests, the system 
of units has been changed, reluctantly, to mks (SI). To physicists of my 
own generation, my apologies; but take comfort in the thought that the 
first edition has become a collector's item. 

The dielectric tensor for cold plasmas has now been included; it 
was placed in Appendix B to avoid complicating an already long and 
difficult chapter for the beginner, but it is there for ready reference. 
The chapter on kinetic theory has been expanded to include ion Landau 
damping of acoustic waves, the plasma dispersion function, and Bern
stein waves. The chapter on nonlinear effects now incorporates a treat-



ment of solitons via the Korteweg-deVries and nonlinear Schrodinger 
equations. This section contains more detail than the rest of Volume 1, 
but purposely so, to whet the appetite of the advanced student. Helpful 
hints from G. Morales and K. Nishikawa are hereby acknowledged. 

For the benefit of teachers, new problems from a decade of exams 
have been added, and the solutions to the old problems are given. A 
sample three-hour final exam for undergraduates will be found in 
Appendix C. The problem answers have been checked by David Brower; 
any errors are his, not mine. 

Finally, in regard to my cryptic dedication, I have good news and 
bad news. The bad news is that the poet (my father) has moved on to 
the land of eternal song. The good news is that the eternal scholar (my 
mother) has finally achieved her goal, a Ph. D. at 72. The educational 
process is unending. 

Francis F. Chen 
Los Angeles, 1983 
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PREFACE 

TO THE FIRST 

EDITION 

This book grew out of lecture notes for an undergraduate course in 
plasma physics that has been offered for a number of years at UCLA. 
With the current increase in interest in controlled fusion and the wide
spread use of plasma physics in space research and relativistic astro
physics, it makes sense for the study of plasmas to become a part of an 
undergraduate student's basic experience, along with subjects like 
thermodynamics or quantum mechanics. Although the primary purpose 
of this book was to fulfill a need for a text that seniors or juniors can 
really understand, I hope it can also serve as a painless way for scientists 
in other fields-solid state or laser physics, for instance-to become 
acquainted with plasmas. 

Two guiding principles were followed: Do not leave algebraic steps 
as an exercise for the reader, and do not let the algebra obscure the 
physics. The extent to which these opposing aims could be met is largely 
due to the treatment of plasma as two interpenetrating fluids. The 
two-fluid picture is both easier to understand and more accurate than 
the single-fluid approach, at least for low-density plasma phenomena. 

The initial chapters assume very little preparation on the part of 
the student, but the later chapters are meant to keep pace with his 
increasing degree of sophistication. In a nine- or ten-week quarter, it is 
possible to cover the first six and one-half chapters. The material for XI 
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these chapters was carefully selected to contain only what is essential. 
The last two and one-half chapters may be used in a semester course or 
as additional reading. Considerable effort was made to give a clear 
explanation of Landau damping-one that does not depend on a knowl
edge of contour integration. I am indebted to Tom O'Neil and George 
Schmidt for help in simplifying the physical picture originally given by 
john Dawson. 

Some readers will be distressed by the use of cgs electrostatic units. 
It is, of course, senseless to argue about units; any experienced physicist 
can defend his favorite system eloquently and with faultless logic. The 
system here is explained in Appendix I and was chosen to avoid 
unnecessary writing of c, f-Lo, and Eo, as well as to be consistent with the 
majority of research papers in plasma physics. 

I would like to thank Miss Lisa Tatar and Mrs. Betty Rae Brown 
for a highly intuitive job of deciphering my handwriting, Mr. Tim 
Lambert for a similar degree of understanding in the preparation of 
the drawings, and most of all Ande Chen for putting up with a large 
number of deserted evenings. 

Francis F. Chen 
Los Angeles, 1974 
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Chapter One 

INTRODUCTION 

OCCURRENCE OF PLASMAS IN NATURE 1.1 

It has often been said that 99% of the matter in the universe is in the 
plasma state; that is, in the form of an electrified gas with the atoms 
dissociated into positive ions and negative electrons. This estimate may 
not be very accurate, but it is certainly a reasonable one in view of the 
fact that stellar interiors and atmospheres, gaseous nebulae, and much 
of the interstellar hydrogen are plasmas. In our own neighborhood, as 
soon as one leaves the earth's atmosphere, one encounters the plasma 
comprising the Van Allen radiation belts and the solar wind. On the 
other hand, in our everyday lives encounters with plasmas are limited 
to a few examples: the flash of a lightning bolt, the soft glow of the 
Aurora Borealis, the conducting gas inside a fluorescent tube or neon 
sign, and the slight amount of ionization in a rocket exhaust. It would 
seem that we live in the I% of the universe in which plasmas do not 
occur naturally. 

The reason for this can be seen from the Saha equation, which tells 
us the amount of ionization to be expected in a gas in thermal equilibrium: 

3/2 
n· Jr � = 2.4 X 1021 __ e-U;fKT [1-1] 

Here n; and nn are, respectively, the density (number per m3) of ionized 

atoms and of neutral atoms, Jr is the gas temperature in °K, K is 
Boltzmann's constant, and U; is the ionization energy of the gas-that 
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--

is, the number of ergs required to remove the outermost electron from 
an atom. (The mks or International System of units will be used in this 
book.) For ordinary air at room temperature, we may take nn = 
3 x 1025 m-3 (see Problem 1- 1), T = 300°K, and U; = 14.5 eV (for 
nitrogen), where 1 eV = 1.6 X 10-19]. The fractional ionization n;/(n,. + 
n;) = n;/n,. predicted by Eq. [ 1- 1] is ridiculously low: 

As the temperature is raised, the degree of ionization remains low 
until U; is only a few times KT. Then n;/n,. rises abruptly, and the gas 
is in a plasma state. Further increase in temperature makes n,. less than 
n;, and the plasma eventually becomes fully ionized. This is the reason 
plasmas exist in astronomical bodies with temperatures of millions of 
degrees, but not on the earth. Life could not easily co�xist with a 
plasma-at least, plasma of the type we are talking about. The natural 
occurrence of plasmas at high temperatures is the reason for the designa
tion "the fourth state of matter." 

Although we do not intend to emphasize the Saha equation, we 
should point out its physical meaning. Atoms in a gas have a spread of 
thermal energies, and an atom is ionized when, by chance, it suffers a 

-
-

-
-

-
-

-
-

-
-

FIGURE 1-1 Illustrating the long range of electrostatic forces in a plasma. 



collision of high enough energy to knock out an electron. In a cold gas, 
such energetic collisions occur infrequently, since an atom must be 
accelerated to much higher than the average energy by a series of 
"favorable" collisions. The exponential factor in Eq. [ 1- 1] expresses the 
fact that the number of fast atoms falls exponentially with U;/ KT. Once 
an atom is ionized, it remains charged until it meets an electron; it then 
very likely recombines with the electron to become neutral again. The 
recombination rate clearly depends on the density of electrons, which 
we can take as equal ton;. The equilibrium ion density, therefore, should 
decrease with n;; and this is the reason for the factor n � 1 on the 
right-hand side of Eq. [ 1- 1]. The plasma in the interstellar medium owes 
its existence to the low value of n; (about 1 per em\ and hence the low 
recombination rate. 

DEFINITION OF PLASMA 1.2 

Any ionized gas cannot be called a plasma, of course; there is always 
some small degree of ionization in any gas. A useful definition is as 
follows: 

A plasma is a quasineutral gas of charged and neutral particles which 

exhibits collective behavior. 

We must now define "quasineutral" and "collective behavior." The 
meaning of quasineutrality will be made clear in Section 1.4. What is 
meant by "collective behavior" is as follows. 

Consider the forces acting on a molecule of, say, ordinary air. Since 
the molecule is neutral, there is no net electromagnetic force on it, and 
the force of gravity is negligible. The molecule moves undisturbed until 
it makes a collision with another molecule, and these collisions control 
the particle's motion. A macroscopic force applied to a neutral gas, such 
as from a loudspeaker generatin� sound waves, is transmitted to the 
individual atoms by collisions. The si.tuation is totally different in a 
plasma, which has charged particles. As these charges move around, they 
can generate local concentrations of positive or negative charge, which 
give rise to electric fields. Motion of charges also generates currents, and 
hence magnetic fields. These fields affect the motion of other charged 
particles far away. 

Let us consider the effect on each other of two slightly charged 
regions of plasma separated by a distance r (Fig. 1-1). The Coulomb 
force between A and B diminishes as l/r2• However, for a given solid 
angle (that is, t1r/r = constant), the volume of plasma in B that can affect 

3 
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A increases as r3. Therefore, elements of plasma exert a force on one 
another even at large distances. It is this long-ranged Coulomb force 
that gives the plasma a large repertoire of possible motions and enriches 
the field of study known as plasma physics. In fact, the most interesting 
results concern so-called "collisionless" plasmas, in which the long-range 
electromagnetic forces are so much larger than the forces due to ordinary 
local collisions that the latter can be neglected altogether. By "collective 
behavior" we mean motions that depend not only on local conditions 
but on the state of the plasma in remote regions as well. 

The word "plasma" seems to be a misnomer. It comes from the 
Greek 1rAacrp,a, -a'To�, 'TO, which means something molded or fabricated. 
Because of collective behavior, a plasma does not tend to conform to 
external influences; rather, it often behaves as if it had a mind of its own. 

1.3 CONCEPT OF TEMPERATURE 

Before proceeding further, it is well to review and extend our physical 
notions of "temperature." A gas in thermal equilibrium has particles of 
all velocities, and the most probable distribution of these velocities is 
known as the Maxwellian distribution. For simplicity, consider a gas in 
which the particles can move only in one dimension. (This is not entirely 
frivolous; a strong magnetic field, for instance, can constrain electrons 
to move only along the field lines.) The one-dimensional Maxwellian 
distribution is given by 

f(u) = A  exp (-4rnu2/ KT) [l-2] 

where f du is the number of particles per m3 with velocity between u 
and u + du, 4rnu2 is the kinetic energy, and K is Boltzmann's constant, 

K = 1.38 X 10-23 JtK 

The density n, or number of particles per m3, is given by (see Fig. 1-2) 

n = t: f(u) du [1-3] 

The constant A is related to the density n by (see Problem 1-2) 
1/2 

A = n(21T�T) [l-4] 

The width of the distribution is characterized by the constant T, 
which we call the temperature. To see the exact meaning of T, we can 



f(u) 

0 u 
A Maxwellian velocity distribution. FIGURE 1-2 

1. J 

compute the average kinetic energy of particles in this distribution: 

L: �mu2f(u) du 
Eav = ----::-:co :-----L./(u.) du 

Defining 

v,h = (2KT/m)112 

we can write Eq. [ 1-2] as 

and 

and Eq. [ 1-5] as 
co 

I 
3 

f " " 2mAv,h 
-

co [exp (-y-)]y· dy 
Eav = co 

A v,h Leo exp ( -/) dy 

The integral in the numerator is integrable by parts : 

fco 
2 1 2 co fco 

I 
2 

-co
y· [exp (-y )]ydy = [-2[exp (-y )]y]-oo- -

co 
-2exp (-y ) dy 

= � L: exp (-/) dy 

Cancelling the integrals, we have 

Thus the average kinetic energy is �KT. 

[1-5] 

[1-6] 

[1-7] 
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It is easy to extend this result to three dimensions. Maxwell's distribu
tion is then 

[1-8] 

where 
3/2 

A3 = n(21T�T) [1-9] 

The average kinetic energy is 

We note that this expression is symmetric in u, v, and w, since a Maxwellian 
distribution is isotropic. Consequently, each of the three terms in the 
numerator is the same as the others. We need only to evaluate the first 
term and multiply by three: 

3A3 J �mu2 exp (-�mu.2/ KT) du JJ exp [ -�m(v2 + w2)/ KT] dv dw 
Eav = 

J 1 9/ JJ 1 2 9 / d d A3 exp (-2mu· KT)du exp[-2m (v +w·) KT] v w 

Using our previous result, we have 

Eav = �KT [1-10] 

The general result is that Ea,· equals �KT per degree of freedom. 
Since T and Ea.- are so closely related, it is customary in plasma 

physics to give temperatures in units of energy. To avoid confusion on 
the number of dimensions involved, it is not Eav but the energy corres
ponding to KT that is used to denote the temperature. For KT = 1 e V = 

1.6 x 10-19 J, we have 

l.6x 10-19 T = 1.38 X 10-23 = 11,600 

Thus the conversion factor is 

[1-11] 

By a 2-eV plasma we mean that KT = 2 eV, or Eav = 3 eV in three 
dimensions. 

It is interesting that a plasma can have several temperatures at the 
same time. It often happens that the ions and the electrons have separate 



7 Maxwellian distributions with different temperatures T; and T,. This 
can come about because the collision rate among ions or among electrons 
thPmselves is larger than the rate of collisions between an ion and an 
electron. Then each species can be in its own thermal equilibrium, but 
the plasma may not last long enough for the two temperatures to equalize. 
When there is a magnetic field B, even a single species, say ions, can 
have two temperatures. This is because the forces acting on an ion along 
Bare different from those acting perpendicular to B (due to the Lorentz 
force). The componetttS of velocity perpendicular to B and parallel to 
B may then belong to different Maxwellian distributions with tem
peratures T .1 and Tn. 

Introduction 

Before leaving our review of the notion of temperature, we should 
dispel the popular misconception that high temperature necessarily 
means a lot of heat. People are usually amazed to learn that the electron 
temperature inside a fluorescent light bulb is about 20,000°K. "My, it 
doesn't feel that hot!" Of cour!>e, the heat capacity must also be taken 
into account. The density of electrons inside a fluorescent tube is much 
less than that of a gas at atmospheric pressure, and the total amount of 
heat transferred to the wall by electrons striking it at their thermal 
velocities is not that great. Everyone has had the experience of a cigarette 
ash dropped innocuously on his hand. Although the temperature is high 
enough to cause a burn, the total amount of heat involved is not. Many 
laboratory plasmas have temperatures of the order of 1,000,000°K 
(100 eV), but at densities of 1018-1019 per m3, the heating of the walls is 
not a serious consideration. 

1-1. Compute the density (in units of m-3) of an ideal gas under the following PROBLEMS 
conditions: 

{a) At ooc and 760 Torr pressure (I Torr= 1 mm Hg). This is called the 
Loschmidt number. 

{b) In a vacuum of I o-3 Torr at room temperature (20°C). This number is a 
useful one for the experimentalist to know by heart ( 1 0-3 Torr= 1 micron). 

1-2. Derive the constant A for a normalized one-dimensional Maxwellian distri
bution 

/(u) = A  exp (-mu2/2KT) 

such that 
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PLASMA 

FIGURE 1-3 Debye shielding. 

1.4 DEBYE SHIELDING 

+ ++ +++ 
+ + + + 

+ + + + 
+ + + + 

+ ++ ++ + 
+ + + 

A fundamental characteristic of the behavior of a plasma is its ability to 
shield out electric potentials that are applied to it. Suppose we tried to 
put an electric field inside a plasma by inserting two charged balls 
connected to a battery (Fig. 1-3). The balls would attract particles of the 
opposite charge, and almost immediately a cloud of ions would surround 
the negative ball and a cloud of electrons would surround the positive 
ball. (We assume that a layer of dielectric keeps the plasma from actually 
recombining on the surface, or that the battery is large enough to 
maintain the potential in spite of this.) If the plasma were cold and there 
were no thermal motions, there would be just as many charges in the 
cloud as in the ball; the shielding would be perfect, and no electric field 
would be present in the body of the plasma outside of the clouds. On 
the other hand, if the temperature is finite, those particles that are at 
the edge of the cloud, where the electric field is weak, have enough 
thermal energy to escape from the electrostatic potential well. The "edge" 
of the cloud then occurs at the radius where the potential energy is 
approximately equal to the thermal energy KT of the particles, and the 
shielding is not complete. Potentials of the order of KT/e can leak into 
the plasma and cause finite electric fields to exist there. 

Let us compute the approximate thickness of such a charge cloud. 
Imagine that the potential ¢> on the plane x = 0 is held at a value ¢>0 by 
a perfectly transparent grid (Fig. 1-4). We wish to compute ¢> (x). For 
simplicity, we assume that the ion-electron mass ratio M/m is infinite, 
so that the ions do not move but form a uniform background of positive 
charge. To be more precise, we can say that M/m is large enough that 



0 X 
Potential distribution near a grid in a plasma. FIGURE 1·4 

the inertia of the ions prevents them from moving significantly on the 
time scale of the experiment. Poisson's equation in one dimension is 

(Z = 1) [1-12] 

If the density far away is nco, we have 

ni = nco 

In the presence of a potential energy qcf>, the electron distribution func
tion is 

f(u) =A exp [ -(�mu 2 + qcf> )/ KT,] 

It would not be worthwhile to prove this here. What this equation says 
is intuitively obvious: There are fewer particles at places where the 
potential energy is large, since not all particles have enough energy to 
get there. Integrating f(u) over u, setting q = -e, and noting that n, (cf> � 

0) = nco, we find 
n, =nco exp (ecf>/ KT,) 

This equation will be derived with more physical insight in Section 3.5. 
Substituting for ni and n, in Eq. [ 1- 12], we have 

In the region where iecf>/KT,I « 1, we can expand the exponential in a 
Taylor series: 

[1-13] 

9 
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No simplification is possible for the region near the grid, where I e¢/ KT,I 
may be large. Fortunately, this region does not contribute much to the 
thickness of the cloud (called a sheath), because the potential falls very 
rapidly there. Keeping only the linear terms in Eq. [l-13], we have 

Defining 

d2¢ nooe2 t:
o dx2 = KT, 4> 

= (t:oKT,) 1/2 
Ao- ? ne-

where n stands for noo, we can write the solution of Eq. [l-14] as 

4> = 4>o exp (-!xi /Ao) 

[1-14] 

[1-15) 

[ 1-16] 

The quantity A0, called the Debye length, is a measure of the shielding 
distance or thickness of the sheath. 

Note that as the density is increased, A 0 decreases, as one would 
expect, since each layer of plasma contains more electrons. Furthermore, 
A0 increases with increasing KT,. Without thermal agitation, the charge 
cloud would collapse to an infinitely thin layer. Finally, it is the electron 
temperature which is used in the definition of A 0 because the electrons, 
being more mobile than the ions, generally do the shielding by moving 
so as to create a surplus or deficit of negative charge. Only in special 
situations is this not true (see Problem 1-5). 

The following are useful forms of Eq. [ 1- 15]: 

A0 = 69(T/n) 112 m, 

A0 = 7430(KT/n)112 m, 
[1-17] 

KTin eV 

We are now in a position to define "quasineutrality." If the 
dimensions L of a system are much larger than A0, then whenever local 
concentrations of charge arise or external potentials are introduced into 
the system, these are shielded out in a distance short compared with L, 
leaving the bulk of the plasma free of large electric potentials or fields. 
Outside of the sheath on the wall or on an obstacle, V2¢ is very small, 
and n; is equal to n., typically, to better than one part in 106. It takes 
only a small charge imbalance to give rise to potentials of the order of 
KT/e. The plasma is "quasineutral"; that is, neutral enough so that one 
can take n; = n, = n, where n is a common density called the plasma 



density, but not so neutral that all the interesting electromagnetic forces 
vanish. 

A criterion for an ionized gas to be a plasma is that it be dense 
enough that A 0 is much smaller than L. 

The phenomenon of Debye shielding also occurs-in modified 
form-in single-species systems, such as the electron streams in klystrons 
and magnetrons or the proton beam in a cyclotron. In such cases, any 
local bunching of particles causes a large unshielded electric field unless 
the density is extremely low (which it often is). An externally imposed 
potential-from a wire probe, for instance-would be shielded out by 
an adjustment of the density near the electrode. Single-species systems, 
or unneutralized plasmas, are not strictly plasmas; but the mathematical 
tools of plasma physics can be used to study such systems. 

THE PLASMA PARAMETER 1.5 

The picture of Debye shielding that we have given above is valid only 
if there are enough particles in the charge cloud. Clearly, if there are 
only one or two particles in the sheath region, Debye shielding would 
not be a statistically valid concept. Using Eq. [ 1- 17], we can compute the 
number N0 of particles in a "Debye sphere": 

(Tin °K) [1-18] 

In addition to A0 « L, "collective behavior" requires 

No»> 1 [1-19] 

CRITERIA FOR PLASMAS 1.6 

We have given two conditions that an ionized gas must satisfy to be called 
a plasma. A third condition has to do with collisions. The weakly ionized 
gas in a jet exhaust, for example, does not qualify as a plasma because 
the charged particles collide so frequently with neutral atoms that their 
motion is controlled by ordinary hydrodynamic forces rather than by 
electromagnetic forces. If w is the frequency of typical plasma oscillations 

and T is the mean time between collisions with neutral atoms, we require 

wT > 1 for the gas to behave like a plasma rather than a neutral gas. 

11 
In.troduction 
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The three conditions a plasma must satisfy are therefore: 

l. Ao « L. 
2. No>» 1. 
3. WT > 1. 

PROBLEMS 1-3. On a log-log plot of n, vs. KT, with n, from 106 to 1025 m-3, and KT, from 
0.0 1 to 105 eV, draw l ines of constant t\0 and N0. On this graph, place the 
following points (n in m-3, KT in eV): 

l. Typical fusion reactor: n = I 021, KT = I 0,000. 
2.  Typical fusion experiments: n = 1019, KT = 1 00 (torus); n = 1023, KT = 

1 000 (pinch). 
3. Typical ionosphere: n = 1011, KT = 0.0 5 .  
4.  Typical glow discharge: n = 1 015, KT = 2. 
5. Typical Aarne: n = 1 014, KT = 0.1. 
6. Typical Cs plasma; n = 1 017, KT = 0 .2. 
7. Interplanetary space: n = l 06, KT = 0 . 0  I. 

Convince yourself that these are plasmas. 

1-4. Compute the pressure, in atmospheres a nd in tons/ft2, exerted by a ther
monuclear plasma on its container. Assume KT, = KT1 = 20 keV, n = 1 021 m-3, 
and P = nKT, where T = T1 + T,. 

1-5. In a strictly steady state situation, both the ions and the electrons will follow 
the Boltzmann relation 

n; = n0 exp (-q;</J/ KT;) 

For the case of an in finite, transparen t  grid charged to a potential ¢, show that 
the shielding distance is then given approximately by 

Show that t\ 0 is determined by the temperature of the colder species. 

1-6. An alternative derivation of t\0 will  give further insight to its meaning. 
Consider two infinite , parallel plates at x = ±d, set at potential <P = 0. The space 
between them is uniformly filled by a gas of density n of particles of c harge q. 
(a) Using Poisson's equation, show that the potential distribution between the 
plates is 

<P = !!!L (d2 - x2) 
2Eo 

(b) Show that for d >A 0, the energy needed to transport a particle from a 
plate to the midplane is greater than the average kinetic energy of the particles. 



1-7. Compute A0 and N0 for the following cases: 

(a) A glow discharge, with n = 1016 m-3, KT, = 2 eV. 

(b) The earth's ionosphere, with n = 1012 m-3, KT, = 0.1 eV. 

(c) A 17-pinch, with n = 1023 rn-3, KT, = 800 eV. 

APPLICATIONS OF PLASMA PHYSICS 1.7 

Plasmas can be characterized by the two parameters n and KT,. Plasma 
applications cover an extremely wide range of n and KT,: n varies over 
28 orders of magnitude from 106 to 1034 m -3, and KT can vary over 
seven orders from 0. 1 to 106 e V. Some of these applications are discussed 
very briefly below. The tremendous range of density can be appreciated 
when one realizes that air and water differ in density by only 103, while 
water and white dwarf stars are separated by only a factor of 105. Even 
neutron stars are only 1015 times denser than water. Yet gaseous plasmas 
in the entire density range of 1028 can be described by the same set of 
equations, since only the classical (non-quantum mechanical) laws of 
physics are needed. 

Gas Discharges (Gaseous Electronics) 1. 7.1 

The earliest work with plasmas was that of Langmuir, Tonks, and their 
collaborators in the 1920's. This research was inspired by the need to 
develop vacuum tubes that could carry large currents, and therefore 
had to be filled with ionized gases. The research was done with weakly 
ionized glow discharges and positive columns typically with KT, = 2 eV 
and 1014 < n < 1018 m-3• It was here that the shielding phenomenon 
was discovered; the sheath surrounding an electrode could be seen 
visually as a dark layer. Gas discharges are encountered nowadays in 
mercury rectifiers, hydrogen thyratrons, ignitrons, spark gaps, welding 
arcs, neon and fluorescent lights, and lightning discharges. 

Controlled Thermonuclear Fusion 1. 7.2 

Modern plasma physics had it beginnings around 1952, when it was 
proposed that the hydrogen bomb fusion reaction be controlled to make 
a reactor. The principal reactions, which involve deuterium (D) and 

1 3  
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tritium (T) atoms, are as follows: 

D + D � 3He + n + 3.2 MeV 

D + D � T + p + 4.0 MeV 

D + T � 4He + n + 17.6 MeV 

The cross sections for these fusion reactions are appreciable only for 
incident energies above 5 ke V. Accelerated beams of deuterons bom
barding a target will not work, because most of the deuterons will lose 
their energy by scattering before undergoing a fusion reaction. It is 
necessary to create a plasma in which the thermal energies are in the 
10-keV range. The problem of heating and containing such a plasma is 
responsible for the rapid growth of the science of plasma physics since 
1952. The problem is still unsolved, and most of the active research in 
plasma physics is directed toward the solution of this problem. 

1. 7 .3 Space Physics 

Another important application of plasma physics is in the study of the 
earth's environment in space. A continuous stream of charged particles, 
called the solar wind, impinges on the earth's magnetosphere, which 
shields us from this radiation and is distorted by it in the process. Typical 
parameters in the solar wind are n = 5 X 106m-3, KT; = 10 e V, KT. = 
50 eV, B = 5 x 10-9 T, and drift velocity 300 km/sec. The ionosphere, 
extending from an altitude of 50 km to 10 earth radii, is populated by 
a weakly ionized plasma with density varying with altitude up to n = 

1012 m-3. The temperature is only 10-1 eV. The Van Allen belts are 
composed of charged particles trapped by the earth's magnetic field. 
Here we have n ::s 109m-3, KT. ::s 1 keY, KT; = 1 eV, and B = 

500 x 10-9 T. In addition, there is a hot component with n = 103m-3 
and KT. = 40 keY. 

1. 7.4 Modern Astrophysics 

Stellar interiors and atmospheres are hot enough to be in the plasma 
state. The temperature at the core of the sun, for instance, is estimated 
to be 2 keY; thermonuclear reactions occurring at this temperature are 
responsible for the sun's radiation. The solar corona is a tenuous plasma 
with temperatures up to 200 eV. The interstellar medium contains ion
ized hydrogen with n = 106 m-3. Various plasma theories have been used 
to explain the acceleration of cosmic rays. Although the stars in a galaxy 



are not charged, they behave like particles in a plasma; and plasma 
kinetic theory has been used to predict the development of galaxies. 
Radio astronomy has uncovered numerous sources of radiation that 
most likely originate from plasmas. The Crab nebula is a rich source of 
plasma phenomena because it is known to contain a magnetic field. It 
also contains a visual pulsar. Current theories of pulsars picture them 
as rapidly rotating neutron stars with plasmas emitting synchrotron 
radiation from the surface. 

MHD Energy Conversion and Ion Propulsion 1. 7.5 

Getting back down to earth, we come to two practical applications of 
plasma physics. Magnetohydrodynamic ( MHD) energy conversion util
izes a dense plasma jet propelled across a magnetic field to generate 
electricity (Fig. 1-5). The Lorentz force qv x B, where vis the jet velocity, 
causes the ions to drift upward and the electrons downward, charging 
the two electrodes to different potentials. Electrical current can then be 
drawn from the electrodes without the inefficiency of a heat cycle. 

The same principle in reverse has been used to develop engines for 
interplanetary missions. In Fig. 1-6, a current is driven through a plasma 
by applying a voltage to the two electrodes. The j x B force shoots the 
plasma out of the rocket, and the ensuing reaction force accelerates the 
rocket. The plasma ejected must always be neutral; otherwise, the space 
ship will charge to a high potential. 

Solid State Plasmas I. 7.6 

The free electrons and holes in semiconductors constitute a plasma 
exhibiting the same sort of oscillations and instabilities as a gaseous 
plasma. Plasmas injected into InSb have been particularly useful in 
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Principle of the MHD generator. FIGURE 1-5 
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FIGURE 1-6 Principle of plasma-jet engine for spacecraft propulsion. 
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studies of these phenomena. Because of the lattice effects, the effective 
collision frequency is much less than one would expect in a solid with 
n = l 029 m -s. Furthermore, the holes in a semiconductor can have a 
very low effective mass-as little as 0.0 l m,- and therefore have high 
cyclotron frequencies even in moderate magnetic fields. If one were to 
calculate N0 for a solid state plasma, it would be less than unity because 
of the low temperature and high density. Quantum mechanical effects 
(uncertainty principle) , however, give the plasma an effective tem
perature high enough to make N0 respectably large. Certain liquids, 
such as solutions of sodium in ammonia, have been found to behave like 
plasmas also. 

1.7.7 Gas Lasers 

The most common method to "pump" a gas laser-that is, to invert the 
population in the states that give rise to light amplification-is to use a 
gas discharge. This can be a low-pressure glow discharge for a de laser 
or a high-pressure avalanche discharge in a pulsed laser. The He-Ne 
lasers commonly used for alignment and surveying and the Ar and Kr 

lasers used in light shows are examples of de gas lasers. The powerful 
C02 laser is finding commercial application as a cutting tool. Molecular 
lasers make possible studies of the hitherto inaccessible far infrared 
region of the electromagnetic spectrum. These can be directly excited 
by an electrical discharge, as in the hydrogen cyanide ( HCN) laser, or 
can be optically pumped by a C02 laser, as with the methyl fluoride 
(C H3F) or methyl alcohol (C H30H) lasers. Even solid state lasers, such 
as Nd-glass, depend on a plasma for their operation, since the flash 
tubes used for pumping contain gas discharges. 
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1-8. I n  l aser fusion, the core of a small pellet of DT is compressed to a densi ty 
of 1 033 m-3 at a temperature of 5 0,000,000°K. Estimate the number of particles 
in a Debye sphere in this plasma. 

1-9. A distant galaxy contains a cloud of protons and antiprotons, each with 
density n = 1 06 m-3 and tem perature 1 00°K .  What is the Debye length) 

1- 10. A spherical condu ctor of radius a is immersed i n  a plasma and charged 
to a potential c/>0. The electrons remain Maxwellian and move to form a Debye 
shield ,  but the ions are stationary during the time frame of the experiment.  
Assum i n g  ¢>0 « KT./ e, derive an expression for the poten tial as  a function of r 

in terms of a, ¢>0, and A 0. ( H i n t :  Assume a solu tion of the form e
-h/r. ) 

1 - 1 1 .  A field-effect transistor (FET) is basically an electron valve that operates 
on a fi n i te-Debye-length effect. Conduction electrons fl ow from the source S to 
the d ra i n  D through a semiconducting material when a potential is applied 
between them. When a negative potential is applied to the insulated gate G, n o  
curren t  c a n  flow through G, but t h e  applied potential leaks into t h e  semiconductor 
and repels electrons. The chan nel width is narrowed and the electron fl ow 
i m peded in proportion to the gate potential . If the thickness of the device is too 
large , Debye shielding prevents the gate voltage from penetrating far enough. 
Estimate the maximum thickness of the conduction layer of an n-channel FET 
if  i t  has doping level ( plasma density) of 1 022 m-3, is at room temperature, and 
is to be n o  more than 10 Debye lengths thick.  (See Fig. P l - 1 1 . ) 
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INTRODUCTION 2.1 

What makes plasmas particularly difficult to a nalyze is the fact that the 
densities fall in an intermediate range. Fluids l ike water are so dense 
tha t  the motions of individual molecules do not have to be considered.  
Collisions dominate, and the simple equations of ordinary fluid dynamics 
suffice. At  the other extreme in very l ow-density devices like the 
alternating-gradient synchrotron, only single-particle trajectories need 
be considered; collective effects are often u ni mportant.  Plasmas behave 
sometimes like fluids, a nd sometimes l ike a collection of individual 
particles. The first step in learning how to deal with this schizophrenic 
personality is to understand h ow single particles behave in electric a nd 

magnetic fields.  This chapter differs from succeeding ones in that the E 

and B fields are assumed to be prescribed and not affected by the charged 
particles.  

UNIFORM E AND B FIELDS 2.2 

E = 0 2.2.1 

In this case, a charged particle has a simple cyclotron gyration. The 
equation of motion is 

dv 
m- =qvxB 

dt 
[2-1] 

19 
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Taking z to be the direction of B (B = Bz), we have 

[2-2) 

This describes a sim ple harmonic oscilla tor at the cyclotron frequency, 
which we define to be 

[2-3) 

By the convention we have chosen, We is a lways nonnega tive. B is 
measured in tesla , or webers/ m2, a uni t  equal to 104 gauss . The solution 
of Eq . [2-2] is then 

the ± denoting the sign of q. We may choose the phase 8 so that 

[2-4a] 

where V.t is a positive constant denoting the speed in the plane perpen
dicular to B. Then 

m . 1 . . iwt . vy =-v,=±-v, = ±zv.Le ' =y qB We 

Integrating once aga in ,  we have 

.V.L iwt x-x0 =-z-e '  
We 

We define the Larmor radius to be 

V .L iw t 
Y- Yo = ±-e ' We 

v.L mv.L 
rL= - = --We lqiB 

Taking the real part of Eq. [2-5], we have 

[2-4b] 

[2-5] 

[2-6] 

[2-7) 



ION 

GUIDING 
CENTER 

ELECTRON 

21 
Single-Particle 

Motions 

Larmor orbits in a magnetic field. FIGURE 2-1 

This describes a circular orbit a guiding cen ter (x0, y0) which is fixed (Fig. 
2-1) .  The direction of the gyration is  always such that the magnetic field 
generated by the

' 
charged part icle is opposite to the externally imposed 

field . Plasma particles, therefore, tend to reduce the magnetic field,  and 
plasmas are diamagnetic. In addition to this motion, there is  an arbitrary 
velocity v, along B which is not a ffected by B. The trajectory of a charged 
particle in space is, in general, a helix. 

Finite E 2.2.2 

I f  now we allow an electric field to be present, the motion will be found 
to be the sum of two motions: the usual circular Larmor gyration plus 
a drift of the guiding center. We may choose E to  l ie in the x-z plane 
so that Ey = 0. As before, the z component of velocity is  unrelated to the 
transverse components and can be treated separately .  The equation of 
motion is  now 

whose z component is 

or 

dv 
m-=q (E +vxB) 

d t  

dv, q 
-=- E 
d t  m ' 

q E, 
v, = - t  + v,o 

m 

[2-8) 

[2-9) 
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This is a straightforward acceleration along B. The transverse com
ponents of Eq. [2-8] are 

Differentiating, we have (for constant E) 

•• 2 
Vx = -wcVx 

We can write this as 

d2 ( E,) 2 ( E,) - v +- = -w v + -
dt2 Y B c y B 

[2-10] 

[2-ll] 

so that Eq. [2-11] is reduced to the previous case i f  we replace Vy by 
vy + (E,/ B). Equation [2-4] is  therefore replaced by 

iwt v, = V.t e ' 

. iwl Ex v =±tv e ' - -y .t B 
[2-12] 

The Larmor motion is the same as before, but there is superimposed a 
dri ft Vgc of the guiding center i n  the -y direction (for Ex > 0) (Fig. 2-2). 

y E 

X 

z 

ION 

FIGURE 2-2 Particle drifts in crossed electric and magnetic fields. 
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To obtain a general formula for Vgc, we can solve Eq. [2-8] in vector 
form . We may omit them dv/dt term in Eq. [2-8] ,  since this term gives 
only the circular motion at w" which we already know about. Then 
Eq. [2- 8] becomes 

E+vXB=O [2-13] 

Taking the cross product w ith B, we have 

E X B = B X (v x B) = vB 2 - B(v · B) (2-14) 

The transverse components of this equation are 

v .LK< = E X BIB 2 = v E (2-15] 

We define this to be V£, the electric field d ri ft of the guiding center. I n  
ma gnitude, this drift is 

E(V/ m) m 
VE = -

B (tesla) sec 
(2-16] 

It is important  to note that vE is independent of q, m, and v.L. T he 
reason is obvious from the following physical  picture. In the first half
cycle of the ion's orbit in Fig. 2-2, it gains energy from the electric field 
a nd increases in v .L and,  hence, in rL. In the second half-cycle, it loses 
energy and decreases in rL. This difference in rL on the left and right 
s ides of the orbit causes the drift vE. A negative electron gyrates in  the 
opposite direction but also gains energy in the opposite direction; it ends 

� \'.' up drifting in the same direction as a n  ion :rr or particles of the same 
velocity but different mass, the lighter one will have smaller rL and hence 
d ift less per cycle. H owever, its gyration frequency is also larger, and 
the two effects exactly cancel. Two particles of the same mass but different 
energy would have the same w,. The s lower one wil l  have smaller r L  and 
hence gain less energy from E in  a half-cycle .  However, for less energetic 
particles the. fractional cha nge in rL for a given change in energy is 
larger , and these two effects cancel (Problem 2-4) . 

The three-dimensional orbit in s pa ce is therefore a slanted helix 
with changing pitch (Fig .  2-3). 

Gravitational Field 2.2.3 

The foregoing result ca n be applied to other forces by replaci n g  qE i n  
the equation of motion [2-8] b y  a general force F. The guidin g  center 
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FIGURE 2-3 The actual orbit of a gyrating particle in space. 

drift caused by F is theq 

lFxB 
Vf = q ]32 

ExB 

_............E 

In particular, ifF is the force of gravity mg, there is a drift 

m gxB v ---

g- q B 2 

[2-17) 

[2-18) 

This is similar to the drift V£ in that it is perpendicular to both the force 

and B, but it differs in one important respect. The drift Vg changes sign 

with the particle's charge. Under a gravitational force, ions and electrons 

drift in opposite directions, so there is a net current density in the plasma 
given by 

gXB 
j = n(M + m ) --2-B [2-19] 

The physical reason for this drift (Fig. 2-4) is again the change in Larmor 

radius as the particle gains and loses energy in the gravitational field. 

Now the electrons gyrate in the opposite sense to the ions, but the force 

on them is in the same direction, so the drift is in the opposite direction. 

The magnitude of Vg is usually negligible (Problem 2-6) ,  but when the 

lines of force are curved, there is an effective gravitational force due to 
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The drift of a gyrating particle in a gravitational field. FIGURE 2-4 

centrifu ga l  f orce. This f orce ,  which is not negligi ble,  is i ndependent of 
mass; this is why we did not stress the m dependence of Eq. [2-18] .  
Centrifu gal f orce is the basis of a plasma instabili ty called the "gravita
tional" i nstabili ty, which has n othing to do with real gravity. 

2-1. Compute rL for the following cases if v0 is negligible: 

(a) A 10-keV electron in the earth's magnetic field of 5 x 10-5 T. 

(b)· A solar wind proton with streaming velocity 300 km/sec, B = 5 x 10-9 T. 

(c) A 1-keV He+ ion in the solar atmosphere near a sunspot, where B = 

5 X 10-2 T. 

(d) A 3 . 5-MeV He++ ash particle in an 8-T DT fusion reactor. 

2-2. In the TFTR (Tokamak Fusion Test Reactor) at Princeton, the plasma will 
be heated by injection of 200-ke V neutral deuterium atoms, which, after entering 
the magnetic field, are converted to 200-keV D ions (A = 2) by charge exchange. 
These ions are confined only if rL « a, where a = 0.6 m is the minor radius of 
the toroidal plasma. Compute the maximum Larmor radius in a 5-T field to see 
if this is satisfied. 

2-3. An ion engine (see Fig. 1-6) has a 1-T magnetic field, and a hydrogen 
plasma is to be shot out at an Ex B velocity of 1000 km/sec. How much internal 
electric field must be present in the plasma? 

2-4. Show that v£ is the same for two ions of equal mass and charge but different 
energies, by using the following physical picture (see Fig. 2-2).  Approximate the 
right half of the orbit by a semicircle corresponding to the ion energy after 
acceleration by the E field, and the left half by a semicircle corresponding to 
the energy after deceleration. You may assume that E is weak, so that the 
fractional change in v .1 is small. 

PROBLEMS 
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FIGURE P2-7 

2-5. Suppose electrons obey the Boltzmann relation of Problem 1-5 in a cylindri
cally symmetric plasma column in which n (1·) varies with a scale length A; that 
is, anjar = -n/A. 

(a) Using E = -'V¢, find the radial electric field for given A. 

(b) For electrons, show that finite Larmor radius effects are large if v£ is as large 
as v,h. Specifically, show that rL = 2A if v£ = v,h. 

(c) Is (b) also true for ions? 

Hint: Do not use Poisson's equation. 

2-6. Suppose that a so-called Q-machine has a uniform field of 0.2 T and a 
cylindrical plasma with KT, = KT; = 0. 2 eV. The density profile is found experi
mentally to be of the form 

n =n0exp[exp (-r2/a2)-l] 

Assume the density obeys the electron Boltzmann relation n = no exp (e¢/ KT,). 

(a) Calculate the maximum v£ if a = I em. 

(b) Compare this with v. due to the earth's gravitational field. 

(c) To what value can B be lowered before the ions of potassium (A = 39, Z = I) 
have a Larmor radius equal to a? 

2-7. An unneutralized electron beam has density n, = 1014 m-3 and radius a= 
I em and flows along a 2-T magnetic field. I f  B is in the +z direction and E is 
the electrostatic field due to the beam's charge, calculate the magnitude and 
direction of the Ex B drift at r = a. (See Fig. P2-7 .) 

2.3 NONUNIFORM B FIELD 

Now that the concept of a guiding center drift is firmly established, we 

can discuss the motion of particles in inhomogeneous fields-E and B 

fields which vary in space or time. For uniform fields we were able to 

obtain exact expressions for the guiding center drifts. As soon as we 

introduce inhomogeneity, the problem becomes too complicated to solve 
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The drift of a gyrating particle in a nonuniform magnetic field. FIGURE 2-5 

exactly .  To get an a p proximate answer, it is customary to expa n d  in the 
small ratio rL/ L, where L is the scale length of the inhomogeneity. This 
type of theory, called orbit theory, can become extremely involved.  We 
shall examine only the simplest cases, where only one inhomogeneity 
occurs at  a time. 

VB 1 B: Grad-E Drift 2.3.1 

Here the l ines of force* are straight, but t heir density increases, say, in 
they direction (Fig. 2-5) . We can anticipate the result by using our s imple 
physical picture. The gradient in I B I causes t he Larmor radius to be 
lar ger at the bottom of the orbit than a t  the top, and this should lead 
to a drif t ,  in opposite directions for ions and electrons, perpendicular 
to both B and VB. The drift velocity should obviously  be propor tional 
to rL/L and to v.L. 

Consider the L orentz force F = qv X B, averaged over a gyration . 
Clearly, Fx = 0, since the part icle spends as much time moving u p  as down.  
We wish to calculate Fy, i n  a n  approximate fas hion, by using the undisturbed 
orbit of the particl e  to find the average. The u n disturbed orbit i s  given 
by Eqs. [2-4] and [2-7] f or a uniform B field . Taking the real part of 

Eq. [ 2-4], we have 

Fy = -qvxB, (y) = -qv .L(cos w,t) [Eo± rL(cos w,t) �:J [2-20] 

where we have made a Taylor expa nsion of B field about the point xo = 0, Yo= 0 and have used Eq. [2-7]: 

B = B0 + (r · V)B + · · · 
[2-21] B, = Bo + y(BB,/oy) + · · · 

*The magnetic field lines are often called "lines of force." They are not lines of force. 

The misnomer is perpetuated here to prepare the student for the treacheries of his 

profession. 
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This expansion of course requires rL/ L « 1, where L is the scale length 
of aE)ay. The first term of Eq. [2-20] averages to zero i n  a gyration, 
and the average of cos

2 
wet is � . so that 

The guiding center drift velocity is then 

1 FXB 1 Fy A v.LrL 1 aEA Vgc =- --., - = - -x = + -- - -x 
q E - q I E  I E 2 ay 

[2-22) 

[2-23] 

where we have used Eq. [2-17]. Since the c hoice of they axis was arbitrary , 
this can be generalized to 

[2-24] 

This has all the dependences we expected from the physical picture; 
only the factor � (arisi ng from the averagi ng) was not predicted . N ote 
that the ± stands for the sign of the charge, and lightface E stands for 
I E  1 .  The quanti ty vv8 i s  called the grad-E drift; it is in opposite directions 
for ions and electrons and causes a current transverse to B. An exact 
calculation of vv8 would require usi ng the exact orbit, includi ng the 
drift, in the averagi n g  process. 

2.3.2 Curved B: Curvature Drift 

Here we assume the lines of force to be curved with a constant radius 

of curvature Rc, and we take I E  I to be constant (Fig. 2-6) .  Such a field 
does not obey Maxwell's equations in a vacuum,  so in practice the grad-E 
drift will always be added to the effect derived here. A guiding center 
drift arises from the centrifugal force fel t  by the particles as they move 
along the field lines in their thermal motion.  If v� denotes the average 
square of the component of random velocity along B, the average 
centrifugal force i s  

[2-25) 
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A curved magnetic field. FIGURE 2-6 

Accordi n g  to Eq. [2- 17), this gives rise to a drift 

[2-26] 

The drift VR is called the curvature drift. 
We must now compute the grad-E drift which accompanies this 

when the decrease of I B I with radius  is taken into account. I n  a vaqmm, 
we have V x B = 0. I n  the cylindrical coordinates of Fig .  2-6, V x B has 
only a z component, since B has only a e component and VB only an r 
component. We then have 

Thus 

1 a 
(V x B), = - -(rB8) = 0 

r ar 

1 
IBI ce -Re 

VIE I 
lEI 

Using Eq. [2-24), we have 

1 
Bo ex:

r 

VvB = + .!_ v.LrLB X IBI Re = ± .!_ v� ReX B 
= 

.!_ �v2 ReX B 
2 B2 R� 2 We R;B 2 q .l R;B2 

[2-27) 

[2-28) 

[2-29] 
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Adding this to VR, we have the total drift i n  a curved vacuum field: 

m R, x B ( 9 1 9) 
VR + Vva =- 9 9 VIJ + -vj_ 

q R;B- 2 
[2-30] 

I t  is unfortunate  that t hese drifts  add. This means that  if one bends a 
magnetic field into  a t orus for the purpose of confining a t hermonuclear 
plasma ,  the particles will drift out of the  torus no mat ter how one juggles 
the temperatures and magnetic fields.  

For a Ma xwell ian distribution ,  Eqs. [1-7] and [ 1-1 0] indicat e  t hat 
vW and �v� are each equal to KT/m, since v.L involves two degrees of 
freedom. Equations [2-3] and [ 1-6] t he n  a l low us to write t he a verage 
curved-field drift as  

[2-30a) 

where y here is the direction of R, X B. This shows that  vR+VB d epends 
on the charge of the species but not on i ts  mass. 

2.3.3 VBIIB: Magnetic Mirrors 

Now we consider a magnetic field whic h  is pointed primarily i n  the z 

direction and whose magnitude varies in the z direction.  Let the  field 
be ax.isy�metric , wit h  B9 = 0 and a;ae = 0. Since the lines of force 
converge and diverge, there is necessarily a component B, ( Fig.  2-7). We 
wish to show t ha t  t his  gives rise to a force which can t ra p  a part icle in 
a magnetic field .  

t1, � �-=---- ----
\ 

\_.. I � 

FIGURE 2-7 Drift of a particle in a magnetic mirror field. 
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We can obtain Br from V · B = 0: 

1 a aB, 
--(rBr)+-=0 
T ar az 

[2-31] 

If aB,/ az is g1ven at r = 0 and does not vary much with r, we have 
a pproxi mately 

fr aB, 1 2 [aB,] 
rBr = - r- dr = - -r -

0 az 2 az r �o 

B = - -r-
1 [aB,] 

r 

2 az r�o 

[2-32] 

The variation of IE I with r causes a grad-E drift of guiding centers 
about the axis of symmetry , but there is  no radial grad-E drift ,  beca use 
aBjae = 0. The components of the Lorentz force are 

Fr = q(veB,- v$e) 
Q) 

Fe= q(-vrE, + v,Er )  
(2) ® 

F, = q(vrlfe-VeEr) 
@) 

[2-33] 

Two terms vanish if B8 = 0, and terms 1 and 2 give rise to the usual 
Larmor gyration. Term 3 vanishes on the axis; when it  does not vanish, 
this azimuthal force causes a dri ft in the radial direction. T his drift 
merely makes the guiding centers follow the lines of force. Term 4 i s  
the  one  we are i nterested in .  Using Eq . [2-32] ,  we  obtain 

[2-34] 

We m ust now average over one gyration . For simplicity , consider a 
parti cle whose guiding center lies on the a xis .  Then v8 is a constant  
d urin g  a gyration; dependin g  on the sign of q, v8 is  =Fv1_. Since r = rL, 
the average force i s  

F
- l aB, l v� aB, l mv� aE, 

, = =F -qvl.rL- = =F -q-- = -- ---- [2-35] 
2 az 2 w, az 2 E az 

We define the magnetic moment of the gyratin g  particle to be 

[2-36] 
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so that 

F, = -f.L(oBJaz) [2-37] 

This is a speci fic example of t h e  force on a diamagnetic particle, which 
in general can be written 

[2-38] 

where ds is a line element along B. Note that the defini tion [2-36] is the 
same as t he usual definition f or the magnetic moment of a c urrent l oop 
with area A and current I: f.L = !A. In the case of a s ingly c harged i on, 

I is generated by a charge e coming around wc/27T ti mes a second: 
I= ew,/27T. T he area A is  1rrt = 7Tvi/w;. Thus 

7TV� ew, l v�e 1 mv� 
f.L = -')- -- = - -= - --

(.()� 27T 2 w, 2 B 

As the particle moves into regions of stronger or weaker B, its 
Larmor radius c hanges, but f.L remains invariant. To prove this, consider 
the com ponent of the equ ation of motion along B: 

dv11 aB 
m- = -f.L-

dt as 
[2-39) 

Multiplying by vu on t he lef t  a n d  its equivalent ds/ dt on the right, we have 

[2-40] 

Here dB/ dt is the variation of B as seen by the particle; B itself is  
constant. The particle's e nergy must be conserved , so we have 

d ( l 2 1 2) d ( l 2 ) - -mvu + -mv.t. = - -mvu + f.LB = 0 
dt 2 2 dt 2 

With E q. [2-40] t his becomes 

so that 

dB d 
-f.L-+ -(f.LB) = 0 

dt dt 

[2-41] 

[2-42] 

The invariance of f.L is  the basis for one of the pri mary schemes for 
plasma confinement: the magnetic mirror. As a particle moves from a 
weak- field region to a strong-field region in the course of its thermal 
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A plasma trapped between magnetic mirrors. FIGURE 2-8 

motion, it sees an increasing B, and therefore its v-'- must increase i n  
order to keep f.L constant. Si nce its total energy must remai n  c onstant, 
vn must necessarily decrease . If B is high enough in the "throat" of the 
mirror, vn eventually becomes zero; and the particle is "reflected" back 
to the weak-field region. It is, of course, the force Fu whic h  causes the 
reflection. The nonuniform field of a sim ple pair of coils  f orms two 
magnetic mirrors between which a plasma can be trapped ( Fi g. 2-8) .  
This effect works on both ions and electrons.  

The trapping is not perfect, however. For instance, a partic le with 
v-'- = 0 wil l  have no magnetic moment and wil l  not feel any force along 
B. A particle with small v_�_/v11 at the mid plane (B = 80) wil l  also escape 
if the maximum field Bm is not large enough. For given B0 and Bm. 
which particles wil l  escape? A particle with v-'- = v _�_0 and vn = v110 at the 
midplane wil l  have v-'- = v � and vn = 0 at its turning point. Let the field 
be B' there. Then the i nvariance of f.L yields 

Conservation of energy requires 

12 2 2 2 
V-'- = V _LO +VItO =: Vo 

Combining Eqs . [2-43] and [2-44], we find 

Bo vio vio . 2 --; = ---;2 = -2 ==Sin (} 
B v_�_ Vo 

[2-43] 

[2-44] 

[2-45] 

where (} is the pitch angle of the orbit  i n  the weak-field region.  Particles 
with smaller e will mirror in regions of higher B. If e is too smal l, B' 
exceeds B,.; and the particle does not mirror at all. Replacing B' by Bm 
i n  Eq. [2-45] , we see that the smallest(} of a confined particle is given by 

[2-46] 
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FIGURE 2-9 The loss cone. 
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where Rm is the mirror ratio. Equation [2-46] defines the boundary of a 
region in velocity s pace in the shape of a cone, called a loss cone (Fig. 
2- 9). Particles lying within the loss cone are not confined. Consequently, 
a mirror-confined plasma is never isot ropic .  N ote that the loss cone is  
independent of q or m. Without collisions, both ions and electrons are 
e·qually well confined. When collisions occur,  part icles are lost when they 
change their pitch angle in a collision and are scattered into t he loss 
cone. Generally, elect rons are lost more easily because they have a h igher 
collision frequency .  

The magnetic mirror was first proposed by Enrico Fermi a s  a 
mechanism for the acceleration of cosmic rays . Prot ons bouncing between 
magnet ic mirrors approaching each other at high velocity coul d  gain 
energy at each bounce. How such mirrors could arise is anot her story. 

A f urther example of the mirror effect is the confinement of particles 
in the Van Allen b elts. The magnetic field of the earth ,  being strong at 
the poles and weak at t he equator, forms a n at u ral mirror with rat her 
large Rm. 

PROBLEMS 2-8. Suppose the earth's magnetic field is 3 x 10-5 T at the equator and falls off 
as l/r3, as for a perfect dipole. Let there be an isotropic population of l-eV 
protons and 30-ke V electrons, each with density n = 107m-3 at r = 5 earth radii 
in the equatorial plane. 



(a) Compute the ion and electron VB drift velocities. 

(b) Does an electron drift eastward or westward? 

(c) How long does it take an electron to encircle the earth? 

(d) Compute the ring current density in A/m2. 

Note: The curvature drift is not negligible and will affect the numerical answer, 
but neglect it anyway. 

2-9. An electron lies at rest in the magnetic field of an infinite straight wire 
carrying a current I. At t = 0, the wire is suddenly charged to a positive potential 
cf> without affecting I. The electron gains energy from the electric field and 
begins to drift. 

(a) Draw a diagram showing the orbit of the electron and the relative directions 
of I, B, v£, vv8, and vR. 

(b) Calculate the magnitudes of these drifts at a radius of I em if I = 500 A, 
cf> = 460 V, and the radius of the wire is I mm. Assume that¢ is held at 0 Von 
the vacuum chamber walls IO em away. 

Hint: A good intuitive picture of the motion is needed in addition to the formulas 
given in the text. 

2-10. A 20-keV deuteron in a large mirror fusion device has a pitch angle 8 of 
45° at the midplane, where B = 0.7 T. Compute its Larmor radius. 

2-11. A plasma with an isotropic velocity distribution is placed in a magnetic 
mirror trap with mirror ratio Rm = 4. There are no collisions, so the particles in 
the loss cone simply escape, and the rest remain trapped. What fraction is 
trapped? 

2-12. A cosmic ray proton is trapped between two moving magnetic mirrors 
with Rm = 5 and initially has W = I ke V and v 1. = v11 at the midplane. Each mirror 
moves toward the midplane with a velocity Vm = IO km/sec (Fig. 2- 10) . 

.....,.1-------- L == 1010 km 
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(a) Using the loss cone formula and the invariance of 11-. find the energy to 
which the proton will be accelerated before it escapes. 

(b) How long will it take to reach that energy? 

I. Treat the mirrors as A at pistons and show that the velocity gained at each 
bounce is 2vm. 

2. Compute the number of bounces necessary. 
3. Compute the timeT it takes to traverse L that many times. Factor-of-two 

accuracy will suffice. 

2.4 NONUNIFORM E FIELD 

y 

Now we let the magnetic field be uniform and the electric field be 
nonuniform. For simpl icity, we assume E to be in the x direction and to 
vary sinusoidal ly  in the x direction (Fig.  2- 1 1 ): 

E = Eo(cos kx)x [2-47) 

This field d istribution has a wavelengt h  A = 271'/k and is the result of a 
sinusoidal d istribution of charges , which we need not specify .  I n  practice, 
such a charge d istribution can arise in a plasma during a wave motion. 
The equatio n of motion is 

m(dv/dt) = q[E(x) + v X B] [2-48) 

X 

@B 

FIGURE 2-11 Drift of a gyrating particle in a nonuniform electric field. 



whose transverse components are 

. qB q 
v, = -vy + -E,(x) 

m m 

. qB 
v� = - -v, 

m 

•• 2 2Ex(x) vy = -w,vy- w, s-

[2-49] 

[2-50] 

[2-51] 

Here E, (x) is the electric field at the position of the particle. To evaluate 
this, we need to k now the particle's orbit, which we are trying to solve 
for in the first place. If the electric field is weak, we may ,  as an approxima
tion ,  use the undisturbed orbit to evaluate E,(x). The orbit in the absence 
of theE field was given in Eq. [2-7]: 

[2-52) 

From Eqs . [2-51] and [2-47], we now have 

[2-53] 

Anticipating the result ,  we look for a solution which is the sum of a 
gyration at w, and a s teady drift vE· Since we are interested in finding 
an expression for V£, we take out the gyratory motion by averaging over 
a cycle.  Equation [2-50] then gives v, = 0. I n  Eq. [2-53], the oscillating  
term Vy  clearly averages to zero, and we h ave 

[2-54] 

Expanding the cosine, we h ave 

cos k (x0 + rL sin w,t) = cos (kx0) cos (krL s in  w,t) 

- sin (kx0) sin (krL s in  w,t) [2-55] 

I t  will suffice to treat the smal l  Larmor radius case,  krL « l. The Taylor 
expansiOns 

COS E = 1 - �E 2 + · · · 
[2-56] 

s inE = E + · · · 
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allow us to write 

- (sin kx0)krL sin wet 

The last term vanishes upon averaging over time, and Eq. [2-54] gives 

[2-57] 

Thus the usual Ex B drif t is modified by the inhom ogeneity to read 

[2-58] 

The physical reason for this is easy to see. A n  ion with its guiding 
center at a maximum of E actually spends a good deal of i ts  time in  
regions of weaker E. Its average drift, therefore,  is  less thanE/ B evalu
ated at the guiding center. I n  a l inearly varying E field, the ion would 
be in a stronger field on one side of the orbit and in a field weaker by 
the same amount on the other side; the correction to V£ then cancels 
out. From this it is clear that the correction term depends on the second 
derivative of E. For the sinusoidal distribution we assumed, the second 
derivative is always negative with respect to E. For an arbitrary variation 
of E, we need only replace ik by V and write Eq. [2-58] as 

( 1 9 9)ExB 
vE = 1 + -ri:_V- --9-

4 B-
[2-59] 

The second term is called the finite-Larmor-radius effect. What is the 
significance of this correction? Since rL is much larger for ions than for 

electrons ,  V£ is no longer independen t  of species .  I f  a density dum p  
occurs in a plasma, an electric field can cause the ions and electrons to 
separate, generating another electr ic fidd. If there is a feedback mechan
ism that causes the second electric field to enhance the first one, E grows 
indefinitely, and the plasma is u ns table.  Such an instability, called a drift 
instability, will be discussed in a l ater chapter . The grad-E drift, of course, 
is also a finite-Larmor-radius effect and also causes charges to separate. 
Accordin g  to Eq. [2-24], however , vv8 is proportion al to krL, w hereas 
the correction term in Eq. [2-58] is proportional to k2r�. The nonuni
form-E-field effect, therefore,  is important at relatively large k, or small 



scale lengths of the inhomogeneity. For this reason, dr ift i nstabilities 
belong to a more general class called microinstabilities. 

TIME-VARYING E FIELD 

Let us now ta ke E and B to be uniform i n  space but varying in time. 
First,  consider the case in which E alone varies sinusoidally in time, and 
let it  lie along the x axis: 

E =Eo eiw< x 

Since Ex =fi!x. •}e can write Eq. [2-50] as 

Let us define 

? ( iw Ex) 
Vx = -w; Vx =F 

We B 

_ iw Ex 
Vp := ±-

w, B 

- Ex 
V£ := --

B 

[2-60] 

[2-61] 

[2-62] 

where the tilde has been added merely to emphasize that the drift is 
oscillating .  The u pper (lower) s ign ,  as usual, denotes positive ( negative) 
q. Now Eqs. [2-50] a nd [2-5 1 ]  become 

•• ? ( -Vx = -w; Vx- Vp) 
[2-63] 

By analogy with Eq. [2-1 2], we try a solution which is the sum of a drift 
and a gyratory motion: 

iw l """ 
vx=v_�_e ' +vp 

· iw t -v1 = ±tv-'- e ' + v E 

I f  we now differentiate twice with res pect to time, we find 

. .  2 ( 2 2) 
-Vx = -w c Vx + W c - W Vp 

Vy = -wzvy + (w;- w2)vE 

[2-64) 

[2-65] 

This is not the same as Eq. [2-63] unless w2 « w � . If we now make the 
assumption that E varies slowly, so that w2 « w�, then Eq. [ 2-64]

. 
is the 

approximate solution to Eq. [2-63] .  

2.5 
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Equation [2-64] tells us that the guidin g  center motion has two 
components. They component, perpendicular to B and E, is the usual 

Ex B drift, except that VE now oscillates slowly at the frequency w. The 
x component, a new drift along the direction of E, is called the polarization 
drift. By replacin g  iw by aj at, we can generalize Eq. [2-62] and define 
the polarization drift as 

1 dE 
Vp = ± ---

w,B dt 
[2-66] 

Since vp is in opposite directions for 1ons and electrons, there ts a 
polarization wrrent; for Z = 1, this is 

. ne dE p dE 
]p = ne (v;p - v.p) = 

eB
2(M + m)dt = 

B2 dt 

where p is the mass density. 

[2-67] 

The physical reason for the polarization c urrent is simple (Fig. 2- 12) .  
Consider an ion at  rest  i n  a magnetic field. If  a field E is  suddenly 
applied, the first thing  the ion does is t o  move in the direction of E. 

Only after picking u p  a velocity v does the ion f eel a Lorentz force ev x B 

and begin to move downward in Fig. (2- 1 2) .  If E is now kept consta nt ,  
there is  no further vp drift but only a V£ drift .  H owever , if  E is  reversed, 
there is again a momentary drift, this time to the left. Thus vp is a s tartup 
drift due to inertia and occurs only in the first half-cycle of each gyration 

during which E c ha n ges. Consequently, vp goes to zero with w/w,. 
The polarization effect i n  a plasma is similar to that i n  a solid 

dielectric, where D = EoE + P. The dipoles in a plasma are ions and 

E ... 

.. 

8B 

FIGURE 2-12 The polarization drift. 



electrons separated by a distance rL. But since ions and electrons can 
move around to preserve quasineutrality ,  the applica tion of a steady E 

field does not result in a polarization field P. H owever, if E oscillates, 
an oscil lating current jp results from the lag due to the ion inertia. 

TIME-VARYING B FIELD 

Finally, we al low the magnetic field to vary in time.  S ince the Lorentz 
force is a lways perpendicular to v, a magnetic field itself ca nnot impart 
energy to a charged pa rticle. H owever, associated with B is an electric 
field given by 

V X E = -B [2-68] 

and this ca n accelerate the particles . We can no lon ger assume the fields 

to be completely uniform. Let v J. = di/ dt be the transverse velocity I 
being the element of path alon g  a particle trajectory (with vn neglected). 
Ta king the scalar product of the equation of motion [2-8] with v J. ,  we have 

!!.._(.!.nlv2) = qE · v = qE · 
dl 

dt 2 .L .L dt 
[2-69] 

The cha n ge in one gyration is obta ined by integrating over one period : 

If the field changes slowly, we can replace the time integral by a line 
integral over the unperturbed orbit: 

o(�mv�) = f qE · dl = q t (V x E)· dS 

= -q L :8. dS [2-70] 

Here S is the surface enclosed by the Larmor orbit and has a direction 

given by the right-hand rule when the fingers point in the direction of 
v. Since the plasma is diamagnetic, w e  have B · dS < 0 for ions and >0 
for electrons . Then Eq. [2-70] becomes 

2 I 2 · ( 1 2) • 2 · V.t m 2mv.L 27TB 
8 -mv.t = ±qB7rrL = ±q7TB- -- = --· --

2 We ±qB B We 
[2-71] 

2.6 
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A B 

0 0 

FIGURE 2-13 Two-stage adiabatic compression of a plasma. 

The quantity 2TrB/w, = B/f, is just the change 8B during one period of 
gyration. Thus 

[2-72] 

Since the left-hand side is 8 (JLB ), we have the desired result 

[2-73] 

The magnetic moment is invariant in slowly varying magnetic fields. 
As the B field varies in strengt h ,  the Larmor orbits expand and 

contract, and the particles lose and gain transverse energy. This exchange 
of energy between the part icles and the field is described very s im ply by 
Eq. [2-73]. The invariance of I.L allows us to prove easily the following 
well-known theorem: 

Th.e magnetic flux through a Larmor orbit is con sta.n t. 

The flux <t> is given by BS, wit h  S = Trr�. Thus 

Therefore ,  <t> is  constant if  I.L is constant. 
This property is used in a m ethod of plasma heating known as 

adiabatic compression. Figure 2-13 s hows a schematic of how th is is done. 
A plasma is injected into the region between the m irrors A and B. Coils 
A and B are t hen pulsed to increase B and hence v �- The heated plasma 
can t hen be transferred to the region C-D by a further pulse in A, 
increasing the m irror ratio t here .  The coils C and D are t hen pulsed to 
further compress and heat the plasma. Early magnetic mirror fusion 
devices employed t his type of heating. Adiabatic com pression has also 
been used successfully on toroidal plasmas and is an essential element 
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SUMMARY OF GUIDING CENTER DRIFTS 2. 7 

General force F: 

Electr-ic field: 

Gravitational field: 

Nonuniform E: 

Nonuniform B field 

Grad-B drift: 

Cw·vature dTift: 

Cw-ved vacuum field: 

Polarization dTift: 

lFxB 
Vf = q Ji2 

ExB 
V£ = --2 -B 

mgXB v =---

g q B2 
( l 9 9)EXB 

V£ = 1 + 4ri:_V- Ji2 

m ( 9 1 9) R, X B 
VR +vvB = - Vif + -v:t. � 

q 2 R,B 
1 dE 

Vp = ± -- -

w,B dt 

[2-17] 

[2-15] 

[2-18] 

[2-59] 

[2-24] 

[2-26] 

[2-30] 

[2-66] 

ADIABATIC INVARIANTS 2.8 

It i s  well know n  i n  classical mechanics t hat w henever a system has a 
periodic motion, t he action i ntegral t p dq taken over a period is a constant 
of the motion. Here p and q are the generalized momentum and coordin
ate which repeat t hemselves in the motion . If a slow change is made i n  
t h e  system, s o  t hat the motion i s  not quite periodic, the constant of t he 
motion does not change and is then called an adiabatic invariant. By slow 

here we mean slow compared wit h t he period of motion, so t hat the 
integral t P dq i s  wel l  defined even though it  i s  strictly no longer an 
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integral over a closed path. Adiabatic invariants play an important role 
in plasma physics; they allow us to obta in simple answers in many 
instances involving complicated motions. There are three adiabatic 
invarian ts, each corresponding to a different type of periodic motion .  

2.8.1 The First Adiabatic Invariant, f.L 

We have already met the quantity 

f.L = mv�/2B 

and have proved its invariance in spatial ly and temporally varying B 

fields .  The periodic motion involved, of cour se ,  is the Larmor gyration. 
If we ta ke p to be angular  momentum mv.Lr and dq to be the coordinate 
d(}, the action integ ral becomes 

[2-75] 

Thus J.L is a constan t of the motion as long as q/m is not changed . We 
have proved the invariance of f.L only with the implicit assumption 
w/ w, « 1, where w is a frequency characterizing the rate of change of B 

as seen by the particle .  A proof exists, however, that f.L is invariant even 
when w :S w,. In theorists' language, f.L is invariant " to all orders in an 
expansion in w/w,." What this means in practice is that f.L remains much 
more nearly constant than B does during one period of gyration . 

I t  is just as important to know when an adiabatic invariant does not 
exist as to know when it does. Adiabatic invariance of f.L is violated w hen 
w is not small compared with w,. We give three examples of this. 

(A) Magnetic Pumping. If the strength of B in a mirror con fin ement 
system is  varied sin usoidally, the particles' v .1 would oscillate; but there 
would be no gain of energy in the long run. However, if the particles 

mak e collisions, the invariance of f.L is violated, and the plasma can be 
hea ted . In particular, a particle making a collision during the compres
sion phase can transfer part of its gyration energy into v11 energy, and 
this is  n ot taken out again in the expansion phase. 

(B) Cyclotron Heating. Now imagine that the B field is  oscillated at the 
frequency w,. The induced electric field will then rotate in phase with 
some of the particles and accelerate their Larmor motion contin uously. 
The condition w « w, is  violated, f.L is not conserved, and the plasma can 
be heated . 
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Plasma confinement in a cusped magnetic field. FIGURE 2-14 

(C) Magnetic Cusps. If the current in one of the co ils in a s im ple magnetic 
mirror system is reversed, a magnetic cusp is formed (Fig .  2- 1 4) .  This 
configuration has , in addition to the usual m irrors , a spindle-cus p  m irror 
extending over 360° in azimuth. A plasma con fined in a cusp device is 
supposed to have better stability properties than that in an ordinary 
mirror . Unfortunately, the loss-cone losses are larger because of the 
additional loss region ; and the particle m otion is nonadiaba tic .  Since the 
B field vanishes at the center of symmetry, We is zero there;  and IL is 
not preserved . The local Larmor radius near the center is larger than 
the device . B ecause of this , the adiabatic invariant IL does n ot guarantee 
that particles outside a loss cone will  s tay outside after passing through 
the nonadiabatic region. Fortunately, there is in this case another 
invariant: the canonical angular m omentum P6 = mTv8 - eTA8. This 
ensures that there will  be a population of particles trapped indefinitely 
until they make a collision .  

The Second Adiabatic Invariant, ] 2.8 .. 2 

Consider a particle tra pped between two magnetic m irrors : I t  bounces 
between them and therefore has a periodic motion at the "bounce 
frequency." A constant of this motion is given by f mvu ds, where ds is an 
element of path length (of the guiding center) along a field l ine .  H owever, 
since the guiding center drifts across field lines, the motion is not exactly 
per iodic, and the constant of the m otion becomes an adiabatic invariant. 
This is called the longitudinal invaTiant ] and is defined for a hal f-cycle 
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FIGURE 2-15 A particle bouncing between turning points a 
and b in a magnetic field. 

between the two turning points (Fig. 2-15 ) :  

b 

1 = 1 vu ds [2-76] 

We shall prove that 1 is invarian t  in a static, nonuniform B field ; the 
result is  also true for a slowly time-varying B field.  

B efore embarking on this somewhat lengthy proof,  let us consider 
an example of the type of problem in which a theorem on the in variance 
of 1 would be useful. As we have already seen, the earth's magnetic field 
mirror-traps charged particles, which slowly drift in  longitude around 
the earth (Problem 2- 8; see Fig. 2 - 1 6) .  If the magnetic field were perfectly 
symmetric, the particle would eventually drift back to the same line of 
force. H owever, the actual field is d istorted by such effects as the solar 
wind.  I n  that case, will a particle ever come back to the same line of 
force? S ince the particle's energy is  conserved and is equal to !mv i  at 
the turning point, the in variance of f.L indicates that I B I remains the 
same at the turning point. However, u pon drifting back to the same 

FIGURE 2-16 Motion of a charged particle in the earth's magnetic field. 

B 



longitude, a particle may find itself on another l ine of force at a different 
altitude. This cannot happen if  I is conserved . I determines the length 
of the line of force between turning points, and no two l ines have the 
same length between points with the same I B 1 . Consequently, the particle 
returns to the same line of force even in a slightly asymmetric field.  

To prove the invariance of I.  we first consider the invariance of 
v u 8s, w here 8s is a segment of the path along B (Fig. 2 - 17) .  Because of 
guiding center drifts, a particle on s wil l  find itself on another l ine of 
force & ' after a time D.t.  The length of & '  is defined by passing planes 
perpendicular to B through the end points of 8s. The length of 8s IS 

obviously proportional to the radius of curvature : 

so that 

8s &' 

R, R �  

8s ' - 8s R � - Rc 

!:l.t 8s f:.tR, 
[2-77] 

The "radial" component of Vgc is just 

[2-78) 

From Eqs. [2-24] and [2-26],  we have 

1 B X VB mv lf R, X B 
Vgc = VVB + V R = ± -vJ.TL 2 + -- __ ?_2_ (2-79) 

2 B q R ; B  

The last term has n o  component along R,. Using Eqs. [2-78] and [2-79] ,  
we can write Eq.  [2-77]  as 

I d R, 1 m vl  R, 

Os dt 
Os = Vgc • R; = 2 q 

B
3 (B X VB ) · R ; [2-80) 

This is the rate of change of 8s as seen by the particle. We must 'now 
get the rate of change of vn as seen by the particle.  The parallel and 

os'  

B 
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perpendicular energies are defined by 

W I 2 I 2 I 2 = 2mvu  + 2mv .L = 2mv u + �B = Wu + w.L 

Thus vu can be written 
1 / 2  vu = [ (2/m ) (W - �B )] 

Here W and � are constant, and only B varies. Therefore, 

�B 
2 w - �B 

1 �!3 �!3 - - - = - --2 
2 w11 mv 11 

[2-81] 

[2-82] 

[2-83] 

Since B was assumed static, B is not zero only because of the guiding 
center motion : 

N ow we have 

� (Rc x B) · VB 

: q R�B 2  
1 m v � (B X VB ) · Rc - - - -
2 q B R �B 2 

The fractional change in v11 8s is 

l d 1 d8s 1 dvu 
-- - (vu & )  = - - + - -vu 8s dt 8s dt vu dt 

[2-84] 

[2-85] 

[2-86] 

From Eqs . [2-80) and [2-85} ,  we see that these two terms cancel, so that 

vu 8s = constant [2-87] 

This is not exactly the same as saying that f is constant, however. I n  
takin g  the integral o f  v11 8s  between the turning points, i t  may be that 
the turning points on & ' do not coincide with the intersections of the 
perpendicular planes (Fig. 2 - 1 7) .  However, any error in J arising from 
such a discrepancy is  negligible because near the turning points, vu is 

nearly zero. Consequently, we have proved 
b 

J = 1 vu ds = constan t  [2-88] 

An example of  the violation of J invariance is given by a plasma 
heating scheme called transit-time magnetic pumping. Suppose an oscillat
i n g  current is applied to the coils of a mirror system so that the· mirrors 
alternately approach and withdraw from each other near the boun ce 
frequency. Those particles that have the right bounce frequency will 
always see an approaching m irror and will therefore gain v11• f is not 
conserved in this case because the change of B occurs on a time scale 
not long compared with the bounce time. 



The Third Adiabatic Invariant, <I> 2.8.3 

Referring again to Fig. 2-16, we see that the slow drift of a guiding 
center around the earth constitutes a third type of periodic motion. The 
adiabatic invariant connected with this turns out to be the total magnetic 
flux <I> enclosed by the drift surface. It is almost obvious that, as B varies, 
the particle wil l  stay on a surface such that the total number of l ines of 
force enclosed remains constant. This i nvariant, <I>, has few applications 
because most fluctuations of B occur on a time scale short compared 
with the drift period . As an example of the violation of <I> invariance, 
we can cite some recent work on the excitation of hydromagnetic waves 
in the ionosphere. These waves have a long period comparable to the 
drift time of a particle around the earth. The particles can therefore 
encounter the wave in the same phase each time around. I f  the phase 
is right, the wave can be excited by the conversion of particle d ri ft energy 
to wave energy. 
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2-13. Derive the result of Problem 2- 12(b) directly by using the invariance of ]. PROBLEMS 

(a) Let J uu ds = vaL and differentiate with respect to time. 

(b) From this, get an expression for T in terms of dL/dt. Set dL/dt = -2um to 
obtain the answer. 

2-14. In plasma heating by adiabatic compression, the invariance of f:.L re'quires 
that KT.L increase as B increases. The magnetic field, however, cannot accelerate 
particles because the Lorentz force qv x 8 is always perpendicular to the velocity. 
How do the particles gain energy? 

2-15. The polarization drift up can also be derived from energy conservation. 
If E is oscillating, the E x  B drift also oscillates; and there is an energy �u� 
associated with the guiding center motion. Since energy can be gained from an 
E field only by motion along E, there must be a drift up in the E direction. By 
equating the rate of change of �mu� with the rate of energy gain from vp · E, 

find the required value of up. 
· 

2-16. A hydrogen plasma is heated by applying a radiofrequency wave with E 

perpendicular to B and with an angular frequency w = 109 rad/sec. The 
confining magnetic field is 1 T. Is the motion of (a) the electrons and (b) the 
ions in response to this wave adiabatic? 

2-17. A 1-keV proton with uu = 0 in a uniform magnetic field B = 0. 1 T is 
accelerated as B is slowly increased to 1 T. It then makes an elastic collision with 
a heavy particle and changes direction so that u .L = uu. The 8-field is then slowly 
decreased back to 0. 1 T. What is the proton's energy now? 
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FIGURE P2-1 8  

FIGURE P2- 1 9  

z 
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2-18. A collisionless hydrogen plasma is con fined in a torus in which external 

windings provide a magnetic field B ly ing al most entirely in the c/J direction. 

The plasma is i nitially Maxwellian at KT = I keV. At l = 0, B i s  gradually 
increased from I T  to 3 T in 1 00 11-sec, and the plasma is compressed . 

(a) Show that the magnetic moment 11- remains invariant for both ions and 
electrons. 

(b) Calculate the temperatures T1. and T11 after compression.  

2-19 .  A uniform plasma is created i n  a toroidal chamber with square cross 

section, as show n .  The magnetic field is provided by a current I along the axis 

of symmetry. The d imensions are a = I em, R = I 0 em. The plasma is Maxwellian 

at KT = I 00 e V and has density n = I 019 m -3. There is n o  electric field.  

I 
a 

l 
I 

�"�f..t----R ----t� - a -



(a) Draw typical orbits for ions and electrons wjth v0 = 0 drifting in the nonuni
form B field. 

(b) Calculate the rate of charge accumulation (in coulombs per second) on the 
entire top plate of the chamber due to the combined vv8 and vR drifts. The 
magnetic field at the center of the chamber is 1 T, and you may make a large 
aspect ratio (R » a ) approximation where necessary. 

2-20. Suppose the magnetic field along the axis of a magnetic mirror is given by 
B, = B0( 1 + a2z 2) .  

(a) If  an electron at z = 0 has a velocity given by v 2 = 3vW = 1 . 5v� , at what value 
of z is  the electron reflected ? 

(b) Write the equation of motion of the guiding center for the direction parallel 
to the field. 

(c) Show that the motion is sinusoidal, and calculate its frequency. 

(d) Calculate the longitudinal invariant ] corresponding to this motion. 

2-2 1 .  An infinite straight wire carries a constant current I in the +z direction. 
At t = 0, an electron of small gyro radius is at z = 0 and r = r0 with v .LO = v110. (.l 
and I I refer to the direction relative to the magnetic field.) 

(a) Calculate the magnitude and direction of the resulting guiding center drift 
velocity. 

(b) Suppose that the current increases slowly in time in such a way that a constant 
electric field in the ±z direction is induced. Indicate on a diagram the relative 
directions of I, B, E. and v£. 

(c) Do v .L and v11 increase, decrease, or remain the same as the current increases? 
Why? 
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Chapter Three 

PLAS 

D 

INTRODUCTION 3.1 

In a plasma the situation is much more complicated than that in the last 

chapter; the E and B fields are not prescribed but are determined by 

the positions and motions of the charges themselves. One must solve a 

self-consistent problem; that is, find a set of particle trajectories and field 
patterns such that the particles will generate the fields as they move 
along their orbits and the fields will cause the particles to move in those 
exact orbits. And this must be done in a time-varying situation! 

We have seen that a typical plasma density might be 1012 ion-electron 
pairs per cm3. If each of these particles follows a complicated trajectory 

and it is necessary to follow each of these, predicting the plasma's behavior 

would be a hopeless task. Fortunately, this is not usually necessary 

because, surprisingly, the majority-perhaps as much as 80%-of plasma 

phenomena observed in real experiments can be explained by a rather 
crude model. This model is that used in fluid mechanics, in which the 

identity of the individual particle is neglected, and only the motion of 
fluid elements is taken into account. Of course, in the case of plasmas, 

the fluid contains electrical charges. In an ordinary fluid, frequent 

collisions between particles keep the particles in a fluid element moving 

together. It is surprising that such a model works for plasmas, which 
generally have infrequent collisions. But we shall see that there is a 
reason for th is. 

In the greater part of this book, we shall be concerned with 
what can be learned from the fluid theory of plasmas. A more refined 53 
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treatment-the kinetic theory of plasmas-requires more mathematical 
calculation than is appropriate for an introductory course. An introduc

tion to kinetic theory is given in Chapter 7. 
In some plasma problems, neither fluid theory nor kinetic theory 

is sufficient to describe the plasma's behavior. Then one has to fall back 

on the tedious process of following the individual trajectories. Modern 
computers can do this, although they have only enough memory to store 
the position and velocity components for about 104 particles and, except 
in a few cases, can solve problems only in one or two dimensions. 
Nonetheless, computer simulation has recently begun to play an impor

tant role in filling the gap between theory and experiment in those 

instances where even kinetic theory cannot come close to explaining what 
is observed. 

3.2 RELATION OF PLASMA PHYSICS TO ORDINARY 
ELECTRO MAGNETICS 

3.2.1 Maxwell's Equations 

In vacuum: 

In a medium: 

E0V · E = cr 

v X E = -B 

V · B =  0 

V X B = ,u0(j + EoE) 

V· D=cr 

V X E = -B 

V · B  = 0 

V x H =j+D 

D=EE 

B=,uH 

[3-1] 

[3-2] 

[3-3] 

[3-4] 

[3-5] 

[3-6] 

[3-7] 

[3·8] 

[3-9] 

[3-10] 

In Eqs. [3-5] and [3-8], cr and j stand for the "free" charge and current 

densities. The "bound" charge and current densities arising from polariz
ation and magnetization of the mef:lium are included in the definition 



of the quantities D and H in terms of E and JL. In a plasma, the ions 

and electrons comprising the plasma are the equivalent of the "bound" 

charges and currents. Since these charges move in a complicated way, 

it 'is impractical to try to lump their effects into two constants � and JL. 
Consequently, in plasma physics, one generally works with the vacuum 

equations [3-1]-[3-4], in which <r and j include all the charges and 
currents, both external and internal. 

Note that we have used E and B in the vacuum equations rather 
than their counterparts D and H, which are related by the constants Eo 

and JLo. This is because the forces qE and j x B depend on E and B 
rather than D and H, and it is not necessary to introduce the latter 

quantities as long as one is dealing with the vacuum equations. 

Classical Treatment of Magnetic Materials 3.2.2 

Since each gyrating particle has a magnetic moment, it would seem that 

the logical thing to d� would be to consider a plasma as a magnetic 
material with a permeability Ji-m· (We have put a subscript m on the 
permeability to distinguish it from the adiabatic invariant JL.) To see why 
this is not clone in practice, let us review the way magnetic materials are 

usually treated
_
. 

The ferromagnetic domains, say, of a piece of iron have magnetic 

moments JL;, giving rise to a bulk magnetization 

[3-ll] 

per unit volume. This has the same effect as a bound current density 

equal to 

h =VxM [3-12] 

In the vacuum equation [3-4], we must include in j both this current 
and the "free," or externally applied, current j1: 

We wish to write Eq. [3-13] in the simple form 

V x H = ir + EoE 
by including h in the definition of H. This can be done if we let 

[3-13) 

[3-14) 

[3-15) 

55 
Plasmas 

As Fluids 



56 
Chapter 
Three 

To get a simple relation between Band H, we assume M to be propor
tional to B or H: 

M=xmH [3-16] 

The constant Xm is the magnetic susceptibility. We now have 

[3-17] 

This simple relation between B and H is possible because of the linear 
form of Eq. [3-16]. 

In a plasma with a magnetic field, each particle has a magnetic 
moment J10, and the quantity M is the sum of all these Jl.a's in I m3. But 
we now have 

1 MocB 

The relation between M and H (or B) is no longer linear, and we cannot 
write B = f.Lm H with f.J-m constant. It is therefore not useful to consider a 
plasma as a magnetic medium. 

3.2.3 Class.ical Treatment of Dielectrics 

The polarization P per unit volume is the sum over all the individual 
moments p; of the electric dipoles. This gives rise to a bound charge 

density 

crb = -v · P [3-18] 

In the vacuum equation [3-1], we must include both the bound charge 

and the free charge: 

[3-19] 

We wish to write this in the simple form 

V · D = a:1 [3-20] 

by including CTb in the definition of D. This can be done by letting 

D=t:0E+P=«:E [3-21] 

If P is linearly proportional to E, 

P = «:ox.E [3-22] 

then E is a constant given by 

E = (1 + x.)Eo [3-23] 



There is no a priori reason why a relation like [3-22] cannot be valid in 
a plasma, so we may proceed to try to get an expression forE in a plasma. 

The Dielectric Constant of a Plasma 

We have seen in Section 2.5 that a fluctuating E field gives rise to a 

polarization current jp. This leads, in turn, to a polarization charge given 

by the equation of continuity: 

aiJp '"' • o at+ v . ]p = [3·24] 

This is the equivalent of Eq. [3-18], except that, as we noted before, a 

polarization effect does not arise in a plasma unless the electric field is 

time varying. Since we have an explicit expression for jp but not for IJp, 
it is easier to work with the fourth Maxwell equation, Eq. [3-4]: 

We wish to write this in the form 

This can be done if we let 

V x B =P-oOr+ EE) 

]p 
E = Eo+-.... 

E 

From Eq. [2-67] for jp, we have 

2 
or 

E P.oPC 
ER :=-= 1 + --2-

Eo B 

[3·25] 

[3-26] 

[3-27] 

[3-28] 

This is the low-frequency plasma dielectric constant for transverse motions. The 

qualifications are necessary because our expression for jp is valid only 

for w2 « w� and for E perpendicular to B. The general expression for 
E, of course, is very complicated and hardly fits on one page. 

Note that as p --+ 0, ER approaches its vacuum value, unity, as it 
should. As B --+ oo, ER also approaches unity. This is because the polariz
ation drift vp then vanishes, and the particles do not move in response 

to the transverse electric field. In a usual laboratory plasma, the second 

term in E'q. [3-28] is large compared with unity. For instance, if n = 
1016 m -3 and B = 0.1 T we have (for hydrogen) 

P,opc2 (47T X 10-7)(1016)(1.67 X 10-27)(9 X 1016) 
--2-= 2 = 189 B (0.1) 

3.2.4 
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PROBLEMS 

This means that the electric fields due to the particles in the plasma 

greatly alter the fields applied externally. A plasma with large E shields 

ou t alternating fields, just as a plasma with small A 0 shields out de fields. 

3-1. Derive the uniform-plasma low-frequency dielectric constant, Eq. [3-28], 
by reconciling the time derivative of the equation V · D = V ·(�:E)= 0 with that 
of the vacuum Poisson equation [3-1], with the help of equations [3-24] and [2-67]. 

3-2. If the ion cyclotron frequency is denoted by !1, and the ion plasma frequency 

is defined by 

!lp = (ne2/�:0M)112 

where M is the ion mass, under what circumstances is the dielectric constant E 
approximately equal to n;;n;? 

3.3 THE FLUID EQUATION OF MOTION 

Maxwell's equations tell us what E and B are for a given state of the 
plasma. To solve the self-consistent problem, we must also have an 
equation giving the plasma's response to given E and B. In the fluid 

approximation, we consider the plasma to be composed of two or more 

interpenetrating fiuids, one for each species. In the simplest case, when 

there is only one species of ion, we shall need two equations of motion, 
one for the positively charged ion fluid and one for the negatively charged 
electron fluid. In a partially ionized gas, we shall also need an equation 
for the fluid of neutral atoms. The neutral fluid will interact with the 
ions and electrons only through collisions. The ion and electron fluids 
will interact with each other even in the absence of collisions, because 
of the E and B fields they generate. 

3.3.1 The Convective Derivative 

The equation of motion for a single particle is 

dv m- = q(E + v X B) 
dt 

[3-29] 

Assume first that there are no collisions and no thermal motions. Then 
all the particles in a fluid element move together, and the average velocity 
u of the particles in the element is the same as the individual particle 



velocity v. The fluid equation is obtained simply by multiplying Eq. [3-29] 
by the density n: 

du mn - = qn (E + u x B) 
dt 

[3-30] 

This is, however, not a convenient form to use. In Eq. [3-29], the time 

derivative is to be taken at the position of the particles. On the other hand, 

we wish to have an equation for fluid elements fixed in space, because it 

would be impractical to do otherwise. Consider a drop of cream in a 
cup of coffee as a fluid element. As the coffee is stirred, the drop distorts 

into a filament and finally disperses all over the cup, losing its identity. 

A fluid element at a fixed spot in the cup, however, retains its identity 
although particles continually go in and out of it. 

To make the transformation to variables in a fixed frame, consider 
G(x, t) to be any property of a fluid in one-dimensional x space. The 

change of G with time in a frame moving with the fluid is the sum of two 
terms: 

dG(x, t) aG aG dx aG aG 
_...:....:......:.. = - + - - = - + u -

dt at ax dt at X ax 
[3-31) 

The first term on the right represents the change of G at a fixed point 

in space, and the second term represents the change of Gas the observer 
moves with the fluid into a region in which G is different. In three 
dimensions, Eq. [3-31] generalizes to 

dG aG 
-=- + (u·V)G 
dt at 

[3-32] 

This is called the convective derivative and is sometimes written DG / Dt. 
Note that (u · V) is a scalar differential operator. Since the sign of this 

term is sometimes a source of confusion, we give two simple examples. 

Figure 3-1 shows an electric water heater in which the hot water 

has risen to the top and the cold water has sunk to the bottom. Let G (x, t) 
be the temperature T; VG is then upward. Consider a fluid element 

near the edge of the tank. If the heater element is turned on, the fluid 
element is heated as it moves, and we have dT/dt > 0. If, in addition, a 

paddle wheel sets up a flow pattern as shown, the temperature in a fixed 
fluid element is lowered by the convection of cold water from the bottom. 

In this case, we have aT/ax > 0 and u, > 0, so that u · VT > 0. The 
temperature change in the fixed element, ar;at, is given by a balance 
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FIGURE 3-1 Motion of fluid elements in a 
hot water heater. 

of these effects, 

aT dT 
-= - -u ·VT 
at dt 

[3-33] 

It is quite clear that aT/at can be made zero, at least for a short time. 

As a second example we may take G to be the salinity S of the water 

near the mouth of a river (Fig. 3-2). If x is the upstream direction, there 

OCEAN - vs 

FIGURE 3-2 Direction of the salinity gradient at the mouth of a river. 

x-



is normally a gradient of S such that aSjax < 0. When the tide comes 

in, the entire interface between salt and fresh water moves upstream, 

and Ux > 0. Thus 

as as - =  -ux - > 0 
at ax [3-34] 

meaning that the salinity increases at any given point. Of course, if it 

rains, the salinity decreases everywhere, and a negative term dS/ dt is to 
be added to the middle part of Eq. [3-34]. 

As a final example. take G to be the density of cars near a freeway 
entrance at rush hour. A driver will see the density around him increasing 

as he approaches the crowded freeway. This is the convective term 

(u · V)G. At the same time, the local streets may be filiing with cars that 
enter from driveways, so that the density will increase even if the observer 

does not move. This is the aGjat term. The total increase seen by the 

observer is the sum of these effects. 

In the case of a plasma, we take G to be the fluid velocity u and 
write Eq. [3-30] as 

mn[ �; + (u · V)u J = qn (E + u X B) [3-35] 

where aujat is the time derivative in a fixed frame. 

The Stress Tensor 3.3.2 

When thermal motions are taken into account, a pressure force has to 

be added to the right-hand side of Eq. [3-35]. This force arises from the 

y 

z 

X 

Origin of the elements of the stress tensor. FIGURE 3-3 
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random motion of particles in and out of a fluid element and does not 
appear in the equation for a single particle. Let a fluid element Lh !::.y l::.z 
be centered at (x0, �t::.y, �l::.z) (Fig. 3-3). For simplicity, we shall consider 

only the x component of motion through the faces A and B. The number 
of particles per second passing through the face A with velocity vx is 

!::.nv x � -
where !::.nv is the number of particles per m3 with velocity Vx: 

Each particle carries a momentum mvx. The density n and temperature 

KT in each cube is assumed to have the value associated with the cube's 

center. The momentum PA+ carried into the element at xo through A 
is then 

[3-36] 

The sum over !::.nv results in the average v; over the distribution. The 

factor � comes from the fact that only half the particles in the cube at 

x0- !::.x are going toward face A. Similarly, the momentum carried out 

through face B is 

Thus the net gain in x momentum from right-moving particles is 

' a ......, 
= !::.y !::.z 2m ( -t::.x) -

a 
(rzv.�) 

X 

[3-37] 

This result will be just doubled by the contribution of left-moving 

particles, since they carry negative x momentum and also move in the 
opposite direction relative to the gradient of nv �. The total change of 
momentum of the fluid element at x0 is therefore 

a a ......, - (nmux ) !::.x !::.y !::.z = -m- (nv;) .!::.x !::.y !::.z 
at ax 

[3-38] 

Let the velocity Vx of a particle be decomposed into two parts, 

Ux = Vx 



where Ux is the fluid velocity and Vxr is the random thermal velocity. For 

a one-dimensional MaxwJ!Ilian distribution, we have from Eq. [l-7] 

j �mv;r = �KT [3-39] 

Equation [3-38] now becomes 

a a 2 - 2" a [ ( 2 KT )] 
- (nmux) = -m- [n(Ux + 2UVxr + Vxr)] = -m- n Ux  +-
at ax ax m 

We can cancel two terms by partial differentiation: 

aux an a(nux) aux a 
mn- + mu.- = -mu ---- mnu ---(nKT) [3-40) 

at X at X ax X ax ax 

The equation of mass conservation* 

an a 
-+-(nu) = 0 
at ax 

X [3-41] 

allows us to cancel the terms nearest the equal sign in Eq. [3-40]. Defining 

the pressure 

we have finally 

p ;= nKT 

mn
(aux 

+ Ux 
aux ) 

= 
- ap 

at ax ax 

[3-42) 

[3-43] 

This is the usual pressure-gradient force. Adding the electromagnetic 
forces and generalizing to three dimensions, we have the fluid equation 

mn
[ �� + (u · V)u J = qn (E + u x B) - Vp [3-44) 

What we have derived is only a special case: the transfer of x 
momentum by motion in the x direction; and we have assumed that the 

fluid is isotropic, so that the same result holds in the y and z directions. 
But it is also possible to transfer y momentum by motion in the x direction, 
for instance. Suppose, in Fig. 3-3, that Uy is zero in the cube at x = x0 

but is positive on both sides. Then as particles migrate across the faces 

A and B, they bring in more positive y momentum than they take out, 

and the fluid element gains momentum in the y direction. This shear 
stress cannot be represented by a scalar p but must be given by a tensor 

*If the reader has not encountered this before, it is derived in Section 3.3.5. 
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P, the stress tensor, whose components Pii = mn uiui specify both the 

direction of motion and the component of momentum involved. In the 

general case the term -'ilp is replaced by -V · P. 
We shall not give the stress tensor here except for the two simplest 

cases. When the distribution function is an isotropic Maxwellian, P is 

written 

0 
p 
0 

[3-45] 

V · P is just 'ilp. In Section 1.3, we noted that a plasma could have two 

temperatures T .L and Tu in the presence of a magnetic field. In that case, 

there would be two pressures p .L = nKT .L and Pu = nKTu. The stress 

tensor is then 

(p.l P= � [3-46] 

where the coordinate of the third row or column is the direction of B. 
This is still diagonal and shows isotropy in a plane perpendicular to B. 

In an ordinary fluid, the off-diagonal elements of P are usually 

associated with viscosity. When particles make collisions, they come off 

with an average velocity in the direction of the fluid velocity u at the 

point where they made their last collision. This momentum is transferred 

to another fluid element upon the next collision. This tends to equalize 
u at different points, and the resulting resistance to shear flow is what 
we intuitively think of as viscosity. The longer the mean free path, the 
farther momentum is carried, and the larger is the viscosity. In a plasma 
there is a similar effect which occurs even in the absence of collisions. 
The Larmor gyration of particles (particularly ions) brings them into 

different parts of the plasma and tends to equalize the fluid velocities 
there. The Larmor radius rather than the mean free path sets the scale 

of this kind of collisionless viscosity. It is a finite-Larmor-radius effect 

which occurs in addition to collisional viscosity and is closely related to 

the vE drift in a nonuniform E field (Eq. [2-58]). 

3.3.3 Collisions 

If there is a neutral gas, the charged fluid will exchange momentum 
with it through collisions. The momentum lost per collision will be 

proportional to the relative velocity u - u0, where u0 is the velocity of 



the neutral fluid. If r, the mean free time between collisions, is approxi

mately constant, the resulting force term can be roughly written as 

-mn (u- u0)/r. The equation of motion [3-44] can be generalized to 
include anisotropic pressure and neutral collisions as follows: 

[au ] mn(u- uo) 
mn -+ (u · V)u = qn (E + u X B) - V · P - _ ___:__ _ __.::.:... 

� 1' 
[3-47] 

Collisions between charged particles have not been included; these will 

be treated in Chapter 5. 

Comparison with Ordinary Hydrodynamics 3.3.4 

Ordinary fluids obey the Navier-Stokes e·quation 

[3-48] 

This is the same as the plasma equation [3-47] except for the absence 
of electromagnetic forces and collisions between species (there being 

only one species). The viscosity term pv V2 u, where v is the kinematic 

viscosity coefficient, is just the collisional part of V · P - Vp in the absence 

of magnetic fields. Equation [3-48] describes a fluid in which there are 

frequent collisions between particles. Equation [3-47], on the other hand, 

was derived without any explicit statement of the collision rate. Since 

the two equations are identical except for the E and B terms, can Eq. 

[3-4 7] really describe a plasma species? The answer is a guarded yes, 
and the reasons for this will tell us the limitations of the fluid theory. 

In the derivation of Eq. [3-47], we did actually assume implicitly 
that there were collisions. This assumption came in Eq. [3-39] when we 

took the velocity distribution to be Maxwellian. Such a distribution 
generally comes about as the result of frequent collisions. However, this 

assumption was used only to take the average of v ;"' Any other distribu

tion with the same average would give us the same answer. The fluid 

theory, therefore, is not very sensitive to deviations from the Maxwellian 

distribution, although there are instances in which these deviations are 
important. Kinetic theory must then be used. 

There is also an empirical observation by Irving Langmuir which 
helps the fluid theory. In working with the electrostatic probes which 
bear h is name, Langmuir discovered that the electron distribution func

tion was far more nearly Maxwellian than could be accounted for by the 
collision rate. This phenomenon, called Langmuir's paradox, has been 
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3.3.5 

attributed at times to high-frequency oscillations. There has been no 
satisfactory resolution of the paradox, but this seems to be one of the 

few instances in plasma physics where nature works in our favor. 

Another reason the fluid model works for plasmas is that the mag

netic field, when there is one, can play ,the role of collisions in a certain 
sense. When a particle is accelerated, say by an E field, it would con

tinuously increase in velocity if it were allowed to free-stream. When 

there are frequent collisions, the particle comes to a limiting velocity 
proportional to E. The electrons in a copper wire, for instance, drift 
together with a velocity v = ,u.E, where ,u is the mobility. A magnetic 

field also limits free-streaming by forcing particles to gyrate in Larmor 
orbits. The electrons in a plasma also drift together with a velocity 
proportional toE, namely, v£ =E x B/B2. In this sense, a collisionless 

plasma behaves like a collisional fluid. Of course, particles do free-stream 

along the magnetic field, and the fluid picture is not particularly suitable 

for motions in that direction. For motions perpendicular to B, the fluid 
theory is a good approximation. 

Equation of Continuity 

The conservation of matter requires that the total number of particles 
Nin a volume V can change only if there is a net flux of particles across 
the surface S bounding that volume. Since the particle flux density is 
nu, we have, by the divergence theorem, 

aN J an f J - = - dV = - nu · dS = - 'iJ · (nu) dV 
at vat v 

[3-49] 

Since this must hold for any volume V, the integrands must be equal: 

an -+ 'iJ • (nu) = 0 
at 

[3-50] 

There is one such equation of continuity for each species. Any sources or 
sinks of particles are to be added to the right-hand side. 

3.3.6 Equation of State 

One more relation is needed to close the system of equations. For this, 
we can use the thermodynamic equation of state relating p ton: 

[3-51) 



where C is a constant and y is the ratio of specific heats Cp/ Cv. The 

term Vp is therefore given by 

Vp Vn 
- = y -
p n 

For isothermal compression, we have 

Vp = V(nKT) = KTVn 

[3-52] 

so that, clearly, y = 1. For adiabatic compression, KT will also change, 
giving y a value larger than one. If N is the number of degrees of 

freedom, y is given by 

y = (2 + N)/N [3-53] 

The validity of the equation of state requires that heat flow be negligible; 

that is, that thermal conductivity be low. Again, this is more likely to be 

true in directions perpendicular to B than parallel to it. Fortunately, 

most basic phenomena can be described adequately by the crude assump
tion of Eq. [3-51]. 

The Complete Set of Fluid Equations 3.3.7 

For simplicity, let the plasma have only two species: ions and electrons; 
extension to more species is trivial. The charge and current densities are 

then given by 1 � I �"-'"t 

[3-54] 

Since single-particle motions will no longer be considered, we may now 

use v instead of u for the fluid velocity. We shall neglect collisions and 
viscosity. Equations [3-1 ]-[3-4], [3-44], [3-50], and [3-51] form the follow

ing set: 

V X E = -B 
V ·B=O 

-1 . 
f..Lo V X B = n;q;v; + n.q,v, + EoE 

[3-55] 

[3-56] 

[3-57] 

[3-58] 

1 = t, e [3-59] 

67 
Plasmas 

As Fluids 



68 
Chapter 
Three 

an-
_J + V · (n·v·) = 0 
at 1 1 

1 = �. e 

j = i, e [3-60] 

[3-61] 

There are 16 scalar unknowns: n;, n., p,, p., v;, v., E, and B. There are 
apparently 18 scalar equations if we count each vector equation as three 
scalar equations. However, two of Maxwell's equations are superfluous, 
since Eqs. [3-55] and [3-57] can be recovered from the divergences of 
Eqs. [3-58] and [3-56] (Problem 3-3). The simultaneous solution of this 
set of 16 equations in 16 unknowns gives a self-consistent set of fields 

and motions in the fluid approximation. 

3.4 FLUID DRIITS PERPENDICULAR TO B 

Since a fluid element is composed of many individual particles, one 
would expect the fluid to have drifts perpendicular to B if the individual 
guiding centers have such drifts. However, since the Vp term appears 

only in the fluid equations, there is a drift associated with it which the 
fluid elements have but the particles do not have. For each species, we 

have an equation of motion 

mn[av 
+(v·V)v] =qn(E+vxB)-Vp 

at ® ® Q) 
Consider the ratio of term CD to term ®: 

CD� lmniwv.L I = !!!..._ 
® qnv.LB w, 

[3-62] 

Here we have taken ajat = iw and are concerned only with V.t. For drifts 

slow compared with the time scale of w" we may neglect term CD. We 
shall also neglect the (v · V)v term and show a posteriori that this is all 
right. Let E and B be uniform, but let n and p have a gradient. This is 
the usual situation in a magnetically confined plasma column (Fig. 3-4). 

Taking the cross product of Eq. [3-62] with B, we have (neglecting the 

left-hand side) 

0 = qn[E X B + (v.t x B) X B)- Vp X B 

= qn[E x B + B(v.L/ B)- v.tB2)-Vp X B 



Therefore, 

where 

/. Bz 

Diamagnetic drifts in a cylindrical plasma. FIGURE 3-4 

Ex B Vp X B 
V J.. = --2- - 2 """ V£ + VD 

B qnB 

I v, � 
E ;, 8 I E x B dcift 

Vp xB 
vv """ - 2 Diamagnetic drift 

qnB 

[3-63] 

[3.64] 

[3-65] 

The drift V£ is the same as for guiding centers, but there is now a new 
drift vv, called the diamagnetic drift. Since vv is perpendicular to the 
direction of the gradient, our neglect of (v · V)v is justified if E = 0. If 

E = -V¢ � 0, (v · V)v is still zero if V¢ and Vp are in the same direction; 

otherwise, there could be a more complicated solution involving (v · V)v. 
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FiGURE 3-5 Origin of the diamagnetic drift. 

With the help of Eq. [3-52], we can write the diamagnetic drift as 

'YKTz x Vn 
Vv =±-- --eB n 

[3-661 

In particular, for an isothermal plasma in the geometry of Fig. 3-4, in 
which Vn = n'r, we have the following formulas familiar to experimen

talists who have worked with Q-machines*: 

KT;n' A 
vv; = -- - (}  eB n 

KT. n' A 
Vve = --- - (}  

eB n 

The magnitude of vv is easily computed from the formula 

KT (eV) 1 m 

v D = B ( T) A sec 

where A is the density scale length ln/n'l in m. 

[3-67] 

[3-68] 

The physical reason for this drift can be seen from Fig. 3-5. Here 
we have drawn the orbits of ions gyrating in a magnetic field. There is 
a density gradient toward the left, as indicated by the density of orbits. 

*A Q-machine produces a quiescent plasma by thermal ionization of Cs or K atoms impinging 

on hot tungsten plates. Diamagnetic drifts were first measured in Q-machines. 



Through any fixed volume element there are more ions moving down

ward than upward, since the downward-moving ions come from a region 

of higher density. There is, therefore, a fluid drift perpendicular to Vn 
and B, even though the guiding centers are stationary. The diamagnetic drift 
reverses sign with q because the direction of gyration reverses. The 
magnitude of v0 does not depend on mass because them -l/2 dependence 

of the velocity is cancelled by the m 112 dependence of the Larmor 
radius-less of the density gradient is sampled during a gyration if the 

mass is small. 
Since ions and electrons drift in opposite directions, there is a 

diamagnetic current . For 1' = Z = I, this is given by 

B xVn 
j0 = ne(vn;- vn,) = (KTi + KT,) B 2  [3-69] 

In the particle picture, one would not expect to measure a current if the 
guiding centers do not drift. In the fluid picture, the current jv flows 

wherever there is a pressure gradient. These two viewpoints can be 
reconciled if one considers that all experiments must be carried out in 
a finite-sized plasma. Suppose the plasma were in a rigid box (Fig. 3-6). 

If one were to calculate the current from the single-particle picture, one 

would have to take into account the particles at the edges which have 

cycloidal paths. Since there are more particles on the left than on the 

right, there is a net current downward, in agreement with the fluid 

picture. 
The reader may not be satisfied with this explanation because it was 

necessary to specify reflecting walls. If the walls were absorbing or if 
they were removed, one would find that electric fields would develop 

A 

Particle drifts in a bounded plasma, 
illustrating the relation to fluid drifts. FIGURE 3-6 
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because more of one species-the one with larger Larmor radius-would 
be collected than the other. Then the guiding centers would drift, and 
the simplicity of the model would be lost. Alternatively, one could imagine 

trying to measure the diamagnetic current with a current probe (Fig. 
3-7). This is just a transformer with a core of magnetic material. The 

primary winding is the plasma current threading the core, and the 

secondary is a multiturn winding all around the core. Let the whole 
thing be infinitesimally thin, so it does not intercept any particles. It is 
clear from Fig. 3-7 that a net upward current would be measured, there 

being higher density on the left than on the right, so that the diamagnetic 

current is a real current. From this example, one can see that it can be 
quite tricky to work with the single-particle picture. The fluid theory 
usually gives the right results when applied straightforwardly, even 

though it contains "fictitious" drifts like the diamagnetic drift. 

What about the grad-E and curvature drifts which appeared in the 
single-particle picture? The curvature drift also exists in the fluid picture, 

since the centrifugal force is felt by all the particles in a fluid element 
as they move around a bend in the magnetic field. A term Fer = 

Vn _/ 

FIGURE 3-7 Measuring the diamagnetic current in an inhomogeneous plasma. 



In a nonuniform B field the guiding centers drift but the fluid elements do not. FIGURE 3-8 

nmvlfj Rc = nKTn/ Rc has to be added to the right-hand side of the fluid 

equation of motion. This is equivalent to a gravitational force Mng, with 

g = KT11/ MRc, and leads to a drift vg = (m/q)(g x B)/ B2, as in the par

ticle picture (Eq. [2-18]). 

The grad-E drift, however, does not exist for fluids. It can be shown 
on thermodynamic grounds that a magnetic field does not affect a 
Maxwellian distribution. This is because the Lorentz force is perpen

dicular to v and cannot change the energy of any particle. The most 
probable distribution f(v) in the absence of B is also the most probable 

distribution in the presence of B. If f(v) remains Maxwellian in a nonuni

form B field, and there is no density gradient, then the·net momentum 

carried into any fixed fluid element is zero. There is no fluid drift even 

though the individual guiding centers have drifts; the particle drifts in 

any fixed fluid element cancel out. To see this pictorially, consider the 
orbits of two particles moving through a fluid element in a nonuniform 
B field (Fig. 3-8). Since there is no E field, the Larmor radius changes 
only because of the gradient in B; there is no acceleration, and the 
particle energy remains constant during the motion. If the two particles 

have the same energy, they will have the same velocity and Larmor 

radius while inside the fluid element. There is thus a perfect cancellation 

between particle pairs when their velocities are added to give the fluid 

velocity. 
When there is a nonuniform E field, it is not easy to reconcile the 

fluid and particle pictures. Then the finite-Larmor-radius effect of Sec
tion 2.4 causes both a guiding center drift and a fluid drift, but these 

73 
Plasmas 

As Fluids 



74 
Chapter 
Three 

are not the same; in fact, they have opposite signs! The particle drift 
was calculated in Chapter 2, and the fluid drift can be calculated from 

the off-diagonal elements of P. It is extremely difficult to explain how 
the finite-Larmor-radius effects differ. A simple picture like Fig. 3-6 will 

not work because one has to take into account subtle points like the 
following: In the presence of a density gradient, the density of guiding 
centers is not the same as the density of particles! 

PROBLEMS �-3. Show that Eqs. [3-55] and [3-57) are redundant in the set of Maxwell's 
equations. 

3-4. Show that the expression for j0 on the right-hand side of Eq. [3-69] has 
the dimensions of a current density. 

3-5. Show that if the current calculated from the particle picture (Fig. 3-6) agrees 
with that calculated from the diamagnetic drift for one width of the box, then 
it will agree for all widths. 

3-6. An isothermal plasma is confined between the planes x = ±a in a magnetic 
field B = BJ,. The density distribution is 

n = n0(1 - x 2/ a 2) 
(a) Derive an expression for the electron diamagnetic drift velocity v0, as a 
function of x. 

(b) Draw a diagram showing the density profile and the direction of v0, on both 
sides of the midplane if B is out of the paper. 

(c) Evaluate v0, at x = a/2 if B = 0.2 T, KT, = 2 eV, and a = 4 em. 

3-7. A cylindrically symmetric plasma column in a uniform B field has 

n (r) = n0 exp (-r2/r�) and n, = n, = n0 exp (e</J/ KT,) 
(a) Show that vE and v0, are equal and opposite. 

(b) Show that the plasma rotates as a solid body. 

(c) In the frame which rotates with velocity v£, some plasma waves (drift waves) 
propagate with a phase velocity v., = 0.5v0,. What is v., in the lab frame? On a 
diagram of the r - (J plane, draw arrows indicating the relative magnitudes and 
directions of v£, v0., and v., in the lab frame. 

3-8. (a} For the plasma of Problem 3-7, find the diamagnetic current density io 
as a function of radius. 

(b) Evaluate j0 in A/m2 for B = 0.4 T, n0 = 10'6 m-3, KT, = KT, = 0.25 eV, 
r = r0 = I em. 



(c) In the lab frame, is this current carried by ions or by electrons or by both? 

3-9. In the preceding problem, by how much does the diamagnetic current 
reduce B on the axis? Hint: You may use Ampere's circuital law over an 
appropriate path. 

FLUID DRIFTS PARALLEL TO B 

The z component of the fluid equation of motion is 

[av, J ap 
mn at + (v · V)v. = qnE, -

az [3-70] 

The convective term can often be neglected because it is much smaller 

th!ln the avJat term. We shall avoid complicated arguments here and 
simply consider cases in which v, is spatially uniform. Using Eq. [3-52], 

we have 

• 

av, q -yKT an 
-=- E,---at m mn az [3-71} 

This shows that the fluid is accelerated along B under the combined 
electrostatic and pressure gradient forces. A particularly important result 

is obtained by applying Eq. [3-71] to massless electrons. Taking the limit 
m � 0 and specifying q = -e and E = -V4> , we have* 

qE. = e 
a4> = -yKT, an - az n az [3-72] 

Electrons are so mobile that their heat conductivity is almost infinite. 

We may then assume isothermal electrons and take 'Y = 1. Integrating, 

we have 

e</J = KT. In n + C 

or 

I n = n0 exp (e4>/ KT.) [3-73] 

This is just the Boltzmann relation for electrons. 
What this means physically is that electrons, being light, are very 

mobile and would be accelerated to high energies very quickly if there 

Why can't v, -> oo, keeping mv, constant? Consider the energy! 

3.5 
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FIGURE 3-9 
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the Boltzmann relation between density and 

were a net force on them. Since electrons cannot leave a region en masse 
without leaving behind a large ion charge, the electrostatic and pressure 

gradient forces on the electrons must be closely in balance. This condition 
leads to the Boltzmann relation. Note that Eq. [3-73] applies to each line 
of force separately. Different lines of force may be charged to different 

potentials arbitrarily unless a mechanism is provided for the electrons 

to move across B. The conductors on which lines of force terminate can 

provide such a mechanism, and the experimentalist has to take these 
end effects into account carefully. 

Figure 3-9 shows graphically what occurs when there is a local density 
clump in the plasma. Let the density gradient be toward the center of 

the diagram, and suppose KT is constant. There is then a pressure 

gradient toward the center. Since the plasma is quasineutral, the gradient 
exists for both the electron and ion fluids. Consider the pressure gradient 

force Fp on the electron fluid. It drives the mobile electrons away from 
the center, leaving the ions behind. The resulting positive charge gener

ates a field E whose force FE on the electrons opposes F P· Only when FE 
is equal and opposite to Fp is a steady state achieved. If B is constant, E 
is an electrostatic field E = -V¢, and 4> must be large at the center, where 
n is large. This is just what Eq. [3-73] tells us. The deviation from strict 
neutrality adjusts itself so that there is just enough charge to set up the 

E field required to balance the forces on the electrons. 



THE PLASMA APPROXIMATION 3.6 

The previous example reveals an important characteristic of plasmas 

that has wide application. We are used to solving for E from Poisson's 
equation when we are given the charge density a. In a plasma, the 
opposite procedure is generally used. E is found from the equations of 

motion, and Poisson's equation is used only to find a. The reason is that 
a plasma has an overriding tendency to remain neutral. If the ions move, 
the electrons will follow. E must adjust itself so that the orbits of the 
elect rons and ions preserve neutrality. The charge density is of secondary 
importance; it will adjust itself so that Poisson's equation is satisfied. This 

is true, of course, only for low-frequency motions in which the electron 

inertia is not a factor. 

In a plasma, it is usually possible to assume n; = n, and V · E ¥- 0 at 

the same time. We shall call this the plasma approximation. It is a funda
mental trait of plasmas, one which is difficult for the novice to understand. 

Do not use Poisson 's equation to obtain E unless it is unavoidable ! In the set 
of fluid equations [3-55]-[3-61] , we may now eliminate Poisson's equation 
and also eliminate one of the unknowns by setting n; = n, = n. 

The plasma approximation is almost the same as the condition of 

quasineutrality discussed earlier but has a more exact meaning. Whereas 

quasineutrality refers to a general tendency for a plasma to be neutral 

in its state of rest, the plasma approximation is a mathematical shortcut 

that one can use even for wave motions. As long as these motions are 

slow enough that both ions and electrons have time to move, it is a good 
approximation to replace Poisson's equation by the equation n; = n,. Of 
course, if  only one species can move and the other cannot follow, such 
as in high-frequency electron waves, then the plasma approximation is 
not valid, and E must be found from Maxwell's equations rather th_an 
from the ion and electron equations of motion. We shall return to the 
question of the validity of the plasma approximation when we come to 

the theory of ion waves. At that time, it will become clear why we had 
to use Poisson's equation in the derivation of Debye shielding. 
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REPRESENTATION OF WAVES 4.1 

Any periodic motion of a fluid can be decomposed by Fourier analysis 
into a superposition of sinusoidal oscillations with different frequencies 

w and wavelengths A. A simple wave is any one of these components. 
When the oscillation amplitude is small, the waveform is generally 
sinusoidal; and there is only 'one component. This is the situation we 
shall consider. 

Any sinusoidally oscillating quantity-say, the density n-can be 
represented as follows: 

n =nexp [i(k·r -wt)] [4-l] 

where, in Cartesian coordinates, 

[4-2) 

Here n is a constant defining the amplitude of the wave, and k is called 
the propagation constant. If  the wave propagates in the x direction, k 
has only an x component, and E'q. [4-1] becomes 

n = n ei(kx-wt) 

By convention, the exponential notation means that the real part of the 
expression is to be taken as the measurable quantity. Let us choose ii to 
be real; we shall soon see that this corresponds to a choice of the origins 79 
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of x and t. The real part of n is then 

Re (n) = ii cos (kx- wt) [4-31 

A point of constant phase on the wave moves so that (d/ dt)(kx -wt) = 0, 
or 

[4-4] 

This is called the phase velocity. If w/ k is positive, the wave moves to the 

right; that is, x increases as t increases, so as to keep kx - wt constant. 
If w/ k is negative, the wave moves to the left. We could equally well 

have taken 

n = ii e i(kx+wl) 

in which case positive w/k would have meant negative phase velocity. 
This is a convention that is sometimes used, but we shall not adopt it. 
From Eq. [4-3], it is clear that reversing the sign of both w and k makes 
no difference. 

Consider now another oscillating quantity in the wave, say the electric 
field E. Since we have already chosen the phase of n to be zero, we must 

allow E to have a different phase 8: 

E = E cos (kx - wt + 8) or E = E ei(kx-wl+ll) [4-5] 

where E is a real, constant vector. 
It is customary to incorporate the phase information into E by 

allowing E to be complex. We can write 

where Ec is a complex amplitude. The phase 8 can be recovered from 
Ec, since Re (Ec) = E cos 8 and Im (Ec) = E sin 8, so that 

lm (Ec) 
tan 8 = 

Re (Ec) 
[4-6] 

From now on, we shall assume that all amplitudes are complex and drop 
the subscript c. Any oscillating quantity g1 will be written 

g1 =g1exp[i(k·r-wt)] [4-7] 



., 

so that g1 can stand for either the complex amplitude or the entire 
expression [4-7]. There can be no confusion, because in linear wave 
theory the same exponential factor will occur on both sides of any equation 

and can be cancelled out. 

4-1. The oscillating density n 1 and potential <P, in a "drift wave" are related by PROBLEM 
� = e¢ 1 w * + ia 

n0 KT, w + ia 

where it is only necessary to know that all the other symbols (except i) stand for 

positive constants. 

(a) Find an expression for the phase 8 of <P 1 relative ton 1• (For simplicity, assume 

that n1 is real.) 

(b) If w < w*, does <P 1 lead or lag n 1? 

GROUP VELOCITY 4.2 

The phase velocity of a wave in a plasma often exceeds the velocity of 
light c. This does not violate the theory of relativity, because an infinitely 

long wave train of constant amplitude cannot carry information. The 
carrier of a radio wave, for instance, carries no information until it is 
modulated. The modulation information does not travel at the phase 
velocity but at the group velocity, which is always less than c. To illustrate 
this, we may consider a modulated wave formed by adding ("beating") 
two waves of nearly equal frequencies. Let these waves be 

E1 = Eo cos [(k + ilk)x- (w + Llw)t] 

E2 =Eo cos [(k- ilk)x- (w - Llw )t] 
[4-8] 

E 1 and E2 differ in frequency by 2ilw. Since each wave must have the 
phase velocity w/ k appropriate to the medium in which they propagate, 
one must allow for a difference 2ilk in propagation constant. Using the 
abbreviations 

a =  kx- wt 

b = (Llk )x - (Llw )t 

81 
Waves in 

Plasmas 



82 
Chapter 
Four 

FIGURE 4-1 Spatial variation of the electric field of two waves with a frequency 
difference. 

we have 

E 1 + E2 =Eo cos (a + b) +  Eo cos (a -b) 

= E 0( cos a cos b - sin a sin b + cos a cos b + sin a sin b) 

= 2E 0 cos a cos b 

E1 + E2 = 2E0 cos [ (M)x- (llw)t] cos (kx- wt) (4-9] 

This is a sinusoidally modulated wave (Fig. 4-1). The envelope of the 
wave, given by cos [ (Ilk )x - (llw )t], is what carries information; it travels 

at velocity llw/ Ilk. Taking the limit llw -7 0, we define the group velocit)• 
to be 

I Vg =dw/dk I [4-10] 

It is this quantity that cannot exceed c. 

4.3 PLASMA OSCILLATIONS 

If the electrons in a plasma are displaced from a uniform background 

of ions, electric fields will be built up in such a direction as to restore 
the neutrality of the plasma by pulling the electrons back to their original 
positions. Because of their inertia, the electrons will overshoot and 
oscillate around their equilibrium positions with a characteristic 
frequency known as the plasma frequency. This oscillation is so fast that 
the massive ions do not have time to respond to the oscillating field and 
may be considered as fixed. In Fig. 4-2, the open rectangles represent 
typical e1ements of the ion fluid, and the darkened rectangles the alter

nately displaced elements of the electron fluid. The resulting charge 
bunching causes a spatially periodic E field, which tends to restore the 
electrons to their neutral positions. 

c. 
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Mechanism of plasma oscillations. 

We shall derive an expression for the plasma frequency wp in the 

simplest case, making the following assumptions: ( 1) There is no magnetic 
field; (2) there are no thermal motions (KT = 0); (3) the ions are fixed 
in space in a uniform distribution; (4) the plasma is infinite in extent; 
and (5) the electron motions occur only in the x direction. As a con
sequence of the last assumption, we have 

V =X. ajax E=Ex VxE=O E= -V¢ [4-11] 

There is, therefore, no fluctuating magnetic field; this is an electrostatic 
oscillation. 

The electron equations of motion and continuity are [av, J mn, at+ (v, · V)v, = -en, E 

an. 
- + V · (n v) = 0 
at 

e e 

[4-12] 

[4-13] 

The only Maxwell equation we shall need is the one that does not involve 
B: Poisson's equation. This case is an exception to the general rule of 
Section 3.6 that Poisson's equation cannot be used to find E. This is a 

high-frequency oscillation; electron inertia is important, and the devi
ation from neutrality is the main effect in this particular case. Con
sequently, we write 

[4-14] 
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Equations [4-2]-[4-14] can easily be solved by the procedure of 

linearization. By this we mean that the amplitude of oscillation is small, 
and terms containing higher powers of amplitude factors can be neglec
ted. We first separate the dependent variables into two parts: an "equili

brium" part indicated by a subscript 0, and a "perturbation" part indi
cated by a subscript I: 

n, =no+n1 [4-15] 

The equilibrium quantities express the state of the plasma in the absence 
of the oscillation. Since we have assumed a uniform neutral plasma at 

rest before the electrons are displaced, we have 

Vno = Vo = Eo = 0 

ano 
= 

avo 
= 

aEo 
= O 

at at at 

Equation [ 4- 12] now becomes 

[4-16] 

[4-17] 

The term {v1 • V)v1 is seen to be quadratic in an amplitude quantity, and 
we shall linearize by neglecting it. The linear theory is valid as long as 
I v d is small enough that such quadratic terms are indeed negligible. 
Similar I y, Eq. [ 4-13] becomes 

[4-18] 

In Poisson's equation [ 4-1 4], we note that n;0 = n,0 in equilibrium and 

that n;1 = 0 by the assumption of fixed ions, so we have 

The oscillating quantities are assumed to behave sinusoidally: 

i(kx-wt),.. 
v1=v1e x 

[4-19) 

[4-20) 

- "\ 



The time derivative ajat can therefore be replaced by 
gradient V by ikx. Equations [ 4-17]-[ 4-19] now become 

-imwv 1 = -eE 1 

-iwn 1 = -noikv 1 

Eliminating n1 and £1, we have for Eq. [4-21] 

. -e -noikvi .n0e2 
-1mwv1 = -e-- = -t-- vl 

ikEo -tw Eow 

If v 1 does not vanish, we must have 

w2 = noe2/mEo 

The plasma frequency is therefore 

( 2) 1/2 noe 
Wp = -

Eom 
rad/sec 

Numerically, one can use the approximate formula 

-tw, and the 

[4-21] 

[4-22] 

[4-23] 

[4-24] 

[4-25] 

[4-26] 

This frequency, depending only on the plasma density, is one of 
the fundamental parameters of a plasma. Because of the smallness of 
m, the plasma frequency is usually very high. For instance, in a plasma 
of density n = 10

18 m-3, we have 

1s 112 9 -1 
G [p = 9(10 ) = 9 X 10 sec = 9 Hz 

Radiation at [p normally lies in the microwave range. We can compare 
this with another electron frequency: we. A useful numerical formula is 

fee = 28 GHz/Tesla [4-27] 

Thus if B = 0.32 T and n = 1018 m -3, the cyclotron frequency is approxi
mately equal to the plasma frequency for electrons. 

Equation [4-25] tells us that if a plasma oscillation is to occur at all, 
it must have a frequency depending only on n. In particular, w does not 
depend on k, so the group velocity dw/dk is zero. The disturbance does 
not propagate. How this can happen can be made clear with a mechanical 
analogy (Fig. 4-3). Imagine a number of heavy balls suspended by springs 
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equally spaced in a line. If all the springs are identical, each ball will 
oscillate vertically with the same frequency. If the balls are started in the 
proper phases relative to one another, they can be made to form a wave 

propagating in either direction. The frequency will be fixed by the 

springs, but the wavelength can be chosen arbitrarily. The two undistur
bed balls at the ends will not be affected, and the initial disturbance does 

not propagate. Either traveling waves or standing waves can be created, 

as in the case of a stretched rope. Waves on a rope, however, must 
propagate because each segment is connected to neighboring segments. 

This analogy is not quite accurate, because plasma oscillations have 
motions in the direction of k rather than transverse to k. However, as 
long as electrons do not collide with ions or with each other, they can 

still be pictured as independent oscillators moving horizontally (in Fig. 
4-3). But what about the electric field? Won't that extend past the region 
of initial disturbance and set neighboring layers of plasma into oscillation? 

In our simple example, it will not, because the electric field due to equal 
numbers of positive and negative infinite, plane charge sheets is zero. 
In any finite system, plasma oscillations will propagate. In Fig. 4-4, the 
positive and negative (shaded) regions of a plane plasma oscillation are 
confined in a cylindrical tube. The fringing electric field causes a coupling 
of the disturbance to adjacent layers, and the oscillation does not stay 
localized. 

PROBLEMS 4-2. Calculate the plasma frequency with the ion motions included, thus justify

ing our assumption that the ions are fixed. (Hint: include the term n 1, in Poisson's 
equation and use the ion equations of motion and continuity.) 

J 

FIGURE 4-3 Synthesis of a wave from an assembly of independent oscillators. 



E 

Plasma oscillations propagate in a finite medium because of FIGURE 4-4 
fringing fields. 

4-3. For a simple plasma oscillation with fixed ions and a space-time behavior 
exp[i(kx- wt)]. calculate the phase 8 for </>1, £1, and v1 if the phase of n1 is zero. 
Illustrate the relative phases by drawing sine waves representing n 1, </> 1, E 1,  and 
v1: (a) as a function of x at t = 0, (b) as a function oft at x = 0 for w/k > 0, 

and (c) as a function of I at x = 0 for w/k < 0. Note that the time patterns can 
be obtained by translating the x patterns in the proper direction, as if the wave 

were passing by a fixed observer. 

4-4. By writing the linearized Poisson's equation used in the derivation of simple 
plasma oscillations in the form 

V · (EE) = 0 

derive an expression for the dielectric constant E applicable to high-frequency 
longitudinal motions. 

ELECTRON PLASMA WAVES 4.4 

There is another effect that can cause plasma oscillations to propagate, 

and that is thermal motion. Electrons streaming into adjacent layers of 

plasma with their thermal velocities will carry information about what 

is happening in the oscillating region. The plasma oscillation can then 

properly be called a plasma wave. We can easily treat this effect by adding 

a term -Vp, to the equation of motion [ 4-12]. In the one-dimensional 

problem, y will be three, according to Eq. [3-53]. Hence, 

ft v v an1 A v p, = 3KT, n, = 3KT, (no+ n1) = 3KT,-x 
ax 

and the linearized equation of motion is 

avl anl mno- = -enoEl- 3KT-at e ax [4-28] 
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Note that in linearizing we have neglected the terms n1 av1/at and n1E1 
as well as the (v1 · V)v1 term. With Eq. [4-20], Eq. [4-28] becomes 

-imwnov 1 = -enoE 1 - 3KT.ikn 1 

E 1 and n 1 are still given by Eqs. [ 4-23] and [ 4-22], and we have 

. [ ( -e ) . J noik 
zmwn0v 1 = en0 -.- + 3KT.zk -.-v 1 

zkE 0 zw 
2 2 (noe 3KTek2) 

W V1 = -- + -- V1 Eom m 

2 2 3k2 2 w = (J) p + 2 v th 

[4-29] 

[4-30] 

where v;h = 2KT./m. The frequency now depends on k, and the group 

velocity is finite: 

2w dw = �v�h 2k dk 

dw 3 k 2 3 v �h 
Vg = 

dk = 2 W 
V,h = 2 V<J> 

[4-31) . 

That vg is always less than c can easily be seen from a graph of Eq. [ 4-30]. 
Figure 4-5 is a plot of the dispersion relation w(k) as given by Eq. [4-30]. 
At any point P on this curve, the slope of a line drawn from the origin 
gives the phase velocity w/ k. The slope of the curve at P gives the group 

w 

FIGURE 4-5 Dispersion relation for electron plasma waves (Bohm-Gross waves). 

k 



velocity. This is clearly always less than (3/2)
112v,h, which, in our nonrela

tivistic theory, is much less than c. Note that at large k (small A), informa
tion travels essentially at the thermal velocity. At small k (large A), 

information travels more slowly than v,h even though vq, is greater than 

v,h· This is because the density gradient is small at large A, and thermal 

motions carry very little net momentum into adjacent layers. 
The existence of plasma oscillations has been known since the days 

of Langmuir in the 1920s. It was not until 1949 that Bohm and Gross 

worked out a detailed theory telling how the waves would propagate 
and how they could be excited. A simple way to excite plasma waves 
would be to apply an oscillating potential to a grid or a series of grids 
in a plasma; however, oscillators in the GHz range were not generally 
available in those days. Instead, one had to use an electron beam to 
excite plasma waves. If the electrons in the beam were bunched so that 
they passed by any fixed point at a frequency fp, they would generate 

an electric field at that frequency and excite plasma oscillations. It is not 

necessary to form the electron bunches beforehand; once the plasma 
oscillations arise, they will bunch the electrons, and the oscillations will 
grow by a positive feedback mechanism. An experiment to test this theory 
was first performed by Looney and Brown in 1 954. Their apparatus was· 
entirely contained in a glass bulb about 10 em in diameter (Fig. 4-6). A 
plasma filling the bulb was formed by an electrical discharge between 
the cathodes K and an anode ring A under a low pressure (3 X 10-3 Torr) 

-200 v 

Schematic of the Looney-Brown experiment on plasma oscillations. FIGURE 4-6 
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FIGURE 4-7 Square of the observed frequency vs. plasma density, which is 
generally proportional to the discharge current. The inset shows 
the observed spatial distribution of oscillation intensity, indicating 
the existence of a different standing wave pattern for each of the 
groups of experimental points. [From D. H. Looney and S. C. 
Brown, Ph)'s. Rev. 93, 965 (1954).] 

of mercury vapor. An electron beam was created in a side arm containing 
a negatively biased filament. The emitted electrons were accelerated to 
200 V and shot into the plasma through a small hole. A thin, movable 

probe wire connected to a radio receiver was used to pick up the 

oscillations. Figure 4-7 shows their experimental results for l vs. dis
charge current, which is generally proportional to density. The points 

show a linear dependence, in rough agreement with Eq. [4-26]. Devi
ations from the straight line could be attributed to the k2v�h term in E·q. 
[ 4-30]. However, not all frequencies were observed ; k had to be such 
that an integral number of half wavelengths fit along the plasma column. 
The standing wave patterns are shown at the left of Fig. 4-7. The 
predicted traveling plasma waves could not be seen in this experiment, 
probably because the beam was so thin that thermal motions carried 
electrons out of the beam, thus dissipating the oscillation energy. The 



electron bunching was accomplished not in the plasma but in the oscillat
ing sheaths at the ends of the plasma column. In this early experiment, 
one learned that reproducing the conditions assumed in the uniform
plasma theory requires considerable skill. 

A number of recent experiments have verified the Bohm-Gross 
dispersion relation, Eq. [4-30], with precision. As an example of modern 

experimental technique, we show the results of Barrett, Jones, and 
Franklin. Figure 4-8 is a schematic of their apparatus. The cylindrical 
column of quiescent plasma is produced in a Q-machine by thermal 

ionization of Cs atoms on hot tungsterr plates (not shown). A strong 
magnetic field restricts electrons to motions along the column. The waves 
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Schematic of an experiment to measure plasma waves. [From P. J. Barrett, FIGURE 4-8 
H. G. Jones, and R. N. Franklin, Plasma Physics 10, 911 (1968).] 
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n = 4x108em·3 
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A 5.1 em 

FIGURE 4-9 Spatial variation of the perturbed density in a plasma wave, 
as indicated by an interferometer, which multiplies the 
instantaneous density signals from two probes and takes 
the time average. The interferometer is tuned to the wave 
frequency, which varies with the density. The apparent 
damping at low densities is caused by noise in the plasma. 
[From Barrett, Jones, and Franklin, loc. cit.] 

are excited by a wire probe driven by an oscillator and are detected by 
a second, movable probe. A metal shield surrounding the plasma pre
vents communication between the probes by ordinary microwave (elec
tromagnetic wave) propagation, since the shield constitutes a waveguide 
beyond cutoff for the frequency used. The traveling waveforms are 
traced by interferometry: the transmitted and received signals are detec
ted by a crystal which gives a large de output when the signals are in 
phase and zero output when they are 90° out of phase. The resulting 

signal is shown in Fig. 4-9 as a function of position along the column. 

Synchronous detection is used to suppress the noise level. The excitation 
signal is chopped at 500 kHz, and the received signal should also be 
modulated at 500 kHz. By detecting only the 500-kHz component of the 
received signal, noise at other frequencies is eliminated. The traces of 



Fig. 4-9 give a measurement of k. When the oscillator frequency w is 
varied, a plot of the dispersion curve (w/wp)2 vs. ka is obtained, where 

a is the radius of the column (Fig. 4-1 0). The various curves are labeled 
according to the value of wpa/v,h. For v,h = 0, we have the curve labeled 
ro, which corresponds to the dispersion relation w = Wp. For finite v,h, 
the curves correspond to that of Fig. 4-5. There is good agreement 
between the experimental points and the theoretical curves. The decrease 
of w at small ka is the finite-geometry effect shown in Fig. 4-4. In this 
particular experiment, that effect can be explained another way. To 
satisfy the boundary condition imposed by the conducting shield, namely 
that E = 0 on the conductor, the plasma waves must travel at an angle 

to the magnetic field. Destructive interference between waves traveling 
with an outward radial component of k and those traveling inward 
enables the boundary condition to be satisfied. However, waves traveling 
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Comparison of the measured and calculated dispersion curves for electron FIGURE 4-10 
plasma waves in a cylinder of radius a. [From Barrett, Jones, and Franklin, 
lac. cit.] 
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FIGURE 4-11 Wavefronts traveling at an angle to the magnetic field are separated, 
in the field direction, by a distance larger than the wavelength A. 

at an angle to B have crests and troughs separated by a distance larger 
than A/2 (Fig. 4-ll ) . Since the electrons can move only along B (if B is 

very large), they are subject to less acceleration, and the frequency is 
lowered below wp. 

PROBLEMS 4-5. Electron plasma waves are propagated in a uniform plasma with KT, = 
lOOeV,n = 1016m-3,B = 0. If the frequencyfis 1.1 GHz,whatis the wavelength 

in em? 

4-6. (a) Compute the effect of collisional damping on the propagation of Lang

muir waves (plasma oscillations), by adding a term -mnvv to the electron e·quation 

of motion and rederiving the dispersion relation for T, = 0. 

(b) Write an explicit expression for Im (w) and show that its sign indicates that 

the wave is damped in time. 

4.5 SOUND WAVES 

As an introduction to ion waves, let us briefly review the theory of sound 
waves in ordinary air. Neglecting viscosity, we can write theN a vier-Stokes 

equation [3-48], which describes these waves, as 

[av J 'YP 
p - + (v·V)v =-Vp=--Vp 

at p 
[4-32] 



The equation of continuity is 

ap 
-+ V · (pv) = 0 
at [4-33] 

Linearizing about a stationary equilibrium with uniform Po and p0, we 
have 

. 'YPo .k -twpovi = - -t PI 
Po 

-iwpl + poik · v1 = 0 

[4-34) 

[4-35] 

where we have again taken a wave dependence of the form 

exp [i(k · r- wt)] 

For a plane wave with k = kx and v = vx, we find, upon eliminating p1, 

or 

. 'YPo .kpoikv 1 -zwpovl =- - z -.--
Po tw 

2 2 'YPo w v1 = k -vi 
Po 

� 
= 
(":00) 1/2 

= 
("�) 1/2 = 

C
s 

[4-36] 

This is the expression for the velocity Cs of sound waves in a neutral gas. 
The waves are pressure waves propagating from one layer to the next 

by collisions among the air molecules. In a plasma with no neutrals and 
few collisions, an analogous phenomenon occurs. This is called an ion 
acoustic wave, or, simply, an ion wave. 

ION WAVES 4.6 

In the absence of collisions, ordinary sound waves would not occur. Ions 
can still transmit vibrations to each other because of their charge, 
however; and acoustic waves can occur through the intermediary of an 
electric field. Since the motion of massive ions will be involved, these 
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will be low- frequency oscillations, and we can use the plasma approxima

tion of Section 3.6. We therefore assume n; = n, = n and do not use 
Poisson's equation. The ion fluid equation in the absence of a magnetic 
field is [av· J Mn af + (v; · V)v; = enE- Vp = -en V<f> - y;KT, Vn [4-37] 

We have assumed E = -V<f> and used the equation of state. Linearizing 

and assuming plane waves, we have 

-iwMn0v; 1 = -en0ik<P 1 - y;KT;ikn 1 [4-38] 

As for the electrons, we may assume m = 0 and apply the argument of 
Section 3.5, regarding motions along B, to the present case of B = 0. 
The balance of forces on electrons, therefore, requires 

( e<f> 1 ) ( e</> 1 ) 
n, = n = no exp -- = n0 l + -- + · · · 

KT, KT, 

The perturbation in density of electrons, and, therefore, of ions, is then 

e<f> 1 
n1 = n0--

KT, 
[4-39] 

Here the n0 of Boltzmann's relation also stands for the density in the 
e·quilibrium plasma, in which we can choose <Po = 0 because we have 

assumed Eo== 0. In linearizing Eq. [4-39], we have dropped the higher
order terms in the Taylor expansion of the exponential. 

The only other equation needed is the linearized ion equation of 
continuity. From Eq. [ 4-22], we have 

[4-40] 

In Eq. [4-38], we may substitute for </J1 and n1 in terms of v;1 from Eqs. 
[ 4-39] and [ 4-40] and obtain 

. ( . KT, . ) n0ikv;J 
twMnov; 1 == en0tk-- + y;KT1tk -.--

enn tw 

2 _ 

k
2 (KT. y;KT,) w - -- +--

M M 

1/2 � 
= 
(KT. + y;KT,) 

""' 
k M 

Vs [4-41] 
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Dispersion relation for ion FIGURE 4-12 

acoustic waves in the limit of 
small Debye length. 

This is the dispersion relation for ion acoustic waves; vs is the sound speed 

in a plasma. Since the ions suffer one-dimensional compressions in the 

plane waves we have assumed, we may set -y; = 3 here. The electrons 

move so fast relative to these waves that they have time to equalize their 

temperature everywhere; therefore, the electrons are isothermal, and 

-y, = 1. Otherwise, a factor-y, would appear in front of KT, in Eq. (4-41 ). 
The dispersion curve for ion waves (Fig. 4-12) has a fundamentally 

different character from that for electron waves (Fig. 4-5). Plasma oscilla
tions are basically constant-frequency waves, with a correction due to thermal 
motions. Ion waves are basically constant-velocity waves and exist only when 
there are thermal motions. For ion waves, the group velocity is equal to 

the phase velocity. The reasons for this difference can be seen from the 

following description of the physical mechanisms involved. In electron 

plasma oscillations, the other species (namely, ions) remains essentially 

fixed. In ion acoustic waves, the other species (namely, electrons) is far 

from fixed; in fact, electrons are pulled along with the ions and tend to 
shield out electric fields arising from the bunching of ions. However, this 

shielding is not perfect because, as we saw in Section 1.4, potentials of 
the order of KT,/ e can leak out because of electron thermal motions. 
What happens is as follows. The ions form regions of compression and 

rarefaction, just as in an ordinary sound wave. The compressed regions 

tend to expand into the rarefactions, for two reasons. First, the ion 

thermal motions spread out the ions; this effect gives rise to the second 

term in the square root of Eq. [4-41]. Second, the ion bunches are 

positively charged and tend to disperse because of the resulting electric 

field. This field is largely shielded out by electrons, and only a fraction, 
proportional to KT., is available to act on the ion bunches. This effect 

gives rise to the first term in the square root of Eq. [ 4-41 ]. The ions 
overshoot because of their inertia, and the compressions and rarefactions 
are regenerated to form a wave. 
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The second effect mentioned above leads to a curious phenomenon. 

When KTi goes to zero, ion waves still exist. This does not happen in a 

neutral gas (Eq. [4-36]). The acoustic velocity is then given by 

v, = (KT./ M) 112 [4-42] 

This is often observed in laboratory plasmas, in which the condition 
Ti « T, is a common occurrence. The sound speed v, depends on electron 

temperature (because the electric field is proportional to it) and on ion 
mass (because the fluid's inertia is proportional to it). 

4. 7 VALIDITY OF THE PLASMA APPROXIMATION 

In deriving the velocity of ion waves, we used the neutrality condition 

ni = n, while allowing E to be finite. To see what error was engendered 

in the process, we now allow ni to differ from n, and use the linearized 

Poisson equation: 

[4-43] 
The electron density is given by the linearized Boltzmann relation [ 4-39]: 

ecjJ 1 
nei =--no 

KT, 
[4-44] 

Inserting this into Eq. [4-43], we have 

EocPI(k2A� + 1) = eni1A� 
[4-45] 

The ion density is given by the linearized ion continuity equation [ 4-40]: 

k 
nil= -noV;I 

w 
[4-46] 

Inserting Eqs. [ 4-45] and [ 4-46] into the ion equation of motion [ 4-38], 
we find 

[4-47] 

[4-48] 



This is the same as we obtained previously (Eq. [4-41]) except for the 

factor 1 + k 2 A�- Our assumption n; = n. has given rise to an error of 
order k 2 A� = (27TA 0/ A )2. Since A 0 is very small in most experiments, the 
plasma approximation is valid for all except the shortest wavelength 
waves. 

COMPARISON OF ION AND ELECTRON WAVES 4.8 

If we consider these short-wavelength waves by taking e A� » 1, Eq. 
[ 4-4 7] becomes 

[4-491 

We have, for simplicity, also taken the limit T, � 0. Here Op is the ion 

plasma fre·quency. For high frequencies (short wavelengths) the ion 
acoustic wave turns into a constant-frequency wave. There is thus a 

complementary behavior between electron plasma waves and ion acoustic 

waves: the former are basically constant frequency, but become constant 

velocity at large k; the latter are basically constant velocity, but become 

constant frequency at large k. This comparison is shown graphically in 
Fig. 4-13. 

Experimental verification of the existence of ion waves was first 

accomplished by Wong, Motley, and D'Angelo. Figure 4-14 shows their 

apparatus, which was again a Q-machine. (It is no accident that we have 
referred to Q-machines so often; careful experimental checks of plasma 

w 
ELECTRON 

/ 
/ 

k 

ION 
w 

k 
Comparison of the dispersion curves for electron plasma waves and ion FIGURE 4-13 

acoustic waves. 
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theory were possible only after schemes to make quiescent plasmas were 

discovered.) Waves were launched and detected by grids inserted into 

the plasma. Figure 4-15 shows oscilloscope traces of the transmitted and 

received signals. From the phase shift, one can find the phase velocity 
(same as group velocity in this case). These phase shifts are plotted as 

functions of distance in Fig. 4-16 for a plasma density of 3 x 10
17 m -3. 

The slopes of such lines give the phase velocities plotted in Fig. 4-17 for 
the two masses and various plasma densities n0. The constancy of Vs with 
wand no is demonstrated experimentally, and the two sets of points for 

K and Cs plasmas show the proper dependence on M. 

4..9 ELECTROSTATIC ELECTRON OSCILLATIONS 
PERPENDICULAR TO B 

Up to now, we have assumed B = 0. When a magnetic field exists, many 
more types of waves are possible. We shall examine only the simplest 
cases, starting with high-frequency, electrostatic, electron oscillations 

r LANGMUIR 

I PROBE 

MAGNET 

SINE BURST 
GENERATOR 

HOT TUNGSTEN 
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FIGURE 4-14 Q-machine experiment to detect ion waves. [From N. Rynn and N. D'Angelo, Rev. 
Sci. lnstrum. 31, 1326 (1960).] 
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receiver grids, separated by a distance d, show-
ing the delay indicative of a traveling wave. 
[From A. Y. Wong, R. W. Motley, and N. D'Angelo, 
Phys. Rev. 133, A436 (1964).] 

propagating at right angles to the magnetic field. First, we should define 
the terms perpendicular, p�rallel, longitudinal, transverse, electrostatic, 
and electromagnetic. Parallel and perpendicular will be used to denote 
the direction of k relative to the undisturbed magnetic field B0. Longi

tudinal and transverse refer to the direction of k relative to the oscillating 

electric field E 1• If the oscillating magnetic field B 1 is zero, the wave is 

electrostatic; otherwise, it is electromagnetic. The last two sets of terms are 

related by Maxwell's equation 

[4-50] 

or 

[4-51] 

If a wave is longitudinal, k x E 1 vanishes, and the wave is also electrostatic. 
If the wave is transverse, B1 is finite, and the wave is electromagnetic. 
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FIGURE 4-16 Experimental measurements of delay vs. probe separation at various 
frequencies of the wave exciter. The slope of the lines gives the phase 
velocity. [From Wong, Motley, and D'Angelo, loc. cit.] 

5 X 105 

4 

(.) 3 ... A K 
CIJ -::-...-• � Ia 0-VI 0 ....... e E 2 Cs (.) 0 -

""B-�-"tl � .00=-
> � 

0 
0 20 40 60 80 100 

FREQUENCY (kHz) 

FIGURE 4-17 Measured phase velocity of ion waves in potassium and cesium plas
mas as a function of frequency. The different sets of points correspond 
to different plasma densities. [From Wong, Motley, and D'Angelo, 
loc. cit.] 
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wave propagating at right angles to B0• 

It is of course possible for k to be at an arbitrary angle to B0 or E1; then 

one would have a mixture of the principal modes presented here. 

Coming back to the electron oscillations perpendicular to B0, we 

shall assume that the ions are too massive to move at the frequencies 
involved and form a fixed, uniform background of positive charge. We 

shall also neglect thermal motions and set KT. = 0. The equilibrium 
plasma, as usual, has constant and uniform n0 and B0 and zero Eo and 
v0. The motion of electrons is then governed by the following linearized 
equations: 

av.l 
m -- = -e(E1 +Vet x B0) 

at 

an. I 
-- + n0V · v 1 = 0 

at 
e 

[4-52] 

[4-53] 

[4-54] 

We shall consider only longitudinal waves with k i iE1. Without loss of 
generality, we can choose the x axis to lie along k and E1, and the z axis 
to lie alongB0 (Fig. 4-18). Thus ky = k, = Ey = E, = 0, k = kx, and E = Ex. 

Dropping the subscripts 1 and e and separating Eq. [ 4-52] into com

ponents, we have 

-iwmvx = -eE - ev.)J o 

-iwmv, = 0 

[4-55] 

[4-56] 
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Solving for Vy in Eq. [4-56] and substituting into Eq. [4-55]. we have 

. ieBo 
twmvx = eE + eBo--vx 

mw 

[4-57] 

Note that Vx becomes infinite at cyclotron resonance, w =we. This is to 
be expected, since the electric field changes sign with Vx and continuously 
accelerates the electrons. [The fluid and single-particle equations are 

identical when the (v · V)v and Vp terms are both neglected; all the 

particles move together.] From the linearized form of Eq. [ 4-53], we have 

k 
ni = -noVx 

w 

Linearizing Eq. [4-54] and using the last two results, we have 

. k eE ( w �) -I 

tkEoE = -e-no-.- 1-2 
w zmw w 

The dispersion relation is therefore 

[4-58] 

[4-59] 

[4-60] 

The frequency wh is called the upper hybrid frequency. Electrostatic electron 

waves across B have this frequency, while those along B are the usual 

plasma oscillations with w = wp. The group velocity is again zero as long 

as thermal motions are neglected. 

A physical picture of this oscillation is given in Fig. 4- 19. Electrons 

in the plane wave form regions of compression and rarefaction, as in a 

plasma oscillation. However, there is now a B field perpendicular to the 

motion, and the Lorentz force turns the trajectories into ellipses. There 
are two restoring forces acting on the electrons: the electrostatic field 

and the Lorentz force. The increased restoring force makes the 
frequency larger than that of a plasma oscillation. As the magnetic field 
goes to zero, we goes to zero in Eq. [4-60], and one recovers a plasma 

oscillation. As the plasma density goes to zero, wp goes to zero, and one 

has a simple Larmor gyration, since the electrostatic forces vanish with 

density. 



\ ELECTRON \ 
ORBIT 

<'IT\ PLANES OF CONSTANT DENSITY 

Motion of electrons in an upper hybrid oscillation. FIGURE 4-19 

The existence of the upper hybrid frequency has been verified 

experimentally by microwave transmission across a magnetic field. As 

the plasma density is varied, the transmission through the plasma takes 

a dip at the density that makes wh equal to the applied frequency. This 
is because the upper hybrid oscillations are excited, and energy is ab
sorbed from the beam. From Eq. [ 4-60], we find a linear relationship 

between w ;/w2 
and the density: 

This linear relation is followed by the experimental points on Fig. 4-20, 

where w �/w2 
is plotted against the discharge current, which is propor

tional ton. 

If we now consider propagation at an angle () to B, we will get two 
possible waves. One is like the plasma oscillation, and the other is like 
the upper hybrid oscillation, but both will be modified by the angle of 

propagation. The details of this are left as an exercise (Problem. 4-8). 
Figure 4-21 shows schematically the w - k, diagram for these two waves 
for fixed kx, where kJ k, = tan 8. Because of the symmetry of Eq. [ 4-60], 

the case w, > w p is the same as the case w p > w, with the subscripts 
interchanged. For large k,, the wave travels parallel to B0• One wave is 

the plasma oscillation at w = wp; the other wave, at w = w" is a spurious 

root at k, --+ oo. For small k, we have the situation of k _.1_ B0 discussed in 
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FIGURE 4-20 Results of an experiment to detect the existence of the upper hybrid 
frequency by mapping the conditions for maximum absorption 
(minimum transmission) of microwave energy sent across a magnetic 
field. The field at which this occurs (expressed as w�/ w 2) is plotted 
against discharge current (proportional to plasma density). [From R. 
S. Harp, Proceedings of the Seventh Intemational ConfeTence on Phenomena 

in Ionized Gases, Belgrade, 1965, II, 294 (1966).] 

this section. The lower branch vanishes, while the upper branch 
approaches the hybrid oscillation at w = wh. These curves were first 
calculated by Trivelpiece and Gould, who also verified them experi
mentally (Fig. 4-22). The Trivelpiece-Gould experiment was done in a 
cylindrical plasma column; it can be shown that varying k, in this case is 
equivalent to propagating plane waves at various angles to B0. 
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The Trivelpiece-Gould dispersion curves FIGURE 4-21 

for electrostatic electron waves in a con-
ducting cylinder filled with a uniform 
plasma and a coaxial magnetic field. [From 
A. W. Trivelpiece and R. W. Gould,]. Appl. 
Phys. 30, 1784 (1959).] 

4-7. For the upper hybrid oscillation, show that the elliptical orbits (Fig. 4-19) PROBLEMS 
are always elongated in the direction of k. (Hint: From the equation of motion, 
derive an expression for v./v, in terms of w/w,.) 
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FIGURE 4-22 Experimental verification of the Trivelpiece-Gould curves, 
showing the existence of backward waves; that is, waves whose 
group velocity, as indicated by the slope of the dispersion 
curve, is opposite in direction to the phase velocity. [From 
Trivelpiece and Gould, lac. cit.] 

4-8. Find the dispersion relation for electrostatic electron waves propagating at 
an arbitrary angle (} relative to B0. Hint: Choose the x axis so that k and E lie 
in the x - z plane (Fig. P4-8). Then 

Ex =E1sinO, E<=E1cos8, E, = 0 
and similarly for k. Solve the equations of motion and continuity and Poisson's 
equation in the usual way with no uniform and Vo = E0 = 0. 



z 

k,E 

X 

(a) Show that the answer is 

w2(w2- w�) + w �w � cos2 () = 0 
(b) Write out the two solutions of this quadratic for w2, and show that in the 
limits() 4 0 and() 4 Tr/2, our previous results are recovered. Show that in these 
limits, one of the two solutions is a spurious root with no physical meaning. 

(c) By completing the square, show that the above equation is the equation of 
an ellipse: 

(d) Plot the ellipse for wp/ w, = l, 2, and ro. 

(e) Show that if w, > wp, the lower root for w is always less than wp for•any () > 0 
and the upper root always lies between w, and wh; and that if Wp > w" the lower 
root lies below w, while the upper root is between Wp and wh. 

FIGURE P4-8 

ELECTROSTATIC ION WAVES PERPENDICULAR TO B 4.10 

We next consider what happens to the ion acoustic wave when k is 
perpendicular to B0. It is tempting to set k · B0 exactly equal to zero, but 

this would lead to a result (Section 4.11) which , although mathematically 
correct, does not describe what usually happens in real plasmas. Instead, 

we shall let k be almost perpendicular to B0; what we mean by "almost" 

will be made clear later. We shall assume the usual infinite plasma in 

e·quilibrium, with n0 and B0 constant and uniform and v0 =Eo= 0. For 

simplicity, we shall take T; = 0; we shall not miss any important effects 
because we know that acoustic waves still exist if T; = 0. We also assume 
electrostatic waves with k x E = 0, so that E = -V¢. The geometry is 
shown in Fig. 4-23. The angle �1T- B is taken to be so small that we may 
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FIGURE 4-23 Geometry of an electrostatic ion cyclotron wave 
propagating nearly at right angles to B0• 

take E = E1x and V = ikx as far as the ion motion is concerned. For the 

electrons, however, it makes a great deal of difference whether �1T - 0 is 

zero, or small but finite. The electrons have such small Larmor radii 

that they cannot move in the x direction to preserve charge neutrality; 

all that the E field does is make them drift back and forth in the y 
direction. If 0 is not exactly 1T/2, however, the electrons can move along 
the dashed line (along B0) in Fig. 4-23 to carry charge from negative to 
positive regions in the wave and carry out Debye shielding. The ions 
cannot do this effectively because their inertia prevents them from 
moving such long distances in a wave period; this is why we can neglect 

k, for ions. The critical angle x = �1T - 0 is proportional to the ratio of 

ion to electron parallel velocities: x = (m/ M)112 (in radians). For angles 
x larger than this, the following treatment is valid. For angles x smaller 

than this, the treatment of Section 4.11 is valid. 

After this lengthy introduction, we proceed to the brief derivation 
of the result. For the ion equation of motion, we have 

av,l 
M-- = -eVc/>1 +evil X B0 

at 
[4-61] 

Assuming plane waves propagating in the x direction and separating 
into components, we have 

-iwMv;x = -eikcf> 1 + ev;.,B o 
[4-62] 

-iwMv;y = 



Solving as before, we find 

[4-63] 

where fl, = eB 0/ M is the ion cyclotron frequency. The ion equation of 

continuity yields, as usual, 

k 
n;1 = no-vix 

w 
[4-64] 

Assuming the electrons can move along B0 because of the finiteness of 
the angle x, we can use the Boltzmann relation for electrons. In linearized 

form, this is 

n,1 e¢1 
no KT. [4-65) 

The plasma approximation n; = n. now closes the system of equations. 

With the help of Eqs. [4-64] and [4-65], we can write Eq. [4-63] as 

( 1 - fl�) Vix = .!!!____ KT, nok 
V

;x 

w Mw en0 w 

[4-66] 

Since we have taken KT; = 0, we can write this as 

[4-67] 

This is the dispersion relation for electrostatic ion cyclotron waves. 
The physical explanation of these waves is very similar to that in 

Fig. 4-19 for upper hybrid waves. The ions undergo an acoustic-type 
oscillation, but the Lorentz force constitutes a new restoring force giving 

rise to then; term in Eq. [4-67]. The acoustic dispersion relation w2 = 

k2v; is valid if the electrons provide Debye shielding. In this case, they 
do so by flowing long distances along B0. 

Electrostatic ion cyclotron waves were first observed by Motley and 

D'Angelo, again in a Q-machine (Fig. 4-24). The waves propagated 
radially outward across the magnetic field and were excited by a current 
drawn along the axis to a small auxiliary electrode. The reason for 
excitation is rather complicated and will not be given here. Figure 4-25 

gives their results for the wave frequency vs. magnetic field. In this 
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FIGURE 4-24 
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Schematic of a Q-macbine experiment on electrostatic ion cyclotron waves. 
[After R. W. Motley and N. D'Angelo, Phys. Fluids 6, 296 (1963).] 

.3 

:I: .2 
� 

.1 

0 
0 2 4 6 8 10 

B (kG) 

FIGURE 4-25 Measurements of frequency of electrostatic ion cyclotron waves vs. 
magnetic field. [From Motley and D'Angelo, loc. cit.] 

experiment, the k2v; term was small compared to then� term, and the 

measured frequencies lay only slightly above fie. 

4.11 THE LOWER HYBRID FREQUENCY 

We now consider what happens when () is exactly 7T/2, and the electrons 
are not allowed to preserve charge neutrality by flowing along the lines 

of force. Instead of obeying Boltzmann's relation, they will obey the full 



equation of motion, Eq. [3-62]. If we keep the electron mass finite, this 
equation is nontrivial even if we assume T. = 0 and drop the Vp, term:. 

hence, we shall do so in the interest of simplicity. The ion equation of 
motion is unchanged from Eq. [4-63]: 

ek D.�) -1 

v· = - 4>1 ( 1 - --, tx 
Mw · w-

[4-68] 

By changing e to-e, M tom, and D., to-w, in Eq. [4-68], we can write 

down the result of solving Eq. [3-62] for electrons, with T, = 0: 

k 2 -1 e ( w,) 
Vex =--c/>1 1-2 

mw w 

The equations of continuity give 

k 
n;1 =no-v; I 

w 

[4-69] 

[4-70] 

The plasma approximation n; = n. then requires v; 1 = v, 1• Setting Eqs. 

[4-68] and [4-69] equal to each other, we have 

( D.�) ( w�) M 1 - w 2 = -m 1 -
w 

2 

[4-71] 

This is called the lower hybrid frequency. If we had used Poisson's equation 

instead of the plasma approximation, we would have obtained 

[4-7la] 

In low-density plasmas the latter term actually domin ates. The plasma 
approximation is not valid at such high frequencies. Lower hybrid oscilla
tions can be observed only if (J is very close to 1T/2. 
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4.12 ELECTROMAGNETIC WAVES WITH B0 = 0 

Next in the order of complexity come waves with B1 ,C. 0. These are 
transverse electromagnetic waves-light waves or radio waves traveling 

through a plasma. We begin with a brief review of light waves in a 

vacuum. The relevant Maxwell equations are 

[4-72] 

[4-73] 

since in a vacuum j = 0 and Eo/1-o = c -2_ Taking the curl of Eq. [ 4-73] 

and substituting into the time derivative of Eq. [4-72], we have 

c 2V x (V x B 1) = v x :E 1 = -8 1 

Again assuming planes waves varying as exp [i(kx- wt)], we have 

w2B1 = -c2k x (k X B1) = -c2[k(k · B1)- k2B1] 

[4-74] 

[4-75] 

Since k · B 1 = -iV · B 1 = 0 by another of Maxwell's equations, the result 

IS 

[4-76] 

and c is the phase velocity w/ k of light waves. 
In a plasma with B0 = 0, Eq. [4-72] is unchanged, but we must add 

a term i1/t<o to Eq. [4-73] to account for currents due to first-order 
charged particle motions: 

The time derivative of this is 

2 • 1 aj 1 •• 
cVxBI =--+EI 

€o at 

while the curl of Eq. [ 4-72] is 

v x (V x E1) = V(V- E1)- V2E1 = -v x :81 

[4-77] 

[4-78] 

[4-79] 

Eliminating V x B1 and assuming an exp [i(k · r- wt)] dependence, we 

have 

By transverse waves we mean k · E1 = 0, so· this becomes 

( 2 2k2)E 
. . I w - c  1 =-zwJ1 t<o 

[4-80] 

[4-81] 

L 



If we consider light waves or microwaves, these will be of such high 

frequency that the ions can be considered as fixed. The current j 1 then 

comes entirely from electron motion: 

[4-82) 

From the linearized electron equation of motion, we have (for KT, = 0): 

ave! 
m -- = -eE 

at 

eE1 
V , t = -.

tmUJ 

Equation [ 4-81] now can be written 

[4-83) 

[4-84] 

The expression for w � is recognizable on the right-hand side, and the 
result is 

2 2 2 2 
UJ = Wp + C k [4-85] 

This is the dispersion relation for electromagnetic waves propagating 

in a plasma with no de magnetic field. We see that the vacuum relation 

[ 4-76] is modified by a term w ! reminiscent of plasma oscillations. The 

phase velocity of a light wave in a plasma is greater than the velocity of 

light: 

2 2 
2 w 2 UJp 2 v<t> =---., = c  +-9>c 

k- k-
[4-86] 

However, the group velocity cannot exceed the velocity of light. From 
Eq. (4-85), we find 

[4-87] 

so that vg is less than c whenever vq, is greater than c. The dispersion 

relation [4-85] is shown in Fig. 4-26. This diagram resembles that of Fig. 

4-5 for plasma waves, but the dispersion relation is really quite different 
because the asymptotic velocity c in Fig. 4-26 is so much larger than the 
thermal velocity v,h in Fig. 4-5. More importantly, there is a difference 

in damping of the waves. Plasma waves with large kv,h are highly damped, 
a result we shall obtain from kinetic theory in Chapter 7. Electromagnetic 
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k 

FIGURE 4-26 Dispersion relation for electromag
netic waves in a plasma with no qc 
magnetic field. 

waves, on the other hand, become ordinary light waves at large kc and 

are not damped by the presence of the plasma in this limit. 

A dispersion relation like Eq. [ 4-85] exhibits a phenomenon called 

cutoff. If one sends a microwave beam with a given frequency w through 

a plasma, the wavelength 2-rr/ k in the plasma will take on the value 

prescribed by Eq. [ 4-85]. As the plasma density, and hence w! , is raised, 

k2 will necessarily decrease; and the wavelength becomes longer and 
longer. Finally, a density will be reached such that k2 is zero. For densities 

larger than this, Eq. [ 4-85] cannot be satisfied for any real k, and the 
wave cannot propagate. This cutoff condition occurs at a critical density 
nc such that w = wp; namely (from Eq. [4-25]) 

nc = me:0w
2/e

2 
[4-88] 

If n is too large or w too small, an electromagnetic wave cannot pass 

through a plasma. When this happens, Eq. [4-85] tells us that k is 

imaginary: 

k 
( 2 2 

) 
I /2 'I 2 2 1 1 /2 

C = W - Wp = Z Wp - W [4-89] 

Since the wave has a spatial dependence exp(ikx), it will be exponentially 
attenuated if k is imaginary. The skin depth 8 is found as follows: 

e
ikx 

= e-ikix = e-x/8 
[4-90] 

For most laboratory plasmas, the cutoff frequency lies in the microwave 

range. 

_L 



EXPERIMENTAL APPLICATIONS 4.13 

The phenomenon of cutoff suggests an easy way to measure plasma 
density. A beam of microwaves generated by a klystron is launched 

toward the plasma by a horn antenna (Fig. 4-27). The transmitted beam 
is collected by another horn and is detected by a crystal. As the frequency 

or the plasma density is varied, the detected signal will disappear 

whenever the condition [ 4-88] is satisfied somewhere in the plasma. This 

procedure gives the maximum density. It is not a convenient or versatile 
scheme because the range of frequencies generated by a single microwave 
generator is limited. 

A widely used method of density measurement relies on the disper

sion, or variation of index of refraction, predicted by Eq. [4-85]. The 

index of refraction n is defined as 

n = c/vcb = ck/w [4-91) 

This clearly varies with w, and a plasma is a dispersive medium. A 

microwave interferometer employing the same physical principles as the 

Michelson interferometer is used to measure density (Fig. 4-28). The 

signal from a klystron is split into two paths. Part of the signal goes to 

the detector through the "reference leg." The other part is sent through 

the plasma with horn antennas. The detector responds to the mean 
square of the sum of the amplitudes of the two received signals. These 
signals are adjusted to be equal in amplitude and 180° out of phase in 

the absence of plasma by the attenuator and phase shifter, so that the 
detector output is zero. When the plasma is turned on, the phase of the 
signal in the plasma leg is changed as the wavelength increases (Fig. 
4-29). The detector then gives a finite output signal. As the density 

increases, the detector output goes through a maximum and a minimum 

every time the phase shift changes by 360°. The average density in the 

PLASMA 
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Microwave measurement of plasma density by the cutoff of the transmitted FIGURE 4-27 

signal. 
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TEE 

plasma is found from the number of such fringe shifts. Actually, one 

usually uses a high enough frequency that the fringe shift is kept small. 

Then the density is linearly proportional to the fringe shift (Problem 
4-13). The sensitivity of this technique at low densities is limited to the 

stability of the reference leg against vibrations and thermal expansion. 
Corrections must also be made for attenuation due to collisions and for 
diffraction and refraction by the finite-sized plasma. 

The fact that the index of refraction is less than unity for a plasma 
has some interesting consequences. A convex plasma lens (Fig. 4-30) is 
divergent rather than convergent. This effect is important in the laser

solenoid proposal for a linear fusion reactor. A plasma hundreds of 

meters long is confined by a strong magnetic field and heated by absorp

tion of C02 laser radiation (Fig. 4-31). If the plasma has a normal density 

profile (maximum on the axis), it behaves like a negative lens and causes 

the laser beam to diverge into the walls. If an inverted density profile 

(minimum on the axis) can be created, however, the lens effect becomes 
converging; and the radiation is focused and trapped by the plasma. 
The inverted profile can be produced by squeezing the plasma with a 

pulsed coil surrounding it, or it can be produced by the laser beam itself. 
As the beam heats the plasma, the latter expands, decreasing the density 
at the center of the beam. The C02 laser operates at A = 10.6 f.Lm, 

WAVE GUIDE 

�REFERENCE LEG----I 
ATTENUATOR 

r-PLASMA LEG� 

<rr:H�:uu� 
PHASE SHIFTER 

::::::::::::::::::::::::::: 

DETECTOR 
OSCILLOSCOPE 

PLASMA 

FIGURE 4-28 A microwave interferometer for plasma density measurement. 



n 

I 

WAVE PATTERN 
IN PLASMA 

DETECTOR 
OUTPUT 

DENSITY 

CUTOFF 

The observed signal from an interferometer (right) as plasma density is FIGURE 4-29 

increased, and the corresponding wave patterns in the plasma (left). 

LASER 

A plasma lens has unusual optical proper- FIGURE 4-30 
ties, since the index of refraction is less 
than unity. 

A plasma confined in a long, linear solenoid will trap the C02 laser light used FIGURE 4-31 

to heat it only if the plasma has a density minimum on axis. The vacuum 
chamber has been omitted for clarity. 
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corresponding to a frequency 

The critical density is, from Eq. [4-88], 

However, because of the long path lengths involved, the refraction effects 

are important even at densities of 1022 m 
-

3 . The focusing effect of a 

hollow plasma has been shown experimentally. 
Perhaps the best known effect of the plasma cutoff is the application 

to shortwave radio communication. When a radio wave reaches an 
altitude in the ionosphere where the plasma density is sufficiently high, 

the wave is reflected (Fig. 4-32), making it possible to send signals around 

the earth. If we take the maximum density to be 1012 m -3 the critical 

frequency is of the order of 10 MHz (cf. Eq. [4-26]). To communicate 

with space vehicles, it is necessary to use frequencies above this in order 
to penetrate the ionosphere. However, during reentry of a space vehicle, 

a plasma is generated by the intense heat of friction. This causes a plasma 
cutoff, resulting in a communications blackout during reentry (Fig. 4-32). 

PROBLEMS 4-9. A space capsule making a reentry into the earth's atmosphere suffers a 
communications blackout because a plasma is generated by the shock wave in 
front of the capsule. If the radio operates at a frequency of 300 MHz, what is 
the minimum plasma density during the blackout? 

4-10. Hannes Alfven, the first plasma physicist to be awarded the Nobel prize, 
has suggested that perhaps the primordial universe was symmetric between 
matter and antimatter. Suppose the universe was at one time a uniform mix
ture of protons, antiprotons, electrons, and positrons, each species having a 
density n0• 

(a) Work out the dispersion relation for high-frequency electromagnetic waves 
in this plasma. You may neglect collisions, annihilations, and thermal effects. 

(b) Work out the dispersion relation for ion waves, using Poisson's equation. 
You may neglect T, (but not T,) and assume that all leptons follow the Boltzmann 
relation. 

4-11. For electromagnetic waves, show that the index of refraction is equal to 
the square root of the appropriate plasma dielectric constant (cf. Problem 4-4). 



\EENTRY VEHICLE 

'l. � 
� X 

? 

;;ONOSPHERE 
Exaggerated view of the earth's ionosphere, illustrating the FIGURE 4-32 

effect of plasma on radio communications. 

4-12. In a potassium Q-machine plasma, a fraction K of the electrons can be 
replaced by negative Cl ions. The plasma then has n0 K+ ions, Kn0 Cl- ions, and 
(1 - K )no electrons per m3. Find the critical value of n0 which will cut off a 3-cm 
wavelength microwave beam if K = 0.6. 

4-13. An 8-mm microwave interferometer is used on an infinite plane-parallel 
plasma slab 8 em thick (Fig. P4-13). 

(a) If the plasma density is uniform, and a phase shift of 1/10 fringe is observed, 
what is the density? (Note: One fringe corresponds to a 360° phase shift.) 

(b) Show that if rhe phase shift is small, it is proportional to the density. 

Scm 

FIGURE P4-13 
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4.14 ELECTROMAGNETIC WAVES PERPENDICULAR TO B0 

We now consider the propagation of electromagnetic waves when a 
magnetic field is present. We treat first the case of perpendicular propa

gation, k .l Bo. If we take transverse waves, with k .l E 1, there are still 

two choices: E1 can be parallel to B0 or perpendicular to B0 (Fig. 4-33). 

4.14.1 Ordinary Wave, E1 II B0 

If E1 is parallel to Bo, we may take Bo = B0z, E1 = E1z, and k = kx. In 

a real experiment, this geometry is approximated by a beam of micro

waves incident on a plasma column with the narrow dimension of the 
waveguide in line with B0 (Fig. 4-34). 

The wave equation for this case is still given by Eq. [4-81]: 

[4-921 

Since E1 = E 1z, we need only the component v.,. This is given by the 
equation of motion 

[4-931 

Since this is the same as the equation for B0 = 0, the result is the same 

as we had previously for B0 = 0: 

I 
2 2 2k2 W = Wp + C 

z t Bo 
E11IB0 

E,lBO * y 

k 

X 

FIGURE 4-33 Geometry for electromagnetic waves propa
gating at right angles to B0. 

[4-94] 



An ordinary wave launched from a waveguide antenna toward FIGURE 4-34 
a magnetized plasma column. 

This wave, with E1 II B0, is called the ordinary wave. The terminology 
"ordinary" and "extraordinary" is taken from crystal optics; however, 

the terms have been interchanged. In plasma physics, it makes more 
sense to let the "ordinary" wave be the one that is not affected by the 

magnetic field. Strict analogy with crystal optics would have required 

calling this the "extraordinary" wave. 

Extraordinary Wave, E1 _l_ B0 4.14.2 

If Et is perpendicular to B0, the electron motion will be affected by B0, 

and the dispersion relation will be changed. To treat this case, one would 

be tempted to take E1 = EtY and k = kx (Fig. 4-33). However, it turns 
out that waves with E1 _1_ B0 tend to be elliptically polarized instead of 
plane polarized. That is, as such a wave propagates into a plasma, it 
develops a component Ex along k, thus becoming partly longitudinal and 

partly transverse. To treat this mode properly, we must allow E1 to have 
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z 

y 

X 

FIGURE 4-35 The E-vector of an extraordinary wave is 
elliptically polarized. The components Ex and 
E, oscillate 90° out of phase, so that the total 
electric field vector E1 has a tip that moves in 
an ellipse once in each wave period. 

both x andy components (Fig. 4-35): 

E1 = Exx + E,y [4-95] 

The lineari:zed electron equation of motion (with KT, = 0) is now 

-imwv,1 = -e(E + v,1 X B0) 

Only the x andy components are nontrivial; they are 

-ze 
v, = - (E1- VxBo) 

mw 

[4-96] 

[4-97] 

The subscripts 1 and e have been suppressed. Solving for Vx and v, as 

usual, we find 

e ( . 
w, ) ( w �) -I 

Vx = 
mw -zEx - -;;; E, 1 - w 2 

e ( . w, ) ( w �)-I 
v1 = 

mw -zE1 + w Ex 1 - w 2 

[4-98] 

The wave equation is given by Eq. [4-80], where we must now keep the 

longitudinal term k · E1 = kEx: 

(w2- c2k2)E1 + c2kExk = -iwjr/Eo = inoweve�/Eo [4-99] 



Separating this into x and y components and using Eq. [ 4-98], we have 
. 2 -1 w2Ex = _ twnoe _e_ (iEx + w, Ey)(l _ w;) 

€0 mw w w 

Introducing the definition of wp, we may write this set as 

[4-100) 

[4-101] 

These are two simultaneous equations for Ex and Ey which are compatible 
only if the determinant of the coefficients vanishes: 

II� �ll=o [4-102) 

Since the coefficient A is w 2- w t where wh is the upper hybrid frequency 
defined by Eq. [4-60], the condition AD = BC can be written 

[4-103] 

This can be simplified by a few algebraic manipulations. Replacing the 
first w� on the right-hand side by w; + w� and multiplying through by 
w2 - wt we have 

2k 2 2 2 2 4 2/ 2 _c _ _ 1_
wp(w -wh)+(wpw, w) 2 - 2 2 2 2 w (w -w,)(w -wh) 

[4-104) 
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4.15 

This is the dispersion relation for the extraordinary wave. It is an elec
tromagnetic wave, partly transverse and partly longitudinal, which 
propagates perpendicular to Bo with E1 perpendicular to B0. 

CUTOFFS AND RESONANCES 

The dispersion relation for the extraordinary wave is considerably 

more complicated than any we have met up to now. To analyze what it 
means, it is useful to define the terms cutoff and resonance. A cutoff occurs 
in a plasma when the index of refraction goes to zero; that is, when the 
wavelength becomes infinite, since ii = ck/ w. A resonance occurs when 
the index of refraction becomes infinite; that is, when the wavelength 
becomes zero. As a wave propagates through a region in which Wp and 
we are changing, it may encounter cutoffs and resonances. A wave is 
generally reflected at a cutoff and absorbed at a resonance. 

The resonance of the extraordinary wave is found by setting k equal 
to infinity in Eq. [ 4- 1 04]. For any finite w, k � ro implies w � wh, so that 
a resonance occurs at a point in the plasma where 

2 2 2 2 Wh = Wp +We = W [4-105] 

This is easily recognized as the dispersion relation for electrostatic waves 
propagating across B0 (Eq. [4-60]). As a wave of given w approaches the 
resonance point, both its phase velocity and its group velocity approach 
zero, and the wave energy is converted into upper hybrid oscillations. 
The extraordinary wave is partly electromagnetic and partly electrostatic; 
it can easily be shown (Problem 4-14) that at resonance this wave loses 
its electromagnetic character and becomes an electrostatic oscillation. 

The cutoffs of the extraordinary wave are found by setting k equal 
to zero in Eq. [4- 104]. Dividing by w2-w�, we can write the resulting 
equation for w as follows: 

A few tricky algebraic steps will yield a simple expression for w: 
2 2 We Wp 

1- 2 2-� w -wp w 

1
_ w; _ w�/w2 

w2- 1- (w�/w2) 

[4-106] 



2 2 0 W =F WWe = Wp = [4-107] 

Each of the two signs will give a different cutoff frequency; we shall call 

these wR and wL. The roots of the two quadratics are 

WR =�[we+ (w; + 4w�)112] 
I [ 2 2 I /2] WL = 2 -we+ (we + 4wp) 

[4-108] 

We have taken the plus sign in front of the square root in each case 

because we are using the convention that w is always positive; waves 

going in the -x direction will be described by negative k. The cutoff 

frequencies wR and wL are called the right-hand and left-hand cutoffs, 

respectively, for reasons which will become clear in the next section. 

The cutoff and resonance frequencies divide the dispersion diagram 

into regions of propagation and nonpropagation. Instead of the usual 

w - k diagram, it is more enlightening to give a plot of phase velocity 

versus frequency; or, to be precise, a plot of w2/c2k2 = I/1i2 vs. w (Fig. 

4-36). To interpret this diagram, imagine that We is fixed, and a wave 

X WAVE 

0 
w--

The dispersion of the extraordinary wave, as seen from the behavior of the FIGURE 4-36 

phase velocity with frequency. The wave does not propagate in the shaded 
regions. 
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FIGURE 4-37 A similar dispersion diagram for the ordinary wave. 

with a fixed freque:1cy w is sent into a plasrn,a from the outside. As the 

wave encounters regions of increasing density, the frequencies wL, Wp, 
wh, and WR all increase, moving to the right in the diagram. This is the 

same as if the density were fixed and the frequency w were gradually 
being decreased. Taking the latter point of view, we see that at large w 
(or low density), the phase velocity approaches the velocity of liE,ht. As 
the wave travels further, v"' increases until the right-hand cutoff w = wR 
is encountered. There, v<�> becomes infinite. Between the w = WR and 
w = wh layers, w2/k2 is negative, and there is no propagation possible. 
At w = wh, there is a resonance, and v"' goes to zero. Between w = wh 
and w = WL, propagation is again possible. In this region, the wave travels 
either faster or slower than c depending on whether w is smaller or 

larger than w'
p. From Eq. [4-104], it is clear that at w = wp, the wave 

travels at the velocity c. For w < wL, there is another region of non propa
gation. The extraordinary wave, therefore, has two regions of propaga
tion separated by a stop band. 

By way of comparison, we show in Fig. 4-37 the same sort of diagram 
for the ordinary wave. This dispersion relation has only one cutoff and 
no resonances. 

4.16 ELECTROMAGNETIC WAVES PARALLEL TO B0 

Now we let k lie along the z axis and allow E1 to have both transverse 
components Ex and E�: 

k = ki [4-109] 

I 
i 

I 

I 
I 
I 
I 
I I 
I 
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The wave equation [ 4-99] for the extraordinary wave can still be used 
if we simply change k from kx to kz. From Eq. [4-100], the components 
are now 

2 . 
2 2 2 Wp ( ZWe ) (w - C k )Ex = 2/ 2 Ex - -Ey 1-We W W 

2 . 
2 2 2 Wp ( ZWe ) (w - c k )Ey = 2/ 2 Ey + -Ex 

1-W e W W 

Using the abbreviation 

we can write the coupled equations for Ex and E1 as 

2 2 2 . We 
(w - c k -a)Ex + za- Ey = 0 

w 

2 2k2 . We 
(w - c -a)Ey- za-Ex = 0 

w 

Setting the determinant of the coefficients to zero, we have 

(w2-c2k2- a)2 = (awe/w)2 

Thus 

w2- c2k2-a = ±awc/w 

w2-c2k2=a(1±We) = 
w�

/ 2 (1±We) W 1 -(w e W ) W 

2 1 ± (we/w) w; = Wp = 
[1 + (we/w)][I-(wc/w)] 1 =t= (wc/w) 

[4-110] 

[4-111] 

[4-112] 

[4-ll3] 

[4-ll4] 

[4-ll5] 

The =F sign indicates that there are two possible solutions to Eq. [ 4-112] 
corresponding to two different waves that can propagate along B0. The 
dispersion relations are 

2k2 2/ 2 ii2 = 
c __ = 1- wp w 
w2 1-(we/w) 

2k 2 2/ 2 
-2 C Wp W n = -9- = 1 ----'----

w- I+ (wc/w) 

(R wave) [4-116] 

(L wave) [4-ll7] 
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FIGURE 4-38 Geometry of right- and left-handed circularly 
polarized waves propagating along B0. 

The R and L waves turn out to be circularly polarized, the designations 
R and L meaning, respectively, right-hand circular polarization and left

hand circular polarization (Problem 4- 17). The geometry is shown in Fig. 
4-38. The electric field vector for the R wave rotates clockwise in time 
as viewed along the direction of B0, and vice versa for the L wave. Since 
Eqs. [ 4-116] and [ 4- 117] depend only on k 2, the direction of rotation of 
the E vector is independent of the sign of k ;  the polarization is the same 
for waves propagating in the opposite direction. To summarize: The 
principal electromagnetic waves propagating along B0 are a right-hand 
(R) and a left-hand (L) circularly polarized wave; the principal waves 
propagating across B0 are a plane-polarized wave (0-wave) and an ellipti
cally polarized wave (X-wave). 

We next consider the cutoffs and resonances of the R and L waves. 
For the R wave, k becomes infinite at w = We; the wave is then in resonance 
with the cyclotron motion of the electrons. The direction of rotation of 
the plane of polarization is the same as the direction of gyration of 
electrons; the wave loses its energy in continuously accelerating the 
electrons, and it cannot propagate. The L wave, on the other hand, does 
not have a cyclotron resonance with the electrons because it rotates in 
the opposite sense. As is easily seen from Eq. [ 4- 1 17], the L wave does 
not have a resonance for positive w. If we had included ion motions in 
our treatment, the L wave would have been found to have a resonance 
at w = flc, since it would then rotate with the ion gyration. 
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The u';/c2 vs. w diagrams for the Land R waves. The regions of non propagation FIGURE 4-39 
(u';/c2 < 0) have not been shaded, since they are different for the two waves. 

The cutoffs are obtained by setting k = 0 in Eqs. [4- 1 16] and [4- 1 17]. 
We then obtain the same equations as we had for the cutoffs of the X 
wave (Eq. [4- 107]). Thus the cutoff frequencies are the same as before. 
The R wave, with the minus sign in Eqs. [ 4- 1 16] and [ 4- 1 07], has the 
higher cutoff frequency WR given by Eq. [4- 108]; the L wave, with the 
plus sign, has the lower cutoff frequency wL. This is the reason for the 
notation wR, wL chosen previously. The dispersion diagram for the R 
and L waves is shown in Fig. 4-39. The L wave has a stop band at low 
frequencies; it behaves like the 0 wave except that the cutoff occurs at 
wL instead of Wp. The R wave has a stop band between WR and we, but 
there is a second band of propagation, with vq, < c, below we. The wave 
in this low-frequency region is called the whistler mode and is of extreme 
importance in the study of ionospheric phenomena. 

EXPERIMENTAL CONSEQUENCES 4.17 

The Whistler Mode 4.17 .1 

Early investigators of radio emissions from the ionosphere were 

rewarded by various whistling sounds in the audiofrequency range. 
Figure 4-40 shows a spectrogram of the frequency received as a function 
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FIGURE 4-40 Actual spectrograms of whistler signals, showing the cur

vature caused by the low-frequency branch of the R-wave 
dispersion relation (Fig. 4-39). At each time t, the receiver 
rapidly scans the frequency range between 0 and 20kHz, 
tracing a vertical line. The recorder makes a spot whose 
darkness is proportional to the intensity of the signal at 
each frequency. The downward motion of the dark spot 
with time then indicates a descending glide tone. [Courtesy 
of D. L. Carpen ter,].  Ceophys. Res. 71, 693 (1966).] 

of time. There is typically a series of descending glide tones, which can 
be heard over a loudspeaker. This phenomenon is easily explained in 
terms of the dispersion characteristics of the R wave. When a lightning 
flash occurs in the Southern Hemisphere, radio noise of all frequencies 
is generated. Among the waves generated in the plasma of the ionosphere 
and magnetosphere are R waves traveling along the earth's magnetic 
field. These waves are guided by the field lines and are detected by 
observers in Canada. However, different frequencies arrive at different 
times. From Fig. 4-39, it can be seen that for w < wc/2, the phase velocity 
increases with frequency (Problem 4- 19). It can also be shown (Problem 
4-20) that the group velocity increases with frequency. Thus the low 
frequencies arrive later, giving rise to the descending tone. Several 
whistles can be produced by a single lightning flash because of propaga
tion along different tubes of force A, B, C (Fig. 4-4 1). Since the waves 
have w < we, they must have frequencies lower than the lowest gyro
frequency along the tube of force, about 100 kHz.' Either the whistles 
lie directly in the audio range or they can easily be converted into audio 
signals by heterodyning. 
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Diagram showing how whistlers are FIGURE 4-41 
created. The channels A, B, and C 
refer to the signals so marked in Fig. 
4-40. 

Faraday rotation of the plane of polarization of an elec- FIGURE 4-42 

tromagnetic wave traveling along B0• 

Faraday Rotation 4.17 .2 

A plane-polarized wave sent along a magnetic field in a plasma will suffer 
a rotation of its plane of polarization (Fig. 4-42). This can be understood 
in terms of the difference in phase velocity of the R and L waves. From 
Fig. 4-39, it is clear that for large w, the R wave travels faster than the 
L wave. Consider the plane-polarized wave to be the sum of an R wave 
and an L wave (Fig. 4-43). Both waves are, of course, at the same 

frequency. After N cycles, the EL and ER vectors will return to their 
initial positions. After traversing a given distanced, however, the R and 
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FIGURE 4-43 A plane-polarized wave as the sum of left- and right

handed circularly polarized waves. 

+ 

FIGURE 4-44 After traversing the plasma, the L wave is advanced in phase 
relative to the R wave, and the plane of polarization is rotated. 

L waves will have undergone a different number of cycles, since they 
require a different amount of time to cover the distance. Since the L 
wave travels more slowly, it will have undergone N + E cycles at the 
position where the R wave has undergone N cycles. The vectors then 
have the positions shown in Fig. 4-44. The plane of polarization is seen 
to have rotated. A measurement of this rotation by means of a microwave 
horn can be used to give a value of w! and, hence, of the density (Problem 
4-22). The effect of Faraday rotation has been verified experimentally, 
but it is not as useful a method of density measurement as microwave 
interferometry, because access at the ends of a plasma column is usually 
difficult, and because the effect is small unless the density is so high that 
refraction becomes a problem. 

When powerful pulsed lasers are used to produce a dense plasma 
by vaporizing a solid target, magnetic fields of megagauss intensities are 
sometimes spontaneously generated. These have been detected by Fara
day rotation using laser light of higher frequency than the main beam. 
In interstellar space, the path lengths are so long that Faraday rotation 
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135 is important even at very low densities. This effect has been used to 
explain the polarization of microwave radiation generated by maser 
action in clouds of OH or H20 molecules during t h e  formation of new 
stars. 

Waves in 
Plasmas 

4-14. Prove t h at the extraordinary wave is purely electrostatic at resonance. PROBLEMS 
Hint: Express t h e  ratio E,/ E. as a function of w and set w equal t o  wh. 

4-15. Prove t h at t he critical points on Fig . 4-36 are correctly ordered; namely, 
that WL < Wp < Wh < WR. 

4-16. Show t h at t he X-wave group velocity v anishes at cutoffs and resonances. 
You may neglect ion motions. 

4-1 7. Prove that t he R and L waves are right- and left-circularly polarized as 
follows: 

(a) Show that t he simultaneous equations for E. and E, can be writte n  i n  t he for m 

F(w )(E. - iE,) = 0 ,  G(w)(E. + iE,) = 0 

where F(w ) = 0 for the R wave and G (w) = 0 for the L wave.  

(b) For t he R wave, G (w) 'i 0; and therefore Ex = -iE,. Recalling the exponential 
time dependence of E, show that E t hen rotates i n  the electron gyration direction. 
Confir m  that E rot ates in the opposite direction for t he L wave. 

(c) For the R wave, draw the helices traced by the tip of the E v ector i n  space 
at a given time for (i) k, > 0 and (ii) k, < 0 .  N ote that t he rotation of E is in t he 
same direction i n  both instances i f  one stays at a fixed position and watches t he 
helix pass by. 

4-18. Left- hand circularly polarized w av es are propagated along a u ni form 
magnetic field B = Boi into a plasma with density increasi ng wit h z. At what 
density is cutoff reac hed iff= 2.8 GHz and B0 = 0 .3 T? 

4-19. Show t hat t he w histler mode has maxi mu m  phase velocity at w = w,/2 and 
that t his maximum is l ess than the velocity of light. 

4-20. Show that t he grou p velocity of the w hi stler mode is proportional t o w 112 

i f  w « w, and E » l. 

4-2 1. Show t hat t here is no Faraday rotation i n  a positronium plasma (equal 
numbers of positrons and electrons). 

4-22. Faraday r otation of an 8-m m-wavelength microwave beam in a unifor m  
plasma i n  a 0. 1-T magnetic field is  measured . T h e  plane o f  polarization i s  found 
t o  be rotated 90° after traversing l m of plasma. What is the density? 
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4-23. Show that the F araday rotation angle, i n  degrees, of a linearly polarized 
transverse wave propagating along Bois gi ven by 

(} = 1.5 x 10-"A� 1L B(z)n,(z)dz 

where A0 is the free-space wavelength and L the path length m the plasma. 
Assume w2 » w �, w ; . 

4-24. I n  some laser- fusion ex periments in which a plasma is c reated by a pulse 
of 1.06-� m light impi n ging on a solid target, very large magnetic fields are 
generated by thermoelectric currents. These fields can be measured by F araday 
rotation of frequency-doubled light (A0 = 0.53 �m) derived from the same lase·r .  
I f  B = 100 1, n = 1027 m -3, and the path length in  the plasma i s  30 � m, what 
is  the Faraday rotation angle in  degrees? (Assume kiiB.) 

4-25. A microwave i nterferometer em ployin g  the ordinary wave cannot be used 
above the cutoff densi ty n,. To measure higher densities, one can use the 
extraordinary wave. 

(a) Write an ex pression for the cutoff density ncx for the X wave. 

(b) On a v!/c2 vs. w diagram , show the branch of the X-wave dispersion relation 
on whic h such an i nterferometer would work. 

HYDROMAGNETIC WAVES 

The la1>t part of our survey of fundamental plasma waves concerns 
low-frequency ion oscillations in the presence of a magnetic field. Of the 
many modes possible, we shall treat only two: the hydromagnetic wave 
along B0, or Alfvin wave, and the magnetosonic wave. The Alfven wave 
in plane geometry has k along 80; E1 and j 1 perpendicular to Bo; and 
B1 and v1 perpendicular to both 80 and E1 (Fig. 4-45). From Maxwell's 
equation we have, as usual (Eq. [4-80]), 

[4-118] 

Since k = kZ and E1 = E1x by assumption, only the x component of this 

equation is nontrivial. The current j1 now has contributions from both 

ions and electrons, since we are considering low frequencies. The x 

compon ent of Eq. [ 4-118] becomes 
[4-119] 

Thermal motions are not important for this wave; we may therefore 
use the solution of the ion equation of motion with T; = 0 obtained 
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Geometry of an Alfven wave propagating FIGURE 4-45 
along Bo. 

previously in Eq. [4-63]. For completeness, we include here the com
ponent v;y, which was not written explicitly before: 

ie D� -I 

V;x = Mw ( 1- w2) £1 

e De ( D�)-1 v· = --- 1-- E1 'Y Mw w w2 

[4-120] 

The corresponding solution to the electron equation of motion is found 
by letting M � m, e � -e, De �  -we, and then taking the limit w� » w2: 

. 2 ze w 
v,x = -- �E��o mw We 

[4-121] 

In this limit, the Larmor gyrations of the electrons are neglected, and 
the electrons have simply an E x B drift in the y direction. Inserting 
these solutions into Eq. [ 4-119], we obtain 

2 2 2 . ie ( n;) -I Eo(w - c  k )EI = -zwn0e-- 1-� £1 Mw w [4-122] 

They components of v1 are needed only for the physical picture to be 
given later. Using the definition of the ion plasma frequency Dp (Eq. 
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[4-49]), we have 

[4-123) 

We must now make the further assumption w 2 « !1�; hydromagnetic 
waves have frequencies well below ion cyclotron resonance. In this limit, 
Eq. [4-123] becomes 

2 2k 2 2 D! 2 n0e 2 M2 2 p 
w -c = -w � = -w -- � = -w --? n, EoM e Bo EoBo 

2 2 2 w c c 

fl = 1 + (p/E0B�) = _1_+_(_P_I-L_o_/ B----,6 )-c"2 [4-124] 

where p is the mass density n0M. This answer is no surprise, since the 
denominator can be recognized as the relative dielectric constant for 
low-frequency perpendicular motions (Eq. [3-28]). Equation [4-124] 

simply gives the phase velocity for an electromagnetic wave in a dielectric 
medium: 

w c c 
-k = ( )1/2 = "172 ER/.LR E R 

for 1-LR = 1 

As we have seen previously, E is much larger than unity for most 
laboratory plasmas, and Eq. [ 4-124] can be written approximately as 

w Bo - = vcb = 1/? k (!-LoP) -
[4-125] 

These hydromagnetic waves travel along B0 at a constant velocity VA, 

called the A lfvin velocity : 

_ I 112 VA= B (P-oP) [4-126] 

This is a characteristic velocity at which perturbations of the lines of force 
travel. The dielectric constant of Eq. [3-28] can now be written 

[4-127] 

Note that v A is small for well-developed plasmas with appreciable density, 
and therefore ER is large. 

To understand what happens physically in an Alfven wave, recall 
that this is an electromagnetic wave with a fluctuating magnetic field B1 
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given by 

Ex = (w/k)B1 [4-128) 

The small component B1, when added to B0, gives the lines of force a 
sinusoidal ripple, shown ex�ggerated in Fig. 4-46. At the point shown, 
B1 is in the positive y direction, so, according to Eq. [ 4- 128], E, is in the 
positive x direction if w/ k is in the z direction. The electric field Ex gives 
the plasma an E1 x B0 drift in the negative y direction. Since we have 
taken the limit (J) 2 « n;, both ions and electrons will have the same drift 
v,, according to Eqs. [4- 120] and [4- 12 1]. Thus, the fluid moves up and 
down in they direction, as previously indicated in Fig. 4-45. The magni
tude of this velocity is jE,/ B0j. Since the ripple in the field is moving by 
at the phase velocity w/ k, the line of force is also moving downward at 
the point indicated in Fig. 4-46. The downward velocity of the line of 
force is (w/k)jBy/B0j, which, according to Eq. [4-128], is just equal to the 
fluid velocity jEx/B0j. Thus, the fluid and the field lines oscillate together 
as if the particles were stuck to the lines. The lines of force act as if they 
were mass-loaded strings under tension, and an Alfven wave can be 
regarded as the propagating disturbance occurring when the strings are 
plucked. This concept of plasma frozen to lines of force and moving 
with them is a useful one for understanding many low-frequency plasma 
phenomena. It can be shown that this notion is an accurate one as long 
as there is no electric field along B. 

It remains for us to see what sustains the electric field Ex which we 
presupposed was there. As E1 fluctuates, the ions' inertia causes them 

X 

Relation among the oscillating quantities in an Alfven wave and the (exagger- FIGURE 4-46 
ated) distortion of the lines of force. 
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FIGURE 4-47 Geometry of a torsional (or shear) 
Alfvim wave in a cylindrical column. 

to lag behind the electrons, and there is a polarization drift vp in the 
direction of E1. This drift Vix is given by Eq. [ 4-120] and causes a current 
j 1 to flow in the x direction. The resulting j 1 x B0 force on the fluid is 
in they direction and is 90° out of phase with the velocity VJ. This force 
perpetuates the oscillation in the same way as in any oscillator where the 
force is out of phase with the velocity. It is, of course, always the ion 
inertia that causes an overshoot and a sustained oscillation, but in a 
plasma the momentum is transferred in a complicated way via the 
electromagnetic forces. 

In a more realistic geometry for experiments, E1 would be in the 
radial direction and v1 in the azimuthal direction (Fig. 4-47). The motion 
of the plasma is then incompressible. This is the reason the Vp term in 
the equation of motion could be neglected. This mode is called the 
torsional Alfven wave. It was first produced in liquid mercury by B. 
Lehnert. 

Alfven waves in a plasma were first generated and detected by Allen, 
Baker, Pyle, and Wilcox at Berkeley, California, and by Jephcott in 
England in 1959. The work was done in a hydrogen plasma created in 
a "slow pinch" discharge between two electrodes aligned along a magnetic 
field (Fig. 4-48). Discharge of a slow capacitor bank A created the plasma. 
The fast capacitor B, connected to the metal wall, was then fired to create 
an electric field E1 perpendicular to B0. The ringing of the capacitor 
generated a wave, which was detected, with an appropriate time delay, 
by probes P. Figure 4-49 shows measurements of phase velodty vs. 
magnetic field, demonstrating the linear dependence predicted by Eq. 
[4-126]. 



B 

A 
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Schematic of an experiment to detect Alfven waves. [From J. M. Wi lcox, FIGURE 4-48 
F. I. Boley, and A .  W. DeSilva,  Phys. Fluids 3, 15 (I 960).) 
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Measured phase velocity of Alfven waves vs. magnetic field. [From Wilcox, FIGURE 4-49 
Boley, and DeSilva, loc. cit.] 

This experiment was a difficult one, because a large magnetic field 
of 1 T was needed to overcome damping. With large B0, VA, and hence 
the wavelength, become uncomfortably large unless the density is high. 
In the experiment of Wilcox et al., a density of 6 X 1021 m-3 was used to 
achieve a low Alfven speed of 2.8 x 105m/sec. Note that it is not possible 
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4.19 

to increase p by using a heavier atom. The frequency w = kv A is propor
tional to M-1 12, while the cyclotron frequency flc is proportional to M-1. 
Therefore, the ratio w/ilc is proportional to M112• With heavier atoms 
it is not possible to satisfy the condition w2 « n�. 

MAGNETOSONIC WAVES 

Finally, we consider low-frequency electromagnetic waves propagating 
across B0. Again we may take B0 = Bii and E1 = E 1x, but we now let 
k = ky (Fig. 4-50). Now we see that the E1 X B0 drifts lie along k, so that 
the plasma will be compressed and released in the course of the oscilla
tion. It is necessary, therefore, to keep the Vp term in the equation of 
motion. For the ions, we have 

OV;J 
Mno- = eno(E1 + v; 1 X B0) - y;KT; Vn 1 

at 

With our choice of E1 and k, this becomes 

z 

X 

ie k y,KT; n 1 
v;, = -- (-v;xBo) +- -- -J\tf w w M no 

y 

k 

[4-129] 

[4-130] 

[4-131] 

FIGURE 4-50 Geometry of a magnetosonic wave 
propagating at right angles to B0. 
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The equation of continuity yields 

so that Eq. [4-13 1] becomes 

With the abbreviation 

this becomes 

Combining this with Eq. [4- 130], we have 

ie ifl, ( ifl,) _ 1  v· =-E + - - - (1 - A ) v· 1x Mw x w w 1x 

_ ( 
1 _ n; 1 w 2) = � V,x 1- A Mw 

Ex 

[4-132] 

[4-133] 

[4-134] 

[4-135] 

This is the only component of v; 1 we shall need, since the only nontrivial 
component of the wave equation [4-81] is 

[4-136] 

To obtain v,x, we need only to make the appropriate changes in Eq. 
[4- 135] and take the limit of small electron mass, so that w2 « w� and 
w2 « k2v�he: 

ie w2 ( k2 -y.KT.) ik2 -y.KT. 
Vex =- -2 1 - 2 -- Ex � - --2 -- Ex mw w, w m wB0 · e 

Putting the last three equations together we have 

2 2 2 . [ ie ( 1 - A ) Eo(w - c k )Ex = -zwnoe --Ex r. 2/ 2 Mw 1 - A  - (u, w ) 

ik2M y,KT. J + --2 -- Ex wBo eM 

[4-137] 

[4-138] 
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We shall again assume w 2 « !1�. so that l -A can be neglected relative 
to n;;w2. With the help of the definitions of !1p and V_.\, we have 

Since 

2 2k 2( l y.KT.) !1� ( 2 k 2 y,KT,) _ O w -c + --9- +-9 w - -- -

MvA. D� M 

Eq. [4- 139] becomes 

where v, is the acoustic speed. Finally, we have 

[4-139] 

[4-140) 

[4-142] 

This is the dispersion relation for the magnetosonic wave propagating 
perpendicular to B0. It is an acoustic wave in which the compressions 
and rarefactions are produced not by motions along E, but by Ex B 
drifts across E. In the limit B0 � 0, v.-.. � 0, the magnetosonic wave turns 
into an ordinary ion acoustic wave. In the limit KT � 0, v, � 0, the 
pressure gradient forces vanish, and the wave becomes a modified Alfven 
wave. The phase velocity of the magnetosonic mode is almost always 
larger than v .-.. ; for this reason, it is often called simply the "fast" hydro
magnetic wave. 

4.20 SUMMARY OF ELEMENTARY PLASMA WAVES 

Electron waves (electrostatic) 

Bo = 0 or k II Bo: 

k _!_ B0: 

2 2 3 2 2 w = Wp + 2k v,h 

2 2 2 2 w =wp +w, =wh 
(Plasma oscillations) 

(Upper hybrid 
oscillations) 

[4-143] 

[4-144] 

J 
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Ion waves (electrostatic) 

Bo=Oork jj B0: w2
= k2v; 

= k 2 y.KT. + 'YiKTi 
M 

(Acoustic waves) [4-145] 

k l_ B0: 

or 

Electron waves (electromagnetic) 

Bo = 0: 2 2 k2 2 W = Wp + C 

2k2 2 
II C Wp 

k l_ Bo, E 1 Bo: -2 = 1 - 2 

k i! Bo: 

w w 

9 9 2 9 
c -k - _ 1 _ wp/w-

2 -w 1-(wjw) 

2k2 2 / 2 
C Wp W -9-= 1 - ----"-'---
w- 1+(wjw) 

Ion waves (electromagnetic) 

Bo = 0: 

k i! B0: 

k l_ B0: 

None 

(Electrostatic ion 

cyclotron waves) 

(Lower hybrid 

oscillations) 

(Light waves) 

(0 wave) 

(X wave) 

(R wave) 

(whistler mode) 

(L wave) 

[4-146] 

[4-147] 

[4-148) 

[4-149] 

[4-150] 

[4-151] 

[4-152] 

(Alfven wave) [4-153] 

(Magnetosonic wave) [4-154] 

This set of dispersion relations is a greatly simplified one covering 
only the principal directions of propagation. Nonetheless, it is a very 
useful set of equations to have in mind as a frame of reference 
for discussing more complicated wave motions. -It is often possible to 
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4.21 

understand a complex situation as a modification or superposition of these 
basic modes of oscillation. 

THE CMA DIAGRAM 

When propagation occurs at an angle to the magnetic field, the phase 
velocities change with angle. Some of the modes listed above with k II B0 
and k ..L B0 change continuously into each other; other modes simply 
disappear at a critical angle. This complicated state of affairs is greatly 
clarified by the Clemmow-Mullaly-Allis (CMA) diagram, so named for 
its co-inventors by T. H. Stix. Such a diagram is shown in Fig. 4-51. The 
CMA diagram is valid, however, only for cold plasmas, with Ti = T. = 0. 
Extension to finite temperatures introduces so much complexity that the 

diagram is no longer useful. 

Figure 4-51 is a plot of w,/w vs. w!/w2 
or, equivalently, a plot of 

magnetic field vs. density. For a given frequency w, any experimental 
situation characterized by wp and w, is denoted by a point on the graph. 
The total space is divided into sections by the various cutoffs and reson
ances we have encountered. For instance, the extraordinary wave cutoff 

2 ') 9 • 
d 

. I . 
b I d 2/ ? h at w = w; + w; IS a qua ratiC re atwn etween w, w an wp w-; t e 

resulting parabola can be recognized on Fig. 4-51 as the curve labeled 
"upper hybrid resonance." These cutoff and resonance curves separate 

regions of propagation and nonpropagation for the various waves. The 
sets of waves that can exist in the different regions will therefore be 

different. 

The small diagram in each region indicates not only which waves 
are present but also how the phase velocity varies qualitatively with angle. 
The magnetic field is imagined to be vertical on the diagram. The distance 

from the center to any point on an ellipse or figure-eight at an angle (} 
to the vertical is proportional to the phase velocity at that angle with 
respect to the magnetic field. For instance, in the triangular region 
marked with an* on Fig. 4-51, we see that the L wave becomes the X 
wave as 8 varies from zero to 'TT'/2. The R wave has a velocity smaller 
than the L wave, and it disappears as 8 varies from zero to 'TT'/2. It does 
not turn into the 0 wave, because w2 < w! in that region, and the 0 
wave does not exist. 

The upper regions of the CMA diagram correspond tow « w,. The 

low-frequency ion waves are found here. Since thermal velocities have 
been neglected on this diagram, the electrostatic ion waves do not appear; 

they propagate only in warm plasmas. One can regard the CMA diagram 
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PROBLEMS 

as a "plasma pond": A pebble dropped m each regiOn will send out 
ripples with shapes like the ones shown. 

4-26. A hydrogen discharge in a 1-T field produces a density of 1 0'6 m-3 . 

(a) What is the A lfven speed v .. ,? 

(h) Suppose v" had come out greater than c. Does this mean that Alf ve n  waves 
travel faster than the speed of light? 

4-27. Calculate the Alfven speed i n  a region of the magnetosphere where 
B = 10-8 T ,  n = 108m-3, and M = MH = 1 .67 x 10-27 kg. 

4-28. Suppose you have created a laboratory plasma with n = 1015 m-3 and 
B = 10-2 T. You co nnect a 1 60-MHz signal generato r to a probe i nserted into 
t he plasma.  

(a) Draw a CMA diagram and indicate the regio n in which the experiment is  
located. 

(b) What electromagnetic waves m ight be excited and pro pagated in the plasma? 

4-29. Suppose you wish to design an experiment in which standing torsio nal 
Alfve n waves are generated in a cyl indrical plasma colum n ,  so that the standing 
wave has m aximum amplitude at  the m idplane and nodes at the ends. To satisfy 
the condition w « n" you make w = 0 . 1f1, . 

(a) If you could create a hydrogen plasma with n = 10'9 m-3 and B = 1 T, how 
long does the colum n  have to be? 

(h) If you tried to do this with a 0 .3 T Q-machine, in which the singly charged 
Cs io ns have an atomic weight 133 and a density n = 1018 m-3, how long wo uld 
the plasma have to be? Hint: Figure out the scaling factors and use the result 
of part (a) .  

4-30. A pulsar emits a broad spectrum of electromagnetic radiation, which is 
detected with a receiver tuned to the neighborhood off = 80 MHz. Because of 
the dispersio n in group velocity caused by the interstellar plasma, the observed 
frequency during each pulse drifts at a rate given by df/dt = -5 M H z/sec. 

(a) If the interstellar magnetic field is  negligible and w 2 » w !. show that 

where fp is the plasma frequency and x is the distance of the pulsar .  

(h) I f  the average electron density i n  space i s  2 x 1 05m-3, how far away i s  the 
pulsar? ( 1  parsec= 3 x 1016 m. )  



4-31. .A three-component plasma has a density n0 of electrons, (1 - € )no of ions 
of mass M,. and En11 of ions of mass M2. Let T;, = T;2 = 0 ,  T, ¥- 0 .  

(a) Derive a dispersion relation for elect rostatic i on cyclotron waves. 

(b) Find a simple ex pression for w2 when € is s mall .  

(c) Evaluate t h e  wave f requencies for a case w he n  € i s  not small: a 50-50% D-T 
mixture at KT, = 10 keY, Bo = 5 T, and k = I e m-' . 

4-32. For a Langmuir plasma osci llation, s how t hat the time-averaged electron 
ki netic energy per m3 is equal to t he elect ric field energy density �€0(£2) .  

4-33. For an Alfve n wave, show that t h e  time-averaged ion ki netic energy per 
m3 is equal to t he magnetic wave energy (Bn/2JLo. 

4-34. Figure P4-34 s h ows a far-infrared laser operating at A = 337 �J. m. When 
Bo = 0,  t his radiation easily  penetrates the plas ma w henever w9 is less t han w, 
or n < n, = 1022 m-3 . H owever, because of  t he long pat h  lengt h ,  the defoc using 
effect of t he plas ma (cf .  Fig. 4-30) spoils t h e  optical cavity, and t he density is 
limited by the conditions w! < Ew

2
, where E « !. In the interest of increasing 

t he limiti ng density, and hence t he laser output power, a magnetic field B0 is 
added. 

(a) If € is unchanged, s h ow that t he limiting density can be increased if  left-hand 
circularly polarized waves are propagated. 

(b) If n is to be doubled , how large does B0 have to be? 

"-----=1 1----""---------' + -
DISCHARGE PULSER 

CONCAVE MIRROR FLAT MIRROR WITH 

OUTPUT COUPLING HOLE 

PLASTIC WINDOW 

Schematic of a pulsed HCN laser. FIGURE P4-34 
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(c) Show that the plasma is  a focusing lens for the whistler mode. 

(d) Can one use the whistler mode and therefore go to much higher densities) 

4-35. Use Ma,.."Wel l's equations and the electron equation of motion to derive 
the dispersion relation for light waves propagating through a uniform, unmag
netized,  collisionless, isothermal plasma with density n and finite electron tem
perature T,. (Ignore ion motions.) 

4-36. Prove that transverse waves · are unaffected by the Vp term whenever 
k X Bo = 0, even if ion motion is included. 

4-37. Consider the damping of an ordinary wave caused by a constant collision 
frequency v between electrons and ions. 

(a) Show that the d ispersion relation is 

c2e w ! - = I - ----''---

w2 w (w + iv) 
(b) For waves damped i n  t ime (k real) when v/w « 1 ,  show that the damping 
rate y = - Im (w) is approximately 

(c) For waves damped in space (w real) when v/ w « I ,  show that the attenuation 
distance 8 = (Im k )- 1  is approximately 

4-38. It has been proposed to build a solar power station in space with huge 
panels of solar cells collecting sunl ight 24 hours a day. The power is transmitted 
to earth in a 30-cm-wavelength microwave beam .  We wish to estimate how much 
of the power is lost i n  heating u p  the ionosphere. Treating the latter as a weakly 
ionized gas with constant electron-neutral col lision frequency, what fraction of 
the beam power is lost in traversing 1 00 km of plasma with n, = 1 0 1 1  m-3, 
n. = 1 0 1 6 m-3, and uv = I 0- 1 4 m3/sec? 

4-39. The Appleton-Hartree dispersion relation for high-frequency electromag
netic waves propagating at an angle (J to the magnetic field is 

c �k2  2w � ( l - w !/w 2) 
-2- = 1 - 9 9/ 2 9 . 2 2 . 4 9 I •; 9 o 9 l ' '9 w 2w· ( l - w f,  w ) - w ;  sm (J ±w, [w, sm (J +4w·( - w -p  w ·)" cos· 8 -

Discuss the cutoffs and resonances of this equation. Which are independent of (} ?  

4-40. Microwaves with free-space wavelength A0 equal t o  1 e m  are sent through 
a plasma slab 10 em thick in which the density and magnetic field are uniform 
and given by n 0 = 2 . 8 x l 0 1 8 m-3 and B 0 = 1 .07 T. Calculate the number of 
wavelengths inside the slab if (see Fig. P4-40) 
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(a) the waveguide is oriented so that E 1  is in the £ direction; 

(b) the waveguide is oriented so that E1 is  in the y direction. 

X 

4-4 1 .  A cold plasma is composed of positi\·e ions of charge Ze and mass M + and 
negative ions of charge -e and mass M_. In  the equilibrium state, there is no 
magnetic or electric field and no velocity; and the respective densities are no+ 
and n0_ = Zno+· Derive the dispersion relation for plane electromagnetic waves. 

4-42. Ion waves are generated in a gas-discharge plasma in a mixture of argon 

and helium gases. The plasma has the following constituents: 

(a) Electrons of density n0 and temperature KT, ; 

(b) Argon ions of density nA, mass MA. charge +Ze, and temperature 0 ;  and 

(c) He ions of density nH. mass MH. charge +e, and temperature 0. 

Derive an expression for the phase velocity of the waves using a linearized, 
one-dimensional theory with the plasma approximation and the Boltzmann 

relation for electrons. 

4-43. In a remote part of the universe, there exists a plasma cons1stmg of 

positrons and fully stripped antifermium nuclei of charge -Ze, where Z = 1 00. 
From the equations of motion, continuity, and Poisson, derive a dispersion 
relation for plasma oscillations in this plasma, including ion motions. Define the 
plasma frequencies. You may assume KT = 0, B0 = 0, and all other simplifying 
initial conditions .  

FIGURE P4-40 
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FIGURE P4-46 

4-44. Intelligent l ife on a planet in the Crab nebula tries to communicate with 
us primitive creatures on the earth .  We receive radio signals in the 1 08- 1 09 Hz 
range, but the spectrum stops abruptly at 1 20 M Hz. From optical measurements, 
i t  is possible to place an upper l imit of 36 G on the magnetic field in the vicinity 
of the parent star. If the star is located in an HII  region (one which contains 
ionized hydrogen),  and if the radio signals are affected by some sort of cutoff 
in the plasma there, what is a reasonable lower limit to the plasma density) 
(I gauss = 1 0-4 T .) 

4-45. A space ship is moving through the ionosphere of Jupiter at a speed of 
100 km/sec, parallel to the 1 0-5-T magnetic field . If the motion is supersonic 
(v > v, ) ,  ion acoustic shock waves would be generated. If, in addition, the motion 
is super-Alfvenic (v > vA).  magnetic shock waves would also be excited. I nstru
ments on board indicate the former but not the latter. Find l imits to the plasma 
density and electron temperature and indicate whether these are upper or lower 
limits. Assume that the atmosphere of Jupiter contains cold ,  singly charged 
molecular ions of H2 ,  He, CH4, C02, and N H4 with an average atomic weight 
of 1 0 .  

4-46. A n  extraordinary wave with frequency w i s  incident o n  a plasma from the 
outside. The variation of the right-hand cutoff frequency WR and the upper 
hybrid resonance frequency wh with radius are as shown. There is an evanescent 
layer in w h ich the wave cannot propagate. I f  the density gradient at the point 
where w = wh is given by lan/arl = n/r0, show that the distance d between the 
w = wR and wh points is approximately d = (wjw )ro. 
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4-47. By introducing a gradient in B0, it is possible to make the u pper hybrid 
resonance accessible to an X wave sent in from the outside of the plasma (cf. 
preceding problem). 

(a) Draw on an wJw vs. w!/w2 diagram the path taken by the wave, showing 
how the wR cutoff is avoided. 

(b) Show that the required change in B0 between the plasma surface and the 
upper hybrid layer is 

4-48. A certain plasma wave has the dispersion relation 

where w2 =w ! + D!. Write explicit expressions for the resonance and cutoff 
frequencies (or for the squares thereof), when t: = m/ M « 1 .  

4-49. The extraordinary wave with 10n motions included has the following 
dispersion relation : 

(a) Show that this is identical to the equation in the previous problem. (Warning: 
this problem may be hazardous to your mental health. )  

(b) If  w1 and wL are the lower hybrid and left-hand cutoff frequencies of this 
wave, show that the ordering n, :5 wt :5 wL is  always obeyed. 

(c) Using these results and the known phase velocity in the w � 0 limit, draw a 
·qualitative v�/c2 vs. w plot showing the regions of propagation and evanescence. 

4-50. We wish to do lower-hybrid heating of a hydrogen plasma column with 
w� = 0 at r = a  and wp = �w, at the center, in a uniform magnetic field. The ante n na 
launches an X wave with ku = 0 .  
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(a) Draw a qualitative plot of w" n" W L ,  and W I  vs. radius. This graph should 
not be to scale, but it should show correctly the relative magnitudes of these 
frequencies at the edge and center of the plasma. 

(h) Estimate the thickness of the evanescent layer between w1 and wL (cf. previous 
problem) if  the rf frequency w is set equal to w1 at the center. 

(c) Repeat (a) and (b) for wp(max) = 2w" and draw a conclusion about this antenna 
design. 

4-5 1. The electromagnetic ion cyclotron wave (Stix wave) is sometimes used for 
radiofrequency heating of fusion plasmas. Derive the dispersion relation as 
follows : 

(a) Derive a wave equation in the form of Eq . [ 4- 1 1 8] but with displacement 
current neglected. 

(b) Write the x and )' components of this equation assuming kx = 0, k2 = k; + k; ,  
a n d  k, k ,E, = 0 .  

(c) To evaluate j 1 = n 0 e  (v, - v, ) , derive the ion equivalent of E q .  [ 4-98] t o  obtain 
v,, to make a low-frequency approximation so that v, is simply the E x  B drift. 

(d) I nsert the result of (c) into (b) to obtain two simultaneous homogeneous 
equations for Ex and £,, using the definition for ilp in Eq. [ 4-49]. 

(e) Set the determinant to zero and solve to lowest order in n� to obtain 



Chapter Five 

I s NAN 

VI 

DIFFUSION AND MOBILITY IN WEAKLY IONIZED GASES 5.1 

The infinite, homogeneous plasmas assumed in the previous chapter for 

the equilibrium conditions are, of course, highly idealized. Any realistic 
plasma will have a density gradient, and the plasma will tend to diffuse 
toward regions of low density. The central problem in controlled ther
monuclear reactions is to impede the rate of diffusion by using a magnetic 
field. Before tackling the magnetic field problem, however, we shall 
consider the case of diffusion in the absence of magnetic fields. A further 
simplification results if we assume that the plasma is weakly ionized, so 
that charge particles collide primarily with neutral atoms rather than 
with one another. The case of a fully ionized plasma is deferred to a 
later section, since it results in a nonlinear equation for which there are 
few simple illustrative solutions. In any case, partially ionized gases are 
not rare: High-pressure arcs and ionospheric plasmas fall into this 
category, and most of the early work on gas discharges involved fractional 
ionizations between 10-3 and 10-6, when collisions with neutral atoms 
are dominant. 

The picture, then, is of a nonuniform distribution of ions and 
electrons in a dense background of neutrals (Fig. 5-l). As the plasma 
spreads out as a result of pressure-gradient and electric field forces, the 
individual particles undergo a random walk, colliding fre·quently with 

the neutral atoms. We begin with a brief review of definitions from 
atomic theory. 155 
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FIGURE 5-l Diffusion of gas atoms by random 

collisions. 

5.1.1 Collision Parameters 

• 

When an electron, say, collides with a neutral atom, it may lose any 
fraction of its initial momentum, depending on the angle at which it 
rebounds. In a head-on collision with a heavy atom, the electron can 
lose twice its initial momentum, since its velocity reverses sign after the 
collision. The probability of momentum loss can be expressed in terms 
of the equivalent cross section a- that the atoms would have if they were 
perfect absorbers of momentum. 

In Fig. 5-2, electrons are incident upon a slab of area A and thickness 
dx containing nn neutral atoms per m3. The atoms are imagined to be 
opaque spheres of cross-sectional area a-; that is, every time an electron 

. ... 

.. A 

�dxr 
FIGURE 5-2 Illustration of the definition of cross section. 



comes within the area blocked by the atom, the electron loses all of its 
momentum. The number of atoms in the slab is 

The fraction of the slab blocked by atoms is 

nnACT dx/ A = nnCT dx 

If a flux r of electrons is incident on the slab, the flux emerging on the 
other side is 

r· = f(l- nncrdx ) 

Thus the change off with distance is 

or 

d r I dx = -nnCT r 

r =foe -n,ax ==foe -x!>. .. [5-1) 
In a distance Am, the flux would be decreased to 1/e of its initial value. 
The quantity Am is the mean free path for collisions: 

[5-2] 

After traveling a distance Am, a particle will have had a good probability 
of making a collision. The mean time between collisions, for particles of 
velocity v, is given by 

and the mean frequency of collisions is 

T-l = v/Am = nnCTV [5-3] 

If we now average over particles of all velocities v in a Maxwellian 
distribution, we have what is generally called the collision frequency 11: 

II = nnCTV [5-4] 

Diffusion Parameters 5.1.2 

The fluid equation of motion including collisions is, for any species, 

dv [av J mn - =mn -+(v·V)v =±enE -Vp-mnllv 
dt at [5-5) 
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where again the ± indicates the sign of the charge. The averaging 
process used to compute v is such as to make Eq. [5-5] correct; we need 
not be concerned with the details of this computation. The quantity v 

must, however, be assumed to be a constant in order for Eq. [5-5] to be 
useful. We shall consider a steady state in which av/at = 0. If v is 
sufficiently small (or v sufficiently large), a fluid element will not move 
into regions of different E and Vp in a collision time, and the convective 
derivative dv/dt will also vanish. Setting the left-hand side of Eq. [5-5] 
to zero, we have, for an isothermal plasma, 

1 
v = -- (±enE- KTVn) 

mnv 

e KTVn 
=± - E- - -

mv mv n 

[5-6] 

The coefficients above are called the mobi!ity and the diffusion coefficient: 

l /.L = I q I / mv I Mobility 

I D = KT/mv Diffusion coefficient 

[5-7] 

[5-8] 

These will be different for each species. Note that D is measured in 
m2 /sec. The transport coefficients /.L and D are connected by the Einstein 
relation: 

[5-9] 

With the help of these definitions, the flux ri of the jth species can be 

written 

(5-10] 

Fick 's law of diffusion is a special case of this, occurring when either 
E = 0 or the particles are uncharged, so that /.L = 0: 

Fick's Jaw [5-11] 



This equation merely expresses the fact that diffusion is a random-walk 
process, in which a net flux from dense regions to less dense regions 
occurs simply because more particles start in the dense region. This flux 
is obviously proportional to the gradient of the density. In plasmas, Fick's 
law is not necessarily obeyed. Because of the possibility of organized 
motions (plasma waves), a plasma may spread out in a manner which is 

not truly random. 

DECAY OF A PLASMA BY DIFFUSION 5.2 

Ambipolar Diffusion 5.2.1 

We now consider how a plasma created in a container decays by diffusion 
to the walls. Once ions and electrons reach the wall, they recombine 

there. The density near the wall, therefore, is essentially zero. The Auid 
equations of motion and continuity govern the plasma behavior; but if 
the decay is slow, we need only keep the time derivative in the continuity 
equation. The time derivative in the equation of motion, Eq. (5-5], will 
be negligible if the collision frequency v is large. We thus have 

an -+V·r- =o 
at 1 [5-12] 

with ri given by Eq. [5-10]. It is clear that if r; and r. were not equal, 
a serious charge imbalance would soon arise. If the plasma is much 
larger than a Debye length, it must be quasineutral; and one would 
expect that the rates of diffusion of ions and electrons would somehow 
adjust themselves so that the two species leave at the same rate. How 
this happens is easy to see. The electrons, being lighter, have higher 
thermal velocities and tend to leave the plasma first. A positive charge 
is left behind, and an electric field is set up of such a polarity as to retard 
the loss of electrons and accelerate the loss of ions. The required E field 
is found by setting r; = r. = r. From Eq. [5-10], we can write 

D· - D  Vn 
E= • · -

t.L; + �-'-• n 

[5-13] 

[5-14] 
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The common flux r is then given by 

Di-D. r = JL; Vn - D, Vn 
/Li +li-e 

= - JL;D, + ILeDi Vn 
Ii-i +li-e 

This is Fick's law with a new diffusion coefficient 

[5-15] 

[5-16] 

called the ambipolar diffusion coefficient. If this IS constant, Eq. [5-12] 
becomes simply 

[5-17) 

The magnitude of Da can be estimated if we take li-e » JL;. That this 
is true can be seen from Eq. [5-7]. Since v is proportional to the thermal 
velocity, which is proportional to m-112, 11- is proportional to rn-112. 
Equations [5-16] and [5-9] then give 

For T, = T;, we have 

JL; · T. 
Da = D, +- D, = D; + 

T 
D, 

li-e i 

Da = 2D; 

[5-18) 

(5-19] 

The effect of the ambipolar electric field is to enhance the diffusion of 
ions by a factor of two, but the diffusion rate of the two species together 
is primarily controlled by the slower species. 

Diffusion in a Slab 

The diffusion equation [5-17] can easily be solved by the method of 
separation of variables. We let 

n(r,t) = T(t)S(r) [5-20) 



whereupon Eq. [5-17], with the subscript on Da understood, becomes 

SdT 
= DTV2S 

dt 
_!_ dT = !!_ v2 5 
T dt S 

[5-21) 

[5-22) 

Since the left side is a function of time alone and the right side a function 
of space alone, they must both be equal to the same constant, which we 
shall call -1 /T. The function T then obeys the equation 

with the solution 

dT T 
dt 

T = T0 e-I/T 

The spatial partS obeys the equation 

l V2S = - -s 
DT 

In slab geometry, this becomes 

d2S 
dx2 

= 
1 --s 

DT 

with the solution 
X . X s = A cos I/? + B Sin I/? (DT) - (DT) -

[5-23) 

[5-24) 

[5-25) 

[5-26] 

[5-27) 

We would expect the density to be nearly zero at the walls (Fig. 5-3) and 
to have one or more peaks in between. The simplest solution is that with 
a single maximum. By symmetry, we can reject the odd (sine) term in 
Eq. [5-27]. The boundary conditions S = 0 at x = ±L then requires 

or 

Combining Eqs. [5-20], [5-24], [5-27], and [5-28], we have 

-1/T 1TX 
n = no e cos-

2L 

[5-28] 

[5-29] 
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X 
-L 0 +L 

FIGURE 5-3 Density of a plasma at various 

times as it decays by diffusion 

to the walls. 

This is called the lowest diffusion mode. The density distribution is a cosine, 
and the peak density decays exponentially with time. The time constant 
'T increases with L and varies inversely with D, as one would expect. 

There are, of course, higher diffusion modes with more than one 
peak. Suppose the initial density distribution is as shown by the top curve 
in Fig. 5-4. Such an arbitrary distribution can be expanded in a Fourier 
senes: 

( (l + �)7TX . m7TX) 
n = no L at cos 

- + L bm sm --
t L m L 

[5-30] 

We have chosen the indices so that the boundary condition at x = ±L is 

automatically satisfied. To treat the time dependence, we can try a 
solution of the form 

("\' -t/-r (l + �)7TX "\' -t/T . m7TX) 
n = no ,:_ate 1 cos + ,:_ bm e � sm --

t L m L 
[5-31] 

Substituting this into the diffusion equation [5-17], we see that each 
cosine term yields a relation of the form 

[5-32] 



·I 

-L 0 +L 
X 
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Decay of an initially nonuniform FIGURE 5-4 

plasma, showing the rapid disappear-

ance of the higher-order diffusion 

modes. 

and similarly for the sine terms. Thus the decay time constant for the 
lth mode is given by [ L ]2 1 

71 == (l + hrr D 
[5-33) 

The fine-grained structure of the density distribution, corresponding to 
large l numbers, decays faster, with a smaller time constant 7'1• The 
plasma decay will proceed as indicated in Fig. 5-4. First, the fine structure 
will be washed out by diffusion. Then the lowest diffusion mode, the 
simple cosine distribution of Fig. 5-3, will be reached. Finally, the peak 
density continues to decay while the plasma density profile retains the 
same shape. 

Diffusion in a Cylinder 5.2.3 

The spatial part of the diffusion equation, Eq. [5-25], reads, in cylindrical 
geometry, 

d2S 1 dS 1 
-2 + --+-5=0 
dr 1· dr DT [5-34] 

This differs from Eq. [5-26] by the addition of the middle term, which 
merely accounts for the change in coordinates. The need for the extra 
term is illustrated simply i'n Fig. 5-5. If a slice of plasma in (A) is moved 
toward larger x without being allowed to expand, the density would 
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X 

A 8 

FIGURE 5-5 Motion of a plasma slab in rectilinear and cylindrical geometry, illustrating the 
difference between a cosine and a Bessel function. 

remain constant. On the other hand, if a shell of plasma in (B) is moved 
toward larger r with the shell thickness kept constant, the density would 
necessarily decrease as 1 /r. Consequently, one would expect the solution 
to Eq. [5-34] to be like a damped cosine (Fig. 5-6). This function is called 
a Bessel function of order zero, and Eq. [5-34] is called Bessel's equation (of 

order zero). Instead of the symbol cos, it is given the symbol ] 0. The 
function ]0(r/[Dr]112) is a solution to Eq. [5-34], just as cos [x/(Dr)112] is 

a solution to Eq. [5-26]. Both cos kx and ]0(kr) are expressible in terms 

1 

J0 (kr) 

0 

FIGURE 5.6 The Bessel function of order zero. 

8 14 kr 



of infinite series and may be found in mathematical tables. Unfortunately, 
Bessel functions are not yet found in hand calculators. 

To satisfy the boundary condition n = 0 at T = a, we must set 
a/(DT)112 equal to the first zero of ]0; namely, 2.4. This yields the decay 
time constant T. The plasma again decays exponentially, since the tem
poral part o f  the diffusion equation, Eq. [5-23], is unchanged. We have 
described the lowest diffusion mode in a cylinder. Higher diffusion 
modes, with more than one maximum in the cylinder, will be given in 
terms of Bessel functions of higher order, in direct analogy to the case 
of slab geometry. 

STEADY STATE SOLUTIONS 5.3 

In many experiments, a plasma is maintained in a steady state by con

tinuous ionization or injection of plasma to offset the losses. To calculate 

the density profile in this case, we must add a source term to the equation 
of continuity: 

an ....,.., -- D v - n = Q(r) 
at 

[5-35] 

The sign is chosen so that when Q is positive, it represents a source 
and contributes to positive an/ at. In steady state, we set an/ at = 0 and 
are left with a Poisson-type equation for n (r). 

Constant Ionization Function 5.3.1 

In many weakly ionized gases, ionization is produced by energetic elec
trons in the tail of the Maxwellian distribution. In this case, the source 
term Q is proportional to the electron density n. Setting Q = Zn, where 
Z is the "ionization function," we have 

[5-36] 

This is the same equation as that for S, Eq. [5-25]. Consequently, the 
density profile is a cosine or Bessel function, as in the case of a decaying 
plasma, only in this case the density remains constant. The plasma is 
maintained against diffusion losses by whatever heat source keeps the 
electron temperature at its constant value and by a small influx of neutral 
atoms to replenish those that are ionized. 
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5.3.2 Plane Source 

We next consider what profile would be obtained in slab geometry if 

there is a localized source on the plane x = 0. Such a source might be, 

for instance, a slit-collimated beam of ultraviolet light strong enough to 
ionize the neutral gas. The steady state diffusion equation is then 

d2n Q 
dx2 =

- D 
8(0) [5-37] 

Except at x = 0, the density must satisfy a2n/ax2 = 0. This obviously has 
the solution (Fig. 5-7) 

[5-38] 

The plasma has a linear profile. The discontinuity in slope at the source 
is characteristic of 8 -function sources. 

5.3.3 Line Source 

Finally, we consider a cylindrical plasma with a source located on the 
axis. Such a source might, for instance, be a beam of energetic electrons 
producing ionization along the axis. Except at r = 0, the density must 
satisfy 

I a ( an) 
-- r- - 0 
r ar ar 

The solution that vanishes at r 
= 

a is 

n = n0 In (a/r) 

X 
-L 0 +L 

FIGURE 5-7 The triangular density profile 

resulting from a plane source 
under diffusion. 

[5-39] 

[5-40] 

J. 
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The logarithmic density profile FIGURE 5-8 

resulting from a line source under 
diffusion. 

The density becomes infinite at r = 0 (Fig. 5-8); it is not possible to 
determine the density near the axis accurately without considering the 

finite width of the source. 

RECOMBINATION 5.4 

When an ion and an electron collide, particularly at low relative velocity, 
they have a finite probability of recombining into a neutral atom. To 
conserve momentum, a third body must be present. If this third body 
is an emitted photon, the process is called radiative recombination. If it is 
a particle, the process is called three-body recombination. The loss of plasma 
by recombination can be represented by a negative source term in the 

equation of continuity. It is clear that this term will be proportional to 
n,n; = n 2. In the absence of the diffusion terms, the equation of continuity 
then becomes 

on/ot = -an 2 [5-41] 

The constant of proportionality a is called the recombination coefficient 
and has units of m3 /sec. Equation [5-41] is a nonlinear equation for n. 
This means that the straightforward method for satisfying initial and 
boundary conditions by linear superposition of solutions is not available. 
Fortunately, Eq. [5.41] is such a simple nonlinear equation that the 
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0 

solution can be found by inspection. It is 

l l 
-- = --+at 
n (r,t) n0(r) 

[5-42] 

where no(r) is the initial density distribution. It is easily verified that this 
satisfies Eq. [5-41]. After the density has fallen far below its initial value, 

it decays reciprocally with time: 

n ex: 1/at [5-43] 
This is a fundamentally different behavior from the case of diffusion, 
in which the time variation is exponential. 

Figure 5-9 shows the results of measurements of the density decay 
in the afterglow of a weakly ionized H plasma. When the density is high, 

2 3 4 5 
t (msec) 

FIGURE 5-9 Density decay curves of a weakly ionized plasma under recombination and 

diffusion. [From S. C. Brown, Basic Data of Plasma Physics, John Wiley and Sons, 
New York, 1959.] 
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A charged particle in a magnetic field will gyrate about FIGURE 5-10 

the same line of force until it makes a collision. 

recombination, which is proportional ton 2, is dominant, and the density 
decays reciprocally. After the density has reached a low value, diffusion 

becomes dominant, and the decay is thenceforth exponential. 

DIFFUSION ACROSS A MAGNETIC FIELD 5.5 

The rate of plasma loss by diffusion can be decreased by a magnetic 
field; this is the problem of confinement in controlled fusion research. 
Consider a weakly ionized plasma in a magnetic field (Fig. 5-10). Charged 
particles will move along B by diffusion and mobility according to Eq. 
[5-10], since B does not affect motion in the parallel direction. Thus we 

have, for each species, 

an f = ± 11nE - D-" ,.... " az [5-44] 

If there were no collisions, particles would not diffuse at all in the 
perpendicular direction-they would continue to gyrate about the same
line of force. There are, of course, particle drifts across B because of 
electric fields or gradients in B, but these can be arranged to be parallel 
to the walls. For instance, in a perfectly symmetric cylinder (Fig. 5-11), 
the gradients are all in the radial direction, so that the guiding center 
drifts are in the azimuthal direction. The drifts would then be harmless. 

When there are collisions, particles migrate across B to the walls 
along the gradients. They do this by a random-walk process (Fig. 5-12). 
When an ion, say, collides with a neutral atom, the ion leaves the collision 
traveling in a different direction. It continues to gyrate about the mag

netic field in the same direction, but its phase of gyration is changed 
discontinuously. (The Larmor radius may also change, but let us suppose 
that the ion does not gain or lose energy on the average.) 
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FIGURE 5-ll Particle drifts in a cylindrically sym
metric plasma column do not lead to 

losses. 

FIGURE 5-12 Diffusion of gyrating par
ticles by collisions with 
neutral atoms. 

The guiding center, therefore, shifts position in a collision and undergoes 
a random walk. The particles will 0:.ffuse in the direction opposite Vn. 

The step length in the random walk is no longer Am, as in magnetic-field
free diffusion, but has instead the magnitude of the Larmor radius rL. 
Diffusion across B can therefore be slowed down by decreasing rL; that 
is, by increasing B. 

To see how this comes about, we write the perpendicular component 
of the fluid equation of motion for either species as follows: 

dv1_ 
mn- = ±en(E + V1_ x B)- KTVn- mnvv = 0 [5-45] 

dt 

-, 



We have again assumed that the plasma is isothermal and that v is large 
enough for the dvj_/dt term to be negligible. The x andy components are 

an 
mnvvx = ±enEx - KT- ± env/3 

ax 

an 
mnvvy = ±enE, - KT- �envxB 

ay 

Using the definitions of p. and D, we have 

D an w, 
Vx = ±p.Ex -- -±-vy 

n ax 1/ 

D an w, 
Vy = ±p.E, - - - �- Vx 

n ay 1/ 

Substituting for Vx, we may solve for vy: 

[5-46] 

[5-47] 

2 2 D an 2 2 Ex 2 2 KT 1 an 
v.(1 + w T ) = ±JJ-£ -- -- w T - ± W T - - - [5-48] 
' ' 

y 
n ay ' B ' eB n ax 

where T = v-1. Similarly, Vx is given by 

? ? D an 2 ? E, 2 ? KT I an 
v (I + w -T-) = ±p.E -- - + w T-- � w T-- - - [5-49] X c X n ax c B c eB n ay 

The last two terms of these equations contain the E X B and diamagnetic 
drifts: 

Ey Ex 
VEx = 

B 
V£y = 

B 
[5-50] 

KT 1 an KT 1 an 
VOx=�--- vv, = ±- --

eB n ay eB n ax 

The first two terms can be simplified by defining the perpendicular 
mobility and diffusion coefficients: 

J.l.j_ 
= 

1 + 2 2 
W,T 

D 
Dj_ =I+ 2 2 

W,T 
[5-51] 

With the help of Eqs. [5-50] and [5-5I], we can write Eqs. [5-48] and 
[5-49] as 

[5·52] 
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From this, it is evident that the perpendicular velocity of either 
species is composed of two parts. First, there are usual vE and vv drifts 
perpendicular to the gradients in potential and density. These drifts are 
slowed down by collisions with neutrals; the drag factor 1 + (v2 / w ;) 
becomes unity when v � 0. Second, there are the mobility and diffusion 
drifts parallel to the gradients in potential and density. These drifts have 
the same form as in the B = 0 case, but the coefficients f.t and D are 
reduced by the factor I +  w;-r2. 

The product w,-r is an important quantity in magnetic confinement. 
When w ;-r2 « 1, the magnetic field has little effect on diffusion. When 
w;-r2 » I, the magnetic field significantly retards the rate of diffusion 
across B. The following alternative forms for w,-r can easily be verified: 

w,-r = wc/v = {-tB = A,./rL 

In the limit w �-r2 
» I, we have 

KT 1 KTv 
D 1. = - --.;--<) = --9 

mv w;-r- mw; 

[5-53] 

[5-54] 

Comparing with Eq. [5-8), we see that the role of the collision frequency 
v has been reversed. In diffusion parallel to B, D is proportional to v-I, 
since collisions retard the motion. In diffusion perpendicular to B, D 1. 

is proportional to v, since collisions are needed for cross-field migration. 
The dependence on m has also been reversed. Keeping in mind that v . . I -112 I D -112 h"l D 1 19 I IS proportion a to m , we see t 1at ex:: m , w 1 e 1. ex:: m - . n 
parallel diffusion, electrons move faster than ions because of their higher 
thermal velocity; in perpendicular diffusion, electrons escape more slowly 
because of their smaller Larmor radius. 

Disregarding numerical factors of order unity, we may write Eq. 
[5-8] as 

[5-55] 

This form, the square of a length over a time, shows that diffusion is a 
random-walk process with a step length Am. Equation [5-54] can be written 

KTv 2 r� rr 
D 1. = --2 - v th -2- v - -mw, v,h -r 

[5-56] 

This shows that perpendicular diffusion is a random-walk process with 
a step length rL, rather than Am. 

5.5.1 Ambipolar Diffusion across B 

Because the diffusion and mobility coefficients are anisotropic 111 the 
presence of a magnetic field, the problem of ambipolar diffusion is not 

J 
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Parallel and perpendicular particle fluxes in a magnetic field. FIGURE 5-13 

as straightforward as in the B = 0 case. Consider the particle fluxes 
perpendicular to B (Fig. 5-13). Ordinarily, since r . .�. is smaller than f;.�., 
a transverse electric field would be set up so as to aid electron diffusion 
and retard ion diffusion. However, this electric field can be short-circuited 
by an imbalance of the fluxes along B. That is, the negative charge 
resulting from reJ. < ft.1. can be dissipated by electrons escaping along 

the field lines. Although the total diffusion must be ambipolar, the 

perpendicular part of the losses need not be ambipolar. The ions can 
diffuse out primarily radially, while the electrons diffuse out primarily 
along B. Whether or not this in fact happens depends on the particular 
experiment. In short plasma columns with the field lines terminating on 
conducting plates, one would expect the ambipolar electric field to be 
short-circuited out. Each species then diffuses radially at a different rate. 
In long, thin plasma columns terminated by insulating plates, one would 
expect the radial diffusion to be ambipolar because escape along B is 
arduous. 

Mathematically, the problem is to solve simultaneously the equations 
of continuity [5-12] for ions and electrons. It is not the fluxes rj but the 
divergences V · ri which must be set equal to each other. Separating 
v. rj into perpendicular and parallel components, we have 

[5-57] 

The equation resulting from setting V · r, = V · r. cannot easily be separ
ated into one-dimensional equations. Furthermore, the answer depends 
sensitively on the boundary conditions at the ends of the field lines. 

Unless the plasma is so long that parallel diffusion can be neglected 
altogether, there is no simple answer to the problem of ambipolar 
diffusion across a magnetic field. 
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5.5.2 Experimental Checks 

ANODE 

Whether or not a magnetic field reduces transverse diffusion in accord

ance with Eq. [5-51] became the subject of numerous investigations. The 

first experiment performed in a tube long enough that diffusion to the 

ends could be neglected was that of Lehnert and Hoh in Sweden. They 

used a helium positive column about 1 em in diameter and 3.5 m long 

(Fig. 5-14). In such a plasma, the electrons are continuously lost by radial 

diffusion to the walls and are replenished by ionization of the neutral 

gas by the electrons in the tail of the velocity distribution. These fast 

electrons, in turn, are replenished by acceleration in the longitudinal 

electric field. Consequently, one would expect E, to be roughly propor

tional to the rate of transverse diffusion. Two probes set in the wall of 

the discharge tube were used to measure Ez as B was varied. The ratio 

of E, (B) toE, (0) is shown as a function of B in Fig. 5-15. At low B fields, 

the experimental points follow closely the predicted curve, calculated on 

the basis of Eq. [5-52]. At a critical field B, of about 0.2 T, however, the 

experimental points departed from theory and, in fact, showed an increase 
of diffusion with B. The critical field B, increased with pressure, suggest

ing that a critical value of Wc'r was involved and that something went 

wrong with the "classical" theory of diffusion when Wc'r was too large. 

The trouble was soon found by Kadomtsev and Nedospasov in the 

U.S.S.R. These theorists discovered that an instability should develop at 

high magnetic fields; that is, a plasma wave would be excited by theE= 

field, and that this wave would cause enhanced radial losses. The theory 

correctly predicted the value of B,. The wave, in the form of a helical 

distortion of the plasma column, was later seen directly in an experiment 

b y  Allen, Paulikas, and Pyle at Berkeley. This helical instability of the 

positive column was the first instance in which "anomalous diffusion" 

across magnetic fields was definitively explained, but the explanation was 

PROBES 
CATHODE 

B -...., ... ..-

FIGURE 5-14 The Lehnert-Hoh experiment to check the effect of a magnetic field on 

diffusion in a weakly ionized gas. 
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as a function of B at two different pressures. Theoreti-

cal curves are shown for comparison. [From F. C. Hoh 
and B. Lehnert, Phys. Fluids 3, 600 (I 960).] 

applicable only to weakly ionized gases. In the fully ionized plasmas of 
fusion research, anomalous diffusion proved to be a much tougher 
problem to solve. 

Resistivity 

5-l. The electron-neutral collision cross section for 2-eV electrons in He is about PROBLEMS 
61ra�, where a0 = 0.53 x 10-8 em is the radius of the first Bohr orbit of the 
hydrogen atom. A positive column with no magnetic field has p = l Torr of 
He (at room temperature) and KT, = 2 eV. 

(a) Compute the electron diffusion coefficient in m2 /sec, assuming that av 
averaged over the velocity distribution is equal to av for 2-eV electrons. 

{b) If the current density along column is 2 kA/m2 and the plasma density is 
1016 m-3, what is the electric field along the column? 
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5-2. A weakly ionized plasma slab in plane geometry has a density distribution 

n(x) = n0cos (7Tx/2L) -L:5x:5L 

The plasma decays by both diffusion and recombination. If L = 0.03 m, D = 

0.4 m2/sec, and a = 10-15 m3 /sec, at what density will the rate of loss by diffusion 
be equal to the rate of loss by recombination? 

5-3. A weakly ionized plasma is created in a cubical aluminum box of length L 
on each side. It decays by ambipolar diffusion. 

(a) Write an expression for the density distribution in the lowest diffusion mode. 

(b) Define what you mean by the decay time constant and compute it if D. = 

10-3m2/sec. 

5-4. A long, cylindrical positive column has B = 0.2 T, KT; = 0.1 eV, and other 
parameters the same as in Problem 5-1. The density profile is 

with the boundary condition n = 0 at 1· = a = l em. Note: ]0(z) = 0 at z = 2.4. 

(a) Show that the am bipolar diffusion coefficient to be used above can be approxi
mated by DJ.•· 

(b) Neglecting recombination and losses from the ends of the column, compute 
the confinement time T. 

5-5. For the density profile of Fig. 5-7, derive an expression for the peak density 
n0 in terms of the source strength Q and the other parameters of the problem. 
(Hint: E"quate the source per m2 to the particle flux to the walls per m2.) 

5-6. You do a recombination experiment in a weakly ionized gas in which the 
main loss mechanism is recombination. You create a plasma of density 1020 m-3 
by a sudden burst of ultraviolet radiation and observe that the density decays 
to half its initial value in 10 msec. What is the value of the recombination 
coefficient a? Give units. 

5.6 COLLISIONS IN FULLY IONIZED PLASMAS 

When the plasma is composed of ions and electrons alone, all collisions 
are Coulomb collisions between charged particles. However, there is a 
distinct difference between (a) collisions between like particles (ion-ion 
or electron-electron collisions) and (b) collisions between unlike particles 
(ion-electron or electron-ion collisions). Consider two identical particles 
colliding (Fig. 5-16). If it is a head-on collision, the particles e merge with 

their velocities reversed ; they simply interchange their orbits, and the 

I 
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Shift of guiding centers of two like particles FIGURE 5-16 

making a 90° collision. 

two guiding centers remain in the same places. The result is the same 

as in a glancing collision, in which the trajectories are hardly disturbed. 
The worst that can happen is a goo collision, in which the velocities are 
changed goo in direction. The orbits after collision will then be the dashed 
circles, and the guiding centers will have shifted. However, it is clear 
that the "center of mass" of the two guiding centers remains stationary. 
For this reason, collisions between like particles give rise to very little diffusion. 

This situation is to be contrasted with the case of ions colliding with 
neutral atoms. In that case, the final velocity of the neutral is of no 
concern, and the ion random-walks away from its initial position. In the 
case of ion-ion collisions, however, there is a detailed balance in each 
collision; for each ion that moves outward, there is another that moves 
inward as a result of the collision. 

When two particles of opposite charge collide, however, the situation 
is entirely different (Fig. 5-17). The worst case is now the 180° collision, 
in which the particles emerge with their velocities reversed. Since they 
must continue to gyrate about the lines of force in the proper sense, 
both guiding centers will move in the same direction. Unlik e-particle 

collisions give rise to diffusion. The physical picture is somewhat different 
for ions and electrons because of the disparity in mass. The electrons 
bounce off the nearly stationary ions and random-walk in the usual 
fashion. The ions are slightly jostled in each collision and move about 
as a result of frequent bombardment by electrons. Nonetheless, because 
of the conservation of momentum in each collision, the rates of diffusion 
are the same for ions and electrons, as we shall show. 
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FIGURE 5-17 Shift of guiding centers of two 

oppositely charged particles mak
ing a 180° collision. 

5.6.1 Plasma Resistivity 

The fluid equations of motion including the effects of charged-particle 
collisions may be written as follows (cf. Eq. [3-47]): 

dv 
Mn Tt =en (E + v; X B)- Vp; - V · 'TT; + P;, 

dv, 
mn- = -en (E + v X B) - Vp - V · n + P 

dl 
' e e eo 

[5-58] 

The terms P;, and P,; represent, respectively, the momentum gain of 
the ion fluid caused by collisions with electrons, and vice versa. The 
stress tensor P; has been split into the isotropic part Pi and the anisotropic 
viscosity tensor Tr;. Like-particle collisions, which give rise to stresses 
within each fluid individually, are contained inn;. Since these collisions 
do not give rise to much diffusion, we shall ignore the terms V · n;. As 
for the terms P,; and P;., which represent the friction between the two 
fluids, the conservation of momentum requires 

P;, = -P,1 [5-59) 

l 
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We can write P,; m terms of the collision frequency m the usual 
manner: 

[5-60] 

and similarly for P;,. Since the collisions are Coulomb collisions, one 
would expect P,; to be proportional to the Coulomb force, which is 
proportional to e2 (for singly charged ions). Furthermore, P,; must be 
proportional to the density of electrons n, and to the density of scattering 
centers n;, which, of course, is equal ton,. Finally, P,; should be propor
tional to the relative velocity of the two fluids. On physical grounds, 
then, we can write P,; as 

2 2 
P,; = Tfe n (v; - v,) [5-61] 

where Tf is a constant of proportionality. Comparing this with Eq. [5-60], 
we see that 

2 ne 
11,; = - Tf 7n 

[5-62] 

The constant Tf is the specific resistivity of the plasma; that this jibes with 
the usual meaning of resistivity will become clear shortly. 

Mechanics of Coulomb Collisions 5.6.2 

When an electron collides with a neutral atom, no force is felt until the 
electron is close to the atom on the scale of atomic dimensions; the 
collisions are like billiard-ball collisions. When an electron collides with 
an ion, the electron is gradually deflected by the long-range Coulomb 
field of the ion. Nonetheless, one can derive an effective cross section 
for this kind of collision. It will suffice for our purposes to give an 
order-of-magnitude estimate of the cross section. In Fig. 5-18, an electron 
of velocity v approaches a fixed ion of charge e.ln the absence of Coulomb 
forces, the eleqron would have a distance of closest approach r0, called 
the impact parameter. In the presence of a Coulomb attraction, the electron 
will be deflected by an angle x, which is related to r0. The Coulomb force 
IS 

2 e 
F= - ---2 47TEor 

[5-63] 
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mv 

FIGURE 5-18 Orbit of an electron making a Coulomb collision with an ion. 

This force is felt during the time the electron is in the vicinity of the 
ion; this time is roughly 

T = To/v [5-64] 

The change in the electron's momentum is therefore approximately 

2 e 
�(mv) =I FTI = ---

41TEoToV 
[5-65] 

We wish to estimate the cross section for large-angle collisions, in which 
x � 90Q For a 90° collision, the change in mv is of the order of mv i tself. 
Thus 

.:l(mv) = mv = e2/41TE0r0v, 

The cross section is then 

u = 1rr6 = e4/l61TE6m2v4 

The collision frequency is, therefore, 

v,; = nuv = ne4/l61TE6m2v3 

and the resistivity is 

m e 2 

[5-66] 

[5-67] 

[5-68] 

7J = -2 v,; = 2 3 [5-69] 
ne 161TE0mv 

For a Maxwellian distribution of electrons, we may replace v2 by KT,/m 
for our order-of-magnitude estimate: 

1re2m 112 
[5-70] 
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Equation [5-70] is the resistivity based on large-angle collisions alone. 
In practice, because of the long range of the Coulomb force, small-angle 
collisions are much more frequent, and the cumulative effect of many 
small-angle deflections turns out to be larger than the effect of large-angle 
collisions. It was shown by Spitzer that Eq. [5-70] should be multiplied 
by a factor In A: 

where 
--

3 A= Ao/ro = 12 7TnA0 

[5-71] 

[5-72] 

This factor represents the maximum impact parameter, in units of r0 as 
given by Eq. [5-66], averaged over a Maxwellian distribution. The 
maximum impact parameter is taken to be An because Debye shielding 
suppresses the Coulomb field at larger distances. Although A depends 
on n and KT., its logarithm is insensitive to the exact values of the plasma 
parameters. Typical values of In A are given below. 

KT, (eV) n (m -3) InA 

0.2 1 o" 9.1 (Q-rnachine) 
2 1017 10.2 (lab plasma) 

100 1019 13.7 (typical torus) 
104 1021 16.0 (fusion reactor) 
103 1027 6.8 (laser plasma) 

It is evident that In A varies only a factor of two as the plasma parameters 
range over many orders of magnitude. For most purposes, it will be 
sufficiently accurate to let In A = 10 regardless of the type of plasma 
involved. 

Physical Meaning of 71 5.6.3 

Let us suppose that an electric field E exists in a plasma and that the 
current that it drives is all carried by the electrons, which are much more 
mobile than the ions. Let B = 0 and KT. = 0, so that V · P, = 0. Then, 
in steady state, the electron equation of motion [5-58] reduces to 

enE =P ei [5-73] 
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Since j = en(v;-v,), Eq. [5-61] can be written 

P,; = 71enj [5-74] 

so that Eq. [5-73] becomes 

[5-75] 

This is simply Ohm's law, and the constant 77 is just the specific resistivity. 
The expression for 7J in a plasma, as given by Eq. [5-71] or Eq. [5-69], 
has several features which should be pointed out. 

(A) In Eq. [5-71], we see that 77 is independent of density (except for 
the weak dependence in In A). This is a rather surprising result, since 
it means that if a field E is applied to a plasma, the current j, as given 
by Eq. [5-75], is independent of the number of charge carriers. The 
reason is that although j increases with n., the frictional drag against the 
ions increases with n;. Since n. = n;, these two effects cancel. This cancella
tion can be seen in Eqs. [5-68] and [5-69]. The collision frequency v,; is 
indeed proportional ton, but the factor n cancels out in 71· A fully ionized 
plasma behaves quite differently from a weakly ionized one in this respect. 
In a weakly ionized plasma, we have j = -nev., v, = -,u, E, so that j == 

ne,u, E. Since 1-L· depends only on the density of neutrals, the current is 
proportional to the plasma density n. 

(B) Equation [5-71] shows that 7J is proportional to (KT,)-312. As a 
plasma is heated, the Coulomb cross section decreases, and the resistivity 
drops rather rapidly with increasing temperature. Plasmas at thermonu
clear temperatures (tens of ke V) are essentially collisionless; this is the 
reason so much theoretical research is done on collisionless plasmas. Of 
course, there must always be some collisions; otherwise, there would not 
be any fusion reactions either. An easy way to heat a plasma is simply 
to pass a current through it. The I2R (or j277) losses then turn up as an 
increase in electron temperature. This is called ohmic heating. The 
(KT,f312 dependence of 7J, however, does not allow this method to be 
used up to thermonuclear temperatures. The plasma becomes such a 
good conductor at temperatures above 1 keV that ohmic heating is a 
very slow process in that range. 

(C) Equation [5-68] shows that v,; varies as v -3. The fast electrons 
in the tail of the velocity distribution make very few collisions. The 
current is therefore carried mainly by these electrons rather than by the 
bulk of the electrons in the main body of the distribution. The strong 
dependence on v has another interesting consequence. If an electric 
field is suddenly applied to a plasma, a phenomenon known as electron 
runaway can occur. A few electrons which happen to be moving fast in 
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the direction of -E when the field is applied will have gained so much 
energy before encountering an ion that they can make only a glancing 
collision. This allows them to pick up more energy from the electric field 
and decrease their collision cross section even further. If E is large 
enough, the cross section falls so fast that these runaway electrons never 
make a collision. They form an accelerated electron beam detached from 
the main body of the distribution. 

Numerical Values of 11 

Exact computations of 71 which take into account the ion recoil in each 
collision and are properly averaged over the electron distribution were 
first given by Spitzer. The following result for hydrogen is sometimes 
called the Spitzer resistivity: 

� _5 Z In A 
1111 = �.2 X 10 T312(e V) ohm-m [5-76] 

Here Z is the ion charge number, which we have taken to be 1 elsewhere 
in this book. Since the dependence on M is weak, these values can also 
be used for other gases. The subscript II means that this value of 71 is to 
be used for motions parallel to B. For motions perpendicular to B, one 
should use 11.1 given by 

[5-77] 

This does not mean that conductivity along B is only two times better 
than conductivity across B. A factor like w ;r2 still has to be taken into 
account. The factor 2.0 comes from a difference in weighting of the 
various velocities in the electron distribution. In perpendicular motions, 
the slow electrons, which have small Larmor radii, contribute more to 
the resistivity than in parallel motions. 

For KT, = 100 eV, Eq. [5-76] yields 

11 = 5 x 10-7 ohm-m 

This is to be compared with various metallic conductors: 

copper . . . .. . .. .. . .. . . 11 = 2 X 10-8 ohm-m 

stainless steel ... . . .. . . . 71 = 7 x 10-7 ohm-m 

mercury . . . .. . .. . . . . . .  11 = 1 o-6 ohm-m 

A l 00-e V plasma, therefore, has a conductivity like that of stainless steel. 

5.6.4 
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5.7 THE SINGLE-FLUID MHD EQUATIONS 

We now come to the problem of diffusion in a fully ionized plasma. 
Since the dissipative term P,; contains the difference in velocities v; - v., 

it is simpler to work with a linear combination of the ion and electron 
equations such that v; - v, is the unknown rather than v; or v, separately. 
Up to now, we have regarded a plasma as composed of two interpenetrat
ing Auids. The linear combination we are going to choose will describe 
the plasma as a single fluid, like liquid mercury, with a mass density p 
and an electrical conductivity 1/ T). These are the equations of magneto hy
drodynamics (MHD). 

For a quasineutral plasma with singly charged ions, we can define the 
mass density p, mass velocity v, and current density j as follows: 

I 1\fv; + mv, 
v = - (n·Jlfv· + n mv) = --'----p ' ' • e M+m 

[5-78] 

[5-79] 

[5-80] 

In the equation of motion, we shall add a term Mng for a gravitational 
force. This term can be used to represent any nonelectromagnetic force 
applied to the plasma. The ion and electron equations can be written 

av· 
Mn a(-= en(E + v; x B)- Vp; + Mng + P;, [5-81] 

av. 
mn- = -en(E + v, X B)- Vp, + mng + P, ; [5-82] 

at 

For simplicity, we have neglected the viscosity tensor 1T, as we did earlier. 
This neglect does not incur much error if the Larmor radius is much 
smaller than the scale length over which the various quantities change. 
We have also neglected the (v · V)v terms because the derivation would 
be unnecessarily complicated otherwise. This simplification is more 
difficult to justify. To avoid a lengthy discussion, we shall simply say that 
v is assumed to be so small that this quadratic term is negligible. 

We now add Eqs. [5-81] and [5-82], obtaining 

a 
n- ( Mv; + mv,) = en(v; -v,) X B- 'Vp + n ( M  + m)g [5-83] 

at 

The electric field has cancelled out, as have the collision terms P,; = -P;,. 

We have introduced the notation 

P = p; + p, [5-84] 

j 
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for the total pressure. With the help of Eqs. [5-78]-[5-80], Eq. [5-83] can 

be written simply 

av . 
B 

� 
p-=JX - vp+pg 

at 
[5-85] 

This is the single-fluid equation of motion describing the mass flow. The 

electric field does not appear explicitly because the fluid is neutral. The 

three body forces on the right-hand side are exactly what one would 
have expected. 

A less obvious equation is obtained by taking a different linear 

combination of the two-fluid equations. Let us multiply Eq. [5-81] by m 

and Eq. [5-82] by M and subtract the latter from the former. The result 

IS 

a 
Mmn-(v;-v,) = en(M + m)E + en(mv; + Mv,) X B-m Vp; 

at 

+ MVp,-(M + m)P,1 

With the help of Eqs. (5-78], [5-80], and [5-6 1 ], this becomes 

Mmn a (j) . -- - - = epE- (M + m)ne1)J-m Vp, + M Vp, 
e at n 

+ en(mv; + Mv,) X B 

The last term can be simplified as follows: 

mv; + Mv, = Mv; + mv, + M(v,-vi)+ m(v1-v,) 

p j 
=-v-(M- m)-

n ne 

Dividing Eq. [5-87] by ep, we now have 

[5-86] 

[5-87] 

[5-88] 

. 1 [Mmn a ( j ) . J E+v x B-771=- --- - +(M-m)JXB+mVp,-MVp, 
ep e at n 

[5-89] 

The ajat term can be neglected in slow motions, where inertial (i.e., 

cyclotron frequency) effects are unimportant. In the limit m/ M � 0, Eq. 
[5-89] then becomes 

1 
E + v x B = 71j +-(j X B-Vp,) 

en 
[5-90] 
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This is our second equation, called the generalized Ohm's law. It describes 
the electrical properties of the conducting fluid. The j x B term is called 
the Hall current term. It often happens that this and the last term are 
small enough to be neglected; Ohm's law is then simply 

E+vXB=r]j [5-91] 

Equations of continuity for mass p and charge a are easily obtained 
from the sum and difference of the ion and electron equations of 

continuity. The set of MHD equations is then as follows: 

av 
p-=j x B-Vp+pg 

at 

E+v x B=r)j 

ap 
-+ V · (pv) = 0 
at 

a a 
-+V·j=O 
at 

[5-85] 

[5-91] 

[5-92] 

[5-93] 

Together with Maxwell's equations, this set is often used to describe the 

e·quilibrium state of the plasma. It can also be used to derive plasma 

waves, but it is considerably less accurate than the two-fluid equations 
we have been using. For problems involving resistivity, the simplicity of 

the MHD equations outweighs their disadvantages. The MHD equations 

have been used extensively by astrophysicists working in cosmic electrody
namics, by hydrodynamicists working on MHD energy conversion, and 

by fusion theorists working with complicated magnetic geometries. 

5.8 DIFFUSION IN FULLY IONIZE D PLASMAS 

In the absence of gravity, Eqs. [5-85] and [5-9 1] for a steady state plasma 

become 

j x B = Vp 

E+vXB=77j 

The parallel component of the latter equation is simply 

En= 1Jt!iu 

[5-94] 

[5-95] 

_f 
I 



which is the ordinary Ohm's law. The perpendicular component is found 
by taking the cross-product with B: 

E x  B + (vJ. x B) X B = 77J.j X B = 77J. Vp 

EXB-vJ.B2=77J. Vp 

EX B 71J. 
v J. = --2- - -2 Vp 

B B 
[5-96] 

The first term is just theE x B drift of both species together. The second 
term is the diffusion velocity in the direction of -Vp. For instance, in an 
axisymmetric cylindrical plasma in which E and Vp are in the radial 
direction, we would have 

11 J. ap  v -- --

r- B2 ar  

The flux associated with diffusion is 

11J.n(KT; + KT.) 
V rJ.=nvJ.=- 2 n 

B 

[5-97) 

[5-98] 

This has the form of Fick's law, Eq. [5-11], with the diffusion coefficient 

[5-99] 

This is the so-called "classical" diffusion coefficient for a fully ionized gas. 
Note that DJ. is proportional to 1/B2, just as in the case of weakly 

ionized gases. This dependence is characteristic of classical diffusion and 
can ultimately be traced back to the random-walk process with a step 
length rL. Equation [5-99], however, differs from Eq. [5-54] for a partially 
ionized gas in three essential ways. First, D J. is not a constant in a fully 
ionized gas; it is proportional ton. This is because the density of scattering 
centers is not fixed by the neutral atom density but is the plasma density 
itself. Second, since 17 is proportional to (KT) -312, D J. decreases with 
increasing temperature in a fully ionized gas. The opposite is true in a 
partially ionized gas. The reason for the difference is the velocity depen
dence of the Coulomb cross section. Third, diffusion is automatically 
ambipolar in a fully ionized gas (as long as like-particle collisions are 
neglected). DJ. in Eq. [5-99] is the coefficient for the entire fluid; no 
ambipolar electric field arises, because both species diffuse at the same 
rate. This is a consequence of the conservation of momentum in ion-
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5.9 

electron collisions. This point is somewhat clearer if ones uses the two
Auid equations (see Problem 5-15). 

Finally, we wish to point out that there is no transverse mobility in a 
fully ionized gas. Equation [5-96] for v.L contains no component along 

E which depends on E. If a transverse E field is applied to a uniform 

plasma, both species drift together with the E x  B velocity. Since there 

is no relative drift between the two species, they do not collide, and there 

is no drift in the direction of E. Of course, there are collisions due to 

thermal motions, and this simple result is only an approximate one. It 

comes from our neglect of (a) like-particle collisions, (b) the electron 

mass, and (c) the last two terms in Ohm's law, Eq. [5-90]. 

SOLUTIONS OF THE DIFFUSION EQUATION 

Since D .L is not a constant in a fully ionized gas, let us define a quantity 

A which is constant: 

A= ryKT/B2 [5-100] 

We have assumed that KT and B are uniform, and that the dependence 

of 17 on n through the In 1\ factor can be ignored. For the case T; = T., 
we then have 

D.L = 2nA 

The equation of continuity [5-92] can now be written 

anjat = V · (D.L Vn) = A V · (2n Vn) 

an/at = A V2n 2 

[5-101] 

[5-102] 

This is a nonlinear equation for n, for which there are very few simple 

solutions. 

5.9.1 Time Dependence 

If we separate the variables by letting 

n = T(t)S(r) 

we can write Eq. [5-1 02] as 

[5-103] 



where -1/r is the separation constant. The spatial part of this equation 

is difficult to solve, but the temporal part is the same equation that we 

encountered in recombination, Eq. [5-41]. The solution, therefore, is 

1 1 t 
- = - + T To T 

[5-104] 

At large times t, the density decays as 1/ t, as in the case of recombination. 

This reciprocal decay is what would be expected of a fully ionized plasma 

diffusing classically. The exponential decay of a weakly ionized gas is a 

distinctly different behavior. 

Time-Independent Solutions 5.9.2 

There is one case in which the diffusion equation can be solved simply. 

Imagine a long plasma column (Fig. 5-19) with a source on the axis which 

maintains a steady state as plasma is lost by radial diffusion and recombi

nation. The density profile outside the source region will be determined 

by the competition between diffusion and recombination. The density 

falloff distance will be short if diffusion is small and recombination is 

large, and will be long in the opposite case. In the region outside the 

source, the equation of continuity is 

[5-105] 

This equation is linear in n 2 and can easily be solved. In cylindrical 
geometry, the solution is a Bessel function. In plane geometry, Eq. [5-1 05] 

reads 

t 
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with the solution 

The scale distance is 

2 9 J/9 n = n0exp [-(a/A) -x] 

l = (A/a)112 

[5-107] 

[5-108] 

Since A changes with magnetic field while a remains constant, the change 

of l with B constitutes a check of classical diffusion. This experiment 
was actually tried on a Q-machine, which provides a fully ionized plasma. 

Unfortunately, the presence of asymmetric E x  B drifts leading to 

another type of loss-by convection-made the experiment inconclusive. 

Finally, we wish to point out a scaling law which is applicable to any 

fully ionized steady state plasma maintained by a constant source Q in 

a uniform B field. The equation of continuity then reads 

[5-109] 

Since n and B occur only in the combination n/ B, the density profile 
will remain unchanged as B is changed, and the density itself will increase 

linearly with B: 

nocB [5-llO] 

One might have expected the e·quilibrium density n to scale as B2, since 

D .1 oc B -2; but one must remember that D .1 is itself proportional to n. 

5.10 BOHM DIFFUSION AND NEOCLASSICAL DIFFUSION 

Although the theory of diffusion via Coulomb collisions had been known 
for a long time, laboratory verification of the 1 /  B 2 dependence of D J.. 

in a fully ionized plasma eluded all experimenters until the 1960s. In 
almost all previous experiments, DJ.. scaled as B-1, rather than B-2, and 

the decay of plasmas was found to be exponential, rather than reciprocal, 

with time. Furthermore, the absolute value of D .1 was far larger than 

that given by Eq. [5-99]. This anomalously poor magnetic confinement 

was first noted in 1946 by Bohm, Burhop, and Massey, who were 

developing a magnetic arc for use in uranium isotope separation. Bohm 

gave the semiempirical formula 

1 KT, 
D1. =- -- ==Ds 

16 eB 
[5-111) 

I 



This formula was obeyed in a surprising number of different experi

ments. Diffusion following this law is called Bohm diffusion. Since D6 is 

independent of density, the decay is exponential with time. The time 

constant in a cylindrical column of radius Rand length L can be estimated 

as follows: 

N n7TR2L nR 
r=--- = =-dN/dt L27TRL 2L 

where N is the total number of ion-electron pairs in the plasma. With 

the flux L given by Fick's law and Bohm's formula, we have 

nR nR R2 
T = = = -- =Ts 

2D6 an/aT 2D6n/ R 2D6 

The quantity r8 is often called the Bohm time. 

[5-112] 

Perhaps the most extensive series of experiments verifying the Bohm 

formula was done on a half-dozen devices called stellarators at Princeton. 

A stellarator is a toroidal magnetic container with the lines of force 

twisted so as to average out the grad-B and curvature drifts described 

in Section 2.3. Figure 5-20 shows a compilation of data taken m·er a 

decade on many different types of discharges in the Model C Stellarator. 
The measured values of r lie near a line representing the Bohm time 

r6. Close adherence to Bohm diffusion would have serious consequences 

for the controlled fusion program. Equation [5- 1 1 1 ] shows that D6 
increases, rather than decreases, with temperature, and though it 

decreases with B, it decreases more slowly than expected. In absolute 

magnitude, D6 is also much larger than D J.· For instance, for a I 00-eV 

plasma in 1 -T field, we have 

_ __!__ ( 1 02) ( 1 .6 X 1 0-19) _ ')� 2 

Ds- 1 6  ( 1 .6 X 1 0-19) ( 1 )  - 6._::> m /sec 

If the density is 1019 m-3, the classical diffusion coefficient is 

(2) ( 1 019) ( 102) ( 1 .6 X 1 0-
19) 

( 1 ) 2 

(2.0)(5.2 X 10-5) ( 1 0) X 
( 1  00) 3/2 

= (320 ) ( 1 .04 x 1 0-6) = 3.33x 1 0-4m2/sec 

The disagreement is four orders of magnitude. 
Several explanations have been proposed for Bohm diffusion. First, 

there is the possibility of magnetic field errors. In the complicated 
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FIGURE 5-20 Summary of confinement time measurements taken on various types of dis

charges in the Model C Stellarator, showing adherence to the Bohm diffusion 

law. [Courtesy of D. J. Grove, Princeton University Plasma Physics Laboratory, 

sponsored by the U.S. Atomic Energy Commission.] 

geometries used in fusion research, it is not always clear that the lines 

of force either close upon themselves or even stay within the chamber. 
Since the mean free paths are so long, only a slight asymmetry in the 
magnetic coil structure will enable electrons to wander out to the walls 

without making collisions. The ambipolar electric field will then pull the 

ions out. Second, there is the possibility of asymmetric electric fields. 

These can arise from obstacles inserted into the plasma, from asym

metries in the vacuum chamber, or from asymmetries in the way the 
plasma is created or heated. The deE x B drifts then need not be parallel 

to the walls, and ions and electrons can be carried together to the walls 

byE X B convection. The drift patterns, called convective cells, have been 

observed. Finally, there is the possibility of oscillating electric fields arising 



from unstable plasma waves. If these fluctuating fields are random, the 
E x  B drifts constitute a collisionless random-walk process. Even if the 
oscillating field is a pure sine wave, it can lead to enhanced losses because 
the phase of the E x B drift can be such that the drift is always outward 
whenever the fluctuation in density is positive. One may regard this 
situation as a moving convective cell pattern. Fluctuating electric fields 
are often observed when there is anomalous diffusion, but in many cases, 
it can be shown that the fields are not responsible for all of the losses. 
All three anomalous loss mechanisms may be present at the same time 
in experiments on fully ionized plasmas. 

The scaling of D8 with KT. and B can easily be shown to be the 
natural one whenever the losses are caused byE x B drifts, either station
ary or oscillating. Let the escape flux be proportional to the Ex B drift 
velocity: 

f1. = nv1. a: nE/ B [5-113] 

Because of Debye shielding, the max1mum potential m the plasma is 
given by 

e<f>max = KT. [5-114] 

If R is a characteristic scale length of the plasma (of the order of its 
radius), the maximum electric field is then 

E =
</>max

= 
KT 

max 
R eR 

This leads to a flux f1. given by 

n KT. KT. 
f1. = y- -- = -y--Vn = -D8 Vn 

R eB eB 

[5-115] 

[5-116] 

where y is some fraction less than unity. Thus the fact that D8 is 
proportional to KT./ eB is no surprise. The value y = rl; has no theoretical 
justification but is an empirical number agreeing with most experiments 
to within a factor of two or three. 

Recent experiments on toroidal devices have achieved confinement 
times of order 100-r8. This was accomplished by carefully eliminating 
oscillations and asymmetries. However, in toroidal devices, other effects 
occur which enhance collisional diffusion. Figure 5-21 shows a torus with 
helical lines of force. The twist is needed to eliminate the unidirectional 
grad-E and curvature drifts. As a particle follows a line of force, it sees 
a larger I Bl near the inside wall of the torus and a smaller I Bl near the 
outside wall. Some particles are trapped by the magnetic mirror effect 
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FIGURE 5-21 A banana orbit of a particle confined in the twisted magnetic field of 

a toroidal confinement device. The "orbit" is really the locus of points 

at which the particle crosses the plane of the paper. 

Dl 

BANANA Dl FFUSION 

MODIFIED 
PLATEAU CLASSICAL i REGION DIFFUSION 

I I 
I 
I 

v 
FIGURE 5-22 Behavior of the neoclassical diffusion coefficient with 

collision frequency v. 

and do not circulate all the way around the torus. The guiding centers 
of these trapped particles trace out banana-shaped orbits as they make 
successive passes through a given cross section (Fig. 5-21 ). As a particle 
makes collisions, it becomes trapped and untrapped successively and 
goes from one banana orbit to another. The random-walk step length 
is therefore the width of the banana orbit rather than rL, and the 
"classical" diffusion coefficient is increased. This is called neoclassical 
diffusion. The dependence of D1. on v is shown in Fig. 5-22. In the 
region of small v, banana diffusion is larger than classical diffusion. In 
the region of large v, there is classical diffusion, but it is modified by 



currents along B. The theoretical curve for neoclassical diffusion has 

been observed experimentally by Ohkawa at La Jolla, California. 

5-7. Show that the mean free path A,; for electron-ion collisions is proportional 
tor;. 

5-8. A Tokamak is a toroidal plasma container in which a current is driven in 
the fully ionized plasma by an electric field applied along B (Fig. P5-8). How 
many V /m must be applied to drive a total current of 200 kA in a plasma with 
KT, = 500 eV and a cross-sectional area of 75 cm2' 

5-9. Suppose the plasma in a fusion reactor is in the shape of a cylinder 1.2 m 
in diameter and 100m long . The 5-T magnetic field is uniform except for short 
mirror regions at the ends, which we may neglect. Other parameters are KT; = 

20 keY, KT, = 10 keY, and n = 1021 m-3 (at r = 0). The density profile is found 
experimentally to be approximately as sketched in Fig. P5-9. 

(a) Assuming classical diffusion, calculateD l. at r = 0.5 m. 

(b) Calculate dN I dt, the total number of ion-electron pairs leaving the central 
region radially per second. 

n 

50 50 
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(c) Estimate the confinement timeT by -r = -N/(dN/dt). Note: a rough estimate 
is all that can be expected in this type of problem. The profile has obviously 
been affected by processes other than classical diffusion. 

5-10. Estimate the classical diffusion time of a plasma cylinder 10 em in radius, 
with n = 102' m-3, KT, = KT; = 10 keV, B = 5 T. 

5-11. A cylindrical plasma column has a density distribution 

n =n0(1-r2/a2) 
where a= 10 em and n o= 1019 m-3. If KT, = 100 eV, KT; = 0, and the axial 
magnetic field Bo is 1 T, what is the ratio between the Bohm and the classical 
diffusion coefficients perpendicular to 80? 

5-12. A weakly ionized plasma can still be governed by Spitzer resistivity if 
v,; » v,.,, where v,0 is the electron-neutral collision frequency. Here are some 
data for the electron-neutral momentum transfer cross section cr,0 in square 
angstroms (A 2): 

Helium 
Argon 

E = 2eV 

6.3 
2.5 

E = I O eV 

4.1 
13.8 

For singly ionized He and A plasmas with KT, = 2 and 10 eV (4 cases), estimate 
the fractional ionization f = n;/(n0 + n;) at which v,; = v,0, assuming that the value 

of (J11(T,) can be crudely approximated by cr(E)f;i(E), where E = KT,. (Hint: 
For v,0, use Eq. [7-11); for v,;, use Eqs. [5-62] and [5-76]. 

5-13. The plasma in a toroidal stellarator is ohmically heated by a current along 
B of 105 A/m2. The density is uniform at n = 1019 m-3 and does not change. 
The Joule heat 11/ goes to the electrons. Calculate the rate of increase of KT, in 
eV/11-sec at the time when KT, = 10 eV. 

5:14. In a 0-pinch, a large current is discharged through a one-turn coil. The 
rising magnetic field inside the coil induces a surface current in the highly 
conducting plasma. The surface current is opposite in direction to the coil current 
and hence keeps the magnetic field out of the plasma. The magnetic field pressure 
between the coil and the plasma then compresses the plasma. This can work 
only if the magnetic field does not penetrate into the plasma during the pulse. 
Using the Spitzer resistivity, estimate the maximum pulse length for a hydrogen 
0-pinch whose initial conditions are KT, = 10 eV, n = 1022 m-3, r = 2 em, if the 
field is to penetrate only 1/10 of the way to the axis. 

5-15. Consider an axisymmetric cylindrical plasma with E = E,i, B = Bz, and 
Vp; = Vp, = iapjar. If we neglect the (v · V)v term, which is tantamount to neglect
ing the centrifugal force, the steady state two-fluid j'!quations can be written in 
the form 

en(E + v, X B)- Vp;- e2n 2ry(v,- v,) = 0 

-en(E + v, x B)- Vp, + e2n 2ry(v,- v,) = 0 



(a) From the 8 components of these equations, show that V;, = v.,.. 

(b) From the r components, show that v;8 = v£ + v0; (j = i, e). 
(c) Find an expression for v;, showing that it does not depend onE,. 

5-16. Use the single-fluid MHD equation of motion and the mass continuity 
equation to calculate the phase velocity of an ion acoustic wave in an unmagnet
ized, uniform plasma with T, » T;. 

5-17 Calculate the resistive damping of Alfven waves by deriving the dispersion 
relation from the single-fluid equations [5-85] and [5-91] and Maxwell's equations 
[ 4-72] and [4 -77]. Linearize and neglect gravity, displacement current, and Vp. 

(a) Show that 

�: = c2Eo(!,�- iw11) 
(b) Find an explicit expression for Im (k) when w is real and 17 is small. 

5-18. If a cylindrical plasma diffuses at the Bohm rate, calculate the steady state 
radial density profile n (r), ignoring the fact that it may be unstable. Assume that 
the density is zero at r = oo and has a value n0 at r = r0. 

5-19. A cylindrical column of plasma in a uniform magnetic field B = B}. carries 
a uniform current density j = j,z, where z is a unit vector parallel to the axis of 
the cylinder. 

(a) Calculate the magnetic field B(t·) produced by this plasma current. 

(b) Write an expression for the grad -E drift of a charged particle with v11 = 0 in 
terms of B,, j, r, V.t, q, and m. You may assume that the field calculated in (a) 
is small compared to B, (but not zero). 

(c) If the plasma has electrical resistivity, there is also an electric field E = E,z. 
Calculate the azimuthal electron drift due to this field, taking into account the 
helicity of the B field. 

(d) Draw a diagram showing the direction of the drifts in (b) and (c) for both 
ions and electrons in the (r, 8) plane. 
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Chapter Six 

A y 

INTRODUCTION 6.1 

I f  we look only at the motions of individual particles. it would be easy 
to design a magnetic field which will confine a collisionless plasma. We 

need only make sure that the lines of force do not hit the vacuum wall 
and arrange the symmetry of the system in such a way that all the particle 
drifts V£, vv8, and so forth are parallel to the walls. From a macroscopic 

fluid viewpoint, however, it is not easy to see whether a plasma will be 

confined in a magnetic field designed to contain individual particles. No 

matter how the external fields are arranged , the plasma can generate 

internal fields which affect its motion. For instance, charge bunching can 

create E fields which can cause Ex B drifts to the wall. Currents in the 

plasma can generate B fields which cause grad-E drifts outward. 

We can arbitrarily divide the problem of confinement into two parts: 

the problem of equilibrium and the problem of stability. The difference 

between equilibrium and stability is best illustrated by a mechanical 

analogy. Figure 6-1 shows various cases of a marble resting on a hard 
surface. An equilibrum is a state in which all the forces are balanced, so 

that a time-independent solution is possible. The equilibrium is stable 

or unstable according to whether small perturbations are damped or 

amplified. I n  case (F), the marble is in a stable equilibrium as long as it 
is not pushed too far. Once it is moved beyond a threshold, it is in an 
unstable state. This is called an "explosive instability." In case (G), the 
marble is in an unstable state, but it cannot make very large excursions. 199 
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FIGURE 6-1 Mechanical analogy of various types of equlibrium. 
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Such an instability is not very dangerous if the nonlinear limit to the 

amplitude of the motion is small . The situation with a plasma is, of 
course, much more complicated than what is seen in Fig. 6-1; to achieve 
equilibrium requires balancing the forces on each fluid element. Of the 
two problems, equilibrium and stability, the latter is easier to treat. One 

can linearize the equations of motion for small deviations from an 

equilibrium state. We then have linear equations, just as in the case of 

plasma waves. The equilibrium problem, on the other hand, is a nonlinear 

problem like that of diffusion .  In complex magnetic geometries, the 

calculation of equilibria is a tedious process. 

HYDROMAGNETIC EQUILIBRIUM 6.2 

Although the general problem of equilibrium is complicated, severa 

physical concepts are easily gleaned from the MHD equations. For a 

steady state witha/at = Oand g = 0, the plasma must satisfy(cf .. Eq. [5-85]) 

and 

Vp = j x B 

V X B = fLoj 

[6-1] 

[6-2) 

From the simple equation [6-1 ] ,  we can already make several observa

tions . 
(A) Equation [6-1] states that there is a balance of forces between 

the pressure-gradient force and the Lorentz force. How does this come 
about? Consider a cylindrical plasma with Vp directed toward the axis 

(Fig. 6-2). To counteract the outward force of expansion,  there must be 
an azimuthal current in the direction shown. The magnitude of the 

required current can be found by taking the cross product of Eq. [6-1] 

with B: 

. B x Vp B x Vn Jl. = --2 - = (KTi + KT.) <> B B- [6-3] 

This is just the diamagnetic current found previously in Eq. [3-69]! From 

a single-particle viewpoint, the diamagnetic current arises from the 

Larmor gyration velocities of the particles, which do n ot average to zero 
when there is a density gradient. From an MHD fluid viewpoint, the 
diamagnetic current is generated by the Vp force across B; the resulting 
current is just sufficient to balance the forces on each element of fluid 
and stop the m otion.  
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FIGURE 6-2 The j x B force of the diamagnetic cur
rent balances the pressure-gradient 
force in steady state. 

(B) Equation [6-1] obviously tells us that j and Bare each perpen

dicular to Vp. This is not a trivial statement when one considers that the 

geometry may be very complicated.  Imagine a toroidal plasma in which 

there is a smooth radial density gradient so that the surfaces of constant 
density (actually, constant p) are nested tori (Fig. 6-3). Since j and Bare 
perpendicular to Vp, they must lie on the surfaces of constant p. In 

general, the lines of force and of current may be twisted this way and 
that, but they must not cross the constant-p surfaces. 

FIGURE 6-3 Both the j and B vectors lie on constant-pressure surfaces. 



j 

Expansion of a plasma streaming into a mirror. FIGURE 6-4 

(C) Consider the component of Eq. [6-l] along B. It says that 

ap;as = o [6-4] 

where s is the coordinate along a line of force. For constant KT, this 
means that in hydromagnetic equilibrium the density is constant along 
a line of force. At first sight, it seems that this conclusion must be in 
error. For, consider a plasma injected into a magnetic mirror (Fig. 6-4). 
As the plasma streams through, following the lines of force, it expands 
and then contracts; and the density is clearly not constant along a line 
of force. However, this situation does riot satisfy the conditions of a static 
equilibrium. The (v · V)v term, which we neglected along the way, does 
not vanish here. We must consider a static plasma with v = 0. In that 
case, particles are trapped in the mirror, and there are more particles 
trapped near the midplane than near the ends because the mirror ratio 
is larger there. This effect just compensates for the larger cross section 
at the midplane, and the net result is that the density is constant along 
a line of force. 

THE CONCEPT OF (J 6.3 

We now substitute Eq. [6-2] into Eq. [6-1] to obtain 

or 

vp = �-to1 (V x B) x B = �-to1 [(B. V)B- �VB2J 

( B2) I 
V p + - = - (B · V)B 

2�-to I-to 

[6-5] 

[6-6) 

In many interesting cases, such as a straight cylinder with axial field, 

the right-hand side vanishes; B does not vary along B. In many other 
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FIGURE 6-5 In a finite-13 plasma, the diamagnetic current 
significantly decreases the magnetic field, 
keeping the sum of the magnetic and particle 
pressures a constant. 

cases, the right-hand side is small. Equation (6-6] then says that 

B2 
p + -- = constant 

21-Lo 
[6-7] 

Since B2/2i-Lo is the magnetic field pressure, the sum of the particle 

pressure and the magnetic field pressure is a constant. In a plasma with 

a density gradient (Fig. 6-5), the magnetic field must be low where the 

density is high, and vice versa. The decrease of the magnetic field inside 

the plasma is caused, of course, by the diamagnetic current. The size of 

the diamagnetic effect is indicated by the ratio of the two terms in Eq. 

[6-7]. This ratio is usually denoted by�: 

Particle pressure 
[6-8) 

Magnetic field pressure 

Up to now we have implicitly considered low-13 plasmas, in which 11 is 

between 10-3 and 10-6. The diamagnetic effect, therefore, is very small. 

This is the reason we could assume a uniform field B0 in the treatment 

of plasma waves. If t1 is low, it does not matter whether the denominator 

of Eq. [6-8] is evaluated with the vacuum field or the field in the presence 

of plasma. If t1 is high, the local value of B can be greatly reduced by 

the plasma. In that case, it is customary to use the vacuum value of B 

J 
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in the definition of {3. High-{3 plasmas are common in space and MHD 
energy conversion research. Fusion reactors will have to have {3 well in 
excess of 1% in order to be economical, since the energy produced is 

proportional to n 2, while the cost of the magnetic container increases 

with some pmver of B. 
In principle, one can have a {3 = 1 plasma in which the diamagnetic 

current generates a field exactly equal and opposite to an externally 

generated uniform field. There are then two regions: a region of plasma 

without field , and a region of field without plasma. I f  the external field 

lines are straight, this equilibrium would likely be unstable, since it is 
like a blob of jel ly held together with stretched rubber bands . It remains 

to be seen whether a {3 = 1 plasma of this type can ever be achieved. I n  

some magnetic configurations, the vacuum field has a null inside the 

plasma; the local value of {3 would then be infinite there . This happens, 

for instance, when fields are applied only near the surface of a large 

plasma. It is then customary to define {3 as the ratio of maximum particle 
pressure to maximum magnetic pressure; in this sense, it is not possible 

for a magnetically confined plasma to have {3 > 1 .  

DIFFUSION OF MAGNETIC FIELD INTO A PLASMA 6.4 

A problem which often arises in astrophysics is the diffusion of a magnetic 

field into a plasma. I f  there is a boundary between a region with plasma 
but no field and a region with field but no plasma (Fig. 6-6), the regions 

will stay separated if the plasma has no resistivity, for the same reason 

that flux cannot penetrate a superconductor. Any emf that the moving 

lines of force generate will create an infinite current, and this is not 

possible. As the plasma moves around, therefore, it pushes the lines of 

PLASMA ONLY 

In a perfectly conducting plasma, regions of plasma and magnetic field can FIGURE 6-6 
be separated by a sharp boundary. Currents on the surface exclude the field 
from the plasma. 

205 
Equilibrium 
and Stability 



206 
Chapter 
Six 

force and can bend and twist them. This may be the reason for the 
filamentary structure of the gas in the Crab nebula. If the resistivity is 
finite, however, the plasma can move through the field and vice versa. 
This diffusion takes a certain amount of time, and if the motions are 
slow enough, the lines of force need not be distorted by the gas motions. 
The diffusion time is easily calculated from the equations (cf. Eq. [5-91]) 

V X E = -B 

E+vxB=17j 

[6-9] 

[6-10] 

For simplicity, let us assume that the plasma is at rest and the field lines 
are moving into it. Then v = 0, and we ha\'e 

[6-11] 

Since j is given by Eq. [6-2], this becomes 

aB 11 17 9 - = -- V x (V x B) = -- [V(V · B)- v-B] [6-12] 
at f.J..o f.J..o 

Since V · B = 0, we obtain a diffusion equation of the type encountered 
in Chapter 5: 

[6-13] 

This can be solved by the separation of variables, as usual. To get a 
rough estimate, let us take L to be the scale length of the spatial variation 
of B. Then we have 

where 

aB '17 -= --9B 
at f.J..oL-

B = Bo e=t/T 

'T = f.J..oL 2/11 

[6-14] 

[6-15] 

[6-16] 

This is the characteristic time for magnetic field penetration into a 
plasma. 

The time T can also be interpreted as the time for annihilation of 
the magnetic field. As the field lines move through the plasma, the 
induced currenb cause ohmic heating of the plasma. This energy comes 
from the energy of the field. The energy lost per m3 in a time 'T is 11/'T. 
Since 

. V B 
f.J..oJ = X B =-L [6-17] 
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J 

from Maxwell's equation with displacement current neglected, the energy 

dissipation is 

[6-18] 

Thus T is essential ly the time it takes for the field energy to be dissipated 

into Joule heat. 
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6-1. Suppose that an electromagnetic instability limits {3 to (m/ M)112 in a D-D PROBLEMS 
reactor. Let the magnetic field be limited to 20 T by the strength of materials. 
If KT, = KT, = 20 ke V, find the maximum plasma density that can be contained. 

6-2. In laser-fusion experiments, absorption of laser light on the surface of a 
pellet creates a plasma of density n = I 027 m-3 and temperature T, = T, = I 04 eV. 
Thermoelectric currents can cause spontaneous magnetic fields as high as I 03 T. 
(a) Show that W(T,; » I in this plasma, and hence electron motion is severely 
affected by the magnetic field. 

(b) Show that {3 » I ,  so that magnetic fields cannot effectively confine the plasma. 

(c) How do the plasma and field move so that the seemingly contradictory 
conditions (a) and (b) can both be satisfied) 

6-3. A cylindrical plasma column of radius a contains a coaxial magnetic field 
B = B0z and has a pressure profile 

P = Po cos2 (m/2a) 

(a) Calculate the maximum value of p0. 

(b) Using this value of p0, calculate the diamagnetic current j(r) and the total 
field B(r). 
(c) Show j(r), B(r), and p(r) on a graph. 

(d) If the cylinder is bent into a torus with the lines of force closing upon 
themselves after a single turn, this equilibrium, in which the macroscopic forces 
are everywhere balanced, is obviously disturbed. Is it possible to redistribute the 
pressure p(r, 0) in such a way that the equilibrium is restored? 

6-4. Consider an infinite, straight cylinder of plasma with a square density profile 
created in a uniform field B0 (Fig. P6-4). Show that B vanishes on the axis if 
/3 = l, by proceeding as follows. 

(a) Using the MHO equations, find j.L in steady state for KT =constant. 
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n(r) 

0 

FIGURE P6-4 

FJ 

B=B 0 

r 
a 

(b) Using V x B = �0j and Stokes' theorem, integrate over the area of the loop 

shown to obtain f"' an/ar 
Bax- Bo = �ol.KT -- dr 

o B (1·) 

(c) Do the integral by noting that an/ ar is a o-f unction, so that B (r) at r = a is 

the average between B= and B0. 

6-5. A diamagnetic loop is a device used to measure plasma presslll·e by detecting 

the diamagnetic effect (Fig. P6-5). As the plasma is created, the diamagnetic 

current increases, B decreases inside the plasma, and the Aux <I> enclosed by the 

loop decreases, inducing a voltage, which is then time-integrated by an RC circuit 

(Fig. P6-5). 

(a) Show that 

I \1 dt = -N �<I>= -N I Bd. dS 
loop 

(b) Use the technique of the previous problem to find Bd(r), but now assume 

n (r) = n0 exp [ -(r/r0)2]. To do the integral, assume {3 « 1, so that B can be 

approximated by B0 in the integral. 

(c) Show that J \1 dt = �N7TT�{3B0, with {3 defined as in Eq. [6-8]. 

6.5 CLASSIFICATION OF INSTABILITIES 

In the treatment of plasma waves, we assumed an unperturbed state 

which was one of perfect thermodynamic equilibrium: The particles had 
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Maxwellian velocity distributions, and the density and magnetic field 
were uniform. In such a state of highest entropy, there is no free energy 

available to excite waves, and we had to consider waves that were excited 

by external means. We now consider states that are not in perfect 

thermodynamic equilibrium, although they are in equilibrium in the 

sense that all forces are in balance and a time-independent solution is 

possible. The free energy which is available can cause waves to be 

self-excited; the equilibrium is then an unstable one. An instability is 
always a motion which decreases the free energy and brings the plasma 
closer to true thermodynamic equilibrium. 

Instabilities may be classified according to the type of free energy 

available to drive them.  There are four main categories. 

1. Streaming instabilities. In this case, either a beam of energetic 

particles travels through the plasma, or a current is driven through the 

plasma so that the different species have drifts relative to one another. 

The drift energy is used to excite waves, and oscillation energy is gained 

at the expense of the drift energy in the unperturbed state. 

2. Rayleigh-Taylor instabilities. In this case, the plasma has a density 
gradient or a sharp boundary, so that it is not uniform. In addition, an 
external, nonelectromagnetic force is  applied to the plasma. It is  this 
force which drives the instability. An analogy is available in the example 
of an inverted glass of water (Fig. 6-7). Although the plane interface 
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FIGURE 6-7 
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g g 

Hydrodynamic Rayleigh-Taylor instability of a heavy fluid 
supported by a light one. 

between the water and air is in a state of equilibrium in that the weight 
of the water is supported by the air pressure, it is an unstable equilibrium. 
Any ripple in the surface will tend to grow at the expense of potential 
energy in the gravitational field. This happens whenever a heavy fluid 
is supported by a light fluid, as is well known in hydrodynamics. 

3. Universal instabilities. Even when there are no obvious driving 
forces such as an electric or a gravitational field, a plasma is not in perfect 
thermodynamic equilibrium as long as it is confined. The plasma pressure 
tends to make the plasma expand, and the expansion energy can drive 
an instability. This type of free energy is always present in any finite 
plasma, and the resulting waves are called universal instabilities. 

4. Kinetic instabilities. In fluid theory the velocity distributions are 
assumed to be Maxwellian. If the distributions are in fact not Maxwellian, 
there is a deviation from thermodynamic equilibrium; and instabilities 
can be drived by the anisotropy of the velocity distribution. For instance, 
if T11 and T 1. are different, an instability called the modified Harris 
instability can arise. In mirror devices, there is a deficit of particles with 
large vn/v 1. because of the loss cone; this anisotropy gives rise to a "loss 
cone instability." 

In the succeeding sections, we shall give a simple example of each 
of these types of instabilities. The instabilities driven by anisotropy cannot 
be described by fluid theory and a detailed treatment of them is beyond 
the scope uf this book. 

Not all instabilities are equally dangerous for plasma confinement. 
A high-frequency instability near wp, for instance, cannot affect the 
motion of heavy ions. Low-frequency instabilities with w « flc. however, 
can cause anomalous ambipolar losses via E x B drifts. Instabilities with 
w = flc do not efficiently transport particles across B but are dangerous 
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in mirror machines, where particles are lost by diffusion in  velocity space 21 1 
into the loss cone. Equilibrium 

TWO-STREAM INSTABILITY 6.6 

As a simple example of a streaming instability, consider a uniform plasma 

in which the ions are stationary and the electrons have a velocity v0 
relative to the ions .  That is, the observer is in a frame moving with the 
"stream" of ions. Let the plasma be cold (KT, = KT; = 0), and let there 
be no magnetic field (Bo = 0). The linearized equations of motion are 

then 

[av, 1 J mno at+ (vo · V)v, 1 = -en0E1 

[6-19] 

[6-20] 

The term (v, 1 • V)v0 in Eq. [6-20] has been dropped because we assume 

v0 to be uniform. The (v0 · V)v1 term does not appear in Eq. [6-19] 
because we have taken v;0 = 0. We look for electrostatic waves of the form 

E1 = E e i(kx-wt)x [6-21] 

where x is the direction of v0 and k. Equations [6-19] and [6-20] become 

mno(-iw + ikv0)v,1 = -en0E, 

u A v·1 =--Ex ' Mw 

ie Ex 
Vel=--m w- kv0 

[6-22] 

[6-23] 

The velocities vi, are in the x direction, and we may omit the subscript 
x. The ion equation of continuity yields 

an;, -- + noV · v 1 = 0 at ' 
k ien0k n;' = -nov;' = • -r 2 E 

W lVlW 
[6-24] 

Note that the other terms in V · (nv;) vanish because Vn0 = v0; = 0. The 

electron equation of continuity is 

an,, -- + noV· Vet + (vo · V)nel = 0 [6-25] at 

( -iw + ikvo)n, 1 + iknov, 1 = 0 [6-26] 

kno iekn0 n,1 = v,, =- 2 E [6-27] w- kvo m(w- kvo) 

and Stability 
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Since the unstable waves are high-frequency plasma oscillations, we may 

not use the plasma approximation but must use Poisson's equation: 

. . [ 1 l J tkE0E = e(zenokE) � + 
k 2 A1w m(w- v0) 

The dispersion relation is found upon dividing by ikEoE: 

2[m/M l J ] = Wp --? - + ? w- (w - kvor 

[6-28] 

[6-29] 

[6-30] 

Let us see if oscillations with real k are stable or unstable. Upon 

multiplying through by the common denominator, one would obtain a 

fourth-order equation for w. If all the roots wi are real , each root would 

indicate a possible oscillation 

I f  some of the roots are complex, they will occur in complex conjugate 

pairs. Let these complex roots be written 

[6-31] 

where a andy are Re(w) and Im(w ), respectively. The time dependence 

is now given by 

[6-32] 

Positive Im(w) indicates an exponentially growing wave; negative lm(w) 

indicates a damped wave. Since the roots wi occur in conjugate pairs, 

one of these will always be unstable unless all the roots are real. The 

damped roots are not self-excited and are not of interest. 
The dispersion relation [6-30] can be analyzed without actually 

solving the fourth-order equation. Let us define 

x = w/wp 

Then Eq. [6-30] becomes 

y = kvo/ Wp 

rn/M l 
l = -? - + 2 = F(x, y) 

x- (x - y) 

[6-33] 

[6-34] 

For any given value of y, we can plot F(x, y) as a function of x. This 
function will h ave singularities at x = 0 and x = y (Fig. 6-8). The intersec

tions of this curve with the line F(x, y) = 1 give the values of x satisfying 
the dispersion relation. In the example of Fig. 6-8, there are four 

intersections, so there are four real roots wi. However, if we choose a 
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The function F(x, y) in the two-stream instability, when the plasma is FIGURE 6-8 
stable. 

F(x,y) 

0 
0 y X _ __, .. ._ 

The function F(x, y) in the two-stream instability, when the plasma FIGURE 6-9 
is unstable. 

smaller value of y, the graph would look as shown i n  Fig. 6-9. Now there 

are only two intersections and, therefore, only two real roots . The other 

two roots must be complex, and one of them must correspond to an  

unstable wave. Thus, for sufficiently small kv0, the  plasma i s  unstable. 

For any given v0, the plasma is always unstable to long-wavelength 

oscillations. The maximum growth rate predicted by Eq. [6-30] is ,  for 

m/M « 1, 

[6-35] 

Since a small value of kv0 is required for instability, one can say that 
for a given k, v0 has to be sufficiently small for instability. This does not 
make much physical sense, since v0 is the source of energy drivin g  the 
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instability. The difficulty comes from our use of the fluid equations. Any 
real plasma has a finite temperature, and thermal effects should be taken 

into account by a kinetic-theory treatment. A phenomenon known as 
Landau damping (Chapter 7) will then occur for v0 � v,h, and no instabil

ity is predicted if v0 is too small. 

This "Buneman" instability, as it is sometimes called, has the follow
ing physical explanation. The natural frequency of oscillations in the 

electron fluid is Wp, and the natural frequency of oscillations in the ion 
fluid is flp = (m/ M)112wp. Because of the Doppler shift of the wp oscilla
tions in the moving electron fluid, these two frequencies can coincide in 
the laboratory frame if kv0 has the proper value. The density fluctuations 
of ions and electrons can then satisfy Poisson's equation.  Moreover. the 

electron oscillations can be shown to have negative energy. That is to say, 
the total kinetic energy of the electrons is less when the oscillation is 

present than when it is absent. In the undisturbed beam, the kinetic 
energy per m3 is �mn0v�. When there is an oscillation, the kinetic energy 

is �m (no+ n J)(v0 + v 1t When this is averaged over space, it turns out 

to be less than �mn0v� because of the phase relation between n1 and v1 
required by the equation of continuity. Consequently, the electron oscilla

tions have negative energy, and the ion oscillations have positive energy. 

Both waves can grow together while keeping the total energy of the 
system constant. An instability of this type i.s used in klystrons to generate 

microwaves. Velocity modulation due to E1 causes the electrons to form 
bunches. As these bunches pass through a microwave resonator, they 

can be made to excite the natural modes of the resonator and produce 
microwave power. 

PROBLEMS 6-6.(a) Derive the dispersion relation for a two-stream instability occurring when 

there are two cold electron streams with equal and opposite v0 in a background 

of fixed ions. Each stream has a density �o· 

(b) Calculate the maximum growth rate. 

6-7. A plasma consists of two uniform streams of protons with velocities +vox 
and -v0x, and respective densities �u and �0. There is a neutralizing electron 

fluid with density n0 and with v0, = 0. All species are cold, and there is no 
magnetic field. Derive a dispersion relation for streaming instabilities in this 

system. 

6-8. A cold electron beam of density 8nu and velocity u is shot into a cold plasma 

of density n0 at rest. 



(a) Derive a dispersion relation for the high-frequency beam-plasma instability 
that ensues. 
(b) The maximum growth rate I'm is difficult to calculate, but one can make a 
reasonable guess if 8 « 1 by analogy with the electron-ion Buneman instability. 
Using the result gi,·en without proof in Eq. [6-35], give an expression for I'm in 
terms of 8. 

6-9. Let two cold, counterstreaming ion fluids have densities 4no and velocities 
±v0y in a magnetic field B0z and a cold neutralizing electron fluid. The field B0 
is strong enough to confine electrons but not strong enough to affect ion orbits. 

(a) Obtain the following dispersion relation for electrostatic waves propagating 
in the ±y direction in the frequency range n� « w2 « w;: 

.{12 .{12 2 
---'-"---;;: + , =

w
"+l 

2(w- kv0)2 2(w + kv0)2 w� 

(b) Calculate the dispersion w(k), growth rate y(k), and the range of wave 
numbers of the unstable waves. 

THE "GRAVITATIONAL" INSTABILITY 6. 7 

In a plasma, a Rayleigh-Taylor instability can occur because the magnetic 

field acts as a light fluid supporting a heavy fluid (the plasma). In curved 

magnetic fields, the centrifugal force on the plasma due to particle motion 

along the curved l ines of force acts as an equivalent "gravitational" force. 

To treat the simplest case, consider a plasma boundary lying in the y-z 
plane (Fig. 6-1 0). Let there be a density gradient Vn0 in the -x direction 
and a gravitational field gin the x direction. We may let KT; = KT, = 0 

for simplicity and treat the low-13 case, in  which B0 is uniform . In the 

equilibrium state, the ions obey the equation 

Mno(vo · V)vo = en Vo X Bo + Mn0g [6-36] 

PLASMA 0B 

VACUUM 
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A plasma surface subject to a gravitational instability. FIGURE 6-10 
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If g is a constant, v0 will be also; and (v0 · V)v0 vanishes. Taking the cross 

product of Eq. [6-36] with B0, we find, as in Section 2.2, 

M gx Bo g � 

Vo = - --2- = -- Y 
e Bo flc 

[6-37] 

The electrons have an opposite drift which can be neglected in the limit 
m/ M � 0. There is no diamagnetic drift because KT = 0, and no E0 x B0 
drift because Eo= 0. 

If a ripple should develop in the interface as the result of random 
thermal fluctuations, the drift v0 will cause the ripple to grow (Fig. 6-ll ) . 
The drift of ions causes a charge to build up on the sides of the ripple, 

and an electric field develops which changes sign as one goes from crest 

to trough in the perturbation .  As can be seen from Fig. 6- 1 1, the E1 x B0 
drift is always upward in those regions where the surface has moved 

upward, and downward where it has moved d ownward. The ripple grows 

as a result of these properly phased E1 x B0 d rifts. 

To find the growth rate, we can perform the usual linearized wave 
analysis for waves propagating in they direction: k = ky. The perturbed 

ion equation of motion is 

M(no + n ,)[� (vo + v1) + (v0 + v,) · V(vo + v,) J 
= e(n0 + n 1)[E1 + (v0 + v1) X B0] + M(n0 + n,)g [6-38] 

We now multiply Eq. [6-36] by 1 + (n1/n0) to obtain 

M(n0 + n,)(v0 • V)v0 = e(n0 + n1)vo X Bo + M(no + n,)g [6-39] 

Subtracting this from Eq. [6-38] and neglecting second-order terms, we 
have 

[6-40] 

v;������ ' : ����� ����·I!�: 
1 

FIGURE 6-11 Physical mechanism of the gravitational instability. 
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Note that g has cancelled out. I n formation regarding g, however, is still 

contained in v0. For perturbations of the form exp [i (ky - wt)], we have 

M(w- kv0)v1 = ie(E1 + v1 X Bo) [6-41] 

This is the same as Eq. [ 4-96] except that w is re placed by w - kv0, and 

electro n quantities are re pl aced b y  ion qu antities. The solution, therefore, 

is give n b y  Eq. [ 4-98] with the appro priate changes. For Ex = 0 and 

the solutio n is 

Ey 
v· =

•x Bo 

[6-42] 

[6-43) 

The latter quantity is the polarizat ion drift in the ion frame. The corres

po nding qu antity for electrons vanishes i n  the limit m/ M � 0. For the 

electro ns, we therefore have 

[6-44] 

The perturbed equation o f  continuity for ions is 

The zeroth-order term vanishes si nce v0 is per pendicul ar to Vn0, and 
the n 1 V · v0 term vanishes if v0 is constant. The first-order equation is, 
there fore, 

[6-46] 

where n� = an0/ ax. The electrons fol low a s impler equ ation, since v,0 = 0 

and Vey = 0: 

[6-47] 

Note that we have used the pl asma approximation and have assumed 
n;1 = ne1. This is poss ible because the u nstab le waves are o f  low frequen
cies (this can be justified a posteriori). Equations [6-43] and [6-46] yield 

k 
. Ey , '

k 
w - kv0 Ey 

(w- Vo)nl + t - n0 + t no - = 0 
Bo flc Bo 

Equations [6-44] and [6-47] yield 

·b I 0 wn1 + t Bo n0 = 
b_ iwn1 
Bo- � 

[6-48) 

[6-49) 

217 
Equilibrium 
and Stability 



218 
Chapter 
Six 

Substituting this into Eq. [6-48], we have 

k ( 1 w - kvo ) wn 1 
(w- vo)nl- no+ kn 0  -�- = 0 

fl, no 

k ( kn0 w - kv0) 
w - Vo - I + - 1 w = 0 

fl, no 
[6-50] 

[6-51] 

Substituting for v0 from Eq. [6-37]. we obtain a quadratic equation for w: 

The solutions are 
2 k II w - v0w- g(no no)= 0 

w = �kvo ± [�k2v� + g(n�/n0)]112 

There is instability if w is complex; that is, if 

I I 
I k2 2 -gnuno>4 Vo 

[6-52] 

[6-53] 

[6-54] 

From this, we see that instability requires g and n�/n0 to have opposite 
sign. This is just the statement that the light fluid is supporting the heavy 
fluid; otherwise, w is real and the plasma is stable. Since g can be used 

to model the effects of magnetic field curvature, we see from this that 
stability depends on the sign of the curvature. Configurations with field 

lines bending in toward the plasma tend to be stabilizing, and vice versa. 
For sufficiently small k (long wavelength), the growth rate is given by 

I Y = lm (w) = [-g(n�/n0)]112 I [6-55] 

Note that the real part of w idkv0. Since v0 is an ion velocity, this is a 

low-frequency oscillation, as previously assumed. The factor of � is 
merely a consequence of neglecting v0,. The wave is stationary in the 
frame in which the density-weighted average of all the v0's is zero, which 

in this case is the frame moving at � v0. The laboratory frame has no 

particular significance in this case. 

This instability, which has k 1_ B0, is sometimes called a "flute" insta
bility for the following reason. In a cylinder, the waves travel in the 8 
direction if the forces are in the r direction. The surfaces of constant 

density then resemble fluted Greek columns (Fig. 6-12). 

6.8 RESISTIVE DRIFT WAVES 

A simple example of a universal instability is the resistive drift wave. In 
contrast to gravitational flute modes, drift waves have a small but finite 
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A "flute" instability. 

com ponent of k along B0. The constant de nsity surfaces, therefore, 
resemble flutes with a slight helical twist (Fig. 6-13). If we enlarge the 

cross section enclosed by the box in Fig. 6-13 and straighten it out i nto 

Cartesian geometry, it would appear as in Fig. 6-14. The o nly driving 

force for the i nstability is the pressure gr adie nt KT Vn0 (we assume 

KT = constant, for sim plicity). In this case, the zeroth-order drifts (for 
Eo= 0) are 

KT; n� � 

V;o = Vo; = --- Y 
eBo no 

KT, nb � 

v,o = vo. = - --- y 
eBo no 

[6-56] 

[6-57] 

From our experie nce with the flute i nstability, we might ex pect drift 

waves to have a phase velocity of the order of v0; or v0,. We shall show 

that w/ky is approximately equal to v0,. 

Since drift w aves h ave finite k., electrons can flow along B0 to establish 

a thermodynamic equilibrium among themselves (cf. discussion of Sec
tion 4.10). They wi ll then obey the Boltzmann relation (Section 3.5): 

[6-58] 

At point A i n  Fig. 6-14 the de nsity is l arger than in equilibrium, n 1 is 
positive, and therefore ¢1 is positive. Similarly, at point B, n1 and ¢1 are 
negative. The difference i n  potential means there is· an electric field E1 
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FIGURE 6-13 Geometry of a drift instability in a cylinder. The region 
in the rectangle is shown in detail in Fig. 6-14. 

between A and B. Just as in the case of the fl ute instability, E1 causes a 
drift v1 = E1 x B0/ B � in the x direction. As the wave passes by, traveling 

in the y direction, an observer at point A will see n 1 and ¢1 oscillating 

in time. The drift v1 will also oscillate in time, and in fact it is v1 which 
causes the density to oscillate. Since there is a gradient Vn0 in the -x 

direction, the drift v1 will bring plasma of different density to a fixed 

observer A. A drift wave, therefore, has a motion such that the fluid 

moves back and forth in the x direction although the wave travels in the 

y direction. 

To be more quantitative, the magnitude of v lx is given by 

[6-59] 

We shall assume v lx does not vary with x and that k, is much less than 

k1; that is, the fluid oscillates incompressibly in the x direction. Consider 
now the number of guiding centers brought into 1 m3 at a fixed point 

A; it is obviously 

[6-60] 

This is just the equation of continuity for guiding centers, which, of 

course, do not have a fluid drift v0. The term n0 V · v1 vanishes because 
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Physical mechanism of a drift wave. FIGURE 6-14 

of our previous assum ption. The d ifference betwee n the density of 

guiding centers and the density of particles n 1 gives a correction to Eq. 
[6-60] which is h igher order and may be neglected here. Using Eqs. 
[6-59] and [6-58], we can write Eq. [6-60) as 

Thus we h ave 

w KT. n� 
-=- -- -=vv 
k, eBo no 

• 

[6-61] 

[6-62] 

These waves, therefore, travel w ith the electron diamag netic drift velocity 

and are c al led drift waves. This is the velocity in the y, or azimuthal, 
direction. I n  addition, there is a component of ki n the z directio n. For 
reasons not given here, this component must satisfy the conditio ns 

k, « k, [6-63] 
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To see why drift waves are unstable, one must realize that v lx is not 

quite £)./ B0 for the ions. There are corrections due to the polarization 

drift, Eq. [2-66], and the nonuniform E drift, Eq. [2-59]. The result of 
these drifts is always to make the potential distribution ¢1 lag behind 

the density distribution n 1 (Problem 4-1 ). This phase shift causes v1 to 
be outward where the plasma has already been shifted outward, and 
vice versa; hence the perturbation grows. In the absence of the phase 
shift, n 1 and ¢1 would be 90° out of phase, as shown in Fig. 6-14, and 
drift waves would be purely oscillatory. 

The role of resistivity comes in because the field E1 must not be 
short-circuited by electron A ow along B0. Electron-ion collisions, together 

with a long distance �A, between crest and trough of the wave, make it 

possible to have a resistive potential drop and a finite value of E1. The 

dispersion relation for resistive drift waves is approximately 

[6-64] 

where 

[6-65] 

and 

k� 
0'11 = 

k 2 flc (Wc'Te;) 
y 

[6-66] 

If 0'11 is large compared with w, Eq. [6-64] can be satisfied only if w = w*. 

In that case, we may replace w by w* in the first term. Solving for w, we 
then obtain 

[6-67) 

This shows that Im(w) is always positive and IS proportional to the 
resistivity 71· Drift waves are, therefore, unstable and will eventually occur 

in any plasma with a density gradient. Fortunately, the growth rate is 
rather small, and there are ways to stop it altogether by making Bo 
nonuniform. 

Note that Eq. [6-52] for the Aute instability and Eq. [6-64] for the 

drift instability have different structures. In the former, the coefficients 



are real, and w is complex when the discriminant of the quadratic is 

negative ; this is typical of a reactive instability. I n  the latter, the coefficients 
are complex, so w is always complex; this is typical of a dissipative 
instability. 

6-10. A toroidal hydrogen plasma with circular cross section has major radius 
R = 50 em, minor radius a = 2 em, 8 = I T, KT, = 10 eV, KT, = I  eV, and n o = 

1 0 19 m-� .  Taking n0/n ;, = a/2 and g = (KT, + KT, ) /  MR, estimate the growth 
rates of the m = I resistive drift wave and the m = I gravitational fl ute mode.  
(One can usually apply the slab-geometry formulas to cylindrical geometry by 
replacin g  k, by m/r, where m is the azimuthal mode n u mber.) 

THE WEIBEL INSTABILITY* 

As an example of an instability driven by anisotropy of the distribution 

function,  we give a physical picture (due to B. D.  Fried) of the Weibel 
instability, in which a magnetic perturbation is made to grow. This will also 

serve as an example of an electromagnetic instability. Let the ions be fixed , 

and let the electrons be hotter in the y direction than in  the x or z directions.  

There is then a preponderance of fast electrons in the ±y directions (Fig. 

6-15) ,  but equal numbers flow up and down, so that there is no net current .  
Suppose a field B = B,z cos kx spontaneously arises from noise. The 
Lorentz force -ev x B then bends the electron trajectories as shown by 

the dashed curves, with the result that downward-moving electrons 
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Physical mechanism of the Weibel instability. FIGURE 6-15  

* A  salute t o  a good friend, Erich Weibel ( 1 925- 1 9il:l) . 
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congregate at A and u pward-moving ones at B. The resulting current 
sheets j = -en ov. are phased ex actly right to gene rate a B field o f  the shape 

assume d ,  and the pe rturbat ion g rows. Though the general case requi res a 
ki netic t reatment,  the l im iti ng case Vy = v,h, vx = v, = 0 can be calculated 

ve ry s imply from this phy sical pictu re , y ielding a g rowth rate y = wpv,h! c. 



I 
J 

I< 
Chapter Seven 

EORY 

THE MEANING OF f(v) 7.1 

The fluid theory we have been using so far is the simplest description 
of a plasma; it is indeed fortunate that this approximation is sufficiently 
accurate to describe the majority of observed phenomena. There are 
some phenomena, however, for which a fluid treatment is inadequate. 
For these, we need to consider the velocity distribution function f(v) for 
each species; this treatment is called kinetic theory. In fluid theory, the 
dependent variables are functions of only four independent variables: 
x, y, z, and t. This is possible because the velocity distribution of each 
species is assumed to be Maxwellian everywhere and can therefore be 
uniquely specified by only one number, the temperature T. Since col
lisions can be rare in high-temperature plasmas, deviations from thermal 
equilibrium can be maintained for relatively long times. As an example, 
consider two velocity distributions [1(vx) and /2(v,) in a one-dimensional 
system (Fig. 7-1). These two distributions will have entirely different 
behaviors, but as long as the areas under the curves are the same, fluid 
theory does not distinguish between them. 

The density is a function of four scalar variables: n = n(r, t). When 
we consider velocity distributions, we have seven independent variables: 
f = f(r, v, t). By f(r, v, t), we mean that the number of particles per m3 

at position rand timet with velocity components between Vx and Vx + dv" 
Vy and vy + dvy, and v, and v, + dv, is 

225 
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FIGURE 7-1 E-xamples of non-Maxwellian distribution functions. 

The integral of this is written in several equivalent ways: 

n(r, t) = t: dvx t: dvy t: dvJ(r, v, t) = t: f(r, v, t) d3v 

= t: f(r, v, t) dv [7-1] 

Note that dv is not a vector; it stands for a three-dimensional volume 

element in velocity space. Iff is normalized so that 

L:J(r, v, t) dv = 1 [7-2] 

it is a probability, which we denote by f Thus 

f(r, v, t) = n(r, t)/(r, v, t) [7-3] 

Note that f is still a function of seven variables, since the shape of the 

distribution, as well as the density, can change with space and time. From 

Eq. [7-2], it is clear thatfhas the dimensions (m/secf3; and consequently, 

from Eq. [7-3], f has the dimensions sec3-m-6. 

A particularly important distribution function is the Maxwellian: 

� /2 3/2 2/ 2 [m = (m 'TTKT) exp (-v v,h) [7-4] 

where 

- 2 2 2 1/2 
v =(vx +v y +v,) and [7-5) 
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Three-dimensional velocity space. FIGURE 7-2 

By using the definite integral 

[7-6] 

one easily verifies that the integral of fm over dvx dvy dv, is unity. 
There are several average velocities of a Maxwellian distribution 

that are commonly used. In Section 1.3, we saw that the root-mean-square 
velocity is given by 

(v2)I/2 
= 

(3KT/m)I/2 
[7-7] 

The average magnitude of the velocity I vI, or simply ii, is found as follows: 

JC() A 3 ii = -co vf(v) d v [7-8] 

Since fm is isotropic, the integral is most easily done in spherical coordin
ates in v space (Fig. 7-2). Since the volume element of each spherical 
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shell is 47Tv2 dv, we have 

co 
_ I 3/9 f 9l 2 9 v = (m 27TKT) - 0 v[exp (-v- v,h)]47Tv- dv 

co 

( 9 )-3/94 4 f 9 3 d = 7TV:h - 7TV,11 0 [exp (-y-)]y Y 

[7-9] 

[7-IO] 

The definite integral has a value t found by integration by parts. Thus 

[7-ll] 

The velocity component in a single direction, say Vx, has a different average. 

Of course, iJx vanishes for an isotropic distribution; but I vxl does not: 

[7-12] 

[7-13] 

From Eq. [7-6], each of the first two integrals has the value 7T112v,h. The 

last integral is simple and has the value v �h· Thus we have 

-1 -1 2 -3/2 4 -112 I 112 Vx = (7TV,h ) 7TV,h = 7T v,h = (2KT 7Tm) [7-14] 

The random flux crossing an imaginary plane from one side to the other 

is given by 

r random = �nr;:T = �nii [7-15] 

Here we have used Eq. [7 -11] and the fact that only half the particles 

cross the plane in either direction. To summarize: For a Maxwellian, 

I 1/2 Vrms = (3KT m) 

r;f = 2(2KTITrm)112 

f;'J = (2KT17Tm)112 

[7-7] 

[7-11] 

[7-14] 

[7-16] 

For an isotropic distribution like a Maxwellian, we can define another 
function g(v) which is a function of the scalar magnitude of v such that 

[7-17] 

; --t 
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g(v) = 4-rrn(m/2TrKT)312v2 exp (-v2/v�) 
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[7-18] 

Figure 7-3 shows the difference between g(v) and a one-dimensional 
Maxwellian distributionl(vx). Althoughl(vx) is maximum for Vx = 0, g(v) 
is zero for v = 0. This is just a consequence of the vanishing of the 
volume in phase space (Fig. 7-2) for v = 0. Sometimes g(v) is carelessly 
denoted by l(v), as distinct from l(v); but g(v) is a different function of 
its argument than l(v) is of its argument. From Eq. [7-18], it is clear that 

g(v) has dimensions sec/m4. 
It is impossible to draw a picture of l(r, v) at a given time t unless 

we reduce the number of dimensions. In a one-dimensional system, 

l(x, vx) can be depicted as a surface (Fig. 7-4). Intersections of that surface 
with planes x = constant are the velocity distributions l(vx). Intersections. 
with planes Vx = constant give density profiles for particles with a given 
vx. If all the curves l(vx) happen to have the same shape, a curve through 
the peaks would represent the density profile. The dashed curves in Fig. 
7-4 are intersections with planes I= constant; these are level curves, or 
curves of constant f. A projection of these curves onto the x-vx plane will 
give a topographical map of f. Such maps are very useful for getting a 
preliminary idea of how the plasma behaves; an example will be given 
in the next section. 

Another type of contour map can be made for I if we consider l(v) 
at a given point in space. For instance, if the motion is two dimensional, 
the contours of l(vx, vy) will be circles if I is isotropic in vx, Vy. An 

g(v) 

0 0 

One- and three-dimensional Maxwellian velocity distributions. FIGURE 7-3 

v 
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FIGURE 7-4 A spatially varying one-dimensional distribution f(x, vx)· 

anisotropic distribution would have elliptical contours (Fig. 7 -5). A drift

ing Maxwellian would have circular contours displaced from the origin, 

and a beam of particles traveling in the x direction would show up as a 

separate spike (Fig. 7-6). 

A loss cone distribution of a mirror-confined plasma can be represen

ted by contours off in v.L, vu space. Figure 7-7 shows how these would 

look. 

7.2 EQUATIONS OF KINETIC THEORY 

The fundamental equation which f(r, v, t) has to satisfy is the Boltzmann 
equation: 

[7-19] 

Here F is the force acting on the particles, and (aflat), is the time rate 
of change off due to collisions. The symbol V stands, as usual, for the 

gradient in (x, y, z) space. The symbol aj av or V v stands for the gradient 
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Contours of constant f for a two-dimensional, anisotropic FIGURE 7-5 
distribution. 

DRIFTING MAXWELLIAN 

/ BEAM 

Contours of constant f for a drifting Maxwellian distribution and a "beam" FIGURE 7-6 
in two dimensions. 
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FIGURE 7-7 Contours of constant/ for a loss-cone distribution. Here v! and v _,_stand 
for the components of v along and perpendicular to the magnetic field, 
respectively. 

in velocity space: 

a A a A a A a 
- =x - +y - +z 

av av, av, av, 
[7-20] 

The meanmg of the Boltzmann equation becomes clear if one 
remembers that f is a function of seven independent variables. The total 
derivative of f with time is, therefore 

df a[ a[ dx a[ dy a[ dz a[ dv, a[ dvy a[ dv, 
-= - + - - + - - + - -+ - - + - - + - - [7-21] 
dt at ax dt ay dt az dt av, dt avy dt av, dt 

Here, a[/ at is the explicit dependence on time. The next three terms are 

just v · Vf. With the help of Newton's third law, 

dv 
m-=F 

dt 
[7-22] 

the last three terms are recognized as (F/m) · (a[/av). As discussed pre

viously in Section 3.3, the total derivative df/ dt can be interpreted as the 
rate of change as seen in a frame moving with the particles. The difference 
is that now we must consider the particles to be moving in six-dimensional 

(r, v) space; df/dt is the convective derivative in phase space. The 

i 
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A group of points in phase FIGURE 7-8 

space, representing the posi-

tion and velocity coordinates 
of a group of particles, retains 

the same phase-space density 

as it moves with time. 

Boltzmann equation [7 -19] simply says that df / dt is zero unless there are 
collisions. That this should be true can be seen from the one-dimensional 
example shown in Fig. 7-8. 

The group of particles in an infinitesimal element dx dvx at A all 
have velocity vx and position x. The density of particles in this phase 
space is justf(x, vx). As time passes, these particles will move to a different 
x as a result of their velocity Vx and will change their velocity as a result 
of the forces acting on them. Since the forces depend on x and vx only, 
all the particles at A will be accelerated the same amount. After a time 
t, all the particles will arrive at B in phase space. Since all the particles 
moved together, the density at B will be the same as at A. If there are 
collisions, however, the particles can be scattered; and f can be changed 
by the term (of/ot)c. 

In a sufficiently hot plasma, collisions can be neglected. If, further
more, the force F is entirely electromagnetic, Eq. [7-19] takes the special 
form 

of q of - + v . vI+ -(E + v X B) . - = 0 
at m av [7-23] 

This is called the Vlasov equation. Because of its comparative simplicity, 
this is the equation most commonly studied in kinetic theory. When 
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there are collisions with neutral atoms, the collision term in Eq. [7 -19] 
can be approximated by 

T 
[7-24] 

where f, is the distribution function of the neutral atoms, and T is a 
constant collision time. This is called a Krook collision term. It is the kinetic 

generalization of the collision term in Eq. [5-5]. When there are Coulomb 

colllisions, Eq. [7-1 9] can be approximated by 

df a 1 i 
dt = 

- av. (f(flv))2 av av: (f(flv !lv)) [7-25] 

This is called the Fokker-Planck equation; it takes into account binary 

Coulomb collisions only. Here, llv is the change of velocity in a collision, 

and Eq. [7-25] is a shorthand way of writing a rather complicated 

expressiOn. 
The fact that df/ dt is constant in the absence of collisions means 

that particles follow the contours of constant f as they move around in 

phase space. As an example of how these contours can be used, consider 

the beam-plasma instability of Section 6.6. In the unperturbed plasma, 

the electrons all have velocity v0, and the contour of constant/ is a straight 

line (Fig. 7-9). The function f(x, v.) is a wall rising out of the plane of 

the paper at v. = v0. The electrons move along the trajectory shown. 
When a wave develops, the electric field E1 causes electrons to suffer 

changes in v. as they stream along. The trajectory then develops a 
sinusoidal ripple (Fig. 7-10). This ripple travels at the phase velocity, 

0 X 

FIGURE 7-9 Representation in one-dimensional phase space of a beam of electrons all 
with the same velocity u0. The distribution function f(x, v.) is infinite along 
the line and zero elsewhere. The line is also the trajectory of individual 
electrons, which move in the direction of the arrow. 
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0 X 

Appearance of the graph of Fig. 7-9 when a plasma wave exists in the FIGURE 7-10 
electron beam. The entire pattern moves to the right with the phase 

velocity of the wave. If the observer goes to the frame of the wave, the 

pattern would stand still, and electrons would be seen to trace the curve 

with the velocity v0- v<b. 

TRAPPED 
ELECTRON 

FREE ELECTRON 
. .... 

X 

The potential of a plasma wave, as seen by an electron. The pattern moves FIGURE 7-11 
with the velocity v<b. An electron with small velocity relative to the wave would 
be trapped in a potential trough and be carried along with the wave. 

not the particle velocity. Particles stay on the curve as they move relative 
to the wave. If E 1 becomes very large as the wave grows, and if there 
are a few collisions, some electrons will be trapped in the electrostatic 
potential of the wave. In coordinate space, the wave potential appears 
as in Fig. 7-11. In phase space, f(x, vx ) will have peaks wherever there is 
a potential trough (Fig. 7-12). Since the contours off are also electron 
trajectories, one sees that some electrons move in closed orbits in phase 
space; these are just the trapped electrons. 

Electron trapping is a nonlinear phenomenon which cannot be 
treated by straightforward solution of the Vlasov equation. However, 
electron trajectories can be followed on a computer, and the results are 
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v 

X 

FIGURE 7-12 Electron trajectories, or contours of constant f, as seen in the wave frame, in 
which the pattern is stationary. This type of diagram, appropriate for finite 
distributions f(v), is easier to understand than the a-function distribution of 
Fig. 7-10. 

often presented in the form of a plot like Fig. 7-12. An example of a 

numerical result is shown in Fig. 7-13. This is for a two-stream instability 

in which initially the contours off have a gap near vx = 0 which separates 
electrons moving in opposite directions. The development of this unin

habited gap with time is shown by the shaded regions in Fig. 7-13. This 

figure shows that the instability progressively distorts f(v) in a way which 

would be hard to describe analytically. 

7.3 DERIVATION OF THE FLUID EQUATIONS 

The fluid equations we have been using are simply moments of the 
Boltzmann equation. The lowest moment is obtained by integrating Eq. 
[7-19] with F specialized to the Lorentz force: 

J a[ dv + J v · Vf dv + !]_ J (E + v X B)· a[ dv = J (af\ dv [7-26] 
� m � � . 

The first term gives 

f a[ dv = j_ f f dv = an at at at [7-27] 
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J v · Vf dv = V · J vf dv = V · (nv) = V · (nu) [7-28] 

X 

Phase-space contours for electrons in a two-stream instability. The shaded FIGURE 7-13 
region, initially representing low velocities in the lab frame, is devoid of 
electrons. As the instability develops past the linear stage, these empty regions 
in phase space twist into shapes resembling "water bags." [From H. L. Berk, 
C. E. Nielson, and K. V. Roberts, Phys. Fluids 13, 986 (1970).] 
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where the average velocity u is the fluid velocity by definition. The E 

term vanishes for the following reason: 

f a[ J a J 
. 

E · - dv = -·([E) dv = [E · dS = 0 av av Sro 
[7-29] 

The perfect divergence is integrated to give the value of [E on the surface 
at v = oo. This vanishes if f� 0 faster than v -2 as v � <Xl, as is necessary 

for any distribution with finite energy. The v x B term can be written 

as follows: 

I at J a J a 
(v X B) ·- d v  = - · (fv X B) d v- [- X (v X B) dv = 0 av av av [7-30] 

The first integral can again be converted to a surface integral. For a 

Maxwellian, f falls faster than any power of v as v � oo, and the integral 

therefore vanishes. The second integral vanishes because v x B is perpen

dicular to ajav. Finally, the fourth term in Eq. [7-26] vanishes because 

collisions cannot change the total number of particles (recombination is 

not considered here). Equations [7-27]-[7-30] then yield the equation of 
continuity: 

an 
- +  V · (nu) = 0 at [7-31] 

The next moment of the Boltzmann equation is obtained by multiplying 

Eq. [7-19] by mv and integrating over dv. We have 

m J v a[ dv + m J v(v · V)f dv + q J v(E + v x B) · 
a[ dv = J mv (a[) dv 

at av at c 

[7-32] 

·The right-hand side is the change of momentum due to collisions and 
will give the term P;i in Eq. [5-58]. The first term in Eq. [7-32] gives 

J a[ a J a m v- dv = m- vf dv = m-(nu) at at at 

The third integral in Eq. [7-32] can be written 

f a[ J a v(E + v X B) ·- dv = - · [ fv(E + v x B)] dv av av 

[7-33] 

- J fv.i_ · (E+v X B) d v- J f(E + v X B) · .i_v dv [7-34] av av 



The first two integrals on the right-hand side vanish for the same reasons 
as before, and av/av is just the identity tensor I. We therefore have 

q f v(E+v X B) · :� dv = -q f (E + v x B)f dv = -qn(E + u x B) 

[7-35) 

Finally, to evaluate the second integral in Eq. [7-32], we first make use 
of the fact that v is an independent variable not related to V and write 

J v(v · V)f dv = J V · (fvv) dv = V · J fvv dv [7-36] 

Since the average of a quantity is 1/n times its weighted integral over 
v, we have 

V · J fvv dv = V · nvv [7-37] 

Now we may separate v into the average (fluid) velocity u and a thermal 
velocity w: 

v=u+ w [7-38) 

Since u is already an average, we have 

V · (nvv) = V · (nuu) + V · (nww) + 2V · (nuw) [7-39) 

The average w is obviously zero. The quantity mnww is precisely what 
is meant by the stress tensor P: 

P=mnww [7-40) 

The remaining term in Eq. [7-39] can be written 

V · (nuu) = uV · (nu) + n(u · V)u [7-41) 

Collecting our results from Eq. [7-33], [7-35], [7-40], and [7-41], we can 
write Eq. [7-32] as 

a 
m-(nu) + mu V · (nu) + mn(u · V)u + V · P - qn(E + u x B) = P;i 

at 
[7-42) 

Combining the first two terms with the help of Eq. [7-31], we finally 
obtain the fluid equation of motion: 

mn [ �: + (u · V)u J = qn (E + u x B) - V · P + P;i [7-43) 

This equation describes the flow of momentum. To treat the flow 
of energy, we may take the next moment of Boltzmann equation by 

239 
Kinetic Theory 



240 
Chapter 
Seven 

7.4 

multiplying by �mvv and integrating. We would then obtain the heat flow 
equation, in which the coefficient of thermal conductivity K would arise 

in the same manner as did the stress tensor P. The equation of state 

p oc p y is a simple form of the heat flow equation forK = 0. 

PLASMA OSCILLATIONS AND LANDAU DAMPING 

As an elementary illustration of the use of the Vlasov equation, we shall 

derive the dispersion relation for electron plasma oscillations, which we 

treated from the fluid point of view in Section 4.3. This derivation will 

require a knowledge of contour integration. Those not familiar with this 

may skip to Section 7.5. A simpler but longer derivation not using the 

theory of complex variables appears in Section 7 .6. 
In zeroth order, we assume a uniform plasma with a distribution 

f0(v), and we let B0 =Eo= 0. In first order, we denote the perturbation 

in f(r, v, t) by /J(r, v, t): 

f(r, v, t) = [o(v) + [J(r, v, t) [7-44] 

Since v is now an independent variable and is not to be linearized, the 

first-order Vlasov equation for electrons is 

a[l e a[o 
- + v · V[I -- E I ·-= 0 a t m. av [7-45] 

As before, we assume the ions are massive and fixed and that the waves 

are plane waves in the x direction 

[7-46] 

Then Eq. [7-45] becomes 

[7-47] 

[7-48] 

Poisson's equation gives 

[7-49] 



Substituting for [1 and dividing by ikEoEx, we have 

1 =- L fff ato!avx d3v 
kmEo w- kvx [7-50) 

A factor n0 can be factored out if we replace fo by a normalized function 

/o: 
__ w! Joo Jco Joo a/o(Vx, V,, V,)javx d l - dv, dv, k Vx k -co - co - co W - Vx [7-51] 

If fo is a Maxwellian or some other factorable distribution, the integrations 
over v, and v, can be carried out easily. What remains is the one
dimensional distribution j0(vx). For instance, a one-dimensional Maxwel
lian distribution is 

A 1/2 9 fm(Vx) == (m/27rKT) exp (-mv;/2KT) 

The dispersion relation is, therefore, 

[7-52) 

[7-53) 

Since we are dealing with a one-dimensional problem we may drop the 
subscript x, being careful not to confuse v (which is really vx) with the 
total velocity v used earlier: 

2 C0 A 

l 
= 

w
: f a[o/av dv k -co v- (w/k) [7-54] 

Here, /0 is understood to be a one-dimensional distribution function, 
the integrations over v, and v, having been made. Equation [7-54] holds 
for any equilibrium distribution [0(v ) ; in particular, if /o is Maxwellian, 
Eq. [7-52] is to be used for it. 

The integral in Eq. [7-54] is not straightforward to evaluate because 
of the singularity at v == w/ k. One might think that the singularity would 
be of no concern, because in practice w is almost never real; waves are 
usually slightly damped by collisions or are amplified by some instability 
mechanism. Since the velocity v is a real quantity, the denominator in 
Eq. [7-54] never vanishes. Landau was the first to treat this equation 
properly. He found that even though the singularity lies off the path of 
integration, its presence introduces an important modification to the 
plasma wave dispersion relation-an effect not predicted by the fluid 
theory. 

Consider an initial value problem in which the plasma is given a 
sinusoidal perturbation, and therefore k is real. If the perturbation grows 
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(a) 

or decays, w will be complex. The integral in Eq. [7-54] must be treated 

as a contour integral in the complex v plane. Possible contours are shown 

in Fig. 7-14 for (a) an unstable wave, with lm(w) > 0, and (b) a damped 

wave, with lm(w) < 0. Normally, one would evaluate the line integral 

along the real v axis by the residue theorem: 

f Gdv+ f Gdv=27riR(w/k) 
c1 c2 

[7-551 

where G is the integrand, C1 is the path along the real axis, C2 is the 
semicircle at infinity, and R(w/k) is the residue at w/k. This works if the 
integral over C2 vanishes. Unfortunately, this does not happen for a 
Maxwellian distribution, which contains the factor 

2/ 2 exp (-v v,h) 

This factor becomes large for v � ±ico, and the contribution from C2 

cannot be neglected. Landau showed that when the problem is properly 
treated as an initial value problem the correct contour to use is the curve 

C1 passing below the singularity. This integral must in general be evalu

ated numerically, and Fried and Conte have provided tables for the case 
when /0 is a Maxwellian. 

Although an exact analysis of this problem is complicated, we can 
obtain an approximate dispersion relation for the case of large phase 
velocity and weak damping. In this case, the pole at w/k lies near the 

real v axis (Fig. 7-15). The contour prescribed by Landau is then a 

lm(v) lm(v) 

Re(v) 

(b) 

FIGURE 7-14 Integration contours for the Landau problem for (a) Im (w) > 0 and 
(b) Im (w) < 0. 
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Integration contour in the complex v plane for the case of small FIGURE 7-15 
Im (w). 

0 v 

Normalized Maxwellian distribution for the case v., » v,h· FIGURE 7-16 

straight line along the Re(v) axis with a small semicircle around the pole. 
In going around the pole, one obtains 27Ti times half the residue there. 
Then Eq. [7-54] becomes 

2 C0 -' A 

l = w: [pf a[o/av dv+i'TTafo l J 
k -ro v - (w/k )  av v�w/k 

[7-56] 

where P stands for the Cauchy principal value. To evaluate this, we 
integrate along the real v axis but stop just before encountering the 
pole. If the phase velocity vel> = w/ k is sufficiently large, as we assume, 
there will not be much contribution from the neglected part of the 
contour, since both /0 and a/0/av are very small there (Fig. 7-16). The 
integral in Eq. [7-56] can be evaluated by integration by parts: 

fro afo dv [ /0 Jro fro -/0 dv fro /0 dv 
-ro a;; V- V<f> 

= 
V- Vcf> -ro

-
-oo (v- V¢)2 = -co (v- V<f>)2 

[7-57] 
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Since this is just an average of (v - vcl>)-2 over the distribution, the real 

part of the dispersion relation can be written 

2 w p ------,2 
1 = k2 (v-Vet>) 

The odd terms vanish upon taking the average, and we have 

2 -2 ( 3v2) 
(v-vet>) =vet> 1 + 

v! 

[7-58] 

[7-59] 

[7-60] 

We now let fo be Maxwellian and evaluate v2. Remembering that v here 

is an abbreviation for Vx, we can write 

[7-61] 

there being only one degree of freedom. The dispersion relation [7-58] 

then becomes 

9 

2 _ 2 
wj; 3KT.k2 W -Wp + 2 -
W m 

[7-62] 

[7-63] 

If the thermal correction is small, we may replace w2 
by w! in the second 

term. We then have 

2 2 3KT.k2 w =wp + -
m 

[7-64] 

which is the same as Eq. [4-30], obtained from the fluid equations with 

y = 3. 

We now return to the imaginary term in Eq. [7-56]. In evaluating 

this small term, it will be sufficiently accurate to neglect the thermal 

correction to the real part of w and let w2 = w!. From Eqs. [7-57] and 

[7-60], we see that the principal value of the integral in Eq. [7-56] is 

approximately k2/w2. Equation [7-56] now becomes 

9 2 A 

I 
wf, . wpa[o l = -2+t7T�-
w k av u=u., 

2( 1 . w� [afo] ) 2 w -z7T� - = wp k av u=u., 

[7-65] 

[7-66] 



Treating the imaginary term as small, we can bring it to the right-hand 
side and take the square root by Taylor series expansion. We then obtain 

( 7T w; [afo] 
) w=wp l+i-2-2 k av v�v"' 

If /0 is a one-dimensional Maxwellian, we have 

afo 2 -l/2(-2v) (-v2)- 2v (-v2) - = ( 7TV th) ---;- exp ---;- - - 1- 3 exp -2-av Vth Vth Y7TVth Vth 

[7-67] 

[7-68] 

We may approximate v<t> by wp/ k in the coefficient, but in the exponent 
we must keep the thermal correction in Eq. [7-64]. The damping is then 
given by 

3 2 1 2 
Im (w) = - � w: w� -3- exp ( �w

2 ) 2 k kJ7T v,h k v,h 

= -J;.wp ( Wp ) 3 exp ( :W}) exp (- 3) [7-69) kv,h k v,h 2 

Im (:J = -0.22J;(k:�J 3 exp 
(
2k�� �) [7-70] 

Since Im (w) is negative, there is a collisionless damping of plasma waves; 
this is called Landau damping. As is evident from Eq. [7-70], this damping 
is extremely small for small kA0, but becomes important for kA0 = 0(1). 
This effect is connected withf1, the distortion of the distribution function 
caused by the wave. 

THE MEANING OF LANDAU DAMPING 7.5 

The theoretical discovery of wave damping without energy dissipation 
by collisions is perhaps the most astounding result of plasma physics 
research. That this is a real effect has been demonstrated in the labora

tory. Although a simple physical explanation for this damping is now 

available, it is a triumph of applied mathematics that this unexpected 
effect was first discovered purely mathematically in the course of a careful 

analysis of a contour integral. Landau damping is a characteristic of 
collisionless plasmas, but it may also have application in other fields. For 
instance, in the kinetic treatment of galaxy formation, stars can be 
considered as atoms of a plasma interacting via gravitational rather than 
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electromagnetic forces. Instabilities of the gas of stars can cause spiral 

arms to form, but this process is limited by Landau damping. 
To see what is reponsible for Landau damping, we first notice that 

Im (w) arises from the pole at v = v<P. Consequently, the effect is con
nected with those particles in the distribution that have a velocity nearly 

equal to the phase velocity-the "resonant particles." These particles 
travel along with the wave and do not see a rapidly fluctuating electric 

field: They can, therefore, exchange energy with the wave effectively. 
The easiest way to understand this exchange of energy is to picture a 
surfer trying to catch an ocean wave (Fig. 7-17). (Warning: this picture 

is only for directing our thinking along the right lines; it does not correctly 

explain Eq. [7-70].) If the surfboard is not moving, it merely bobs up 

and down as the wave goes by and does not gain any energy on the 

average. Similarly, a boat propelled much faster than the wave cannot 
exchange much energy with the wave. However, if the surfboard has 

almost the same velocity as the wave, it can be caught and pushed along 

by the wave; this is, after all, the main purpose of the exercise. In that 
case, the surfboard gains energy, and therefore the wave must lose 
energy and is damped. On the other hand, if the surfboard should be 
moving slightly faster than the wave, it would push on the wave as it 

moves uphill; then the wave could gain energy. In a plasma, there are 

electrons both faster and slower than the wave. A Maxwellian distribution, 

however, has more slow electrons than fast ones (Fig. 7-18). Con

sequently, there are more particles taking energy from the wave than 

PARTICLE 
GAINS ENERGY 

FIGURE 7-17 Customary physical picture of Landau damping. 

WAVE 
GAINS ENERGY 
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0 v 

Distortion of a Maxwellian distribution in the region FIGURE 7-18 
v "" Vq, caused by Landau damping. 

0 v 

A double-humped distribution and the region where FIGURE 7-19 
instabilities will develop. 

vice versa, and the wave is damped. As particles with v = v<P are trapped 
in the wave, f(v) is flattened near the phase velocity. This distortion is 
/1 (v) which we calculated. As seen in Fig. 7-18, the perturbed distribution 
function contains the same number of particles but has gained total 
energy (at the expense of the wave). 

From this discussion, one can surmise that if f0(v) contained more 
fast particles than slow particles, a wave can be excited. Indeed, from 
Eq. [7-67], it is apparent that Im (w) is positive if afo/av is positive at 
v = v"'. Such a distribution is shown in Fig. 7-19. Waves with v"' in the 
region of positive slope will be unstable, gaining energy at the expense 

of the particles. This is just the finite-temperature analogy of the two
stream instability. When there are two cold (KT = 0) electron streams 
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in motion, f0 ( v) consists of two 8-functions. This is clearly unstable 
because a[o/a v is infinite; and, indeed, we found the instability from 
fluid theory. When the streams have finite temperature, kinetic theory 

tells us that the relative densities and temperatures of the two streams 

must be such as to have a region of positive iJf0/ a v  between them; more 

precisely, the total distribution function must have a minimum for 

instability. 
The physical picture of a surfer catching waves is very appealing, 

but it is not precise enough to give us a real understanding of Landau 
damping. There are actually two kinds of Landau damping: linear 
Landau damping, and nonlinear Landau damping. Both kinds are 

independent of dissipative collisional mechanisms. If a particle is caught 

in the potential well of a wave, the phenomenon is called "trapping." As 
in the case of the surfer, particles can indeed gain or lose energy in 
trapping. However, trapping does not lie within the purview of the linear 

theory. That this is true can be seen from the equation of motion 

[7-71] 

If one evaluates E (x) by inserting the exact value of x, the equation would 
be nonlinear, since E (x)  is something like sin kx. What is done in linear 
theory is to use for x the unperturbed orbit; i.e., x = x 0  + v0t . Then Eq. 
[7-71] is linear. This approximation, however, is no longer valid when 
a particle is trapped. When it encounters a potential hill large enough 

to reflect it, its velocity and position are, of course, greatly affected by 

the wave and are not close to their unperturbed values. In fluid theory, 

the equation of motion is 

m[�: + (v · V)v] = qE(x) [7-72) 

Here, E(x) is to be evaluated in the laboratory frame, which is easy; but 
to rnake up for it, there is the (v · V)v term. The neglect of (v1 • V)v1 in 
linear theory amounts to the same thing as using unperturbed orbits. 
In kinetic theory, the nonlinear term that is neglected is, from Eq. [7-45], 

[7-73) 

When particles are trapped, they reverse their direction of travel relative 

to the wave, so the distribution function f(v) is greatly distu rbed near 
v = w/k . This means that a[Ija v is comparable to a[0/a v, and the term 
[7-73] is not negligible. Hence, trapping is not in the linear theory. 
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0 u v 

Dissection of a distribution f0(v) into a large number of FIGURE 7-20 
monoenergetic beams with velocity u and density nu. 

When a wave grows to a large amplitude, collisionless damping with 
trapping does occur. One then finds that the wave does not decay 
monotonically; rather, the amplitude fluctuates during the decay as the 
trapped particles bounce back and forth in the potential wells. This is 
nonlinear Landau damping. Since the result of Eq. [7-67] was derived 
from a linear theory, it must arise from a different physical effect. The 
question is: Can untrapped electrons moving close to the phase velocity 
of the wave exchange energy with the wave? Before giving the answer, 
let us examine the energy of such electrons. 

The Kinetic Energy of a Beam of Electrons 7 .5.1 
We may divide the electron distribution f0(v) into a large number of 
monoenergetic beams ( Fig. 7-20). Consider one of these beams: It has 
unperturbed velocity u and density nu. The velocity u may lie near Vq,, 
so that this beam may consist of resonant electrons. We now turn on a 

plasma oscillation E (x, t) and consider the kinetic energy of the beam as 
it moves through the crests and troughs of the wave. The wave is caused 
by a self-consistent motion of all the beams together. If nu is small enough 

( the number of beams large enough), the beam being examined has a 
negligible effect on the wave and may be considered as moving in a given 
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field E(x, t). Let 

E =Eo sin (kx-wt) = -d¢/ dx 

¢ = (£0/k) cos (kx-wt) 

The linearized Auid equation for the beam is 

(avl avl) . 
m - + u- = -e£0 sm (kx-wt) 

at ax 

A possible solution is 

e£0 cos (kx -wt) 
vi=--

m w -ku 

[7-74] 

[7-75] 

[7-76] 

[7-77] 

This is the velocity modulation caused by the wave as the beam electrons 

move past. To conserve particle Aux, there is a corresponding oscillation 

in density, given by the linearized continuity equation: 

[7-78) 

Since v1 is proportional to cos (kx- wt), we can try n1 = 1"i1 cos (kx-wt). 

Substitution of this into Eq. [7-78] yields 

eE0k cos (kx -wt) 
n1 = -nu-- 2 

m (w-ku) 
[7-79] 

Figure 7- 21 shows what Eqs. [ 7-77] and [ 7-79] mean. The first two 
curves show one wavelength of E and of the potential -e¢ seen by the 
beam electrons. The third curve is a plot of Eq. [ 7  -77] for the case 
w -ku < 0, or u > vq,. This is easily understood: When the electron a 

has climbed the potential hill, its velocity is small, and vice versa. The 

fourth curve is v 1 for the case u < vq,, and it is seen that the sign is 

reversed. This is because 1he electron b, moving to the left in the frame 

of the wave, is decelerated gcing up to the top of the potential barrier; 

but since it is moving the opposite way, its velocity v 1 in the positi ve x 

direction is maximum there. The moving potential hill accelerates elec
tron b to the right, so by the time it reaches the top, it has the maximum 
v1. The final curve on Fig. 7-21 shows the density n1, as given by Eq. 
[7 -79]. This does not change sign with u - Vq,, because in the frame of 
the wave, both electron a and electron b are slowest at the top of the 
potential hill, and therefore the density is highest there. The point is 
that the relative phase between n 1 and v 1 changes sign with u - Vq,. 
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Phase relations of velocity and density for electrons moving in an FIGURE 7-21 
electrostatic wave. 

We may now compute the kinetic energy Wk of the beam: 

[7-80] 

The last three terms contain odd powers of oscillating quantities, so they 
will vanish when we average over a wavelength. The change in Wk due 
to the wave is found by subtracting the first term, which is the original 
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energy. The average energy change is then 

(� Wk) = �m(nuu� + 2un1u1) [7-81] 

From Eq. [7-77], we have 

[7-82] 

the factor � representing (cos2 (kx- wt)). Similarly, from Eq. [7-79], we 

have 

[7-83] 

Consequently, 

n, e2E6 w + ku ---
4 m (w-ku)3 [7-84] 

This result shows that (� Wk) depends on the frame of the observer 

and that it does not change secularly with time. Consider the picture of 

a frictionless block sliding over a washboard-like surface (Fig. 7- 2 2). In 
the frame of the washboard, � Wk is proportional to - (ku )-

2 , as seen by 
taking w = 0 in Eq. [7-84]. It is intuitively clear that (1) (� Wi.) is negative, 
since the block spends more time at the peaks than at the valleys, and 
( 2) the block does not gain or lose energy on the average, once the 
oscillation is started. Now if one goes into a frame in which the washboard 

is moving with a steady velocity w/k (a velocity unaffected by the motion 

of the block, since we have assumed that nu is negligibly small compared 

with the density of the whole plasma), it is still true that the block does 

not gain or lose energy on the average, once the oscillation is started. 

But Eq. [7-84] tells us that (� Wk) depends on the velocity w/k, and hence 

on the frame of the observer. In particular, it shows that a beam has 

FIGURE 7-22 Mechanical analogy for an electron moving in a moving potential. 

---
w 
k 
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u-lv11 u u+lv11 v 
The quadratic relation between FIGURE 7-23 

kinetic energy and velocity causes a 

symmetric velocity perturbation to 

give rise to an increased average 

energy. 

less energy in the presence of the wave than in its absence if w - ku < 0 
or u > v<f>, and it has more energy if w - ku > 0 or u < v<P. The reason 
for this can be traced back to the phase relation between n 1 and v l· As 
Fig. 7-23 shows, Wk is a parabolic function of v. As v oscillates between 
u -I v 11 and u + I v 11, Wk will attain an average value larger than the 
equilibrium value Wko, provided that the particle spends an ·equal amount 
of time in each half of the oscillation. This effect is the meaning of the 
first term in Eq. [7-81], which is positive definite. The second term in 
that equation is a correction due to the fact that the particle does not 
distribute its time equally. In Fig. 7-21, one sees that both electron a 
and electron b spend more time at the top of the potential hill than at 
the bottom, but electron a reaches that point after a period of deceler
ation, so that v 1 is negative there, while electron b reaches that point 
after a period of acceleration (to the right), so that v 1 is positive there. 
This effect causes(� Wk) to change sign at u = V<f>· 

The Effect of Initial Conditions 7 .5.2 

The result we have just derived, however, still has nothing to do with 
linear Landau damping. Damping requires a continuous increase of Wk 
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at the expense of wave energy, but we have found that (d w.) for 

untrapped particles is constant in time. If neither the untrapped particles 
nor particle trapping is responsible for linear Landau damping, what 

is? The answer can be gleaned from the following observation: If (d w.) 

is positive, say, there must have been a time when it was increasing. 
Indeed, there are particles in the original distribution which have 

velocities so close to vq, that at time t they have not yet gone a half

wavelength relative to the wave. For these particles, one cannot take the 
average (d w.). These particles can absorb energy from the wave and 

are properly called the "resonimt" particles. As time goes on, the number 

of resonant electrons decreases, since an increasing number will have 
shifted more than �A from their original positions. The damping rate, 

however, can stay constant, since the amplitude is now smaller, and it 

takes fewer electrons to maintain a constant damping rate. 

The effect of the initial conditions is most easily seen from a phase

space diagram (Fig. 7-24). Here, we have drawn the phase-space trajec

tories of electrons, and also the electrostatic potential -ecf> 1 which they 
see. We have assumed that this electrostatic wave exists at t = 0, and that 

the distribution f0(v), shown plotted in a plane perpendicular to the 
paper, is uniform in space and monotonically decreasing with I v I at that 

time. For clarity, the size of the wave has been greatly exaggerated. Of 
course, the existence of a wave implies the existence of an /1 ( v) at t = 0. 
However, the damping caused by this is a higher-order effect neglected 

in the linear theory. Now let us go to the wave frame, so that the pattern 

of Fig. 7-24 does not move, and consider the motion of the electrons. 

Electrons initially at A start out at the top of the potential hill and move 

to the right, since they have v > vq,. Electrons initially at B move to the 

left, since they have v < vq,. Those at C and D start at the potential 

trough and move to the right and left, respectively. Electrons starting 
on the closed contours E have insufficient energy to go over the potential 
hill and are trapped. In the limit of small initial wave amplitude, the 
population of the trapped electrons can be made arbitrarily small. After 
some time t ,  short enough that none of the electrons at A, B, C or D 
has gone more than half a wavelength, the electrons will have moved to 

the positions marked by open circles. It is seen that the electrons at A 
and D have gained energy, while those at B and C have lost energy. 

Now, if fo(v) was initially uniform in space, there were originally more 

electrons at A than at C, and more at D than at B. Therefore, there is 
a net gain of energy by the electrons, and hence a net loss of wave 
energy. This is linear Landau damping, and it is critically dependent on 

the assumed initial conditions. After a long time, the electrons are so 



255 smeared out in phase that the initial distribution is forgotten, and there 
is no further average energy gain, as we found in the previous section. 
In this picture, both the electrons with v > Vq, and those with v < vq,, 
when averaged over a wavelength, gain energy at the expense of the 
wave. This apparent contradiction with the idea developed in the picture 
of the surfer will be resolved shortly. 

Kinetic Theory 

0 
0 

Phase-space trajectories (top) for electrons moving in a potential wave (bottom). FIGURE 7-24 
The entire pattern moves to the right. The arrows refer to the direction of 
electron motion relative to the wave pattern. The equilibrium distribution f0( v) 
is plotted in a plane perpendicular to the paper. 
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7.6 A PHYSICAL DERIVATION OF LANDAU DAMPING 

We are now in a position to derive the Landau damping rate without 
recourse to contour integration. As before, we divide the plasma up into 
beams of velocity u and density n,, and examine their motion in a wave 

E = E 1 sin (kx - wt) 

From Eq. [7-77], te velocity of each beam is 

eE 1 cos (kx- wt) 
v 1 = - --:;;;- w -ku 

[7-85] 

[7-86] 

This solution satisfies the equation of motion [7-76], but it does not 

satisfy the initial condition v 1 = 0 at t = 0. It is clear that this initial 

condition must be imposed; otherwise, v1 would be very large in the 

vicinity of u = w/k, and the plasma would be in a specially prepared 
state initially. We can fix up Eq. [7-86] to satisfy the initial condition by 

adding an arbitrary function of kx - kut. The composite solution would 
still satisfy Eq. [7 -76] because the operator on the left-hand side of Eq. 
[7-76], when applied to f(kx -kut), gives zero. Obviously, to get v 1 = 0 

at t = 0, the function f(kx - kut) must be taken to be -cos (kx- kut). 
Thus we have, instead of Eq. [7-86], 

-e£1 cos(kx -wt)-cos(kx -kut) 
v�= --

m w -ku 
[7-87] 

Next, we must solve the equation of continuity [7-78] for n 1, again subject 
to the initial condition n 1 = 0 at t = 0. Since we are now much cleverer 

than before, we may try a solution of the form 

nl = nl[cos (kx-wt)-cos (kx-kut)] [7-88] 

Inserting this into Eq. [7 -78] and using Eq. [7 -87] for v 1, we find 

_ . eE 1k sin (kx-wt)- sin (kx-kut) 
n1 sm (kx-wt) = -n"--

k 2 [7-89] 
m (w- u) 

Apparently, we were not clever enough, since the sin (kx-wt) factor 
does not cancel. To get a term of the form sin (kx -kut), which came 

from the added term in v 1, we can add a term of the form At sin (kx -kut) 
to n I· This term obviously vanishes at t = 0, and it will give the sin (kx -
kut) term when the operator on the left-hand side of Eq. [7 -78] operates 
on the t factor. When the operator operates on the sin (kx -kut) factor, 
it yields zero. The coefficient A must be proportional to (w - ku)-1 in 
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order to match the same factor in avi/ax. Thus we take 

eEik 
ni = -n

,.
-

m
- -

(w
-

-
-

ku
�

)2 

X [cos (kx- wt)-cos (kx- kut)- (w- ku)t sin (kx-kut)] [7-90] 

This clearly vanishes at t = 0, and one can easily verify that it satisfies 
Eq. [7-78]. 

These expressions for vI and n I allow us now to calculate the work 
done by the wave on each beam. The force acting on a unit volume of 
each beam is 

and therefore its energy changes at the rate 

dW . k 
- = F,(u + v1) = -eEt srn ( x- wt)(nuu + n,v1 + n1u + n1v1) 
dt CD ® ® @ 

[7-91] 

[7-92] 

We now take the spatial average over a wavelength. The first term 
vanishes because n,;u is constant. The fourth term can be neglected 
because it is second order, but in any case it can be shown to have zero 
average. The terms ® and ® can be evaluated using Eqs. [7 -87] and 
[7-90] and the identities 

(sin (kx- wt) cos (kx-kut)) = -� sin (wt-kut) 

(sin (kx - wt) sin (kx- kut)) = � cos (wt- kut) 

The result is easily seen to be 

e2E� [ sin(wt-kut) =--n 2m " w- ku 

k sin (wt-kut)- (w- ku)t cos (wt- kut)] + u 2 (w -ku) 

[7-93] 

[7-94] 

Note that the only terms that survive the averaging process come from 
the initial conditions. 

The total work done on the particles is found by summing over all 
the beams: 

I ( dW) =J fo(u)( dW) du=no f
/o(u)(dW) du [7-95] 

u dt u nu dt u nu dt u 
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Inserting Eq. [7-94] and using the definition of wp, we then find for the 
rate of change of kinetic energy 

(d Wk) _ EoEi 2 [f f,� sin (wt -kut) d -- - wp o(u) u 
dt 2 w - ku f � sin (wt -kut)- (w - ku)t cos (wt- kut) J + fo(u) 

k 2 kudu 
(w- u) 

[7-96] 

_I 2 2 f00
!� d {sin(wt- kut) d [sin(wt-kut)]} 

--
2
EoEtWp o(u) u 

k +ud- k -co W - U U W - U 

[7-97] 

I 2 2 fro � d [ sin (wt - kut)] 
=2coEiwp 

-cofo(u)dudu 
u 

w-ku 
[7-98] 

This is to be set equal to the rate of loss of wave energy density Ww. 
The wave energy consists of two part�. The first part is the energy density 

of the electrostatic field: 

[7-99] 

The second part is the kinetic energy of oscillation of the particles. If 
we again divide the plasma up into beams, Eq. [7-84] gives the energy 

per beam: 

<A ) I nu e2Ei [ 2ku J L.lwk =-- 2 I +---u 

4 m (w- ku) (w- ku) 
[7-100] 

In deriving this result, we did not use the correct initial conditions, which 
are important for the resonant particles; however, the latter contribute 

very little to the total energy of the wave. Summing over the beams, we 

have 

< ) 1 e
2Ei fco fo(u) [1 2ku ]d D. wk = 

- -- 2 + --- u 
4 m -co ( w -ku) w -ku 

[7-101] 

The second term in the brackets can be neglected in the limit w/k » v,h, 

which we shall take in order to compare with our previous results. The 
dispersion relation is found by Poisson's equation: 

kcoE 1 cos (kx-wt) = -e L n1 

Using Eq. [ 7- 79] for n 1, we have 

2 2 co f, d 
I = -e- I 

nu 2 = _e_ f o(u) u
2 Eom u (w -ku) Eom -co (w-ku) 

[7-102] 

[7 -103] 

T 
1 



Comparing this with Eq. [7- 1 01], we find 

Thus 

The rate of change of this is given by the negative of Eq. [7-98]: 

dWw _ _ 2 fro fA !!_[ sin (w- ku)t] d d - WwWp o(u)d U 
k 

U 
t -ro U W - U 

Integration by parts gives 

dWw 2{ [ !A sin (w - ku)t] ro 
-- = -Wwwp u o (u) _ __:_ __ .:_ 

dt w- ku -ro 

ro A 

I 

dfo sin (w - ku)t } - u- du 
-ro du w- ku 

[7-104] 

[7-105] 

[7-106] 

The integrated part vanishes for well-behaved functions /0(u), and we 
have 

dWw _ � 2 fro fA' [sin (w- ku)t] 
- Wwk Wp o (u) 

k 
du dt -ro W - U 

[7-107] 

where u has been set equal tow/ k (a constant), since only velocities very 
close to this will contribute to the integral. In fact, for sufficiently large 
t, the square bracket can be approximated by a delta function: 

( w) k . [ sin (w - ku)t] 8 u -- =-lim 
k 7T t->ro w - ku 

[7-108] 

Thus 

[7- 1 09] 

Since Im (w) is the growth rate of £1, and Ww is proportional to Ei, we 
must have 

dWw/dt = 2[Im (w)]Ww [7-110] 
Hence 

[7-111] 

in agreement with the previous result, Eq. [7-67], for w = w p. 
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sin(w-ku)t 
(w-ku) 

w-ku 

FIGURE 7-25 A function which describes the relative contribution of various 
velocity groups to Landau damping. 

The Resonant Particles 

We are now in a position to see precisely which are the resonant particles 
that contribute to linear Landau damping. Figure 7-25 gives a plot of 
the factor multiplying fo(u) in the integrand of Eq. [7- 107]. We see that 
the largest contribution comes from particles with lw - kul < -rr/t, or 

lv- v0lt < -rr/k = A/ 2; i.e., those particles in the initial distribution that 

have not yet traveled a half-wavelength relative to the wave. The width 

of the central peak narrows with time, as expected. The subsidiary peaks 

in the "diffraction pattern" of Fig. 7-25 come from particles that have 

traveled into neighboring half-wavelengths of the wave potential. These 

particles rapidly become spread out in phase, so that they contribute 
little on the average; the initial distribution is forgotten. Note that the 
width of the central peak is independent of the initial amplitude of the 
wave; hence, the resonant particles may include both trapped and 
untrapped particles. This phenomenon is unrelated to particle trapping. 

7 .6.2 Two Paradoxes Resolved 

Figure 7-25 shows that the integrand in Eq. [7- 107] is an even function 
of w - ku, so that particles going both faster than the wave and slower 

than the wave add to Landau damping. This is the physical picture we 

found in Fig. 7-24. On the other hand, the slope of the curve of Fig. 
7-25, which represents the factor in the integrand of Eq. [7-106], is an 
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A Maxwellian distribution seen from a moving frame appears to FIGURE 7-26 
have a region of unstable slope. 

odd function of w - ku; and one would infer from this that particles 
traveling faster than the wave give energy to it, while those traveling 
slower than the wave take energy from it. The two descriptions differ 
by an integration by parts. Both descriptions are correct; which one is 
to be chosen depends on whether one wishes to have /0(u) or f�(u) in 
the integrand. 

A second paradox concerns the question of Galilean invariance. If 
we take the view that damping requires there be fewer particles traveling 
faster than the wave than slower, there is no problem as long as one is 
in the frame in which the plasma is at rest. However, if one goes into 
another frame moving with a velocity V (Fig. 7-26), there would appear 
to be more particles faster than the wave than slower, and one would 
expect the wave to grow instead of decay. This paradox is removed by 
reinserting the second term in Eq. [7-100], which we neglected. As shown 
in Section 7 .5.1, this term can make (Ll Wk) negative. Indeed, in the frame 
shown in Fig. 7-26, the second term in Eq. [7- 1 00] is not negligible, 
(Ll Wk) is negative, and the wave appears to have negative energy (that 
is, there is more energy in the quiescent, drifting Maxwellian distribution 
than in the presence of an oscillation). The wave "grows," but adding 
energy to a negative energy wave makes its amplitude decrease. 

BGK AND VAN KAMPEN MODES 7.7 

We have seen that Landau damping is directly connected to the re·quire
ment that f0(v) be initially uniform in space. On the other hand, one can 
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generate undamped electron waves if f(v, t = 0) is made to be constant 

along the particle trajectories initially. It is easy to see from Fig. 7-24 

that the particles will neither gain nor lose energy, on the average, if 

the plasma is initially prepared so that the density is constant along each 
trajectory. Such a wave is called a BGK mode, since it was I. B. Bernstein, 
]. M. Greene, and M.D. Kruskal who first showed that undamped waves 
of arbitrary w, k, amplitude, and waveform were possible. The crucial 
parameter to adjust in tailoring f(v, t = 0) to form a BGK mode is the 

relative number of trapped and untrapped particles. If we take the 

small-amplitude limit of a BGK mode, we obtain what is called a Van 

Kampen mode. In this limit, only the particles with v = V4> are trapped. 

We can change the number of trapped particles by adding to f(v, t = 0) 

a term proportional to o(v- v4>). Examination of Fig. 7-24 will show that 
adding particles along the line v = v4> will not cause damping-at a later 

time, there are just as many particles gaining energy as losing energy. 

In fact, by choosing distributions with 8-functions at other values of v4>, 
one can generate undamped Van Kampen modes of arbitrary V4>. Such 

singular initial conditions are, however, not physical. To get a smoothly 

varying f(v, t = 0), one must sum over Van Kampen modes with a 

distribution of V<f>S. Although each mode is undamped, the total per

turbation will show Landau damping because the various modes get out 

of phase with one another. 

7.8 EXPERIMENTAL VERIFICATION 

Although Landau's derivation of collisionless damping was short and 
neat, it was not clear that it concerned a physically observable 
phenomenon until ]. M. Dawson gave the longer, intuitive derivation 
which was paraphrased in Section 7.6. Even then, there were doubts 

that the proper conditions could be established in the laboratory. These 
doubts were removed in 1965 by an experiment by Malmberg and 

Wharton. They used probes to excite and detect plasma waves along a 

collisionless plasma column. The phase and amplitude of the waves as 

a function of distance were obtained by interferometry. A tracing of the 

spatial variation of the damped wave is shown in Fig. 7-27. Since in the 
experiment w was real but k was complex, the result we obtained in Eq. 
[7-70] cannot be compared with the data. Instead, a calculation of 
Im (k)/Re (k) for real w has to be made. This ratio also contains the 
factor exp (-v!/v�h), which is proportional to the number of resonant 
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Interferometer trace showing the perturbed density pattern in a damped FIGURE 7-27 
plasma wave. [From]. H. Malmberg and C. B. Wharton, Phys. Rev. Lett. 17, 175 
(1966).) 

electrons in a Maxwellian distribution. Consequently, the logarithm of 
lm (k )/Re (k ) should be proportional to (vq,/v,h)2. Figure 7-28 shows the 
agreement obtained between the measurements and the theoretical 
curve. 

A similar experiment by Derfler and Simonen was done in plane 
geometry, so that the results for Re (w) can be compared with Eq. [7-64]. 
Figure 7-29 shows their measurements of Re (k ) and Im (k ) at different 
frequencies. The dashed curve represents Eq. [7-64] and is the same as 
the one drawn in Fig. 4-5. The experimental points deviate from the 
dashed curve because of the higher-order terms in the expansion of Eq. 
[7-59]. The theoretical curve calculated from Eq. [7-54], however, fits 
the data well. 

7-1. Plasma waves are generated in a plasma with n = 1017 m-3 and KT, = 10 eV. PROBLEMS 
If k = 104 m-1, calculate the approximate Landau damping rate lim (w/wp) i . 
7-2. An electron plasma wave with 1-cm wavelength is excited in a 10-eV plasma 
with n = 1015 m-3• The excitation is then removed, and the wave Landau damps 
away. How long does it take for the amplitude to fall by a factor of e? 
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FIGURE 7-28 Verification of Landau damping in the Malmberg-Wharton 
experiment (loc. cit.) 

7-3. An infinite, uniform plasma with fixed ions has an electron distribution 
function composed of (1) a Maxwellian distribution of "plasma" electrons with 

density np and temperature Tp at rest in the laboratory, and (2) a Maxwellian 

distribution of "beam" electrons with density nb and temperature Tb centered at 

v = Vx (Fig. P7-3). If nb is infinitesimally small, plasma oscillations traveling in 
the x direction are Landau-damped. If nb is large, there will be a two-stream 
instability. The critical nb at which instability sets in can be found by setting the 

slope of the total distribution function equal to zero. To keep the algebra simple, 

we can find an approximate answer as follows. 

(a) Write expressions for fp (u) and fb(u), using the abbreviations v = v., a2 = 

2KTp/m, b2 = 2KTb/m. 

(b) Assume that the phase velocity v<�> will be .the value of v at which [.(v) has 
the largest positive slope. Find u<t> and f� (v<�>). 

(c) Find f� (v<�>) and set f� (v<t>) + f� (v<t>) = 0. 
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Experimental measurement of the dispersion relation for plasma FIGURE 7-29 
waves in plane geometry. [From H. Derfler and T. Simonen,]. Appl. 
Phys. 38,5018 (1967).] 

(d) For V » b, show that the critical beam density is given approximately by 

nb 112 Tb V 2 2 - = (2e) - - exp (- V /a ) np Tp a 
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FIGURE P7-3 Unperturbed distribution functions fp(vx) and [b(vx) for the 
plasma and beam electrons, respectively, in a beam-plasma 
interaction. 

7-4. To model a warm plasma, assume that the ion and electron distribution 
functions are given by 

A a, 1 
f,u(v) =- �+ 2 

7T v a, 

A a; 1 
[;u(v) =- �+ 2 

TT v ai 

(a) Derive the exact dispersion relation in the Vlasov formalism assuming an 

electrostatic perturbation. 

(b) Obtain an approximate expression for the dispersion relation if w ::::: Dp. 
Under what conditions are the waves weakly damped? Explain physically why 
w = n. for very large k. 

7-5. Consider an unmagnetized plasma with a fixed, neutralizing ion back
ground. The one-dimensional electron velocity distribution is given by 

fu,(v) = gu(v) + ho(v) 

where 

and 

(a) Derive the dispersion relation for high-frequency electrostatic perturbations. 

(b) In the limit w/k «a, show that a solution exists in which Im (w) > 0 (i.e., 
growing oscillations). 



7-6. Consider the one-dimensional distribution function 267 
f(v) =A 
f(v) = 0 

Kinetic Theory 

(a) Calculate the value of the constant A in terms of the plasma density n0. 
(b) Use the Vlasov and Poisson equations to derive an integral expression for 

electrostatic electron plasma waves. 

(c) Evaluate the integral and obtain a dispersion relation w(k), keeping terms 

to third order in the small quantity kvm/ w. 

ION LANDAU DAMPING 7.9 

Electrons are not the only possible resonant particles. If a wave has a 
slow enough phase velocity to match the thermal velocity of ions, ion 

Landau damping can occur. The ion acoustic wave, for instance, is greatly 
affected by Landau damping. Recall from Eq. [ 4-41] that the dispersion 
relation for ion waves is 

1/2 � 
= 

v 
= 
(KT. + YiKTi) 

k 
' M 

[7-112] 

If T.,;; T;, the phase velocity lies in the region wherefoi (v) has a negative 
slope, as shown in Fig. 7-30( A). Consequently, ion waves are heavily 
Landau-damped if T. :5 Ti. Ion waves are observable only if T. » T; 
[Fig. 7-30(B)], so that the phase velocity lies far in the tail of the ion 
velocity distribution. A clever way to introduce Landau damping in a 

(A) 
0 
T ::::::T e 1 

v 
--

� v¢ 

0 
(B) Te >> Ti 

v 

Explanation of Landau damping of ion acoustic waves. ForT,= T,, the phase FIGURE 7-30 
velocity lies well within the ion distribution; for T, » T,, there are very few 

ions at the phase velocity. Addition of a light ion species (dashed curve) 
increases Landau damping. 
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controlled manner was employed by Alexeff, jones, and Montgomery. 
A weakly damped ion wave was created in a heavy-ion plasma (such as 
xenon) with T. » T;. A small amount of a light atom (helium) was then 

added. Since the helium had about the same temperature as the xenon 
but had much smaller mass, its distribution function was much broader, 

as shown by the dashed curve in Fig. 7-30(B). The resonant helium ions 
then caused the wave to damp. 

7 .9.1 The Plasma Dispersion Function 

To introduce some of the standard terminology of kinetic theory, we 

now calculate the ion Landau damping of ion acoustic waves in the 

absence of magnetic fields. Ions and electrons follow the Vlasov equation 

[7-23] and have perturbations of the form of Eq. [7-46] indicating plane 
waves propagating in the x direction. The solution for !1 is given by Eq. 
[7-48] with appropriate modifications: 

[Ii = _ iqiE a[o/avi 
mi w- kvi 

[7·113) 

where E and vi stand for E., Vxi; and the jth species has charge qi, mass 

mi, and particle velocity vi. The density perturbation of the jth species 

is given by 

[7-114] 

Let the equilibrium distributions foi be one-dimensional Maxwellians: 

[7-115) 

Introducing the dummy integration variables = vJv,hi• we can write n 1i as 

where 

_ iqiEnoi _1_ f co (d/ ds )(e -s2) ds 
n1i - 2 112 

kmiv thj 1T -co s - (i 

We now define the plasma dispersion function Z((): 

I fco e-s2 Z(() = 172 -- ds 
1T -coS- ( 

[7·116] 

[7-117] 

[7-118] 

j 



This is a contour integral, as explained in Section 7 .4, and analytic 
continuation to the lower half plane must be used if Im (() < 0. Z(() is 
a complex function of a complex argument ( since w or k usually has an 
imaginary part). In cases where Z(() cannot be approximated by an 
asymptotic formula, one can use the tables of Fried and Conte or a 
standard computer subroutine. 

To express n11 in terms of Z( (), we take the derivative with respect 

to (: 

I 1 f CO e -s2 
Z (() = rr 1/2 -co -(s---(...,)2 ds 

Integration by parts yields 

1 _ 1 [-e-

'2

J

ro 

1 f

ro 

(d/ds)(e-'2) 
Z ( 0 - ----r/2 -- + -r72 ds rr S - ( -co rr -ro S - ( 

The first term vanishes, as it must for any well-behaved distribution 

function. Equation [7-116) can now be written 

[7-119] 

Poisson's equation is 

[7-120] 

Combining the last two equations, separating out the electron term 
explicitly, and defining 

flp1 = (no1ZJe2/eoMj)
112 

we obtain the dispersion relation 

2 n2 
k2 = �p Z1( (,) + I7 Z1((j) 

Vthe J Vthj 

[7-121] 

[7-122] 

Electron plasma waves can be obtained by setting flpi = 0 ( infinitely 
massive ions). Defining 

k 2 2/ 2 -2 D == 2wp Vthe =AD [7-123] 

we then obtain 

[7-124] 

which is the same as Eq. [7-54] when [0, is Maxwellian. 
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7.9.2 Ion Waves and Their Damping 

To obtain ion waves, go back to Eq. [7-122] and use the fact that 
their phase velocity w/k is much smaller than v,h,; hence(. is small, and 

we can expand Z((,) in a power series: 

[7-125] 

The imaginary term comes from the residue at a pole lying near the 

real s axis (of Eq. [ 7-56]) and represents electron Landau damping. For 
(, « 1, the derivative of Eq. [7- 125] gives 

Z'((,) = -2i.J";.(,e ·�- � + · · · = -2 [7-126] 

Electron Landau damping can usually be neglected in ion waves because 
the slope of f,(v) is small near its peak. Replacing Z'((,) by -2 in Eq. 

[7-I22] gives the ion wave dispersion relation 

n2 
A� I----f-Z'((j) = I  +k 2A� = 1 [7-127] 

i v,"i 
The term k 2A � represents the deviation from quasineutrality. 

We now specialize to the case of a single ion species. Since no, = Z,n0;, 
the coefficient in Eq. [7-I27] is 

2 2 2 
2 Op EoKT, no;Z e M 

A o -2- = ---2 --
v,hi no,e EoM 2kT; 

For k 2A� « I, the dispersion relation becomes 

'
( w ) 2T, 

z kv,"' 
= 

ZT, 

l ZT, 
2 T, 

[7-128] 

Solving this equation is a nontrivial problem. Suppose we take real 

k and complex w to study damping in time. Then the real and imaginary 

parts of w must be adjusted so that Im (Z') = 0 and Re (Z') = 2TJZT,. 
There are in general many possible roots w that satisfy this, all of them 
having Im w < 0. The least damped, dominant root is the one having 
the smallest lim w 1. Damping in space is usually treated by taking w real 
and k complex. Again we get a series of roots k with Im k > 0, represent

ing spatial damping. However, the dominant root does not correspond 
to the same value of (; as in the complex w case. It turns out that the 

spatial problem has to be treated with special attention to the excitation 
mechanism at the boundaries and with more careful treatment of the 

electron term Z'((.). 



To obtain an analytic result, we consider the limit(; » 1, correspond
ing to large temperature ratio e = ZT./T,. The asymptotic expression 
for Z'((;) is 

1 • ,- -{� -2 3 -4 Z ((; ) =-2zv7r(; e • +(;  +2( ; + ... [7-129] 

If the damping is small, we can neglect the Landau term in the first 
approximation. Equation [7 -128] becomes 

__!__ ( 1 + 
� __!__

) = � 
d 2 d e 

Since e is assumed large,(; is large; and we can approximate(; by 0/2 
in the second term. Thus 

or 

__!__(1+�)=� (f e e 

w: = 2KT; (� 
+ 

ZT.) = ZKT. + 3KT; 
k· M 2 2T, M 

[7-130] 

[7-131] 

This is the ion wave dispersion relation [ 4-41] with -y, = 3, generalized 
to arbitrary Z. 

We now substitute Eqs. [7-129] and [7-130] into Eq. [7-128] retaining 
the Landau term: 

1 
( 

3) 0 ,- -{2 2 
- 1 +- - 2zv7T'r· e ' = -(f e !> • 

8 

(\ ( 1 + �) = � (1 + ii;. 8(, e-n) 

2 (3 +8 )
1/2

1 
. ,- -{2 - J 

(; = -2
- ( + ZV7T' 8(; e ') 

Expanding the square root, we have 

[7-132] 

The approximate damping rate is found by using Eq. [7-130] in the 
imaginary term: 

I r I 1/2 
_ � = _ m w = (�) 8(3 + 8)112 e-<3+0l/2 

Re (; Rew 8 

where e = ZT./T; andRew is given by Eq. [7-131]. 

[7-133] 
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-lm w 

Re w 

This asymptotic expression, accurate for large(), shows an exponen

tial decrease in damping with increasing (). When () falls below 10, Eq. 

[7-133] becomes inaccurate, and the damping must be computed from 

Eq. [7- 128], which employs the Z-function. For the experimentally 

interesting region 1 < () < 10, the following simple formula is an analytic 
fit to the exact solution: 

[7-134] 

These approximations are compared with the exact result in Fig. 7-31. 

DAMPING 

A EXACT SOLUTION 

B ASYMPTOTIC EXPRESSION 

C EMPIRICAL FORMULA 

10-3L---�������---L--��_LLU ____ �--��LLLLW 
.01 0.1 1 10 

FIGURE 7-31 Ion Landau damping of acoustic waves. (A) is the exact solution of Eq. [7-128); 
(B) is the asymptotic formula, Eq. [7-133); and (C) is the empirical fit, Eq. 
[7-134], good for 1 < (J < 10. 
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What happens when collisions are added to ion Landau damping? 273 
Surprisingly little. Ion-electron collisions are weak because the ion and 
electron fluids move almost in unison, creating little friction between 
them. Ion-ion collisions ( ion viscosity) can damp ion acoustic waves, but 
we know that sound waves in air can propagate well in spite of the 
dominance of collisions. Actually, collisions spoil the particle resonances 
that cause Landau damping, and one finds that the total damping is less 
than the Landau damping unless the collision rate is extremely large. 
In summary, ion Landau damping is almost always the dominant process 
with ion waves, and this varies exponentially with the ratio ZT,/Ti· 

Kinetic Theory 

7-7. Ion acoustic waves of 1-cm wavelength are excited in a single ionized xenon PROBLEMS 
(A= 131) plasma with T, =I eV and T; = 0.1 eV. If the exciter is turned off, 
how long does it take for the waves to Landau damp to I/ e of their initial 
amplitude? 

7-8. Ion waves with A = 5 em are excited in a singly ionized argon plasma with 
n, = 1016 m-3, T, = 2 eV, T; = 0.2 eV; and the Landau damping rate is measured. 
A hydrogen impurity of density nH =an, is then introduced. Calculate the value 
of a that will double the damping rate. 

7-9. In laser fusion experiments one often encounters a hot electron distribution 
with density nh and temperature Th in addition to the usual population with n., 
T,. The hot electrons can change the damping of ion waves and hence affect 
such processes as stimulated Brillouin scattering. Assume Z = I ions with n; and 
T;, and define (), = T./T;, ()h = Th/T;, a = nh/n;, I- a = n,/n;, t: = m/M and 
k�; = n;e2/E0KT;. 

(a) Write the ion wave dispersion relation for this three-component plasma, 
expanding the electron Z-functions . 

(b) Show that electron Landau damping is not appreciably increased by nh if 
Th » T,. 

(c) Show that ion Landau damping is decreased by nh, and that the effect can 
be expressed as an increase in the effective temperature ratio T./T;. 

7-10. The dispersion relation for electron plasma waves propagating along B0z 
can be obtained from the dielectric tensor e (Appendix B) and Poisson's equation, 
V · (e ·E)= 0, where E = -V¢. We then have, for a uniform plasma, 
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orE" = 0. For a cold plasma, Problem 4-4 and Eq. [B-18) give 

or 

For a hot plasma, Eq. [7-124] gives 

2 2 W = Wp 

w ; '( w ) 
Eu = 1- k2 2 Z k- = 0 

Vth Vth 

By expanding the Z-function in the proper limits, show that this equation yields 

the Bohm-Gross wave frequency (Eq. [4-30)) and the Landau damping rate (Eq. 

[7-70]). 
. 

7.10 KINETIC EFFECTS IN A MAGNETIC FIELD 

When either the de magnetic field B0 or the oscillating magnetic field 

B1 is finite, the v x B term in the Vlasov equation [7-23] for a collisionless 

plasma must be included. The linearized equation [7-45] is then replaced 

by 

a[1 q ar1 q a[o - + v · V[I + - (v X Bo) ·- =-- (EI + v X B1) ·

at m av m av 
[7-135] 

Resonant particles moving along B0 still cause Landau damping if w/ k = 

v,h. but two new kinetic effects now appear which are connected with 

the velocity component v .1 perpendicular to B0. One of these is cyclotron 

damping, which will be discussed later; the other is the generation of 

cyclotron harmonics, leading to the possibility of the oscillations com
monly called Bernstein waves. 

Harmonics of the cyclotron frequency are generated when the 
particles' circular Larmor orbits are distorted by the wave fields E1 and 
B1. These finite-rL effects are neglected in ordinary fluid theory but can 
be taken into account to order k 2ri. by including the viscosity 1T. A kinetic 

treatment can be accurate even for k2rr = 0(1). To understand how 

harmonics arise, consider the motion of a particle in an electric field: 

E = Ex e 
i<kx-wo:X 

The equation of motion (cf. Eq. [2-10]) is 

" + 2 _ _!_ £ i(kx-wt) x w,x - , e 
m 

[7-136] 

[7-137] 

If krL is not small, the exponent varies from one side of the orbit to the 

other. We can approximate kx by substituting the undisturbed orbit 



x = rL sin w,t from Eq. [2-7]: 

·· + 2 q £ i(krLsin w 1-wt) 
x w ,x = - ,e ' 

m 
The generating function for the Bessel functions ]n(z) is 

co 
e'<I-I/IJ/2 = L t"],(z) 

n=-CC 

Letting z = krL and t = exp (iw,t), we obtain 

eikrl.sinwct = I ]n(krL) einwct 
-co 

·· + 2 = .!!_ £ � J (k 
) 

-i(w-nw,)l X w,x X L n rL e m -co 
The following solurion can be verified by direct substitution: 

_ !!_E � J,(krL)e-i(w-nw,)l 
X- x L  2 2 m -cow, - (w -nwc) 

[7-138] 

[7-139] 

[7-140] 

[7-141] 

[7-142] 

This shows that the motion has frequency components differing from 
the driving frequency by multiples of w" and that the amplitudes of 
these components are proportional to ],(krL)/[w� - (w -nw,)2]. When 
the denominator vanishes, the amplitude becomes large. This happens 
when w- nw, = ±w" or w = (n ± l)w,, n = 0, ±1, ±2, . . .  ; that is, when 
the field E(x, t) resonates with any harmonic of w,. In the fluid limit 
krL � 0, ]n (krL) can be approximated by (krd2)" /n !, which approaches 

0 for all n except n = 0. For n = 0, the coefficient in Eq. [7-142] becomes 
(w;- w2)-1, which is the fluid result ( cf. Eq. [4-57]) containing only the 
fundamental cyclotron frequency. 

The Hot Plasma Dielectric Tensor 7.10.1 
After Fourier analysis of /1(r, v, t) in space and time, Eq. [7-135] can be 
solved for a Maxwellian distribution f0(v), and the resulting expressions 
f, ( k, v, w) can be used to calculate the density and current of each species. 
The result is usually expressed in the form of an equivalent dielectric 
tensor E, such that the displacement vector D = E · E can be used in the 
Maxwell's equations V · D = 0 and V x B = p,0D to calculate dispersion 
relations for various waves (see Appendix B). The algebra is horrendous 
and therefore omitted. We quote only a restricted result valid for non rela
tivistic plasmas with isotropic pressure (T .1 = Tn) and no zero-order drifts 
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v0i; these restrictions are easily removed, but the general formulas are 
too cluttered for our purposes. We further assume k = k3c. + k/i, with z 
being the direction of Bo; no generality is lost by setting k, equal to zero, 

since the plasma is isotropic in the plane perpendicular to B0. The 
elements of €R =, E/ f.o are then 

Exx = 

2 co 

f.xy = -f.yx = i L ± w� e-b(o L n [/,(b)- J;,( b)]Z((,) 
s W -co 

2 I /2 co 

[7-1431 

. '\' W p (b) -b '\ b I I f.,, = -f.,, = -t f... ± 2 -2 
e (u L... [/,( ) - l,(b)]Z ((,) 

s W -co 

where Z(() is the plasma dispersion function of Eq. [7-118], /,(b) is the 
n th order Bessel function of imaginary argument, and the other symbols 

are defined by 

2 2 2 
Wps = no,Z, e /Eom, 

Wcs = IZ,eB o/ m, I 

v;h, = 2KT,/m, 

b, = �kirLs = k';KT,/m,w;, 

[7-144] 

The first sum is over species s, with the understanding that wp, b, (0, and 
(, all depend on s, and that the ± stands for the sign of the charge. The 
second sum is over the harmonic number n. The primes indicate 
differentiation with respect to the argument. 

As foreseen, there appear Bessel functions of the finite-rL parameter 
b. [The change fromj,(b) to/, (b) occurs in the integration over velocities.] 
The elements of E involving motion along z contain Z'((,), which gives 

rise to Landau damping when n = 0 and w/k, = v,h. The n r! 0 terms 
now make possible another collisonless damping mechanism, cyclotron 
damping, which occurs when (w ± nw,)/k, = v,h· 

I 
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(a) 

z z 

(b) 
The mechanism of cyclotron damping. FIGURE 7-32 

7-11. In the limit of zero temperature, show that the elements of E in Eq. [7-143] PROBLEM 
reduce to the cold-plasma dielectric tensor given in Appendix B. 

Cyclotron Damping 7.10.2 
When a particle moving along B0 in a wave with finite k, has the 
right velocity, it sees a Doppler-shifted frequency w - k,v, equal to ±nwc 
and is therefore subject to continuous acceleration by the electric field 
E.L of the wave. Those particles with the "right" phase relative to E.L will 
gain energy; those with the "wrong" phase will lose energy. Since the 
energy change

· 
is the force times the distance, the faster accelerated 

particles gain more energy per unit time than what the slower decelerated 
particles lose. There is, therefore, a net gain of energy by the particles, 
on the average, at the expense of the wave energy; and the wave is 
damped. This mechanism differs from Landau damping because the 
energy gained is in the direction perpendicular to B0, and hence perpen
dicular to the velocity component that brings the particle into resonance. 
The resonance is not easily destroyed by phenomena such as trapping. 
Furthermore, the mere existence of resonant particles suffices to cause 
damping; one does not need a negative slope fb(v,), as in Landau 
damping. 

To clarify the physical mechanism of cyclotron damping, consider 
a wave with k = k3. + k,z with k, positive. The wave electric field EJ_ can 
be decomposed into left- and right-hand circularly polarized com
ponents, as shown in Fig. 7-32. For the left-hand component, the vector 

EJ_ at positions A, B, and C along the z axis appears as shown in Fig. 
7 -32a. Since the wave propagates in the +z direction, a stationary electron 
would sample the vectors at C, B, and A in succession and therefore 
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would see a left-rotating E-field. It would not be accelerated because its 

Larmor gyration is in the right-hand (clockwise) direction. However, if 

the electron were moving faster than the wave in the z direction, it would 

see the vectors at A, B, and C in that order and hence would be resonantly 

accelerated if its velocity satisfied the condition w - k,v, = -w,. The 

right-hand component of E would appear as shown in fig. 7-�12b. \low 

an electron would see a clockwise rotating E-field if it moved more slowly 

than the wave, so that the vectors at C, B, and A were sampled in 

succession. This electr·on would be accelerated if it met the condition 

w - k,v, = +we. A plane or elliptically polarized wave would, therefore, 
be cyclotron damped by electrons moving in either direction in the wave 

frame. 

7.10.3 Bernstein Waves 
Electrostatic wa\·es propagating at right angles to Bo at harmonics 

of the cyclotron frequency are called Bernstein waves. The dispersion 

relation can be found by using the dielectric elements givenin Eq. [7-143] 

in Poisson's equation V · E · E = 0. If we assume electrostatic perturba

tions such that E1 = - V<P 1, and consider waves of the form <b 1 = 

<b1 exp i(k · r- wl), Poisson's equation can be written 

[7-145] 
Note that we ha\·e chosen a coordinate system that has k lying in the x-z 

plane. so that k, � 0. 'vVe next substitute for En. E," and E, from Eq. 

[7-143] and express .2:''((,.) in terms of Z((,.) with the identity 

Z'((,.) = -2[1 +(Z(()] [7-146] 

PROBLEMS 7-12. PrO\'e Eq. [7-1-t6] directly fr-om the integr;d expressions for/.(() and/.'((). 

7-13. The principal part ofZ(() for small and large(, as used in Eqs. [7-125] 
and [7-129], is gi ven by 

Z(() = - 2( (I- k" + · · · ) 
Z(()= -(I(I+�C"+ ·) 

I (j « I 
I? I » I 

Prove these by expanding the denominator in the definition [7-118) of Z( () . 

Equation [7 -145] becomes 
., 

., ., "\' w; --h k : + k � + L -----;, e (o , w  !,.(b) 
II--=. ·-.X 

[7-147] 

1 -



- i 

The expression in the square brackets can be simplified in a few algebraic 

steps to 2k;[?-n + ?6Z((n)] by using the definitions b = k';v;h/2w; and 

?n = (w + nw,)/k,v,h. Further noting that 2k;w�?o/w2 = 2w�/v;h = k1 for 

each species, we can write Eq. [7-147] as 

ro 
k; +k;+Ik1e-b L In(b)[(-n/?o+?oZ(?n)]=O [7-148] 

n=-00 

The term ?-,/(0 is 1-nwc/w. Since In(b) = Ln(b), the term In(b)nw,/w 
sums to zero when n goes from -co to co; hence,(-,/ (o can be replaced 
by 1. Defining k 2 = k! + k ;, we obtain the general dispersion relation 

for Bernstein waves: 

[7-149] 

(A) Electron Bernstein Waves. Let us first consider high-frequency waves 

in which the ions do not move. These waves are not sensitive to small 
deviations from perpendicul-ar propagation, and we may set k, = 0, so 
that (n �co. There is, therefore, no cyclotron damping; the gaps in the 
spectrum that we shall find are not caused by such damping. For large 

(n. we may replace Z((,.) by -1/(,, according to Eq. [7-129]. Then= 0 
term in the second sum of Eq. [7-149] then cancels out, and we can 

divide the sum into two sums, as follows: 

or 

k� + � k � e -ti ln(b)(l-(o/(n) + Jl L,(b)(1-(o/(-,J J = 0 

'> 2 -b 00 [ W W 
J 

kj_ +'Lkve L l,(b) 2- ----- = 0 
s n=l w+nwc w-nw, 

[7 -150] 

[7-151] 

The bracket collapses to a single term upon combining over a common 

denominator: 

[7-152] 

Using the definitions of kv and b, one obtains the well-known k, = 0 
dispersion relation 

[7-153] 
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FIGURE 7-33 The function a(w, b) for electron Bernstein waves. [From I. B. Bernstein, 

Phys. Rev. 109, 10 (1958).] 

We now specialize to the case of electron oscillations. Dropping the 
sum over species, we obtain from Eq. [7 - 152] 

k� 2 co e -bl,(b) 2 
k2 = 2wc L 2 2 n =a(w, b) 

D n=l W -nwc 
[7-154] 

The function a (w, b) for one value of b is shown in Fig. 7-33. The possible 
values of ware found by drawing a horizontal line ata(w, b)= k�/k� > 0. 

It is then clear that possible values of w lie just above each cyclotron 
harmonic, and that there is a forbidden gap just below each harmonic. 

To obtain the fluid limit, we replace In (b) by its small- b value (b/2)" /n! 
in Eq. [7-153]. Only then = 1 term remains in the limit b � 0, and we 
obtain 

2 2 b 2 )-1 
1 = wg -- (w 2 - 1 We b 2 We 2 Wp 

2 2 w -we [7-155] 

or w2 = w! + w; = w�, which is the upper hybrid oscillation. As k1. � 0, 
this frequency must be one of the roots. If wh falls between two high 
harmonics of W0 the shape of the w -k curves changes near w = wh to 
allow this to occur. Thew -k curves are computed by multiplying Eq. 
[7-154] by 2w!/w� to obtain k�ri = 4w!a (w, b). The resulting curves 

for w/we vs. k1.rL are shown in Fig. 7-34 for various values of w�/w�. 
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Electron Bernstein wave dispersion relation. [Adapted from FIGURE 7-34. 
F. W. Crawford,]. Appl. Phys. 36, 2930 (1965).] 

Note that for each such value, the curves change in character above the 
corresponding hybrid frequency for that case. At the extreme left of the 
diagram, where the phase velocity approaches the speed of light waves 
in the plasma, these curves must be modified by including electro!llag
netic corrections. 

Electron Bernstein modes have been detected in the laboratory, but 
inexplicably large spontaneous oscillations at high harmonics of We have 
also been seen in gas discharges. The story is too long to tell here. 

(B) Ion Bernstein Waves. rn the case of waves at ion cyclotron harmonics, 
one has to distinguish between pure ion Bernstein waves, for which k, = 0, 
and neutralized ion Bernstein waves, for which k,_ has a small but finite 
value. The difference, as we have seen earlier for lower hybrid oscilla
tions, is that finite k% allows electrons to flow along B0 to cancel charge 
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separations. Though the k,_ = 0 case has already been treated in Eq. 
[7-153], the distinction between the two cases will be clearer if we go 
back a step to Eqs. [7 -148] and [7 -149]. Separating out the n = 0 term 

and using Eq. [7-146], we have 

k� +k; +l:k1e-6Io(b)[-�Z'((o)]+l:k1e-b L ln(b)[1 +(oZ((n)] = 0 niJ!-0 
[7-156] 

The dividing line between pure and neutralized ion Bernstein waves lies 
in the electron n = 0 term. If (0, » 1 for the electrons, we can use Eq . 
[7-129] to write Z'((0,) = 1/(� •. Since w/k, » v,h, in this case, electrons 
cannot flow rapidly enough along B0 to cancel charge. If (0, « 1, we can 
use Eq. [7-126] to write Z'((0,) = -2. In this case we have w/k, « v,h., 

and the electrons have time to follow the Boltzmann relation [3-73]. 
Taking first the (0, » 1 case, we note that (oi » 1 is necessarily true 

also, so that then = 0 term in Eq. [7-156] becomes 

Here we have taken b, -? 0 and omitted the subscript from bi. Then ¥ 0 
terms in Eq. [7-156] are treated as before, so that the electron part is 
given by Eq. [7-155], and the ion part by the ion term in Eq. [7-153]. 
The pure ion Bernstein wave dispersion relation then becomes 

� I,.(b) J X L  2 = 0 n�I (w/nfle- l) [7-157] 

Since (0, » 1 implies small k;, the first term is usually negligible. To 
examine the fluid limit, we can set the second bracket to zero, separate 

out then = 1 term, and use the small-b expansion of In (b), obtaining 

w! n! 00 n 2fl!(b/2)n-l 
1- 2 2 - 2 n2- I 2 2 2 = o 

(J) -we (r) - e n�2n!(w -n flc) 
[7-158) 

The sum vanishes for b = 0, and the remaining terms are equal to the 

quantity S of Appendix B. The condition S = 0 yields the upper and 
lower hyrbid frequencies (see the equation following Eq. [4-70]). Thus, 
for k1. -? 0, the low-frequency root approaches w1• For finite b, one of 
the terms in the sum can balance the electron term if w =nne, so there 
are roots near the ion cyclotron harmonics. The dispersion curves w/fle 



600 

400 

0 

-------- --------------------------- 650 

--------------- --------------------- 325 

2 4 6 

283 
Kinetic Theory 

Pure ion Bernstein waves: agreement between theory and experi- FIGURE 7-35 
ment in a Q-machine plasma. [From]. P. M. Schmitt, Phys. Rev. 
Lett. 31, 982 (1973).] 

vs. k1.ru resemble the electron curves in Fig. 7-34. The lowest two roots 
for the ion case are shown in Fig. 7-35, together with experimental 
measurements verifying the dispersion relation. 

The lower branches of the Bernstein wave dispersion relation exhibit 
the backward-wave phenomenon, in which thew - k curve has a negative 
slope, indicating that the group velocity is opposite in direction to 
the phase velocity. That backward waves actually exist in the laboratory 
has been verified not only by w vs. k measurements of the type shown 
in Fig. 7-35, but also by wave interferometer traces which show the 
motion of phase fronts in the backward direction from receiver to 
transmitter. 

Finally, we consider neutralized Bernstein waves, for which (0, is 

small and Z'((0,) = -2. The electron n = 0 term in Eq. [7-156] becomes 
simply k� •. Assuming that (0; » 1 still holds, the analysis leading to Eq. 
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0 1 2 3 4 

k.Lru 
FIGURE 7-36 Neutralized ion Bernstein modes: agreement between theory 

and experiment in a He microwave discharge. [From E. Ault 

and H. Ikezi, Phys. Fluids 13,2874 (1970).] 

[7- 157] is unchanged, and Eq. [7- 156] becomes 

[7-159] 

fork � « k�, an approximate relation for neutralized ion Bernstein waves 
can be written 

Note that electron temperature is now contained in A0, whereas pure 
ion Bernstein waves, Eq. [7-157], are independent of KT,. If eA� is 
small, the bracket in Eq. [7-160] must be large; and this can happen only 
near a resonance w =nile. Thus the neutralized modes are not sensitive 



to the lower hybrid resonance w = w1. Indeed, as k1.rLi � 0 the envelope 
of the dispersion curves approaches the electrostatic ion cyclotron wave 
relation [ 4-67], which is the Auid limit for neutralized waves. 

Neutralized Bernstein modes are not as well documented in experi
ment as pure Bernstein modes, but we show in Fig. 7-36 one case in 
which the former have been seen. 
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Chapter Eight 

NONLI EAR 

INTRODUCTION 8.1 

Up to this point, we have limited our attention almost exclusively to 

linear phenomena; that is, to phenomena describable by equations in 
which the dependent variable occurs to no higher than the first power. 
The entire treatment of waves in Chapter 4, for instance, depended on 

the process of linearization, in which higher-order terms were regarded 
as small and were neglected. This procedure enabled us to consider only 

one Fourier component at a time, with the secure feeling that any 

nonsinusoidal wave can be handled simply by adding up the appropriate 

distribution of Fourier components. This works as long as the wave 

amplitude is small enough that the linear equations are valid. 
Unfortunately, in many experiments waves are no longer describable 

by the linear theory by the time they are observed. Consider, for instance, 
the case of drift waves. Because they are unstable, drift waves would, 
according to linear theory, increase their amplitude exponentially. This 
period of growth is not normally observed-since one usually does not 

know when to start looking-but instead one observes the waves only 

after they have grown to a large, steady amplitude. The fact that the 

waves are no longer growing means that the linear theory is no longer 

valid, and some nonlinear effect is limiting the amplitude. Theoretical 
explanation of this elementary observation has proved to be a surprisingly 

difficult problem, since the observed amplitude at saturation is rather 
small. 287 
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A wave can undergo a number of changes when its amplitude gets 
large. It can change its shape-say, from a sine wave to a lopsided 
triangular waveform. This is the same as saying that Fourier components 
at other frequencies (or wave numbers) are generated. Ultimately, the 
wave can "break," like ocean waves on a beach, converting the wave 
energy into thermal energy of the particles. A large wave can trap 
particles in its potential troughs, thus changing the properties of the 
medium in which it propagates. We have already encountered this effect 
in discussing nonlinear Landau damping. If a plasma is so strongly 
excited that a continuous spectrum of frequencies is present, it is in a 
state of turbulence. This state must be described statistically, as in the case 
of ordinary fluid hydrodynamics. An important consequence of plasma 
turbulence is anomalous resistivity, in which electrons are slowed down 
by collisions with random electric field fluctuations, rather than with 
ions. This effect is used for ohmic heating of a plasma (Section 5.6.3) to 
temperatures so high that ordinary resistivity is insufficient. 

Nonlinear phenomena can be grouped into three broad categories: 
1. Basically nonlinearizable problems. Diffusion in a fully ionized gas, 

for instance, is intrinsically a nonlinear problem (Section 5.8) because 
the diffusion coefficient varies with density. In Section 6.1, we have seen 
that problems of hydromagnetic equilibrium are nonlinear. In Section 
8.2, we shall give a further example-the important subject of plasma 
sheaths. 

2. Wave-particle interactions. Particle trapping (Section 7.5) Is an 
example of this and can lead to nonlinear damping. A classic example 
is the quasilinear effect, in which the equilibrium of the plasma is changed 
by the waves. Consider the case of a plasma with an electron beam (Fig. 
8-1 ). Since the distribution function has a region where df0/ dv is positive, 
the system has inverse Landau damping, and plasma oscillations with v<P 
in the positive-slope region are unstable (Eq. [7-67]). The resonant 
electrons are the first to be affected by wave-particle interactions, and 
their distribution function will be changed by the wave electric field. The 
waves are stabilized when f.(v) is flattened by the waves, as shown by the 
dashed line in Fig. 8-1, so that the new equilibrium distribution no longer 
has a positive slope. This is a typical quasilinear effect. Another example 
of wave-particle interactions, that of plasma wave echoes, will be given 
in Section 8.6. 

3. Wave-wave interactions. Waves can interact with each other even 
in the fluid description, in which individual particle effects are neglected. 
A single wave can decay by first generating harmonics of its fundamental 
frequency. These harmonics can then interact with each other and with 

.. 



A double-humped, unstable electron distribution. FIGURE 8-1 

the primary wave to form other waves at the beat frequencies. The beat 

waves in turn can grow so large that they can interact and form many 

more beat frequencies, until the spectrum becomes continuous. It is 

interesting to discuss the direction of energy flow in a turbulent spectrum. 

In fluid dynamics, long-wavelength modes decay into short-wavelength 

modes, because the large eddies contain more energy and can decay 

only by splitting into small eddies, which are each less energetic. The 
smallest eddies then convert their kinetic motion into heat by viscous 
damping. In a plasma, usually the opposite occurs. Short-wavelength 
modes tend to coalesce into long-wavelength modes, which are less 

energetic. This is because the electric field energy £2/8-rr is of order 

k2cf>2/8-rr, so that if ecf> is fixed (usually by KT,), the small-k, long-A modes 

have less energy. As a consequence, energy will be transferred to small 

k by instabilities at large k, and some mechanism must be found to 

dissipate the energy. No such problem exists at large k, where Landau 

damping can occur. For motions along B0, nonlinear "modulational" 

instabilities could cause the energy at small k to be coupled to ions and 

to heat them. For motions perpendicular to B0, the largest eddies will 
have wavelengths of the order of the plasma radius and could cause 
plasma loss to the walls by convection. 

Although problems still remain to be solved in the linear theory of 

waves and instabilities, the mainstream of plas!lla research has turned 

to the much less well understood area of nonlinear phenomena. The 
examples in the following sections will give an idea of some of the effects 

that have been studied in theory and in experiment. 
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8.2 SHEATHS 

8.2.1 The Necessity for Sheaths 

In all practical plasma devices, the plasma is contained in a vacuum 
chamber of finite size. What happens to the plasma at the wall? For 
simplicity, let us confine our attention to a one-dimensional model with 
no magnetic field (Fig. 8-2). Suppose there is no appreciable electric field 
inside the plasma; we can then let the potential <P be zero there. When 
ions and electrons hit the wall, they recombine and are lost. Since 
electrons have much higher thermal velocities than ions, they are lost 
faster and leave the plasma with a net positive charge. The plasma must 
then have a potential positive with respect to the wall; i.e., the wall 
potential <Pw is negative. This potential cannot be distributed over the 
entire plasma, since Debye shielding (Section 1.4) will confine the poten
tial variation to a layer of the order of several Debye lengths in thickness. 

This layer, which must exist on all cold walls with which the plasma is 
in contact, is called a sheath. The function of a sheath is to form a potential 
barrier so that the more mobile species, usually electrons, is confined 
electrostatically. The height of the barrier adjusts itself so that the flux 
of electrons that have enough energy to go over the barrier to the wall 
is just equal to the flux of ions reaching the wall. 

-d 0 d 

FIGURE 8-2 The plasma potential ¢ forms sheaths near the walls so that 
electrons are reflected. The Coulomb barrier e¢w adjusts itself so 
that equal numbers of ions and electrons reach the walls per 
second. 

=1. . 
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The potential ¢ in a planar sheath. Cold ions are FIGURE 8-3 
assumed to enter the sheath with a uniform velocity u0. 

The Planar Sheath Equation 8.2.2 
In Section 1.4, we linearized Poisson's equation to derive the Debye 

length. To examine the exact behavior of cf>(x) in the sheath, we must 

treat the nonlinear problem; we shall find that there is not always a 
solution. Figure 8-3 shows the situation near one of the walls. At the 

plane x = 0, ions are imagined to enter the sheath region from the main 

plasma with a drift velocity u0• This drift is needed to account for the 
loss of ions to the wall from the region in which they were created by 

ionization. For simplicity, we assume T; = 0, so that all ions have the 

velocity u0 at x = 0. We consider the steady state problem in a collisionless 

sheath region. The potential ¢> is assumed to decrease monotonically 
with x. Actually, ¢> could have spatial oscillations, and then there would 

be trapped particles in the steady state. This does not happen in practice 

because dissipative processes tend to destroy any such highly organized 
state. 

If u(x) is the ion velocity, conservation of energy requires 

�mu2 = �mu6-ecf>(x) 

u = (u�-
2:)1/2 [8-1] 

[8-2] 
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The ion equation of continuity then gives the ion density n; in terms of 
the density n0 in the main plasma: 

nouo = ni(x)u(x) 
2ur) 112 

n;(x) = no( 1-
Mu� 

[8-3] 

[8-4] 

In steady state, the electrons will follow the Boltzmann relation closely: 

n.(x) = n0 exp (ecf>/ KT.) 

Poisson's e'quation is then 

d
2cf> 

[ cjJ) 

2 c/J)-1/2] 
Eo dx2 = e(n.- n;) = en0 exp (:T. 

- ( 1 - :.u6 

[8-5] 

[8-6] 

The structure of this equation can be seen more clearly if we simplify 
it with the following changes in notation: 

2 1/2 ec/J 
x=- 

KT. 

x 
( 

noe ) 
g=-- x --

Ao EoKT. 

Then Eq. [8-6] becomes 

.;t{ = 
uo 

-
(KT./ M) 172 [8-7] 

[8-8] 

where the prime denotes d/df This is the nonlinear equation of a plane 
sheath, and it has an acceptable solution only if .;t{ is large enough. The 
reason for the symbol .;t{ will become apparent in the following section 
on shock waves. 

8.2.3 The Bohm Sheath Criterion 

Equation [8-8] can be integrated once by multiplying both sides by x': 

f.< f.� 2 -1/2 I.E. 

0 
x'x" dg1 = 

0 ( 
1 + .;t{�) x' dgl-

0 
e-xx' dgl [8-9] 

where g1 is a dummy variable. Since x = 0 at g = 0, the integrations 
easily yield 

[8-10] 

If E = 0 in the plasma, we must set x� = 0 at g = 0. A second integration 
to find X would have to be done numerically ; but whatever the answer 
is, the right-hand side of Eq. [8-10] must be positive for all X· In particular, 



for X « 1, we can expand the right-hand terms in Taylor series: 

2[ x 1 x
2 J 1 2 .itt 1 +---- + . . .  -1 + 1- x + -x + ... -1 > o ,;(£2 2 ,;(£4 2 

or Uo > (KTe/ M)112 [8-11] 

This inequality is known as the Bohm sheath criterion. It says that ions 
must enter the sheath region with a velocity greater than the acoustic 
velocity V5• To give the ions this directed velocity u0, there must be a 

finite electric field in the plasma. Our assumption that x' = 0 at� = 0 is 
therefore only an approximate one, made possible by the fact that the 

scale of the sheath region is usually much smaller than the scale of the 

main plasma region in which the ions are accelerated. The value of u0 
is somewhat arbitrary, depending on where w.,e choose to put the boun
dary x = 0 between the plasma and the sheath. Of course, the ion flux 

n0u0 is fixed by the ion production rate, so if u0 is varied, the value of 
n0 at x = 0 will vary inversely with u0• If the ions have finite temperature, 

the critical drift velocity u0 will be somewhat lower. 
The physical reason for the Bohm criterion is easily seen from a 

plot of the ion and electron densities vs. x (Fig. 8-4). The electron density 

ne falls exponentially with x. according to the Boltzmann relation. The 

Qn n 

0 X= -e¢/KT 
e 

[u <(KT /M) l/2] 
o e 

___..TO WALL 

Variation of ion and electron density (logarithmic scale) with nor- FIGURE 8-4 
malized potential X in a sheath. The ion density is drawn for two 
cases: u0 greater than and u0 less than the critical velocity. 
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8.2.4 

ion density also falls, since the ions are accelerated by the sheath potential. 
If the ions start with a large energy, n;(x) falls slowly, since the sheath 
field causes a relatively minor change in the ions' velocity. If the ions 
start with a small energy, n; (x) falls fast, and can go below the n, curve. 
In that case, n,- n; is positive near x = 0; and Eq. [8-6] tells us that¢ (x) 
must curve upward, in contradiction to the requirement that the sheath 
must repel electrons. In order for this not to happen, the slope of n; (x) 
at x = 0 must be smaller (in absolute value) than that of n,(x); this 
condition is identical with the condition Ai2 > 1. 

The Child-Langmuir Law 

Since n, (x) falls exponentially with x. the electron density can be neglected 
in the region of large x next to the wall (or any negative electrode). 
Poisson's equation is then approximately 

2x -1/2 Ai 
x"=( 1 + Ai2) =(2x)l/2 [8-12) 

Multiplying by x' and integrating from g1 = gs to g1 = g, we have 
!Cx'2 '2)_ , -2 ""Cx l /2 1/2) 2 - x s - -v Jvt -xs [8-13] 

where ts is the place where we started neglecting n,. We can redefine 
the zero of x so that Xs = 0 at g = gs· We shall also neglect x;, since the 
slope of the potential curve can be expected to be much steeper in the 
n, = 0 region than in the finite-n, region. Then Eq. [8-13] becomes 

or 

x'2 = 23t2Aix 112 
I 23/4 ,1,11/2 1/4 

X = Jvt X 

dx/x1/4 = 23/4Ail/2 dg 

Integrating from g = gs tog= gs + d/Ao = �wall• we have 

�x�4 = 23/4Ai1/2 d/Ao 
or 

4J2 3/2 
Ai=--Xw A2 9 d2 D 

[8-14] 

[8-15] 

[8-16] 

[8-17] 

Changing back to the variables u0 and¢, and noting that the ion current 
into the wall is] = en0u0, we then find 

= i 
( 

2e
) 

112sol ¢wl312 
] 9 M d2 [8-18] 
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This is just the well-known Child-Langmuir law of space-charge-limited 
current in a plane diode. 

The potential variation in a plasma-wall system can be divided into 
three parts. Nearest the wall is an electron-free region whose thickness 
d is given by Eq. [8-18]. Here] is determined by the ion production 
rate, and cPw is determined by the equality of electron and ion fluxes. 
Next comes a region in which n, is appreciable; as shown in Section 1.4, 

this region has the scale of the Debye length. Finally, there is a region 
with much larger scale length, the "presheath," in which the ions are 
accelerated to the required velocity u0 by a potential drop I¢ I ?: �KT./ e. 
Depending on the experiment, the scale of the presheath may be set by 
the plasma radius, the collision mean free path, or the ionization mechan
ism. The potential distribution, of course, varies smoothly; the division 
into three regions is made only for convenience and is made possible by 
the disparity in scale lengths. In the early days of gas discharges, sheaths 
could be observed as dark layers where no electrons were present to 
excite atoms to emission. Subsequently, the potential variation has been 
measured by the electrostatic deflection of a thin electron beam shot 
parallel to a wall. 

Electrostatic Probes 8.2.5 
The sheath criterion, Eq. [8- 11], can be used to estimate the flux of ions 
to a negatively biased probe in a plasma. If the probe has a surface area 
A, and if the ions entering the sheath have a drift velocity u0?: 
(KT./ M) 112, then the ion current collected is 

I = nseA (KT./ M) 112 
[8-19] 

The electron current can be neglected if the probe is sufficiently negative 
(several times KT,) relative to the plasma to repel all but the tail of the 
Maxwellian electron distribution. The density ns is the plasma density at 
the edge of the sheath. Let us define the sheath edge to be the place 
where uo is exactly (KT,/ M)112. To accelerate ions to this velocity requires 
a pre sheath potential 1¢ I ?: �KT./ e, so that the sheath edge has a potential 

cPs= -�KT,/e [8-20] 

relative to the body of the plasma. If the electrons are Maxwellian, this 
determines ns: 

[8-21] 
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For our purposes it is accurate enough to replace 0.61 with a round 
number like 1 /2; thus, the "saturation ion current" to a negative probe 
is approximately 

I 8 = !n0eA (KT./ M) 112 [8-22] 

I 8, sometimes called the "Bohm current," gives the plasma density easily, 
once the temperature is known. 

If the Debye length A0, and hence the sheath thickness, is very small 
compared to the probe dimensions, the area of the sheath edge is 
effectively the same as the area A of the probe surface, regardless of its 
shape. At low densities, however, A0 can become large, so that some ions 
entering the sheath can orbit the probe and miss it. Calculations of orbits 
for various probe shapes were first made by I. Langmuir and L. Tanks
hence the name "Langmuir probe" ascribed to this method of measure
ment. Though tedious, these calculations can give accurate determina

tions of plasma density because an arbitrary definition of sheath edge 
does not have to be made. By varying the probe voltage, the Maxwellian 
electron distribution is sampled, and the current-voltage curve of a 
Langmuir probe can also yield the electron temperature. The electro
static probe was the first plasma diagnostic and is still the simplest and 
the most localized measurement device. Unfortunately, material elec
trodes can be inserted only in low-density, cool plasmas. 

PROBLEMS 8-1. A probe whose collecting surface is a square tantalum foil 2 x 2 mm in area 
is found to give a saturation ion current of 100 J.LA in a singly ionized argon 
plasma (atomic weight= 40). If KT, = 2 eV, what is the approximate plasma 
density? (Hint: Both sides of the probe collect ions!) 

. 

8-2. A solar satellite consisting of 10 km2 of photovoltaic panels is placed in 
synchronous orbit around the earth. It is immersed in a l-eV atomic hydrogen 
plasma at density 106m-3. During solar storms the satellite is bombarded by 
energetic electrons, which charge it to a potential of -2 k V. Calculate the flux 
of energetic ions bombarding each m2 of the panels. 

8-3. The sheath criterion of Eq. [8-11] was derived for a cold-ion plasma. Suppose 
the ion distribution had a thermal spread in velocity around an average drift 
speed Uo. Without mathematics, indicate whether you would expect the value of 
u0 to be above or below the Bohm value, and explain why. 

8-4. An ion velocity analyzer consists of a stainless steel cylinder 5 mm in diameter 
with one end covered with a fine tungsten mesh grid (grid 1). Behind this, 



1 

inside the cylinder, are a series of insulated, parallel grids. Grid 1 is at "floating" 
potential-it is not electrically connected. Grid 2 is biased negative to repel all 
electrons coming through grid I, but it transmits ions. Grid 3 is the analyzer 
grid, biased so as to decelerate ions accelerated by grid 2. Those ions able to 
pass through grid 3 are all collected by a collector plate. Grid 4 is a suppressor 
grid that turns back secondary electrons emitted by the collector. If the plasma 
density is too high, a space charge problem occurs near grid 3 because the ion 
density is so large that a potential hill forms in front of grid 3 and repels ions 
which would otherwise reach grid 3. Using the Child-Langmuir law, estimate 
the maximum meaningful He+ current that can be measured on a 4-mm-diam 
collector if grids 2 and 3 are separated by I mm and I 00 V. 

ION ACOU STIC SHOCK WAV E S  

When a jet travels faster than sound, it creates a shock wave. This is a 
basically nonlinear phenomenon, since there is no period when the wave 
is small and growing. The jet is faster than the speed of waves in air, so 
the undisturbed medium cannot be "warned" by precursor signals before 
the large shock wave hits it. In hydrodynamic shock waves, collisions are 
dominant. Shock waves also exist in plasmas, even when there are no 
collisions. A magnetic shock, the "bow shock," is generated by the earth 
as it plows through the interplanetary plasma while dragging along a 
dipole magnetic field. We shall discuss a simpler example: a collisionless, 
one-dimensional shock wave which develops from a large-amplitude ion 
wave. 

8.3 

The Sagdeev Potential 8.3.1 
Figure 8-5 shows the idealized potential profile of an ion acoustic shock 
wave. The reason for this shape will be given presently. The wave is 
traveling to the left with a velocity u0. If we go to the frame moving with 
the wave, the function <f>(x ) will be constant in time, and we will see a 
stream of plasma impinging on the wave from the left with a velocity 
u0. For simplicity, let T; be zero, so that all the ions are incident with 
the same velocity u0, and let the electrons be Maxwellian. Since the shock 
moves much more slowly than the electron thermal speed, the shift in 
the center velocity of the Maxwellian can be neglected. The velocity of 
the ions in the shock wave is, from energy conservation, 

[8-23] 
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FIGURE 8-5 Typical potential distribution in an ion acoustic shock wave. The 
wave moves to the left, so that in the wave frame ions stream into 
the wave from the left with velocity u0. 

If n0 is the density of the undisturbed plasma, the ion density in the 
shock is 

n; = nouo = no( I - 2e¢2) u Muo 

-1/2 
[8-24] 

The electron density is given by the Boltzmann relation. Poisson's 
equation then gives 

d2
¢ 

[ 
¢ ) 2 ¢ )-1/2] 

Eo dx2 = e(n,- n;) = en0 exp (;T, 
- ( 1- :

u6 [8-25] 

This is, of course, the same equation (Eq. [8-6]) as we had for a sheath. 
A shock wave is no more than a sheath moving through a plasma. We 
now introduce the dimensionless variables 

e¢ x =+-
KT, 

.11. = uo -
(KT,/ M)112 [8-26] 

Note that we have changed the sign in the definition of x so as to keep 
x positive in this problem as well as in the sheath problem. The quantity 
.11. is called the Mach number of the shock. Equation [8-25] can now be 
written 

[8-27] 

which differs from the sheath equation [8-8] only because of the change 
in sign of X· 



I 
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The behavior of the solution of Eq. [8-27] was made clear by R. Z. 
Sagdeev, who used an analogy to an oscillator in a potential well. 
The displacement x of an oscillator subjected to a force- m dV(x )/dx 
is given by 

[8-28] 

If the right-hand side of Eq. [8-27] is defined as -dV/dx, the equation 
is the same as that of an oscillator, with the potential x playing the role 
of x, and d/d� replacingd/dt. The quasipotential V(x) is sometimes called 
the Sagdeev potential. The function V(x) can be found from Eq. [8-27] 
by integration with the boundary condition V(x) = 0 at x = 0: 

[8-29] 

For .Att lying in a certain range, this function has the shape shown in Fig. 
8-6. If this were a real well, a particle entering from the left will go to 
the right-hand side of the well (x > 0), reflect, and return to x = 0, 
making a single transit. Similarly, a quasiparticle in our analogy will 
make a single excursion to positive x and return to x = 0, as shown in 
Fig. 8-7. Such a pulse is called a soliton; it is a potential and density 
disturbance propagating to the left in Fig. 8-7 with velocity u0. 

Now, if a particle suffers a loss of energy while in the well, it will 
never return to x = 0 but will oscillate (in time) about some positive value 
of x. Similarly, a little dissipation will make the potential of a shock wave 
oscillate (in space) about some positive value of ¢. This is exactly the 
behavior depicted in Fig. 8-5. Actually, dissipation is not needed for this; 
reflection of ions from the shock front has the same effect. To understand 
this, imagine that the ions have a small thermal spread in energy and 
that the height e¢ of the wave front is just large enough to reflect some 
of the ions back to the left, while the rest go over the potential hill to 
the right. The reflected ions cause an increase in ion density in the 
upstream region to the left of the shock front (Fig. 8-5). This means 
that the quantity 

1 Je x'=- (n,-n; ) dg 1 
no o 

[8-30] 

is decreased. Since x' is the analog of dx/ dt in the oscillator problem, 
our virtual oscillator has lost velocity and is trapped in the potential well 
of Fig. 8.6. 
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FIGURE 8-6 The Sagdeev potential V(x). The upper arrow 
is the trajectory of a quasiparticle describing a 
soliton: it is reflected at the right and returns. 
The lower arrows show the motion of a quasipar
ticle that has lost energy and is trapped in the 
potential well. The bouncing back and forth 
describes the oscillations behind a shock front. 

<P 
(or xl 

x (or �) 

FIGURE 8-7 The potential in a soliton moving to the left. 

8.3.2 The Critical Mach Numbers 

Solutions of either the soliton type or the wave-train type exist only for 
a range of .Ji. A !ower limit for .Ji is given by the condition that V(x) 
be a potential well, rather than a hill. Expanding Eq. [8-29] for x « 1 
yields 

[8-31] 

This is exactly the same, both physically and mathematically, as the Bohm 
criterion for the existence of a sheath (Eq. [8-11]). 

An upper limit to .Ji is imposed by the condition that the function 
V(x) of Fig. 8-6 must cross the x axis for x > 0; otherwise, the virtual 



particle will not be reflected, and the potential will rise indefinitely. From 
Eq. [8-29], we require [ 2 ) 1/2] 

ex - 1 < .;({2 1 - ( 1 - .;(,(� [8-32] 

for some x > 0. If the lower critical Mach number is surpassed (.;{{ > 1), 
the left-hand side, representing the integral of the electron density from 
zero to x. is initially larger than the right-hand side, representing the 
integral of the ion density. As x increases, the right-hand side can catch 
up with with the left-hand side if .;({2 is not too large. However, because 
of the square root, the largest value x can have is .;({2 /2. This is because 
e4J cannot exceed �Mu�; otherwise, ions would be excluded from the 
plasma in the downstream region. Inserting the largest value of x into 
Eq. [8-32], we have 

exp (.;{{2 /2) - 1 < .;({2 or .;({ < 1.6 [8-33] 

This is the upper critical Mach number. Shock waves in a cold-ion plasma 
therefore exist only for 1 < .;({ < 1.6. 

As in the case of sheaths, the physical situation is best explained by 
a diagram of n; .and n, vs. x (Fig. 8-8). This diagram differs from Fig. 
8-4 because of the change of sign of 4J. Since the ions are now decelerated 
rather than accelerated, n; will approach infinity at x = .;({2 /2. The lower 
critical Mach number ensures that the n; curve lies below the n, curve 

Qn n 

0 X =  e¢/KTe ffi?2/2 
Variation of ion and electron density (logarithmic FIGURE 8-8 
scale) with normalized potential x in a soliton. The 

ion density is drawn for two cases: Mach number 

greater than and less than 1.6. 
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at small x, so that the potential cP (x) starts off with the right sign for its 
curvature. When the curve n;1 crosses the n, curve, the soliton c/J(x) (Fig. 
8-7) has an inflection point. Finally, when x is large enough that the 
areas under the n; and n, curves are equal, the soliton reaches a peak, 
and then; 1 and n, curves are retraced as x goes back to zero. The e·quality 
of the areas ensures that the net charge in the soliton is zero; therefore, 
there is no electric field outside. If .;({ is larger than 1.6, we have the 
curve n;2, in which the area under the curve is too small even when X 
has reached its maximum value of .;({2/2. 

8.3.3 Wave Steepening 

n 
or 

If one propagates an ion wave in a cold-ion plasma, it will have the phase 
velocity given by Eq. [4-42], corresponding to .;({ = 1. How, then, can 
one create shocks with.;({ > 1? One must remember that Eq. [ 4-42] was 

a linear result valid only at small amplitudes. As the amplitude is 
increased, an ion wave speeds up and also changes from a sine wave to 
a sawtooth shape with a steep leading edge (Fig. 8-9). The reason is that 
the wave electric field has accelerated the ions. In Fig. 8-9, ions at the 
peak of the potential distribution have a larger velocity in the direction 
of v<t> than those at the trough, since they have just experienced a period 
of acceleration as the wave passed by. In linear theory, this difference 
in velocity is taken into account, but not the displacement resulting from 

LINEAR 

.__ v 

NONLINEAR 

FIGURE 8-9 A large-amplitude ion wave steepens so that the leading edge has a larger slope 
than the trailing edge. 



it. In nonlinear theory, it is easy to see that the ions at the peak are 
shifted to the right, while those at the trough are shifted to the left, thus 
steepening the wave shape. Since the density perturbation is in phase 
with the potential, more ions are accelerated to the right than to the left, 
and the wave causes a net mass flow in the direction of propagation. 
This causes the wave velocity to exceed the acoustic speed in the 
undisturbed plasma, so that A1. is larger than unity. 

Experimental Observations 8.3.4 
Ion acoustic shock waves of the form shown in Fig. 8-5 have been 
generated by R. J. Taylor, D. R. Baker, and H. Ikezi. To do this, a new 
plasma source, the DP (or double-plasma) device, was invented. Figure 
8-10 shows schematically how it works. Identical plasmas are created in 
two electrically isolated chambers by discharges between filaments F and 
the walls W. The plasmas are separated by the negatively biased grid G, 
which repels electrons and forms an ion sheath on both sides. A voltage 
pulse, usually in the form of a ramp, is applied between the two chambers. 
Thi causes the ions in one chamber to stream into the other, exciting 

w 

+ + -

Schematic of a DP machine in which ion acoustic shock waves were produced FIGURE 8-10 
and detected. [Cf. R. J. Taylor, D. R. Baker, and H. Ikezi, Phys. Rev. Lett. 24, 206 
(1970).] 

303 
Nonlinear 

Effects 

w 

p 



304 
Chapter 
Eight TIME 

(j..LS) 

72 

I 60 

>- 48 1-
CJ) 36 z L.U 
0 

24 

12 

18 16 14 12 10 8 6 4 2 0 
.-..----DISTANCE (em) 

FIGURE 8-11 Measurements of the density distribution in a shock wave at various 
times, showing how the characteristic shape of Fig. 8-5 develops. [From 
Taylor et al., loc cit.] 

a large-amplitude plane wave. The wave is detected by a movable probe 
or particle velocity analyzer P. Figure 8-11 shows measurements of the 
density fluctuation in the shock wave as a function of time and probe 
position. It is seen that the wavefront steepens and then turns into a 
shock wave of the classic shape. The damping of the oscillations is due 
to collisions. 

PROBLEM 8-5. Calculate the maximum possible velocity of an ion acoustic shock wave in 
an experiment such as that shown in Fig. 8-10, where T, = 1.5 eV, T, = 0.2 eV, 
and the gas is argon. What is the maximum possible shock wave amplitude in volts? 



Double Layers 8.3.5 
A phenomenon related to sheaths and ion acoustic shocks is that of the 
double layer. This is a localized potential jump, believed to occur 
naturally in the ionosphere, which neither propagates nor is attached to 
a boundary. The name comes from the successive layers of net positive 
and net negative charge that are necessary to create a step in </J(x). Such 
a step can remain stationary in space only if there is a plasma flow that 
Doppler shifts a shock front down to zero velocity in the Jab frame, or 
if the distribution functions of the transmitted and reflected electrons 
and ions on each side of the discontinuity are specially tailored so as to 
make this possible. Double layers have been created in the laboratory in 
"triple-plasma" devices, which are similar to the DP machine shown in 
Fig. 8-10, but with a third experimental chamber (without filaments) 
inserted between the two source chambers. By adjusting the relative 
potentials of the three chambers, which are isolated by grids, streams of 
ions or electrons can be spilled into the center chamber to form a double 
layer there. In natural situations double layers are likely to arise where 
there are gradients in the magnetic field B, not where B is zero or 
uniform, as in laboratory simulations. In that case, the 11-VB force (Eq. 
[2-38]) can play a large role in localizing a double layer away from all 
boundaries. Indeed, the thermal barrier in tandem mirror reactors IS 

an example of a double layer with strong magnetic trapping. 

TH E POND EROMOTIVE FORCE 8.4 

Light waves exert a radiation pressure which is usually very weak and 
hard to detect. Even the esoteric example of comet tails, formed by the 
pressure of sunlight, is tainted by the added effect of particles streaming 
from the sun. When high-powered microwaves or laser beams are used 
to heat or confine plasmas, however, the radiation pressure can reach 
several hundred thousand atmospheres! When applied to a plasma, this 
force is coupled to the particles in a somewhat subtle way and is called 
the ponderomotive force. Many nonlinear phenomena have a simple expla
nation in terms of the pondermotive force. 

The easiest way to derive this nonlinear force is to consider the 
motion of an electron in the oscillating E and B fields of a wave. We 
neglect de Eo and B0 fields. The electron equation of motion is 

dv m dt = -e [E(r) + v X B(r)] [8-34] 
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This equation is exact if E and B are evaluated at the instantaneous 
position of the electron. The nonlinearity comes partly from the v x B 
term, which is second order because both v and B vanish in the equili
brium, so that the term is no larger than Vz X B 1 ,  where v 1  and B1 are 
the linear-theory values. The other part of the nonlinearity, as we shall 
see, comes from evaluating Eat the actual position of the particle rather 
than its initial position. Assume a wave electric field of the form 

E = E,(r) cos wt [8-35] 

where E,(r) contains the spatial dependence. In first order, we may 
neglect the v X B term in Eq. [8-34] and evaluate Eat the initial position 
ro. We have 

m dvz/dt = -e E(r0) 

v1 = -(e/mw )E, sin wt = drz/ dt 

or1 = (e/mw2)E, cos wt 

[8-36] 

[8-37] 

[8-38] 

It is important to note that in a nonlinear calculation, we cannot write 
e iw< and take its real part later. Instead, we write its real part explicitly 
as cos wt. This is because products of oscillating factors appear in non
linear theory, and the operations of multiplying and taking the real part 
do not commute. 

Going to second order, we expand E(r) about r0: 

E(r) = E(ro) + (8rz · V)EI r=ro + · · · [8-39] 

We must now add the term v1 x B1 , where Bz is given by Maxwell's 
equation: 

v x E = -aB/at 

Bz = -(1/w) V X E,l r=ro sin wt [8-40] 

The second-order part of Eq. [8-34] is then 

[8-41] 

Inserting Eqs. [8-37], [8-38], and [8-40] into [8-41] and averaging over 
time, we have 

[8-42] 

Here we used (sin
2 wt) = (cos2 wt) = �. The double cross product can be 

written as the sum of two terms, one of which cancels the (E, · V)E, term. 
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What remains is 

1 e2 
., 

fNL = --
4 

--2 VE; mw 
[8-43] 

This is the effective nonlinear force on a single electron. The force per 

m3 is fNL times the electron density n0, which can be written in terms of 

w ;. Since E� = 2(£2), we finally have for the ponderomotive force the 

formula 

[8-44] 

If the wave is electromagnetic, the second term in Eq. [8-42] is 
dominant, and the physical mechanism for FNL is as follows. Electrons 
oscillate in the direction of E, but the wave magnetic field distorts their 

orbits. That is, the Lorentz force -ev x B pushes the electrons in the 

direction of k (since vis in the direction of E, and E x B is in the direction 

of k). The phases of v and Bare such that the motion does not average 

to zero over an oscillation, but there is a secular drift along k. If the 

wdve has uniform amplitude, no force is needed to maintain this drift; 

but if the wave amplitude varies, the electrons will pile up in regions of 

small amplitude, and a force is needed to overcome the space charge. 
This is why the effective force FNL is proportional to the gradient of (£2). 
Since the drift for each electron is the same, F NL is proportional to the 
density-hence the factor w �/ w 2 in E'q. [8-44]. 

If the wave is electrostatic, the first term in Eq. [8-42] is dominant. 
Then the physical mechanism is simply that an electron oscillating along 

k I I E moves farther in the half-cycle when it is moving from a strong-field 

region to a weak-field region than vice versa, so there is a net drift. 

Although F NL acts mainly on the electrons, the force is ultimately 

transmitted to the ions, since it is a low-frequency or de effect. When 

electrons are bunched by FNL, a charge-separation field Ecs is created. 

The total force felt by the electrons is 

[8-45] 

Since the ponderomotive force on the ions is smaller by ll�/ w � = m/ M, 
the force on the ion fluid is approximately 

F, = eEcs [8-46] 

Summing the last two equations, we find that the force on the plasma 

is FNL· 

307 
Nonlinear 

Effects 



308 
Chapter 
Eight 

PROBLEMS 

A direct effect of FNL is the self-focusing of laser light in a plasma. 
In Fig. 8-12 we see that a laser beam of finite diameter causes a radially 
directed ponderomotive force in a plasma. This force moves plasma out 
of the beam, so that wp is lower and the dielectric constant E is higher 
inside the beam than outside. The plasma then acts as a convex lens, 
focusing the beam to a smaller diameter. 

8-6. A one-terawatt laser beam is focused to a spot 50 J.Lm in diameter on a solid 
target. A plasma is created and heated by the beam, and it tries to expand. The 
ponderomotive force of the beam, which acts mainly on the region of critical 
density (n = n" or w = wp), pushes the plasma back and causes "profile 
modification," which is an abrupt change in density at the critical layer. 

(a) How much pressure (in N/m2 and in lbf/in.2) is exerted by the ponderomo
tive force? (Hint: Note that FNL is in units of N/m3 and that the gradient length 
cancels out. To calculate (£2), assume conservatively that it has the same value 
as in vacuum, and set the l-TW Poynting Aux equal to the beam's energy density 
times its group velocity in vacuum. ) 

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  .. . ..... . .. .. . .... . .. .... . . ... . . . . .... . . . . . ..... . ... .. . ... .... . . . .. 

FIGURE 8-12 Self-focusing of a laser beam is caused by the ponderomotive force. 

p 

FIGURE 8-13 A mechanical analog of a parametric instability. 



(b) What is the total force, in tonnes, exerted by the beam on the plasma? 

(c) If T, = T, = 1 keY, how large a density jump can the light pressure support? 

8-7. Self-focusing occurs when a cylindrically symmetric laser beam of frequency 

w is propagated through an underdense plasma; that is, one which has 

In steady state, the beam's intensity profile and the density depression caused 

by the beam (Fig. 8-12) are related by force balance. Neglecting plasma heating 
(KT = KT, + KT, = constant), prove the relation 

-t!u(£'2}/2r�,KT _ -a(r) 
n = n0 e =no e 

The quantity a(O) is a measure of the relative importance of ponderomotive 

pressure to plasma pressure. 

PARAMETRIC INSTABILITIE S  8.5 

The most thoroughly investigated of the nonlinear wave-wave interac

tions are the "parametric instabilities," so called because of an analogy 

with parametric amplifiers, well-known devices in electrical engineering. 

A reason for the relatively advanced state of understanding of this subject 

is that the theory is basically a linear one, but linear about an oscillating 

equilibrium. 

Coupled Oscillators 8.5.1 

Consider the mechanical model of Fig. 8-13, in which two oscillators M1 

and M2 are coupled to a bar resting on a pivot. The pivot Pis made to 
slide back and forth at a frequency w0, while the natural frequencies of 
the oscillators are w 1 and w2. It is clear that, in the absence of friction, 

the pivot encounters no resistance as long as M1 and M2 are not moving. 

Furthermore, if P is not moving and M2 is put into motion, M1 will 

move; but as long as w2 is not the natural frequency of M1, the amplitude 

will be small. Suppose now that both P and M2 are set into motion. The 

displacement of M1 is proportional to the product of the displacement 

of M2 and the length of the lever arm and, hence, will vary in time as 

cos w2t cos wot = � cos ((w2 + wo)t] + � cos [(w2- w0)t] [8-47] 

If W1 is equal to either w2 + wo or w2- w0, M1 will be resonantly excited 

and will grow to large amplitude. Once M1 starts oscillating, M2 will also 
gain energy, because one of the beat frequencies of w 1 with w0 is just 
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8.5.2 

w2. Thus, once either oscillator is started, each will be excited by the 
other, and the system is unstable. The energy, of course, comes from 
the "pump" P, which encounters resistance once the rod is slanted. If the 
pump is strong enough, its oscillation amplitude is unaffected by M1 and 
M2; the instability can then be treated by a linear theory. In a plasma, 
the oscillators P, M1, and M2 may be different types of waves. 

Frequency Matching 

The equation of motion for a simple harmonic oscillator x 1 is 

[8-48] 

where w 1 is its resonant frequency. If it is driven by a time-dependent 
force which is proportional to the product of the amplitude Eo of the 
driver, or pump, and the amplitude x2 of a second oscillator, the equation 

of motion becomes 

[8-49] 

where c 1 is a constant indicating the strength of the coupling. A similar 
equation holds for x2: 

[8-50] 

Let x1 = i1 coswt, x2 = i2cosw't, and Eo = E0cosw0t. Equation [8-50] 
becomes 

= c2Eoi, �{cos [(wo + w )t] +cos [(w0- w )t]} [8-51] 

The driving terms on the right can excite oscillators x2 with frequencies 

w' = wo±w [8-52] 

In the absence of non:linear interactions, x2 can only have the frequency 
w2, so we must have w' = w2. However, the driving terms can cause a 
frequency shift so that w' is only approximately equal to w2. Furthermore, 
w' can be complex, since there is damping (which has been neglected so 
far for simplicity), or there can be growth (if there is an instability). In 
either case, x2 is an oscillator with finite Q and can respond to a range 



J 

of frequencies about w2. If w is small, one can see from Eq. [8-52] that 
both choices for w' may lie within the bandwidth of x2, and one must 
allow for the existence of two oscillators, x2(w0 + w) and x2(w0-w ). 

Now let x1 = .i1 cos w"t and x2 = .i2 cos [(w0 ± w)t] and insert into 
Eq. [8-49]: 

= c 1Eu.i2 �(cos {[w0 + (wo ± w )]t} + cos {[wu- (wo ± w )]t}) 

[8-53] 

The driving terms can excite not only the original oscillation x1(w), but 

also new frequencies w" = 2w0 ± w. We shall consider the case I w0/ » 

/ w d, so that 2w0 ± w lies outside the range of frequencies to which x 1 
can respond, and x 1 (2w0 ± w) can be neglected. We therefore have three 

oscillators, x1(w), x2(w0- w), and x2(w0 + w), which are coupled by Eqs. 

[8-49] and [8-50]: 

2 2 
(w 1-w )xi(w)- ciEo(wo)[x2(wo- w) + x2(w0 + w)] = 0 

[w�- (wu-w)
2
]x2(wo- w)- c2Eo(wo)xi(w) = 0 

[w�- (wu + w/]x2(wo + w)- c2Eo(wo)x1(w) = 0 

[8-54] 

The dispersion relation is given by setting the determinant of the 

coefficients equal to zero: 

2 2 w -wl 
c2Eo 
c2Eo 

c1Eo 
(w0-w)

2
- w� 

0 

c1Eo 
0 

2 2 
(wo + w) - Wz 

A solution with Im(w) > 0 would indicate an instability. 

=0 [8-55] 

For small frequency shifts and small damping or growth rates, we 

can set w and w' approximately equal to the undisturbed frequencies w 1 

and w2. Equation [8-52] then gives a frequency matching condition: 

[8-56) 

When the oscillators are waves in a plasma, wt must be replaced by 
wt - k · r. There is then also a wavelength matching condition 

[8-57] 

describing spatial beats; that is, the periodicity of points of constructive 
and destructive interference in space. The two conditions [8-56] 
and [8-57] are easily understood by analogy with quantum mechanics. 
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Wp 

Wp 

w 

(A) 

w 

(C) 

Multiplying the former by Planck's constant n, we have 

nwo = nw2± l'lwl [8-58] 

Eo and x2 may, for instance, be electromagnetic waves, so that nwo and 
nw2 are the photon energies. The oscillator x1 may be a Langmuir 
wave, or plasmon, with energy nw1. Equation [8-54] simply states the 
conservation of energy. Similarly, Eq. [8-53] states the conservation of 
momentum nk. 

\ 
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FIGURE 8-14 Parallelogram constructions showing the w- and k-matching conditions for 
three parametric instabilities: (A) electron decay instability, (B) parametric 
decay instability, (C) stimulated Brillouin backscattering instability, and (D) 
two-plasmon decay instability. In each case, w0 is the incident wave, and w1 
and w2 the decay waves. The straight lines are the dispersion relation for ion 
waves; the narrow parabolas, that for light waves; and the wide parabolas, that 
for electron waves. 
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For plasma waves, the simultaneous satisfaction of Eqs. [8-52] and 
[8-53] in one-dimensional problems is possible only for certain combina
tions of waves. The required relationships are best seen on an w-k 
diagram (Fig. 8-14). Figure 8-14(A) shows the dispersion curves of an 
electron plasma wave (Bohm-Gross wave) and an ion acoustic wave (cf. 
Fig. 4-13). A large-amplitude electron wave (w0, k0) can decay into a 
backward moving electron wave (w2, k2) and an ion wave (w 1, k1). The 
parallelogram construction ensures that w0 == w 1 + w2 and k0 == k1 + k2. 
The positions of (w0, k0) and (w2, k2) on the electron curve must be 
adjusted so that the difference vector lies on the ion curve. Note that an 
electron wave cannot decay into two other electron waves, because there 
is no way to make the difference vector lie on the electron curve. 

Figure 8-14(B) shows the parallelogram construction for the "para
metric decay" instability. Here, (w0, k0) is an incident electromagnetic 
wave of large phase velocity (w0/k0 = c). It excites an electron wave and 
an ion wave moving in opposite directions. Since J k0j is small, we have 

I kd = -1 k2l and w0 == w1 + w2 for this instability. 
Figure 8-14(C) shows the w-k diagram for the "parametric backscat

tering" instability, in which a light wave excites an ion wave and another 
light wave moving in the opposite direction. This can also happen when 
the ion wave is replaced by a plasma wave. By analogy with similar 
phenomena in solid state physics, these processes are called, respectively, 
"stimulated Brillouin scattering" and "stimulated Raman scattering." 

Figure 8-14(D) represents the two-plasmon decay instability of an 
electromagnetic wave. Note that the two decay waves are both electron 
plasma waves, so that frequency matching can occur only if w0 = 2wp. 
Expressed in terms of density, this condition is equivalent ton = nc/4, 
when nc is the critical density (Eq. [ 4-88]) associated with Wo. This 
instability can therefore be expected to occur only near the "quarter
critical" layer of an inhomogeneous plasma. 

Instability Threshold 8.5.3 

Parametric instabilities will occur at any amplitude if there is no damping, 
but in practice even a small amount of either collisional or Landau 
damping will prevent the instability unless the pump wave is rather 
strong. To calculate the threshold, one must introduce the damping 
rates r I and r 2 of the oscillators X I and X2. Equation [8-48] then becomes 

[8-59] 
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For instance, if x1 is the displacement of a spring damped by friction, 
the last term represents a force proportional to the velocity. If x1 is the 
electron density in a plasma wave damped by electron-neutral collisions, 
f1 is vc/2 (cf. Problem 4-5). Examination of Eqs. [8-49], [8-50], and [8-54] 
will show that it is all right to use exponential notation and let d/ dt � -iw 
for x1 and x2, as long as we keep Eo real and allow x, and i2 to be 
complex. Equations [8-49) and [8-50] become 

(w�- w2
- 2iwft)x,(w) = c1x2Eo 

[8-60] 

We further restrict ourselves to the simple case of two waves-that is, 
when w = w, and w0- w = w2 but w0 + w is far enough from w2 to be 
nonresonant-in which case the third row and column of Eq. [8-55] can 
be ignored. If we now express x1, x2 , and Eo in terms of their peak values, 
as in Eq. [8-53], a factor of l/2 appears on the right-hand sides of Eq. 
[8-60]. Discarding the nonresonant terms and eliminating x, and i2 
from Eq. [8-60], we obtain 

(w2- w7 + 2iwft)[(w0 -w)
2
- w�- 2i(wo- w)f2J = �c1c2E� [8-61] 

At threshold, we may set Im(w) = 0. The lowest threshold will occur at 
exact frequency matching; i.e., w = w 1, w0- w = w2. Then Eq: [8-61] 
g1ves 

[8-62] 

The threshold goes to zero with the damping of either wave. 

PROBLEMS 8-8. Prove that stimulated Raman scattering cannot occur at densities above nc/4. 

8-9. Stimulated Brillouin scattering is observed when a Nd-glass laser beam 
(.A = 1.06 11-m) irradiates a solid D2 target (Z = I, M = 2M H) . The backscattered 
light is red-shifted by 21.9 A. From x-ray spectra, it is determined that KT, = 

I keV. Assuming that the scattering occurs in the region where w� « w2, and 
using Eq. [4-4I] with-y, = 3, make an estimate of the ion temperature. 

8-10. For stimulated Brillouin scattering (SBS), we may let x 1 in Eq. [8-60] stand 
for the ion wave density fluctuation n1, and x2 for the reflected wave electric 
field £2. The coupling coefficients are then given by 

c, = eok;w!/w0w2M 
c2 = w!w2/nowo 



and threshold pump intensity in a homogeneous plasma is given by Eq. [8-62]. 
This is commonly expressed in terms of (v�,c), the rms electron oscillation velocity 
caused by the pump wave (cf. Eq. [8-37]): 

The damping rate r2 can be found from Problem [4-37b] for v/w «I. 

(a) Show that, for T, « T, and v; = KT,/m, the SBS threshold is given by 

(v�,J 4f1v 

where WJ = kJv, and rl is the ion Landau damping rate given by Eq. [7-133]. 
(b) Calculate the threshold laser intensity I 0 in W /cm2 for SBS of C02 (I 0.6 1-L m) 
light in a uniform hydrogen plasma with T, = IOOeV, T, = IOeV, and n0 = 
102:' m-3 (Hint: Use the Spitzer resistivity to evaluate v,,.) 

8-11. The growth rate of stimulated Brillouin scattering in a homogeneous 
plasma far above threshold can be computed from Eq. [8-61] by neglecting the 
damping terms. Let w = w, + i-y and assume -y2 « w : and n « n,. Show that 

- ) J/0 
Y 

= V0,, (Wo -D.p 
2c w, 

where V0,, is the peak oscillating velocity of the electrons. 

Physical Mechanism 8.5.4 
The parametric excitation of waves can be understood very simply in 

terms of the ponderomotive force (Section 8.4). As an illustration, consider 
the case of an electromagnetic wave (w0, k0) driving an electron plasma 

wave (w2, k2) and a low-frequency ion wave (w1, k1) [Fig. 8-14(8)]. Since 

w 1 is small, w0 must be close to wp. However, the behavior is quite different 

for w0 < wp and for w0 > wp. The former case gives rise to the "oscillating 

two-stream" instability (which will be treated in detail), and the latter to 
the "parametric decay" instability. 

Suppose there is a density perturbation in the plasma of the form 
n 1 cos k 1x; this perturbation can occur spontaneously as one component 
of the thermal noise. Let the pump wave have an electric field £0 cos w0t 
in the x direction, as shown in Fig. 8-15. In the absence of a de field B0, 
the pump wave follows the relation w� = w� + c2k�, so that k0"" 0 for 

w0"" Wp. We may therefore regard £0 as spatially uniform. If w0 is less 
than wp, which is the resonant frequency of the cold electron fluid, the 
electrons will move in the direction opposite to £0, while the ions do not 
move on the time scale of wo. The density ripple then causes a charge 
separation, as shown in Fig. 8-15. The electrostatic charges create a field 
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FIGURE 8-15 Physical mechanism of the oscillating two-stream instability. 

E 1, which oscillates at the frequency w0. The pondermotive force due 

to the total field is given by Eq. [8-44]: 

FNL = -
w�V ((Eo+ E1 ) 2) 
w0 2 Eo [8-63] 

Since E0 is uniform and much larger than E1, only the cross term is 

important: 

2 

FNL = - !!:!..2. a (2EoE,) 2 -Wo ax 2 Eo [8-64] 

This force does not average to zero, since E 1 changes sign with E0. As 



seen in Fig. 8-15, F NL is zero at the peaks and troughs of n 1 but is large 
where Vn 1 is large. This spatial distribution causes F NL to push electrons 
from regions of low density to regions of high density. The resulting de 
electric field drags the ions along also, and the density perturbation 
grows. The threshold value ofF NL is the value just sufficient to overcome 
the pressure Vni 1 (KT, + KT.), which tends to smooth the density. The 
density ripple does not propagate, so that Re(w 1) = 0. This is called the 

oscillating two-stream instability because the sloshing electrons have a 

time-averaged distribution function which is double-peaked, as in the 

two-stream instability (Section 6.6). 

If wo is larger than wp, this physical mechanism does not work, 
because an oscillator driven faster than its resonant frequency moves 
opposite to the direction of the applied force (this will be explained more 
clearly in the next section). The directions of v., E1, and FNL are then 
reversed on Fig. 8-15, and the ponderomotive force moves ions from 

dense regions to less dense regions. If the density perturbation did not 

move, it would decay. However, if it were a traveling ion acoustic wave, 
the inertial delay between the application of the force F NL and the change 

of ion positions causes the density maxima to move into the regions into 

which FNL is pushing the ions. This can happen, of course, only if the 
phase velocity of the ion wave has just the right value. That this value 

is v, can be seen from the fact that the phase of the force F NL in Fig. 
8-15 (with the arrows reversed now) is exactly the same as the phase of 
the electrostatic restoring force in an ion wave, where the potential is 
maximum at the density maximum and vice versa. Consequently, FNL 
adds to the restoring force and augments the ion wave. The electrons, 
meanwhile, oscillate with large amplitude if the pump field is near the 
natural frequency of the electron fluid; namely, w � = w ! + �k2v�h· The 

pump cannot have exactly the frequency w2 because the beat between 

w0 and w2 must be at the ion wave frequency w1 = kv,, so that the 

expression for F NL in Eq. [8-64] can have the right frequency to excite 
ion waves. If this frequency matching is satisfied, viz., w 1 = w0 - w2, both 
an ion wave and an electron wave are excited at the expense of the pump 
wave. This is the mechanism of the parametric decay instability. 

The Oscillating Two-Stream Instability 8.5.5 

We shall now actually derive this simplest example of a parametric 

instability with the help of the physical picture given in the last section. 
For simplicity, let the temperatures Ti and T. and the collision rates vi 
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and v, all vanish. The ion fluid then obeys the low-frequency equations 

avil 
Mn0 -- = enoE = FNL 

at 

ani! avi 1 
0 --+no--= 

at ax 

[8-65] 

[8-66] 

Since the equilibrium is assumed to be spatially homogeneous, we 
may Fourier-analyze in space and replace ajax by ik. The last two 
equations then give 

,2 . 
u nil tk 

-9- +- F 0 
at- M NL= [8-67] 

with FNL given by Eq. [8-64]. To find E1, we must consider the motion 
of the electrons, given by (av, a ) 

m - + v,-v, = -e(Eo + E1) 
at ax 

where E 1 is related to the density ne� by Poisson's equation 

ikt:0E 1 = -en, 1 

[8-68] 

[8-69] 

We must realize at this point that the quantities E 1, v., and ne1 each have 
two parts: a high-frequency part, in which the electrons move indepen
dently of the ions, and a low-frequency part, in which they move along 
with the ions in a quasineutral manner. To lowest order, the motion is 
a high-frequency one in response to the spatially uniform field Eo: 

a e e A 
t 

v,o 
= __ 

Eo = - -Eo cos Wo 
at m m 

Linearizing about this oscillating equilibrium, we have 

av. l . e e -- + zkv,ove1 =-- E1 = - -(E i h + Eu) � m m 

[8-70] 

[8-71] 

where the subscripts h and l denote the high- and low-frequency parts. 
The first term consists mostly of the high-frequency velocity v,h, given by 

2 
av.h e n,he 
-- = --Eih = -.--

at m tkt:om 
[8-72] 

where we have used Eq. [8-69]. The low-frequency part of Eq. [8-71] is 

.
k 

e 
Z V,oVeh = - -Eit 

m 

J 



The right-hand side is just the ponderomotive term used in Eq. [8-65] 
to drive the ion waves. It results from the low-frequency beat between 

v.o and Veh· The left-hand side can be recognized as related to the 
electrostatic part of the ponderomotive force expression in Eq. [8-42]. 

The electron continuity equation is · 

an.1 ·k ·k o -- + z v,on, 1 + noz v, 1 = 
at 

[8-73] 

We are interested in the high-frequency part of this equation. In the 
middle term, only the low-frequency density n,t can beat with Veo to give 

a high-frequency term, if we reject phenomena near 2w0 and higher 

harmonics. But net = nil by quasineutrality so we have 

an.h "k "k - + z noveh + z v,on;t = 0 
at 

[8-74] 

Taking the time derivative, neglecting an;dat, and using Eqs. [8-7 0] and 

[8-72], we obtain 

[8-75] 

Let n,h vary as exp (-i wt): 

[8-76] 

Equations [8-69] and [8-76] then give the high-frequency field: 

[8-77] 

In setting w = w 0 we have assumed that the growth rate of n; 1 is very 
small compared with the frequency of £0• The ponderomotive force 

follows from Eq. [8-64]: 
2 2 "k Wp e z n;r ( 2) FNL=-2- 2 2£0 w0 m Wp- Wo 

[8-78] 

Note that both Elh and FNL change sign with w�- w6. This is the reason 

the oscillating two-stream instability mechanism does not work for w � > 
w�. The maximum response will occur for w� = w!. and we may neglect 
the factor ( w�/ w6). Equation [8-67] can then be written 

[8-79] 
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Since the low-frequency perturbation does not propagate in this instabil
ity, we can let nil= iii1 exp yt, where y is the growth rate. Thus 

2k2 EA2 2 e o 
y ;::, ---2- 2 2Mm Wp - Wo 

[8-80] 

and y is real if w � < w !. The actual value of y will depend on how small 
the denominator in Eq. [8-77] can be made without the approximation 
w2 

= w6. If damping is finite, w�- w2 will have an imaginary part 
proportional to 2f2wp, where r2 is the damping rate of the electron 
oscillations. Then we have 

Y oc Eo/f�12 
[8-81] 

Far above threshold, the imaginary part of w will be dominated by the 

growth rate y rather than by f2. One then has 

A2 .,.,2 Eo � oc -

Y 
y oc (Eo)2/3 [8-82-] 

This behavior of y with Eo is typical of all parametric instabilities. An 
exact calculation of y and of the threshold value of Eo requires a more 
careful treatment of the frequency shiftwp- w0 than we can present here. 

To solve the problem exactly, one solves for ni1 in Eq. [8-76] and 
substitutes into Eq. [8-79]: 

inil ike 
at2 = - M n.hEo [8-83] 

Equations [8-75] and [8-83] then constitute a pair of equations of the 

form of Eqs. [8-49] and [8-50], and the solution of Eq. [8-55] can be 
used. The frequency w 1 vanishes in that case because the ion wave has 
w 1 = 0 in the zero-temperature limit. 

8.5.6 The Parametric Decay Instability 

The derivation for w0 > wp follows the same lines as above and leads to 
the excitation of a plasma wave and an ion wave. We shall omit the 
algebra, which is somewhat lengthier than for the oscillating two-stream 

instability, but shall instead describe some experimental observations. 
The parametric decay instability is well documented, having been 
observed both in the ionosphere and in the laboratory. The oscillating 
two-stream instability is not often seen, partly because Re (w) = 0 and 
partly because w0 < wp means that the incident wave is evanscent. Figure 
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Schematic of an experiment in which the parametric decay instability was FIGURE 8-16 

verified. [From A. Y. Wong et al., Plasma Physics and Controlled Nuclear Fusion 

Research, 1971, I, 335 (International Atomic Energy Agency, Vienna, 1971).] 

8-16 shows the apparatus of Stenzel and Wong, consisting of a plasma 

source similar to that of Fig. 8-10, a pair of grids between which the 

field £0 is generated by an oscillator, and a probe connected to two 
frequency spectrum analyzers. Figure 8-17 shows spectra of the signals 

detected in the plasma. Below threshold, the high-frequency spectrum 
shows only the pump wave at 400 MHz, while the low-frequency spec
trum shows only a small amount of noise. When the pump wave ampli
tude is increased slightly, an ion wave at 300 kHz appears in the low
frequency spectrum; and at the same time, a sideband at 399.7 MHz 
appears in the high-frequency spectrum. The latter is an electron plasma 

wave at the difference frequency. The ion wave then can be observed 

to beat with the pump wave to give a small signal at the sum frequency, 
400. 3  MHz. 

This instability has also been observed in ionospheric experiments. 
Figure 8-18 shows the geometry of an ionospheric modification experi
ment performed with the large radio telescope at Platteville, Colorado. 
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A 2-MW radiofrequency beam at 7 MHz is launched from the antenna 
into the ionosphere. At the layer where w0 2:: Wp, electron and ion waves 
are generated, and the ionospheric electrons are heated. In another 
experiment with the large dish antenna at Arecibo, Puerto Rico, the w 

and k of the electron waves were measured by probing with a 430-MHz 
radar beam and observing the scattering from the grating formed by 
the electron density perturbations. 
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FIGURE 8-17 Oscillograms showing the frequency spectra of oscillations observed in the 

device of Fig. 8-16. When the driving power is just below threshold, only 
noise is seen in the low-frequency spectrum and only the driver (pump) signal 

in the high-frequency spectrum. A slight increase in power brings the system 

above threshold, and the frequencies of a plasma wave and an ion wave 

simultaneously appear. [Courtesy of R. Stenzel, UCLA.) 
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Geometry of an ionospheric modification experiment in which radiofrequency FIGURE 8-18 

waves were absorbed by parametric decay. [From W. F. Utlaut and R. Cohen, 
Science 174,245 (1971).] 

8-12. In laser fusion, a pellet containing thermonuclear fuel is heated by intense PROBLEMS 
laser beams. The parametric decay instability can enhance the heating efficiency 
by converting laser energy into plasma wave energy, which is then transferrred 
to electrons by Landau damping. If an iodine laser with 1.3-JLm wavelength is 
used, at what plasma density does parametric decay take place? 

8-13. (a) Derive the following dispersion relation for an ion acoustic wave in 
the presence of an externally applied ponderomotive force F NL: 

(w2 + 2ifw- k2v;)n1 = ikFNL/M 

where r is the damping rate of the undriven wave (when FNL = 0). (Hint: 
introduce a "collision frequency" 11 in the ion equation of motion, evaluate r in 
terms of 11, and eventually replace 11 by its r-equivalent.) 

(b) Evaluate F NL for the case of stimulated Brillouin scattering in terms of the 
amplitudes Eo and £2 of the pump and the backscattered wave, respectively, 
thus recovering the constant c1 of Problem [8-10]. (Hint: cf. Eq. [8-64].) 
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8.6 

8-14. In Fig. [8-17] it is seen that the upper sideband at w0 + w 1 is m1ssmg. 
Indeed, in most parametric processes the upper sideband is observed to be 
smaller than the lower sideband. Using simple energy arguments, perhaps with 
a quantum mechanical analogy, explain why this should be so. 

PLASMA ECHOES 

Since Landau damping does not involve collisions or dissipation, it is a 
reversible process. That this is true is vividly demonstrated by the remark

able phenomenon of plasma echoes. Figure 8-19 shows a schematic of 
the experimental arrangement. A plasma wave with frequency w 1 and 

wavelength A 1 is generated at the first grid and propagated to the right. 
The wave is Landau-damped to below the threshold of detectability. A 
second wave of w2 and A2 is generated by a second grid a distance l from 
the first one. The second wave also damps away. If a third grid connected 
to a receiver tuned to w = w2 - w 1 is moved along the plasma column, 
it will find an echo at a distance l' = lw2/ (w2- w 1). What happens is that 

the resonant particles causing the first wave to damp out retains informa
tion about the wave in their distribution function. If the second grid is 
made to reverse the change in the resonant particle distribution, a wave 
can be made to reappear. Clearly, this process can occur only in a very 
nearly collisionless plasma. In fact, the echo amplitude has been used as 
a sensitive measure of the collision rate. Figure 8-20 gives a physical 

x=O 

EXCITER 
GRIDS 

x=Q X =Q' 

-:lilililiilllililll 
RECEIVER 

w2- w1 

FIGURE 8-19 Schematic of a plasma echo experiment. [From A. Y. Wong and D. R. Baker, 
Phys. Rev. 188, 326 (1969).] 
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Space-time trajectories of gated particles showing the bunching that causes FIGURE 8-20 
echoes. The density at various distances is shown at the right. [From D. R. 
Baker, N. R. Ahern, and A. Y. Wong, Phys. Rev. Lett. 20, 318 (1968).] 
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picture of why echoes occur. The same basic mechanism lies behind 
observations of echoes with electron plasma waves or cyclotron waves. 

Figure 8-20 is a plot of distance vs. time, so that the trajectory of a 
particle with a given velocity is a straight line. At x = 0, a grid periodically 
allows bunches of particles with a spread in velocity to pass through. 
Because of the velocity spread, the bunches mix together, and after a 
distance l, the density, shown at the right of the diagram, becomes 
constant in time. A second grid at x = l alternately blocks and passes 
particles at a higher frequency. This selection of particle trajectories in 
space-time then causes a bunching of particles to reoccur at x = l'. 

The relation between l' and l can be obtained from this simplified 
picture, which neglects the influence of the wave electric field on the 
particle trajectories. If /1 (v) is the distribution function at the first grid 
and it is modulated by cos w 1t, the distribution at x > 0 will be given by 

f(x,v,t) = f1(v)cos (w1t- :1x) [8-84] 

The second grid at x = l will further modulate this distribution by a 
factor containing w2 and the distance x - l: 

[(x, v, t) = [dv) cos ( w1t- :1x) cos [ w2t- :2
(x -l) J [8-85] 

= [J2(v)�{ cos [ (w2 + w l)t-
w2(x-2 + w lx] 

+cos [ (w2- wl)t-
w2(x-2- wlx]} [8-86] 

The echo comes from the second term, which oscillates at w = w2 - w 1 
and has an argument independent of v if 

w2(x - l) = WtX 

or 

x = w2l/(w2- w1) = l' [8-87] 

The spread in velocities, therefore, does not affect the second term at 
x = l', and the phase mixing has been undone. When integrated over 

velocity, this term gives a density fluctuation at w = w2 - w 1. The first 
term is undetectable because phase mixing has smoothed the density 
perturbations. It is clear that l' is positive only if w2 > w 1• The physical 
reason is that the second grid has less distance in which to unravel the 
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Measurements of echo amplitude profiles for various separa- FIGURE 8-21 

tions l between the driver grids. The :>olid circles correspond 
to the case w2 < w1, for which no echo is expected. [From Baker, 
Ahern, and Wong, lac. cit.] 

perturbations imparted by the first grid, and hence must operate at a 

higher frequency. 

Figure 8-21 shows the measurements of Baker, Ahern, and Wong 

on ion wave echoes. The distance l' varies with l in accord with Eq. 
[8-87]. The solid dots, corresponding to the case w2 < w1, show the 
absence of an echo, as expected. The echo amplitude decreases 
with distance because collisions destroy the coherence of the velocity 

modulations. 
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FIGURE 8-22 Measurement of the amplitude profile of a nonlinear electron 

wave showing nonmonotonic decay. [From R. N. Franklin, 
S. M. Hamberger, H. Ikezi, G. Lampis, and G. J. Smith, Phys. 
Rev. Lett. 28, 1114 (1972).] 

8.7 NONLINEAR LANDAU DAMPING 

When the amplitude of an electron or ion wave excited, say, by a grid 
is followed in space, it is often found that the decay is not exponential, 
as predicted by linear theory, if the amplitude is large. Instead, one 
typically finds that the amplitude decays, grows again, and then oscillates 
before settling down to a steady value. Such behavior for an electron 

wave at 38 MHz is shown in Fig. 8-22. Although other effects may also 
be operative, these oscillations in arnplitude are exactly what would be 

expected from the nonlinear effect of particle trapping discussed in 

Section 7.5. Trapping of a particle of velocity v occurs when its energy 
in the wave frame is smaller than the wave potential; that is, when 

le<t>l > �rn(v- V<f>)2 

Small waves will trap only these particles moving at high speeds near 
v<l>. To trap a large number of particles in the main part of the distribution 
(near v = 0) would require 

I I I 2 I I 2 q<f> = 2rnv<1> = 2m(w k) [8-88) 



0 X 
A trapped particle bouncing in the potential well of a wave. FIGURE 8-23 

When the wave is this large, its linear behavior can be expected to be 
greatly modified. Since I c/J I = IE/ k I , the condition [8-88] is equivalent to 

w =w8, where w� = lqkE/ml [8-89] 

The quantity w8 is called the bounce frequency because it is the frequency 

of oscillation of a particle trapped at the bottom of a sinusoidal potential 
well (Fig. 8-27) . The potential is given by 

k lk2 2 c/J = c/Jo( l -cos x)=c/Jo(2 x + ···) 

The equation of motion is 

[8-90] 

d2x 2 dc/J . 
m 

dt2 = -mw x = qE = -q 
dx 

= -qkcjJ0 sm kx [8-91] 

The frequency w is not constant unless x is small, sin kx = kx, and c/J is 
approximately parabolic. Then w takes the value w8 defined in Eq. [8-89]. 
When the resonant particles are reflected by the potential, they give 
kinetic energy back to the wave, and the amplitude increases. When the 

particles bounce again from the other side, the energy goes back into 

the particles, and the wave is damped. Thus, one would expect oscillations 

in amplitude at the frequency w8 in the wave frame. In the laboratory 

frame, the frequency would be w' = wB + kvcf>; and the amplitude oscilla
tions would have wave number k' = w'/vcf> = k [ l  + (wB/w)]. 

The condition w8 2!: w turns out to define the breakdown of linear 
theory even when other processes besides particle trapping are respon

sible. Another type of nonlinear Landau damping involves the beating 
of two waves. Suppose there are two high-frequency electron waves 
(w1, k1) and (w2, k2). These would beat to form an amplitude envelope 
traveling at a velocity (w2- w J)/ (k2- k 1) = dw/ dk = Vg. This velocity may 
be low enough to lie within the ion distribution function. There can then 

be an energy exchange with the resonant ions. The potential the ions 
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PROBLEMS 

see is the effective potential due to the ponderomotive force (Fig. 8-24), 

and Landau damping or growth can occur. Damping provides an 

effective way to heat ions with high-frequency waves, which do not 

ordinarily interact with ions. If the ion distribution is double-humped, 
it can excite the electron waves. Such an instability is called a modulational 

instability. 

8-15. Make a graph to show clearly the degree of agreement between the echo 
data of Fig. 8-21 and Eq. [8-87]. 

8-16. Calculate the bounce frequency of a deeply trapped electron in a plasma 
wave with 10-V rms amplitude and 1-cm wavelength. 

8.8 EQUATIONS OF NONLINEAR PLASMA PHYSICS 

There are two nonlinear equations that have been treated extensively 

in connection with nonlinear plasma waves: The Korteweg-de Vries 

equation and the nonlinear Schrodinger equation. Each concerns a 

different type of nonlinearity. When an ion acoustic wave gains large 

amplitude, the main nonlinear effect is wave steepening, whose physical 
explanation was given in Section 8.3.3. This effect arises from the v · Vv 
term in the ion equation of motion and is handled mathematically by 
the Korteweg-de Vries equation. The wave-train and soliton solutions 

of Figs. 8-5 and 8-7 are also predicted by this equation. 
When an electron plasma wave goes nonlinear, the dominant new 

effect is that the ponderomotive force of the plasma waves causes the 

'----FNL _,.__ 
........ ,..,"' 

.......... ...__, ....... 

FIGURE 8-24 The ponderomotive force caused by the envelop of a modulated wave can trap 

particles and cause wave-particle resonances at-the group velocity. 



background plasma to move away, causing a local depression in density 
called a caviton. Plasma waves trapped in this cavity then form an isolated 

structure called an envelope soliton or envelope solitary wave. Such solutions 
are described by the nonlinear Schrodinger equation. Considering the 

difference in both the physical model and the mathematical form of the 
governing equations, it is surprising that solitons and envelope solitons 

have almost the same shape. 

The Korteweg-de Vries Equation 8.8.1 

This equation occurs m many physical situations including that of a 

weakly nonlinear ion wave: 

au au 1 a3U 
- + U- + --= 0 
ar a� 2 ae 

[8-92] 

where U is amplitude, and r and t are timelike and spacelike variables, 

respectively. Although several transformations of variables will be 
necessary before this form is obtained, two physical features can already 
be seen. The second term in Eq. [8-92] is easily recognized as the 

convective term v · Vv leading to wave steepening. The third term arises 
from wave dispersion; that is, the k dependence of the phase velocity. 

ForT;= 0, ion waves obey the relation (Eq. [4-48]) 

[8-93] 

The dispersive term k 2 A� arises from the deviation from exact neutrality. 
By Taylor-series expansion, one finds 

[8-94] 

showing that the dispersive term is proportional to k 3. This is the reason 
for the third derivative term in Eq. [8-92]. Dispersion must be kept in 
the theory to prevent very steep wavefronts (corresponding to very large 

k) from spuriously dominating the nonlinear behavior. 

The Korteweg-de Vries equation admits of a solution in the form 
of a soliton; that is, a single pulse which retains its shape as it propagates 
with some velocity c (not the velocity of light!). This means that U 
depends only on the variable�- cr rather than� or T separately. Defining 
( = �- cr, so that ajar = -cd/d( and a; a�= d/d(, we can write Eq. [8-92] 
as 

dU dU 1 d3U 
-c- + U-+ - -- = 0 

d( d( 2 d(3 
[8-95] 
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This can be integrated: fro dU 1 fro dU2 1 fro d d2U) -c , d(' dt + 2 , d(' dt + 2 , d('C('2 dt = o [8-96] 

(' being a dummy variable. If U(() and its derivatives vanish at large 

distances from the soliton (! (! � co) the result is 

1 ? 1 d2 u cu--u-----=0 
2 2 d(2 [8-97] 

Multiplying each term by dU/d(, we can integrate once more, obtaining 

or 

�cU2-�U3-�(��f = 0  

(dU) 2 = � U2(3c - U) d( 3 
This equation is satisfied by the soliton solution 

U(() = 3c sech2 [(c/2)112(] 

[8-98] 

[8-99] 

[8-100] 

as one can verify by direct substitution, making use of the identities 

d 
dx (sech x ) = -sech x tanh x [8-101] 

and 

sech2 x + tanh2 
x = 1 [8-102) 

Equation [8-1 00] describes a structure that looks like Fig. 8-7, reach

ing a peak at ( = 0 and vanishing at ( � ±co. The soliton has speed c, 

amplitude 3c, and half-width (2/c)112. All are related, so that c specifies 

the energy of the soliton. The larger the energy, the larger the speed 

and amplitude, and the narrower the width. The occurrence of solitons 
depends on the initial conditions. If the initial disturbance has enough 

energy and the phases are right, a soliton can be generated; otherwise, 

a large-amplitude wave will appear. If the initial disturbance has the 
energy of several solitons and the phases are right, an N-soliton solution 

can be generated. Since the speed of the solitons increases with their 

size, after a time the solitons will disperse themselves into an ordered 

array, as shown in Fig. 8-25. 



_._. dx 
dt 

A train of solitons, generated at the left, arrayed according to the relation FIGURE 8-25 
among speed, height, and width. 

We next wish to show that the Korteweg-de Vries equation describes 
large-amplitude ion waves. Consider the simple case of one-dimensional 
waves with cold ions. The fluid equations of motion and continuity are 

iJv; iJv; e iJcf> -+v;-= --
at ax m ax 

on; a 
at+ ax 

(n;v;) = 0 

[8-103] 

[8·104] 

Assume Boltzmann electrons (Eq. [3-73]) ; Poisson's equation is then 

2 
iJ </> e<b/ KT Eo-2 = e(no e '- n;) ax [8-105] 

The following dimensionless variables will make all the coefficients unity: 

x' = x/Ao = x(n0e2/E0KT,)112 

t' = !1pt = t(noe2/E0M)112 

X= ecf>/ KT. n' = n;/no 

v' = v/v, = v(M/ KT,)112 

[8-106] 
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Our set of equations becomes 

av' ,av' ax -+v -=-
at' ax' ax' 

an' a I I 0 -+-(n v) = 
at' ax' 

ix =ex- n' 
-?. 

ax'-

[8-107] 

[8-108] 

[8-109] 

If we were to transform to a frame moving with velocity v' = .;{{, we 
would recover Eq. [8-27]. As shown following Eq. [8-27], this set of 
equations admits of soliton solutions for a range of Mach numbers .;(,{_ 

PROBLEM 8-17. Reduce Eqs. [8-107]-[8-109] to Eq. [8-27] by assuming that x, n', and v' 

depend only on the variable f = x'- ./it'. Integrate twice as in Eqs. [8-96]-[8-98] 
to obtain 

�(dx/ df,')2 = ex - 1 + .Jt{ [(Jte- 2x) 112- Jf,f] 

Show that soliton solutions can exist only for 1 < .Jtl < 1.6 and 0 <X max < 1.3. 

To recover the K - dV equation, we must expand in the wave 
amplitude and keep one order higher than in the linear theory. Since 

for solitons the amplitude and speed are related, we can choose the 
expansion parameter to be the Mach number excess 8, defined to be 

We thus write 
8 =.;(,{- 1 

n' = 1 +8n1 +82n2 + · · · 

X = 8x1 + 82
X2 + · · · 

v' = 8v1 + 82v2 + · · · 

We must also transform to the scaled variables* 

{ = 8112(x'- t') T = 83/2t' 

* It is not necessary to explain why; the end will justify the means. 

[8-110] 

[8-111] 

[8-112) 



so that 

_i_ = 81/2.i_ 
ax' a� 

[8-113] 

Substituting [8-111] and [8-113] into [8-1 09], we find that the lowest

order terms are proportional to 8, and these give 

[8-114] 

Doing the same in Eqs. [8-1 07] and [8-1 08], we find that the lowest-order 
terms are proportional to 8312, and these give 

[8-115] 

Since all vanish as�-> oo, integration gives 

[8-116] 

Thus our normalization is such that all the linear perturbations are equal 

and can be called U. We next collect the terms proportional to 82 in Eq. 

[8-1 09] and to 8512 in Eqs. [8-1 07] and [8-1 08]. This yields the set 

[8-117] 

[8-118] 

[8-119] 

Solving for n2 in [8-117] and for av2/a� in [8-113], we substitute into 

[8-119]: 

[8-120] 

Fortunately, x2 cancels out, and replacing all first-order quantities by U 
results in 

au au 1 iu -+ U-+- -= 0 
aT a� 2 ae 

[8-121] 
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PROBLEM 

8.8.2 

which is the same as Eq. [8-92]. Thus, ion waves of amplitude one order 

higher than linear are described by the Korteweg-de Vries equation. 

8-18. A soliton with peak amplitude 12 V is excited in a hydrogen plasma with 
KT, = 10 eV and n0 = 1016 m-3. Assuming that the Korteweg-de Vries equation 
describes the soliton, calculate its velocity (in m/sec) and its full width at half 
maximum (in mm). (Hint: First show that the soliton velocity c is equal to unity 
in the normalized units used to derive the K-dV equation.) 

The Nonlinear Schrodinger Equation 

This equation has the standard dimensionless form 

iaift +pa2� +qll/!121/t = o 
at ax-

[8-122] 

where 1/t is the wave amplitude, i = (-1)112, and p and q are coefficients 
whose physical significance will be explained shortly. Equation [8-122] 
differs from the usual Schrodinger equation 

. aift r? a2ift tl1- +- -2- V(x, 1)1/t = 0 
at 2m ax 

in that the potential V(x, t) depends on 1/t itself, making the last term 

nonlinear. Note, however, that V depends only on the magnitude 11/112 
and not on the phase of if!. This is to be expected, as far as electron 

plasma waves are concerned, because the nonlinearity comes fro.m the 
ponderomotive force, which depends on the gradient of the wave 
intensity. 

Plane wave solutions of Eq. [8-122] are modulationally unstable if 
pq > 0; that is, a ripple on the envelope of the wave will tend to grow. 

The picture is the same as that of Fig. 8-24 even though we are consider

ing here fluid, rather than discrete particle, effects. For plasma waves, 

it is easy to see how the ponderomotive force can cause a modulational 

instability. Figure 8-26 shows a plasma wave with a rippled envelope. 

The gradient in wave intensity causes a ponderomotive force which 
moves both electrons and ions toward the intensity minima, forming a 

ripple in the plasma density. Plasma waves are trapped in regions of low 
density because their dispersion relation 

2 2 3k2 2 
(J) = (J) p + 2 v th [4-30] 



n 

The ponderomotive force of a plasma wave with nonuniform FIGURE 8-26 

intensity causes ions to flow toward the intensity minima. The result-

ing density ripple traps waves in its troughs, thus enhancing the 

modulation of the envelope. 

permits waves of large k to exist only in regions of small wp. The trapping 
of part of the k spectrum further enhances the wave intensity in the 

regions where it was already high, thus causing the envelop to develop 
a growing ripple. 

The reason the sign of pq matters is that p and q for plasma waves 

turn out to be proportional, respectively, to the group dispersion dvg/ dk 
and the nonlinear frequency shift ow cc aw/al !/11 2. We shall show later that 

aw 
q = - -- cc -ow 

al!/11 2 [8-123] 

Modulational instability occurs when pq > 0; that is, when 8w and dvg/dk 
have opposite sign. Figure 8-27 illustrates why this is so. In Fig. 8-27 A, 

a ripple in the wave envelope has developed as a result of random 

fluctuations. Suppose ow is negative. Then the phase velocity w/ k, whch 

is proportional to w, becomes somewhat smaller in the region of high 

intensity. This causes the wave crests to pile up on the left of Fig. 8-27B 
and to spread out on the right. The local value of k is therefore large 

on the left and small on the right. If dvg/dk is positive, the group velocity 
will be larger on the left than the right, so the wave energy will pile up 
into a smaller space. Thus, the ripple in the envelope will become 
narrower and larger, as in Fig. 8-27C. If 8w and dvg/dk were of the same 
sign, this modulational instability would not happen. 
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FIGURE 8-27 Modulational instability occurs when the nonlinear 

frequency shift and the group velocity dispersion have 
opposite signs. 

Although plane wave solutions to Eq. [8-123] are modulationally 
unstable when pq > 0, there can be solitary structures called envelope 
solitons which are stable. These are generated from the basic solution 

2A) 112 [ A) 112 J . 
w(x, t) = ( q sech (p x e'A1 [8-124] 

where A is an arbitrary constant which ties together the amplitude, 
width, and frequency of the packet. At any given time, the disturbance 
resembles a simple soliton (Eq. [8-100]) (though the hyperbolic secant 
is not squared here), but the exponential factor makes w(x, t) oscillate 
between positive and negative values. An envelope soliton moving with 
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An envelope soliton. FIGURE 8-28 

a velocity V has the more general form (Fig. 8-28) 

2A) 112 [
(A) 112 

] 

ljt(x,t)=(-q sech p (x-x0-Vt) 

v V2 )] 
x exp i(At + -x--t + 8o 

2p 4p 
[8-125] 

where x0 and (}0 are the initial positiOn and phase. It is seen that the 
magnitude of V also controls the number of wavelengths inside the 

envelope at any given time. 
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8-19. Show by direct substitution that Eq. [8-124] is a solution of Eq. [8-122]. PROBLEMS 

8-20. Verify Eq. [8-125] by showing that if w(x, t) is a solution of Eq. [8-122], then 

I/J=w(x-x0- Vt,t)exp[i(2�x-::t+Oo)] 

is also a solution. 

We next wish to show that the nonlinear Schrodinger equation 

describes large-amplitude electron plasma waves. The procedure is to 
solve self-consistently for the density cavity that the waves dig by means 

of their ponderomotive force and for the behavior of the waves in such 
a cavity. The high-frequency motion of the electrons is governed by 
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equations [4-18], [4-19], and [4-28], which we rewrite as 

au e 3KT, an 
-= --E - -- -
at m mno ax 

an au 
- + no-=0 
at ax 

aE 

ax 
= -Eo1en 

[8-126] 

[8-127] 

[8-128] 

where n0 is the uniform unperturbed density; and E, n, and u are, 

respectively, the perturbations in electric field, electron density, and Auid 
velocity. These equations are linearized, so that nonlinearities due to the 
u · 'Vu and V · (n u) terms are not considered. Taking the time derivative 
of Eq. [8-127] and the x derivative of Eq. [8-126], we can eliminate u 

and E with the he! p of [8-12 8] to obtain 

2 2 ., 
a � _ 3KT, a � 

+ 
n0e· n = 0 

at· m ax· mEo 
[8-129] 

We now replace n0 by n0 + 8n to describe the density cavity; this is the 

only nonlinear effect considered. Equation [8-129] is of course followed 

by any of the linear variables. It will be convenient to write it in terms 

of u and use the definition of wp; thus 

2 2 
a � _ 3KT, a � + w! ( 1 + 

8n) u = 0 
at· m ax· no 

[8-130] 

The velocity u consists of a high-frequency part oscillating at w0 (essen

tially the plasma frequency) and a low-frequency part u1 describing the 

quasineutral motion of electrons following the ions as they move to form 

the density cavity. Both fast and slow spatial variations are included in u1• 

Let 
u(x, t) = Ut(X, t) e

-iwo< 

Differentiating twice in time, we obtain 

., 
a·u 

(
.. 2. . 2 -iw ' -2 = Ut- tWoUl- Wotlt) e 0 

at 

[8-131] 

where the dot stands for a time derivative on the slow time scale. We 
may therefore neglect u1, which is much smaller than w �u1: 

2 a u  2 2. . -iw' -2 = -(woUt + twou1) e 0 
at 

[8-132) 



Substituting into Eq. [8-13 0] gives 

[ . . 3KT, a2u1 ( 2 2 2on) ] -iw , 2zwoul+-- -2+ wo -wp-wp- u1 e 0 = 0  
m ax no 

We now transform to the natural units 

obtaining 

t' = Wpt w' = w/wp 

u' = u(KT,/m)-112 

x'=x/An 

on'= on/no 

[• I au; 3 a2ul 1 12 1 1 '] -iw't' zwo- +- --9 + -(wo - -on )ul e () = 0 
at' 2 ax'· 2 

Defining the frequency shift 6. 

6.=(wo -wp)/wp =w� -1 

[8-133] 

[8-134] 

[8-135] 
and assuming!:::.« 1, we have w �2 -1 = 21:::.. We may now drop the primes 

(these being understood), convert back to u (x, t) via Eq. [8-131 ], and 
approximate w� by 1 in the first term to obtain 

. au 3 a2u ( 1 ) 

z-+--+ 1:::.--on u = 0 
at 2 ax2 2 

[8-136] 

Here it is understood that aj at is the time derivative on the slow time 
scale, although u contains both the exp (-iw0t) factor and the slowly 
varying coefficient u1• We have essentially derived the nonlinear 
Schrodinger equation [8-122], but it remains to evaluate on in terms 
of lud2. 

The low-frequency equation of motion for the electrons is obtained 

by neglecting the inertia term in Eq. [ 4-28] and adding a ponderomotive 

force term from Eq. [8-44] 
an w! a (EoE2) 

0 = -enE-KT,---2- ---

ax Wo ax 2 
[8-137] 

Here we have set y, = 1 since the low-frequency motion should be 
isothermal rather than adiabatic. We may set 

[8-138] 

by solving the high-frequency equation [8-126] without the thermal 
correction. WithE = -V¢ and x = e¢/ KT., Eq. [8-137] becomes 

a 1 m a 2 -(x -Inn)- - - -(u ) = 0 
ax 2 KT, ax 

[8-139] 
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Integrating, setting n = n0 +on, and using the natural units [8-I34], we 

have 

�(u 2) = :i-1 u 12 = X -In (I + on) =X -on [8-140] 

We must now eliminate x by solving the cold-ion equations [H-103] 
and [8-1 04). Since we are now using the electron variables [8-134], and 

since Dp = EWp, v, = E(KT,/m)112, where E = (m/ M)112, the dimensionless 
form of the ion equations is 

1 au, aui ax 
--+ui-+-= 0 E at ax ax 

� aon, + i.[(1 + on;)u;] = 0 E at ax 

[8-141] 

[8-142] 

Here we have set n: =(no+ on;)/n0 =I+ on; and have dropped the 

prime. If the soliton is stationary in a frame moving with velocity V, the 
perturbations depend on x and t only through the combination � = 
x - x0-Vt. Thus 

a a -=-
ax a� 

and we obtain after linearization 

_ v aui +ax= 0 
E a� a� 

-v aon; + au, = 0 E a� a� 

a a -=-Vat a� 

E 
U; = VX 

€ on;= VUi 

[8-143] 

[8-144] 

From this and the condition of quasineutrality for the slow motions, we 
obtain 

2 E on,= on;= V2X 

Substituting for x in Eq. [8-140], where on is really on., we find 

1 
2 v2 

)
-1 on, = 41 u I ( 7 - 1 

Upon inserting this into Eq. [8-136], we finally have 

3 2 [ 1 v2 -1 J . au a u  2 
t -+ - - + 6. --(-? -1) I u I u = o at 2 ax2 8 €-

[8-145] 

[8-146] 

[8-147] 



Comparing with Eq. [8-122], we see that this IS the nonlinear 
Schrodinger equation if Ll can be neglected and 

3 p=-
2 

1 ( m/M ) 

q = -S V2 -m/M [8-148] 

Finally, it remains to show that p and q are related to the group 
dispersion and nonlinear frequency shift as stated in Eq. [8-123]. This 

is true for V2 « m/ M. In dimensionless units, the Bohm-Gross dispersion 
relation [ 4-30] reads 

w '2 = 1 + on' + 3k '2 [8-149] 

where k' = kA0, and we have normalized w to Wpo, the value outside the 

density cavity. The group velocity is 

so that 

dv� 3 
dk' 

= 
w' = 3 

and 

For V2 « E2, Eq. [8-146] gives 

on'= -tl u'l2 

so that Eq. [8-144] can be written 

Then 

w'2 = l- tlu'l2 + 3k'2 

2w' dw' = - id lur 

, dw' 1 ow oc -- =--
diu'l2 8 

From Eq. [8-148], we have, for V2 « E2, 

as previously stated. 

1 dw' 
q=s=- dlu'l2 

[8-150] 

[8-151] 

[8-152] 

[8-153] 
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If the condition V2 « �:2 is not satisfied, the ion dynamics must be 
treated more carefully; one has coupled electron and ion solitons which 
evolve together in time. This is the situation normally encountered in 

experiment and has been treated theoretically. 

In summary, a Langmuir-wave soliton is described by Eq. [8-125], 
with p = � and q = � and with 1/J(x, t) signifying the low-frequency part 

of u(x, t), where u, x, and t are all in dimensionless units. Inserting the 
exp (-iw0t) factor and lettingx0 and 80 be zero, we can write Eq. [8-125] 
as follows: 

[ 2A
) 
112 J u(x, t) = 4A 112 sech ( 3 (x-Vt) 

Xexp{-i[(wo+ �2 -A)t -fx]} (8-154] 

The envelope of the soliton propagates with a velocity V, which is so far 

unspecified. To find it accurately involves simultaneously solving a 
Korteweg-de Vries equation describing the motion of the density cavity, 

but the underlying physics can be explained much more simply. The 

electron plasma waves have a group velocity, and V must be near this 

velocity if the wave energy is to move along with the envelope. In 
dimensionless units, this velocity is, from Eq. [8-150], 

3k' V = v� = -, = 3k' w [8-155] 

The term i(V/3)x in the exponent of Eq. [8-154] is therefore just the 

ikx factor indicating propagation of the waves inside the envelope. 

Similarly, the factor -i(V2/6)t is just -i(�)k'2 t', which can be recognized 
from Eq. [8-149] as the Bohm-Gross frequency for on I = 0, the factor 

� coming from expansion of the square root. Since w0 = Wp, the terms 
Wo + ( V2 /6) represent the Bohm-Gross frequency. and A is therefore 

the frequency shift (in units of wp) due to the cavity in on'. The soliton 

amplitude and width are given in Eq. [8-154] in terms of the shift A, 
and the high-frequency electric field can be found from Eq. [8-138]. 

Cavitons have been observed in devices similar to that of Fig. 8-16. 
Figures 8-29 and 8-30 show two experiments in which structures like 

the envelope solitons discussed above have been generated by injecting 

high-power rf into a quiescent plasma. These experiments initiated the 

interpretation of laser-fusion data in terms of "profile modification," or 

the change in density profile caused by the ponderomotive force of laser 



t0 (,usee) 

3 
z (em) 

A density cavity, or "caviton," dug by the FIGURE 8-29 

ponderomotive force of an rf field near the 

critical layer. The high-frequency oscillations 

(not shown) were probed with an electron beam. 
[From H. C. Kim, R. L. Stenzel, and A. Y. Wong, 
Phys. Rev. Lett. 33, 886 (1974).] 
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wo = Wpe TIME 
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(A) RADIAL POSITION (em) (B) 
FIGURE 8-30 Coupled electron and ion wave solitons. In (A) the low-frequency density 

cavities are seen to propagate to the left. In (B) the high-frequency electric 

field, as measured by wire probes, is found to be large at the local density 
minima. [From H. Ikezi, K. Nishikawa, H. Hojo, and K. Mima, Plasma Physics and 

Controlled Nuclear Fusion Research, 1974, II, 609, International Atomic Energy 
Agency, Vienna, 1975.] 

radiation near the critical layer, where wp = w0, w0 being the laser 

frequency. 

PROBLEMS 8-21. Check that the relation between the frequency shift A and the soliton 
amplitude in Eq. [8-154] is reasonable by calculating the average density 
depression in the soliton and the corresponding average change in Wp. (Hint: 
Use Eq. [8-146] and assume that the sech2 factor has an average value of ""� 
over the soliton width.) 

8-22. A Langmuir-wave soliton with an envelope amplitude of 3.2 V peak-to
peak is excited in a 2-eV plasma with n0 = 1015 m-3• If the electron waves have 
kA0 = 0.3, find (a) the full width at half maximum of the envelope (in mm), (b) 
the number of wavelengths within this width, and (c) the frequency shift (in 
MHz) away from the linear-theory Bohm-Gross frequency. 

8-23. A density cavity in the shape of a square well is created in a one-dimensional 
plasma with KT, = 3 eV. The density outside the cavity is n0 = 1016 m-3, and that 
inside is n, = 0.4 x 1016 m _,_If the cavity is long enough that boundary resonances 
can be ignored, what is the wavelength of the shortest electron plasma wave that 
can be trapped in the cavity? 
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UNITS A.l 

The formulas in this book are written in the mks units of the International 
System (SI). In much of the research literature, however, the cgs

Gaussian system is still used. The following table compares the vacuum 

Maxwell equations, the fluid equation of motion, and the idealized Ohm's 

law in the two systems: 

mks-SI 

V·D=e(ni-n,) 
V X E = -B 
V·B = 0 
VXH=j+D 
D = EoE B = J.toH 

dv mn dt = qn(E + v x B)-Vp 

E+vXB=O 

cgs-Gaussian 

V · E = 47Te(ni-n,) 
cVxE=-B 
V· B = 0 
cV x B = 47Tj + E 
E=J.t=l 
mn dv = qn(E + .!.v X B) - Vp dt c 

1 E+-vXB=O c 
The equation of continuity is the same in both systems. 349 
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A.2 

In the Gaussian system, all electrical quantities are in electrostatic 
units (esu) except B, which is in gauss (emu); the factors of care written 
explicitly to accommodate this exception. In the mks system, B is 
measured in tesla (Wb/m2), each of which is worth 10

4 gauss. Electric 
fields E are in esu/cm in cgs and V /m in mks. Since one esu of potential 
is 300 V, one esu/cm is the same as 3 x 104 V /m. The ratio of E to B is 
dimensionless in the Gaussian system, so that vE = cE/ B. In the mks 
system, E/ B has the dimensions of a velocity, so that V£ = E/ B. This fact 
is useful to keep in mind when checking the dimensions of various terms 
in an equation in looking for algebraic errors. 

The current density j = ne v has the same form in both systems. In 
cgs, n and v are in em -3 and em/ sec, and e has the value e = 

4.8 x 10-10 esu; then j comes out in esu/cm2, where 1 esu of current 
equals c-1 emu or 10/c = 1/(3 x 109) A. In mks, n and v are in m-3 and 
m/sec, and e has the value e = 1.6 x 10-19 C; then j comes out in A/m2. 

Most cgs formulas can be converted to mks by replacing B/c by B 
and 47T by E 01, where 1/ 47TE 0 = 9 x 109. For instance, electric field energy 
density is E 2/87T in cgs and Eo£2 /2 in mks, and magnetic field energy 
density is B 2 /87T in cgs and B 2 /2tJ.o in mks. Here we have used the fact 
that (Eof.!.o)-112 

= c = 3 x ·108 m/sec. 
The energy KT is usually given in electron volts. In cgs, one must 

convert Tev to ergs by multiplying by 1.6 x 10-12 erg/eV. In mks, one 
converts Tev to joules by multiplying by 1.6 x 10-

19 J/eV. This last 
number is, of course, just the charge e in mks, since that is how the 
electron volt is defined. 

USEFUL CONSTANTS AND FORMULAS 

Constants 

mks 

c velocity of light 3 x 108m/sec 

e electron charge 1.6 X 10-19 C 

m electron mass 0.91 X 10-30 kg 

M proton mass 1.67 X 10-27 kg 

M/m 1837 

cgs 
--

3 x 1010 em/sec 

4.8 x 10-10 esu 

0.91 X 10-27 g 

1.67 X 10-24 g 

1837 



J 

mks 

(M/m)I/2 43 43 

Constants 
cgs 

K Boltzmann's constant 1.38 X 10-23 
];oK 1.38 X 10-i6 erg;oK 

eV electron volt 1.6 x 10-19 J 1.6 x 10-12 erg 

1 eV of temperature KT 

�:0 permittivity of 
free space 

f.Lo permeability of 
free space 

8.854 X 10-12 F/m 

47T X 1 o-7 Him 

1Ta6 cross section of H atom 0.88 x 10-20 m2 

density of neutral atoms at 

room temperature and 

1 mTorr pressure 

Wp plasma frequency 

We electron cyclotron 

frequency 

A o De bye length 

rL Larmor radius 

v A Alfven speed 

mks 

( ne2 ) 112 

Eom 

eB 
m 

(l::�;e) 1/2 

mv1_ 
eB 

B 

(f.LoP) 1/2 

cgs-

Gaussian 

(4:e2) 112 

eB 
me 

( KTe
2
) 1/2 

41Tne 

mv1_c 
eB 

B 
( 41Tp) l/2 

0.88 x 10-16 cm2 

Formulas 

Handy formula 

(n in cm-3) 

fp = 9000 .J-:;, sec -I 

fc = 2 .8 GHz/kG 

740(Tev/n) 112 em 

1.4 T!�2 
mm(H) 

Eke 

2.2 x 1011 :-
em 

(H) 
n sec 
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mks 

v, acoustic speed 

( K:·
) 

112 

(T; = 0) 

E X B drift speed 
E 

V£ -

B 

diamagnetic 
KT n' 

Vo --

drift speed 
eB n 

magnetic/ plasma 
nKT 

{3 
B2 /2/J-o 

pressure 

v,he electron thermal c:T·) 
1/2 

speed 

llei electron-ion 

collision frequency 

llee electron-electron 

collision frequency 

ll;; ion-ion collision 
frequency 

A,; collision mean 

free path 

eEo 
peak electron Vosc --

quiver velocity 
mwo 

cgs-
-Gaussian 

( K:·
) 

112 

cE 
-

B 

cKTn' 
---

eB n 

nKT 
B2/81r 

c:T·) 
l/2 

Wp 
=-

No 

Handy formula 
(n in em -3) 

10
6 yl/2 em (H) 

ev sec 

108 E(V /em) em 

B(G) sec 

1 Os Tev _!_ em 

B R sec 

5.9 x 107 T!�2 em 

sec 

_6Zn, In A _1 
=2 x 10 T372 sec eV 

_6nlnA _1 
= 5 x 10 � sec eV 

4( m) 112 ( T,f/2 
Z M T; llee 

=A .. = A;; 

eEo --

mwo 

2 13 Tev 
=3 .4 x 10 n ln A 

cm(H) 

2 Vosc 7 31 2 -2 == · 19AJL 
c 

2 I 2 Vo;c=3.7 13A JL 
v, Tev 
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A.3 USEFUL VECTOR RELATIONS 

A . (B X C) = B . (C X A) = c . (A X B) = (ABC) 

A X (B X C) = B(A . C) - C(A . B) 

(A X B) . (C X D) = (A . C)(B . D) - (A . D)(B . C) 

(A X B) X (C X D) = (ABD)C- (ABC)D = (ACD)B- (BCD)A 

V · (</JA) = A· V<{J + <{JV ·A 

Vx(<{JA) = V¢ xA+<{JVxA 

A X (V X B) = V(A. B) - (A. V)B-(B . V)A- B X (V X A) 

V · (Ax B) = B · (V x A)- A · (V x B) 

V x (Ax B) = A(V · B) - BV · A + (B · V)A-(A · V)B 

V x [(A· V)A) = (A· V)(V x A)+ (V · A)(V x A) - [(V x A) · V]A 

V x V x A =  V(V ·A)-(V · V)A 

v XV¢ = 0 

v. (V X A)= 0 

Cylindrical Coordinates (r, 8, z) 

1 a 1 a a V · A = - -(rAr)+--Ao +-A. 
r ar r ae az 

( laA. aAo) A (aAr aAz) A [1 a laAr] A V x A = ---- r + --- 6 + --(rA8)--- z 
r ae az az ar r ar r ae 
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9 [ 9 1 ( aAo)]A v-A = (V . V)A = v-Ar - r2 AT + 2 ()(} r 

[ 2 1 ( (JAr)] A 2 A + V Ao - r2 Ao - 2 a;} 9 + V A,z 

A( aBr 1 aBT aBT 1 ) 
(A · V)B = r Ar-+ Ao- -+A,-- -AoBo ar r ()(} az r 

+6 A -+A --+A - +-A B A( aBo 1 aBo aBo 1 ) 
T ar O r ao < az r O T 

A(A aB, A 1 aB, 
A aB,) 

+z -+ --+ -T ar O r ao z az 

" 
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COL u ORM 

PASMA 

As long as T. = T; = 0, the waves described in Chapter 4 can easily be 

generalized to an arbitrary number of charged particle species and an 

arbitrary angle of propagation 8 relative to the magnetic field. Waves 

that depend on finite T, such as ion acoustic waves, are not included in 

this treatment. 

First, we define the dielectric tensor of a plasma as follows. The 

fourth Maxwell equation is 

V X B = P,o(j + EoE) [B-1] 

where j is the plasma current due to the motion of the various charged 

particle species s, with density n, charge q, and velocity Vs: 

[B-2] 

Considering the plasma to be a dielectric with internal currents j, we 
may write Eq. [B- 1] as 

V x B = p,0D [B-3] 355 
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where 

z • D = EoE +- J 
w 

[B-4] 

Here we have assumed an exp (-iwt) dependence for all plasma motions. 
Let the current j be proportional to E but not necessarily in the same 
direction (because of the magnetic field Boz); we may then define a 
conductivity tensor a by the relation 

Eq. [B-4] becomes 

j=a·E 

D = Eo(l + _i
_a) · E = E · E 

Eow 

Thus the effective dielectric constant of the plasma is the tensor 

E = Eo(l + iaiEoW) 

where I is the unit tensor. 

[B-5] 

[B-6] 

[B-7] 

To evaluate a, we use the linearized fluid equation of motion for 
species s, neglecting the collision and pressure terms: 

av, m,- = q,(E + v, X B0) at 

Defining the cyclotron and plasma frequencies for each species as 

Wcs ""' I q,
B

o l m, 

� noq , 
Wps == Eoms 

[B-8] 

[B-9] 

we can separate Eq. [B-8] into x, y, and z components and solve for v, 
obtaining 

iq, [Ex ± i (w,,/ w )Ey] 
Vxs = -- I 2 m,w 1 - (w,, w) 

iq, [£1 =F i(w,,/w)Ex] 
Vys = -- I 2 m,w 1 - (w,, w) 

zq, 
Vu = - £. m,w • 

where ± stands for the sign of q,. The plasma current is 

j = L no,q,v, 

[B-lOa] 

[B-lOb] 

[B-lOc] 

[B-11] 



so that 

_
z_· 

jx 
=I inos iq; Ex± i(wcs/w;Ey 

EoW ; EoW m,w I-(wcs/w) 

_
I _ w!, Ex± i(Wcs/w)Ey 

- s W 2 I -(wcsl W )2 

Using the identities 

I I [ w w J I -(wcs/ W / = 2 W =F Wcs 
+ 

W ± Wcs 

we can write Eq. [B-12] as follows: 

I . l"w;, [( w w ) 
-; = - - L. - + E 
EoW X 2 s w2 w =t=wcs w ±wcs X 

((JJ (JJ)] + - iE 
W =t= Wcs W ± Wcs Y 

Similarly, they and z components are 

Z . "Wp5 W W . . 1 2 [ 
E0w 2 s w· 

(
w ± w w =t= w) -;y = -- 1.... -9 ---- -- zEx 

( w w ) ] 
+ + Ey 

(J) =F Wcs W ± Wcs 
. 2 Z . "Wps 

-- J, = - i.... -2 E, E oW s W 

Use of Eq. [B-I4] in Eq. [B-4] gives 

I l" [w!, ( w w ) 
-D =E - - L. - + E Eo X X 2, (JJ2 w=t=wcs w±wcs " 

2 
+ 

w_ps ( W _ w ) iE ] W 2 W =F Wcs W ± Wcs 
y 

[B-12] 

[B-13] 

[B-14] 

[B-15] 

[B-16] 

[B-17] 
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We define the convenient abbreviations 

R=I-l:w�, ( w ) 
s W W ± Wcs 

') 
L = I- L W�s ( W ) 

s w w + w,, 

S = �(R + L) D=�(R-L)* 
2 

P=l-Iwt;' 
s W  

[B-18] 

Using these in Eq. [B-17] and proceeding similarly with the y and z 

components, we obtain 

E;1Dx =SEx- iDEy 
Eo1Dy = iDEx + SEy 
E;1D,_ = PE,_ 

Comparing with Eq. [B-6], we see that 

.�,+� 
-iD 

s 
0 �) � ,,., 

[B-19] 

[B-20] 

We next derive the wave equation by taking the curl of the equation 
V x E = -B and substituting V x B = /-toE • E, obtaining 

.. I .. 
V XV X E = -1-toEo(ER ·E) = - 2ER · E 

c 
[B-21] 

Assuming an exp (ik · r) spatial dependence of E and defining a vector 
index of refraction 

c 
f.L=-k 

w 

we can write Eq. [B-21] as 

fl. X (fl. X E) + ER • E = 0 

[B-22) 

[B-23] 

The uniform plasma is isotropic in the x-y plane, so we may choose the 
y axis so that ky = 0, without loss of generality. If() is the angle between 
k and B0, we then have 

1-tx = 1-t sin (} /-t,_ = 1-t cos (} /-ty = 0 [B-24] 

*Note that D here stands for "difference." It is not the displacement vector D. 

f 



The next step is to separate Eq. [B-23] into components, using the 
elements of ER given in Eq. [B-20]. This procedure readily yields ( S - J.L 2 cos2 () 

R · E = iD 
J.L 2 sin (} cos () 

-iD 
2 

J.L 2 sin () cos (}) (Ex) 
S - J.L 0 Ey = 0 

0 P - J.L 2 sin 2 (} E, 

[B-25] 

From this it is clear that the E., EY components are coupled to E, only 
if one deviates from the principal angles (} = 0, 90°. 

Eq. [B-25] is a set of three simultaneous, homogeneous equations; 
the condition for the existence of a solution is that the determinant of 
R vanish: IIRII = 0. Expanding in minors of the second column, we then 
obtain 

(iD)2(P - J.L 2 sin2 ()) + (S - J.L 2) 

x [(S - p., 2 cos2 ())(P - p., 2 sin2 (})- p., 4 sin2 (} cos2 fJ] = 0 

By replacing cos2 ()by 1- sin2 (),we can solve for sin2 (},obtaining 

. 2 -P(p.,4- 2Sp., 2 + RL) 
sin (} = 4 2 p., (S- P) + p., (PS - RL) 

We have used the identity 52- D2 = RL. Similarly, 

2 SJ.L 4- (PS + RL)p., 2 + PRL 
cos (} = 4 2 J.L (S- P) + p., (PS - RL) 

Dividing the last two equations, we obtain 

2 P(p., 4- 2Sp., 2 + RL) 
tan (} = ---,---_::_ __ _:__n-___:__ __ 

SJ.L 4 - (PS + RL ) J.L  2 + PRL 

[B-26] 

[B-27] 

[B-28] 

Since 25 = R + L, the numerator and denominator can be factored to 
give the cold-plasma dispersion relation 

[8-29] 

The principal modes of Chapter 4 can be recovered by setting() = 0° 

and 90°. When (} = 0°, there are three roots: P = 0 (Langmuir wave), 
f.L 2 = R (R wave), and f.L 2 = L (L wave). When (} = 90°, there are two 
mots: f.L 2 = RL/ S (extraordinary wave) and JL 2 = P (ordinary wave). By 
inserting the definitions of Eq. [B- 1 8], one can verify that these are 
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identical to the dispersion relations given in Chapter 4, with the addition 
of corrections due to ion motions. 

The resonances can be found by letting p. go to oo. We then have 

tan2 Ores= -P/S [B-30] 
This shows that the resonance frequencies depend on angle e. If () == Q0, 
the possible solutions are P = 0 and S == oo. The former is the plasma 
resonance w = wp, while the latter occurs when either R = co (electron 
cyclotron resonance) or L = oo (ion cyclotron resonance) . If(} = 90°, the 
possible solutions are P = oo or S == 0. The former cannot occur for finite 
wp and w, and the latter yields the upper and lower hybrid frequencies, 
as well as the two-ion hybrid frequency when there is more than one 
. . 
wn species. 

The cutoffs can be found by setting p. = 0 in Eq. [B-26]. Again using 
52 - D2 = RL, we find that the condition for cutoff is independent of(): 

PRL == 0 [B-31] 
The conditions R == 0 and L = 0 yield the WR and wL cutoff frequencies 
of Chapter 4, with the addition of ion corrections. The condition P = 0 
is seen to correspond to cutoff as well as to resonance. This degeneracy 
is due to our neglect of thermal motions. Actually, P = 0 (or w == wp ) is 
a resonance for longitudinal waves and a cutoff for transverse waves. 

The information contained in Eq. [B-29] is summarized. in the 
Clemmow-Mullaly-Allis diagram. One further result, not in the diagram, 
can be obtained easily from this formulation. The middle line of Eq. 
[B-25] reads 

iDEx + (S - 11- 2) Ey = 0 

Thus the polarization in the plane perpendicular to B0 is given by 

iEx Jl. 2- S 
-=--

Ey D 

[B-32] 

[B-33] 

From this it is easily seen that waves are linearly polarized at resonance 
(p. 2 = oo) and circularly polarized at cutoff (1-L 2 = 0, R = 0 or L = 0; thus 
S =±D). 
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E 

T 

SAM 

REE-HO R 

INA EXAM 

PART A (ONE HOUR, CLOSED BOOK) 

1. The number of electrons in a De bye sphere for n = 1 017 m -3, KT. = 
10 eV is approximately 

(A) 135 

(B) 0.14 

(C) 7.4 X 103 

(D) 1.7 X 105 

(E) 3. 5 X 1010 

2. The electron plasma frequency in a plasma of density n = 1020 m -3 

IS 

(A) 90 MHz 

(B) 900 MHz 

(C) 9 GHz 

(D) 90 GHz 

(E) None of the above to within 10% 361 
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3. A doubly charged helium nucleus of energy 3.5 MeV in a magnetic 
field of 8 T has a maximum Larmor radius of approximately 

(A) 2 mm 

(B) 2 em 

(C) 20 em 

(D) 2m 
(E) 2 ft 

4. A laboratory plasma with n = 1016 m-3, KT, = 2 eV, KT; = 0.1 eV, 
and B = 0.3 T has a beta (plasma pressure/magnetic field pressure) 
of approximately 

(A) 10-7 

(B) 10-6 

(C) 10-4 

(D) 1 o-2 
(E) 10-1 

5. The grad-E drift vv8 is 

(A) always in the same direction as vE 

(B) always opposite to V£ 

(C) sometimes parallel to B 

(D) always opposite to the curvature drift VR 

(E) sometimes parallel to the diamagnetic drift vv 

6. In the toroidal plasma shown, the diamagnetic current flows mainly 
in the direction 

(A) +<f. 

(B) -«f, 

(C) +0 
(D) -9 
(E) +z 

'e 

.. 



7. In the torus shown on p. 362, torsional Alfven waves can propagate 
in the directions 

(A) ±r 

(B) ±9 

(C) ±tf, 
(D) +0 only 

(E) -9 only 

8. Plasma A is ten times denser than plasma B but has the same 
temperature and composition. The resistivity of A relative to that 
of B is 

(A) I 00 times smaller 

(B) 10 times smaller 

(C) approximately the same 

(D) I 0 times larger 

(E) I 00 times larger 

9. The average electron velocity I vi in a I 0-ke V Maxwellian plasma is 

(A) 7 x I02 m/sec 

(B) 7 x 1 04m/sec 

(C) 7 x 105m/sec 

(D) 7 x I06 m/sec 

(E) 7 x I07 m/sec 

IO. Which of the following waves cannot propagate when B0 = 0? 

(A) electron plasma wave 

(B) the ordinary wave 

(C) Alfven wave 

(D) ion acoustic wave 

(E) Bohm-Gross wave 
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11. A "backward wave" is one which has 

(A) k opposite to Bo 

(B) w/k < 0 

(C) dw/dk < 0 

(D) v; = -v, 

(E) vq, opposite to vg 

12. "Cutoff" and "resonance," respectively, refer to conditions when the 
dielectric constant is 

(A) 0 and co 
(B) oo and 0 

(C) 0 and 1 
(D) 1 and 0 

(E) not calculable from the plasma approximation 

13. The lower and upper hybrid frequencies are, respectively, 
..... ..... 1/2 1/2 (A) (upue) and (wpwe) 

(B) (fl; + fl�)112 and (w; + w�)112 

1/9 9 9 1/2 (C) (wefle) -and (wj; + w;) 

(D) ( 2- 2)1/2 d ( 2 + 2)1/2 Wp We an Wp We 
1/2 d 1/2 (E) (wRwd an (wpwe) 

14. In a fully ionized plasma, diffusion across B is mainly due to 

(A) ion-ion collisions 

(B) electron-electron collisions 

(C) electron-ion collisions 

(D) three-body collisions 

(E) plasma diamagnetism 

15. An exponential density decay with time is characteristic of 

(A) fully ionized plasmas under classical diffusion 

(B) fully ionized plasmas under recombination 



(C) weakly ionized plasmas under recombination 

(D) weakly ionized plasmas under classical diffusion 

(E) fully ionized plasmas with both diffusion and recombination 

16. The whistler mode has a circular polarization which is 

(A) clockwise looking in the +Eo direction 

(B) clockwise looking in the -E0 direction 

(C) counterclockwise looking in the +k direction 

(D) counterclockwise looking in the -k direction 

(E) both, since the wave is plane polarized 

17. The phase velocity of electromagnetic waves in a plasma 

(A) is always >c 

(B) is never >c 

(C) is sometimes >c 

(D) is always <c 

(E) is never <c 

18. The following is not a possible way to heat a plasma: 

(A) Cyclotron resonance heating 

(B) Adiabatic compression 

(C) Ohmic heating 

(D) Transit time magnetic pumping 

(E) Neoclassical transport 

19. The following is not a plasma confinement device: 

(A) Baseball coil 

(B) Diamagnetic loop 

(C) Figure-S stellarator 
(D) Levitated octopole 

(E) Theta pinch 
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20. Landau damping 

(A) is caused by "resonant" particles 

(B) always occurs in a collisionless plasma 

(C) never occurs in a collisionless plasma 

(D) is a mathematical result which does not occur in experiment 

(E) is the residue of imaginary singularities lying on a semicircle 

PART B (TWO HOURS, OPEN BOOK; DO 4 OUT OF 5) 

I. Consider a cold plasma composed of n0 hydrogen ions, �no doubly 
ionized He ions, and 2n0 electrons. Show that there are two lower
hybrid frequencies and give an approximate expression for each. 
[Hint: You may use the plasma approximation, the assumption 
m/ M « 1, and the formulas for v1 given in the text. (You need not 
solve the equations of motion again; just use the known solution.)] 

2. Intelligent beings on a distant planet try to communicate with the 
earth by sending powerful radio waves swept in frequency from 10 
to 50 MHz every minute. The linearly polarized emissions must pass 
through a radiation belt plasma in such a way that E and k are 
perpendicular to B0. It is found that during solar flares (on their 
sun), frequencies between 24.25 and 28 MHz do not get through 
their radiation belt. From this deduce the plasma density and magnetic 
field there. (Hint: Do not round off numbers too early.) 

3. When {3 is larger than m/ M, there is a possibility of coupling between 
a drift wave and an Alfven wave to produce an instability. A necessary 
condition for this to happen is that there be synchronism between 
the parallel wave velocities of the two waves (along B0). 

(a) Show that the condition {3 > m/ M is equivalent to VA < v,h· 

(b) If KT. = IO eV, B = 0.2 T, k1 = 1 em - I , and n = I021 m-3 find the 
required value of k, for this interaction in a hydrogen plasma. 
You may assume n�/n0 =I cm-1, where n� = dn0/dr. 

4. When anomalous diffusion is caused by unstable oscillations, Fick's 
law of diffusion does not necessarily hold. For instance, the growth 



rate of drift waves depends on Vn/n, so that the diffusion coefficient 
D _�_ can itself depend on Vn. Taking a general form for D .L in cylin
drical geometry, namely, 

(an) q 
D.t = Ar'nP 

ar 

show that the time behavior of a plasma decaying under diffusion 
follows the equation 

an = f(r)n p+q+ l at 

Show also that the behavior of weakly and fully ionized plasmas IS 
recovered in the proper limits. 

5. In some semiconductors such as gallium arsenide, the current-voltage 
relation looks like this: 

v 

There is a region of negative resistance or mobility. Suppose you had 
a substance with negative mobility for all values of current. Using the 
equation of motion for weakly ionized plasmas with KT = B = 0, 

plus the electron continuity equation and Poisson's equation, perform 
the usual linearized wave analysis to show that there is instability for 

ILe < 0. 
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A 

SOM 

1-1. (a) At standard temperature and pressure, a mole of an ideal gas contains 
6.022 x 1023 molecules (Avogadro's number) and occupies 22.4 liters. Hence, 
the number per m3 is 6.022 x 1023/2.24 x 1 0-2 = 2.66 x 1025 m-3_ 

(b) Since PV = NRT, n = N/V = P/RT. Hence n1/n0 = P1T0/P0TI· Taking n0 
to be the density in part (a) and n 1 to be that in part (b), we have 

Note that a diatomic gas such as H2 will have twice as many atoms per torr as, 
say, He. 

1-2. Consider the integral 

in a two-dimensional space. Transforming to cylindrical coordinates, we have 

Hence. 

I- Joo -x2 dx ,-- e = v 7r -00 369 
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and 

1-4. 

1-5. 

1-6. (a) 

d 

f"' (
2KT

) 
112 f"' 

[ ( ) 
112

] I= -
<O

j(u) d u  =A ---.;;;- -<0 e-mu'I2KT d u 2;T 

= AIC�
T

) 
1/2 

.. A = (m/27rKT)112 

p = n (KT,+KT;)= 1021(4X l04)(1.6x 10-19) 
=6.4x 106N/m2 

1 atm= I05N/m2 p = 64 atm 

I atm = 1 4.7 lb/in2. = (1 4.7)(1 44)/(2000) 
= 1 .06 tons/ft2 

P -= 68 tons/ ft2 

d2<jJ e(n,-n,) __ _!_ ( -«1>/KT, _ e"I>/KT,) -- =- - nroe e 
dx 2 Eo Eo 

= nroe 
( 

e</J + �) Eo KT, KT, 

I nroe2 
( 

1 I ) "- - "- -lxi/An where-= -- -T + 
KT '+' - '+'O e ' A 1 Eo K ' ' 

If T, « T, 

If T, « T, 

-d 

A0 = (KT,E0/nroe2)112 

Ao = (KT,Eo/nroe2) 112 

d2</J nq 
dx2 =-Eo 

Let¢= Ax 2 + Bx + C; ¢' = 2Ax +B; </J" = 2A. 
At x = 0, ¢' = 0 by symmetry :. B = 0. At x = 
±d, <P = 0; therefore, 0 = Ad2 + C and C = 

-Ad2. Since 

and 

<P" = 2A =-
nq 

Eo 
1 A= --nq 2Eo 

2 Ad2 I d• •) <P=Ax - =-nq( ·-x -
2Eo 



(b) Energy to move a charge q from x1 to x2 is change in potential energy 

6.(q<f>) = q(</>2- </>1). Let </>1 = 0 at x = ±d and </>2 = (l/2E0)nqd2 at x = 0. Then 

I 
2 2 'l{ = -nq d 

2E0 

Let d = Ao; then 

I 9 KTE0 I 
'"C =-nq- --

2
-=-KT=E"v 

2Eu nq 2 

for a one-dimensional Maxwellian distribution. Hence, if d > A0, '"C > EAv· If 
the velocities are distributed in three dimensions, we have E"v = �KT and 
'"C > !E . .w. The factor 3 is not important here. The point is that a thermal particle 
would not have enough energy to go very far in a plasma ( d  » ,.\0) if the charge 
of one species is not neutralized by another species. 

1-7. (a) ,.\0=7400(2/ 1016)112= I0-4m, N0=4.8x 104. 

(b) ,.\0= 7400(0. 1/1012)112= 2.3X I0-3m, N0=5.4X 104. 

(c) A0=7400(800/ 1023)112=6.6x I0-7m, N0= 1.2X 10'. 

(a) 

(b) 

(c) 

(d) 

[ (2)(104)(1.6 X J0-19)] 112 • 
7 v�= 

9 
_31 =::>.93X10 m/sec 

.II X 10 

(9. 1 1  X 10-31)(5.93 X 107) 
r = =6.75m L ( 1.6 X 10 19)(0.5 X 10 4 ) 

v � = (300)(1 000) = 3 x I O' m/ sec 

( 1.67 X 10-27)(3 X I O') s 
TL 

= 
(l.6 X I0-19)(5 X 10_9) 

= 6.26 X 10 m = 626 km 

-· [(2)(10')(1.6 X 10-19)] 1/2- X 
s 

v.t-
(4)(1.67 x IO 27) 

- 2.19 10 m/sec 

(4)(1.67 X 10-27)(2.19 X 105) 
rL = 

( 1.6 X 10-19)(5.00 X 10-2) 
= 0.183 m 

2M£ [(2)(4)(1.67 X 10-27)(3.5 X 106)(1.6 X 10-19)]112 
TL = ---;;i3 = 

(2)( 1.6 X 10-19)(8) 

= 3.38 x 10-2m 
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CD 
(2) 

Bo 
E---7 

r2 r, 

Thus 

2-4. Let initial energy be goo, and Larmor radii r1 and 
r2. as shown. Energy at CD is go, = goo+ eEr,; energy 
at® is g2 = go- eEr2. {It would be acceptable to say: 
go,.2 =goo± eEFL here.) Also u�1.2 = 2go,.2/ M. We are 
asked to make the approximation 

1. 9 = 
Mu1.1.2 = !'vf (2gt.2) 112 

t.. 
eB eB M 

= __!___ (2go) 1/2( 1 + eE 1 . . ,) l/2 

11, M g" '·-

For small E, expand the square root in a Taylor series: 

I (2go) '12( I eE ) 
r --- 1±--r 1.2 - n M 2 go 1.2 

' 0 

_ I (2go0) '12[ I eE I (2go) '12] _, 
r o--- 1±----1·- 11, M 2 goD, M 

= 
__!___ (2go0) 112[ 1 ± � eE __!___ (2g0) 112] 
D, M 2 goD, M 

r _ r = 
eE __!___ (2go) = 2eE 

' 2 goD� M MD� 

independent ofgo0. The guiding center moves a distance 2(r1-r2) in a time 2Tr/D" 
so 

4eE 1 2 E _ !;__ 
u., = 2(r1 -r2)(D,/2Tr) =MD, 2Tr 

=
; B- B 

Thus the guiding center drift is independent of the ion energy goo· The factor 
2/Tr would be 1 if we did not make the crude approximation. 

2-5. (a) 

(b) 

Consider electrons: 

n = n0e'<f>/KT, :. cf> = (KT,/e) In (n/no) 

acf> A KT, 1 an A KT, A E= --r= ---- r = - r 
ar e n ar eA 

E, A KT, A 
VE = --6= - - 6 8 eBA 

_ (2KT,) 112 
u,"- ---

m 
. .  lvEI = 

KT, � _!_ = � v;" � 
m eB A 2 w, A 



Now, rL = mvj_/eB, so for a distribution of velocities we must find an average rL. 
Since iJ j_ contains two degrees of freedom, we have 

�mv� = 2 x �KT, 

The most convenient average is 

Using this for vj_ in rL, we have 

so that lv£ 1 = v,h implies rL = 2A. 

(c) If we take ions instead of electrons, we ha,·e v,"' = (2KTji\11)11" = l'j_;, r�_, = 
vj_;/w,;, and 

If lv£1 = v,h;, it is still true that ru = 2A provided that T, = T,. 

2-6. (a) 

a¢. 
E = -V¢ = -r ar 

a¢ KT, 2r _,,1., E,(r) = - - = - --;e ar e a-

_KT,_g_ _112_ (0.2)( 1.6 x l0-19) [  _112_ !!_ E max - - e - 2 e - I 7 
ea .J2 (l.6X 10-19)(.0 1) C 

= 1700 V/m 

Emax 17 
VE = -- = - = 8500 m/sec max B 0.2 

(b) Compare the force Mg with the force e£ for an ion. (mg for an 
electron would be 1836 times smaller.) g = 9.80 m/sec2. 1\1/g = 
(39)( 1.67 X 10-27)(9. 80) = 6.38 X 10-2'' N. e£ max = ( 1.6 X 10-19)( 17) = 2. 75 X 
10-1" N = 4 x I 0" Mg. Hence gravitational drift 4 million times smaller. 
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(c) 

2-8. 

,...,- c±:> 8 x\78 
<.. ...,...I {West) 

----

8 

MvJ. =10-2m rL = eB 

VJ. = (2KT/M) I/2 = [
(2)(0.2)(1 6 X 10-19)] 1/2 
(39)( !.67 X IQ-27) 

= 9.9 x 102m/sec 

B = (39)(!.67 x ro-27)(9.9 x I02) 
(!0 2)(1.6x !0-19) =4.00x I0-2T 

(a) 

c 0.3 X !0-4 
B =-= T 

r3 (r/ R)3 

VvB = �VJ.TLIB �;BI = �VTLl:Sl 

aB A c A 3 A VB =-r= -3-r=-B(-r) ar T4 T I:SI =; 
l l v� l 2KT/m KT 
-vJ.rL =--=----=-2 2 w, 2 eB/m eB 

(1.6 X l0-19)(KT)ev l (KT)ev 
1.6 X !0-19 B = 

-B--

0.3 X 10-4 
B(r=5R)= • =2.4xl0-7T 5 

5R = (5)(4000 mile)(l.6 km/mile)(l03 m/km) = 3.2 x 107m 

8 (KT)ev = 0.39(KT)ev m/sec Vv B = I 0 2.4 x 1 0 7 
Ions: KT = 1 eV vn = 0.39 m/sec 

Electrons: KT = 3 x 104 eV VvB = 1.17 X 104m/sec 
(b) Ions: westward; electrons: eastward. 

(c) 2m= (6.28)(3.2 x 107) = 2.0 x 108m 

(d) 

21TT (2.0 X 1 08) t =-= 4 = 1.7x 104sec=4.8hr Vv8 (1.17 X 10 ) 

J = nevv8 neglect ions 
= (107)(1.6 X 10-19)(1.17 x 104) = 1.87 X 10-8 A/m2 

l" 



ExB t 

2-9. (a) vR = 0, since the electron gains no 
energy in the parallel (tJ} direction. Since the 
electron starts at rest with no thermal energy, 
it will come back to rest after one cycle. 
Hence, the orbit has sharp cusps instead of 
loops. It is clear that the vE drift must domi
nate, since the electron starts to the left, and 
the Lorentz force makes it move upwards. BxVBt 
(b) In cylindrical geometry, <P = A  In r +B. 
Since 

cP ( 1  o-3) = 460 v and 

460 = A  In (10-3) + B 
0 = A  In (O.I) + B 

</J(O.I m) = O, 

B = - A In (O.I) 

460 = A  In (!0-3)- A In (O.I) 

= A  ln (O.O l ) A = 460/ln (O.OI) 

460 In (O.I r) 
rb(r) = [lnr-ln(O.I)]=460 V 

In (O.OI) In IOO 

E 
=-a¢

= 
-460 (.!.....)(=:QJ.) 

= 
460/r v 

ar In I 00 O.I r2 In 100 m 

460 4 v -9 =--- = 10 - at r =  IO ·m 
(4.6)(!) m 

/( A)10-4 500 X !0-4 
B = 

5r 
= (5)(1) = 0.01 T 

-VB 

To estimate the VB drift, we must find v 1. in the frame moving with the guiding 
center. Remember that in deriving vvB, vl. was taken as the velocity in the 
undisturbed circular orbit. Here, the latter is moving with velocity v£, so that it 
does not look circular in the lab frame. Nonetheless, it can still be decomposed 
into a circular motion with velocity v 1. plus an E x B drift of the guiding center. 
Consider the z component of velocity (along the wire). At point CD on the orbit, 
v, = vE + v cos w,t = 0, where cos w,t = -1, its maximum negative value; hence, 
V£ = v 1.· The same result can be obtained by considering that at point ® 
v, = vE + V1. (cos w,t = 1 ). The energy there, �(mv ; ), must equal the energy gained 
in falling a distance 2rL in an electric field. Thus 

e 
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Now we can calculate Vva: 

Vva = � vr 
I
VB

I 
eB (l.6x 10-19)(10-2) 

2 w, B w =-= ' m (9.1 1  x I 0 31) 

d B= /(-1) 10-4 
dr r2 

B 
T 

= 1.76x 109sec-1 

���=102m-' 

Vva=�v�=� 10 '6 - 4 
2 w, 2 1.8 x 109- 2.8 x 10 m/sec 

This amounts to a slowing down of the vE drift due to a distortion of the orbit 
into a hairpin shape � because of the change in Larmor radius. The undisturbed 
orbit is the path taken by the valve on a bicycle wheel as it rolls along: 

0--o-�B----
Finally, we note that the finite Larmor radius correction to vE is negligible: 

�r2V2�=� rr� 
4 L B 4 r2 B 

(9.Ilxl0-31)(l06) 7 -• 
T = = 5. X JQ m L (1.6 X J0-19)(Q.QJ) 

9 1 r� 
r = 10--m :. - -;; = 0.08% 4 r-

2-12. Let all velocities refer to the midplane, and let subscripts i and f refer to 
initial and final states (before and after acceleration). 
(a) Given: Rm = 5, V.Li = vu; since 1J- is conserved, v.Lf = v.L,, and only vu will 
increase. It will increase until the pitch angle () reaches the loss cone: 

2 . 2 v .Lf Sin ()m = -2 -- 2 2 2 v.L1+ vu1 1 +vu1/v.L, 
Hence vff1tvr, = 4, v111 = 2v .Li· Energy is 

1 -=-
Rm 5 

Er = �M(v1� + vrr) = �M(4 + l)vi, = �mvi, 
E, = !M(vff, + vr,) ='!M(l + 1)vr, = Mvi, 

:. E1 = 2.5£, = (2.5)(1) = 2.5 keY 



(b) ( 1 )  Let particle have v0 > 0 and hit pis
ton moving at velocity vm < 0. In the frame of 
the piston, the particle bounces elastically and 
comes off with its initial velocity, but in the 
opposite direction. Let ' refer to the frame 
of the piston. Initial and final velocities in 
this frame are 

Vo Vm --

V� = Vo- Vm 

(Note: vm is negative.) Transforming back to lab frame, 

Since Vm is negative, the change in velocity is 2lvml· QED 
(2) At each bounce, the change in momentum is I::.Pn = 2mlvml· If N is the 

number of bounces, Pn1 = Pn• + Nt:.p. Thus 

N = P111- Pn• = vnf- vn, = 2v_L,- v_L, = � v_L, 
!::.p 2vm 2vm 2 vm 

E, = Mv�, = 1 keV = ( 1 03) ( 1 .6 X 1 0-19) = 1 .6 X 1 0-16 J 
( 1 .6 X 1 0-16 ) 1/2 _ 

. .  v_L; 
= 

1 .67 x 1 0_27 
= 3.1 x 1 0"m/sec 

(3) Average vn is 

Vm = 1 04m/sec 

1 (3X1 05) 
N = 2 1 04 

= 15 bounces 

v = �(vu; + Vtif) = �(v .Li + 2v .Li) 

= �VJ.i = 4.6 X 1 05 

L = 1 013 m 

NL ( 1 5) ( 1013) 8 .. t = - = - = 3.2 x 1 0  sec 
v 4.6 X 1 0" 

( = 10 y) 

However, L changes during this time by a distance 

so that actual time is more like 2.5 x 1 08 sec. Since only factor-of-two accuracy 
is required, it is not necessary to sum the series-the above answer of 3.2 x 1 08 sec 
will do. 
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2-13. (a) J v11 ds = v1� = constant :. vuL + v11L = 0 

(b) 

�=-� 
vu L 

. C.vu=!:!!(-L) vu= T L 
C.vu L 2vl.;- V1.; L T=--.= -
ilu -L k(2vJ.; + V1.;) 2vm 

= 3.3 x 108 sec 

2 1013 - --
3 2 X 104 

2-14. As B increases, Maxwell's equation V X E = -B predicts an £-field. This 
induced £-field has a component along v and accelerates the panicle. If B 
increases slowly and adiabatically, E will be small; but the integrated effect over 
many Larmor periods will be finite. The invariance of JJ. allows us to calculate 
the energy increases without doing this integration. 

3-1. aujat + V · j = 0, where j = jp = (p/B2)"E. Hence, c:T = -V · [(p/B2):E]. The 
time derivative of Poisson's equation is v. E = cr/Eo 

:. v · t = -(�)v · (;2)t V·(1+
E;2)E=O 

Assuming the dielectric constant E to be constant in time, we have V · D = 
V · (EE) = 0. By comparison, E = 1 + p/E0B2. 

3-2. 

True if E » 1. 

nM n; ne2 M2 nM E = 1 +--o=--;;=--�=--2 EoB- n; EoM e-s- EoB 

3-3. Take divergence of Eqs. [3-56] and [3-58]: 

. a V · (V x E)= -V · B = 0 :. - (V ·B)= 0 at 
. . V · B = 0 if it is initially zero. This is Eq. [3-57], 

V·E 
V · (V X B) = 0 = JJ.0[q;V · (n;v;) + q,V · (n,v.)] + -2-c 

from Eq. [3-60], V · (n;v;) = -n;, V · (n,v,) = -n, 

V·E 
:. JJ.o(-q;n;- q,n,) + -o-= o 

c-

i [v · E - _!_ (n·q· + n q J = 0 at Eo ' ' ' ' 

If [ ] = 0 initially, V · E = (l/E0)(n;q; + n,q,). This is Eq. [3-55]. 



3-4. 
B xVn KT ne jD = (KT, + KT,)--2-oc--B e BL 

Since KT oc ec/J and E oc -¢/ L, KT/ eL oc E :. }D oc neE/ B oc neu, since E/ B = uE. 
3-5. Letj0 be constant in the box of width L. 6n = n'L, lfvl = l6neu,l = ln'Leu,l: 
from the difference between the currents on the two walls. This current ] D is 

over a box of width L, .so the equivalent current density is 

IJDI = IJoi/L = ln'eu,l 
Equation [3-69] gives liDI = IKTVn/BI = IKTn'/BI; hence, once u, is chosen so 
the two formulas agree for one value of L, they agree for all L, since L cancels 
out. 

3-6. (a) 

Isothermal means y = 1. 

(b) 

VD, = y KT, 2�0 _:_ ( 1 _ X:) -1 = y KT, 2� ( l _ x 2) -1 
eB a n., a eB a a 2 

n 

0 
-a 0 

- x  
a 

(c) Vv, = (2)/ (0.2)A 

A
_1 = ��� = (2nu/a2)(a/2) = l/0.04 

= 33.3 m_1 n n0(1- a2/4a2) 3/4 

:. uv, = (10)(33.3) = 333m/sec 
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(a) 
E = _ 

a¢ r = KT, 2T r 
ar e r� 

E x B E, • • KT, 2T VE = --2- = --6 = -6 - -;; B B, eB Tii 

I 

B x Vp KT, an/aT. • KT, a 
vv. =- --- =- -- -- 6  = -6 - -(Inn) enB2 � n � � 

• KT, a (-r2) • KT, 2r 
= -6 - - -9 = 6 --;;= -v£ QED eB i3T 1·;; eB Tii 

(b) From (a), the rotation frequency is constant whether we take v£, v0., v0;, or 
any combination thereof, since w = v8/T and v8 ex: r. 
(c) In lab frame, 

3-8. (a) 

(b) 

or: 

v = V<f> + vE = 0.5v0, + (-v0, ) 
= -�D� 

io = ne(vo;- vo,) = _0no(KT, + KT;) 2r 2 • . -
e
-r frO 

B T6 

(1016)(0.5)(1.6 X 10-19) 
= 0.147 A/m2 io = 0.4(r�/2T)(2.718) 

io = ne<lvo,l + lvo;l) 

I I _ I I 
_ (KT).v 2r _ (0.25)2r _ T / vo, - vDi - -- 2- 2 - 1.25-,m sec B ro 0.4ro ro 

Using e = 1.6 X 10-19 C, E = 2.718, 
TE-l A 

fo = (1016)(1.6 X 10-19)(2)(1.25) -2 = 0.147 2 
To m 



(c) Since v, = vE + vv, = vE - vE = 0 in the Jab frame, the current is carried 
entirely by ions. 

3-9. 

v X B = �OjD 
J (V X B)· dS =�of jv · dS 

f B · dL = �o J jv · dS 
Choose a loop with one leg along the axis 
(B = Bo) and one leg far away, where B = 
Bco. Since jv is in the -9 direction, we can 
choose the direction of integration dL as 
shown, so that jv · dS is positive. There is no 
B, :. 

f B · dL = (Bco-Bo)L 

. • n ( KT , + KT,) 2r 
JD = -9 B 2 ro 

f no(KT+ KT) J L fco • • dS ' ' -r2fro 2 d d Jv · = 2 e r r z 
Bcoro o o 

= 
Ln0 (KT, + KT,) [-e_,21,0]"' = 

2LnoKT 
Bco o Bco 

0d� 

where T, = T,. In this integral, we have approximated B (r) by Bco, since B zs 
not greatly changed by such a small fv. Thus, 

4-1. (a) Solve for ¢1: 

2n0KT 
6B = Boo-Bo = �o --Bco 

2( 41T X 10-7)( 10 16)(0.25 )( 1.6 X 10-19) 
0.4 

KT, n 1 w + ia w * - ia 4> I = -- - --- X ----:;;-----:e n0 w * + ia w * - ia 

KT, ww* + a2 + ia(w*- w) n1 
e 

B� 
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If n 1 is real, 

Hence, 

bn(c/J1) a(w*- w) 
--- = =tan /5 Re(c/JI) ww* + a2 

8 _1 [a(w*- w)J = tan ww* + a2 
(b) n1 = n1 e '<>x-wn, while ¢1 = A n1 e'<kx-w•H>, where A is a positive constant. For 
w < w*, we have 8 > 0. Let the phase of n1 be 0 at (xo, to): kxo- wt0 = 0. If w 
and k are positive and x0 is fixed, then the phase of c/J 1 is 0 at kx0- wt + 8 = 0 
or t > 10• Hence c/J1 lags n1 in time. If lois fixed, kx- wto + 8 = 0 at x < x0, so c/J1 
lags n 1 in space also (since w/ k > 0 and the wave moves to the right, the leading 
wave is at larger x). If k < 0 and w > 0, the phase of c/J 1 would be 0 at x > x0; 
but since the wave now moves to the left, cf> 1 still lags n 1. 

4-2. 

I 
ik£1 = -e(n;l- n<I) 

€u 
-iwmv,� = -eE l (electrons) 

-iwMv,1 = eE1 (ions) 

-iwn<� = -ikn0v,l (electrons) 

-iwn; 1 = -ikn0v; 1 (ions) 

k ( -ie) n<I = -n0 -- £1 w mw 
k ( ie ) n;1 =-no -- E1 w Mw 

. I k ie ( I I ) ikE 1 2 2 tkE1=--n0- -+- E1=�(f1p+wp) €0 w w M m w · 

w2 = (w! +f1!) 

4-3. Find c/J1, E1, and v1 in terms of n1: 

But £1 = -ikc/JJ, 

Eq. [4-22]: 
w n1 

v1 = 
k no 

te 
Eq. [4-23]: E1 = -n� 

Eok 

e cP1 = ---2 n1 
Eo k 

Hence, £1 is 90° out of phase with n1; c/>1 is I80° out of phase; and v1 is either 
in phase or I80° out of phase, depending on the sign of w/k. In (a), E1 is found 



from the slope of the </J1 curve, since £1 = -a</>1/ax. In (b), E1/n1 oc i x sgn (k) 
:. 8 = ±n-/2. If w/k > 0, 

£1 oc exp i(kx ± lwlt ± 71'/2) 

the ± standing for the sign of k. Hence, E 1 leads n 1 by 90°. Opposite if w/ k < 0. 

(a) 

4-4. 

4-6. (a) 

x-

w ->0 
k 

w -<0 k 

(b) (c) 

t-

. I I k I k ( -ie) tk£1 =- - en1 = - -en0-v1 = - -en0- - £1 
fu fu w fu w mw ( n e2 ) ik I - -
0

- 2 E 1 = 0 
t:0mw 

or 

mn0(-iw)v 1 = -enoE1-mn0vv1 

. I tk£1 =- -en1 
fu 

(1 iv) ie£1 
v, + - =--

w mw 
k 

n1 = -n0v1 
w 

(continuity) 

. 1 k ie£1 ( iv) _, zk£, =- -e-n0-- I + -
t:o w mw w 

t-
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(b) Let w = x + iy. Then the dispersion relation is x2 -l + 2ixy + ivx- vy = w;. 
We need the imaginary part: 2xy + vx = 0, y = (- l /2)v :. Im (w) = - v/2. 

Since x = Re (w), v > 0, and 

E, 
ex: e-iwc = e-iwt e)·t = e-ixt e-<ll2>vt 

the oscillation is damped in time. 

4-7. mn0(-iw)v1 = en0E1- en0(v1 X B0). Take B0 in the z direction and E1 and k 
in the x direction. Then they-component is 

-iwmv, = ev.Bo 
v. . w 
-= -t-
v"j w, 

Since w = wh > w" lv./v,l > I ;  and the orbit is elongated in the i direction, which 
is the direction of k. 

4-8. (a) 

We need n1: 

We need v., v,: 

l V·E1=- -eni 
Eo 

k=k.i+k,z E, = k, = 0 

l 
i(k.E. + k,E,) =--en I 

Eo 

ani 
-+n0V · v1 = 0 
at 

-iwn 1 + n0i (k.v. + k,v,) = 0 

Mn0(-iw)vi = -enoE1- eno(vi X Bo) 
. . 
z

e 
tw, 

x-component: Vx = - -- E. --v, 
mw w 

y- component: 
iw, 

v, = 0+- v. w 
. 2 . 2 -1 te w, -te 

( 
w,

) v. = - -E. + 2 v. = --E. l - 2 
mw w mw w 

ze 
z-component: v =-- E z mw z. 

Continuity: 
n0 -u w, ')[ 

2
)

-1 ] 
n1 =-; (mw kxEx( I-

w
2 + k,E, 

. en0 -ze w, 
')[ 

2) -1 ] 
k.Ex + k,E, = t eow 

(
mw 

k.E.( I -
w 2 + k,E, 

k. = k sin (J k, = k cos (J 

• 2 2 Wp · 2 W� 2 
2

[ 
9
)

-1 

] . . E I sm (J + kE I cos (J = 
w 2 kE I sm o( I -

w 
2 + kE I cos (J 



W p  . C) w, 2 
2 [ 2) -1 ] 1 = 

w2 sm- e( 1-
w2 + cos e 

w; w 2 w, <) 0 2 [ ( 2) ] l-
w2 = 

w
: 1- cos 8 + 1-

w2 cos- 8 

(b) 

For 8 � 0, cos2 8 � l, 

w4- w�w2 + w!w� cos2 8 = 0 

2 w2 = w� ± (wZ- 4w;w; cos2 8)112 

2 w2 = w� ± [(w! + w�)2- 4w;w�]112 

=w!+w�±(w;- w�) 

QED 

Thew = wp root is the usual Langmuir oscillation. Thew =we root is spurious 
because at 8 � 0, B0 does not enter the problem. For 8 � 7T/2, cos2 8 � 0, 
2w2 = w� ± w%_ w = 0, wh· The w = wh root is the usual upper hybrid oscillation. 
The w = 0 root has no physical meaning, since on oscillating perturbation 
was assumed. 

(c) 

(d) 

y 

1 

2 
00 

2 
o X 

(y- It+-= I 
a2 

1 
5/4 

00 

QED 

2 I I j-WpfWc or Wc/Wp 
I I I I 

2 X= COS() 

385 
Answers to 

Some Problems 



386 
Appendix D 

(e) 

w2 = �(w� + w;) ± [(w� + w;)2- 4w�w; cos2 0]112 

Lower root: Take(-) sign; w is maximum when cos2 0 is maximum(= 1). Thus 

2 1 [< 2 2 I 2 2IJ w_ <2 Wp  +w,)- Wp -w, 

=w; ifwp >w, 

= w! if w, > wp 

Upper root: Take (+) sign; w is maximum when cos2 0 = 0, 
w� < w�. This root is minimum when cos2 0 = I; thus 

2 1 [< 2 2 > 
I 

2 2IJ w+ > 2 wp +w, + Wp -w, 

= w; if wp > w, 

= w; if w, > Wp 

4-10. Use V+, N+ for proton velocity and density 
V _, N _ for antiprotons 
v_, n_ for electrons 
v+, n+ for positrons 

(a) 

2 2 w = wh. 

v X E = -B E 
V X B = J.Loj +2 c 

V X V  X E = -(J.LoJ + �) 
-(k X k X E)= -[J.Lon0e(v+- v_) - :2

2 
E J 

= eE- k<k/El 
1 

(w2- c2e)E = -n0e(v+- v_) 
Eo 

mn0v± = ±en0E . e 
V± = ±-E 

m 

2 9 2  1 e 9 
w - c-k = - n0e- (1 + 1) = 2w; 

Eo m 

2 nue2 
Wp = --

Eom 
w2 = 2w; + c2k2 

(Or the 2 can be incorporated into the definition of wp.) 

Thus 



(b) V · E, = (1/Eu)(N+-N_ + n+-n_)1, where n+ = n0 e-•<�>IKT+, n_ = 
n0 e•<t>/KT_ Let T+ = T_ = T , n1± = =F n0e</J/ KT ,. Note: No± = no±= n0 . 

4-11. 

M(-iw}V± = ±eE1 = ±ike</J 

w2 2v; 

k2 2+k2Ai, 

_ ck 
n = 

w 

(M+ = M_ = M) 

2 _ kT, 
v =' 

M 

4-12. In V X B = ILuj ,, j, is the current carried by electrons only, since Cl- ions 
are too heavy to move appreciably in response to a signal at microwave frequen
cies. Hence, 

If wp is defined with n0 (i.e., w! = n0e2/E0m), the dispersion relation becomes 

Cutoff occurs for f = (l- K)112fp = (0.4)112(9)(n0)112, where 

Thus [ !0 '0 ]2 
n = = 3 1 x 1018 m-3 u (0.63)(9) . 
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4-13. (a) Method 1: Let N = No. of wavelengths in length L = 0.08 m, N0 = No. 
of wavelengths in absence of plasma. 

N=� A 
L No= Ao 

A = 27T 
k 

ck _ ( w!) 112 
-- 1--
w w2 

D.N = No-N = �- Lk = �- !::..._ <:'!_ ( 1 - w!) 1/2 
Ao 27T A0 27T c w-

w 
27TC Ao 

!J.N = :o [ 1- ( 1- ::) 112] = 0.1 

L 0.08 
-=--= 10 
A0 0.008 

1 - p ( w2) 112 

w2 = 1- 10-2 1 _fl. = 1 _ (2 x 1 o-2) 
f 

f! = [2 X 2 X 10-2 = (;�22 X lQ-2 = 2.8 X 1019 

2 .8 X 1019 1- 3 
n = =3.5x 10 ' m-(9)2 

Method 2: Let k0 = free-space k. The phase shift is 

D.¢ = r D.k dx = (ko- k)L = (0.1)27T 

This leads to the same answer. 
(b) From above, D.N is small if w !I w 2 is small; hence expand square root: 

L [ ( 1 w!)J L I w! 
D.N 

= A0 1- 1
-2 w2 = 

A0 2 w2 oc n 

4-14. From Eq. [4-101a], we have for the X-wave 

2 2 2 .WpWc 
(w - W h )Ex + t -- E, = 0 

w 

QED 

At resonance, w = wh : . E, = 0, E = Exx. Since k = kxx, E II k, and the wave is 
longitudinal and electrostatic. 

4-15. Since w� = w; + w;, clearly wp < wh· Further, 
wL = H-w, + (w� + 4w!)112J 

< �[-w, + (w; + 4WcWp + 4w!)112] 

= M-w, + (w, + 2a.�p)] = wp :. wL < Wp 
Also, 

WR = Mw, + (w� + 4w!)112] > w, 



and 

4-17. (a) Multiply Eq. [4-112b] by i and add to Eq. [4-112a]: 

Now subtract from Eq. [4-112a]: 

Thus, 

Since 

2 2 <> • We . (w - c k-- a)(Ex- tE,)-a- (Ex-tE,) = 0 w 

F(w) = w2 - c2e- a (I + wc/w) 

G(w) = w2- c2k2- a(l- wc/w) 

2( w!/w2 c2k2) F(w) = w 1 - - -2 1- wc/w w 

o( w�/w2 c•e) 
G(w)=w- 1- --2 1 + wc/w w 

From Eqs. [4-116] and [4-117], 

F(w) = 0 for the R wave and 

G(w) = 0 for the L wave 

(b) Ex= -iE, :. E, = iEx. Let Ex= [(z) e-;w•. Then 

y 

\ I 
\ I 

\. I 
,....._ __ _.../ 

X 0 
je =-eve 

389 
Answers to 

Some Problems 



390 
Appendix D 

E, lags E. by goo. Hence E rotates counterclockwise on this diagram. This is the 
same way electrons gyrate in order to create a clockwise current and generate 
a B-field opposite to B0. For the L wave, E, == -iE. so that 
E, = f(z) e -;<w<h/2> and E, leads E, by goo. 
(c) For an R-wave, E, = iE •. The space dependence is£. = f(t) e ;h. E, = f(t)i e ;k, == 

f(t) eqhh/2>. For k> 0, E, leads E. (has the same phase at smaller z). For k < O, 
E, lags E. (has the same phase at larger z ) . 

L v, X/ 

Bo 

k>O 

4-19. 

At w = �w" 

----

c2e 
w2 

Bo 
k<O 

w!/w2 
1- -"-'-----

1 -w,/w 

I 
I 

w;/w2 
c 2v ;2 = 1 - 1 - wei w 

2 -3 dv"' - 2 -1 -c (-2)v<t> -
d 

--wp 2 2 (2w -w,)- 0 
w (w -ww,) 

:. 2w-w, = 0 

c2 w! 2 = 1--,-2--1 2 V4; 4Wc - 2Wc 

V<f> <C. 

w = �w, 

4 2 
1 +  u�/>1 w; 



4-20. 

But 

., w!/w2 
1- -=---

1-wJw 
c2k2 = w2-

ww;; 
w -w, 

2 (w-w,)-w 9 
c 2 kd k = 2wdw- 2 w;;dw 

(w- we) 

dw kc2 kc2 

dk w + w,w!/2(w-w,)2 w + w!/2w, 

( 2 W : ) I /2 ( 2 WW :) I /2 
ck = w - = w +--

1- wJw w, 
if w « w, 

To prove the required result, one must also assume v� « c2, as IS true for 
whistlers, so that w!/ww, « 1 (from line 1). Hence 

4-21. 

1/9 dw 
2 
(ww,) - 112 -= c- CX:w 

dk w! 

2 2 2 I · . (w -c k )E1 =-zwJ1 
E'o 

(Eq. [4-81]) 

jl = n0e(vp- v,) (vp is the positron velocity) 

From the equation of motion, 

±ie ( iw, )( w�)-I 
v. = mw E. ± --;;; E, 1 - w 2 

±ie ( iw, )( w�)-1 
v, 

= 

mw E, +-;;;Ex 1 - w2 

theE, term canceling out. Similarly, 

2 9 2 2w! 
(w - c-k )E, = 

I 2/ 2 E, -w,w 
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the Ex term cancelling out. Both equations give 

c2k2 2w: 
-2- = 1 --2-- 2 w w -w, 

The R and L waves are degenerate and have the same phase velocities-hence, 
no Faraday rotation. 

4-22. Since the phase difference between the R and L waves is twice the angle 
of rotation, 

LL 
(kL-kR) dz = 1r 

_ 
( w!/w2 ) 112 kR.L -ku 1 -

j 1 ±w, w 
To get a simple expression for kL-kR, we wish to expand the square root. Let 
us assume we can, and then check later for consistency: 

1 w!/w2 ) kR.L = ko( 1 -
2 1 ± wJw 

kL - kR = �ko 
W: ( 1 - --1-- ) 

2 w- 1-wJw 1+wJw 
_ !k 

w; 2wJw 
-2 °w2 1-w;/w2 

2 WpWc 
7r = L(kL-kR)=koL-- 2 2 w w -w, 
2 'TT"C 9 9 f9 C l - f; 

Wp = Lw, 
(w--w�) ; = 2L -y:-

f, = 2.8 X 1 010(0. 1 ) Hz 
C 3 X 1 08 f =- = = 3.75 x 1010Hz 

Ao 8 X I0-3 

9 (3 X 1 08) ( 1 .4 1 X 1021 -7.8 X 1 018) f; = 
(2)(1) 2.8 X 109 

= 7.5 x 1 019 = 92n 

n = 9.3 x 1 017 m-3 

To justify expansion, note that f, « f, so that 

w!/w2 f! 7.5 X 109 
1 ± wJw = [2 = 

(3.75 X 1010)2 
= 0·05 « I 

4-24. 12.7°. 

ko = � c 



4-25. (a) The X-wave cutoff frequencies are given by Eq. (4-1 0 7) .  Thus, 

o 41Tne 2 
w;; =w(w±wJ=-

m 

We choose the (+) sign, corresponding to the L cutoff, because that gives the 
higher density . 

. 

(h) 

2 V.p 
? 

1 

0 ����--------�����._ __ ____ __ 

The left branch is the one that has a cutoff at w = wL· One might worry that 
this branch is inaccessible if the wave is sent in from outside the plasma. However, 
if w is kept less than w" the stopband between w, and wR is avoided completely . 

4-28. (a) 

fc = 28 GHz/T = (2.8 X 10 10) X (10-2) = 2. 8 X 10 8Hz 

f = 1. 6 x 10 8 Hz :. wp/w > 1 wJw > 1 

= 0 . 62wc 

{L = (0. 62) (2.8 X 10 8) = 1.73 X 10 8 > f 
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We 
w 

Also, f> all ion frequencies. 

@� 

2 
Wp .. -2 
w 

·d of L uency SI e here, on low-f�f�ron resonance cutoff and cy 

(b) The R-wave (whistler mode) is the only wave that propagates here. 

4-29. (a) 

If A = 2L, 

(b) 

B 1 
v - --- -

A - (JJ.0nM)- [( 1.26 X 10 -6)(1019)(1.67 X 10-27))112 

= 6.9 x 106m/sec 

eB ( 1.6 X 10 -19)(1) 7 

fl, 
= M = (1.67 x 10_27) = 9 .58 X 10 rad/sec 

w = 0.1fl, = 9.58 x 106rad/sec 

W = kvA = 2-rrvA/A 

L = 7TVA = 
-rr(6.9 X 106) 

w 9.58 x 106 = 2.26 m 

L cc vA/w cc vA/fl, cc B(nM)-112B -1M cc (M/n )112 

( 133) 112( 1 01� 112 
:. L = (2.26) -1- 1018) = 82 m 

This is why Alfven waves cannot be studied in Q-machines, regardless of B . 



4-30. 

(a) 

(b) 

x = cP(- df)-1 
f: dt 

4-31. (a) Let n �" = (l- E)n0, n�21 = E1!0, n, = n0e¢/kT, 

Poisson: ik£1 = k2¢ = _.!._ e (n \ " + n F'- n, ) 
Eo 

(Assume z 1.2 = I, since the ion charge is not explicitly specified.) 

Continuity: n \'1 =(I - E)n0�v\'>, 
w 

Equation of motion: 
(j)- e k ( n�j)-l VI ---¢ 1-2 

Miw w 
(Eq. [4-68]) 

k2 e ( n;o) -1 e J + En0---,;- 1 - -f- - n0-k - ¢ ""'0 (plasma approximation) 
w M2 w T, 

(b) There are two roots, one near w = 0,1 and one near w = 0,2., I f  E � 0, the 
root near 0,2 approaches 0,2 to keep the last term finite. The usual root, near 
flc�, is shifted by the presence of the M2 species: 

2 2 - 2 2 [ 2 2 2 2 W2- n;IJ W - fl"- k v,, - E k V,, - k V,2 2 2 w - n,2 
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In the last term, we may approximate w2 by 0�, + k2v;,. Thus, 

(c) 

4-32. 

2 o o 2 [ ev ?2 J 2 o 
W = !}�, + k-v,, + E 

f12 _ !}2 - 1 k v;, 
c I c2 

1 k2v;o 1 ev,r 
1 =-

2 2 +- -2--2 2 w - w ,o 2 w -n,r 

v;0 = KTJMo = (104)(1.6 X 10-19)/(2)(1.67 X 10-27) = 4.79 X 1011 

v?r = �v?o = 3.1 9  X 1011 

O,o = e8/M0 = (1.6 X 10-19)(5)/(2)(1.67 X 10-27) = 2.40 X 108 

2 
n<T = 3D,o = 1.60 X 108 k= lOO m- ' 

(w2- n�oHw2- n�r> = Wlv;o(w2- n�r> + v;r(w2- n;on 

w4-w2[D;0+ D�r+ �k2(v;o + v;r)J 

+ n;Dn;r+ M2(v;on�T + v;rn;o) = 0 

w 4 - w 2 [ 8. 3 2 X 1 0 16 + 3. 9 9  X 1 0 15) + 1 . 4 7 X 1 033 + 1. 53 X 1 032 = 0 

w4- 8.72 X 1016w2 + 1 .63 x 1033 = 0 

w2=�[8.72x l016±(7.60X 1033-6.52X 1033)112] 

= 6.0 X 1016, 2.72 X 1016 

w = 2.45, 1.65 x 108 sec-' f = 3 9  and 26.3 MHz 

e 
� = n0(i mv;) v =--E 

' imw 

2 
2 

e 
2) :. (v,) = -9 -2(£ m-w 

""' 
1 e2 2 ( 

9 

e = n0-m--(£2) _ EoWp 
£·) 

2 2 2 
-----

m w w2 2 

But w2 = w! :. � = �€0(£2). 

4-33. 

� = n0(�Mvf) V; = E,/8o 

.. � = �Mno(ED/80• But V X E, = -B, :. (EI) = (w2/k2)(8D 

Mn0 w2 
2 � = 

28� /;2<
8 ,). 



For Alfven wave, 

4-34. (a) With the L-wave, the cutoff occurs at w = wL, so that one requires 
w l < EW 2• Since wL < wp if n0 is fixed (Problem 4- 15), one can go to higher values 
of n0 (for constant Ew2) with the L-wave than with the 0-wave . 

(h) For the L-cutoff, 

Thus, to double the usual cutoff density of Eomw2 / e2, one must have f, = f 

C 3 X 108 11 f =
A=337xl06=8.9xlO Hz 

f, = 28 x 109 Hz/T 
8.9 X 1011 

.. Bo= 28x 109 
= 3 1.8T 

This would be unreasonably expensive. 

(c) The plasma has a density maximum at the center, so it behaves like a convex 
lens. Such a lens focuses if n > l and defocuses if n < l. The whistler wave 
always travels with v� < c (Problem 4-l 9), son = c/v� > 1, and the plasma focuses 
this wave. 

(d) The question is one of accessibility. If w < w, everywhere, the whistler wave 
will propagate regardless of n0. However, if w > w" the wave will be cut off in 
regions of low density. From (b) above, we see that a field of 3 1.8 T is required; 
this seems too large for the scheme to be practical. 

4-35. The answer should come out the same as for cold plasma. 

4-36. The linearized equation of motion for either species is 

-iwmn0v1 = qn0(E + v1 X B0)- ykT;kn1 

Thus 

-iwmnok · V1 = qno(k · E + k · v1 X B0)- ykT;k2n1• 

But k · E = 0 for transverse wave, and k · (v1 x B0) = -v1 • (k x B0) = 0 by assump
tion. The linearized equation of continuity is 

-iwn1 + n0ik · v1 = 0 

Substituting for k· v,, we have 

Thus n1 is arbitrary, and we may take it to be 0. Then the Vp term vanishes for 
both ions and electrons. 
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4-44. For a given density, the highest cutoff frequency is wR. Thus the lowest 
bound for n is given by w = wR. 

w; f! w, (1.6 X 10-19)(36 X 10-4) -=-=1--=1- =016 w2 F w (0.91 X 10-30)(2'1T)(l.2 X 108) . 

n =f!/q2=(0.16)(1.2x l08)2q -2=2.8x 1013m-3 

4-46. Let w = wR at r1, where n = n1, Wp = wpi; and w = wh at r2. where n = n2, 
w. = wp2 . Then 

Thus 

But 

So 

2 2 2 Wp2 = w -w, 
2 - 2 Wp1 - w -ww, 

w!2- w!1 = w,(w-w,) = (n2- n1)e2/ E0m 

n2- n1 = d/iin/arl = n1d/r0 = (E0m/e2)(w)(w-w,)(d/r0) 

d = (wjw)ro 

[4-105] 

[4-107] 

4-47. (a) The accessible resonance is on the far side, past the density maximum. 

We 

w 

0 r 1 w�lw2 

(b) Let w,0 be w, at the left boundary, and w, be the value at the resonance layer, 
where w = wp. Then we require 

Thus 
Wco>w, where w2 = w� + w; 

2 2 2 w,0 >w, +wp 2 2 2 w,0 -w, > wp 
(w,o + wJ(w,0-w,) = 2w,�w, > w! 

�w, �B0 w! --=-->--w, Bo 2w� 



4-48. These are the upper and lower hybrid frequencies and right- and left-hand 
cutoff frequencies with ion motions included. Note that w;/w, = n;;n,. 
Resonance: 

or 

Cutoff: 

(upper hybrid) 

1 1 1 
- = -- + -
w� w,D, D! 

(lower hybrid) 

This is more easily obtained, without approximation, from the form given in 
Problem 4-50. 

5-l. (a) D, = KT,/mv 

v = (2£) '12 = [(2)(2)(1.6 x 10-'9)] 
m (9.11 x 10-�1) 

= 8.39 X 105 m/sec 

From Problem 1-lb, 

no= (3.3 X I019){103) = 3.3 X 1022 m-3 

1/ = no01J = nocro = (3.3 X 1022)(5.29 X I o-20)(8.39 X I 05) 

= 1.46 x I09 sec-• 

(b) j = p.,neE 

(2)(1.6 X 10-19) 2 2 
D, 

= 
(9.I1 x 10-3')(1.46 x 109) 

= 2.4  x 10 m /sec 

(1.6 X 10-19)(2.4 X 102) " =eD/KT = �------�--�� ,-, ' ' (2)( 1.6 X 10-19) 

= 1.2 x I02 m2/V sec 

j 2 X IQ3 
E = - = = 1 o4 x 1 o• v 1 p.,ne (1.2 X I02)(1016)(1.6 x 10-19) 

• m 
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5-2. 

an= 
DV2n- an2 

at 

? a2n ( 7T ) 2 7TX 

( 7T ) 2 2 DV·n = D ax2 = -Dn0 2L cos 2L = -D 2L n = -an 

D ( 7T ) 2 0.4 ( 7T ) 2 18 3 n =; 2L = 
10-15 0.06 

= 1.1 x 10 m-

5-4. (a) From Problem 5-1a, v'" = 1.46 x 1 09 sec-1 . We need to find whether 

J.L"-1 f.Ld. is large or small: 

f.L, Mv;n 

J..Li 1nVen 
V;n = nnUV; CX:: Vthi CX:: mj112 

since a- is approximately the same for ion-neutral and electron-neutral collisions. 
Thus 

But 

1/0 
J.L, = (M) - = (4 x 1,836)112 = 85.7 
J.L; m 

eB (1.6 X 10-19)(0.2) 
= 3.52 X 1010 We =-;;; = 

9.11 X 10 31 

3.52 X !010 
X 24 Wc'Tm = 1.46 X 109 

1 + W�T;n = 580 

(m)(M) 
1/2 

acTin = WcTm M m = (24)(85.7)-1 = 0.28 

1 1"1 2 2 f.L<J.. = J.L, + HcTin _ 85 7 1.08 _ 

2 2 - ( • ) - 0.16 « 
f.Li.l. f.Li 1 + WcT,n 580 

J.L. D +J.L D J.L D = 1.1. d e.L 1.1. = D + �D-• • a.l t.l 1.l 
f.Li.l.+f.Le.l. mi.L 

KT 
D=-J.L e 

= De.1. + 0.16Di.i 

D,.l. J.L•.1. T, 1 0.1 -=--=- -=0 3 D"- f.Le.1. T, 0.16 2 . 

:. Da.l. = De.L[ 1 + (0.16)(0.3)] = 1.05D"- = Dd 



(b) 

5-5. 

5-7. 

a ( a ) 2 1 
(DT)1/2 = 2.4 .". T = 

2.4 DaJ. 
1 1 

r= -
(2.4 X 1 0-2)2 D,J. 

2.4 X 102 
D,1.= 

5
8

0 
=0.4 140( from Problem5-1) 

:. T = 42 J.LSec 

f=-Ddn/dx n=n0(1-x/L) 

r = Dn0/ L (x > 0) 

Q = 2r = 2Dno/L :. no= QL/2D 

But v,h, oc T;12 and v,, oc T-;312 

5-8. 

5-9. (a) 

:. A,, oc T;12/T;312 oc T; 

(assume Z = 1) 

= 
(5.2 X 10-s)( 1 0) 

= 4.65 X 10-R f1-m 
(500)312 

j =!/A = (2 X 105)/(7.5 X 10-3) = 2.67 X 107 A/m2 

£ = 771U = (4.65 X l0-s)(2.67 X 107) = 1.2 V /m 

KT, = 20 keV KT, = 10 keV n = 1012 m-3 

B = 5T 
71n(KT, + KT,) DJ. = 

B2 

_5 In A. (l o-3)(1 0) 7JJ.=(2.0)(5.2x 10 )T;/,2= (l04)3/2 

= 1.0 X 10-9 fl-m 

(1.0 X J0-9)(1021)(3 X 104)(1.6 X lb- 1 � D J. = -----'--'-----'--'--::---'--'-----� 
52 
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(b) 

dN = 21rrLL dt 

an n 

ar 0.1 

dN 

an 
L = -D'-ar 

r = 0.50 m L =100 m 

- dt = (27T)(0.50)(102) (2.0 x 10-4)(1021/0.10) = 6 x 1020 sec-' 

(c) 

5-13. 

N n7TT2L r=---=--

-dN/dt -dN/dt 
r dfe(.tive = 0.55 m 

r = 
(I02') (7T)(0.55)2(102) 

= !50 sec 
6 X 1020 

-In A _ 10 
7JII = 5.2 X 10 -'�f1-m = (5.2 X 10-')� T,v JO 

= 1.6 X w-s D-m 

7JJ"= (1.6X 10-')(105)2= 1.6X I05W/m3 

= 1.6 x I 0' J/(m3-sec) 

= (1.6 x 105)/(1.6 x 10-19) = 1024 eV/m3-sec 

dE;, 
dt 

3 
E = 

2
nKT, 

d£,v 3 dTev 
:. - =-n-

dt 2 dt 

dT," = � _1_1024 = 0.67 x 10'eV/sec = 0.067 eV/J-Lsec 
dt 3 10'9 

5-15. (a) 

add: 

en <4"- v,TB) - y.;, - e2n 21) (v;8 - v,8) = 0 
0 

f." 2 2 --en(4 - v"B)- eP, + e n 1)(V;8- v,8) - 0 

-v,TB + V"B = 0 V;T = V" 

(This shows ambipolar diffusion.) 
/ 



(b) 

ap, 2 2 - o -en (E, + v,0B ) - - + e n 1)(V;,- v.,)ar 
E, 1 ap; 

V;e = - - + -- - = VE + Vo; B en B ar 

E, 1 ap, 
V,0 = --- -- - = V£ + V0, B en B ar 

(c) From the first equatior, in (a), 
2 2 e n 1) 

V;, = - -B (v;0- v,8 ) en 

= 
en17 _I_(ap; + ap,) = _ _!!.._ ap 

= v., B en B ar ar B 2 ar 

(This shows the absence of cross-field mobility.) 

5-17. (a) 

Solve for v, in (2): 

av, . 
Pu- = ]1 X Bo at 

k · E = 0 (transverse wave) 

Substitute in ( 1) ,  which has no parallel component anyway: 

. (E' XBo 77j, X Bo) _ . 
-twp0 --2- - 2 - ]1 X Bo Bu B o  

(1) 

(2) 

(3 ) 

Since, by Eq. (3), E and j, are in the same direction, take them both to be in the 
x-direction. Then they-component is 

403 
Answers to 

Some Problems 



404 
Appendix D 

Equation (3) becomes 

(h) 

k 2E . E I 
( 

iB 0 77 
) 

-I 
1 =1-Lo�w- - +-

Bo wpo Bo 

(
B2 ) _, 

2 0 . 
= /.LoW - - t7]W E 1 

Po 
w2 B2 
J;2 = /.Lo( �- iw71) 

Po 

B2 
)

-1/2 2 I ? 0 · k =(/.LoW)'-(--zw7J 
Po 

_ 
(1-LoPo

) 
112

( 
iW7]Po

)
-112 

-w -- !- --
B6 B6 

Im (k) = w W1JPo
(

/.LoPo
) 

112 _ w27J 1 
2B� B� -2 v� 

But for smal177, w = kvA, where k = Re (k) 

6-4. (a) 

Im (k) = 
('17)(k2) 

2vA 

j x B = Vp = KTVn (KT = KT, + KT, here) 

(j x B) x B = KTVn X B = B(j · B)- jB2 

The parallel component is 0 = inB2-i1�2 :. iu is arbitrary. The perpendicular 
component is 

(h) 

KT KTan � j =-B x Vn =--() 
.c B2 B ar 

I V X B · dS = 1-Lo I j · dS 

f B · dL = /.Lo I j · dS = 1-LoL f"' j8 dr 

since j and dS are both in the e direction, and L is the width of the loop in the 
z direction. By symmetry, there can be no Bn so only the two z-legs of the loop 
contribute to the line integral. Substituting for j8, we have fro an/ar 

(B= -Bo)L = 1-LoLKT -- dr 
o B(r) 

(c) an/ ar = -n0 8 (r -a), since an jar is a function that is zero everywhere except 

at r = a, is -co there, and has an integral equal to -n0. Thus fro o(r-a) B= - B0 = /.LoKT - n0 dr 
o B(r) 



Since all the diamagnetic current is concentrated at r = a, B takes a jump from 
a constant value Box inside the plasma to another constant value Bo outside. 
(Remember that the field inside an infinite solenoid is uniform.) Upon integrating 
across the jump, one obtains the average value of B on the two sides, Le., 
B (a) = �(Box + B 0). Thus 

- 1 
Box- Bo = J.LoKTno �(Box+ Bo) 
B;x- B� = -2J.LonoKT 

B� 2J.LonoKT 
I- B� = B2 ""'{3 = l 

6-5. (a) By Faraday's law, V = -d¢/dt 

Box= 0 

.. f Vdt = -N f d
d� dt = -Nti¢ 

Since fi¢ is the flux change due to the diamagnetic decrease in B, 

-Nt:.<t> = -N f (B- B0) • dS 

The sign depends on which side of V is considered positive. In practice, this is 
of no consequence because the oscilloscope trace can easily be inverted by using 
the polarity switch. 

(b) In Problem 6-4b, we can draw the loop so that its inner leg lies at an arbitrary 
radius r rather than on the axis. We then have 

f""anjar I J""an/arl I B (r )-B 0  = J.LoKT --� dr = J.LoKT -- d r r B(r ) r Bo 
where again KT is short for L: KT 

an ( -2r ) -r•tr2 -=no -, e 0 

a r  r(i 

B( ) B J.LoKTnof r -r"'/r�2 ld I r - o= -- -;;- e r r B 0  r(i oo 

= J.LonoKT
[e-r'2tr�]� = -J.LonoKT e-r2tr� 

Bo Bo 
This is the diamagnetic change in B at any r. To get the loop signal, we must 
integrate over the plasma cross section. 

f V dt = -N f (B-B0) • dS = -N f f [B (r )- B 0]r dr dO 

where both B and dS are in the z direction. Substituting for B(r )-Bo and 
assuming the coil lies well outside the plasma, we have 
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(c) The quantity in parentheses is {3 by definition; hence, 

f I 2 V dt = 2 N-rrru/3Bo 

Both sides of this equation have units of Aux. 

6-6. (a) For each stream, we have 

(av, v ) . 'k m ii/ + Vo · v1 = -eE1 = (-tw + t v0)v1 

-ieE, 
VJ = ----,-

m(w-kv0) 
an, -+ no(V · v1) + (v0 · V)n, = 0 
at 

(-iw + ikv0)n1 + ikn0v1 = 0 kv, n, =now- kvu 
-ikE1e n,; = nu;m(w-kvo;)2 

Poisson: ikE, = (e/t:0)(n 1• +nIb), where stream a has vo. = vox. no. = !no; stream 
b has Vub = -v0x, nub =!no. Thus 

(b) 

Let 

Then 

ikE = _ (� \ (-- ik_eE ') [ !no + --=----..:..!no--=-] 
I EJ m �-h� �+h� 

n0e2 I [ I I ] I = t:0m . 2 (w - kv0)2 + (w + kv�) 
I 2[ I I J I = 2Wp (w -kv0)2 + (w + kvo)2 

2 k2 2 I= w2 w + Vo 
"(w2-k2v�)2 

w4-(w: + 2k2v�)w2 + k2vW:2v�-w:) = 0 

w2 = �(w: + 2k2v�) ± �<w! + sw:ev�)112 

2ev� X= --2
-� 

Wp 

2 2w2 
y=w2 p 

/ = 1 + x ±(I + 4x)''2 



y can be complex only if the (-) sign is taken. Then y is pure imaginary, and 
we can let y = iy: 

3 

y2 
= (1 + 4 x)112- (l + x) 

.!!_(·l) = 2(1 + 4 x)-112 - l = 0 
dx 

x=-

Thus 

6-8. (a) 

'Y2 = (l + 3)1/2- � =! 

1 ·.f2Im (w) wp 
y = -2 = Im (w)= 2m wt> 

2 [ l 8 ] 
l = Wp 2+ 2 w (w -ku) 

4 

(b) This equation is the same as Eq. [6-30] except that m/ M is replaced by 8, 
which is also small, and that the rest frame has changed to one moving with 
velocity u. The maximum growth rate does not depend on frame, as can be seen 
from Fig. 6-ll by imagining y to be plotted in the z direction vs. x andy; a shift 
in the origin of x will not affect the {eak. Analogy with Eq. [6-35] then gives 

(The exact constant that should appear here is 3'122-413 = 0.69. The derivation 
of 'Ymax. which is difficult because the dispersion relation is cubic, and the proof 
that it is independent of frame for real k are left as exercises for the advanced 
student.) 

6-9. (a) Since only they component of v; and E are involved, the given relation 
is easily found from Eqs. [4-98(b)] and [6-23], plus continuity and Poisson's 
equation. Note that 09 is defined with no, not ( l/2) no. 

(b) Let a= �n;(l + w;/w�)-1, {3 = ev�. Then the dispersion relation reduces to 

The dispersion w (k) is given by 

w2 =a+ {3 ± (a2 + 4a{3)112 

Instability occurs if (a2 + 4a{3)112 >a+ {3, or {3 < 2a, i.e., 

Wher :his is satisfied, the growth rate is given by 
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7-3. (a) 

(h) 

(c) 

(d) 

f.(v) = ....!2__ e-u2/a2 
a7r 112 

r n 
J b (v) = --• -e-cu-v>•t•• 

b'Tr 1/2 

f�(v) = � -2(v- V) 
b,_. l /2 9 e-(v-V)'2jb'l 

.. b-

, _ -2nb [ 
_ 

2(v - V)2] e-cu-V)2fb2 = 0 r. (v)- b37r 1/2 1 
b2 

v- v = ±b/J2 v.p=V-bjJ2 

f�(v.p) = -
nb -112 ( 2) 1/2 

7r b2e 

f�(v.p) = �(-2)( V _ _ 
b
_) e-CV-blh>'ta• 

a7r 2 a 2 2''2 

2np V -V'2fa2 
= - ---,,2 e a 37r 

v » b 

, ,. (�) ·nb _112 _ 2npV -v•ta• 

7r 6.
e - a37rl/2e 

n. b2 

-
= (2e)112- V -v•ta• 

np a3 e 

� = (2e''2) 
Tb �e-v2ta• 

n Tp a 

b2 
Tb 

a2- T. 

7-8. From Eq. [7-127]. we obtain L:a;Z'(l";) = 2T;/ T. , where a;= n0;/n0., {; = 

w/kv,hi· Assume at first that aH is small, so that aA = 1, aH =a; furthermore, 
small a means that V.p will be nearly unchanged from v, of argon. Then doubling 
the ldlndal! damping rate means Im Z'((H) = Im Z'({A). where Im Z'({;) = 

-2iJ7r{;
e-

0. Thus 

(A
e-

d = a(H
e-<� a= 

(A e-C<!-<�> 

(H 

M 112 
(.4 = (�) a= (40)112 e-d(l-1/40> 

(H MH 

9 KT, + 3KT, MA 13 
(:4 = 

MA . 2KT, 
= 

2 

a= J4oe-65co.9751 = 1.12 x 10-2 = 1% 



Thus a is so small that our initial assumptions are justified. 

7-9. (a) 

(b) 

2k2 I - a a 

k2 = Z'((,) + -B -Z'((,) + -B Z'((h) 
Dt t h 

Since (h « (, « I, 

I Im Z'((h)l « I Im Z'((,)j 
(c) Since Z'((h) = Z'((,) = -2), the (h term in (a) is negligible compared with the 
(,term if (Jh » B, and a< 1 /2. Now the dispersion relation is 

, 2k2 2(1- a) 2T, ( T,k2 ) 
Z ((;) = -2-+ = - I 7 a + --2-ko; B, T, T,k0; 

The last term is =eil. 1 and is negligible when quasineutraility holds. Thus the 
ion wave dispersion relation is the same as usual, except that T;/T, has been 
replaced by (I- a)T;/T,. Since small T,/T, means less Landau damping, the 
hot electrons have decreased ion Landau damping. 

8-3. Refer to Fig. 8-4. Take a number of ions with u = u0 and split them into 
two groups, one with u = u0 + t:. and one with u = u0- t:.. After acceleration in 
a potential ¢, the faster half will have less fractional energy gain (because it 
started with more energy) and, hence, will have less fractional density decrease. 
The opposite is true for the slower half, and to first order the total density 
decrease is the same as if all ions had u = Uo. However, there is a second-order 
effect which makes the slower group dominate. This can be seen by making t:. 
so large that u = 0 for the slower half, which clearly must then suffer a huge 
density decrease. To compensate for this, u0 must be increase d to higher than 
the Bohm value. 

8-4. The maximum current occurs when the space charge of decelerated ions 
near grid 3 decreases the electric field to zero. Thus we can apply the Child
Langmuir law to the region between grids 2 and 3 .  

= 
�[ (2)(1.6 X 10-19) ] 1/2(8.85 X 1 0-12)(100)3/2 = 27 2� 

f 9 (4)(1.67 x 10-27) (10-3)2 • m2 

I =]A = 0 .34 rnA 

8-6. (a) At w0 = w, 
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:. Poff = �Eo(£2). But Io = CE0(£2) = P/A, where P = 1012 and A = 
(7T/4)(50 X l0-6)2 = 1 .96 X l0-9 m2 

(b) 

(c) 

8-7. 

At T = 0, 

8-9. 

P 1012 N 
Peff = 2cA = 

(2)(3 X 108)(1.96 X 10-9) = 8.50 X 10" 
m2 

(8.50 X 1011)(0.2248) 8 Jb = 9 = 1.23 X 10 -
9 (39.37t in.-

F =pA 

F=Mg 

P/2c = 1012/(2)(3 X 108) = 1667 N 

M = F/g = 1667/9.8 = 170 kg= 0.17 tonnes 

2nKT = Peff 
:. n = 8.5X10" 

(2)(103)(1.6 X 10-19) 
= 2 .66 X 1027 m-3 

FNL = Vp :. 
}_(nKT) = _!!:_ }__(E0(£2)) 
ar n, ar 2 

..!_on _ _ E_ o _ }__
(£2) 

n ar 2n,KT ar 
Inn = _ 

Eo(£2) 
2n,KT +In n0 

n = no e -Eu(E2)/2ncKT 

nmin = no e -�u(£2)ffi0j,./2n,KT = no e -a 

Eo(£2)max 
:. a= 2n,KT 

ko = 27T/Ao = 27T/l.06 X 10-6 = 5.93 X 106 m-1 

k, = 2k0 = l.I9 x I07 m-1 

v = (KT, + 3KT,) 1/2 
= [(103)(1.6 X 10-1�)] 1/2 (I + 

�) 1/2 
' M (2)( 1.67 X 10-2') () 

( 3) 1/2 
w, = �w = k,v, = (l.I9 X 107)(2.I9 X 105) I+ 0 

3 1/9 
=2.6Ix i012 (I+0

) -

�w �A w0 27Tc -=-- �w =--�A=- -�A 
wo Ao Au A� 



8-10. (a) 

(b) 

= 3 .67 X 1012 

1 + � = (3.67 X 1 012) 2 
= 

2 

8 2.61 x 1012 8 = T
'=3 .. 

T, 
1 T = -keV 

' 3 

2 2M 2 2M kY=� = �=� 
v; KTr m 

.. 
(v�) 4f1v -

2
-= --

Ve W1W2 

since w2 = w0 when n « n,. 

27rc (27r )(3 X 1 08) 14 -I wo=-= 6 = 1 .78X 10 sec A0 10.6 X 10 

2- KT,-(102)(1.6 X w-19)- 13m2 
v, - --;--- (0.9 1 x 1 0  3o) - 1.76 x 1 0  

sec2 

r 112 
__!. = (:!) 8(3 + 8)112 e- (3+0112 
WI 8 

T, e =-= 1 0  T; 
= 3.40 x w-2 

-Sin A (5.2 X 10-5)( 1 0) -7 17 = 5.2 X 1 0  --sf2 = 312 = 5.2 X 1 0  fl-m T,v ( 1 00) 

_ ne217 _ ( 1 023)( 1 .6 X 1 0-19)2(5.2 X 1 0-7) _ 9 _1 v,, - ----;:;;----
(0_91 x 10_30) 

- 1 .46x 10 sec 

( 2) _ (4)(3.4 X 1 0-2)(1.46 X 1 09) 13 _ 7 m2 
Vo 

- 7 14 ( 1 .76 X 1 0  ) - 1 .96 X 1 0  -0 
1 .  8 x 10 sec 
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From Problem 8-6(a): 

8-11. 

2 2 
• m Wo 2 fo = CE0(£·) = CEo --o -(vo) 

e· 

fo = (3 X 108)(8 .854 X 10-12) 
(0.91 X J0-30)2(1.78 X 10'4)2(1.96 X 107) 

(1.6x w-19)" 

= 5.34 x 1010 
w

2 = 5.34 x 106 w2 
m em 

(w? + 2iyw,-wf)[(w, + iy- w0)2- w�] = !c�c�E�. 
If w; = w�, (w,-w0f = w�, and y/w, « 1, then 

(2iyw,)[2iy(w,- w0)] = ic1c2E� = 4y2w,w2 
From Problem 8-10, 

8-13. (a) 

y2 

E0k fw: k iw �e 2 
CtC2 = --- = ---now�M w�mM 

kiw�e2E� kiw;v�m (2k0)2fl;v� 
l6w,w2w�mM = l 6w,w2M = 16w0w, 

= 
Wo

2
HpVo 

y = 
Vo Wo fl, 

2n2 - 2 - ( ) 1/2 

4c w0w, 2 w, 

au 
Mno- = eno E -y,KT,Vn- Mno vv + FNL at 

Mn0( -iw + 11 )v = en0( -ike/>) - y,KT,ikn 1 + F NL 
with e-4>/ KT, = n,/ n0, this becomes 

(w + iv)v = kv;"!!:.2. + iFNL 
no Mn0 

Continuity: 
· 'k · 'k ( . )-I [k ,n1 iFNL] Q -zwn1+tn0v = -zwn1+t.n0w+zv v;-+-- = no Mno 

(w2 + ivw- ev;)nl = ikFNLI M 

When FNL = 0, 

w 1 + z- = k v · w = kv 1 --; - = kv --v 2 ( · IJ) 2 2 ( 1 II) i 
w ' .. ' 2 · w ' 2 

Hence -lm w = f = v/2. So (w2 + 2ifw- ev;)n1 = ikFNL/ M 
(b) 

2 2 Wp Wp . FNL = - --VEo(Eo £2) = - -- zkEo(Eo£2) 
WoW2 W0W2 



Thus, 

8-14. The upper sideband has liw2 = nw0 + nw1, so that the outgoing photon has 
more energy than the original photon fuJ0. The lower sideband would be expected 
to be more favorable energetically, since it is an exothermic reaction, with 
nw2 = liwo- nwl. 

8-18. U(g- cr) = 3c sech2 [(c/2)112(g-cT)], where g = 8112(x'- t'), r = 8312t', 
x' = x/A0, t' = !1pt, 8 = .;{{- 1 

since A 0!1p = v, 

112( x- v,t u, ) (=g-ct=8 ---8c-t Ao Ao 
81/2 

( = -[x- (1 + 8c)v,t] Ao 

The soliton has a peak at ( = 0. The velocity of the peak is dx/ dt = (1 + 8c)v,. 
By definition, 

From Eq. [8-111], 

dx 
- = Af.v, = (1 + 8)v, dt 

.. c = 1 :. Umax=3c=3 

e4>max 
X max="' KT, ""'8x I max = 8U max 

e cPmax 12 1 :. 8 = - --= - - = 0.4 
KT, Umax 10 3 

v., = (1 + 8)v, = 1.4v, 

v = (KT,) 1/2 
= [(10)(1.6 X 10-19)] = X 4 , 

M 1.67 x w-27 3.1o 10 
v., = 4.33 x 104m/sec 

At half maximum, sech2 a=� :. a= 0.8814 = .Jk : . ( = 1.25 = 8
112x/A0 at 

t = 0, say. 

8112 = -Jo.4 = o.632 (E KT) It2 
Ao = � = 2.35 X 10-4m = 0.235 mm 

no e 1.25Ao x = ---= 0 46 mm 0.632 . FWHM = 2x = 0.93 mm 
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8-21. 

lui= 4A 112lsechxl :. lul2 = 16Aisechxl2 

on = �I u 12 ( �2
2 

- I) -I = - �I u 12 = -4A I sech x 12 

on= -4Aisechxl2 = -2A 

OWp I on I - =-- =- -(2A) =-A 
wp 2 n 2 

:. A is frequency shifted due to on. 

8-22. In real units, 

(a) 

(b) 

v 112 [(2A) 112( x \/ )] { ·[(w0 I \/2 ) u = - = 4A sech - - --wpt exp -z - + - -- A wpt v, 3 AD v, Wp 6 v, 

\/ X} 3v, Ao 
T) 112 

_ 

I v, = ( K
m' = 5.93 x 10" m sec ( n e 2 ) 

112 rad Wp = - -1.78 X 109-E'om sec 
v, Ao =- = 3.33 X 10-4m Wp k = 

(kAo) 
= 

0.3 = 9.02 X 102 m-1 
A0 Ao 

Up.-p = 4A 1/2 mwv 
-iwmv = -eE = -e(-ikt/1) :. ¢ =- -;k 

"" - mw 1/2 '+'P-P - ek 4A v, w = (w! + 3k2 v;)112 = 2.01 x 109 

11o k etf>P-P k et/>p-p KT, I kv, etf>p-p A-=--=------=---
4mwv, 4w KT, m v, 4w KT, 

= kv, 3.2 = 0.106 4w 2 
A= 1.13 X 10-" 

I sech X=-2 X= 1.315 = (2A)I'2...:._ 
3 Ao 

X _ (�)112(1.315)(3.33 X 10-4) _ X _3 - 2 0.106 -5.04 10 

FWHM = 2x = 1.01 x 10-2 = 10.1 mm 

N = 1.01 X 10-2 
2n'/ k = 1.45 



(c) 

8-23. 

8w = Awp = (1.13 X !0-2)(1.78 X 109) = 2 X !07 rad/sec 

8f = 8w/27T = 3.2 x 106 = 3.2 MHz 

2 = (3)(3)(1.6 x 10-19) 
= 1.58 x 1012 m2/sec2 gv, 0.91 X !0-30 

(1016)(1 6 X !0-19)2 rad2 
2 - · =3I8x1019--2 w p(out)- (8.824 x 10-12)(0.91 x 10 3o) 

. 
sec 

w!(in) = 0.4w;(out) 

2 =w;(out)-w!(in)
=

3.18xl019
(1-0.4) kmax 3v; 1.58 X 1012 

= 1.21 X I 07 m -2 

27T 
-3 181 A . = - = 1 81 x 10 m = . mm min kmax . 
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Accessibility, IS3, 398 

Acoustic speed, 352 
Adiabatic compression, 42,19 

Adiabatic invariants, 43 

Alfven velocity, 138,351 

Alfven wave, 136 

energy density of, 149 

damping of, 197,404 

shear, 140 

torsional, 140 

Ambipolar diffusion, 159, 172 

Annihilation of magnetic field, 206 

Anomalous resistivity, 288 

Antimatter, 120 

Appleton-Hanree dispersion relation, 150 

Arecibo, 322 

Aurora borealis, I 

Avogadro's number, 369 

Banana diffusion, 194 

Banana orbit, 194 

Beam-plasma instability, 264, 266, 407 

Bernstein waves, 278 
electron, 280 

ion, 282 
neutralized, 284 

Bessel function, 164, 27S 

Beta, 203, 3S2 

INDEX 

BCK mode, 261 

Bohm criterion for sheaths, 292 

Bohm current, 296 

Bohm diffusion, 190 

Bohm-Cross waves, 88, 244 

Bohm time, 191 

Boltzmann constant, 4, 351 

Boltzmann equation, 230 

Boltzmann relation, 75 

Bounce frequency, 329 

Bow shock, earth's, 297 

Buneman instability, 214 

Caviton, 331,344 

Child-Langmuir law, 294 

Clemmow-Mullaly-Allis diagram, 146,360 

CMA diagram, 360 

C02 laser, 118 

Cold-plasma dispersion relation, 359 

Collective behavior, II 
Collision frequency 

electron-electron, 3.�2 

electron-ion, 179,352 

ion-ion, 3.'i2 

Collisions 
Coulomb, 179 

like-particle, 176 

unlike-particle. 177 417 
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Communications blackout, 120 
Constant-p surfaces, 202 
Continuity, equation of. 66 
Convective cells, 192 
Convective derivative, 58 

Cosmic ray acceleration .. �5 
Coulomb barrier, 20 
Coulomb collisions, 179 
Coupled oscillawrs, 309 
Crab nebula, 14, IS2, 206 
Critical density, 120 
Cross-sen ion 

definition, 156 

of H atom, 3.?1 
momentum transfer, 196 

Curvature drift, 29 
Cusps, 45 
Cutoff, 116, 126,360,399 

left-hand, 127 
right-hand. 127 

Cutoff frequency, 127 
Cyclotron harmonics, 274 
Cyclotron heating, 144 
Cyclotron damping, 277 
Cyclotron frequency, 20, 3S6 

of electrons. 85, 3S I 
Cylindrical coordinates, 353 

Debye length, 10,351 

Debye shielding, 8 
Diamagnetic current, 71, 201 
Diamagnetic drift, 69, 352 
Diamagnetic loop. 208 
Diamagnetisn1, 21 
Dielectric constant, 87, 138 

low-frequency, 57 
Dielenric tensor, 3S5 

kinetic. 276 

Diffusion, 186 
across B, I 69 
ambipolar, 187 
anomalous, 174 

Rohm, 190 
of magnetic field. 205 
neoclassica I, 194 

Diffusion coefficient, 158 
ambipolar. 160 
Bohm. 190 
classica I, 187 
fully ionized, 171 
partially ionized. ISS 

Diffusion equation, 188 

Diffusion modes, 162 

Distribution function, 221 
Double layer, 305 
DP machine, 303 
Drift instability, 218 
Drift wave, 81,218 
D-T reaction, 14 

Earth's magnetic field, 46 
EX B drift, 23, 69, 352 
Echoes, plasma, 324 
Eddies, 289 
Effective mass, 16 

Einstein relation, 158 

Electromagnetic waves, 114 

Electron decay insta�ility, 313 
Electron-neutral collision cross-senion, 196 
Electron thermal velocity, 352 
Electron-plasma waves, 87, 244 

kinetic dispersion relation, 274 
nonlinear, 336 

Electron volt, 6, 351 
Electrostatic ion cyclotron waves, I l l  
Electrostatic probes, 295 
Envelope soli LOn, 33 I, 338 
Equilibrium, 200 
Extraordinary wave, 123-:28, 153 

Faraday rotation, 133, 13.?-136 
Far-infrared laser, 149 
Fick's lilw, 1.?8 
Field-effect transistor, 17 
Finite-Larmor-radius effect, 38 
Fluid equations, 67 

derivation of, 236 
Flute instability. 218 
Fokker-Pianck equation, 234 
Fried-Come function, 268 

Gamma, 67 
Gas discharges. 13 
Gaussian units, 349 
Gennalized Ohm's law, 186 

Grad-B drift, 27, 28, 73 
Gravitational drift, 24 
Gravitational instability, 214 

growth rate, 218 
Group dispersion, 337 
Group velocity, 81, 135 
Guiding center, 21 
Guiding center drifts, �3 

Hall current, 186 
Handy formulas. 351 



Harmonics, 288 

Harris instability, 210 

HCN laser, 149 

Heat flow equation, 240 

High-/3 plasma, 205 

Hydromagnetic waves, 136 

ICRF heating, 153 

Impact parameter, 179 

Instabilities 
classification of, 208 

kinetic, 210 

streaming, 209 

universal, 210 

velocity space, 210 

Instability 

beam-plasma, 214 

Buneman, 214 

drift, 218 

explosive, 199 

gravitational, 214 

Harris, 210 

loss cone, 210 

Rayleigh-Taylor, 209 

two-stream, 211 

Interchange instability, 215 

Interferometer, microwave, 117, 121, 136 

I nvariance of ] , 45 

Invariant 

adiabatic, 49 

], 45 

Jl, 32,42, 44 
<P, 49 

Iodine laser, 323 

Jon acoustic shock, 297 

Jon acoustic velocity, 96, 98 

Ion acoustic waves, 95, 267, 323 

Ion cyclotron waves 

electromagnetic, 153 

electrostatic, I l l , 149 

Ionization function, 165 

Ionosphere, 14 

Ionospheric modification, 321 

Ion propulsion, 15 

Ion waves, 95 

kinetic dispersion relation, 270 

nonlinear, 331 

Kadomtsev-Nedospasov instability, I 74 

k-Matching, 311 

Korteweg-deVries equation, 331 

Krook collision term, 234 

Landau damping 

electron, 240, 245 

ion, 267, 271-272 

nonlinear, 249, 328 

Langmuir probes, 295 

Langmuir soliwn, 346 

Langmuir wave, 94 

energy density of, 149 

Langmuir's paradox, 65 

Larmor radius, 20, 351 

Laser 

C02, I 18 

far-infrared, 16 
gas, 16 

HCN, 149 

Laser fusion, 323 

Lehnen-Hoh experiment, 174 

Linear solenoid, 119 
Lines of force, 27 

freezing of plasma, 139 

In A factor, 181 
Longitudinal waves, definition of, I 01 

Looney-Brown experiment, 89 

Loschmidt number, 7, 351, 369 

Loss cone, 34 

Loss cone distribution, 232 

Loss cone instability, 210 

Lower hybrid frequency, 113 

Lower hybrid heating, 153 

L wave, 129 

Mach number, 298 

Magnetic field 

di££usion into plasma, 205 

exclusion of, 205 

spontaneous, 134, 207 

Magnetic mirror, 30, 203 

Magnetic moment, 31, 32, 56 

Magnetic pressure, 204 

Magnetic pumping, 44, 48 

Magnewsonic velocity, 144 

Magnetosonic waves, 142 

Magnetosphere, 14 

Malmberg-Wharton experiment, 262 

Maxwellian distribution, 4, 226, 229 

Maxwell's equations, 54 

Mean free path, 157 

electron-ion, 195, 352 

MHD energy conversion, 15 
MHD equations, 184 

Microwaves, 117 

Mirror ratio, 34 
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Mobility, 158 

transverse, 188 

Modulational instability, 289,330,337,338 

Navier-Stokes equation, 94 

Negative energy waves, 261 

Negative ions, 121, 151 

Neoclassical diffusion, 194 

Neutron stars, 13 

Nonlinear frequency shift, 337 

Nonlinear Schrodinger equation, 336 

Non-Maxwellian distribution, 226 

Ohmic heating, 182, 195, 196 

Ohm's law, generalized, 186 

Omega (w)-matching, 310 

Ordinary wave, 122 

damping of, !50 

Oscillating velocity, 352 

Parallel, definition of, 101 

Parametric backscattering, 313 

Parametric decay instability, 313,317,320 

Parametric instabilities, 309 

threshold, 314 

Partially ionized plasmas, 155 

Particle trajectories, 235, 236, 237 

Permeability of free space, 351 
Permittivity of free space, 351 
Perpendicular, definition of, 101 

Phase velocity, 80 

Physical constants, 350 

Plasma approximation, 77,98 

Plasma, definition of, 3 

Plasma dispersion function, 268 

Plasma echoes, 324 

Plasma frequency, 82, 85, 351, 356 

Plasma lens, 119 

Plasma oscillations, 240 
damping of, 94 

Plasma parameter, II 
Plasma pond, 148 

Plasma temperature, 6 

Plasma waves, summary, 144-145 

Poisson equation, 9 

Polarization, 130, 134,360 

Polarization current, 40 

Polarization drift, 40, 49 

Ponderomotive force, 305, 307 

Pres heath, 295 

Pressure, 63 

Pressure tensor, 61, 64 

Probes, electrostatic, 295 

Profile modification, 308, 344 

Pulsar, 15, 148 

Pump wave, 310 

Q-machine, 70, 100, 112, 190 

Quarter-critical layer, 313 

Quasi linear effect, 288 

Quasineutrality, 10 

Quiver velocity, 352 

Radio communication, 120 

Radio telescope, 321 

Rand L waves, polarization, 135 

Random walk, 172 

Rayleigh-Taylor instability, 209, 215 

Recombination 

radiative, 167 

three-body, 167 

Recombination coefficient, 167 

Resistive drift wave, 218, 222 

Resistivity, 178, 181 

parallel, 183 

perpendicular, 183 

Resonance, 126 

Resonance angle, 360 

Resonant panicles, 260 

Runaway electrons, 182 

R wave, 129 

Sagdeev potential, 297, 299, 300 

Saha equation, I 
Self-focusing, 308, 309, 410 

Sheath, 10,290 

Sheath criterion, 292 

Shock waves, 297 

Single-fluid equation, 184 

Skin depth, 116 

Solar corona, 14 

Solar wind, I, 14 

Soliton, 299, 300, 333, 336 

coupled, 344 

Sound waves, 94 

Spacecraft reentry, 121 

Space physics, 14 

Spitzer resistivity, 181, 183 

State, equation of, 66 

Stellarator, 192 

Stimulated Brillouin scattering, 313, 314, 

315,323,411 

Stimulated Raman scattering, 313, 314 

Stix waves, 153 

Stress tensor, 61, 239 

Super-Aifvenic, 152 

Supersonic, 152 

Susceptibility 

electric, 56 

magnetic, 56 

-



Temperature, 4 
Thermal velocity, 228 
Thermonuclear fusion, 13 

Theta pinch, 196 
Transverse, definition of, 101 

Trapped electrons, 235 

Trapping, 288 

Trivelpiece-Gould waves, 106-109 
picture of, 86 

Turning point, 46 

Turbulence, 288, 289 
Two-plasmon decay instability, 313 
Two-stream instability, 211 

Universal instability, 210 
Upper hybrid frequency, 104 

Van Allen belts, I, 14, 34 

Van Kampen mode, 261 
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Vector relations, 352 
Velocity analyzer, 296 

Velocity average, Maxwellian, 228 
Velocity space diagram, 236,237,255 
Viscosity, 64,65 

collisionless, 64 

magnetic, 64, 55 

Viscosity tensor, I 78 

Vlasov equation, 233 

Wavebreaking, 288 

Wave-particle interactions, 288 
Waves in a cold plasma, 355 
Wave steepening, 302 

Wave-wave interactions, 288 
Weakly ionized gases, I 55 
Weibel instability, 223 

Whistler waves, 131, I 35 

Z-function, 268 
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